1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 /* This is the final pass of the compiler.
24 It looks at the rtl code for a function and outputs assembler code.
26 Call `final_start_function' to output the assembler code for function entry,
27 `final' to output assembler code for some RTL code,
28 `final_end_function' to output assembler code for function exit.
29 If a function is compiled in several pieces, each piece is
30 output separately with `final'.
32 Some optimizations are also done at this level.
33 Move instructions that were made unnecessary by good register allocation
34 are detected and omitted from the output. (Though most of these
35 are removed by the last jump pass.)
37 Instructions to set the condition codes are omitted when it can be
38 seen that the condition codes already had the desired values.
40 In some cases it is sufficient if the inherited condition codes
41 have related values, but this may require the following insn
42 (the one that tests the condition codes) to be modified.
44 The code for the function prologue and epilogue are generated
45 directly in assembler by the target functions function_prologue and
46 function_epilogue. Those instructions never exist as rtl. */
50 #include "coretypes.h"
57 #include "insn-config.h"
58 #include "insn-attr.h"
60 #include "conditions.h"
63 #include "hard-reg-set.h"
70 #include "basic-block.h"
74 #include "cfglayout.h"
76 #ifdef XCOFF_DEBUGGING_INFO
77 #include "xcoffout.h" /* Needed for external data
78 declarations for e.g. AIX 4.x. */
81 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
82 #include "dwarf2out.h"
85 #ifdef DBX_DEBUGGING_INFO
89 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
90 null default for it to save conditionalization later. */
91 #ifndef CC_STATUS_INIT
92 #define CC_STATUS_INIT
95 /* How to start an assembler comment. */
96 #ifndef ASM_COMMENT_START
97 #define ASM_COMMENT_START ";#"
100 /* Is the given character a logical line separator for the assembler? */
101 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
102 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
105 #ifndef JUMP_TABLES_IN_TEXT_SECTION
106 #define JUMP_TABLES_IN_TEXT_SECTION 0
109 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
110 #define HAVE_READONLY_DATA_SECTION 1
112 #define HAVE_READONLY_DATA_SECTION 0
115 /* Bitflags used by final_scan_insn. */
118 #define SEEN_EMITTED 4
120 /* Last insn processed by final_scan_insn. */
121 static rtx debug_insn
;
122 rtx current_output_insn
;
124 /* Line number of last NOTE. */
125 static int last_linenum
;
127 /* Highest line number in current block. */
128 static int high_block_linenum
;
130 /* Likewise for function. */
131 static int high_function_linenum
;
133 /* Filename of last NOTE. */
134 static const char *last_filename
;
136 extern int length_unit_log
; /* This is defined in insn-attrtab.c. */
138 /* Nonzero while outputting an `asm' with operands.
139 This means that inconsistencies are the user's fault, so don't die.
140 The precise value is the insn being output, to pass to error_for_asm. */
141 rtx this_is_asm_operands
;
143 /* Number of operands of this insn, for an `asm' with operands. */
144 static unsigned int insn_noperands
;
146 /* Compare optimization flag. */
148 static rtx last_ignored_compare
= 0;
150 /* Assign a unique number to each insn that is output.
151 This can be used to generate unique local labels. */
153 static int insn_counter
= 0;
156 /* This variable contains machine-dependent flags (defined in tm.h)
157 set and examined by output routines
158 that describe how to interpret the condition codes properly. */
162 /* During output of an insn, this contains a copy of cc_status
163 from before the insn. */
165 CC_STATUS cc_prev_status
;
168 /* Indexed by hardware reg number, is 1 if that register is ever
169 used in the current function.
171 In life_analysis, or in stupid_life_analysis, this is set
172 up to record the hard regs used explicitly. Reload adds
173 in the hard regs used for holding pseudo regs. Final uses
174 it to generate the code in the function prologue and epilogue
175 to save and restore registers as needed. */
177 char regs_ever_live
[FIRST_PSEUDO_REGISTER
];
179 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
180 Unlike regs_ever_live, elements of this array corresponding to
181 eliminable regs like the frame pointer are set if an asm sets them. */
183 char regs_asm_clobbered
[FIRST_PSEUDO_REGISTER
];
185 /* Nonzero means current function must be given a frame pointer.
186 Initialized in function.c to 0. Set only in reload1.c as per
187 the needs of the function. */
189 int frame_pointer_needed
;
191 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
193 static int block_depth
;
195 /* Nonzero if have enabled APP processing of our assembler output. */
199 /* If we are outputting an insn sequence, this contains the sequence rtx.
204 #ifdef ASSEMBLER_DIALECT
206 /* Number of the assembler dialect to use, starting at 0. */
207 static int dialect_number
;
210 #ifdef HAVE_conditional_execution
211 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
212 rtx current_insn_predicate
;
215 #ifdef HAVE_ATTR_length
216 static int asm_insn_count (rtx
);
218 static void profile_function (FILE *);
219 static void profile_after_prologue (FILE *);
220 static bool notice_source_line (rtx
);
221 static rtx
walk_alter_subreg (rtx
*);
222 static void output_asm_name (void);
223 static void output_alternate_entry_point (FILE *, rtx
);
224 static tree
get_mem_expr_from_op (rtx
, int *);
225 static void output_asm_operand_names (rtx
*, int *, int);
226 static void output_operand (rtx
, int);
227 #ifdef LEAF_REGISTERS
228 static void leaf_renumber_regs (rtx
);
231 static int alter_cond (rtx
);
233 #ifndef ADDR_VEC_ALIGN
234 static int final_addr_vec_align (rtx
);
236 #ifdef HAVE_ATTR_length
237 static int align_fuzz (rtx
, rtx
, int, unsigned);
240 /* Initialize data in final at the beginning of a compilation. */
243 init_final (const char *filename ATTRIBUTE_UNUSED
)
248 #ifdef ASSEMBLER_DIALECT
249 dialect_number
= ASSEMBLER_DIALECT
;
253 /* Default target function prologue and epilogue assembler output.
255 If not overridden for epilogue code, then the function body itself
256 contains return instructions wherever needed. */
258 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED
,
259 HOST_WIDE_INT size ATTRIBUTE_UNUSED
)
263 /* Default target hook that outputs nothing to a stream. */
265 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED
)
269 /* Enable APP processing of subsequent output.
270 Used before the output from an `asm' statement. */
277 fputs (ASM_APP_ON
, asm_out_file
);
282 /* Disable APP processing of subsequent output.
283 Called from varasm.c before most kinds of output. */
290 fputs (ASM_APP_OFF
, asm_out_file
);
295 /* Return the number of slots filled in the current
296 delayed branch sequence (we don't count the insn needing the
297 delay slot). Zero if not in a delayed branch sequence. */
301 dbr_sequence_length (void)
303 if (final_sequence
!= 0)
304 return XVECLEN (final_sequence
, 0) - 1;
310 /* The next two pages contain routines used to compute the length of an insn
311 and to shorten branches. */
313 /* Arrays for insn lengths, and addresses. The latter is referenced by
314 `insn_current_length'. */
316 static int *insn_lengths
;
318 varray_type insn_addresses_
;
320 /* Max uid for which the above arrays are valid. */
321 static int insn_lengths_max_uid
;
323 /* Address of insn being processed. Used by `insn_current_length'. */
324 int insn_current_address
;
326 /* Address of insn being processed in previous iteration. */
327 int insn_last_address
;
329 /* known invariant alignment of insn being processed. */
330 int insn_current_align
;
332 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
333 gives the next following alignment insn that increases the known
334 alignment, or NULL_RTX if there is no such insn.
335 For any alignment obtained this way, we can again index uid_align with
336 its uid to obtain the next following align that in turn increases the
337 alignment, till we reach NULL_RTX; the sequence obtained this way
338 for each insn we'll call the alignment chain of this insn in the following
341 struct label_alignment
347 static rtx
*uid_align
;
348 static int *uid_shuid
;
349 static struct label_alignment
*label_align
;
351 /* Indicate that branch shortening hasn't yet been done. */
354 init_insn_lengths (void)
365 insn_lengths_max_uid
= 0;
367 #ifdef HAVE_ATTR_length
368 INSN_ADDRESSES_FREE ();
377 /* Obtain the current length of an insn. If branch shortening has been done,
378 get its actual length. Otherwise, get its maximum length. */
381 get_attr_length (rtx insn ATTRIBUTE_UNUSED
)
383 #ifdef HAVE_ATTR_length
388 if (insn_lengths_max_uid
> INSN_UID (insn
))
389 return insn_lengths
[INSN_UID (insn
)];
391 switch (GET_CODE (insn
))
399 length
= insn_default_length (insn
);
403 body
= PATTERN (insn
);
404 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
406 /* Alignment is machine-dependent and should be handled by
410 length
= insn_default_length (insn
);
414 body
= PATTERN (insn
);
415 if (GET_CODE (body
) == USE
|| GET_CODE (body
) == CLOBBER
)
418 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
419 length
= asm_insn_count (body
) * insn_default_length (insn
);
420 else if (GET_CODE (body
) == SEQUENCE
)
421 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
422 length
+= get_attr_length (XVECEXP (body
, 0, i
));
424 length
= insn_default_length (insn
);
431 #ifdef ADJUST_INSN_LENGTH
432 ADJUST_INSN_LENGTH (insn
, length
);
435 #else /* not HAVE_ATTR_length */
437 #endif /* not HAVE_ATTR_length */
440 /* Code to handle alignment inside shorten_branches. */
442 /* Here is an explanation how the algorithm in align_fuzz can give
445 Call a sequence of instructions beginning with alignment point X
446 and continuing until the next alignment point `block X'. When `X'
447 is used in an expression, it means the alignment value of the
450 Call the distance between the start of the first insn of block X, and
451 the end of the last insn of block X `IX', for the `inner size of X'.
452 This is clearly the sum of the instruction lengths.
454 Likewise with the next alignment-delimited block following X, which we
457 Call the distance between the start of the first insn of block X, and
458 the start of the first insn of block Y `OX', for the `outer size of X'.
460 The estimated padding is then OX - IX.
462 OX can be safely estimated as
467 OX = round_up(IX, X) + Y - X
469 Clearly est(IX) >= real(IX), because that only depends on the
470 instruction lengths, and those being overestimated is a given.
472 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
473 we needn't worry about that when thinking about OX.
475 When X >= Y, the alignment provided by Y adds no uncertainty factor
476 for branch ranges starting before X, so we can just round what we have.
477 But when X < Y, we don't know anything about the, so to speak,
478 `middle bits', so we have to assume the worst when aligning up from an
479 address mod X to one mod Y, which is Y - X. */
482 #define LABEL_ALIGN(LABEL) align_labels_log
485 #ifndef LABEL_ALIGN_MAX_SKIP
486 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
490 #define LOOP_ALIGN(LABEL) align_loops_log
493 #ifndef LOOP_ALIGN_MAX_SKIP
494 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
497 #ifndef LABEL_ALIGN_AFTER_BARRIER
498 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
501 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
502 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
506 #define JUMP_ALIGN(LABEL) align_jumps_log
509 #ifndef JUMP_ALIGN_MAX_SKIP
510 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
513 #ifndef ADDR_VEC_ALIGN
515 final_addr_vec_align (rtx addr_vec
)
517 int align
= GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec
)));
519 if (align
> BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
)
520 align
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
521 return exact_log2 (align
);
525 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
528 #ifndef INSN_LENGTH_ALIGNMENT
529 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
532 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
534 static int min_labelno
, max_labelno
;
536 #define LABEL_TO_ALIGNMENT(LABEL) \
537 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
539 #define LABEL_TO_MAX_SKIP(LABEL) \
540 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
542 /* For the benefit of port specific code do this also as a function. */
545 label_to_alignment (rtx label
)
547 return LABEL_TO_ALIGNMENT (label
);
550 #ifdef HAVE_ATTR_length
551 /* The differences in addresses
552 between a branch and its target might grow or shrink depending on
553 the alignment the start insn of the range (the branch for a forward
554 branch or the label for a backward branch) starts out on; if these
555 differences are used naively, they can even oscillate infinitely.
556 We therefore want to compute a 'worst case' address difference that
557 is independent of the alignment the start insn of the range end
558 up on, and that is at least as large as the actual difference.
559 The function align_fuzz calculates the amount we have to add to the
560 naively computed difference, by traversing the part of the alignment
561 chain of the start insn of the range that is in front of the end insn
562 of the range, and considering for each alignment the maximum amount
563 that it might contribute to a size increase.
565 For casesi tables, we also want to know worst case minimum amounts of
566 address difference, in case a machine description wants to introduce
567 some common offset that is added to all offsets in a table.
568 For this purpose, align_fuzz with a growth argument of 0 computes the
569 appropriate adjustment. */
571 /* Compute the maximum delta by which the difference of the addresses of
572 START and END might grow / shrink due to a different address for start
573 which changes the size of alignment insns between START and END.
574 KNOWN_ALIGN_LOG is the alignment known for START.
575 GROWTH should be ~0 if the objective is to compute potential code size
576 increase, and 0 if the objective is to compute potential shrink.
577 The return value is undefined for any other value of GROWTH. */
580 align_fuzz (rtx start
, rtx end
, int known_align_log
, unsigned int growth
)
582 int uid
= INSN_UID (start
);
584 int known_align
= 1 << known_align_log
;
585 int end_shuid
= INSN_SHUID (end
);
588 for (align_label
= uid_align
[uid
]; align_label
; align_label
= uid_align
[uid
])
590 int align_addr
, new_align
;
592 uid
= INSN_UID (align_label
);
593 align_addr
= INSN_ADDRESSES (uid
) - insn_lengths
[uid
];
594 if (uid_shuid
[uid
] > end_shuid
)
596 known_align_log
= LABEL_TO_ALIGNMENT (align_label
);
597 new_align
= 1 << known_align_log
;
598 if (new_align
< known_align
)
600 fuzz
+= (-align_addr
^ growth
) & (new_align
- known_align
);
601 known_align
= new_align
;
606 /* Compute a worst-case reference address of a branch so that it
607 can be safely used in the presence of aligned labels. Since the
608 size of the branch itself is unknown, the size of the branch is
609 not included in the range. I.e. for a forward branch, the reference
610 address is the end address of the branch as known from the previous
611 branch shortening pass, minus a value to account for possible size
612 increase due to alignment. For a backward branch, it is the start
613 address of the branch as known from the current pass, plus a value
614 to account for possible size increase due to alignment.
615 NB.: Therefore, the maximum offset allowed for backward branches needs
616 to exclude the branch size. */
619 insn_current_reference_address (rtx branch
)
624 if (! INSN_ADDRESSES_SET_P ())
627 seq
= NEXT_INSN (PREV_INSN (branch
));
628 seq_uid
= INSN_UID (seq
);
629 if (!JUMP_P (branch
))
630 /* This can happen for example on the PA; the objective is to know the
631 offset to address something in front of the start of the function.
632 Thus, we can treat it like a backward branch.
633 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
634 any alignment we'd encounter, so we skip the call to align_fuzz. */
635 return insn_current_address
;
636 dest
= JUMP_LABEL (branch
);
638 /* BRANCH has no proper alignment chain set, so use SEQ.
639 BRANCH also has no INSN_SHUID. */
640 if (INSN_SHUID (seq
) < INSN_SHUID (dest
))
642 /* Forward branch. */
643 return (insn_last_address
+ insn_lengths
[seq_uid
]
644 - align_fuzz (seq
, dest
, length_unit_log
, ~0));
648 /* Backward branch. */
649 return (insn_current_address
650 + align_fuzz (dest
, seq
, length_unit_log
, ~0));
653 #endif /* HAVE_ATTR_length */
656 compute_alignments (void)
658 int log
, max_skip
, max_log
;
667 max_labelno
= max_label_num ();
668 min_labelno
= get_first_label_num ();
669 label_align
= xcalloc (max_labelno
- min_labelno
+ 1,
670 sizeof (struct label_alignment
));
672 /* If not optimizing or optimizing for size, don't assign any alignments. */
673 if (! optimize
|| optimize_size
)
678 rtx label
= BB_HEAD (bb
);
679 int fallthru_frequency
= 0, branch_frequency
= 0, has_fallthru
= 0;
684 || probably_never_executed_bb_p (bb
))
686 max_log
= LABEL_ALIGN (label
);
687 max_skip
= LABEL_ALIGN_MAX_SKIP
;
689 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
691 if (e
->flags
& EDGE_FALLTHRU
)
692 has_fallthru
= 1, fallthru_frequency
+= EDGE_FREQUENCY (e
);
694 branch_frequency
+= EDGE_FREQUENCY (e
);
697 /* There are two purposes to align block with no fallthru incoming edge:
698 1) to avoid fetch stalls when branch destination is near cache boundary
699 2) to improve cache efficiency in case the previous block is not executed
700 (so it does not need to be in the cache).
702 We to catch first case, we align frequently executed blocks.
703 To catch the second, we align blocks that are executed more frequently
704 than the predecessor and the predecessor is likely to not be executed
705 when function is called. */
708 && (branch_frequency
> BB_FREQ_MAX
/ 10
709 || (bb
->frequency
> bb
->prev_bb
->frequency
* 10
710 && (bb
->prev_bb
->frequency
711 <= ENTRY_BLOCK_PTR
->frequency
/ 2))))
713 log
= JUMP_ALIGN (label
);
717 max_skip
= JUMP_ALIGN_MAX_SKIP
;
720 /* In case block is frequent and reached mostly by non-fallthru edge,
721 align it. It is most likely a first block of loop. */
723 && maybe_hot_bb_p (bb
)
724 && branch_frequency
+ fallthru_frequency
> BB_FREQ_MAX
/ 10
725 && branch_frequency
> fallthru_frequency
* 2)
727 log
= LOOP_ALIGN (label
);
731 max_skip
= LOOP_ALIGN_MAX_SKIP
;
734 LABEL_TO_ALIGNMENT (label
) = max_log
;
735 LABEL_TO_MAX_SKIP (label
) = max_skip
;
739 /* Make a pass over all insns and compute their actual lengths by shortening
740 any branches of variable length if possible. */
742 /* shorten_branches might be called multiple times: for example, the SH
743 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
744 In order to do this, it needs proper length information, which it obtains
745 by calling shorten_branches. This cannot be collapsed with
746 shorten_branches itself into a single pass unless we also want to integrate
747 reorg.c, since the branch splitting exposes new instructions with delay
751 shorten_branches (rtx first ATTRIBUTE_UNUSED
)
758 #ifdef HAVE_ATTR_length
759 #define MAX_CODE_ALIGN 16
761 int something_changed
= 1;
762 char *varying_length
;
765 rtx align_tab
[MAX_CODE_ALIGN
];
769 /* Compute maximum UID and allocate label_align / uid_shuid. */
770 max_uid
= get_max_uid ();
772 /* Free uid_shuid before reallocating it. */
775 uid_shuid
= xmalloc (max_uid
* sizeof *uid_shuid
);
777 if (max_labelno
!= max_label_num ())
779 int old
= max_labelno
;
783 max_labelno
= max_label_num ();
785 n_labels
= max_labelno
- min_labelno
+ 1;
786 n_old_labels
= old
- min_labelno
+ 1;
788 label_align
= xrealloc (label_align
,
789 n_labels
* sizeof (struct label_alignment
));
791 /* Range of labels grows monotonically in the function. Failing here
792 means that the initialization of array got lost. */
793 gcc_assert (n_old_labels
<= n_labels
);
795 memset (label_align
+ n_old_labels
, 0,
796 (n_labels
- n_old_labels
) * sizeof (struct label_alignment
));
799 /* Initialize label_align and set up uid_shuid to be strictly
800 monotonically rising with insn order. */
801 /* We use max_log here to keep track of the maximum alignment we want to
802 impose on the next CODE_LABEL (or the current one if we are processing
803 the CODE_LABEL itself). */
808 for (insn
= get_insns (), i
= 1; insn
; insn
= NEXT_INSN (insn
))
812 INSN_SHUID (insn
) = i
++;
815 /* reorg might make the first insn of a loop being run once only,
816 and delete the label in front of it. Then we want to apply
817 the loop alignment to the new label created by reorg, which
818 is separated by the former loop start insn from the
819 NOTE_INSN_LOOP_BEG. */
821 else if (LABEL_P (insn
))
825 /* Merge in alignments computed by compute_alignments. */
826 log
= LABEL_TO_ALIGNMENT (insn
);
830 max_skip
= LABEL_TO_MAX_SKIP (insn
);
833 log
= LABEL_ALIGN (insn
);
837 max_skip
= LABEL_ALIGN_MAX_SKIP
;
839 next
= next_nonnote_insn (insn
);
840 /* ADDR_VECs only take room if read-only data goes into the text
842 if (JUMP_TABLES_IN_TEXT_SECTION
|| !HAVE_READONLY_DATA_SECTION
)
843 if (next
&& JUMP_P (next
))
845 rtx nextbody
= PATTERN (next
);
846 if (GET_CODE (nextbody
) == ADDR_VEC
847 || GET_CODE (nextbody
) == ADDR_DIFF_VEC
)
849 log
= ADDR_VEC_ALIGN (next
);
853 max_skip
= LABEL_ALIGN_MAX_SKIP
;
857 LABEL_TO_ALIGNMENT (insn
) = max_log
;
858 LABEL_TO_MAX_SKIP (insn
) = max_skip
;
862 else if (BARRIER_P (insn
))
866 for (label
= insn
; label
&& ! INSN_P (label
);
867 label
= NEXT_INSN (label
))
870 log
= LABEL_ALIGN_AFTER_BARRIER (insn
);
874 max_skip
= LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
;
880 #ifdef HAVE_ATTR_length
882 /* Allocate the rest of the arrays. */
883 insn_lengths
= xmalloc (max_uid
* sizeof (*insn_lengths
));
884 insn_lengths_max_uid
= max_uid
;
885 /* Syntax errors can lead to labels being outside of the main insn stream.
886 Initialize insn_addresses, so that we get reproducible results. */
887 INSN_ADDRESSES_ALLOC (max_uid
);
889 varying_length
= xcalloc (max_uid
, sizeof (char));
891 /* Initialize uid_align. We scan instructions
892 from end to start, and keep in align_tab[n] the last seen insn
893 that does an alignment of at least n+1, i.e. the successor
894 in the alignment chain for an insn that does / has a known
896 uid_align
= xcalloc (max_uid
, sizeof *uid_align
);
898 for (i
= MAX_CODE_ALIGN
; --i
>= 0;)
899 align_tab
[i
] = NULL_RTX
;
900 seq
= get_last_insn ();
901 for (; seq
; seq
= PREV_INSN (seq
))
903 int uid
= INSN_UID (seq
);
905 log
= (LABEL_P (seq
) ? LABEL_TO_ALIGNMENT (seq
) : 0);
906 uid_align
[uid
] = align_tab
[0];
909 /* Found an alignment label. */
910 uid_align
[uid
] = align_tab
[log
];
911 for (i
= log
- 1; i
>= 0; i
--)
915 #ifdef CASE_VECTOR_SHORTEN_MODE
918 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
921 int min_shuid
= INSN_SHUID (get_insns ()) - 1;
922 int max_shuid
= INSN_SHUID (get_last_insn ()) + 1;
925 for (insn
= first
; insn
!= 0; insn
= NEXT_INSN (insn
))
927 rtx min_lab
= NULL_RTX
, max_lab
= NULL_RTX
, pat
;
928 int len
, i
, min
, max
, insn_shuid
;
930 addr_diff_vec_flags flags
;
933 || GET_CODE (PATTERN (insn
)) != ADDR_DIFF_VEC
)
935 pat
= PATTERN (insn
);
936 len
= XVECLEN (pat
, 1);
937 gcc_assert (len
> 0);
938 min_align
= MAX_CODE_ALIGN
;
939 for (min
= max_shuid
, max
= min_shuid
, i
= len
- 1; i
>= 0; i
--)
941 rtx lab
= XEXP (XVECEXP (pat
, 1, i
), 0);
942 int shuid
= INSN_SHUID (lab
);
953 if (min_align
> LABEL_TO_ALIGNMENT (lab
))
954 min_align
= LABEL_TO_ALIGNMENT (lab
);
956 XEXP (pat
, 2) = gen_rtx_LABEL_REF (Pmode
, min_lab
);
957 XEXP (pat
, 3) = gen_rtx_LABEL_REF (Pmode
, max_lab
);
958 insn_shuid
= INSN_SHUID (insn
);
959 rel
= INSN_SHUID (XEXP (XEXP (pat
, 0), 0));
960 memset (&flags
, 0, sizeof (flags
));
961 flags
.min_align
= min_align
;
962 flags
.base_after_vec
= rel
> insn_shuid
;
963 flags
.min_after_vec
= min
> insn_shuid
;
964 flags
.max_after_vec
= max
> insn_shuid
;
965 flags
.min_after_base
= min
> rel
;
966 flags
.max_after_base
= max
> rel
;
967 ADDR_DIFF_VEC_FLAGS (pat
) = flags
;
970 #endif /* CASE_VECTOR_SHORTEN_MODE */
972 /* Compute initial lengths, addresses, and varying flags for each insn. */
973 for (insn_current_address
= 0, insn
= first
;
975 insn_current_address
+= insn_lengths
[uid
], insn
= NEXT_INSN (insn
))
977 uid
= INSN_UID (insn
);
979 insn_lengths
[uid
] = 0;
983 int log
= LABEL_TO_ALIGNMENT (insn
);
986 int align
= 1 << log
;
987 int new_address
= (insn_current_address
+ align
- 1) & -align
;
988 insn_lengths
[uid
] = new_address
- insn_current_address
;
992 INSN_ADDRESSES (uid
) = insn_current_address
+ insn_lengths
[uid
];
994 if (NOTE_P (insn
) || BARRIER_P (insn
)
997 if (INSN_DELETED_P (insn
))
1000 body
= PATTERN (insn
);
1001 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
1003 /* This only takes room if read-only data goes into the text
1005 if (JUMP_TABLES_IN_TEXT_SECTION
|| !HAVE_READONLY_DATA_SECTION
)
1006 insn_lengths
[uid
] = (XVECLEN (body
,
1007 GET_CODE (body
) == ADDR_DIFF_VEC
)
1008 * GET_MODE_SIZE (GET_MODE (body
)));
1009 /* Alignment is handled by ADDR_VEC_ALIGN. */
1011 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
1012 insn_lengths
[uid
] = asm_insn_count (body
) * insn_default_length (insn
);
1013 else if (GET_CODE (body
) == SEQUENCE
)
1016 int const_delay_slots
;
1018 const_delay_slots
= const_num_delay_slots (XVECEXP (body
, 0, 0));
1020 const_delay_slots
= 0;
1022 /* Inside a delay slot sequence, we do not do any branch shortening
1023 if the shortening could change the number of delay slots
1025 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1027 rtx inner_insn
= XVECEXP (body
, 0, i
);
1028 int inner_uid
= INSN_UID (inner_insn
);
1031 if (GET_CODE (body
) == ASM_INPUT
1032 || asm_noperands (PATTERN (XVECEXP (body
, 0, i
))) >= 0)
1033 inner_length
= (asm_insn_count (PATTERN (inner_insn
))
1034 * insn_default_length (inner_insn
));
1036 inner_length
= insn_default_length (inner_insn
);
1038 insn_lengths
[inner_uid
] = inner_length
;
1039 if (const_delay_slots
)
1041 if ((varying_length
[inner_uid
]
1042 = insn_variable_length_p (inner_insn
)) != 0)
1043 varying_length
[uid
] = 1;
1044 INSN_ADDRESSES (inner_uid
) = (insn_current_address
1045 + insn_lengths
[uid
]);
1048 varying_length
[inner_uid
] = 0;
1049 insn_lengths
[uid
] += inner_length
;
1052 else if (GET_CODE (body
) != USE
&& GET_CODE (body
) != CLOBBER
)
1054 insn_lengths
[uid
] = insn_default_length (insn
);
1055 varying_length
[uid
] = insn_variable_length_p (insn
);
1058 /* If needed, do any adjustment. */
1059 #ifdef ADJUST_INSN_LENGTH
1060 ADJUST_INSN_LENGTH (insn
, insn_lengths
[uid
]);
1061 if (insn_lengths
[uid
] < 0)
1062 fatal_insn ("negative insn length", insn
);
1066 /* Now loop over all the insns finding varying length insns. For each,
1067 get the current insn length. If it has changed, reflect the change.
1068 When nothing changes for a full pass, we are done. */
1070 while (something_changed
)
1072 something_changed
= 0;
1073 insn_current_align
= MAX_CODE_ALIGN
- 1;
1074 for (insn_current_address
= 0, insn
= first
;
1076 insn
= NEXT_INSN (insn
))
1079 #ifdef ADJUST_INSN_LENGTH
1084 uid
= INSN_UID (insn
);
1088 int log
= LABEL_TO_ALIGNMENT (insn
);
1089 if (log
> insn_current_align
)
1091 int align
= 1 << log
;
1092 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1093 insn_lengths
[uid
] = new_address
- insn_current_address
;
1094 insn_current_align
= log
;
1095 insn_current_address
= new_address
;
1098 insn_lengths
[uid
] = 0;
1099 INSN_ADDRESSES (uid
) = insn_current_address
;
1103 length_align
= INSN_LENGTH_ALIGNMENT (insn
);
1104 if (length_align
< insn_current_align
)
1105 insn_current_align
= length_align
;
1107 insn_last_address
= INSN_ADDRESSES (uid
);
1108 INSN_ADDRESSES (uid
) = insn_current_address
;
1110 #ifdef CASE_VECTOR_SHORTEN_MODE
1111 if (optimize
&& JUMP_P (insn
)
1112 && GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
1114 rtx body
= PATTERN (insn
);
1115 int old_length
= insn_lengths
[uid
];
1116 rtx rel_lab
= XEXP (XEXP (body
, 0), 0);
1117 rtx min_lab
= XEXP (XEXP (body
, 2), 0);
1118 rtx max_lab
= XEXP (XEXP (body
, 3), 0);
1119 int rel_addr
= INSN_ADDRESSES (INSN_UID (rel_lab
));
1120 int min_addr
= INSN_ADDRESSES (INSN_UID (min_lab
));
1121 int max_addr
= INSN_ADDRESSES (INSN_UID (max_lab
));
1124 addr_diff_vec_flags flags
;
1126 /* Avoid automatic aggregate initialization. */
1127 flags
= ADDR_DIFF_VEC_FLAGS (body
);
1129 /* Try to find a known alignment for rel_lab. */
1130 for (prev
= rel_lab
;
1132 && ! insn_lengths
[INSN_UID (prev
)]
1133 && ! (varying_length
[INSN_UID (prev
)] & 1);
1134 prev
= PREV_INSN (prev
))
1135 if (varying_length
[INSN_UID (prev
)] & 2)
1137 rel_align
= LABEL_TO_ALIGNMENT (prev
);
1141 /* See the comment on addr_diff_vec_flags in rtl.h for the
1142 meaning of the flags values. base: REL_LAB vec: INSN */
1143 /* Anything after INSN has still addresses from the last
1144 pass; adjust these so that they reflect our current
1145 estimate for this pass. */
1146 if (flags
.base_after_vec
)
1147 rel_addr
+= insn_current_address
- insn_last_address
;
1148 if (flags
.min_after_vec
)
1149 min_addr
+= insn_current_address
- insn_last_address
;
1150 if (flags
.max_after_vec
)
1151 max_addr
+= insn_current_address
- insn_last_address
;
1152 /* We want to know the worst case, i.e. lowest possible value
1153 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1154 its offset is positive, and we have to be wary of code shrink;
1155 otherwise, it is negative, and we have to be vary of code
1157 if (flags
.min_after_base
)
1159 /* If INSN is between REL_LAB and MIN_LAB, the size
1160 changes we are about to make can change the alignment
1161 within the observed offset, therefore we have to break
1162 it up into two parts that are independent. */
1163 if (! flags
.base_after_vec
&& flags
.min_after_vec
)
1165 min_addr
-= align_fuzz (rel_lab
, insn
, rel_align
, 0);
1166 min_addr
-= align_fuzz (insn
, min_lab
, 0, 0);
1169 min_addr
-= align_fuzz (rel_lab
, min_lab
, rel_align
, 0);
1173 if (flags
.base_after_vec
&& ! flags
.min_after_vec
)
1175 min_addr
-= align_fuzz (min_lab
, insn
, 0, ~0);
1176 min_addr
-= align_fuzz (insn
, rel_lab
, 0, ~0);
1179 min_addr
-= align_fuzz (min_lab
, rel_lab
, 0, ~0);
1181 /* Likewise, determine the highest lowest possible value
1182 for the offset of MAX_LAB. */
1183 if (flags
.max_after_base
)
1185 if (! flags
.base_after_vec
&& flags
.max_after_vec
)
1187 max_addr
+= align_fuzz (rel_lab
, insn
, rel_align
, ~0);
1188 max_addr
+= align_fuzz (insn
, max_lab
, 0, ~0);
1191 max_addr
+= align_fuzz (rel_lab
, max_lab
, rel_align
, ~0);
1195 if (flags
.base_after_vec
&& ! flags
.max_after_vec
)
1197 max_addr
+= align_fuzz (max_lab
, insn
, 0, 0);
1198 max_addr
+= align_fuzz (insn
, rel_lab
, 0, 0);
1201 max_addr
+= align_fuzz (max_lab
, rel_lab
, 0, 0);
1203 PUT_MODE (body
, CASE_VECTOR_SHORTEN_MODE (min_addr
- rel_addr
,
1204 max_addr
- rel_addr
,
1206 if (JUMP_TABLES_IN_TEXT_SECTION
|| !HAVE_READONLY_DATA_SECTION
)
1209 = (XVECLEN (body
, 1) * GET_MODE_SIZE (GET_MODE (body
)));
1210 insn_current_address
+= insn_lengths
[uid
];
1211 if (insn_lengths
[uid
] != old_length
)
1212 something_changed
= 1;
1217 #endif /* CASE_VECTOR_SHORTEN_MODE */
1219 if (! (varying_length
[uid
]))
1221 if (NONJUMP_INSN_P (insn
)
1222 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1226 body
= PATTERN (insn
);
1227 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1229 rtx inner_insn
= XVECEXP (body
, 0, i
);
1230 int inner_uid
= INSN_UID (inner_insn
);
1232 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1234 insn_current_address
+= insn_lengths
[inner_uid
];
1238 insn_current_address
+= insn_lengths
[uid
];
1243 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1247 body
= PATTERN (insn
);
1249 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1251 rtx inner_insn
= XVECEXP (body
, 0, i
);
1252 int inner_uid
= INSN_UID (inner_insn
);
1255 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1257 /* insn_current_length returns 0 for insns with a
1258 non-varying length. */
1259 if (! varying_length
[inner_uid
])
1260 inner_length
= insn_lengths
[inner_uid
];
1262 inner_length
= insn_current_length (inner_insn
);
1264 if (inner_length
!= insn_lengths
[inner_uid
])
1266 insn_lengths
[inner_uid
] = inner_length
;
1267 something_changed
= 1;
1269 insn_current_address
+= insn_lengths
[inner_uid
];
1270 new_length
+= inner_length
;
1275 new_length
= insn_current_length (insn
);
1276 insn_current_address
+= new_length
;
1279 #ifdef ADJUST_INSN_LENGTH
1280 /* If needed, do any adjustment. */
1281 tmp_length
= new_length
;
1282 ADJUST_INSN_LENGTH (insn
, new_length
);
1283 insn_current_address
+= (new_length
- tmp_length
);
1286 if (new_length
!= insn_lengths
[uid
])
1288 insn_lengths
[uid
] = new_length
;
1289 something_changed
= 1;
1292 /* For a non-optimizing compile, do only a single pass. */
1297 free (varying_length
);
1299 #endif /* HAVE_ATTR_length */
1302 #ifdef HAVE_ATTR_length
1303 /* Given the body of an INSN known to be generated by an ASM statement, return
1304 the number of machine instructions likely to be generated for this insn.
1305 This is used to compute its length. */
1308 asm_insn_count (rtx body
)
1310 const char *template;
1313 if (GET_CODE (body
) == ASM_INPUT
)
1314 template = XSTR (body
, 0);
1316 template = decode_asm_operands (body
, NULL
, NULL
, NULL
, NULL
);
1318 for (; *template; template++)
1319 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1326 /* Output assembler code for the start of a function,
1327 and initialize some of the variables in this file
1328 for the new function. The label for the function and associated
1329 assembler pseudo-ops have already been output in `assemble_start_function'.
1331 FIRST is the first insn of the rtl for the function being compiled.
1332 FILE is the file to write assembler code to.
1333 OPTIMIZE is nonzero if we should eliminate redundant
1334 test and compare insns. */
1337 final_start_function (rtx first ATTRIBUTE_UNUSED
, FILE *file
,
1338 int optimize ATTRIBUTE_UNUSED
)
1342 this_is_asm_operands
= 0;
1344 last_filename
= locator_file (prologue_locator
);
1345 last_linenum
= locator_line (prologue_locator
);
1347 high_block_linenum
= high_function_linenum
= last_linenum
;
1349 (*debug_hooks
->begin_prologue
) (last_linenum
, last_filename
);
1351 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1352 if (write_symbols
!= DWARF2_DEBUG
&& write_symbols
!= VMS_AND_DWARF2_DEBUG
)
1353 dwarf2out_begin_prologue (0, NULL
);
1356 #ifdef LEAF_REG_REMAP
1357 if (current_function_uses_only_leaf_regs
)
1358 leaf_renumber_regs (first
);
1361 /* The Sun386i and perhaps other machines don't work right
1362 if the profiling code comes after the prologue. */
1363 #ifdef PROFILE_BEFORE_PROLOGUE
1364 if (current_function_profile
)
1365 profile_function (file
);
1366 #endif /* PROFILE_BEFORE_PROLOGUE */
1368 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1369 if (dwarf2out_do_frame ())
1370 dwarf2out_frame_debug (NULL_RTX
, false);
1373 /* If debugging, assign block numbers to all of the blocks in this
1377 remove_unnecessary_notes ();
1378 reemit_insn_block_notes ();
1379 number_blocks (current_function_decl
);
1380 /* We never actually put out begin/end notes for the top-level
1381 block in the function. But, conceptually, that block is
1383 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl
)) = 1;
1386 /* First output the function prologue: code to set up the stack frame. */
1387 targetm
.asm_out
.function_prologue (file
, get_frame_size ());
1389 /* If the machine represents the prologue as RTL, the profiling code must
1390 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1391 #ifdef HAVE_prologue
1392 if (! HAVE_prologue
)
1394 profile_after_prologue (file
);
1398 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED
)
1400 #ifndef PROFILE_BEFORE_PROLOGUE
1401 if (current_function_profile
)
1402 profile_function (file
);
1403 #endif /* not PROFILE_BEFORE_PROLOGUE */
1407 profile_function (FILE *file ATTRIBUTE_UNUSED
)
1409 #ifndef NO_PROFILE_COUNTERS
1410 # define NO_PROFILE_COUNTERS 0
1412 #if defined(ASM_OUTPUT_REG_PUSH)
1413 int sval
= current_function_returns_struct
;
1414 rtx svrtx
= targetm
.calls
.struct_value_rtx (TREE_TYPE (current_function_decl
), 1);
1415 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1416 int cxt
= cfun
->static_chain_decl
!= NULL
;
1418 #endif /* ASM_OUTPUT_REG_PUSH */
1420 if (! NO_PROFILE_COUNTERS
)
1422 int align
= MIN (BIGGEST_ALIGNMENT
, LONG_TYPE_SIZE
);
1424 ASM_OUTPUT_ALIGN (file
, floor_log2 (align
/ BITS_PER_UNIT
));
1425 targetm
.asm_out
.internal_label (file
, "LP", current_function_funcdef_no
);
1426 assemble_integer (const0_rtx
, LONG_TYPE_SIZE
/ BITS_PER_UNIT
, align
, 1);
1429 current_function_section (current_function_decl
);
1431 #if defined(ASM_OUTPUT_REG_PUSH)
1432 if (sval
&& svrtx
!= NULL_RTX
&& REG_P (svrtx
))
1433 ASM_OUTPUT_REG_PUSH (file
, REGNO (svrtx
));
1436 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1438 ASM_OUTPUT_REG_PUSH (file
, STATIC_CHAIN_INCOMING_REGNUM
);
1440 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1443 ASM_OUTPUT_REG_PUSH (file
, STATIC_CHAIN_REGNUM
);
1448 FUNCTION_PROFILER (file
, current_function_funcdef_no
);
1450 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1452 ASM_OUTPUT_REG_POP (file
, STATIC_CHAIN_INCOMING_REGNUM
);
1454 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1457 ASM_OUTPUT_REG_POP (file
, STATIC_CHAIN_REGNUM
);
1462 #if defined(ASM_OUTPUT_REG_PUSH)
1463 if (sval
&& svrtx
!= NULL_RTX
&& REG_P (svrtx
))
1464 ASM_OUTPUT_REG_POP (file
, REGNO (svrtx
));
1468 /* Output assembler code for the end of a function.
1469 For clarity, args are same as those of `final_start_function'
1470 even though not all of them are needed. */
1473 final_end_function (void)
1477 (*debug_hooks
->end_function
) (high_function_linenum
);
1479 /* Finally, output the function epilogue:
1480 code to restore the stack frame and return to the caller. */
1481 targetm
.asm_out
.function_epilogue (asm_out_file
, get_frame_size ());
1483 /* And debug output. */
1484 (*debug_hooks
->end_epilogue
) (last_linenum
, last_filename
);
1486 #if defined (DWARF2_UNWIND_INFO)
1487 if (write_symbols
!= DWARF2_DEBUG
&& write_symbols
!= VMS_AND_DWARF2_DEBUG
1488 && dwarf2out_do_frame ())
1489 dwarf2out_end_epilogue (last_linenum
, last_filename
);
1493 /* Output assembler code for some insns: all or part of a function.
1494 For description of args, see `final_start_function', above. */
1497 final (rtx first
, FILE *file
, int optimize
)
1503 last_ignored_compare
= 0;
1505 #ifdef SDB_DEBUGGING_INFO
1506 /* When producing SDB debugging info, delete troublesome line number
1507 notes from inlined functions in other files as well as duplicate
1508 line number notes. */
1509 if (write_symbols
== SDB_DEBUG
)
1512 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1513 if (NOTE_P (insn
) && NOTE_LINE_NUMBER (insn
) > 0)
1516 #ifdef USE_MAPPED_LOCATION
1517 && NOTE_SOURCE_LOCATION (insn
) == NOTE_SOURCE_LOCATION (last
)
1519 && NOTE_LINE_NUMBER (insn
) == NOTE_LINE_NUMBER (last
)
1520 && NOTE_SOURCE_FILE (insn
) == NOTE_SOURCE_FILE (last
)
1524 delete_insn (insn
); /* Use delete_note. */
1532 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1534 if (INSN_UID (insn
) > max_uid
) /* Find largest UID. */
1535 max_uid
= INSN_UID (insn
);
1537 /* If CC tracking across branches is enabled, record the insn which
1538 jumps to each branch only reached from one place. */
1539 if (optimize
&& JUMP_P (insn
))
1541 rtx lab
= JUMP_LABEL (insn
);
1542 if (lab
&& LABEL_NUSES (lab
) == 1)
1544 LABEL_REFS (lab
) = insn
;
1554 /* Output the insns. */
1555 for (insn
= NEXT_INSN (first
); insn
;)
1557 #ifdef HAVE_ATTR_length
1558 if ((unsigned) INSN_UID (insn
) >= INSN_ADDRESSES_SIZE ())
1560 /* This can be triggered by bugs elsewhere in the compiler if
1561 new insns are created after init_insn_lengths is called. */
1562 gcc_assert (NOTE_P (insn
));
1563 insn_current_address
= -1;
1566 insn_current_address
= INSN_ADDRESSES (INSN_UID (insn
));
1567 #endif /* HAVE_ATTR_length */
1569 insn
= final_scan_insn (insn
, file
, optimize
, 0, &seen
);
1574 get_insn_template (int code
, rtx insn
)
1576 switch (insn_data
[code
].output_format
)
1578 case INSN_OUTPUT_FORMAT_SINGLE
:
1579 return insn_data
[code
].output
.single
;
1580 case INSN_OUTPUT_FORMAT_MULTI
:
1581 return insn_data
[code
].output
.multi
[which_alternative
];
1582 case INSN_OUTPUT_FORMAT_FUNCTION
:
1584 return (*insn_data
[code
].output
.function
) (recog_data
.operand
, insn
);
1591 /* Emit the appropriate declaration for an alternate-entry-point
1592 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1593 LABEL_KIND != LABEL_NORMAL.
1595 The case fall-through in this function is intentional. */
1597 output_alternate_entry_point (FILE *file
, rtx insn
)
1599 const char *name
= LABEL_NAME (insn
);
1601 switch (LABEL_KIND (insn
))
1603 case LABEL_WEAK_ENTRY
:
1604 #ifdef ASM_WEAKEN_LABEL
1605 ASM_WEAKEN_LABEL (file
, name
);
1607 case LABEL_GLOBAL_ENTRY
:
1608 targetm
.asm_out
.globalize_label (file
, name
);
1609 case LABEL_STATIC_ENTRY
:
1610 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1611 ASM_OUTPUT_TYPE_DIRECTIVE (file
, name
, "function");
1613 ASM_OUTPUT_LABEL (file
, name
);
1622 /* The final scan for one insn, INSN.
1623 Args are same as in `final', except that INSN
1624 is the insn being scanned.
1625 Value returned is the next insn to be scanned.
1627 NOPEEPHOLES is the flag to disallow peephole processing (currently
1628 used for within delayed branch sequence output).
1630 SEEN is used to track the end of the prologue, for emitting
1631 debug information. We force the emission of a line note after
1632 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1633 at the beginning of the second basic block, whichever comes
1637 final_scan_insn (rtx insn
, FILE *file
, int optimize ATTRIBUTE_UNUSED
,
1638 int nopeepholes ATTRIBUTE_UNUSED
, int *seen
)
1647 /* Ignore deleted insns. These can occur when we split insns (due to a
1648 template of "#") while not optimizing. */
1649 if (INSN_DELETED_P (insn
))
1650 return NEXT_INSN (insn
);
1652 switch (GET_CODE (insn
))
1655 switch (NOTE_LINE_NUMBER (insn
))
1657 case NOTE_INSN_DELETED
:
1658 case NOTE_INSN_LOOP_BEG
:
1659 case NOTE_INSN_LOOP_END
:
1660 case NOTE_INSN_FUNCTION_END
:
1661 case NOTE_INSN_REPEATED_LINE_NUMBER
:
1662 case NOTE_INSN_EXPECTED_VALUE
:
1665 case NOTE_INSN_SWITCH_TEXT_SECTIONS
:
1667 /* The presence of this note indicates that this basic block
1668 belongs in the "cold" section of the .o file. If we are
1669 not already writing to the cold section we need to change
1672 if (last_text_section
== in_text
)
1674 (*debug_hooks
->switch_text_section
) ();
1675 unlikely_text_section ();
1679 (*debug_hooks
->switch_text_section
) ();
1684 case NOTE_INSN_BASIC_BLOCK
:
1686 #ifdef TARGET_UNWIND_INFO
1687 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
1691 fprintf (asm_out_file
, "\t%s basic block %d\n",
1692 ASM_COMMENT_START
, NOTE_BASIC_BLOCK (insn
)->index
);
1694 if ((*seen
& (SEEN_EMITTED
| SEEN_BB
)) == SEEN_BB
)
1696 *seen
|= SEEN_EMITTED
;
1697 last_filename
= NULL
;
1704 case NOTE_INSN_EH_REGION_BEG
:
1705 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHB",
1706 NOTE_EH_HANDLER (insn
));
1709 case NOTE_INSN_EH_REGION_END
:
1710 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHE",
1711 NOTE_EH_HANDLER (insn
));
1714 case NOTE_INSN_PROLOGUE_END
:
1715 targetm
.asm_out
.function_end_prologue (file
);
1716 profile_after_prologue (file
);
1718 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
1720 *seen
|= SEEN_EMITTED
;
1721 last_filename
= NULL
;
1728 case NOTE_INSN_EPILOGUE_BEG
:
1729 targetm
.asm_out
.function_begin_epilogue (file
);
1732 case NOTE_INSN_FUNCTION_BEG
:
1734 (*debug_hooks
->end_prologue
) (last_linenum
, last_filename
);
1736 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
1738 *seen
|= SEEN_EMITTED
;
1739 last_filename
= NULL
;
1746 case NOTE_INSN_BLOCK_BEG
:
1747 if (debug_info_level
== DINFO_LEVEL_NORMAL
1748 || debug_info_level
== DINFO_LEVEL_VERBOSE
1749 || write_symbols
== DWARF2_DEBUG
1750 || write_symbols
== VMS_AND_DWARF2_DEBUG
1751 || write_symbols
== VMS_DEBUG
)
1753 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
1757 high_block_linenum
= last_linenum
;
1759 /* Output debugging info about the symbol-block beginning. */
1760 (*debug_hooks
->begin_block
) (last_linenum
, n
);
1762 /* Mark this block as output. */
1763 TREE_ASM_WRITTEN (NOTE_BLOCK (insn
)) = 1;
1767 case NOTE_INSN_BLOCK_END
:
1768 if (debug_info_level
== DINFO_LEVEL_NORMAL
1769 || debug_info_level
== DINFO_LEVEL_VERBOSE
1770 || write_symbols
== DWARF2_DEBUG
1771 || write_symbols
== VMS_AND_DWARF2_DEBUG
1772 || write_symbols
== VMS_DEBUG
)
1774 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
1778 /* End of a symbol-block. */
1780 gcc_assert (block_depth
>= 0);
1782 (*debug_hooks
->end_block
) (high_block_linenum
, n
);
1786 case NOTE_INSN_DELETED_LABEL
:
1787 /* Emit the label. We may have deleted the CODE_LABEL because
1788 the label could be proved to be unreachable, though still
1789 referenced (in the form of having its address taken. */
1790 ASM_OUTPUT_DEBUG_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
));
1793 case NOTE_INSN_VAR_LOCATION
:
1794 (*debug_hooks
->var_location
) (insn
);
1801 gcc_assert (NOTE_LINE_NUMBER (insn
) > 0);
1807 #if defined (DWARF2_UNWIND_INFO)
1808 if (dwarf2out_do_frame ())
1809 dwarf2out_frame_debug (insn
, false);
1814 /* The target port might emit labels in the output function for
1815 some insn, e.g. sh.c output_branchy_insn. */
1816 if (CODE_LABEL_NUMBER (insn
) <= max_labelno
)
1818 int align
= LABEL_TO_ALIGNMENT (insn
);
1819 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1820 int max_skip
= LABEL_TO_MAX_SKIP (insn
);
1823 if (align
&& NEXT_INSN (insn
))
1825 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1826 ASM_OUTPUT_MAX_SKIP_ALIGN (file
, align
, max_skip
);
1828 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1829 ASM_OUTPUT_ALIGN_WITH_NOP (file
, align
);
1831 ASM_OUTPUT_ALIGN (file
, align
);
1838 /* If this label is reached from only one place, set the condition
1839 codes from the instruction just before the branch. */
1841 /* Disabled because some insns set cc_status in the C output code
1842 and NOTICE_UPDATE_CC alone can set incorrect status. */
1843 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1845 rtx jump
= LABEL_REFS (insn
);
1846 rtx barrier
= prev_nonnote_insn (insn
);
1848 /* If the LABEL_REFS field of this label has been set to point
1849 at a branch, the predecessor of the branch is a regular
1850 insn, and that branch is the only way to reach this label,
1851 set the condition codes based on the branch and its
1853 if (barrier
&& BARRIER_P (barrier
)
1854 && jump
&& JUMP_P (jump
)
1855 && (prev
= prev_nonnote_insn (jump
))
1856 && NONJUMP_INSN_P (prev
))
1858 NOTICE_UPDATE_CC (PATTERN (prev
), prev
);
1859 NOTICE_UPDATE_CC (PATTERN (jump
), jump
);
1864 if (LABEL_NAME (insn
))
1865 (*debug_hooks
->label
) (insn
);
1869 fputs (ASM_APP_OFF
, file
);
1873 next
= next_nonnote_insn (insn
);
1874 if (next
!= 0 && JUMP_P (next
))
1876 rtx nextbody
= PATTERN (next
);
1878 /* If this label is followed by a jump-table,
1879 make sure we put the label in the read-only section. Also
1880 possibly write the label and jump table together. */
1882 if (GET_CODE (nextbody
) == ADDR_VEC
1883 || GET_CODE (nextbody
) == ADDR_DIFF_VEC
)
1885 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1886 /* In this case, the case vector is being moved by the
1887 target, so don't output the label at all. Leave that
1888 to the back end macros. */
1890 if (! JUMP_TABLES_IN_TEXT_SECTION
)
1894 targetm
.asm_out
.function_rodata_section (current_function_decl
);
1896 #ifdef ADDR_VEC_ALIGN
1897 log_align
= ADDR_VEC_ALIGN (next
);
1899 log_align
= exact_log2 (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
);
1901 ASM_OUTPUT_ALIGN (file
, log_align
);
1904 current_function_section (current_function_decl
);
1906 #ifdef ASM_OUTPUT_CASE_LABEL
1907 ASM_OUTPUT_CASE_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
),
1910 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
1916 if (LABEL_ALT_ENTRY_P (insn
))
1917 output_alternate_entry_point (file
, insn
);
1919 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
1924 rtx body
= PATTERN (insn
);
1925 int insn_code_number
;
1926 const char *template;
1928 /* An INSN, JUMP_INSN or CALL_INSN.
1929 First check for special kinds that recog doesn't recognize. */
1931 if (GET_CODE (body
) == USE
/* These are just declarations. */
1932 || GET_CODE (body
) == CLOBBER
)
1937 /* If there is a REG_CC_SETTER note on this insn, it means that
1938 the setting of the condition code was done in the delay slot
1939 of the insn that branched here. So recover the cc status
1940 from the insn that set it. */
1942 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
1945 NOTICE_UPDATE_CC (PATTERN (XEXP (note
, 0)), XEXP (note
, 0));
1946 cc_prev_status
= cc_status
;
1951 /* Detect insns that are really jump-tables
1952 and output them as such. */
1954 if (GET_CODE (body
) == ADDR_VEC
|| GET_CODE (body
) == ADDR_DIFF_VEC
)
1956 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
1960 if (! JUMP_TABLES_IN_TEXT_SECTION
)
1961 targetm
.asm_out
.function_rodata_section (current_function_decl
);
1963 current_function_section (current_function_decl
);
1967 fputs (ASM_APP_OFF
, file
);
1971 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1972 if (GET_CODE (body
) == ADDR_VEC
)
1974 #ifdef ASM_OUTPUT_ADDR_VEC
1975 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn
), body
);
1982 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
1983 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn
), body
);
1989 vlen
= XVECLEN (body
, GET_CODE (body
) == ADDR_DIFF_VEC
);
1990 for (idx
= 0; idx
< vlen
; idx
++)
1992 if (GET_CODE (body
) == ADDR_VEC
)
1994 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
1995 ASM_OUTPUT_ADDR_VEC_ELT
1996 (file
, CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 0, idx
), 0)));
2003 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2004 ASM_OUTPUT_ADDR_DIFF_ELT
2007 CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 1, idx
), 0)),
2008 CODE_LABEL_NUMBER (XEXP (XEXP (body
, 0), 0)));
2014 #ifdef ASM_OUTPUT_CASE_END
2015 ASM_OUTPUT_CASE_END (file
,
2016 CODE_LABEL_NUMBER (PREV_INSN (insn
)),
2021 current_function_section (current_function_decl
);
2025 /* Output this line note if it is the first or the last line
2027 if (notice_source_line (insn
))
2029 (*debug_hooks
->source_line
) (last_linenum
, last_filename
);
2032 if (GET_CODE (body
) == ASM_INPUT
)
2034 const char *string
= XSTR (body
, 0);
2036 /* There's no telling what that did to the condition codes. */
2043 fputs (ASM_APP_ON
, file
);
2046 fprintf (asm_out_file
, "\t%s\n", string
);
2051 /* Detect `asm' construct with operands. */
2052 if (asm_noperands (body
) >= 0)
2054 unsigned int noperands
= asm_noperands (body
);
2055 rtx
*ops
= alloca (noperands
* sizeof (rtx
));
2058 /* There's no telling what that did to the condition codes. */
2061 /* Get out the operand values. */
2062 string
= decode_asm_operands (body
, ops
, NULL
, NULL
, NULL
);
2063 /* Inhibit dieing on what would otherwise be compiler bugs. */
2064 insn_noperands
= noperands
;
2065 this_is_asm_operands
= insn
;
2067 #ifdef FINAL_PRESCAN_INSN
2068 FINAL_PRESCAN_INSN (insn
, ops
, insn_noperands
);
2071 /* Output the insn using them. */
2076 fputs (ASM_APP_ON
, file
);
2079 output_asm_insn (string
, ops
);
2082 this_is_asm_operands
= 0;
2088 fputs (ASM_APP_OFF
, file
);
2092 if (GET_CODE (body
) == SEQUENCE
)
2094 /* A delayed-branch sequence */
2097 final_sequence
= body
;
2099 /* Record the delay slots' frame information before the branch.
2100 This is needed for delayed calls: see execute_cfa_program(). */
2101 #if defined (DWARF2_UNWIND_INFO)
2102 if (dwarf2out_do_frame ())
2103 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
2104 dwarf2out_frame_debug (XVECEXP (body
, 0, i
), false);
2107 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2108 force the restoration of a comparison that was previously
2109 thought unnecessary. If that happens, cancel this sequence
2110 and cause that insn to be restored. */
2112 next
= final_scan_insn (XVECEXP (body
, 0, 0), file
, 0, 1, seen
);
2113 if (next
!= XVECEXP (body
, 0, 1))
2119 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
2121 rtx insn
= XVECEXP (body
, 0, i
);
2122 rtx next
= NEXT_INSN (insn
);
2123 /* We loop in case any instruction in a delay slot gets
2126 insn
= final_scan_insn (insn
, file
, 0, 1, seen
);
2127 while (insn
!= next
);
2129 #ifdef DBR_OUTPUT_SEQEND
2130 DBR_OUTPUT_SEQEND (file
);
2134 /* If the insn requiring the delay slot was a CALL_INSN, the
2135 insns in the delay slot are actually executed before the
2136 called function. Hence we don't preserve any CC-setting
2137 actions in these insns and the CC must be marked as being
2138 clobbered by the function. */
2139 if (CALL_P (XVECEXP (body
, 0, 0)))
2146 /* We have a real machine instruction as rtl. */
2148 body
= PATTERN (insn
);
2151 set
= single_set (insn
);
2153 /* Check for redundant test and compare instructions
2154 (when the condition codes are already set up as desired).
2155 This is done only when optimizing; if not optimizing,
2156 it should be possible for the user to alter a variable
2157 with the debugger in between statements
2158 and the next statement should reexamine the variable
2159 to compute the condition codes. */
2164 && GET_CODE (SET_DEST (set
)) == CC0
2165 && insn
!= last_ignored_compare
)
2167 if (GET_CODE (SET_SRC (set
)) == SUBREG
)
2168 SET_SRC (set
) = alter_subreg (&SET_SRC (set
));
2169 else if (GET_CODE (SET_SRC (set
)) == COMPARE
)
2171 if (GET_CODE (XEXP (SET_SRC (set
), 0)) == SUBREG
)
2172 XEXP (SET_SRC (set
), 0)
2173 = alter_subreg (&XEXP (SET_SRC (set
), 0));
2174 if (GET_CODE (XEXP (SET_SRC (set
), 1)) == SUBREG
)
2175 XEXP (SET_SRC (set
), 1)
2176 = alter_subreg (&XEXP (SET_SRC (set
), 1));
2178 if ((cc_status
.value1
!= 0
2179 && rtx_equal_p (SET_SRC (set
), cc_status
.value1
))
2180 || (cc_status
.value2
!= 0
2181 && rtx_equal_p (SET_SRC (set
), cc_status
.value2
)))
2183 /* Don't delete insn if it has an addressing side-effect. */
2184 if (! FIND_REG_INC_NOTE (insn
, NULL_RTX
)
2185 /* or if anything in it is volatile. */
2186 && ! volatile_refs_p (PATTERN (insn
)))
2188 /* We don't really delete the insn; just ignore it. */
2189 last_ignored_compare
= insn
;
2198 /* If this is a conditional branch, maybe modify it
2199 if the cc's are in a nonstandard state
2200 so that it accomplishes the same thing that it would
2201 do straightforwardly if the cc's were set up normally. */
2203 if (cc_status
.flags
!= 0
2205 && GET_CODE (body
) == SET
2206 && SET_DEST (body
) == pc_rtx
2207 && GET_CODE (SET_SRC (body
)) == IF_THEN_ELSE
2208 && COMPARISON_P (XEXP (SET_SRC (body
), 0))
2209 && XEXP (XEXP (SET_SRC (body
), 0), 0) == cc0_rtx
)
2211 /* This function may alter the contents of its argument
2212 and clear some of the cc_status.flags bits.
2213 It may also return 1 meaning condition now always true
2214 or -1 meaning condition now always false
2215 or 2 meaning condition nontrivial but altered. */
2216 int result
= alter_cond (XEXP (SET_SRC (body
), 0));
2217 /* If condition now has fixed value, replace the IF_THEN_ELSE
2218 with its then-operand or its else-operand. */
2220 SET_SRC (body
) = XEXP (SET_SRC (body
), 1);
2222 SET_SRC (body
) = XEXP (SET_SRC (body
), 2);
2224 /* The jump is now either unconditional or a no-op.
2225 If it has become a no-op, don't try to output it.
2226 (It would not be recognized.) */
2227 if (SET_SRC (body
) == pc_rtx
)
2232 else if (GET_CODE (SET_SRC (body
)) == RETURN
)
2233 /* Replace (set (pc) (return)) with (return). */
2234 PATTERN (insn
) = body
= SET_SRC (body
);
2236 /* Rerecognize the instruction if it has changed. */
2238 INSN_CODE (insn
) = -1;
2241 /* Make same adjustments to instructions that examine the
2242 condition codes without jumping and instructions that
2243 handle conditional moves (if this machine has either one). */
2245 if (cc_status
.flags
!= 0
2248 rtx cond_rtx
, then_rtx
, else_rtx
;
2251 && GET_CODE (SET_SRC (set
)) == IF_THEN_ELSE
)
2253 cond_rtx
= XEXP (SET_SRC (set
), 0);
2254 then_rtx
= XEXP (SET_SRC (set
), 1);
2255 else_rtx
= XEXP (SET_SRC (set
), 2);
2259 cond_rtx
= SET_SRC (set
);
2260 then_rtx
= const_true_rtx
;
2261 else_rtx
= const0_rtx
;
2264 switch (GET_CODE (cond_rtx
))
2278 if (XEXP (cond_rtx
, 0) != cc0_rtx
)
2280 result
= alter_cond (cond_rtx
);
2282 validate_change (insn
, &SET_SRC (set
), then_rtx
, 0);
2283 else if (result
== -1)
2284 validate_change (insn
, &SET_SRC (set
), else_rtx
, 0);
2285 else if (result
== 2)
2286 INSN_CODE (insn
) = -1;
2287 if (SET_DEST (set
) == SET_SRC (set
))
2299 #ifdef HAVE_peephole
2300 /* Do machine-specific peephole optimizations if desired. */
2302 if (optimize
&& !flag_no_peephole
&& !nopeepholes
)
2304 rtx next
= peephole (insn
);
2305 /* When peepholing, if there were notes within the peephole,
2306 emit them before the peephole. */
2307 if (next
!= 0 && next
!= NEXT_INSN (insn
))
2309 rtx note
, prev
= PREV_INSN (insn
);
2311 for (note
= NEXT_INSN (insn
); note
!= next
;
2312 note
= NEXT_INSN (note
))
2313 final_scan_insn (note
, file
, optimize
, nopeepholes
, seen
);
2315 /* Put the notes in the proper position for a later
2316 rescan. For example, the SH target can do this
2317 when generating a far jump in a delayed branch
2319 note
= NEXT_INSN (insn
);
2320 PREV_INSN (note
) = prev
;
2321 NEXT_INSN (prev
) = note
;
2322 NEXT_INSN (PREV_INSN (next
)) = insn
;
2323 PREV_INSN (insn
) = PREV_INSN (next
);
2324 NEXT_INSN (insn
) = next
;
2325 PREV_INSN (next
) = insn
;
2328 /* PEEPHOLE might have changed this. */
2329 body
= PATTERN (insn
);
2333 /* Try to recognize the instruction.
2334 If successful, verify that the operands satisfy the
2335 constraints for the instruction. Crash if they don't,
2336 since `reload' should have changed them so that they do. */
2338 insn_code_number
= recog_memoized (insn
);
2339 cleanup_subreg_operands (insn
);
2341 /* Dump the insn in the assembly for debugging. */
2342 if (flag_dump_rtl_in_asm
)
2344 print_rtx_head
= ASM_COMMENT_START
;
2345 print_rtl_single (asm_out_file
, insn
);
2346 print_rtx_head
= "";
2349 if (! constrain_operands_cached (1))
2350 fatal_insn_not_found (insn
);
2352 /* Some target machines need to prescan each insn before
2355 #ifdef FINAL_PRESCAN_INSN
2356 FINAL_PRESCAN_INSN (insn
, recog_data
.operand
, recog_data
.n_operands
);
2359 #ifdef HAVE_conditional_execution
2360 if (GET_CODE (PATTERN (insn
)) == COND_EXEC
)
2361 current_insn_predicate
= COND_EXEC_TEST (PATTERN (insn
));
2363 current_insn_predicate
= NULL_RTX
;
2367 cc_prev_status
= cc_status
;
2369 /* Update `cc_status' for this instruction.
2370 The instruction's output routine may change it further.
2371 If the output routine for a jump insn needs to depend
2372 on the cc status, it should look at cc_prev_status. */
2374 NOTICE_UPDATE_CC (body
, insn
);
2377 current_output_insn
= debug_insn
= insn
;
2379 #if defined (DWARF2_UNWIND_INFO)
2380 if (CALL_P (insn
) && dwarf2out_do_frame ())
2381 dwarf2out_frame_debug (insn
, false);
2384 /* Find the proper template for this insn. */
2385 template = get_insn_template (insn_code_number
, insn
);
2387 /* If the C code returns 0, it means that it is a jump insn
2388 which follows a deleted test insn, and that test insn
2389 needs to be reinserted. */
2394 gcc_assert (prev_nonnote_insn (insn
) == last_ignored_compare
);
2396 /* We have already processed the notes between the setter and
2397 the user. Make sure we don't process them again, this is
2398 particularly important if one of the notes is a block
2399 scope note or an EH note. */
2401 prev
!= last_ignored_compare
;
2402 prev
= PREV_INSN (prev
))
2405 delete_insn (prev
); /* Use delete_note. */
2411 /* If the template is the string "#", it means that this insn must
2413 if (template[0] == '#' && template[1] == '\0')
2415 rtx
new = try_split (body
, insn
, 0);
2417 /* If we didn't split the insn, go away. */
2418 if (new == insn
&& PATTERN (new) == body
)
2419 fatal_insn ("could not split insn", insn
);
2421 #ifdef HAVE_ATTR_length
2422 /* This instruction should have been split in shorten_branches,
2423 to ensure that we would have valid length info for the
2431 #ifdef TARGET_UNWIND_INFO
2432 /* ??? This will put the directives in the wrong place if
2433 get_insn_template outputs assembly directly. However calling it
2434 before get_insn_template breaks if the insns is split. */
2435 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2438 /* Output assembler code from the template. */
2439 output_asm_insn (template, recog_data
.operand
);
2441 /* If necessary, report the effect that the instruction has on
2442 the unwind info. We've already done this for delay slots
2443 and call instructions. */
2444 #if defined (DWARF2_UNWIND_INFO)
2445 if (final_sequence
== 0
2446 #if !defined (HAVE_prologue)
2447 && !ACCUMULATE_OUTGOING_ARGS
2449 && dwarf2out_do_frame ())
2450 dwarf2out_frame_debug (insn
, true);
2453 current_output_insn
= debug_insn
= 0;
2456 return NEXT_INSN (insn
);
2459 /* Output debugging info to the assembler file FILE
2460 based on the NOTE-insn INSN, assumed to be a line number. */
2463 notice_source_line (rtx insn
)
2465 const char *filename
= insn_file (insn
);
2466 int linenum
= insn_line (insn
);
2468 if (filename
&& (filename
!= last_filename
|| last_linenum
!= linenum
))
2470 last_filename
= filename
;
2471 last_linenum
= linenum
;
2472 high_block_linenum
= MAX (last_linenum
, high_block_linenum
);
2473 high_function_linenum
= MAX (last_linenum
, high_function_linenum
);
2479 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2480 directly to the desired hard register. */
2483 cleanup_subreg_operands (rtx insn
)
2486 extract_insn_cached (insn
);
2487 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2489 /* The following test cannot use recog_data.operand when testing
2490 for a SUBREG: the underlying object might have been changed
2491 already if we are inside a match_operator expression that
2492 matches the else clause. Instead we test the underlying
2493 expression directly. */
2494 if (GET_CODE (*recog_data
.operand_loc
[i
]) == SUBREG
)
2495 recog_data
.operand
[i
] = alter_subreg (recog_data
.operand_loc
[i
]);
2496 else if (GET_CODE (recog_data
.operand
[i
]) == PLUS
2497 || GET_CODE (recog_data
.operand
[i
]) == MULT
2498 || MEM_P (recog_data
.operand
[i
]))
2499 recog_data
.operand
[i
] = walk_alter_subreg (recog_data
.operand_loc
[i
]);
2502 for (i
= 0; i
< recog_data
.n_dups
; i
++)
2504 if (GET_CODE (*recog_data
.dup_loc
[i
]) == SUBREG
)
2505 *recog_data
.dup_loc
[i
] = alter_subreg (recog_data
.dup_loc
[i
]);
2506 else if (GET_CODE (*recog_data
.dup_loc
[i
]) == PLUS
2507 || GET_CODE (*recog_data
.dup_loc
[i
]) == MULT
2508 || MEM_P (*recog_data
.dup_loc
[i
]))
2509 *recog_data
.dup_loc
[i
] = walk_alter_subreg (recog_data
.dup_loc
[i
]);
2513 /* If X is a SUBREG, replace it with a REG or a MEM,
2514 based on the thing it is a subreg of. */
2517 alter_subreg (rtx
*xp
)
2520 rtx y
= SUBREG_REG (x
);
2522 /* simplify_subreg does not remove subreg from volatile references.
2523 We are required to. */
2526 int offset
= SUBREG_BYTE (x
);
2528 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
2529 contains 0 instead of the proper offset. See simplify_subreg. */
2531 && GET_MODE_SIZE (GET_MODE (y
)) < GET_MODE_SIZE (GET_MODE (x
)))
2533 int difference
= GET_MODE_SIZE (GET_MODE (y
))
2534 - GET_MODE_SIZE (GET_MODE (x
));
2535 if (WORDS_BIG_ENDIAN
)
2536 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
2537 if (BYTES_BIG_ENDIAN
)
2538 offset
+= difference
% UNITS_PER_WORD
;
2541 *xp
= adjust_address (y
, GET_MODE (x
), offset
);
2545 rtx
new = simplify_subreg (GET_MODE (x
), y
, GET_MODE (y
),
2552 /* Simplify_subreg can't handle some REG cases, but we have to. */
2553 unsigned int regno
= subreg_regno (x
);
2554 *xp
= gen_rtx_REG_offset (y
, GET_MODE (x
), regno
, SUBREG_BYTE (x
));
2561 /* Do alter_subreg on all the SUBREGs contained in X. */
2564 walk_alter_subreg (rtx
*xp
)
2567 switch (GET_CODE (x
))
2572 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0));
2573 XEXP (x
, 1) = walk_alter_subreg (&XEXP (x
, 1));
2578 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0));
2582 return alter_subreg (xp
);
2593 /* Given BODY, the body of a jump instruction, alter the jump condition
2594 as required by the bits that are set in cc_status.flags.
2595 Not all of the bits there can be handled at this level in all cases.
2597 The value is normally 0.
2598 1 means that the condition has become always true.
2599 -1 means that the condition has become always false.
2600 2 means that COND has been altered. */
2603 alter_cond (rtx cond
)
2607 if (cc_status
.flags
& CC_REVERSED
)
2610 PUT_CODE (cond
, swap_condition (GET_CODE (cond
)));
2613 if (cc_status
.flags
& CC_INVERTED
)
2616 PUT_CODE (cond
, reverse_condition (GET_CODE (cond
)));
2619 if (cc_status
.flags
& CC_NOT_POSITIVE
)
2620 switch (GET_CODE (cond
))
2625 /* Jump becomes unconditional. */
2631 /* Jump becomes no-op. */
2635 PUT_CODE (cond
, EQ
);
2640 PUT_CODE (cond
, NE
);
2648 if (cc_status
.flags
& CC_NOT_NEGATIVE
)
2649 switch (GET_CODE (cond
))
2653 /* Jump becomes unconditional. */
2658 /* Jump becomes no-op. */
2663 PUT_CODE (cond
, EQ
);
2669 PUT_CODE (cond
, NE
);
2677 if (cc_status
.flags
& CC_NO_OVERFLOW
)
2678 switch (GET_CODE (cond
))
2681 /* Jump becomes unconditional. */
2685 PUT_CODE (cond
, EQ
);
2690 PUT_CODE (cond
, NE
);
2695 /* Jump becomes no-op. */
2702 if (cc_status
.flags
& (CC_Z_IN_NOT_N
| CC_Z_IN_N
))
2703 switch (GET_CODE (cond
))
2709 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? GE
: LT
);
2714 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? LT
: GE
);
2719 if (cc_status
.flags
& CC_NOT_SIGNED
)
2720 /* The flags are valid if signed condition operators are converted
2722 switch (GET_CODE (cond
))
2725 PUT_CODE (cond
, LEU
);
2730 PUT_CODE (cond
, LTU
);
2735 PUT_CODE (cond
, GTU
);
2740 PUT_CODE (cond
, GEU
);
2752 /* Report inconsistency between the assembler template and the operands.
2753 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2756 output_operand_lossage (const char *msgid
, ...)
2760 const char *pfx_str
;
2763 va_start (ap
, msgid
);
2765 pfx_str
= this_is_asm_operands
? _("invalid 'asm': ") : "output_operand: ";
2766 asprintf (&fmt_string
, "%s%s", pfx_str
, _(msgid
));
2767 vasprintf (&new_message
, fmt_string
, ap
);
2769 if (this_is_asm_operands
)
2770 error_for_asm (this_is_asm_operands
, "%s", new_message
);
2772 internal_error ("%s", new_message
);
2779 /* Output of assembler code from a template, and its subroutines. */
2781 /* Annotate the assembly with a comment describing the pattern and
2782 alternative used. */
2785 output_asm_name (void)
2789 int num
= INSN_CODE (debug_insn
);
2790 fprintf (asm_out_file
, "\t%s %d\t%s",
2791 ASM_COMMENT_START
, INSN_UID (debug_insn
),
2792 insn_data
[num
].name
);
2793 if (insn_data
[num
].n_alternatives
> 1)
2794 fprintf (asm_out_file
, "/%d", which_alternative
+ 1);
2795 #ifdef HAVE_ATTR_length
2796 fprintf (asm_out_file
, "\t[length = %d]",
2797 get_attr_length (debug_insn
));
2799 /* Clear this so only the first assembler insn
2800 of any rtl insn will get the special comment for -dp. */
2805 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2806 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2807 corresponds to the address of the object and 0 if to the object. */
2810 get_mem_expr_from_op (rtx op
, int *paddressp
)
2818 return REG_EXPR (op
);
2819 else if (!MEM_P (op
))
2822 if (MEM_EXPR (op
) != 0)
2823 return MEM_EXPR (op
);
2825 /* Otherwise we have an address, so indicate it and look at the address. */
2829 /* First check if we have a decl for the address, then look at the right side
2830 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2831 But don't allow the address to itself be indirect. */
2832 if ((expr
= get_mem_expr_from_op (op
, &inner_addressp
)) && ! inner_addressp
)
2834 else if (GET_CODE (op
) == PLUS
2835 && (expr
= get_mem_expr_from_op (XEXP (op
, 1), &inner_addressp
)))
2838 while (GET_RTX_CLASS (GET_CODE (op
)) == RTX_UNARY
2839 || GET_RTX_CLASS (GET_CODE (op
)) == RTX_BIN_ARITH
)
2842 expr
= get_mem_expr_from_op (op
, &inner_addressp
);
2843 return inner_addressp
? 0 : expr
;
2846 /* Output operand names for assembler instructions. OPERANDS is the
2847 operand vector, OPORDER is the order to write the operands, and NOPS
2848 is the number of operands to write. */
2851 output_asm_operand_names (rtx
*operands
, int *oporder
, int nops
)
2856 for (i
= 0; i
< nops
; i
++)
2859 rtx op
= operands
[oporder
[i
]];
2860 tree expr
= get_mem_expr_from_op (op
, &addressp
);
2862 fprintf (asm_out_file
, "%c%s",
2863 wrote
? ',' : '\t', wrote
? "" : ASM_COMMENT_START
);
2867 fprintf (asm_out_file
, "%s",
2868 addressp
? "*" : "");
2869 print_mem_expr (asm_out_file
, expr
);
2872 else if (REG_P (op
) && ORIGINAL_REGNO (op
)
2873 && ORIGINAL_REGNO (op
) != REGNO (op
))
2874 fprintf (asm_out_file
, " tmp%i", ORIGINAL_REGNO (op
));
2878 /* Output text from TEMPLATE to the assembler output file,
2879 obeying %-directions to substitute operands taken from
2880 the vector OPERANDS.
2882 %N (for N a digit) means print operand N in usual manner.
2883 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2884 and print the label name with no punctuation.
2885 %cN means require operand N to be a constant
2886 and print the constant expression with no punctuation.
2887 %aN means expect operand N to be a memory address
2888 (not a memory reference!) and print a reference
2890 %nN means expect operand N to be a constant
2891 and print a constant expression for minus the value
2892 of the operand, with no other punctuation. */
2895 output_asm_insn (const char *template, rtx
*operands
)
2899 #ifdef ASSEMBLER_DIALECT
2902 int oporder
[MAX_RECOG_OPERANDS
];
2903 char opoutput
[MAX_RECOG_OPERANDS
];
2906 /* An insn may return a null string template
2907 in a case where no assembler code is needed. */
2911 memset (opoutput
, 0, sizeof opoutput
);
2913 putc ('\t', asm_out_file
);
2915 #ifdef ASM_OUTPUT_OPCODE
2916 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
2923 if (flag_verbose_asm
)
2924 output_asm_operand_names (operands
, oporder
, ops
);
2925 if (flag_print_asm_name
)
2929 memset (opoutput
, 0, sizeof opoutput
);
2931 putc (c
, asm_out_file
);
2932 #ifdef ASM_OUTPUT_OPCODE
2933 while ((c
= *p
) == '\t')
2935 putc (c
, asm_out_file
);
2938 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
2942 #ifdef ASSEMBLER_DIALECT
2948 output_operand_lossage ("nested assembly dialect alternatives");
2952 /* If we want the first dialect, do nothing. Otherwise, skip
2953 DIALECT_NUMBER of strings ending with '|'. */
2954 for (i
= 0; i
< dialect_number
; i
++)
2956 while (*p
&& *p
!= '}' && *p
++ != '|')
2965 output_operand_lossage ("unterminated assembly dialect alternative");
2972 /* Skip to close brace. */
2977 output_operand_lossage ("unterminated assembly dialect alternative");
2981 while (*p
++ != '}');
2985 putc (c
, asm_out_file
);
2990 putc (c
, asm_out_file
);
2996 /* %% outputs a single %. */
3000 putc (c
, asm_out_file
);
3002 /* %= outputs a number which is unique to each insn in the entire
3003 compilation. This is useful for making local labels that are
3004 referred to more than once in a given insn. */
3008 fprintf (asm_out_file
, "%d", insn_counter
);
3010 /* % followed by a letter and some digits
3011 outputs an operand in a special way depending on the letter.
3012 Letters `acln' are implemented directly.
3013 Other letters are passed to `output_operand' so that
3014 the PRINT_OPERAND macro can define them. */
3015 else if (ISALPHA (*p
))
3018 unsigned long opnum
;
3021 opnum
= strtoul (p
, &endptr
, 10);
3024 output_operand_lossage ("operand number missing "
3026 else if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3027 output_operand_lossage ("operand number out of range");
3028 else if (letter
== 'l')
3029 output_asm_label (operands
[opnum
]);
3030 else if (letter
== 'a')
3031 output_address (operands
[opnum
]);
3032 else if (letter
== 'c')
3034 if (CONSTANT_ADDRESS_P (operands
[opnum
]))
3035 output_addr_const (asm_out_file
, operands
[opnum
]);
3037 output_operand (operands
[opnum
], 'c');
3039 else if (letter
== 'n')
3041 if (GET_CODE (operands
[opnum
]) == CONST_INT
)
3042 fprintf (asm_out_file
, HOST_WIDE_INT_PRINT_DEC
,
3043 - INTVAL (operands
[opnum
]));
3046 putc ('-', asm_out_file
);
3047 output_addr_const (asm_out_file
, operands
[opnum
]);
3051 output_operand (operands
[opnum
], letter
);
3053 if (!opoutput
[opnum
])
3054 oporder
[ops
++] = opnum
;
3055 opoutput
[opnum
] = 1;
3060 /* % followed by a digit outputs an operand the default way. */
3061 else if (ISDIGIT (*p
))
3063 unsigned long opnum
;
3066 opnum
= strtoul (p
, &endptr
, 10);
3067 if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3068 output_operand_lossage ("operand number out of range");
3070 output_operand (operands
[opnum
], 0);
3072 if (!opoutput
[opnum
])
3073 oporder
[ops
++] = opnum
;
3074 opoutput
[opnum
] = 1;
3079 /* % followed by punctuation: output something for that
3080 punctuation character alone, with no operand.
3081 The PRINT_OPERAND macro decides what is actually done. */
3082 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3083 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p
))
3084 output_operand (NULL_RTX
, *p
++);
3087 output_operand_lossage ("invalid %%-code");
3091 putc (c
, asm_out_file
);
3094 /* Write out the variable names for operands, if we know them. */
3095 if (flag_verbose_asm
)
3096 output_asm_operand_names (operands
, oporder
, ops
);
3097 if (flag_print_asm_name
)
3100 putc ('\n', asm_out_file
);
3103 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3106 output_asm_label (rtx x
)
3110 if (GET_CODE (x
) == LABEL_REF
)
3114 && NOTE_LINE_NUMBER (x
) == NOTE_INSN_DELETED_LABEL
))
3115 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3117 output_operand_lossage ("'%%l' operand isn't a label");
3119 assemble_name (asm_out_file
, buf
);
3122 /* Print operand X using machine-dependent assembler syntax.
3123 The macro PRINT_OPERAND is defined just to control this function.
3124 CODE is a non-digit that preceded the operand-number in the % spec,
3125 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3126 between the % and the digits.
3127 When CODE is a non-letter, X is 0.
3129 The meanings of the letters are machine-dependent and controlled
3130 by PRINT_OPERAND. */
3133 output_operand (rtx x
, int code ATTRIBUTE_UNUSED
)
3135 if (x
&& GET_CODE (x
) == SUBREG
)
3136 x
= alter_subreg (&x
);
3138 /* X must not be a pseudo reg. */
3139 gcc_assert (!x
|| !REG_P (x
) || REGNO (x
) < FIRST_PSEUDO_REGISTER
);
3141 PRINT_OPERAND (asm_out_file
, x
, code
);
3144 /* Print a memory reference operand for address X
3145 using machine-dependent assembler syntax.
3146 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3149 output_address (rtx x
)
3151 walk_alter_subreg (&x
);
3152 PRINT_OPERAND_ADDRESS (asm_out_file
, x
);
3155 /* Print an integer constant expression in assembler syntax.
3156 Addition and subtraction are the only arithmetic
3157 that may appear in these expressions. */
3160 output_addr_const (FILE *file
, rtx x
)
3165 switch (GET_CODE (x
))
3172 if (SYMBOL_REF_DECL (x
))
3173 mark_decl_referenced (SYMBOL_REF_DECL (x
));
3174 #ifdef ASM_OUTPUT_SYMBOL_REF
3175 ASM_OUTPUT_SYMBOL_REF (file
, x
);
3177 assemble_name (file
, XSTR (x
, 0));
3185 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3186 #ifdef ASM_OUTPUT_LABEL_REF
3187 ASM_OUTPUT_LABEL_REF (file
, buf
);
3189 assemble_name (file
, buf
);
3194 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (x
));
3198 /* This used to output parentheses around the expression,
3199 but that does not work on the 386 (either ATT or BSD assembler). */
3200 output_addr_const (file
, XEXP (x
, 0));
3204 if (GET_MODE (x
) == VOIDmode
)
3206 /* We can use %d if the number is one word and positive. */
3207 if (CONST_DOUBLE_HIGH (x
))
3208 fprintf (file
, HOST_WIDE_INT_PRINT_DOUBLE_HEX
,
3209 CONST_DOUBLE_HIGH (x
), CONST_DOUBLE_LOW (x
));
3210 else if (CONST_DOUBLE_LOW (x
) < 0)
3211 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
, CONST_DOUBLE_LOW (x
));
3213 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_DOUBLE_LOW (x
));
3216 /* We can't handle floating point constants;
3217 PRINT_OPERAND must handle them. */
3218 output_operand_lossage ("floating constant misused");
3222 /* Some assemblers need integer constants to appear last (eg masm). */
3223 if (GET_CODE (XEXP (x
, 0)) == CONST_INT
)
3225 output_addr_const (file
, XEXP (x
, 1));
3226 if (INTVAL (XEXP (x
, 0)) >= 0)
3227 fprintf (file
, "+");
3228 output_addr_const (file
, XEXP (x
, 0));
3232 output_addr_const (file
, XEXP (x
, 0));
3233 if (GET_CODE (XEXP (x
, 1)) != CONST_INT
3234 || INTVAL (XEXP (x
, 1)) >= 0)
3235 fprintf (file
, "+");
3236 output_addr_const (file
, XEXP (x
, 1));
3241 /* Avoid outputting things like x-x or x+5-x,
3242 since some assemblers can't handle that. */
3243 x
= simplify_subtraction (x
);
3244 if (GET_CODE (x
) != MINUS
)
3247 output_addr_const (file
, XEXP (x
, 0));
3248 fprintf (file
, "-");
3249 if ((GET_CODE (XEXP (x
, 1)) == CONST_INT
&& INTVAL (XEXP (x
, 1)) >= 0)
3250 || GET_CODE (XEXP (x
, 1)) == PC
3251 || GET_CODE (XEXP (x
, 1)) == SYMBOL_REF
)
3252 output_addr_const (file
, XEXP (x
, 1));
3255 fputs (targetm
.asm_out
.open_paren
, file
);
3256 output_addr_const (file
, XEXP (x
, 1));
3257 fputs (targetm
.asm_out
.close_paren
, file
);
3264 output_addr_const (file
, XEXP (x
, 0));
3268 #ifdef OUTPUT_ADDR_CONST_EXTRA
3269 OUTPUT_ADDR_CONST_EXTRA (file
, x
, fail
);
3274 output_operand_lossage ("invalid expression as operand");
3278 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3279 %R prints the value of REGISTER_PREFIX.
3280 %L prints the value of LOCAL_LABEL_PREFIX.
3281 %U prints the value of USER_LABEL_PREFIX.
3282 %I prints the value of IMMEDIATE_PREFIX.
3283 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3284 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3286 We handle alternate assembler dialects here, just like output_asm_insn. */
3289 asm_fprintf (FILE *file
, const char *p
, ...)
3295 va_start (argptr
, p
);
3302 #ifdef ASSEMBLER_DIALECT
3307 /* If we want the first dialect, do nothing. Otherwise, skip
3308 DIALECT_NUMBER of strings ending with '|'. */
3309 for (i
= 0; i
< dialect_number
; i
++)
3311 while (*p
&& *p
++ != '|')
3321 /* Skip to close brace. */
3322 while (*p
&& *p
++ != '}')
3333 while (strchr ("-+ #0", c
))
3338 while (ISDIGIT (c
) || c
== '.')
3349 case 'd': case 'i': case 'u':
3350 case 'x': case 'X': case 'o':
3354 fprintf (file
, buf
, va_arg (argptr
, int));
3358 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3359 'o' cases, but we do not check for those cases. It
3360 means that the value is a HOST_WIDE_INT, which may be
3361 either `long' or `long long'. */
3362 memcpy (q
, HOST_WIDE_INT_PRINT
, strlen (HOST_WIDE_INT_PRINT
));
3363 q
+= strlen (HOST_WIDE_INT_PRINT
);
3366 fprintf (file
, buf
, va_arg (argptr
, HOST_WIDE_INT
));
3371 #ifdef HAVE_LONG_LONG
3377 fprintf (file
, buf
, va_arg (argptr
, long long));
3384 fprintf (file
, buf
, va_arg (argptr
, long));
3392 fprintf (file
, buf
, va_arg (argptr
, char *));
3396 #ifdef ASM_OUTPUT_OPCODE
3397 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3402 #ifdef REGISTER_PREFIX
3403 fprintf (file
, "%s", REGISTER_PREFIX
);
3408 #ifdef IMMEDIATE_PREFIX
3409 fprintf (file
, "%s", IMMEDIATE_PREFIX
);
3414 #ifdef LOCAL_LABEL_PREFIX
3415 fprintf (file
, "%s", LOCAL_LABEL_PREFIX
);
3420 fputs (user_label_prefix
, file
);
3423 #ifdef ASM_FPRINTF_EXTENSIONS
3424 /* Uppercase letters are reserved for general use by asm_fprintf
3425 and so are not available to target specific code. In order to
3426 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3427 they are defined here. As they get turned into real extensions
3428 to asm_fprintf they should be removed from this list. */
3429 case 'A': case 'B': case 'C': case 'D': case 'E':
3430 case 'F': case 'G': case 'H': case 'J': case 'K':
3431 case 'M': case 'N': case 'P': case 'Q': case 'S':
3432 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3435 ASM_FPRINTF_EXTENSIONS (file
, argptr
, p
)
3448 /* Split up a CONST_DOUBLE or integer constant rtx
3449 into two rtx's for single words,
3450 storing in *FIRST the word that comes first in memory in the target
3451 and in *SECOND the other. */
3454 split_double (rtx value
, rtx
*first
, rtx
*second
)
3456 if (GET_CODE (value
) == CONST_INT
)
3458 if (HOST_BITS_PER_WIDE_INT
>= (2 * BITS_PER_WORD
))
3460 /* In this case the CONST_INT holds both target words.
3461 Extract the bits from it into two word-sized pieces.
3462 Sign extend each half to HOST_WIDE_INT. */
3463 unsigned HOST_WIDE_INT low
, high
;
3464 unsigned HOST_WIDE_INT mask
, sign_bit
, sign_extend
;
3466 /* Set sign_bit to the most significant bit of a word. */
3468 sign_bit
<<= BITS_PER_WORD
- 1;
3470 /* Set mask so that all bits of the word are set. We could
3471 have used 1 << BITS_PER_WORD instead of basing the
3472 calculation on sign_bit. However, on machines where
3473 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3474 compiler warning, even though the code would never be
3476 mask
= sign_bit
<< 1;
3479 /* Set sign_extend as any remaining bits. */
3480 sign_extend
= ~mask
;
3482 /* Pick the lower word and sign-extend it. */
3483 low
= INTVAL (value
);
3488 /* Pick the higher word, shifted to the least significant
3489 bits, and sign-extend it. */
3490 high
= INTVAL (value
);
3491 high
>>= BITS_PER_WORD
- 1;
3494 if (high
& sign_bit
)
3495 high
|= sign_extend
;
3497 /* Store the words in the target machine order. */
3498 if (WORDS_BIG_ENDIAN
)
3500 *first
= GEN_INT (high
);
3501 *second
= GEN_INT (low
);
3505 *first
= GEN_INT (low
);
3506 *second
= GEN_INT (high
);
3511 /* The rule for using CONST_INT for a wider mode
3512 is that we regard the value as signed.
3513 So sign-extend it. */
3514 rtx high
= (INTVAL (value
) < 0 ? constm1_rtx
: const0_rtx
);
3515 if (WORDS_BIG_ENDIAN
)
3527 else if (GET_CODE (value
) != CONST_DOUBLE
)
3529 if (WORDS_BIG_ENDIAN
)
3531 *first
= const0_rtx
;
3537 *second
= const0_rtx
;
3540 else if (GET_MODE (value
) == VOIDmode
3541 /* This is the old way we did CONST_DOUBLE integers. */
3542 || GET_MODE_CLASS (GET_MODE (value
)) == MODE_INT
)
3544 /* In an integer, the words are defined as most and least significant.
3545 So order them by the target's convention. */
3546 if (WORDS_BIG_ENDIAN
)
3548 *first
= GEN_INT (CONST_DOUBLE_HIGH (value
));
3549 *second
= GEN_INT (CONST_DOUBLE_LOW (value
));
3553 *first
= GEN_INT (CONST_DOUBLE_LOW (value
));
3554 *second
= GEN_INT (CONST_DOUBLE_HIGH (value
));
3561 REAL_VALUE_FROM_CONST_DOUBLE (r
, value
);
3563 /* Note, this converts the REAL_VALUE_TYPE to the target's
3564 format, splits up the floating point double and outputs
3565 exactly 32 bits of it into each of l[0] and l[1] --
3566 not necessarily BITS_PER_WORD bits. */
3567 REAL_VALUE_TO_TARGET_DOUBLE (r
, l
);
3569 /* If 32 bits is an entire word for the target, but not for the host,
3570 then sign-extend on the host so that the number will look the same
3571 way on the host that it would on the target. See for instance
3572 simplify_unary_operation. The #if is needed to avoid compiler
3575 #if HOST_BITS_PER_LONG > 32
3576 if (BITS_PER_WORD
< HOST_BITS_PER_LONG
&& BITS_PER_WORD
== 32)
3578 if (l
[0] & ((long) 1 << 31))
3579 l
[0] |= ((long) (-1) << 32);
3580 if (l
[1] & ((long) 1 << 31))
3581 l
[1] |= ((long) (-1) << 32);
3585 *first
= GEN_INT (l
[0]);
3586 *second
= GEN_INT (l
[1]);
3590 /* Return nonzero if this function has no function calls. */
3593 leaf_function_p (void)
3598 if (current_function_profile
|| profile_arc_flag
)
3601 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
3604 && ! SIBLING_CALL_P (insn
))
3606 if (NONJUMP_INSN_P (insn
)
3607 && GET_CODE (PATTERN (insn
)) == SEQUENCE
3608 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))
3609 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
3612 for (link
= current_function_epilogue_delay_list
;
3614 link
= XEXP (link
, 1))
3616 insn
= XEXP (link
, 0);
3619 && ! SIBLING_CALL_P (insn
))
3621 if (NONJUMP_INSN_P (insn
)
3622 && GET_CODE (PATTERN (insn
)) == SEQUENCE
3623 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))
3624 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
3631 /* Return 1 if branch is a forward branch.
3632 Uses insn_shuid array, so it works only in the final pass. May be used by
3633 output templates to customary add branch prediction hints.
3636 final_forward_branch_p (rtx insn
)
3638 int insn_id
, label_id
;
3640 gcc_assert (uid_shuid
);
3641 insn_id
= INSN_SHUID (insn
);
3642 label_id
= INSN_SHUID (JUMP_LABEL (insn
));
3643 /* We've hit some insns that does not have id information available. */
3644 gcc_assert (insn_id
&& label_id
);
3645 return insn_id
< label_id
;
3648 /* On some machines, a function with no call insns
3649 can run faster if it doesn't create its own register window.
3650 When output, the leaf function should use only the "output"
3651 registers. Ordinarily, the function would be compiled to use
3652 the "input" registers to find its arguments; it is a candidate
3653 for leaf treatment if it uses only the "input" registers.
3654 Leaf function treatment means renumbering so the function
3655 uses the "output" registers instead. */
3657 #ifdef LEAF_REGISTERS
3659 /* Return 1 if this function uses only the registers that can be
3660 safely renumbered. */
3663 only_leaf_regs_used (void)
3666 const char *const permitted_reg_in_leaf_functions
= LEAF_REGISTERS
;
3668 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3669 if ((regs_ever_live
[i
] || global_regs
[i
])
3670 && ! permitted_reg_in_leaf_functions
[i
])
3673 if (current_function_uses_pic_offset_table
3674 && pic_offset_table_rtx
!= 0
3675 && REG_P (pic_offset_table_rtx
)
3676 && ! permitted_reg_in_leaf_functions
[REGNO (pic_offset_table_rtx
)])
3682 /* Scan all instructions and renumber all registers into those
3683 available in leaf functions. */
3686 leaf_renumber_regs (rtx first
)
3690 /* Renumber only the actual patterns.
3691 The reg-notes can contain frame pointer refs,
3692 and renumbering them could crash, and should not be needed. */
3693 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3695 leaf_renumber_regs_insn (PATTERN (insn
));
3696 for (insn
= current_function_epilogue_delay_list
;
3698 insn
= XEXP (insn
, 1))
3699 if (INSN_P (XEXP (insn
, 0)))
3700 leaf_renumber_regs_insn (PATTERN (XEXP (insn
, 0)));
3703 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3704 available in leaf functions. */
3707 leaf_renumber_regs_insn (rtx in_rtx
)
3710 const char *format_ptr
;
3715 /* Renumber all input-registers into output-registers.
3716 renumbered_regs would be 1 for an output-register;
3723 /* Don't renumber the same reg twice. */
3727 newreg
= REGNO (in_rtx
);
3728 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3729 to reach here as part of a REG_NOTE. */
3730 if (newreg
>= FIRST_PSEUDO_REGISTER
)
3735 newreg
= LEAF_REG_REMAP (newreg
);
3736 gcc_assert (newreg
>= 0);
3737 regs_ever_live
[REGNO (in_rtx
)] = 0;
3738 regs_ever_live
[newreg
] = 1;
3739 REGNO (in_rtx
) = newreg
;
3743 if (INSN_P (in_rtx
))
3745 /* Inside a SEQUENCE, we find insns.
3746 Renumber just the patterns of these insns,
3747 just as we do for the top-level insns. */
3748 leaf_renumber_regs_insn (PATTERN (in_rtx
));
3752 format_ptr
= GET_RTX_FORMAT (GET_CODE (in_rtx
));
3754 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (in_rtx
)); i
++)
3755 switch (*format_ptr
++)
3758 leaf_renumber_regs_insn (XEXP (in_rtx
, i
));
3762 if (NULL
!= XVEC (in_rtx
, i
))
3764 for (j
= 0; j
< XVECLEN (in_rtx
, i
); j
++)
3765 leaf_renumber_regs_insn (XVECEXP (in_rtx
, i
, j
));
3785 /* When -gused is used, emit debug info for only used symbols. But in
3786 addition to the standard intercepted debug_hooks there are some direct
3787 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3788 Those routines may also be called from a higher level intercepted routine. So
3789 to prevent recording data for an inner call to one of these for an intercept,
3790 we maintain an intercept nesting counter (debug_nesting). We only save the
3791 intercepted arguments if the nesting is 1. */
3792 int debug_nesting
= 0;
3794 static tree
*symbol_queue
;
3795 int symbol_queue_index
= 0;
3796 static int symbol_queue_size
= 0;
3798 /* Generate the symbols for any queued up type symbols we encountered
3799 while generating the type info for some originally used symbol.
3800 This might generate additional entries in the queue. Only when
3801 the nesting depth goes to 0 is this routine called. */
3804 debug_flush_symbol_queue (void)
3808 /* Make sure that additionally queued items are not flushed
3813 for (i
= 0; i
< symbol_queue_index
; ++i
)
3815 /* If we pushed queued symbols then such symbols are must be
3816 output no matter what anyone else says. Specifically,
3817 we need to make sure dbxout_symbol() thinks the symbol was
3818 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3819 which may be set for outside reasons. */
3820 int saved_tree_used
= TREE_USED (symbol_queue
[i
]);
3821 int saved_suppress_debug
= TYPE_DECL_SUPPRESS_DEBUG (symbol_queue
[i
]);
3822 TREE_USED (symbol_queue
[i
]) = 1;
3823 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue
[i
]) = 0;
3825 #ifdef DBX_DEBUGGING_INFO
3826 dbxout_symbol (symbol_queue
[i
], 0);
3829 TREE_USED (symbol_queue
[i
]) = saved_tree_used
;
3830 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue
[i
]) = saved_suppress_debug
;
3833 symbol_queue_index
= 0;
3837 /* Queue a type symbol needed as part of the definition of a decl
3838 symbol. These symbols are generated when debug_flush_symbol_queue()
3842 debug_queue_symbol (tree decl
)
3844 if (symbol_queue_index
>= symbol_queue_size
)
3846 symbol_queue_size
+= 10;
3847 symbol_queue
= xrealloc (symbol_queue
,
3848 symbol_queue_size
* sizeof (tree
));
3851 symbol_queue
[symbol_queue_index
++] = decl
;
3854 /* Free symbol queue. */
3856 debug_free_queue (void)
3860 free (symbol_queue
);
3861 symbol_queue
= NULL
;
3862 symbol_queue_size
= 0;