1 /* Conversion of SESE regions to Polyhedra.
2 Copyright (C) 2009-2013 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
26 #include <isl/union_map.h>
27 #include <isl/constraint.h>
29 #include <cloog/cloog.h>
30 #include <cloog/cloog.h>
31 #include <cloog/isl/domain.h>
35 #include "coretypes.h"
37 #include "tree-pass.h"
39 #include "tree-chrec.h"
40 #include "tree-data-ref.h"
41 #include "tree-scalar-evolution.h"
46 #include "graphite-poly.h"
47 #include "graphite-sese-to-poly.h"
50 /* Assigns to RES the value of the INTEGER_CST T. */
53 tree_int_to_gmp (tree t
, mpz_t res
)
55 double_int di
= tree_to_double_int (t
);
56 mpz_set_double_int (res
, di
, TYPE_UNSIGNED (TREE_TYPE (t
)));
59 /* Returns the index of the PHI argument defined in the outermost
63 phi_arg_in_outermost_loop (gimple phi
)
65 loop_p loop
= gimple_bb (phi
)->loop_father
;
68 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
69 if (!flow_bb_inside_loop_p (loop
, gimple_phi_arg_edge (phi
, i
)->src
))
71 loop
= gimple_phi_arg_edge (phi
, i
)->src
->loop_father
;
78 /* Removes a simple copy phi node "RES = phi (INIT, RES)" at position
79 PSI by inserting on the loop ENTRY edge assignment "RES = INIT". */
82 remove_simple_copy_phi (gimple_stmt_iterator
*psi
)
84 gimple phi
= gsi_stmt (*psi
);
85 tree res
= gimple_phi_result (phi
);
86 size_t entry
= phi_arg_in_outermost_loop (phi
);
87 tree init
= gimple_phi_arg_def (phi
, entry
);
88 gimple stmt
= gimple_build_assign (res
, init
);
89 edge e
= gimple_phi_arg_edge (phi
, entry
);
91 remove_phi_node (psi
, false);
92 gsi_insert_on_edge_immediate (e
, stmt
);
93 SSA_NAME_DEF_STMT (res
) = stmt
;
96 /* Removes an invariant phi node at position PSI by inserting on the
97 loop ENTRY edge the assignment RES = INIT. */
100 remove_invariant_phi (sese region
, gimple_stmt_iterator
*psi
)
102 gimple phi
= gsi_stmt (*psi
);
103 loop_p loop
= loop_containing_stmt (phi
);
104 tree res
= gimple_phi_result (phi
);
105 tree scev
= scalar_evolution_in_region (region
, loop
, res
);
106 size_t entry
= phi_arg_in_outermost_loop (phi
);
107 edge e
= gimple_phi_arg_edge (phi
, entry
);
110 gimple_seq stmts
= NULL
;
112 if (tree_contains_chrecs (scev
, NULL
))
113 scev
= gimple_phi_arg_def (phi
, entry
);
115 var
= force_gimple_operand (scev
, &stmts
, true, NULL_TREE
);
116 stmt
= gimple_build_assign (res
, var
);
117 remove_phi_node (psi
, false);
119 gimple_seq_add_stmt (&stmts
, stmt
);
120 gsi_insert_seq_on_edge (e
, stmts
);
121 gsi_commit_edge_inserts ();
122 SSA_NAME_DEF_STMT (res
) = stmt
;
125 /* Returns true when the phi node at PSI is of the form "a = phi (a, x)". */
128 simple_copy_phi_p (gimple phi
)
132 if (gimple_phi_num_args (phi
) != 2)
135 res
= gimple_phi_result (phi
);
136 return (res
== gimple_phi_arg_def (phi
, 0)
137 || res
== gimple_phi_arg_def (phi
, 1));
140 /* Returns true when the phi node at position PSI is a reduction phi
141 node in REGION. Otherwise moves the pointer PSI to the next phi to
145 reduction_phi_p (sese region
, gimple_stmt_iterator
*psi
)
148 gimple phi
= gsi_stmt (*psi
);
149 tree res
= gimple_phi_result (phi
);
151 loop
= loop_containing_stmt (phi
);
153 if (simple_copy_phi_p (phi
))
155 /* PRE introduces phi nodes like these, for an example,
156 see id-5.f in the fortran graphite testsuite:
158 # prephitmp.85_265 = PHI <prephitmp.85_258(33), prephitmp.85_265(18)>
160 remove_simple_copy_phi (psi
);
164 if (scev_analyzable_p (res
, region
))
166 tree scev
= scalar_evolution_in_region (region
, loop
, res
);
168 if (evolution_function_is_invariant_p (scev
, loop
->num
))
169 remove_invariant_phi (region
, psi
);
176 /* All the other cases are considered reductions. */
180 /* Store the GRAPHITE representation of BB. */
183 new_gimple_bb (basic_block bb
, vec
<data_reference_p
> drs
)
185 struct gimple_bb
*gbb
;
187 gbb
= XNEW (struct gimple_bb
);
190 GBB_DATA_REFS (gbb
) = drs
;
191 GBB_CONDITIONS (gbb
).create (0);
192 GBB_CONDITION_CASES (gbb
).create (0);
198 free_data_refs_aux (vec
<data_reference_p
> datarefs
)
201 struct data_reference
*dr
;
203 FOR_EACH_VEC_ELT (datarefs
, i
, dr
)
206 base_alias_pair
*bap
= (base_alias_pair
*)(dr
->aux
);
208 free (bap
->alias_set
);
217 free_gimple_bb (struct gimple_bb
*gbb
)
219 free_data_refs_aux (GBB_DATA_REFS (gbb
));
220 free_data_refs (GBB_DATA_REFS (gbb
));
222 GBB_CONDITIONS (gbb
).release ();
223 GBB_CONDITION_CASES (gbb
).release ();
224 GBB_BB (gbb
)->aux
= 0;
228 /* Deletes all gimple bbs in SCOP. */
231 remove_gbbs_in_scop (scop_p scop
)
236 FOR_EACH_VEC_ELT (SCOP_BBS (scop
), i
, pbb
)
237 free_gimple_bb (PBB_BLACK_BOX (pbb
));
240 /* Deletes all scops in SCOPS. */
243 free_scops (vec
<scop_p
> scops
)
248 FOR_EACH_VEC_ELT (scops
, i
, scop
)
250 remove_gbbs_in_scop (scop
);
251 free_sese (SCOP_REGION (scop
));
258 /* Same as outermost_loop_in_sese, returns the outermost loop
259 containing BB in REGION, but makes sure that the returned loop
260 belongs to the REGION, and so this returns the first loop in the
261 REGION when the loop containing BB does not belong to REGION. */
264 outermost_loop_in_sese_1 (sese region
, basic_block bb
)
266 loop_p nest
= outermost_loop_in_sese (region
, bb
);
268 if (loop_in_sese_p (nest
, region
))
271 /* When the basic block BB does not belong to a loop in the region,
272 return the first loop in the region. */
275 if (loop_in_sese_p (nest
, region
))
284 /* Generates a polyhedral black box only if the bb contains interesting
288 try_generate_gimple_bb (scop_p scop
, basic_block bb
)
290 vec
<data_reference_p
> drs
;
292 sese region
= SCOP_REGION (scop
);
293 loop_p nest
= outermost_loop_in_sese_1 (region
, bb
);
294 gimple_stmt_iterator gsi
;
296 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
298 gimple stmt
= gsi_stmt (gsi
);
301 if (is_gimple_debug (stmt
))
304 loop
= loop_containing_stmt (stmt
);
305 if (!loop_in_sese_p (loop
, region
))
308 graphite_find_data_references_in_stmt (nest
, loop
, stmt
, &drs
);
311 return new_gimple_bb (bb
, drs
);
314 /* Returns true if all predecessors of BB, that are not dominated by BB, are
315 marked in MAP. The predecessors dominated by BB are loop latches and will
316 be handled after BB. */
319 all_non_dominated_preds_marked_p (basic_block bb
, sbitmap map
)
324 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
325 if (!bitmap_bit_p (map
, e
->src
->index
)
326 && !dominated_by_p (CDI_DOMINATORS
, e
->src
, bb
))
332 /* Compare the depth of two basic_block's P1 and P2. */
335 compare_bb_depths (const void *p1
, const void *p2
)
337 const_basic_block
const bb1
= *(const_basic_block
const*)p1
;
338 const_basic_block
const bb2
= *(const_basic_block
const*)p2
;
339 int d1
= loop_depth (bb1
->loop_father
);
340 int d2
= loop_depth (bb2
->loop_father
);
351 /* Sort the basic blocks from DOM such that the first are the ones at
352 a deepest loop level. */
355 graphite_sort_dominated_info (vec
<basic_block
> dom
)
357 dom
.qsort (compare_bb_depths
);
360 /* Recursive helper function for build_scops_bbs. */
363 build_scop_bbs_1 (scop_p scop
, sbitmap visited
, basic_block bb
)
365 sese region
= SCOP_REGION (scop
);
366 vec
<basic_block
> dom
;
369 if (bitmap_bit_p (visited
, bb
->index
)
370 || !bb_in_sese_p (bb
, region
))
373 pbb
= new_poly_bb (scop
, try_generate_gimple_bb (scop
, bb
));
374 SCOP_BBS (scop
).safe_push (pbb
);
375 bitmap_set_bit (visited
, bb
->index
);
377 dom
= get_dominated_by (CDI_DOMINATORS
, bb
);
382 graphite_sort_dominated_info (dom
);
384 while (!dom
.is_empty ())
389 FOR_EACH_VEC_ELT (dom
, i
, dom_bb
)
390 if (all_non_dominated_preds_marked_p (dom_bb
, visited
))
392 build_scop_bbs_1 (scop
, visited
, dom_bb
);
393 dom
.unordered_remove (i
);
401 /* Gather the basic blocks belonging to the SCOP. */
404 build_scop_bbs (scop_p scop
)
406 sbitmap visited
= sbitmap_alloc (last_basic_block
);
407 sese region
= SCOP_REGION (scop
);
409 bitmap_clear (visited
);
410 build_scop_bbs_1 (scop
, visited
, SESE_ENTRY_BB (region
));
411 sbitmap_free (visited
);
414 /* Return an ISL identifier for the polyhedral basic block PBB. */
417 isl_id_for_pbb (scop_p s
, poly_bb_p pbb
)
420 snprintf (name
, sizeof (name
), "S_%d", pbb_index (pbb
));
421 return isl_id_alloc (s
->ctx
, name
, pbb
);
424 /* Converts the STATIC_SCHEDULE of PBB into a scattering polyhedron.
425 We generate SCATTERING_DIMENSIONS scattering dimensions.
427 CLooG 0.15.0 and previous versions require, that all
428 scattering functions of one CloogProgram have the same number of
429 scattering dimensions, therefore we allow to specify it. This
430 should be removed in future versions of CLooG.
432 The scattering polyhedron consists of these dimensions: scattering,
433 loop_iterators, parameters.
437 | scattering_dimensions = 5
438 | used_scattering_dimensions = 3
446 | Scattering polyhedron:
448 | scattering: {s1, s2, s3, s4, s5}
449 | loop_iterators: {i}
450 | parameters: {p1, p2}
452 | s1 s2 s3 s4 s5 i p1 p2 1
453 | 1 0 0 0 0 0 0 0 -4 = 0
454 | 0 1 0 0 0 -1 0 0 0 = 0
455 | 0 0 1 0 0 0 0 0 -5 = 0 */
458 build_pbb_scattering_polyhedrons (isl_aff
*static_sched
,
459 poly_bb_p pbb
, int scattering_dimensions
)
462 int nb_iterators
= pbb_dim_iter_domain (pbb
);
463 int used_scattering_dimensions
= nb_iterators
* 2 + 1;
467 gcc_assert (scattering_dimensions
>= used_scattering_dimensions
);
471 dc
= isl_set_get_space (pbb
->domain
);
472 dm
= isl_space_add_dims (isl_space_from_domain (dc
),
473 isl_dim_out
, scattering_dimensions
);
474 pbb
->schedule
= isl_map_universe (dm
);
476 for (i
= 0; i
< scattering_dimensions
; i
++)
478 /* Textual order inside this loop. */
481 isl_constraint
*c
= isl_equality_alloc
482 (isl_local_space_from_space (isl_map_get_space (pbb
->schedule
)));
484 if (0 != isl_aff_get_coefficient (static_sched
, isl_dim_in
,
488 isl_int_neg (val
, val
);
489 c
= isl_constraint_set_constant (c
, val
);
490 c
= isl_constraint_set_coefficient_si (c
, isl_dim_out
, i
, 1);
491 pbb
->schedule
= isl_map_add_constraint (pbb
->schedule
, c
);
494 /* Iterations of this loop. */
495 else /* if ((i % 2) == 1) */
497 int loop
= (i
- 1) / 2;
498 pbb
->schedule
= isl_map_equate (pbb
->schedule
, isl_dim_in
, loop
,
505 pbb
->transformed
= isl_map_copy (pbb
->schedule
);
508 /* Build for BB the static schedule.
510 The static schedule is a Dewey numbering of the abstract syntax
511 tree: http://en.wikipedia.org/wiki/Dewey_Decimal_Classification
513 The following example informally defines the static schedule:
532 Static schedules for A to F:
545 build_scop_scattering (scop_p scop
)
549 gimple_bb_p previous_gbb
= NULL
;
550 isl_space
*dc
= isl_set_get_space (scop
->context
);
551 isl_aff
*static_sched
;
553 dc
= isl_space_add_dims (dc
, isl_dim_set
, number_of_loops (cfun
));
554 static_sched
= isl_aff_zero_on_domain (isl_local_space_from_space (dc
));
556 /* We have to start schedules at 0 on the first component and
557 because we cannot compare_prefix_loops against a previous loop,
558 prefix will be equal to zero, and that index will be
559 incremented before copying. */
560 static_sched
= isl_aff_add_coefficient_si (static_sched
, isl_dim_in
, 0, -1);
562 FOR_EACH_VEC_ELT (SCOP_BBS (scop
), i
, pbb
)
564 gimple_bb_p gbb
= PBB_BLACK_BOX (pbb
);
566 int nb_scat_dims
= pbb_dim_iter_domain (pbb
) * 2 + 1;
569 prefix
= nb_common_loops (SCOP_REGION (scop
), previous_gbb
, gbb
);
575 static_sched
= isl_aff_add_coefficient_si (static_sched
, isl_dim_in
,
577 build_pbb_scattering_polyhedrons (static_sched
, pbb
, nb_scat_dims
);
580 isl_aff_free (static_sched
);
583 static isl_pw_aff
*extract_affine (scop_p
, tree
, __isl_take isl_space
*space
);
585 /* Extract an affine expression from the chain of recurrence E. */
588 extract_affine_chrec (scop_p s
, tree e
, __isl_take isl_space
*space
)
590 isl_pw_aff
*lhs
= extract_affine (s
, CHREC_LEFT (e
), isl_space_copy (space
));
591 isl_pw_aff
*rhs
= extract_affine (s
, CHREC_RIGHT (e
), isl_space_copy (space
));
592 isl_local_space
*ls
= isl_local_space_from_space (space
);
593 unsigned pos
= sese_loop_depth ((sese
) s
->region
, get_chrec_loop (e
)) - 1;
594 isl_aff
*loop
= isl_aff_set_coefficient_si
595 (isl_aff_zero_on_domain (ls
), isl_dim_in
, pos
, 1);
596 isl_pw_aff
*l
= isl_pw_aff_from_aff (loop
);
598 /* Before multiplying, make sure that the result is affine. */
599 gcc_assert (isl_pw_aff_is_cst (rhs
)
600 || isl_pw_aff_is_cst (l
));
602 return isl_pw_aff_add (lhs
, isl_pw_aff_mul (rhs
, l
));
605 /* Extract an affine expression from the mult_expr E. */
608 extract_affine_mul (scop_p s
, tree e
, __isl_take isl_space
*space
)
610 isl_pw_aff
*lhs
= extract_affine (s
, TREE_OPERAND (e
, 0),
611 isl_space_copy (space
));
612 isl_pw_aff
*rhs
= extract_affine (s
, TREE_OPERAND (e
, 1), space
);
614 if (!isl_pw_aff_is_cst (lhs
)
615 && !isl_pw_aff_is_cst (rhs
))
617 isl_pw_aff_free (lhs
);
618 isl_pw_aff_free (rhs
);
622 return isl_pw_aff_mul (lhs
, rhs
);
625 /* Return an ISL identifier from the name of the ssa_name E. */
628 isl_id_for_ssa_name (scop_p s
, tree e
)
630 const char *name
= get_name (e
);
634 id
= isl_id_alloc (s
->ctx
, name
, e
);
638 snprintf (name1
, sizeof (name1
), "P_%d", SSA_NAME_VERSION (e
));
639 id
= isl_id_alloc (s
->ctx
, name1
, e
);
645 /* Return an ISL identifier for the data reference DR. */
648 isl_id_for_dr (scop_p s
, data_reference_p dr ATTRIBUTE_UNUSED
)
650 /* Data references all get the same isl_id. They need to be comparable
651 and are distinguished through the first dimension, which contains the
653 return isl_id_alloc (s
->ctx
, "", 0);
656 /* Extract an affine expression from the ssa_name E. */
659 extract_affine_name (scop_p s
, tree e
, __isl_take isl_space
*space
)
666 id
= isl_id_for_ssa_name (s
, e
);
667 dimension
= isl_space_find_dim_by_id (space
, isl_dim_param
, id
);
669 dom
= isl_set_universe (isl_space_copy (space
));
670 aff
= isl_aff_zero_on_domain (isl_local_space_from_space (space
));
671 aff
= isl_aff_add_coefficient_si (aff
, isl_dim_param
, dimension
, 1);
672 return isl_pw_aff_alloc (dom
, aff
);
675 /* Extract an affine expression from the gmp constant G. */
678 extract_affine_gmp (mpz_t g
, __isl_take isl_space
*space
)
680 isl_local_space
*ls
= isl_local_space_from_space (isl_space_copy (space
));
681 isl_aff
*aff
= isl_aff_zero_on_domain (ls
);
682 isl_set
*dom
= isl_set_universe (space
);
686 isl_int_set_gmp (v
, g
);
687 aff
= isl_aff_add_constant (aff
, v
);
690 return isl_pw_aff_alloc (dom
, aff
);
693 /* Extract an affine expression from the integer_cst E. */
696 extract_affine_int (tree e
, __isl_take isl_space
*space
)
702 tree_int_to_gmp (e
, g
);
703 res
= extract_affine_gmp (g
, space
);
709 /* Compute pwaff mod 2^width. */
712 wrap (isl_pw_aff
*pwaff
, unsigned width
)
717 isl_int_set_si (mod
, 1);
718 isl_int_mul_2exp (mod
, mod
, width
);
720 pwaff
= isl_pw_aff_mod (pwaff
, mod
);
727 /* When parameter NAME is in REGION, returns its index in SESE_PARAMS.
728 Otherwise returns -1. */
731 parameter_index_in_region_1 (tree name
, sese region
)
736 gcc_assert (TREE_CODE (name
) == SSA_NAME
);
738 FOR_EACH_VEC_ELT (SESE_PARAMS (region
), i
, p
)
745 /* When the parameter NAME is in REGION, returns its index in
746 SESE_PARAMS. Otherwise this function inserts NAME in SESE_PARAMS
747 and returns the index of NAME. */
750 parameter_index_in_region (tree name
, sese region
)
754 gcc_assert (TREE_CODE (name
) == SSA_NAME
);
756 i
= parameter_index_in_region_1 (name
, region
);
760 gcc_assert (SESE_ADD_PARAMS (region
));
762 i
= SESE_PARAMS (region
).length ();
763 SESE_PARAMS (region
).safe_push (name
);
767 /* Extract an affine expression from the tree E in the scop S. */
770 extract_affine (scop_p s
, tree e
, __isl_take isl_space
*space
)
772 isl_pw_aff
*lhs
, *rhs
, *res
;
775 if (e
== chrec_dont_know
) {
776 isl_space_free (space
);
780 switch (TREE_CODE (e
))
782 case POLYNOMIAL_CHREC
:
783 res
= extract_affine_chrec (s
, e
, space
);
787 res
= extract_affine_mul (s
, e
, space
);
791 case POINTER_PLUS_EXPR
:
792 lhs
= extract_affine (s
, TREE_OPERAND (e
, 0), isl_space_copy (space
));
793 rhs
= extract_affine (s
, TREE_OPERAND (e
, 1), space
);
794 res
= isl_pw_aff_add (lhs
, rhs
);
798 lhs
= extract_affine (s
, TREE_OPERAND (e
, 0), isl_space_copy (space
));
799 rhs
= extract_affine (s
, TREE_OPERAND (e
, 1), space
);
800 res
= isl_pw_aff_sub (lhs
, rhs
);
805 lhs
= extract_affine (s
, TREE_OPERAND (e
, 0), isl_space_copy (space
));
806 rhs
= extract_affine (s
, integer_minus_one_node
, space
);
807 res
= isl_pw_aff_mul (lhs
, rhs
);
811 gcc_assert (-1 != parameter_index_in_region_1 (e
, SCOP_REGION (s
)));
812 res
= extract_affine_name (s
, e
, space
);
816 res
= extract_affine_int (e
, space
);
817 /* No need to wrap a single integer. */
821 case NON_LVALUE_EXPR
:
822 res
= extract_affine (s
, TREE_OPERAND (e
, 0), space
);
830 type
= TREE_TYPE (e
);
831 if (TYPE_UNSIGNED (type
))
832 res
= wrap (res
, TYPE_PRECISION (type
));
837 /* In the context of sese S, scan the expression E and translate it to
838 a linear expression C. When parsing a symbolic multiplication, K
839 represents the constant multiplier of an expression containing
843 scan_tree_for_params (sese s
, tree e
)
845 if (e
== chrec_dont_know
)
848 switch (TREE_CODE (e
))
850 case POLYNOMIAL_CHREC
:
851 scan_tree_for_params (s
, CHREC_LEFT (e
));
855 if (chrec_contains_symbols (TREE_OPERAND (e
, 0)))
856 scan_tree_for_params (s
, TREE_OPERAND (e
, 0));
858 scan_tree_for_params (s
, TREE_OPERAND (e
, 1));
862 case POINTER_PLUS_EXPR
:
864 scan_tree_for_params (s
, TREE_OPERAND (e
, 0));
865 scan_tree_for_params (s
, TREE_OPERAND (e
, 1));
871 case NON_LVALUE_EXPR
:
872 scan_tree_for_params (s
, TREE_OPERAND (e
, 0));
876 parameter_index_in_region (e
, s
);
889 /* Find parameters with respect to REGION in BB. We are looking in memory
890 access functions, conditions and loop bounds. */
893 find_params_in_bb (sese region
, gimple_bb_p gbb
)
899 loop_p loop
= GBB_BB (gbb
)->loop_father
;
901 /* Find parameters in the access functions of data references. */
902 FOR_EACH_VEC_ELT (GBB_DATA_REFS (gbb
), i
, dr
)
903 for (j
= 0; j
< DR_NUM_DIMENSIONS (dr
); j
++)
904 scan_tree_for_params (region
, DR_ACCESS_FN (dr
, j
));
906 /* Find parameters in conditional statements. */
907 FOR_EACH_VEC_ELT (GBB_CONDITIONS (gbb
), i
, stmt
)
909 tree lhs
= scalar_evolution_in_region (region
, loop
,
910 gimple_cond_lhs (stmt
));
911 tree rhs
= scalar_evolution_in_region (region
, loop
,
912 gimple_cond_rhs (stmt
));
914 scan_tree_for_params (region
, lhs
);
915 scan_tree_for_params (region
, rhs
);
919 /* Record the parameters used in the SCOP. A variable is a parameter
920 in a scop if it does not vary during the execution of that scop. */
923 find_scop_parameters (scop_p scop
)
927 sese region
= SCOP_REGION (scop
);
931 /* Find the parameters used in the loop bounds. */
932 FOR_EACH_VEC_ELT (SESE_LOOP_NEST (region
), i
, loop
)
934 tree nb_iters
= number_of_latch_executions (loop
);
936 if (!chrec_contains_symbols (nb_iters
))
939 nb_iters
= scalar_evolution_in_region (region
, loop
, nb_iters
);
940 scan_tree_for_params (region
, nb_iters
);
943 /* Find the parameters used in data accesses. */
944 FOR_EACH_VEC_ELT (SCOP_BBS (scop
), i
, pbb
)
945 find_params_in_bb (region
, PBB_BLACK_BOX (pbb
));
947 nbp
= sese_nb_params (region
);
948 scop_set_nb_params (scop
, nbp
);
949 SESE_ADD_PARAMS (region
) = false;
953 isl_space
*space
= isl_space_set_alloc (scop
->ctx
, nbp
, 0);
955 FOR_EACH_VEC_ELT (SESE_PARAMS (region
), i
, e
)
956 space
= isl_space_set_dim_id (space
, isl_dim_param
, i
,
957 isl_id_for_ssa_name (scop
, e
));
959 scop
->context
= isl_set_universe (space
);
963 /* Builds the constraint polyhedra for LOOP in SCOP. OUTER_PH gives
964 the constraints for the surrounding loops. */
967 build_loop_iteration_domains (scop_p scop
, struct loop
*loop
,
969 isl_set
*outer
, isl_set
**doms
)
971 tree nb_iters
= number_of_latch_executions (loop
);
972 sese region
= SCOP_REGION (scop
);
974 isl_set
*inner
= isl_set_copy (outer
);
977 int pos
= isl_set_dim (outer
, isl_dim_set
);
984 inner
= isl_set_add_dims (inner
, isl_dim_set
, 1);
985 space
= isl_set_get_space (inner
);
988 c
= isl_inequality_alloc
989 (isl_local_space_from_space (isl_space_copy (space
)));
990 c
= isl_constraint_set_coefficient_si (c
, isl_dim_set
, pos
, 1);
991 inner
= isl_set_add_constraint (inner
, c
);
993 /* loop_i <= cst_nb_iters */
994 if (TREE_CODE (nb_iters
) == INTEGER_CST
)
996 c
= isl_inequality_alloc
997 (isl_local_space_from_space(isl_space_copy (space
)));
998 c
= isl_constraint_set_coefficient_si (c
, isl_dim_set
, pos
, -1);
999 tree_int_to_gmp (nb_iters
, g
);
1000 isl_int_set_gmp (v
, g
);
1001 c
= isl_constraint_set_constant (c
, v
);
1002 inner
= isl_set_add_constraint (inner
, c
);
1005 /* loop_i <= expr_nb_iters */
1006 else if (!chrec_contains_undetermined (nb_iters
))
1011 isl_local_space
*ls
;
1015 nb_iters
= scalar_evolution_in_region (region
, loop
, nb_iters
);
1017 aff
= extract_affine (scop
, nb_iters
, isl_set_get_space (inner
));
1018 valid
= isl_pw_aff_nonneg_set (isl_pw_aff_copy (aff
));
1019 valid
= isl_set_project_out (valid
, isl_dim_set
, 0,
1020 isl_set_dim (valid
, isl_dim_set
));
1021 scop
->context
= isl_set_intersect (scop
->context
, valid
);
1023 ls
= isl_local_space_from_space (isl_space_copy (space
));
1024 al
= isl_aff_set_coefficient_si (isl_aff_zero_on_domain (ls
),
1025 isl_dim_in
, pos
, 1);
1026 le
= isl_pw_aff_le_set (isl_pw_aff_from_aff (al
),
1027 isl_pw_aff_copy (aff
));
1028 inner
= isl_set_intersect (inner
, le
);
1030 if (max_stmt_executions (loop
, &nit
))
1032 /* Insert in the context the constraints from the
1033 estimation of the number of iterations NIT and the
1034 symbolic number of iterations (involving parameter
1035 names) NB_ITERS. First, build the affine expression
1036 "NIT - NB_ITERS" and then say that it is positive,
1037 i.e., NIT approximates NB_ITERS: "NIT >= NB_ITERS". */
1044 mpz_set_double_int (g
, nit
, false);
1045 mpz_sub_ui (g
, g
, 1);
1046 approx
= extract_affine_gmp (g
, isl_set_get_space (inner
));
1047 x
= isl_pw_aff_ge_set (approx
, aff
);
1048 x
= isl_set_project_out (x
, isl_dim_set
, 0,
1049 isl_set_dim (x
, isl_dim_set
));
1050 scop
->context
= isl_set_intersect (scop
->context
, x
);
1052 c
= isl_inequality_alloc
1053 (isl_local_space_from_space (isl_space_copy (space
)));
1054 c
= isl_constraint_set_coefficient_si (c
, isl_dim_set
, pos
, -1);
1055 isl_int_set_gmp (v
, g
);
1057 c
= isl_constraint_set_constant (c
, v
);
1058 inner
= isl_set_add_constraint (inner
, c
);
1061 isl_pw_aff_free (aff
);
1066 if (loop
->inner
&& loop_in_sese_p (loop
->inner
, region
))
1067 build_loop_iteration_domains (scop
, loop
->inner
, nb
+ 1,
1068 isl_set_copy (inner
), doms
);
1072 && loop_in_sese_p (loop
->next
, region
))
1073 build_loop_iteration_domains (scop
, loop
->next
, nb
,
1074 isl_set_copy (outer
), doms
);
1076 doms
[loop
->num
] = inner
;
1078 isl_set_free (outer
);
1079 isl_space_free (space
);
1084 /* Returns a linear expression for tree T evaluated in PBB. */
1087 create_pw_aff_from_tree (poly_bb_p pbb
, tree t
)
1089 scop_p scop
= PBB_SCOP (pbb
);
1091 t
= scalar_evolution_in_region (SCOP_REGION (scop
), pbb_loop (pbb
), t
);
1092 gcc_assert (!automatically_generated_chrec_p (t
));
1094 return extract_affine (scop
, t
, isl_set_get_space (pbb
->domain
));
1097 /* Add conditional statement STMT to pbb. CODE is used as the comparison
1098 operator. This allows us to invert the condition or to handle
1102 add_condition_to_pbb (poly_bb_p pbb
, gimple stmt
, enum tree_code code
)
1104 isl_pw_aff
*lhs
= create_pw_aff_from_tree (pbb
, gimple_cond_lhs (stmt
));
1105 isl_pw_aff
*rhs
= create_pw_aff_from_tree (pbb
, gimple_cond_rhs (stmt
));
1111 cond
= isl_pw_aff_lt_set (lhs
, rhs
);
1115 cond
= isl_pw_aff_gt_set (lhs
, rhs
);
1119 cond
= isl_pw_aff_le_set (lhs
, rhs
);
1123 cond
= isl_pw_aff_ge_set (lhs
, rhs
);
1127 cond
= isl_pw_aff_eq_set (lhs
, rhs
);
1131 cond
= isl_pw_aff_ne_set (lhs
, rhs
);
1135 isl_pw_aff_free(lhs
);
1136 isl_pw_aff_free(rhs
);
1140 cond
= isl_set_coalesce (cond
);
1141 cond
= isl_set_set_tuple_id (cond
, isl_set_get_tuple_id (pbb
->domain
));
1142 pbb
->domain
= isl_set_intersect (pbb
->domain
, cond
);
1145 /* Add conditions to the domain of PBB. */
1148 add_conditions_to_domain (poly_bb_p pbb
)
1152 gimple_bb_p gbb
= PBB_BLACK_BOX (pbb
);
1154 if (GBB_CONDITIONS (gbb
).is_empty ())
1157 FOR_EACH_VEC_ELT (GBB_CONDITIONS (gbb
), i
, stmt
)
1158 switch (gimple_code (stmt
))
1162 enum tree_code code
= gimple_cond_code (stmt
);
1164 /* The conditions for ELSE-branches are inverted. */
1165 if (!GBB_CONDITION_CASES (gbb
)[i
])
1166 code
= invert_tree_comparison (code
, false);
1168 add_condition_to_pbb (pbb
, stmt
, code
);
1173 /* Switch statements are not supported right now - fall through. */
1181 /* Traverses all the GBBs of the SCOP and add their constraints to the
1182 iteration domains. */
1185 add_conditions_to_constraints (scop_p scop
)
1190 FOR_EACH_VEC_ELT (SCOP_BBS (scop
), i
, pbb
)
1191 add_conditions_to_domain (pbb
);
1194 /* Returns a COND_EXPR statement when BB has a single predecessor, the
1195 edge between BB and its predecessor is not a loop exit edge, and
1196 the last statement of the single predecessor is a COND_EXPR. */
1199 single_pred_cond_non_loop_exit (basic_block bb
)
1201 if (single_pred_p (bb
))
1203 edge e
= single_pred_edge (bb
);
1204 basic_block pred
= e
->src
;
1207 if (loop_depth (pred
->loop_father
) > loop_depth (bb
->loop_father
))
1210 stmt
= last_stmt (pred
);
1212 if (stmt
&& gimple_code (stmt
) == GIMPLE_COND
)
1219 class sese_dom_walker
: public dom_walker
1222 sese_dom_walker (cdi_direction
, sese
);
1223 ~sese_dom_walker ();
1225 virtual void before_dom_children (basic_block
);
1226 virtual void after_dom_children (basic_block
);
1229 vec
<gimple
> conditions_
, cases_
;
1233 sese_dom_walker::sese_dom_walker (cdi_direction direction
, sese region
)
1234 : dom_walker (direction
), region_ (region
)
1236 conditions_
.create (3);
1240 sese_dom_walker::~sese_dom_walker ()
1242 conditions_
.release ();
1246 /* Call-back for dom_walk executed before visiting the dominated
1250 sese_dom_walker::before_dom_children (basic_block bb
)
1255 if (!bb_in_sese_p (bb
, region_
))
1258 stmt
= single_pred_cond_non_loop_exit (bb
);
1262 edge e
= single_pred_edge (bb
);
1264 conditions_
.safe_push (stmt
);
1266 if (e
->flags
& EDGE_TRUE_VALUE
)
1267 cases_
.safe_push (stmt
);
1269 cases_
.safe_push (NULL
);
1272 gbb
= gbb_from_bb (bb
);
1276 GBB_CONDITIONS (gbb
) = conditions_
.copy ();
1277 GBB_CONDITION_CASES (gbb
) = cases_
.copy ();
1281 /* Call-back for dom_walk executed after visiting the dominated
1285 sese_dom_walker::after_dom_children (basic_block bb
)
1287 if (!bb_in_sese_p (bb
, region_
))
1290 if (single_pred_cond_non_loop_exit (bb
))
1297 /* Add constraints on the possible values of parameter P from the type
1301 add_param_constraints (scop_p scop
, graphite_dim_t p
)
1303 tree parameter
= SESE_PARAMS (SCOP_REGION (scop
))[p
];
1304 tree type
= TREE_TYPE (parameter
);
1305 tree lb
= NULL_TREE
;
1306 tree ub
= NULL_TREE
;
1308 if (POINTER_TYPE_P (type
) || !TYPE_MIN_VALUE (type
))
1309 lb
= lower_bound_in_type (type
, type
);
1311 lb
= TYPE_MIN_VALUE (type
);
1313 if (POINTER_TYPE_P (type
) || !TYPE_MAX_VALUE (type
))
1314 ub
= upper_bound_in_type (type
, type
);
1316 ub
= TYPE_MAX_VALUE (type
);
1320 isl_space
*space
= isl_set_get_space (scop
->context
);
1325 c
= isl_inequality_alloc (isl_local_space_from_space (space
));
1328 tree_int_to_gmp (lb
, g
);
1329 isl_int_set_gmp (v
, g
);
1332 c
= isl_constraint_set_constant (c
, v
);
1334 c
= isl_constraint_set_coefficient_si (c
, isl_dim_param
, p
, 1);
1336 scop
->context
= isl_set_add_constraint (scop
->context
, c
);
1341 isl_space
*space
= isl_set_get_space (scop
->context
);
1346 c
= isl_inequality_alloc (isl_local_space_from_space (space
));
1350 tree_int_to_gmp (ub
, g
);
1351 isl_int_set_gmp (v
, g
);
1353 c
= isl_constraint_set_constant (c
, v
);
1355 c
= isl_constraint_set_coefficient_si (c
, isl_dim_param
, p
, -1);
1357 scop
->context
= isl_set_add_constraint (scop
->context
, c
);
1361 /* Build the context of the SCOP. The context usually contains extra
1362 constraints that are added to the iteration domains that constrain
1366 build_scop_context (scop_p scop
)
1368 graphite_dim_t p
, n
= scop_nb_params (scop
);
1370 for (p
= 0; p
< n
; p
++)
1371 add_param_constraints (scop
, p
);
1374 /* Build the iteration domains: the loops belonging to the current
1375 SCOP, and that vary for the execution of the current basic block.
1376 Returns false if there is no loop in SCOP. */
1379 build_scop_iteration_domain (scop_p scop
)
1382 sese region
= SCOP_REGION (scop
);
1385 int nb_loops
= number_of_loops (cfun
);
1386 isl_set
**doms
= XCNEWVEC (isl_set
*, nb_loops
);
1388 FOR_EACH_VEC_ELT (SESE_LOOP_NEST (region
), i
, loop
)
1389 if (!loop_in_sese_p (loop_outer (loop
), region
))
1390 build_loop_iteration_domains (scop
, loop
, 0,
1391 isl_set_copy (scop
->context
), doms
);
1393 FOR_EACH_VEC_ELT (SCOP_BBS (scop
), i
, pbb
)
1395 loop
= pbb_loop (pbb
);
1397 if (doms
[loop
->num
])
1398 pbb
->domain
= isl_set_copy (doms
[loop
->num
]);
1400 pbb
->domain
= isl_set_copy (scop
->context
);
1402 pbb
->domain
= isl_set_set_tuple_id (pbb
->domain
,
1403 isl_id_for_pbb (scop
, pbb
));
1406 for (i
= 0; i
< nb_loops
; i
++)
1408 isl_set_free (doms
[i
]);
1413 /* Add a constrain to the ACCESSES polyhedron for the alias set of
1414 data reference DR. ACCESSP_NB_DIMS is the dimension of the
1415 ACCESSES polyhedron, DOM_NB_DIMS is the dimension of the iteration
1419 pdr_add_alias_set (isl_map
*acc
, data_reference_p dr
)
1422 int alias_set_num
= 0;
1423 base_alias_pair
*bap
= (base_alias_pair
*)(dr
->aux
);
1425 if (bap
&& bap
->alias_set
)
1426 alias_set_num
= *(bap
->alias_set
);
1428 c
= isl_equality_alloc
1429 (isl_local_space_from_space (isl_map_get_space (acc
)));
1430 c
= isl_constraint_set_constant_si (c
, -alias_set_num
);
1431 c
= isl_constraint_set_coefficient_si (c
, isl_dim_out
, 0, 1);
1433 return isl_map_add_constraint (acc
, c
);
1436 /* Assign the affine expression INDEX to the output dimension POS of
1437 MAP and return the result. */
1440 set_index (isl_map
*map
, int pos
, isl_pw_aff
*index
)
1443 int len
= isl_map_dim (map
, isl_dim_out
);
1446 index_map
= isl_map_from_pw_aff (index
);
1447 index_map
= isl_map_insert_dims (index_map
, isl_dim_out
, 0, pos
);
1448 index_map
= isl_map_add_dims (index_map
, isl_dim_out
, len
- pos
- 1);
1450 id
= isl_map_get_tuple_id (map
, isl_dim_out
);
1451 index_map
= isl_map_set_tuple_id (index_map
, isl_dim_out
, id
);
1452 id
= isl_map_get_tuple_id (map
, isl_dim_in
);
1453 index_map
= isl_map_set_tuple_id (index_map
, isl_dim_in
, id
);
1455 return isl_map_intersect (map
, index_map
);
1458 /* Add to ACCESSES polyhedron equalities defining the access functions
1459 to the memory. ACCESSP_NB_DIMS is the dimension of the ACCESSES
1460 polyhedron, DOM_NB_DIMS is the dimension of the iteration domain.
1461 PBB is the poly_bb_p that contains the data reference DR. */
1464 pdr_add_memory_accesses (isl_map
*acc
, data_reference_p dr
, poly_bb_p pbb
)
1466 int i
, nb_subscripts
= DR_NUM_DIMENSIONS (dr
);
1467 scop_p scop
= PBB_SCOP (pbb
);
1469 for (i
= 0; i
< nb_subscripts
; i
++)
1472 tree afn
= DR_ACCESS_FN (dr
, nb_subscripts
- 1 - i
);
1474 aff
= extract_affine (scop
, afn
,
1475 isl_space_domain (isl_map_get_space (acc
)));
1476 acc
= set_index (acc
, i
+ 1, aff
);
1482 /* Add constrains representing the size of the accessed data to the
1483 ACCESSES polyhedron. ACCESSP_NB_DIMS is the dimension of the
1484 ACCESSES polyhedron, DOM_NB_DIMS is the dimension of the iteration
1488 pdr_add_data_dimensions (isl_set
*extent
, scop_p scop
, data_reference_p dr
)
1490 tree ref
= DR_REF (dr
);
1491 int i
, nb_subscripts
= DR_NUM_DIMENSIONS (dr
);
1493 for (i
= nb_subscripts
- 1; i
>= 0; i
--, ref
= TREE_OPERAND (ref
, 0))
1497 if (TREE_CODE (ref
) != ARRAY_REF
)
1500 low
= array_ref_low_bound (ref
);
1501 high
= array_ref_up_bound (ref
);
1503 /* XXX The PPL code dealt separately with
1504 subscript - low >= 0 and high - subscript >= 0 in case one of
1505 the two bounds isn't known. Do the same here? */
1507 if (host_integerp (low
, 0)
1509 && host_integerp (high
, 0)
1510 /* 1-element arrays at end of structures may extend over
1511 their declared size. */
1512 && !(array_at_struct_end_p (ref
)
1513 && operand_equal_p (low
, high
, 0)))
1517 isl_set
*univ
, *lbs
, *ubs
;
1521 isl_pw_aff
*lb
= extract_affine_int (low
, isl_set_get_space (extent
));
1522 isl_pw_aff
*ub
= extract_affine_int (high
, isl_set_get_space (extent
));
1525 valid
= isl_pw_aff_nonneg_set (isl_pw_aff_copy (ub
));
1526 valid
= isl_set_project_out (valid
, isl_dim_set
, 0,
1527 isl_set_dim (valid
, isl_dim_set
));
1528 scop
->context
= isl_set_intersect (scop
->context
, valid
);
1530 space
= isl_set_get_space (extent
);
1531 aff
= isl_aff_zero_on_domain (isl_local_space_from_space (space
));
1532 aff
= isl_aff_add_coefficient_si (aff
, isl_dim_in
, i
+ 1, 1);
1533 univ
= isl_set_universe (isl_space_domain (isl_aff_get_space (aff
)));
1534 index
= isl_pw_aff_alloc (univ
, aff
);
1536 id
= isl_set_get_tuple_id (extent
);
1537 lb
= isl_pw_aff_set_tuple_id (lb
, isl_dim_in
, isl_id_copy (id
));
1538 ub
= isl_pw_aff_set_tuple_id (ub
, isl_dim_in
, id
);
1540 /* low <= sub_i <= high */
1541 lbs
= isl_pw_aff_ge_set (isl_pw_aff_copy (index
), lb
);
1542 ubs
= isl_pw_aff_le_set (index
, ub
);
1543 extent
= isl_set_intersect (extent
, lbs
);
1544 extent
= isl_set_intersect (extent
, ubs
);
1551 /* Build data accesses for DR in PBB. */
1554 build_poly_dr (data_reference_p dr
, poly_bb_p pbb
)
1556 int dr_base_object_set
;
1559 scop_p scop
= PBB_SCOP (pbb
);
1562 isl_space
*dc
= isl_set_get_space (pbb
->domain
);
1563 int nb_out
= 1 + DR_NUM_DIMENSIONS (dr
);
1564 isl_space
*space
= isl_space_add_dims (isl_space_from_domain (dc
),
1565 isl_dim_out
, nb_out
);
1567 acc
= isl_map_universe (space
);
1568 acc
= isl_map_set_tuple_id (acc
, isl_dim_out
, isl_id_for_dr (scop
, dr
));
1571 acc
= pdr_add_alias_set (acc
, dr
);
1572 acc
= pdr_add_memory_accesses (acc
, dr
, pbb
);
1575 isl_id
*id
= isl_id_for_dr (scop
, dr
);
1576 int nb
= 1 + DR_NUM_DIMENSIONS (dr
);
1577 isl_space
*space
= isl_space_set_alloc (scop
->ctx
, 0, nb
);
1578 int alias_set_num
= 0;
1579 base_alias_pair
*bap
= (base_alias_pair
*)(dr
->aux
);
1581 if (bap
&& bap
->alias_set
)
1582 alias_set_num
= *(bap
->alias_set
);
1584 space
= isl_space_set_tuple_id (space
, isl_dim_set
, id
);
1585 extent
= isl_set_nat_universe (space
);
1586 extent
= isl_set_fix_si (extent
, isl_dim_set
, 0, alias_set_num
);
1587 extent
= pdr_add_data_dimensions (extent
, scop
, dr
);
1590 gcc_assert (dr
->aux
);
1591 dr_base_object_set
= ((base_alias_pair
*)(dr
->aux
))->base_obj_set
;
1593 new_poly_dr (pbb
, dr_base_object_set
,
1594 DR_IS_READ (dr
) ? PDR_READ
: PDR_WRITE
,
1595 dr
, DR_NUM_DIMENSIONS (dr
), acc
, extent
);
1598 /* Write to FILE the alias graph of data references in DIMACS format. */
1601 write_alias_graph_to_ascii_dimacs (FILE *file
, char *comment
,
1602 vec
<data_reference_p
> drs
)
1604 int num_vertex
= drs
.length ();
1606 data_reference_p dr1
, dr2
;
1609 if (num_vertex
== 0)
1612 FOR_EACH_VEC_ELT (drs
, i
, dr1
)
1613 for (j
= i
+ 1; drs
.iterate (j
, &dr2
); j
++)
1614 if (dr_may_alias_p (dr1
, dr2
, true))
1617 fprintf (file
, "$\n");
1620 fprintf (file
, "c %s\n", comment
);
1622 fprintf (file
, "p edge %d %d\n", num_vertex
, edge_num
);
1624 FOR_EACH_VEC_ELT (drs
, i
, dr1
)
1625 for (j
= i
+ 1; drs
.iterate (j
, &dr2
); j
++)
1626 if (dr_may_alias_p (dr1
, dr2
, true))
1627 fprintf (file
, "e %d %d\n", i
+ 1, j
+ 1);
1632 /* Write to FILE the alias graph of data references in DOT format. */
1635 write_alias_graph_to_ascii_dot (FILE *file
, char *comment
,
1636 vec
<data_reference_p
> drs
)
1638 int num_vertex
= drs
.length ();
1639 data_reference_p dr1
, dr2
;
1642 if (num_vertex
== 0)
1645 fprintf (file
, "$\n");
1648 fprintf (file
, "c %s\n", comment
);
1650 /* First print all the vertices. */
1651 FOR_EACH_VEC_ELT (drs
, i
, dr1
)
1652 fprintf (file
, "n%d;\n", i
);
1654 FOR_EACH_VEC_ELT (drs
, i
, dr1
)
1655 for (j
= i
+ 1; drs
.iterate (j
, &dr2
); j
++)
1656 if (dr_may_alias_p (dr1
, dr2
, true))
1657 fprintf (file
, "n%d n%d\n", i
, j
);
1662 /* Write to FILE the alias graph of data references in ECC format. */
1665 write_alias_graph_to_ascii_ecc (FILE *file
, char *comment
,
1666 vec
<data_reference_p
> drs
)
1668 int num_vertex
= drs
.length ();
1669 data_reference_p dr1
, dr2
;
1672 if (num_vertex
== 0)
1675 fprintf (file
, "$\n");
1678 fprintf (file
, "c %s\n", comment
);
1680 FOR_EACH_VEC_ELT (drs
, i
, dr1
)
1681 for (j
= i
+ 1; drs
.iterate (j
, &dr2
); j
++)
1682 if (dr_may_alias_p (dr1
, dr2
, true))
1683 fprintf (file
, "%d %d\n", i
, j
);
1688 /* Check if DR1 and DR2 are in the same object set. */
1691 dr_same_base_object_p (const struct data_reference
*dr1
,
1692 const struct data_reference
*dr2
)
1694 return operand_equal_p (DR_BASE_OBJECT (dr1
), DR_BASE_OBJECT (dr2
), 0);
1697 /* Uses DFS component number as representative of alias-sets. Also tests for
1698 optimality by verifying if every connected component is a clique. Returns
1699 true (1) if the above test is true, and false (0) otherwise. */
1702 build_alias_set_optimal_p (vec
<data_reference_p
> drs
)
1704 int num_vertices
= drs
.length ();
1705 struct graph
*g
= new_graph (num_vertices
);
1706 data_reference_p dr1
, dr2
;
1708 int num_connected_components
;
1709 int v_indx1
, v_indx2
, num_vertices_in_component
;
1712 struct graph_edge
*e
;
1713 int this_component_is_clique
;
1714 int all_components_are_cliques
= 1;
1716 FOR_EACH_VEC_ELT (drs
, i
, dr1
)
1717 for (j
= i
+1; drs
.iterate (j
, &dr2
); j
++)
1718 if (dr_may_alias_p (dr1
, dr2
, true))
1724 all_vertices
= XNEWVEC (int, num_vertices
);
1725 vertices
= XNEWVEC (int, num_vertices
);
1726 for (i
= 0; i
< num_vertices
; i
++)
1727 all_vertices
[i
] = i
;
1729 num_connected_components
= graphds_dfs (g
, all_vertices
, num_vertices
,
1731 for (i
= 0; i
< g
->n_vertices
; i
++)
1733 data_reference_p dr
= drs
[i
];
1734 base_alias_pair
*bap
;
1736 gcc_assert (dr
->aux
);
1737 bap
= (base_alias_pair
*)(dr
->aux
);
1739 bap
->alias_set
= XNEW (int);
1740 *(bap
->alias_set
) = g
->vertices
[i
].component
+ 1;
1743 /* Verify if the DFS numbering results in optimal solution. */
1744 for (i
= 0; i
< num_connected_components
; i
++)
1746 num_vertices_in_component
= 0;
1747 /* Get all vertices whose DFS component number is the same as i. */
1748 for (j
= 0; j
< num_vertices
; j
++)
1749 if (g
->vertices
[j
].component
== i
)
1750 vertices
[num_vertices_in_component
++] = j
;
1752 /* Now test if the vertices in 'vertices' form a clique, by testing
1753 for edges among each pair. */
1754 this_component_is_clique
= 1;
1755 for (v_indx1
= 0; v_indx1
< num_vertices_in_component
; v_indx1
++)
1757 for (v_indx2
= v_indx1
+1; v_indx2
< num_vertices_in_component
; v_indx2
++)
1759 /* Check if the two vertices are connected by iterating
1760 through all the edges which have one of these are source. */
1761 e
= g
->vertices
[vertices
[v_indx2
]].pred
;
1764 if (e
->src
== vertices
[v_indx1
])
1770 this_component_is_clique
= 0;
1774 if (!this_component_is_clique
)
1775 all_components_are_cliques
= 0;
1779 free (all_vertices
);
1782 return all_components_are_cliques
;
1785 /* Group each data reference in DRS with its base object set num. */
1788 build_base_obj_set_for_drs (vec
<data_reference_p
> drs
)
1790 int num_vertex
= drs
.length ();
1791 struct graph
*g
= new_graph (num_vertex
);
1792 data_reference_p dr1
, dr2
;
1796 FOR_EACH_VEC_ELT (drs
, i
, dr1
)
1797 for (j
= i
+ 1; drs
.iterate (j
, &dr2
); j
++)
1798 if (dr_same_base_object_p (dr1
, dr2
))
1804 queue
= XNEWVEC (int, num_vertex
);
1805 for (i
= 0; i
< num_vertex
; i
++)
1808 graphds_dfs (g
, queue
, num_vertex
, NULL
, true, NULL
);
1810 for (i
= 0; i
< g
->n_vertices
; i
++)
1812 data_reference_p dr
= drs
[i
];
1813 base_alias_pair
*bap
;
1815 gcc_assert (dr
->aux
);
1816 bap
= (base_alias_pair
*)(dr
->aux
);
1818 bap
->base_obj_set
= g
->vertices
[i
].component
+ 1;
1825 /* Build the data references for PBB. */
1828 build_pbb_drs (poly_bb_p pbb
)
1831 data_reference_p dr
;
1832 vec
<data_reference_p
> gbb_drs
= GBB_DATA_REFS (PBB_BLACK_BOX (pbb
));
1834 FOR_EACH_VEC_ELT (gbb_drs
, j
, dr
)
1835 build_poly_dr (dr
, pbb
);
1838 /* Dump to file the alias graphs for the data references in DRS. */
1841 dump_alias_graphs (vec
<data_reference_p
> drs
)
1844 FILE *file_dimacs
, *file_ecc
, *file_dot
;
1846 file_dimacs
= fopen ("/tmp/dr_alias_graph_dimacs", "ab");
1849 snprintf (comment
, sizeof (comment
), "%s %s", main_input_filename
,
1850 current_function_name ());
1851 write_alias_graph_to_ascii_dimacs (file_dimacs
, comment
, drs
);
1852 fclose (file_dimacs
);
1855 file_ecc
= fopen ("/tmp/dr_alias_graph_ecc", "ab");
1858 snprintf (comment
, sizeof (comment
), "%s %s", main_input_filename
,
1859 current_function_name ());
1860 write_alias_graph_to_ascii_ecc (file_ecc
, comment
, drs
);
1864 file_dot
= fopen ("/tmp/dr_alias_graph_dot", "ab");
1867 snprintf (comment
, sizeof (comment
), "%s %s", main_input_filename
,
1868 current_function_name ());
1869 write_alias_graph_to_ascii_dot (file_dot
, comment
, drs
);
1874 /* Build data references in SCOP. */
1877 build_scop_drs (scop_p scop
)
1881 data_reference_p dr
;
1882 vec
<data_reference_p
> drs
;
1885 /* Remove all the PBBs that do not have data references: these basic
1886 blocks are not handled in the polyhedral representation. */
1887 for (i
= 0; SCOP_BBS (scop
).iterate (i
, &pbb
); i
++)
1888 if (GBB_DATA_REFS (PBB_BLACK_BOX (pbb
)).is_empty ())
1890 free_gimple_bb (PBB_BLACK_BOX (pbb
));
1892 SCOP_BBS (scop
).ordered_remove (i
);
1896 FOR_EACH_VEC_ELT (SCOP_BBS (scop
), i
, pbb
)
1897 for (j
= 0; GBB_DATA_REFS (PBB_BLACK_BOX (pbb
)).iterate (j
, &dr
); j
++)
1900 FOR_EACH_VEC_ELT (drs
, i
, dr
)
1901 dr
->aux
= XNEW (base_alias_pair
);
1903 if (!build_alias_set_optimal_p (drs
))
1905 /* TODO: Add support when building alias set is not optimal. */
1909 build_base_obj_set_for_drs (drs
);
1911 /* When debugging, enable the following code. This cannot be used
1912 in production compilers. */
1914 dump_alias_graphs (drs
);
1918 FOR_EACH_VEC_ELT (SCOP_BBS (scop
), i
, pbb
)
1919 build_pbb_drs (pbb
);
1922 /* Return a gsi at the position of the phi node STMT. */
1924 static gimple_stmt_iterator
1925 gsi_for_phi_node (gimple stmt
)
1927 gimple_stmt_iterator psi
;
1928 basic_block bb
= gimple_bb (stmt
);
1930 for (psi
= gsi_start_phis (bb
); !gsi_end_p (psi
); gsi_next (&psi
))
1931 if (stmt
== gsi_stmt (psi
))
1938 /* Analyze all the data references of STMTS and add them to the
1939 GBB_DATA_REFS vector of BB. */
1942 analyze_drs_in_stmts (scop_p scop
, basic_block bb
, vec
<gimple
> stmts
)
1948 sese region
= SCOP_REGION (scop
);
1950 if (!bb_in_sese_p (bb
, region
))
1953 nest
= outermost_loop_in_sese_1 (region
, bb
);
1954 gbb
= gbb_from_bb (bb
);
1956 FOR_EACH_VEC_ELT (stmts
, i
, stmt
)
1960 if (is_gimple_debug (stmt
))
1963 loop
= loop_containing_stmt (stmt
);
1964 if (!loop_in_sese_p (loop
, region
))
1967 graphite_find_data_references_in_stmt (nest
, loop
, stmt
,
1968 &GBB_DATA_REFS (gbb
));
1972 /* Insert STMT at the end of the STMTS sequence and then insert the
1973 statements from STMTS at INSERT_GSI and call analyze_drs_in_stmts
1977 insert_stmts (scop_p scop
, gimple stmt
, gimple_seq stmts
,
1978 gimple_stmt_iterator insert_gsi
)
1980 gimple_stmt_iterator gsi
;
1984 gimple_seq_add_stmt (&stmts
, stmt
);
1985 for (gsi
= gsi_start (stmts
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1986 x
.safe_push (gsi_stmt (gsi
));
1988 gsi_insert_seq_before (&insert_gsi
, stmts
, GSI_SAME_STMT
);
1989 analyze_drs_in_stmts (scop
, gsi_bb (insert_gsi
), x
);
1993 /* Insert the assignment "RES := EXPR" just after AFTER_STMT. */
1996 insert_out_of_ssa_copy (scop_p scop
, tree res
, tree expr
, gimple after_stmt
)
1999 gimple_stmt_iterator gsi
;
2000 tree var
= force_gimple_operand (expr
, &stmts
, true, NULL_TREE
);
2001 gimple stmt
= gimple_build_assign (unshare_expr (res
), var
);
2005 gimple_seq_add_stmt (&stmts
, stmt
);
2006 for (gsi
= gsi_start (stmts
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2007 x
.safe_push (gsi_stmt (gsi
));
2009 if (gimple_code (after_stmt
) == GIMPLE_PHI
)
2011 gsi
= gsi_after_labels (gimple_bb (after_stmt
));
2012 gsi_insert_seq_before (&gsi
, stmts
, GSI_NEW_STMT
);
2016 gsi
= gsi_for_stmt (after_stmt
);
2017 gsi_insert_seq_after (&gsi
, stmts
, GSI_NEW_STMT
);
2020 analyze_drs_in_stmts (scop
, gimple_bb (after_stmt
), x
);
2024 /* Creates a poly_bb_p for basic_block BB from the existing PBB. */
2027 new_pbb_from_pbb (scop_p scop
, poly_bb_p pbb
, basic_block bb
)
2029 vec
<data_reference_p
> drs
;
2031 gimple_bb_p gbb
= PBB_BLACK_BOX (pbb
);
2032 gimple_bb_p gbb1
= new_gimple_bb (bb
, drs
);
2033 poly_bb_p pbb1
= new_poly_bb (scop
, gbb1
);
2034 int index
, n
= SCOP_BBS (scop
).length ();
2036 /* The INDEX of PBB in SCOP_BBS. */
2037 for (index
= 0; index
< n
; index
++)
2038 if (SCOP_BBS (scop
)[index
] == pbb
)
2041 pbb1
->domain
= isl_set_copy (pbb
->domain
);
2043 GBB_PBB (gbb1
) = pbb1
;
2044 GBB_CONDITIONS (gbb1
) = GBB_CONDITIONS (gbb
).copy ();
2045 GBB_CONDITION_CASES (gbb1
) = GBB_CONDITION_CASES (gbb
).copy ();
2046 SCOP_BBS (scop
).safe_insert (index
+ 1, pbb1
);
2049 /* Insert on edge E the assignment "RES := EXPR". */
2052 insert_out_of_ssa_copy_on_edge (scop_p scop
, edge e
, tree res
, tree expr
)
2054 gimple_stmt_iterator gsi
;
2055 gimple_seq stmts
= NULL
;
2056 tree var
= force_gimple_operand (expr
, &stmts
, true, NULL_TREE
);
2057 gimple stmt
= gimple_build_assign (unshare_expr (res
), var
);
2062 gimple_seq_add_stmt (&stmts
, stmt
);
2063 for (gsi
= gsi_start (stmts
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2064 x
.safe_push (gsi_stmt (gsi
));
2066 gsi_insert_seq_on_edge (e
, stmts
);
2067 gsi_commit_edge_inserts ();
2068 bb
= gimple_bb (stmt
);
2070 if (!bb_in_sese_p (bb
, SCOP_REGION (scop
)))
2073 if (!gbb_from_bb (bb
))
2074 new_pbb_from_pbb (scop
, pbb_from_bb (e
->src
), bb
);
2076 analyze_drs_in_stmts (scop
, bb
, x
);
2080 /* Creates a zero dimension array of the same type as VAR. */
2083 create_zero_dim_array (tree var
, const char *base_name
)
2085 tree index_type
= build_index_type (integer_zero_node
);
2086 tree elt_type
= TREE_TYPE (var
);
2087 tree array_type
= build_array_type (elt_type
, index_type
);
2088 tree base
= create_tmp_var (array_type
, base_name
);
2090 return build4 (ARRAY_REF
, elt_type
, base
, integer_zero_node
, NULL_TREE
,
2094 /* Returns true when PHI is a loop close phi node. */
2097 scalar_close_phi_node_p (gimple phi
)
2099 if (gimple_code (phi
) != GIMPLE_PHI
2100 || virtual_operand_p (gimple_phi_result (phi
)))
2103 /* Note that loop close phi nodes should have a single argument
2104 because we translated the representation into a canonical form
2105 before Graphite: see canonicalize_loop_closed_ssa_form. */
2106 return (gimple_phi_num_args (phi
) == 1);
2109 /* For a definition DEF in REGION, propagates the expression EXPR in
2110 all the uses of DEF outside REGION. */
2113 propagate_expr_outside_region (tree def
, tree expr
, sese region
)
2115 imm_use_iterator imm_iter
;
2118 bool replaced_once
= false;
2120 gcc_assert (TREE_CODE (def
) == SSA_NAME
);
2122 expr
= force_gimple_operand (unshare_expr (expr
), &stmts
, true,
2125 FOR_EACH_IMM_USE_STMT (use_stmt
, imm_iter
, def
)
2126 if (!is_gimple_debug (use_stmt
)
2127 && !bb_in_sese_p (gimple_bb (use_stmt
), region
))
2130 use_operand_p use_p
;
2132 FOR_EACH_PHI_OR_STMT_USE (use_p
, use_stmt
, iter
, SSA_OP_ALL_USES
)
2133 if (operand_equal_p (def
, USE_FROM_PTR (use_p
), 0)
2134 && (replaced_once
= true))
2135 replace_exp (use_p
, expr
);
2137 update_stmt (use_stmt
);
2142 gsi_insert_seq_on_edge (SESE_ENTRY (region
), stmts
);
2143 gsi_commit_edge_inserts ();
2147 /* Rewrite out of SSA the reduction phi node at PSI by creating a zero
2148 dimension array for it. */
2151 rewrite_close_phi_out_of_ssa (scop_p scop
, gimple_stmt_iterator
*psi
)
2153 sese region
= SCOP_REGION (scop
);
2154 gimple phi
= gsi_stmt (*psi
);
2155 tree res
= gimple_phi_result (phi
);
2156 basic_block bb
= gimple_bb (phi
);
2157 gimple_stmt_iterator gsi
= gsi_after_labels (bb
);
2158 tree arg
= gimple_phi_arg_def (phi
, 0);
2161 /* Note that loop close phi nodes should have a single argument
2162 because we translated the representation into a canonical form
2163 before Graphite: see canonicalize_loop_closed_ssa_form. */
2164 gcc_assert (gimple_phi_num_args (phi
) == 1);
2166 /* The phi node can be a non close phi node, when its argument is
2167 invariant, or a default definition. */
2168 if (is_gimple_min_invariant (arg
)
2169 || SSA_NAME_IS_DEFAULT_DEF (arg
))
2171 propagate_expr_outside_region (res
, arg
, region
);
2176 else if (gimple_bb (SSA_NAME_DEF_STMT (arg
))->loop_father
== bb
->loop_father
)
2178 propagate_expr_outside_region (res
, arg
, region
);
2179 stmt
= gimple_build_assign (res
, arg
);
2180 remove_phi_node (psi
, false);
2181 gsi_insert_before (&gsi
, stmt
, GSI_NEW_STMT
);
2182 SSA_NAME_DEF_STMT (res
) = stmt
;
2186 /* If res is scev analyzable and is not a scalar value, it is safe
2187 to ignore the close phi node: it will be code generated in the
2188 out of Graphite pass. */
2189 else if (scev_analyzable_p (res
, region
))
2191 loop_p loop
= loop_containing_stmt (SSA_NAME_DEF_STMT (res
));
2194 if (!loop_in_sese_p (loop
, region
))
2196 loop
= loop_containing_stmt (SSA_NAME_DEF_STMT (arg
));
2197 scev
= scalar_evolution_in_region (region
, loop
, arg
);
2198 scev
= compute_overall_effect_of_inner_loop (loop
, scev
);
2201 scev
= scalar_evolution_in_region (region
, loop
, res
);
2203 if (tree_does_not_contain_chrecs (scev
))
2204 propagate_expr_outside_region (res
, scev
, region
);
2211 tree zero_dim_array
= create_zero_dim_array (res
, "Close_Phi");
2213 stmt
= gimple_build_assign (res
, unshare_expr (zero_dim_array
));
2215 if (TREE_CODE (arg
) == SSA_NAME
)
2216 insert_out_of_ssa_copy (scop
, zero_dim_array
, arg
,
2217 SSA_NAME_DEF_STMT (arg
));
2219 insert_out_of_ssa_copy_on_edge (scop
, single_pred_edge (bb
),
2220 zero_dim_array
, arg
);
2223 remove_phi_node (psi
, false);
2224 SSA_NAME_DEF_STMT (res
) = stmt
;
2226 insert_stmts (scop
, stmt
, NULL
, gsi_after_labels (bb
));
2229 /* Rewrite out of SSA the reduction phi node at PSI by creating a zero
2230 dimension array for it. */
2233 rewrite_phi_out_of_ssa (scop_p scop
, gimple_stmt_iterator
*psi
)
2236 gimple phi
= gsi_stmt (*psi
);
2237 basic_block bb
= gimple_bb (phi
);
2238 tree res
= gimple_phi_result (phi
);
2239 tree zero_dim_array
= create_zero_dim_array (res
, "phi_out_of_ssa");
2242 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
2244 tree arg
= gimple_phi_arg_def (phi
, i
);
2245 edge e
= gimple_phi_arg_edge (phi
, i
);
2247 /* Avoid the insertion of code in the loop latch to please the
2248 pattern matching of the vectorizer. */
2249 if (TREE_CODE (arg
) == SSA_NAME
2250 && e
->src
== bb
->loop_father
->latch
)
2251 insert_out_of_ssa_copy (scop
, zero_dim_array
, arg
,
2252 SSA_NAME_DEF_STMT (arg
));
2254 insert_out_of_ssa_copy_on_edge (scop
, e
, zero_dim_array
, arg
);
2257 stmt
= gimple_build_assign (res
, unshare_expr (zero_dim_array
));
2258 remove_phi_node (psi
, false);
2259 SSA_NAME_DEF_STMT (res
) = stmt
;
2260 insert_stmts (scop
, stmt
, NULL
, gsi_after_labels (bb
));
2263 /* Rewrite the degenerate phi node at position PSI from the degenerate
2264 form "x = phi (y, y, ..., y)" to "x = y". */
2267 rewrite_degenerate_phi (gimple_stmt_iterator
*psi
)
2271 gimple_stmt_iterator gsi
;
2272 gimple phi
= gsi_stmt (*psi
);
2273 tree res
= gimple_phi_result (phi
);
2276 bb
= gimple_bb (phi
);
2277 rhs
= degenerate_phi_result (phi
);
2280 stmt
= gimple_build_assign (res
, rhs
);
2281 remove_phi_node (psi
, false);
2282 SSA_NAME_DEF_STMT (res
) = stmt
;
2284 gsi
= gsi_after_labels (bb
);
2285 gsi_insert_before (&gsi
, stmt
, GSI_NEW_STMT
);
2288 /* Rewrite out of SSA all the reduction phi nodes of SCOP. */
2291 rewrite_reductions_out_of_ssa (scop_p scop
)
2294 gimple_stmt_iterator psi
;
2295 sese region
= SCOP_REGION (scop
);
2298 if (bb_in_sese_p (bb
, region
))
2299 for (psi
= gsi_start_phis (bb
); !gsi_end_p (psi
);)
2301 gimple phi
= gsi_stmt (psi
);
2303 if (virtual_operand_p (gimple_phi_result (phi
)))
2309 if (gimple_phi_num_args (phi
) > 1
2310 && degenerate_phi_result (phi
))
2311 rewrite_degenerate_phi (&psi
);
2313 else if (scalar_close_phi_node_p (phi
))
2314 rewrite_close_phi_out_of_ssa (scop
, &psi
);
2316 else if (reduction_phi_p (region
, &psi
))
2317 rewrite_phi_out_of_ssa (scop
, &psi
);
2320 update_ssa (TODO_update_ssa
);
2321 #ifdef ENABLE_CHECKING
2322 verify_loop_closed_ssa (true);
2326 /* Rewrite the scalar dependence of DEF used in USE_STMT with a memory
2327 read from ZERO_DIM_ARRAY. */
2330 rewrite_cross_bb_scalar_dependence (scop_p scop
, tree zero_dim_array
,
2331 tree def
, gimple use_stmt
)
2336 use_operand_p use_p
;
2338 gcc_assert (gimple_code (use_stmt
) != GIMPLE_PHI
);
2340 name
= copy_ssa_name (def
, NULL
);
2341 name_stmt
= gimple_build_assign (name
, zero_dim_array
);
2343 gimple_assign_set_lhs (name_stmt
, name
);
2344 insert_stmts (scop
, name_stmt
, NULL
, gsi_for_stmt (use_stmt
));
2346 FOR_EACH_SSA_USE_OPERAND (use_p
, use_stmt
, iter
, SSA_OP_ALL_USES
)
2347 if (operand_equal_p (def
, USE_FROM_PTR (use_p
), 0))
2348 replace_exp (use_p
, name
);
2350 update_stmt (use_stmt
);
2353 /* For every definition DEF in the SCOP that is used outside the scop,
2354 insert a closing-scop definition in the basic block just after this
2358 handle_scalar_deps_crossing_scop_limits (scop_p scop
, tree def
, gimple stmt
)
2360 tree var
= create_tmp_reg (TREE_TYPE (def
), NULL
);
2361 tree new_name
= make_ssa_name (var
, stmt
);
2362 bool needs_copy
= false;
2363 use_operand_p use_p
;
2364 imm_use_iterator imm_iter
;
2366 sese region
= SCOP_REGION (scop
);
2368 FOR_EACH_IMM_USE_STMT (use_stmt
, imm_iter
, def
)
2370 if (!bb_in_sese_p (gimple_bb (use_stmt
), region
))
2372 FOR_EACH_IMM_USE_ON_STMT (use_p
, imm_iter
)
2374 SET_USE (use_p
, new_name
);
2376 update_stmt (use_stmt
);
2381 /* Insert in the empty BB just after the scop a use of DEF such
2382 that the rewrite of cross_bb_scalar_dependences won't insert
2383 arrays everywhere else. */
2386 gimple assign
= gimple_build_assign (new_name
, def
);
2387 gimple_stmt_iterator psi
= gsi_after_labels (SESE_EXIT (region
)->dest
);
2389 SSA_NAME_DEF_STMT (new_name
) = assign
;
2390 update_stmt (assign
);
2391 gsi_insert_before (&psi
, assign
, GSI_SAME_STMT
);
2395 /* Rewrite the scalar dependences crossing the boundary of the BB
2396 containing STMT with an array. Return true when something has been
2400 rewrite_cross_bb_scalar_deps (scop_p scop
, gimple_stmt_iterator
*gsi
)
2402 sese region
= SCOP_REGION (scop
);
2403 gimple stmt
= gsi_stmt (*gsi
);
2404 imm_use_iterator imm_iter
;
2407 tree zero_dim_array
= NULL_TREE
;
2411 switch (gimple_code (stmt
))
2414 def
= gimple_assign_lhs (stmt
);
2418 def
= gimple_call_lhs (stmt
);
2426 || !is_gimple_reg (def
))
2429 if (scev_analyzable_p (def
, region
))
2431 loop_p loop
= loop_containing_stmt (SSA_NAME_DEF_STMT (def
));
2432 tree scev
= scalar_evolution_in_region (region
, loop
, def
);
2434 if (tree_contains_chrecs (scev
, NULL
))
2437 propagate_expr_outside_region (def
, scev
, region
);
2441 def_bb
= gimple_bb (stmt
);
2443 handle_scalar_deps_crossing_scop_limits (scop
, def
, stmt
);
2445 FOR_EACH_IMM_USE_STMT (use_stmt
, imm_iter
, def
)
2446 if (gimple_code (use_stmt
) == GIMPLE_PHI
2449 gimple_stmt_iterator psi
= gsi_for_stmt (use_stmt
);
2451 if (scalar_close_phi_node_p (gsi_stmt (psi
)))
2452 rewrite_close_phi_out_of_ssa (scop
, &psi
);
2454 rewrite_phi_out_of_ssa (scop
, &psi
);
2457 FOR_EACH_IMM_USE_STMT (use_stmt
, imm_iter
, def
)
2458 if (gimple_code (use_stmt
) != GIMPLE_PHI
2459 && def_bb
!= gimple_bb (use_stmt
)
2460 && !is_gimple_debug (use_stmt
)
2463 if (!zero_dim_array
)
2465 zero_dim_array
= create_zero_dim_array
2466 (def
, "Cross_BB_scalar_dependence");
2467 insert_out_of_ssa_copy (scop
, zero_dim_array
, def
,
2468 SSA_NAME_DEF_STMT (def
));
2472 rewrite_cross_bb_scalar_dependence (scop
, zero_dim_array
,
2479 /* Rewrite out of SSA all the reduction phi nodes of SCOP. */
2482 rewrite_cross_bb_scalar_deps_out_of_ssa (scop_p scop
)
2485 gimple_stmt_iterator psi
;
2486 sese region
= SCOP_REGION (scop
);
2487 bool changed
= false;
2489 /* Create an extra empty BB after the scop. */
2490 split_edge (SESE_EXIT (region
));
2493 if (bb_in_sese_p (bb
, region
))
2494 for (psi
= gsi_start_bb (bb
); !gsi_end_p (psi
); gsi_next (&psi
))
2495 changed
|= rewrite_cross_bb_scalar_deps (scop
, &psi
);
2500 update_ssa (TODO_update_ssa
);
2501 #ifdef ENABLE_CHECKING
2502 verify_loop_closed_ssa (true);
2507 /* Returns the number of pbbs that are in loops contained in SCOP. */
2510 nb_pbbs_in_loops (scop_p scop
)
2516 FOR_EACH_VEC_ELT (SCOP_BBS (scop
), i
, pbb
)
2517 if (loop_in_sese_p (gbb_loop (PBB_BLACK_BOX (pbb
)), SCOP_REGION (scop
)))
2523 /* Return the number of data references in BB that write in
2527 nb_data_writes_in_bb (basic_block bb
)
2530 gimple_stmt_iterator gsi
;
2532 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2533 if (gimple_vdef (gsi_stmt (gsi
)))
2539 /* Splits at STMT the basic block BB represented as PBB in the
2543 split_pbb (scop_p scop
, poly_bb_p pbb
, basic_block bb
, gimple stmt
)
2545 edge e1
= split_block (bb
, stmt
);
2546 new_pbb_from_pbb (scop
, pbb
, e1
->dest
);
2550 /* Splits STMT out of its current BB. This is done for reduction
2551 statements for which we want to ignore data dependences. */
2554 split_reduction_stmt (scop_p scop
, gimple stmt
)
2556 basic_block bb
= gimple_bb (stmt
);
2557 poly_bb_p pbb
= pbb_from_bb (bb
);
2558 gimple_bb_p gbb
= gbb_from_bb (bb
);
2561 data_reference_p dr
;
2563 /* Do not split basic blocks with no writes to memory: the reduction
2564 will be the only write to memory. */
2565 if (nb_data_writes_in_bb (bb
) == 0
2566 /* Or if we have already marked BB as a reduction. */
2567 || PBB_IS_REDUCTION (pbb_from_bb (bb
)))
2570 e1
= split_pbb (scop
, pbb
, bb
, stmt
);
2572 /* Split once more only when the reduction stmt is not the only one
2573 left in the original BB. */
2574 if (!gsi_one_before_end_p (gsi_start_nondebug_bb (bb
)))
2576 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
2578 e1
= split_pbb (scop
, pbb
, bb
, gsi_stmt (gsi
));
2581 /* A part of the data references will end in a different basic block
2582 after the split: move the DRs from the original GBB to the newly
2584 FOR_EACH_VEC_ELT (GBB_DATA_REFS (gbb
), i
, dr
)
2586 basic_block bb1
= gimple_bb (DR_STMT (dr
));
2590 gimple_bb_p gbb1
= gbb_from_bb (bb1
);
2591 GBB_DATA_REFS (gbb1
).safe_push (dr
);
2592 GBB_DATA_REFS (gbb
).ordered_remove (i
);
2600 /* Return true when stmt is a reduction operation. */
2603 is_reduction_operation_p (gimple stmt
)
2605 enum tree_code code
;
2607 gcc_assert (is_gimple_assign (stmt
));
2608 code
= gimple_assign_rhs_code (stmt
);
2610 return flag_associative_math
2611 && commutative_tree_code (code
)
2612 && associative_tree_code (code
);
2615 /* Returns true when PHI contains an argument ARG. */
2618 phi_contains_arg (gimple phi
, tree arg
)
2622 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
2623 if (operand_equal_p (arg
, gimple_phi_arg_def (phi
, i
), 0))
2629 /* Return a loop phi node that corresponds to a reduction containing LHS. */
2632 follow_ssa_with_commutative_ops (tree arg
, tree lhs
)
2636 if (TREE_CODE (arg
) != SSA_NAME
)
2639 stmt
= SSA_NAME_DEF_STMT (arg
);
2641 if (gimple_code (stmt
) == GIMPLE_NOP
2642 || gimple_code (stmt
) == GIMPLE_CALL
)
2645 if (gimple_code (stmt
) == GIMPLE_PHI
)
2647 if (phi_contains_arg (stmt
, lhs
))
2652 if (!is_gimple_assign (stmt
))
2655 if (gimple_num_ops (stmt
) == 2)
2656 return follow_ssa_with_commutative_ops (gimple_assign_rhs1 (stmt
), lhs
);
2658 if (is_reduction_operation_p (stmt
))
2660 gimple res
= follow_ssa_with_commutative_ops (gimple_assign_rhs1 (stmt
), lhs
);
2663 follow_ssa_with_commutative_ops (gimple_assign_rhs2 (stmt
), lhs
);
2669 /* Detect commutative and associative scalar reductions starting at
2670 the STMT. Return the phi node of the reduction cycle, or NULL. */
2673 detect_commutative_reduction_arg (tree lhs
, gimple stmt
, tree arg
,
2677 gimple phi
= follow_ssa_with_commutative_ops (arg
, lhs
);
2682 in
->safe_push (stmt
);
2683 out
->safe_push (stmt
);
2687 /* Detect commutative and associative scalar reductions starting at
2688 STMT. Return the phi node of the reduction cycle, or NULL. */
2691 detect_commutative_reduction_assign (gimple stmt
, vec
<gimple
> *in
,
2694 tree lhs
= gimple_assign_lhs (stmt
);
2696 if (gimple_num_ops (stmt
) == 2)
2697 return detect_commutative_reduction_arg (lhs
, stmt
,
2698 gimple_assign_rhs1 (stmt
),
2701 if (is_reduction_operation_p (stmt
))
2703 gimple res
= detect_commutative_reduction_arg (lhs
, stmt
,
2704 gimple_assign_rhs1 (stmt
),
2707 : detect_commutative_reduction_arg (lhs
, stmt
,
2708 gimple_assign_rhs2 (stmt
),
2715 /* Return a loop phi node that corresponds to a reduction containing LHS. */
2718 follow_inital_value_to_phi (tree arg
, tree lhs
)
2722 if (!arg
|| TREE_CODE (arg
) != SSA_NAME
)
2725 stmt
= SSA_NAME_DEF_STMT (arg
);
2727 if (gimple_code (stmt
) == GIMPLE_PHI
2728 && phi_contains_arg (stmt
, lhs
))
2735 /* Return the argument of the loop PHI that is the initial value coming
2736 from outside the loop. */
2739 edge_initial_value_for_loop_phi (gimple phi
)
2743 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
2745 edge e
= gimple_phi_arg_edge (phi
, i
);
2747 if (loop_depth (e
->src
->loop_father
)
2748 < loop_depth (e
->dest
->loop_father
))
2755 /* Return the argument of the loop PHI that is the initial value coming
2756 from outside the loop. */
2759 initial_value_for_loop_phi (gimple phi
)
2763 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
2765 edge e
= gimple_phi_arg_edge (phi
, i
);
2767 if (loop_depth (e
->src
->loop_father
)
2768 < loop_depth (e
->dest
->loop_father
))
2769 return gimple_phi_arg_def (phi
, i
);
2775 /* Returns true when DEF is used outside the reduction cycle of
2779 used_outside_reduction (tree def
, gimple loop_phi
)
2781 use_operand_p use_p
;
2782 imm_use_iterator imm_iter
;
2783 loop_p loop
= loop_containing_stmt (loop_phi
);
2785 /* In LOOP, DEF should be used only in LOOP_PHI. */
2786 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, def
)
2788 gimple stmt
= USE_STMT (use_p
);
2790 if (stmt
!= loop_phi
2791 && !is_gimple_debug (stmt
)
2792 && flow_bb_inside_loop_p (loop
, gimple_bb (stmt
)))
2799 /* Detect commutative and associative scalar reductions belonging to
2800 the SCOP starting at the loop closed phi node STMT. Return the phi
2801 node of the reduction cycle, or NULL. */
2804 detect_commutative_reduction (scop_p scop
, gimple stmt
, vec
<gimple
> *in
,
2807 if (scalar_close_phi_node_p (stmt
))
2809 gimple def
, loop_phi
, phi
, close_phi
= stmt
;
2810 tree init
, lhs
, arg
= gimple_phi_arg_def (close_phi
, 0);
2812 if (TREE_CODE (arg
) != SSA_NAME
)
2815 /* Note that loop close phi nodes should have a single argument
2816 because we translated the representation into a canonical form
2817 before Graphite: see canonicalize_loop_closed_ssa_form. */
2818 gcc_assert (gimple_phi_num_args (close_phi
) == 1);
2820 def
= SSA_NAME_DEF_STMT (arg
);
2821 if (!stmt_in_sese_p (def
, SCOP_REGION (scop
))
2822 || !(loop_phi
= detect_commutative_reduction (scop
, def
, in
, out
)))
2825 lhs
= gimple_phi_result (close_phi
);
2826 init
= initial_value_for_loop_phi (loop_phi
);
2827 phi
= follow_inital_value_to_phi (init
, lhs
);
2829 if (phi
&& (used_outside_reduction (lhs
, phi
)
2830 || !has_single_use (gimple_phi_result (phi
))))
2833 in
->safe_push (loop_phi
);
2834 out
->safe_push (close_phi
);
2838 if (gimple_code (stmt
) == GIMPLE_ASSIGN
)
2839 return detect_commutative_reduction_assign (stmt
, in
, out
);
2844 /* Translate the scalar reduction statement STMT to an array RED
2845 knowing that its recursive phi node is LOOP_PHI. */
2848 translate_scalar_reduction_to_array_for_stmt (scop_p scop
, tree red
,
2849 gimple stmt
, gimple loop_phi
)
2851 tree res
= gimple_phi_result (loop_phi
);
2852 gimple assign
= gimple_build_assign (res
, unshare_expr (red
));
2853 gimple_stmt_iterator gsi
;
2855 insert_stmts (scop
, assign
, NULL
, gsi_after_labels (gimple_bb (loop_phi
)));
2857 assign
= gimple_build_assign (unshare_expr (red
), gimple_assign_lhs (stmt
));
2858 gsi
= gsi_for_stmt (stmt
);
2860 insert_stmts (scop
, assign
, NULL
, gsi
);
2863 /* Removes the PHI node and resets all the debug stmts that are using
2867 remove_phi (gimple phi
)
2869 imm_use_iterator imm_iter
;
2871 use_operand_p use_p
;
2872 gimple_stmt_iterator gsi
;
2878 def
= PHI_RESULT (phi
);
2879 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, def
)
2881 stmt
= USE_STMT (use_p
);
2883 if (is_gimple_debug (stmt
))
2885 gimple_debug_bind_reset_value (stmt
);
2886 update
.safe_push (stmt
);
2890 FOR_EACH_VEC_ELT (update
, i
, stmt
)
2895 gsi
= gsi_for_phi_node (phi
);
2896 remove_phi_node (&gsi
, false);
2899 /* Helper function for for_each_index. For each INDEX of the data
2900 reference REF, returns true when its indices are valid in the loop
2901 nest LOOP passed in as DATA. */
2904 dr_indices_valid_in_loop (tree ref ATTRIBUTE_UNUSED
, tree
*index
, void *data
)
2907 basic_block header
, def_bb
;
2910 if (TREE_CODE (*index
) != SSA_NAME
)
2913 loop
= *((loop_p
*) data
);
2914 header
= loop
->header
;
2915 stmt
= SSA_NAME_DEF_STMT (*index
);
2920 def_bb
= gimple_bb (stmt
);
2925 return dominated_by_p (CDI_DOMINATORS
, header
, def_bb
);
2928 /* When the result of a CLOSE_PHI is written to a memory location,
2929 return a pointer to that memory reference, otherwise return
2933 close_phi_written_to_memory (gimple close_phi
)
2935 imm_use_iterator imm_iter
;
2936 use_operand_p use_p
;
2938 tree res
, def
= gimple_phi_result (close_phi
);
2940 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, def
)
2941 if ((stmt
= USE_STMT (use_p
))
2942 && gimple_code (stmt
) == GIMPLE_ASSIGN
2943 && (res
= gimple_assign_lhs (stmt
)))
2945 switch (TREE_CODE (res
))
2955 tree arg
= gimple_phi_arg_def (close_phi
, 0);
2956 loop_p nest
= loop_containing_stmt (SSA_NAME_DEF_STMT (arg
));
2958 /* FIXME: this restriction is for id-{24,25}.f and
2959 could be handled by duplicating the computation of
2960 array indices before the loop of the close_phi. */
2961 if (for_each_index (&res
, dr_indices_valid_in_loop
, &nest
))
2973 /* Rewrite out of SSA the reduction described by the loop phi nodes
2974 IN, and the close phi nodes OUT. IN and OUT are structured by loop
2977 IN: stmt, loop_n, ..., loop_0
2978 OUT: stmt, close_n, ..., close_0
2980 the first element is the reduction statement, and the next elements
2981 are the loop and close phi nodes of each of the outer loops. */
2984 translate_scalar_reduction_to_array (scop_p scop
,
2989 unsigned int i
= out
.length () - 1;
2990 tree red
= close_phi_written_to_memory (out
[i
]);
2992 FOR_EACH_VEC_ELT (in
, i
, loop_phi
)
2994 gimple close_phi
= out
[i
];
2998 gimple stmt
= loop_phi
;
2999 basic_block bb
= split_reduction_stmt (scop
, stmt
);
3000 poly_bb_p pbb
= pbb_from_bb (bb
);
3001 PBB_IS_REDUCTION (pbb
) = true;
3002 gcc_assert (close_phi
== loop_phi
);
3005 red
= create_zero_dim_array
3006 (gimple_assign_lhs (stmt
), "Commutative_Associative_Reduction");
3008 translate_scalar_reduction_to_array_for_stmt (scop
, red
, stmt
, in
[1]);
3012 if (i
== in
.length () - 1)
3014 insert_out_of_ssa_copy (scop
, gimple_phi_result (close_phi
),
3015 unshare_expr (red
), close_phi
);
3016 insert_out_of_ssa_copy_on_edge
3017 (scop
, edge_initial_value_for_loop_phi (loop_phi
),
3018 unshare_expr (red
), initial_value_for_loop_phi (loop_phi
));
3021 remove_phi (loop_phi
);
3022 remove_phi (close_phi
);
3026 /* Rewrites out of SSA a commutative reduction at CLOSE_PHI. Returns
3027 true when something has been changed. */
3030 rewrite_commutative_reductions_out_of_ssa_close_phi (scop_p scop
,
3039 detect_commutative_reduction (scop
, close_phi
, &in
, &out
);
3040 res
= in
.length () > 1;
3042 translate_scalar_reduction_to_array (scop
, in
, out
);
3049 /* Rewrites all the commutative reductions from LOOP out of SSA.
3050 Returns true when something has been changed. */
3053 rewrite_commutative_reductions_out_of_ssa_loop (scop_p scop
,
3056 gimple_stmt_iterator gsi
;
3057 edge exit
= single_exit (loop
);
3059 bool changed
= false;
3064 for (gsi
= gsi_start_phis (exit
->dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
3065 if ((res
= gimple_phi_result (gsi_stmt (gsi
)))
3066 && !virtual_operand_p (res
)
3067 && !scev_analyzable_p (res
, SCOP_REGION (scop
)))
3068 changed
|= rewrite_commutative_reductions_out_of_ssa_close_phi
3069 (scop
, gsi_stmt (gsi
));
3074 /* Rewrites all the commutative reductions from SCOP out of SSA. */
3077 rewrite_commutative_reductions_out_of_ssa (scop_p scop
)
3081 bool changed
= false;
3082 sese region
= SCOP_REGION (scop
);
3084 FOR_EACH_LOOP (li
, loop
, 0)
3085 if (loop_in_sese_p (loop
, region
))
3086 changed
|= rewrite_commutative_reductions_out_of_ssa_loop (scop
, loop
);
3091 gsi_commit_edge_inserts ();
3092 update_ssa (TODO_update_ssa
);
3093 #ifdef ENABLE_CHECKING
3094 verify_loop_closed_ssa (true);
3099 /* Can all ivs be represented by a signed integer?
3100 As CLooG might generate negative values in its expressions, signed loop ivs
3101 are required in the backend. */
3104 scop_ivs_can_be_represented (scop_p scop
)
3108 gimple_stmt_iterator psi
;
3111 FOR_EACH_LOOP (li
, loop
, 0)
3113 if (!loop_in_sese_p (loop
, SCOP_REGION (scop
)))
3116 for (psi
= gsi_start_phis (loop
->header
);
3117 !gsi_end_p (psi
); gsi_next (&psi
))
3119 gimple phi
= gsi_stmt (psi
);
3120 tree res
= PHI_RESULT (phi
);
3121 tree type
= TREE_TYPE (res
);
3123 if (TYPE_UNSIGNED (type
)
3124 && TYPE_PRECISION (type
) >= TYPE_PRECISION (long_long_integer_type_node
))
3131 FOR_EACH_LOOP_BREAK (li
);
3137 /* Builds the polyhedral representation for a SESE region. */
3140 build_poly_scop (scop_p scop
)
3142 sese region
= SCOP_REGION (scop
);
3143 graphite_dim_t max_dim
;
3145 build_scop_bbs (scop
);
3147 /* FIXME: This restriction is needed to avoid a problem in CLooG.
3148 Once CLooG is fixed, remove this guard. Anyways, it makes no
3149 sense to optimize a scop containing only PBBs that do not belong
3151 if (nb_pbbs_in_loops (scop
) == 0)
3154 if (!scop_ivs_can_be_represented (scop
))
3157 if (flag_associative_math
)
3158 rewrite_commutative_reductions_out_of_ssa (scop
);
3160 build_sese_loop_nests (region
);
3161 /* Record all conditions in REGION. */
3162 sese_dom_walker (CDI_DOMINATORS
, region
).walk (cfun
->cfg
->x_entry_block_ptr
);
3163 find_scop_parameters (scop
);
3165 max_dim
= PARAM_VALUE (PARAM_GRAPHITE_MAX_NB_SCOP_PARAMS
);
3166 if (scop_nb_params (scop
) > max_dim
)
3169 build_scop_iteration_domain (scop
);
3170 build_scop_context (scop
);
3171 add_conditions_to_constraints (scop
);
3173 /* Rewrite out of SSA only after having translated the
3174 representation to the polyhedral representation to avoid scev
3175 analysis failures. That means that these functions will insert
3176 new data references that they create in the right place. */
3177 rewrite_reductions_out_of_ssa (scop
);
3178 rewrite_cross_bb_scalar_deps_out_of_ssa (scop
);
3180 build_scop_drs (scop
);
3182 build_scop_scattering (scop
);
3184 /* This SCoP has been translated to the polyhedral
3186 POLY_SCOP_P (scop
) = true;