* tree-ssa-structalias.h (alias_info): Remove num_references.
[official-gcc.git] / gcc / tree-into-ssa.c
blob29ad2fc6d603e06ed9bf9426acbb4f71c355c492
1 /* Rewrite a program in Normal form into SSA.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "langhooks.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
33 #include "output.h"
34 #include "expr.h"
35 #include "function.h"
36 #include "diagnostic.h"
37 #include "bitmap.h"
38 #include "tree-flow.h"
39 #include "tree-gimple.h"
40 #include "tree-inline.h"
41 #include "varray.h"
42 #include "timevar.h"
43 #include "hashtab.h"
44 #include "tree-dump.h"
45 #include "tree-pass.h"
46 #include "cfgloop.h"
47 #include "domwalk.h"
48 #include "ggc.h"
49 #include "params.h"
50 #include "vecprim.h"
52 /* This file builds the SSA form for a function as described in:
53 R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
54 Computing Static Single Assignment Form and the Control Dependence
55 Graph. ACM Transactions on Programming Languages and Systems,
56 13(4):451-490, October 1991. */
58 /* True if the code is in ssa form. */
59 bool in_ssa_p;
61 /* Structure to map a variable VAR to the set of blocks that contain
62 definitions for VAR. */
63 struct def_blocks_d
65 /* The variable. */
66 tree var;
68 /* Blocks that contain definitions of VAR. Bit I will be set if the
69 Ith block contains a definition of VAR. */
70 bitmap def_blocks;
72 /* Blocks that contain a PHI node for VAR. */
73 bitmap phi_blocks;
75 /* Blocks where VAR is live-on-entry. Similar semantics as
76 DEF_BLOCKS. */
77 bitmap livein_blocks;
81 /* Each entry in DEF_BLOCKS contains an element of type STRUCT
82 DEF_BLOCKS_D, mapping a variable VAR to a bitmap describing all the
83 basic blocks where VAR is defined (assigned a new value). It also
84 contains a bitmap of all the blocks where VAR is live-on-entry
85 (i.e., there is a use of VAR in block B without a preceding
86 definition in B). The live-on-entry information is used when
87 computing PHI pruning heuristics. */
88 static htab_t def_blocks;
90 /* Stack of trees used to restore the global currdefs to its original
91 state after completing rewriting of a block and its dominator
92 children. Its elements have the following properties:
94 - An SSA_NAME indicates that the current definition of the
95 underlying variable should be set to the given SSA_NAME.
97 - A _DECL node indicates that the underlying variable has no
98 current definition.
100 - A NULL node is used to mark the last node associated with the
101 current block.
103 - A NULL node at the top entry is used to mark the last node
104 associated with the current block. */
105 static VEC(tree,heap) *block_defs_stack;
107 /* Set of existing SSA names being replaced by update_ssa. */
108 static sbitmap old_ssa_names;
110 /* Set of new SSA names being added by update_ssa. Note that both
111 NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
112 the operations done on them are presence tests. */
113 static sbitmap new_ssa_names;
115 /* Symbols whose SSA form needs to be updated or created for the first
116 time. */
117 static bitmap syms_to_rename;
119 /* Set of SSA names that have been marked to be released after they
120 were registered in the replacement table. They will be finally
121 released after we finish updating the SSA web. */
122 static bitmap names_to_release;
124 /* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES. These sets need
125 to grow as the callers to register_new_name_mapping will typically
126 create new names on the fly. FIXME. Currently set to 1/3 to avoid
127 frequent reallocations but still need to find a reasonable growth
128 strategy. */
129 #define NAME_SETS_GROWTH_FACTOR (MAX (3, num_ssa_names / 3))
131 /* Tuple used to represent replacement mappings. */
132 struct repl_map_d
134 tree name;
135 bitmap set;
138 /* NEW -> OLD_SET replacement table. If we are replacing several
139 existing SSA names O_1, O_2, ..., O_j with a new name N_i,
140 then REPL_TBL[N_i] = { O_1, O_2, ..., O_j }. */
141 static htab_t repl_tbl;
143 /* true if register_new_name_mapping needs to initialize the data
144 structures needed by update_ssa. */
145 static bool need_to_initialize_update_ssa_p = true;
147 /* true if update_ssa needs to update virtual operands. */
148 static bool need_to_update_vops_p = false;
150 /* Statistics kept by update_ssa to use in the virtual mapping
151 heuristic. If the number of virtual mappings is beyond certain
152 threshold, the updater will switch from using the mappings into
153 renaming the virtual symbols from scratch. In some cases, the
154 large number of name mappings for virtual names causes significant
155 slowdowns in the PHI insertion code. */
156 struct update_ssa_stats_d
158 unsigned num_virtual_mappings;
159 unsigned num_total_mappings;
160 bitmap virtual_symbols;
161 unsigned num_virtual_symbols;
163 static struct update_ssa_stats_d update_ssa_stats;
165 /* Global data to attach to the main dominator walk structure. */
166 struct mark_def_sites_global_data
168 /* This bitmap contains the variables which are set before they
169 are used in a basic block. */
170 bitmap kills;
172 /* Bitmap of names to rename. */
173 sbitmap names_to_rename;
175 /* Set of blocks that mark_def_sites deems interesting for the
176 renamer to process. */
177 sbitmap interesting_blocks;
181 /* Information stored for SSA names. */
182 struct ssa_name_info
184 /* This field indicates whether or not the variable may need PHI nodes.
185 See the enum's definition for more detailed information about the
186 states. */
187 ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
189 /* The actual definition of the ssa name. */
190 tree current_def;
194 /* The main entry point to the SSA renamer (rewrite_blocks) may be
195 called several times to do different, but related, tasks.
196 Initially, we need it to rename the whole program into SSA form.
197 At other times, we may need it to only rename into SSA newly
198 exposed symbols. Finally, we can also call it to incrementally fix
199 an already built SSA web. */
200 enum rewrite_mode {
201 /* Convert the whole function into SSA form. */
202 REWRITE_ALL,
204 /* Incrementally update the SSA web by replacing existing SSA
205 names with new ones. See update_ssa for details. */
206 REWRITE_UPDATE
210 /* Use TREE_VISITED to keep track of which statements we want to
211 rename. When renaming a subset of the variables, not all
212 statements will be processed. This is decided in mark_def_sites. */
213 #define REWRITE_THIS_STMT(T) TREE_VISITED (T)
215 /* Use the unsigned flag to keep track of which statements we want to
216 visit when marking new definition sites. This is slightly
217 different than REWRITE_THIS_STMT: it's used by update_ssa to
218 distinguish statements that need to have both uses and defs
219 processed from those that only need to have their defs processed.
220 Statements that define new SSA names only need to have their defs
221 registered, but they don't need to have their uses renamed. */
222 #define REGISTER_DEFS_IN_THIS_STMT(T) (T)->common.unsigned_flag
225 /* Prototypes for debugging functions. */
226 extern void dump_tree_ssa (FILE *);
227 extern void debug_tree_ssa (void);
228 extern void debug_def_blocks (void);
229 extern void dump_tree_ssa_stats (FILE *);
230 extern void debug_tree_ssa_stats (void);
231 void dump_update_ssa (FILE *);
232 void debug_update_ssa (void);
233 void dump_names_replaced_by (FILE *, tree);
234 void debug_names_replaced_by (tree);
236 /* Get the information associated with NAME. */
238 static inline struct ssa_name_info *
239 get_ssa_name_ann (tree name)
241 if (!SSA_NAME_AUX (name))
242 SSA_NAME_AUX (name) = xcalloc (1, sizeof (struct ssa_name_info));
244 return (struct ssa_name_info *) SSA_NAME_AUX (name);
248 /* Gets phi_state field for VAR. */
250 static inline enum need_phi_state
251 get_phi_state (tree var)
253 if (TREE_CODE (var) == SSA_NAME)
254 return get_ssa_name_ann (var)->need_phi_state;
255 else
256 return var_ann (var)->need_phi_state;
260 /* Sets phi_state field for VAR to STATE. */
262 static inline void
263 set_phi_state (tree var, enum need_phi_state state)
265 if (TREE_CODE (var) == SSA_NAME)
266 get_ssa_name_ann (var)->need_phi_state = state;
267 else
268 var_ann (var)->need_phi_state = state;
272 /* Return the current definition for VAR. */
274 tree
275 get_current_def (tree var)
277 if (TREE_CODE (var) == SSA_NAME)
278 return get_ssa_name_ann (var)->current_def;
279 else
280 return var_ann (var)->current_def;
284 /* Sets current definition of VAR to DEF. */
286 void
287 set_current_def (tree var, tree def)
289 if (TREE_CODE (var) == SSA_NAME)
290 get_ssa_name_ann (var)->current_def = def;
291 else
292 var_ann (var)->current_def = def;
296 /* Compute global livein information given the set of blockx where
297 an object is locally live at the start of the block (LIVEIN)
298 and the set of blocks where the object is defined (DEF_BLOCKS).
300 Note: This routine augments the existing local livein information
301 to include global livein (i.e., it modifies the underlying bitmap
302 for LIVEIN). */
304 void
305 compute_global_livein (bitmap livein, bitmap def_blocks)
307 basic_block bb, *worklist, *tos;
308 unsigned i;
309 bitmap_iterator bi;
311 tos = worklist
312 = (basic_block *) xmalloc (sizeof (basic_block) * (last_basic_block + 1));
314 EXECUTE_IF_SET_IN_BITMAP (livein, 0, i, bi)
316 *tos++ = BASIC_BLOCK (i);
319 /* Iterate until the worklist is empty. */
320 while (tos != worklist)
322 edge e;
323 edge_iterator ei;
325 /* Pull a block off the worklist. */
326 bb = *--tos;
328 /* For each predecessor block. */
329 FOR_EACH_EDGE (e, ei, bb->preds)
331 basic_block pred = e->src;
332 int pred_index = pred->index;
334 /* None of this is necessary for the entry block. */
335 if (pred != ENTRY_BLOCK_PTR
336 && ! bitmap_bit_p (livein, pred_index)
337 && ! bitmap_bit_p (def_blocks, pred_index))
339 *tos++ = pred;
340 bitmap_set_bit (livein, pred_index);
345 free (worklist);
349 /* Return the set of blocks where variable VAR is defined and the blocks
350 where VAR is live on entry (livein). If no entry is found in
351 DEF_BLOCKS, a new one is created and returned. */
353 static inline struct def_blocks_d *
354 get_def_blocks_for (tree var)
356 struct def_blocks_d db, *db_p;
357 void **slot;
359 db.var = var;
360 slot = htab_find_slot (def_blocks, (void *) &db, INSERT);
361 if (*slot == NULL)
363 db_p = XNEW (struct def_blocks_d);
364 db_p->var = var;
365 db_p->def_blocks = BITMAP_ALLOC (NULL);
366 db_p->phi_blocks = BITMAP_ALLOC (NULL);
367 db_p->livein_blocks = BITMAP_ALLOC (NULL);
368 *slot = (void *) db_p;
370 else
371 db_p = (struct def_blocks_d *) *slot;
373 return db_p;
377 /* Mark block BB as the definition site for variable VAR. PHI_P is true if
378 VAR is defined by a PHI node. */
380 static void
381 set_def_block (tree var, basic_block bb, bool phi_p)
383 struct def_blocks_d *db_p;
384 enum need_phi_state state;
386 state = get_phi_state (var);
387 db_p = get_def_blocks_for (var);
389 /* Set the bit corresponding to the block where VAR is defined. */
390 bitmap_set_bit (db_p->def_blocks, bb->index);
391 if (phi_p)
392 bitmap_set_bit (db_p->phi_blocks, bb->index);
394 /* Keep track of whether or not we may need to insert PHI nodes.
396 If we are in the UNKNOWN state, then this is the first definition
397 of VAR. Additionally, we have not seen any uses of VAR yet, so
398 we do not need a PHI node for this variable at this time (i.e.,
399 transition to NEED_PHI_STATE_NO).
401 If we are in any other state, then we either have multiple definitions
402 of this variable occurring in different blocks or we saw a use of the
403 variable which was not dominated by the block containing the
404 definition(s). In this case we may need a PHI node, so enter
405 state NEED_PHI_STATE_MAYBE. */
406 if (state == NEED_PHI_STATE_UNKNOWN)
407 set_phi_state (var, NEED_PHI_STATE_NO);
408 else
409 set_phi_state (var, NEED_PHI_STATE_MAYBE);
413 /* Mark block BB as having VAR live at the entry to BB. */
415 static void
416 set_livein_block (tree var, basic_block bb)
418 struct def_blocks_d *db_p;
419 enum need_phi_state state = get_phi_state (var);
421 db_p = get_def_blocks_for (var);
423 /* Set the bit corresponding to the block where VAR is live in. */
424 bitmap_set_bit (db_p->livein_blocks, bb->index);
426 /* Keep track of whether or not we may need to insert PHI nodes.
428 If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
429 by the single block containing the definition(s) of this variable. If
430 it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
431 NEED_PHI_STATE_MAYBE. */
432 if (state == NEED_PHI_STATE_NO)
434 int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
436 if (def_block_index == -1
437 || ! dominated_by_p (CDI_DOMINATORS, bb,
438 BASIC_BLOCK (def_block_index)))
439 set_phi_state (var, NEED_PHI_STATE_MAYBE);
441 else
442 set_phi_state (var, NEED_PHI_STATE_MAYBE);
446 /* Return true if symbol SYM is marked for renaming. */
448 static inline bool
449 symbol_marked_for_renaming (tree sym)
451 gcc_assert (DECL_P (sym));
452 return bitmap_bit_p (syms_to_rename, DECL_UID (sym));
456 /* Return true if NAME is in OLD_SSA_NAMES. */
458 static inline bool
459 is_old_name (tree name)
461 unsigned ver = SSA_NAME_VERSION (name);
462 return ver < new_ssa_names->n_bits && TEST_BIT (old_ssa_names, ver);
466 /* Return true if NAME is in NEW_SSA_NAMES. */
468 static inline bool
469 is_new_name (tree name)
471 unsigned ver = SSA_NAME_VERSION (name);
472 return ver < new_ssa_names->n_bits && TEST_BIT (new_ssa_names, ver);
476 /* Hashing and equality functions for REPL_TBL. */
478 static hashval_t
479 repl_map_hash (const void *p)
481 return htab_hash_pointer ((const void *)((const struct repl_map_d *)p)->name);
484 static int
485 repl_map_eq (const void *p1, const void *p2)
487 return ((const struct repl_map_d *)p1)->name
488 == ((const struct repl_map_d *)p2)->name;
491 static void
492 repl_map_free (void *p)
494 BITMAP_FREE (((struct repl_map_d *)p)->set);
495 free (p);
499 /* Return the names replaced by NEW (i.e., REPL_TBL[NEW].SET). */
501 static inline bitmap
502 names_replaced_by (tree new)
504 struct repl_map_d m;
505 void **slot;
507 m.name = new;
508 slot = htab_find_slot (repl_tbl, (void *) &m, NO_INSERT);
510 /* If N was not registered in the replacement table, return NULL. */
511 if (slot == NULL || *slot == NULL)
512 return NULL;
514 return ((struct repl_map_d *) *slot)->set;
518 /* Add OLD to REPL_TBL[NEW].SET. */
520 static inline void
521 add_to_repl_tbl (tree new, tree old)
523 struct repl_map_d m, *mp;
524 void **slot;
526 m.name = new;
527 slot = htab_find_slot (repl_tbl, (void *) &m, INSERT);
528 if (*slot == NULL)
530 mp = XNEW (struct repl_map_d);
531 mp->name = new;
532 mp->set = BITMAP_ALLOC (NULL);
533 *slot = (void *) mp;
535 else
536 mp = (struct repl_map_d *) *slot;
538 bitmap_set_bit (mp->set, SSA_NAME_VERSION (old));
542 /* Add a new mapping NEW -> OLD REPL_TBL. Every entry N_i in REPL_TBL
543 represents the set of names O_1 ... O_j replaced by N_i. This is
544 used by update_ssa and its helpers to introduce new SSA names in an
545 already formed SSA web. */
547 static void
548 add_new_name_mapping (tree new, tree old)
550 timevar_push (TV_TREE_SSA_INCREMENTAL);
552 /* OLD and NEW must be different SSA names for the same symbol. */
553 gcc_assert (new != old && SSA_NAME_VAR (new) == SSA_NAME_VAR (old));
555 /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
556 caller may have created new names since the set was created. */
557 if (new_ssa_names->n_bits <= num_ssa_names - 1)
559 unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
560 new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
561 old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
564 /* If this mapping is for virtual names, we will need to update
565 virtual operands. */
566 if (!is_gimple_reg (new))
568 tree sym;
569 size_t uid;
571 need_to_update_vops_p = true;
573 /* Keep counts of virtual mappings and symbols to use in the
574 virtual mapping heuristic. If we have large numbers of
575 virtual mappings for a relatively low number of symbols, it
576 will make more sense to rename the symbols from scratch.
577 Otherwise, the insertion of PHI nodes for each of the old
578 names in these mappings will be very slow. */
579 sym = SSA_NAME_VAR (new);
580 uid = DECL_UID (sym);
581 update_ssa_stats.num_virtual_mappings++;
582 if (!bitmap_bit_p (update_ssa_stats.virtual_symbols, uid))
584 bitmap_set_bit (update_ssa_stats.virtual_symbols, uid);
585 update_ssa_stats.num_virtual_symbols++;
589 /* Update the REPL_TBL table. */
590 add_to_repl_tbl (new, old);
592 /* If OLD had already been registered as a new name, then all the
593 names that OLD replaces should also be replaced by NEW. */
594 if (is_new_name (old))
595 bitmap_ior_into (names_replaced_by (new), names_replaced_by (old));
597 /* Register NEW and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
598 respectively. */
599 SET_BIT (new_ssa_names, SSA_NAME_VERSION (new));
600 SET_BIT (old_ssa_names, SSA_NAME_VERSION (old));
602 /* Update mapping counter to use in the virtual mapping heuristic. */
603 update_ssa_stats.num_total_mappings++;
605 timevar_pop (TV_TREE_SSA_INCREMENTAL);
609 /* Call back for walk_dominator_tree used to collect definition sites
610 for every variable in the function. For every statement S in block
613 1- Variables defined by S in the DEFS of S are marked in the bitmap
614 WALK_DATA->GLOBAL_DATA->KILLS.
616 2- If S uses a variable VAR and there is no preceding kill of VAR,
617 then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR.
619 This information is used to determine which variables are live
620 across block boundaries to reduce the number of PHI nodes
621 we create. */
623 static void
624 mark_def_sites (struct dom_walk_data *walk_data,
625 basic_block bb,
626 block_stmt_iterator bsi)
628 struct mark_def_sites_global_data *gd =
629 (struct mark_def_sites_global_data *) walk_data->global_data;
630 bitmap kills = gd->kills;
631 tree stmt, def;
632 use_operand_p use_p;
633 def_operand_p def_p;
634 ssa_op_iter iter;
636 stmt = bsi_stmt (bsi);
637 update_stmt_if_modified (stmt);
639 REGISTER_DEFS_IN_THIS_STMT (stmt) = 0;
640 REWRITE_THIS_STMT (stmt) = 0;
642 /* If a variable is used before being set, then the variable is live
643 across a block boundary, so mark it live-on-entry to BB. */
644 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
645 SSA_OP_USE | SSA_OP_VUSE | SSA_OP_VMUSTKILL)
647 tree sym = USE_FROM_PTR (use_p);
648 gcc_assert (DECL_P (sym));
649 if (!bitmap_bit_p (kills, DECL_UID (sym)))
650 set_livein_block (sym, bb);
651 REWRITE_THIS_STMT (stmt) = 1;
654 /* Note that virtual definitions are irrelevant for computing KILLS
655 because a V_MAY_DEF does not constitute a killing definition of the
656 variable. However, the operand of a virtual definitions is a use
657 of the variable, so it may cause the variable to be considered
658 live-on-entry. */
659 FOR_EACH_SSA_MAYDEF_OPERAND (def_p, use_p, stmt, iter)
661 tree sym = USE_FROM_PTR (use_p);
662 gcc_assert (DECL_P (sym));
663 set_livein_block (sym, bb);
664 set_def_block (sym, bb, false);
665 REGISTER_DEFS_IN_THIS_STMT (stmt) = 1;
666 REWRITE_THIS_STMT (stmt) = 1;
669 /* Now process the defs and must-defs made by this statement. */
670 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF | SSA_OP_VMUSTDEF)
672 gcc_assert (DECL_P (def));
673 set_def_block (def, bb, false);
674 bitmap_set_bit (kills, DECL_UID (def));
675 REGISTER_DEFS_IN_THIS_STMT (stmt) = 1;
678 /* If we found the statement interesting then also mark the block BB
679 as interesting. */
680 if (REWRITE_THIS_STMT (stmt) || REGISTER_DEFS_IN_THIS_STMT (stmt))
681 SET_BIT (gd->interesting_blocks, bb->index);
685 /* Given a set of blocks with variable definitions (DEF_BLOCKS),
686 return a bitmap with all the blocks in the iterated dominance
687 frontier of the blocks in DEF_BLOCKS. DFS contains dominance
688 frontier information as returned by compute_dominance_frontiers.
690 The resulting set of blocks are the potential sites where PHI nodes
691 are needed. The caller is responsible from freeing the memory
692 allocated for the return value. */
694 static bitmap
695 find_idf (bitmap def_blocks, bitmap *dfs)
697 bitmap_iterator bi;
698 unsigned bb_index;
699 VEC(int,heap) *work_stack;
700 bitmap phi_insertion_points;
702 work_stack = VEC_alloc (int, heap, n_basic_blocks);
703 phi_insertion_points = BITMAP_ALLOC (NULL);
705 /* Seed the work list with all the blocks in DEF_BLOCKS. */
706 EXECUTE_IF_SET_IN_BITMAP (def_blocks, 0, bb_index, bi)
707 /* We use VEC_quick_push here for speed. This is safe because we
708 know that the number of definition blocks is no greater than
709 the number of basic blocks, which is the initial capacity of
710 WORK_STACK. */
711 VEC_quick_push (int, work_stack, bb_index);
713 /* Pop a block off the worklist, add every block that appears in
714 the original block's DF that we have not already processed to
715 the worklist. Iterate until the worklist is empty. Blocks
716 which are added to the worklist are potential sites for
717 PHI nodes. */
718 while (VEC_length (int, work_stack) > 0)
720 bb_index = VEC_pop (int, work_stack);
722 /* Since the registration of NEW -> OLD name mappings is done
723 separately from the call to update_ssa, when updating the SSA
724 form, the basic blocks where new and/or old names are defined
725 may have disappeared by CFG cleanup calls. In this case,
726 we may pull a non-existing block from the work stack. */
727 gcc_assert (bb_index < (unsigned) last_basic_block);
729 EXECUTE_IF_AND_COMPL_IN_BITMAP (dfs[bb_index], phi_insertion_points,
730 0, bb_index, bi)
732 /* Use a safe push because if there is a definition of VAR
733 in every basic block, then WORK_STACK may eventually have
734 more than N_BASIC_BLOCK entries. */
735 VEC_safe_push (int, heap, work_stack, bb_index);
736 bitmap_set_bit (phi_insertion_points, bb_index);
740 VEC_free (int, heap, work_stack);
742 return phi_insertion_points;
746 /* Return the set of blocks where variable VAR is defined and the blocks
747 where VAR is live on entry (livein). Return NULL, if no entry is
748 found in DEF_BLOCKS. */
750 static inline struct def_blocks_d *
751 find_def_blocks_for (tree var)
753 struct def_blocks_d dm;
754 dm.var = var;
755 return (struct def_blocks_d *) htab_find (def_blocks, &dm);
759 /* Retrieve or create a default definition for symbol SYM. */
761 static inline tree
762 get_default_def_for (tree sym)
764 tree ddef = default_def (sym);
766 if (ddef == NULL_TREE)
768 ddef = make_ssa_name (sym, build_empty_stmt ());
769 set_default_def (sym, ddef);
772 return ddef;
776 /* Insert PHI nodes for variable VAR using the iterated dominance
777 frontier given in PHI_INSERTION_POINTS. If UPDATE_P is true, this
778 function assumes that the caller is incrementally updating the SSA
779 form, in which case (1) VAR is assumed to be an SSA name, (2) a new
780 SSA name is created for VAR's symbol, and, (3) all the arguments
781 for the newly created PHI node are set to VAR.
783 PHI_INSERTION_POINTS is updated to reflect nodes that already had a
784 PHI node for VAR. On exit, only the nodes that received a PHI node
785 for VAR will be present in PHI_INSERTION_POINTS. */
787 static void
788 insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
790 unsigned bb_index;
791 edge e;
792 tree phi;
793 basic_block bb;
794 bitmap_iterator bi;
795 struct def_blocks_d *def_map;
797 def_map = find_def_blocks_for (var);
798 gcc_assert (def_map);
800 /* Remove the blocks where we already have PHI nodes for VAR. */
801 bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
803 /* Now compute global livein for this variable. Note this modifies
804 def_map->livein_blocks. */
805 compute_global_livein (def_map->livein_blocks, def_map->def_blocks);
807 /* And insert the PHI nodes. */
808 EXECUTE_IF_AND_IN_BITMAP (phi_insertion_points, def_map->livein_blocks,
809 0, bb_index, bi)
811 bb = BASIC_BLOCK (bb_index);
813 if (update_p && TREE_CODE (var) == SSA_NAME)
815 /* If we are rewriting SSA names, create the LHS of the PHI
816 node by duplicating VAR. This is useful in the case of
817 pointers, to also duplicate pointer attributes (alias
818 information, in particular). */
819 edge_iterator ei;
820 tree new_lhs;
822 phi = create_phi_node (var, bb);
823 new_lhs = duplicate_ssa_name (var, phi);
824 SET_PHI_RESULT (phi, new_lhs);
825 add_new_name_mapping (new_lhs, var);
827 /* Add VAR to every argument slot of PHI. We need VAR in
828 every argument so that rewrite_update_phi_arguments knows
829 which name is this PHI node replacing. If VAR is a
830 symbol marked for renaming, this is not necessary, the
831 renamer will use the symbol on the LHS to get its
832 reaching definition. */
833 FOR_EACH_EDGE (e, ei, bb->preds)
834 add_phi_arg (phi, var, e);
836 else
838 tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
839 phi = create_phi_node (sym, bb);
842 /* Mark this PHI node as interesting for update_ssa. */
843 REGISTER_DEFS_IN_THIS_STMT (phi) = 1;
844 REWRITE_THIS_STMT (phi) = 1;
849 /* Insert PHI nodes at the dominance frontier of blocks with variable
850 definitions. DFS contains the dominance frontier information for
851 the flowgraph. PHI nodes will only be inserted at the dominance
852 frontier of definition blocks for variables whose NEED_PHI_STATE
853 annotation is marked as ``maybe'' or ``unknown'' (computed by
854 mark_def_sites). */
856 static void
857 insert_phi_nodes (bitmap *dfs)
859 referenced_var_iterator rvi;
860 tree var;
862 timevar_push (TV_TREE_INSERT_PHI_NODES);
864 FOR_EACH_REFERENCED_VAR (var, rvi)
866 struct def_blocks_d *def_map;
867 bitmap idf;
869 def_map = find_def_blocks_for (var);
870 if (def_map == NULL)
871 continue;
873 if (get_phi_state (var) != NEED_PHI_STATE_NO)
875 idf = find_idf (def_map->def_blocks, dfs);
876 insert_phi_nodes_for (var, idf, false);
877 BITMAP_FREE (idf);
881 timevar_pop (TV_TREE_INSERT_PHI_NODES);
885 /* Register DEF (an SSA_NAME) to be a new definition for its underlying
886 variable (SSA_NAME_VAR (DEF)) and push VAR's current reaching definition
887 into the stack pointed to by BLOCK_DEFS_P. */
889 void
890 register_new_def (tree def, VEC(tree,heap) **block_defs_p)
892 tree var = SSA_NAME_VAR (def);
893 tree currdef;
895 /* If this variable is set in a single basic block and all uses are
896 dominated by the set(s) in that single basic block, then there is
897 no reason to record anything for this variable in the block local
898 definition stacks. Doing so just wastes time and memory.
900 This is the same test to prune the set of variables which may
901 need PHI nodes. So we just use that information since it's already
902 computed and available for us to use. */
903 if (get_phi_state (var) == NEED_PHI_STATE_NO)
905 set_current_def (var, def);
906 return;
909 currdef = get_current_def (var);
911 /* Push the current reaching definition into *BLOCK_DEFS_P. This stack is
912 later used by the dominator tree callbacks to restore the reaching
913 definitions for all the variables defined in the block after a recursive
914 visit to all its immediately dominated blocks. If there is no current
915 reaching definition, then just record the underlying _DECL node. */
916 VEC_safe_push (tree, heap, *block_defs_p, currdef ? currdef : var);
918 /* Set the current reaching definition for VAR to be DEF. */
919 set_current_def (var, def);
923 /* Perform a depth-first traversal of the dominator tree looking for
924 variables to rename. BB is the block where to start searching.
925 Renaming is a five step process:
927 1- Every definition made by PHI nodes at the start of the blocks is
928 registered as the current definition for the corresponding variable.
930 2- Every statement in BB is rewritten. USE and VUSE operands are
931 rewritten with their corresponding reaching definition. DEF and
932 VDEF targets are registered as new definitions.
934 3- All the PHI nodes in successor blocks of BB are visited. The
935 argument corresponding to BB is replaced with its current reaching
936 definition.
938 4- Recursively rewrite every dominator child block of BB.
940 5- Restore (in reverse order) the current reaching definition for every
941 new definition introduced in this block. This is done so that when
942 we return from the recursive call, all the current reaching
943 definitions are restored to the names that were valid in the
944 dominator parent of BB. */
946 /* SSA Rewriting Step 1. Initialization, create a block local stack
947 of reaching definitions for new SSA names produced in this block
948 (BLOCK_DEFS). Register new definitions for every PHI node in the
949 block. */
951 static void
952 rewrite_initialize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
953 basic_block bb)
955 tree phi;
957 if (dump_file && (dump_flags & TDF_DETAILS))
958 fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
960 /* Mark the unwind point for this block. */
961 VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
963 /* Step 1. Register new definitions for every PHI node in the block.
964 Conceptually, all the PHI nodes are executed in parallel and each PHI
965 node introduces a new version for the associated variable. */
966 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
968 tree result = PHI_RESULT (phi);
969 register_new_def (result, &block_defs_stack);
974 /* Return the current definition for variable VAR. If none is found,
975 create a new SSA name to act as the zeroth definition for VAR. If VAR
976 is call clobbered and there exists a more recent definition of
977 GLOBAL_VAR, return the definition for GLOBAL_VAR. This means that VAR
978 has been clobbered by a function call since its last assignment. */
980 static tree
981 get_reaching_def (tree var)
983 tree currdef_var, avar;
985 /* Lookup the current reaching definition for VAR. */
986 currdef_var = get_current_def (var);
988 /* If there is no reaching definition for VAR, create and register a
989 default definition for it (if needed). */
990 if (currdef_var == NULL_TREE)
992 avar = DECL_P (var) ? var : SSA_NAME_VAR (var);
993 currdef_var = get_default_def_for (avar);
994 set_current_def (var, currdef_var);
997 /* Return the current reaching definition for VAR, or the default
998 definition, if we had to create one. */
999 return currdef_var;
1003 /* SSA Rewriting Step 2. Rewrite every variable used in each statement in
1004 the block with its immediate reaching definitions. Update the current
1005 definition of a variable when a new real or virtual definition is found. */
1007 static void
1008 rewrite_stmt (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1009 basic_block bb ATTRIBUTE_UNUSED,
1010 block_stmt_iterator si)
1012 tree stmt;
1013 use_operand_p use_p;
1014 def_operand_p def_p;
1015 ssa_op_iter iter;
1017 stmt = bsi_stmt (si);
1019 /* If mark_def_sites decided that we don't need to rewrite this
1020 statement, ignore it. */
1021 if (!REWRITE_THIS_STMT (stmt) && !REGISTER_DEFS_IN_THIS_STMT (stmt))
1022 return;
1024 if (dump_file && (dump_flags & TDF_DETAILS))
1026 fprintf (dump_file, "Renaming statement ");
1027 print_generic_stmt (dump_file, stmt, TDF_SLIM);
1028 fprintf (dump_file, "\n");
1031 /* Step 1. Rewrite USES and VUSES in the statement. */
1032 if (REWRITE_THIS_STMT (stmt))
1033 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
1034 SSA_OP_ALL_USES|SSA_OP_ALL_KILLS)
1036 tree var = USE_FROM_PTR (use_p);
1037 gcc_assert (DECL_P (var));
1038 SET_USE (use_p, get_reaching_def (var));
1041 /* Step 2. Register the statement's DEF and VDEF operands. */
1042 if (REGISTER_DEFS_IN_THIS_STMT (stmt))
1043 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1045 tree var = DEF_FROM_PTR (def_p);
1046 gcc_assert (DECL_P (var));
1047 SET_DEF (def_p, make_ssa_name (var, stmt));
1048 register_new_def (DEF_FROM_PTR (def_p), &block_defs_stack);
1053 /* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for
1054 PHI nodes. For every PHI node found, add a new argument containing the
1055 current reaching definition for the variable and the edge through which
1056 that definition is reaching the PHI node. */
1058 static void
1059 rewrite_add_phi_arguments (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1060 basic_block bb)
1062 edge e;
1063 edge_iterator ei;
1065 FOR_EACH_EDGE (e, ei, bb->succs)
1067 tree phi;
1069 for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
1071 tree currdef;
1072 currdef = get_reaching_def (SSA_NAME_VAR (PHI_RESULT (phi)));
1073 add_phi_arg (phi, currdef, e);
1079 /* Called after visiting basic block BB. Restore CURRDEFS to its
1080 original value. */
1082 static void
1083 rewrite_finalize_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1084 basic_block bb ATTRIBUTE_UNUSED)
1086 /* Restore CURRDEFS to its original state. */
1087 while (VEC_length (tree, block_defs_stack) > 0)
1089 tree tmp = VEC_pop (tree, block_defs_stack);
1090 tree saved_def, var;
1092 if (tmp == NULL_TREE)
1093 break;
1095 /* If we recorded an SSA_NAME, then make the SSA_NAME the current
1096 definition of its underlying variable. If we recorded anything
1097 else, it must have been an _DECL node and its current reaching
1098 definition must have been NULL. */
1099 if (TREE_CODE (tmp) == SSA_NAME)
1101 saved_def = tmp;
1102 var = SSA_NAME_VAR (saved_def);
1104 else
1106 saved_def = NULL;
1107 var = tmp;
1110 set_current_def (var, saved_def);
1115 /* Dump SSA information to FILE. */
1117 void
1118 dump_tree_ssa (FILE *file)
1120 basic_block bb;
1121 const char *funcname
1122 = lang_hooks.decl_printable_name (current_function_decl, 2);
1124 fprintf (file, "SSA information for %s\n\n", funcname);
1126 FOR_EACH_BB (bb)
1128 dump_bb (bb, file, 0);
1129 fputs (" ", file);
1130 print_generic_stmt (file, phi_nodes (bb), dump_flags);
1131 fputs ("\n\n", file);
1136 /* Dump SSA information to stderr. */
1138 void
1139 debug_tree_ssa (void)
1141 dump_tree_ssa (stderr);
1145 /* Dump statistics for the hash table HTAB. */
1147 static void
1148 htab_statistics (FILE *file, htab_t htab)
1150 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1151 (long) htab_size (htab),
1152 (long) htab_elements (htab),
1153 htab_collisions (htab));
1157 /* Dump SSA statistics on FILE. */
1159 void
1160 dump_tree_ssa_stats (FILE *file)
1162 fprintf (file, "\nHash table statistics:\n");
1164 fprintf (file, " def_blocks: ");
1165 htab_statistics (file, def_blocks);
1167 fprintf (file, "\n");
1171 /* Dump SSA statistics on stderr. */
1173 void
1174 debug_tree_ssa_stats (void)
1176 dump_tree_ssa_stats (stderr);
1180 /* Hashing and equality functions for DEF_BLOCKS. */
1182 static hashval_t
1183 def_blocks_hash (const void *p)
1185 return htab_hash_pointer
1186 ((const void *)((const struct def_blocks_d *)p)->var);
1189 static int
1190 def_blocks_eq (const void *p1, const void *p2)
1192 return ((const struct def_blocks_d *)p1)->var
1193 == ((const struct def_blocks_d *)p2)->var;
1197 /* Free memory allocated by one entry in DEF_BLOCKS. */
1199 static void
1200 def_blocks_free (void *p)
1202 struct def_blocks_d *entry = (struct def_blocks_d *) p;
1203 BITMAP_FREE (entry->def_blocks);
1204 BITMAP_FREE (entry->phi_blocks);
1205 BITMAP_FREE (entry->livein_blocks);
1206 free (entry);
1210 /* Callback for htab_traverse to dump the DEF_BLOCKS hash table. */
1212 static int
1213 debug_def_blocks_r (void **slot, void *data ATTRIBUTE_UNUSED)
1215 struct def_blocks_d *db_p = (struct def_blocks_d *) *slot;
1217 fprintf (stderr, "VAR: ");
1218 print_generic_expr (stderr, db_p->var, dump_flags);
1219 bitmap_print (stderr, db_p->def_blocks, ", DEF_BLOCKS: { ", "}");
1220 bitmap_print (stderr, db_p->livein_blocks, ", LIVEIN_BLOCKS: { ", "}\n");
1222 return 1;
1226 /* Dump the DEF_BLOCKS hash table on stderr. */
1228 void
1229 debug_def_blocks (void)
1231 htab_traverse (def_blocks, debug_def_blocks_r, NULL);
1235 /* Register NEW_NAME to be the new reaching definition for OLD_NAME. */
1237 static inline void
1238 register_new_update_single (tree new_name, tree old_name)
1240 tree currdef = get_current_def (old_name);
1242 /* Push the current reaching definition into *BLOCK_DEFS_P.
1243 This stack is later used by the dominator tree callbacks to
1244 restore the reaching definitions for all the variables
1245 defined in the block after a recursive visit to all its
1246 immediately dominated blocks. */
1247 VEC_reserve (tree, heap, block_defs_stack, 2);
1248 VEC_quick_push (tree, block_defs_stack, currdef);
1249 VEC_quick_push (tree, block_defs_stack, old_name);
1251 /* Set the current reaching definition for OLD_NAME to be
1252 NEW_NAME. */
1253 set_current_def (old_name, new_name);
1257 /* Register NEW_NAME to be the new reaching definition for all the
1258 names in OLD_NAMES. Used by the incremental SSA update routines to
1259 replace old SSA names with new ones. */
1261 static inline void
1262 register_new_update_set (tree new_name, bitmap old_names)
1264 bitmap_iterator bi;
1265 unsigned i;
1267 EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
1268 register_new_update_single (new_name, ssa_name (i));
1272 /* Initialization of block data structures for the incremental SSA
1273 update pass. Create a block local stack of reaching definitions
1274 for new SSA names produced in this block (BLOCK_DEFS). Register
1275 new definitions for every PHI node in the block. */
1277 static void
1278 rewrite_update_init_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1279 basic_block bb)
1281 edge e;
1282 edge_iterator ei;
1283 tree phi;
1284 bool is_abnormal_phi;
1286 if (dump_file && (dump_flags & TDF_DETAILS))
1287 fprintf (dump_file, "\n\nRegistering new PHI nodes in block #%d\n\n",
1288 bb->index);
1290 /* Mark the unwind point for this block. */
1291 VEC_safe_push (tree, heap, block_defs_stack, NULL_TREE);
1293 /* Mark the LHS if any of the arguments flows through an abnormal
1294 edge. */
1295 is_abnormal_phi = false;
1296 FOR_EACH_EDGE (e, ei, bb->preds)
1297 if (e->flags & EDGE_ABNORMAL)
1299 is_abnormal_phi = true;
1300 break;
1303 /* If any of the PHI nodes is a replacement for a name in
1304 OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
1305 register it as a new definition for its corresponding name. Also
1306 register definitions for names whose underlying symbols are
1307 marked for renaming. */
1308 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1310 tree lhs, lhs_sym;
1312 if (!REGISTER_DEFS_IN_THIS_STMT (phi))
1313 continue;
1315 lhs = PHI_RESULT (phi);
1316 lhs_sym = SSA_NAME_VAR (lhs);
1318 if (symbol_marked_for_renaming (lhs_sym))
1319 register_new_update_single (lhs, lhs_sym);
1320 else
1322 /* If LHS is a new name, register a new definition for all
1323 the names replaced by LHS. */
1324 if (is_new_name (lhs))
1325 register_new_update_set (lhs, names_replaced_by (lhs));
1327 /* If LHS is an OLD name, register it as a new definition
1328 for itself. */
1329 if (is_old_name (lhs))
1330 register_new_update_single (lhs, lhs);
1333 if (is_abnormal_phi)
1334 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
1339 /* Called after visiting block BB. Unwind BLOCK_DEFS_STACK to restore
1340 the current reaching definition of every name re-written in BB to
1341 the original reaching definition before visiting BB. This
1342 unwinding must be done in the opposite order to what is done in
1343 register_new_update_set. */
1345 static void
1346 rewrite_update_fini_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1347 basic_block bb ATTRIBUTE_UNUSED)
1349 while (VEC_length (tree, block_defs_stack) > 0)
1351 tree var = VEC_pop (tree, block_defs_stack);
1352 tree saved_def;
1354 /* NULL indicates the unwind stop point for this block (see
1355 rewrite_update_init_block). */
1356 if (var == NULL)
1357 return;
1359 saved_def = VEC_pop (tree, block_defs_stack);
1360 set_current_def (var, saved_def);
1365 /* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
1366 it is a symbol marked for renaming, replace it with USE_P's current
1367 reaching definition. */
1369 static inline void
1370 maybe_replace_use (use_operand_p use_p)
1372 tree rdef = NULL_TREE;
1373 tree use = USE_FROM_PTR (use_p);
1374 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1376 if (symbol_marked_for_renaming (sym))
1377 rdef = get_reaching_def (sym);
1378 else if (is_old_name (use))
1379 rdef = get_reaching_def (use);
1381 if (rdef && rdef != use)
1382 SET_USE (use_p, rdef);
1386 /* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
1387 or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
1388 register it as the current definition for the names replaced by
1389 DEF_P. */
1391 static inline void
1392 maybe_register_def (def_operand_p def_p, tree stmt)
1394 tree def = DEF_FROM_PTR (def_p);
1395 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1397 /* If DEF is a naked symbol that needs renaming, create a
1398 new name for it. */
1399 if (symbol_marked_for_renaming (sym))
1401 if (DECL_P (def))
1403 def = make_ssa_name (def, stmt);
1404 SET_DEF (def_p, def);
1407 register_new_update_single (def, sym);
1409 else
1411 /* If DEF is a new name, register it as a new definition
1412 for all the names replaced by DEF. */
1413 if (is_new_name (def))
1414 register_new_update_set (def, names_replaced_by (def));
1416 /* If DEF is an old name, register DEF as a new
1417 definition for itself. */
1418 if (is_old_name (def))
1419 register_new_update_single (def, def);
1424 /* Update every variable used in the statement pointed-to by SI. The
1425 statement is assumed to be in SSA form already. Names in
1426 OLD_SSA_NAMES used by SI will be updated to their current reaching
1427 definition. Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
1428 will be registered as a new definition for their corresponding name
1429 in OLD_SSA_NAMES. */
1431 static void
1432 rewrite_update_stmt (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1433 basic_block bb ATTRIBUTE_UNUSED,
1434 block_stmt_iterator si)
1436 stmt_ann_t ann;
1437 tree stmt;
1438 use_operand_p use_p;
1439 def_operand_p def_p;
1440 ssa_op_iter iter;
1442 stmt = bsi_stmt (si);
1443 ann = stmt_ann (stmt);
1445 /* Only update marked statements. */
1446 if (!REWRITE_THIS_STMT (stmt) && !REGISTER_DEFS_IN_THIS_STMT (stmt))
1447 return;
1449 if (dump_file && (dump_flags & TDF_DETAILS))
1451 fprintf (dump_file, "Updating SSA information for statement ");
1452 print_generic_stmt (dump_file, stmt, TDF_SLIM);
1453 fprintf (dump_file, "\n");
1456 /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
1457 symbol is marked for renaming. */
1458 if (REWRITE_THIS_STMT (stmt))
1460 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1461 maybe_replace_use (use_p);
1463 if (need_to_update_vops_p)
1464 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter,
1465 SSA_OP_VIRTUAL_USES | SSA_OP_VIRTUAL_KILLS)
1466 maybe_replace_use (use_p);
1469 /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
1470 Also register definitions for names whose underlying symbol is
1471 marked for renaming. */
1472 if (REGISTER_DEFS_IN_THIS_STMT (stmt))
1474 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_DEF)
1475 maybe_register_def (def_p, stmt);
1477 if (need_to_update_vops_p)
1478 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_VIRTUAL_DEFS)
1479 maybe_register_def (def_p, stmt);
1484 /* Replace the operand pointed to by USE_P with USE's current reaching
1485 definition. */
1487 static inline void
1488 replace_use (use_operand_p use_p, tree use)
1490 tree rdef = get_reaching_def (use);
1491 if (rdef != use)
1492 SET_USE (use_p, rdef);
1496 /* Visit all the successor blocks of BB looking for PHI nodes. For
1497 every PHI node found, check if any of its arguments is in
1498 OLD_SSA_NAMES. If so, and if the argument has a current reaching
1499 definition, replace it. */
1501 static void
1502 rewrite_update_phi_arguments (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
1503 basic_block bb)
1505 edge e;
1506 edge_iterator ei;
1508 FOR_EACH_EDGE (e, ei, bb->succs)
1510 tree phi;
1512 for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
1514 tree arg;
1515 use_operand_p arg_p;
1517 /* Skip PHI nodes that are not marked for rewrite. */
1518 if (!REWRITE_THIS_STMT (phi))
1519 continue;
1521 arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
1522 arg = USE_FROM_PTR (arg_p);
1524 if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
1525 continue;
1527 if (arg == NULL_TREE)
1529 /* When updating a PHI node for a recently introduced
1530 symbol we may find NULL arguments. That's why we
1531 take the symbol from the LHS of the PHI node. */
1532 replace_use (arg_p, SSA_NAME_VAR (PHI_RESULT (phi)));
1534 else
1536 tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
1538 if (symbol_marked_for_renaming (sym))
1539 replace_use (arg_p, sym);
1540 else if (is_old_name (arg))
1541 replace_use (arg_p, arg);
1544 if (e->flags & EDGE_ABNORMAL)
1545 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
1551 /* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
1552 form.
1554 ENTRY indicates the block where to start. Every block dominated by
1555 ENTRY will be rewritten.
1557 WHAT indicates what actions will be taken by the renamer (see enum
1558 rewrite_mode).
1560 BLOCKS are the set of interesting blocks for the dominator walker
1561 to process. If this set is NULL, then all the nodes dominated
1562 by ENTRY are walked. Otherwise, blocks dominated by ENTRY that
1563 are not present in BLOCKS are ignored. */
1565 static void
1566 rewrite_blocks (basic_block entry, enum rewrite_mode what, sbitmap blocks)
1568 struct dom_walk_data walk_data;
1570 /* Rewrite all the basic blocks in the program. */
1571 timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
1573 /* Setup callbacks for the generic dominator tree walker. */
1574 memset (&walk_data, 0, sizeof (walk_data));
1576 walk_data.dom_direction = CDI_DOMINATORS;
1577 walk_data.interesting_blocks = blocks;
1579 if (what == REWRITE_UPDATE)
1580 walk_data.before_dom_children_before_stmts = rewrite_update_init_block;
1581 else
1582 walk_data.before_dom_children_before_stmts = rewrite_initialize_block;
1584 if (what == REWRITE_ALL)
1585 walk_data.before_dom_children_walk_stmts = rewrite_stmt;
1586 else if (what == REWRITE_UPDATE)
1587 walk_data.before_dom_children_walk_stmts = rewrite_update_stmt;
1588 else
1589 gcc_unreachable ();
1591 if (what == REWRITE_ALL)
1592 walk_data.before_dom_children_after_stmts = rewrite_add_phi_arguments;
1593 else if (what == REWRITE_UPDATE)
1594 walk_data.before_dom_children_after_stmts = rewrite_update_phi_arguments;
1595 else
1596 gcc_unreachable ();
1598 if (what == REWRITE_ALL)
1599 walk_data.after_dom_children_after_stmts = rewrite_finalize_block;
1600 else if (what == REWRITE_UPDATE)
1601 walk_data.after_dom_children_after_stmts = rewrite_update_fini_block;
1602 else
1603 gcc_unreachable ();
1605 block_defs_stack = VEC_alloc (tree, heap, 10);
1607 /* Initialize the dominator walker. */
1608 init_walk_dominator_tree (&walk_data);
1610 /* Recursively walk the dominator tree rewriting each statement in
1611 each basic block. */
1612 walk_dominator_tree (&walk_data, entry);
1614 /* Finalize the dominator walker. */
1615 fini_walk_dominator_tree (&walk_data);
1617 /* Debugging dumps. */
1618 if (dump_file && (dump_flags & TDF_STATS))
1620 dump_dfa_stats (dump_file);
1621 if (def_blocks)
1622 dump_tree_ssa_stats (dump_file);
1625 if (def_blocks)
1627 htab_delete (def_blocks);
1628 def_blocks = NULL;
1631 VEC_free (tree, heap, block_defs_stack);
1633 timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
1637 /* Block initialization routine for mark_def_sites. Clear the
1638 KILLS bitmap at the start of each block. */
1640 static void
1641 mark_def_sites_initialize_block (struct dom_walk_data *walk_data,
1642 basic_block bb ATTRIBUTE_UNUSED)
1644 struct mark_def_sites_global_data *gd =
1645 (struct mark_def_sites_global_data *) walk_data->global_data;
1646 bitmap kills = gd->kills;
1647 bitmap_clear (kills);
1651 /* Mark the definition site blocks for each variable, so that we know
1652 where the variable is actually live.
1654 INTERESTING_BLOCKS will be filled in with all the blocks that
1655 should be processed by the renamer. It is assumed to be
1656 initialized and zeroed by the caller. */
1658 static void
1659 mark_def_site_blocks (sbitmap interesting_blocks)
1661 struct dom_walk_data walk_data;
1662 struct mark_def_sites_global_data mark_def_sites_global_data;
1663 referenced_var_iterator rvi;
1664 tree var;
1666 /* Allocate memory for the DEF_BLOCKS hash table. */
1667 def_blocks = htab_create (num_referenced_vars,
1668 def_blocks_hash, def_blocks_eq, def_blocks_free);
1669 FOR_EACH_REFERENCED_VAR(var, rvi)
1670 set_current_def (var, NULL_TREE);
1672 /* Setup callbacks for the generic dominator tree walker to find and
1673 mark definition sites. */
1674 walk_data.walk_stmts_backward = false;
1675 walk_data.dom_direction = CDI_DOMINATORS;
1676 walk_data.initialize_block_local_data = NULL;
1677 walk_data.before_dom_children_before_stmts = mark_def_sites_initialize_block;
1678 walk_data.before_dom_children_walk_stmts = mark_def_sites;
1679 walk_data.before_dom_children_after_stmts = NULL;
1680 walk_data.after_dom_children_before_stmts = NULL;
1681 walk_data.after_dom_children_walk_stmts = NULL;
1682 walk_data.after_dom_children_after_stmts = NULL;
1683 walk_data.interesting_blocks = NULL;
1685 /* Notice that this bitmap is indexed using variable UIDs, so it must be
1686 large enough to accommodate all the variables referenced in the
1687 function, not just the ones we are renaming. */
1688 mark_def_sites_global_data.kills = BITMAP_ALLOC (NULL);
1690 /* Create the set of interesting blocks that will be filled by
1691 mark_def_sites. */
1692 mark_def_sites_global_data.interesting_blocks = interesting_blocks;
1693 walk_data.global_data = &mark_def_sites_global_data;
1695 /* We do not have any local data. */
1696 walk_data.block_local_data_size = 0;
1698 /* Initialize the dominator walker. */
1699 init_walk_dominator_tree (&walk_data);
1701 /* Recursively walk the dominator tree. */
1702 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1704 /* Finalize the dominator walker. */
1705 fini_walk_dominator_tree (&walk_data);
1707 /* We no longer need this bitmap, clear and free it. */
1708 BITMAP_FREE (mark_def_sites_global_data.kills);
1712 /* Main entry point into the SSA builder. The renaming process
1713 proceeds in four main phases:
1715 1- Compute dominance frontier and immediate dominators, needed to
1716 insert PHI nodes and rename the function in dominator tree
1717 order.
1719 2- Find and mark all the blocks that define variables
1720 (mark_def_site_blocks).
1722 3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
1724 4- Rename all the blocks (rewrite_blocks) and statements in the program.
1726 Steps 3 and 4 are done using the dominator tree walker
1727 (walk_dominator_tree). */
1729 static unsigned int
1730 rewrite_into_ssa (void)
1732 bitmap *dfs;
1733 basic_block bb;
1734 sbitmap interesting_blocks;
1736 timevar_push (TV_TREE_SSA_OTHER);
1738 /* Initialize operand data structures. */
1739 init_ssa_operands ();
1741 /* Initialize the set of interesting blocks. The callback
1742 mark_def_sites will add to this set those blocks that the renamer
1743 should process. */
1744 interesting_blocks = sbitmap_alloc (last_basic_block);
1745 sbitmap_zero (interesting_blocks);
1747 /* Initialize dominance frontier. */
1748 dfs = (bitmap *) xmalloc (last_basic_block * sizeof (bitmap));
1749 FOR_EACH_BB (bb)
1750 dfs[bb->index] = BITMAP_ALLOC (NULL);
1752 /* 1- Compute dominance frontiers. */
1753 calculate_dominance_info (CDI_DOMINATORS);
1754 compute_dominance_frontiers (dfs);
1756 /* 2- Find and mark definition sites. */
1757 mark_def_site_blocks (interesting_blocks);
1759 /* 3- Insert PHI nodes at dominance frontiers of definition blocks. */
1760 insert_phi_nodes (dfs);
1762 /* 4- Rename all the blocks. */
1763 rewrite_blocks (ENTRY_BLOCK_PTR, REWRITE_ALL, interesting_blocks);
1765 /* Free allocated memory. */
1766 FOR_EACH_BB (bb)
1767 BITMAP_FREE (dfs[bb->index]);
1768 free (dfs);
1769 sbitmap_free (interesting_blocks);
1771 timevar_pop (TV_TREE_SSA_OTHER);
1772 in_ssa_p = true;
1773 return 0;
1777 struct tree_opt_pass pass_build_ssa =
1779 "ssa", /* name */
1780 NULL, /* gate */
1781 rewrite_into_ssa, /* execute */
1782 NULL, /* sub */
1783 NULL, /* next */
1784 0, /* static_pass_number */
1785 0, /* tv_id */
1786 PROP_cfg | PROP_referenced_vars, /* properties_required */
1787 PROP_ssa, /* properties_provided */
1788 0, /* properties_destroyed */
1789 0, /* todo_flags_start */
1790 TODO_dump_func
1791 | TODO_verify_ssa
1792 | TODO_remove_unused_locals, /* todo_flags_finish */
1793 0 /* letter */
1797 /* Mark the definition of VAR at STMT and BB as interesting for the
1798 renamer. BLOCKS is the set of blocks that need updating. */
1800 static void
1801 mark_def_interesting (tree var, tree stmt, basic_block bb, bitmap blocks,
1802 bool insert_phi_p)
1804 REGISTER_DEFS_IN_THIS_STMT (stmt) = 1;
1805 bitmap_set_bit (blocks, bb->index);
1807 if (insert_phi_p)
1809 bool is_phi_p = TREE_CODE (stmt) == PHI_NODE;
1811 set_def_block (var, bb, is_phi_p);
1813 /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
1814 site for both itself and all the old names replaced by it. */
1815 if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
1817 bitmap_iterator bi;
1818 unsigned i;
1819 bitmap set = names_replaced_by (var);
1820 if (set)
1821 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
1822 set_def_block (ssa_name (i), bb, is_phi_p);
1828 /* Mark the use of VAR at STMT and BB as interesting for the
1829 renamer. INSERT_PHI_P is true if we are going to insert new PHI
1830 nodes. BLOCKS is the set of blocks that need updating. */
1832 static inline void
1833 mark_use_interesting (tree var, tree stmt, basic_block bb, bitmap blocks,
1834 bool insert_phi_p)
1836 REWRITE_THIS_STMT (stmt) = 1;
1837 bitmap_set_bit (blocks, bb->index);
1839 /* If VAR has not been defined in BB, then it is live-on-entry
1840 to BB. Note that we cannot just use the block holding VAR's
1841 definition because if VAR is one of the names in OLD_SSA_NAMES,
1842 it will have several definitions (itself and all the names that
1843 replace it). */
1844 if (insert_phi_p)
1846 struct def_blocks_d *db_p = get_def_blocks_for (var);
1847 if (!bitmap_bit_p (db_p->def_blocks, bb->index))
1848 set_livein_block (var, bb);
1853 /* Do a dominator walk starting at BB processing statements that
1854 reference symbols in SYMS_TO_RENAME. This is very similar to
1855 mark_def_sites, but the scan handles statements whose operands may
1856 already be SSA names. Blocks that contain defs or uses of symbols
1857 in SYMS_TO_RENAME are added to BLOCKS.
1859 If INSERT_PHI_P is true, mark those uses as live in the
1860 corresponding block. This is later used by the PHI placement
1861 algorithm to make PHI pruning decisions. */
1863 static void
1864 prepare_block_for_update (basic_block bb, bitmap blocks, bool insert_phi_p)
1866 basic_block son;
1867 block_stmt_iterator si;
1868 tree phi;
1870 /* Process PHI nodes marking interesting those that define or use
1871 the symbols that we are interested in. */
1872 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1874 tree lhs_sym, lhs = PHI_RESULT (phi);
1876 lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
1878 if (symbol_marked_for_renaming (lhs_sym))
1880 mark_use_interesting (lhs_sym, phi, bb, blocks, insert_phi_p);
1881 mark_def_interesting (lhs_sym, phi, bb, blocks, insert_phi_p);
1885 /* Process the statements. */
1886 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
1888 tree stmt;
1889 ssa_op_iter i;
1890 use_operand_p use_p;
1891 def_operand_p def_p;
1893 stmt = bsi_stmt (si);
1895 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_USE)
1897 tree use = USE_FROM_PTR (use_p);
1898 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1899 if (symbol_marked_for_renaming (sym))
1900 mark_use_interesting (use, stmt, bb, blocks, insert_phi_p);
1903 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_DEF)
1905 tree def = DEF_FROM_PTR (def_p);
1906 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1908 if (symbol_marked_for_renaming (sym))
1909 mark_def_interesting (def, stmt, bb, blocks, insert_phi_p);
1912 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_VIRTUAL_DEFS)
1914 tree def = DEF_FROM_PTR (def_p);
1915 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1917 if (symbol_marked_for_renaming (sym))
1919 mark_use_interesting (sym, stmt, bb, blocks, insert_phi_p);
1920 mark_def_interesting (sym, stmt, bb, blocks, insert_phi_p);
1924 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_VUSE)
1926 tree use = USE_FROM_PTR (use_p);
1927 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1929 if (symbol_marked_for_renaming (sym))
1930 mark_use_interesting (sym, stmt, bb, blocks, insert_phi_p);
1934 /* Now visit all the blocks dominated by BB. */
1935 for (son = first_dom_son (CDI_DOMINATORS, bb);
1936 son;
1937 son = next_dom_son (CDI_DOMINATORS, son))
1938 prepare_block_for_update (son, blocks, insert_phi_p);
1942 /* Helper for prepare_names_to_update. Mark all the use sites for
1943 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
1944 prepare_names_to_update. */
1946 static void
1947 prepare_use_sites_for (tree name, bitmap blocks, bool insert_phi_p)
1949 use_operand_p use_p;
1950 imm_use_iterator iter;
1952 FOR_EACH_IMM_USE_FAST (use_p, iter, name)
1954 tree stmt = USE_STMT (use_p);
1955 basic_block bb = bb_for_stmt (stmt);
1957 if (TREE_CODE (stmt) == PHI_NODE)
1959 /* Mark this use of NAME interesting for the renamer.
1960 Notice that we explicitly call mark_use_interesting with
1961 INSERT_PHI_P == false.
1963 This is to avoid marking NAME as live-in in this block
1964 BB. If we were to mark NAME live-in to BB, then NAME
1965 would be considered live-in through ALL incoming edges to
1966 BB which is not what we want. Since we are updating the
1967 SSA form for NAME, we don't really know what other names
1968 of NAME are coming in through other edges into BB.
1970 If we considered NAME live-in at BB, then the PHI
1971 placement algorithm may try to insert PHI nodes in blocks
1972 that are not only unnecessary but also the renamer would
1973 not know how to fill in. */
1974 mark_use_interesting (name, stmt, bb, blocks, false);
1976 /* As discussed above, we only want to mark NAME live-in
1977 through the edge corresponding to its slot inside the PHI
1978 argument list. So, we look for the block BB1 where NAME
1979 is flowing through. If BB1 does not contain a definition
1980 of NAME, then consider NAME live-in at BB1. */
1981 if (insert_phi_p)
1983 int ix = PHI_ARG_INDEX_FROM_USE (use_p);
1984 edge e = PHI_ARG_EDGE (stmt, ix);
1985 basic_block bb1 = e->src;
1986 struct def_blocks_d *db = get_def_blocks_for (name);
1988 if (!bitmap_bit_p (db->def_blocks, bb1->index))
1989 set_livein_block (name, bb1);
1992 else
1994 /* For regular statements, mark this as an interesting use
1995 for NAME. */
1996 mark_use_interesting (name, stmt, bb, blocks, insert_phi_p);
2002 /* Helper for prepare_names_to_update. Mark the definition site for
2003 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2004 prepare_names_to_update. */
2006 static void
2007 prepare_def_site_for (tree name, bitmap blocks, bool insert_phi_p)
2009 tree stmt;
2010 basic_block bb;
2012 gcc_assert (names_to_release == NULL
2013 || !bitmap_bit_p (names_to_release, SSA_NAME_VERSION (name)));
2015 stmt = SSA_NAME_DEF_STMT (name);
2016 bb = bb_for_stmt (stmt);
2017 if (bb)
2019 gcc_assert (bb->index < last_basic_block);
2020 mark_def_interesting (name, stmt, bb, blocks, insert_phi_p);
2025 /* Mark definition and use sites of names in NEW_SSA_NAMES and
2026 OLD_SSA_NAMES. Add each definition block to BLOCKS. INSERT_PHI_P
2027 is true if the caller wants to insert PHI nodes for newly created
2028 names. */
2030 static void
2031 prepare_names_to_update (bitmap blocks, bool insert_phi_p)
2033 unsigned i = 0;
2034 bitmap_iterator bi;
2035 sbitmap_iterator sbi;
2037 /* If a name N from NEW_SSA_NAMES is also marked to be released,
2038 remove it from NEW_SSA_NAMES so that we don't try to visit its
2039 defining basic block (which most likely doesn't exist). Notice
2040 that we cannot do the same with names in OLD_SSA_NAMES because we
2041 want to replace existing instances. */
2042 if (names_to_release)
2043 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2044 RESET_BIT (new_ssa_names, i);
2046 /* First process names in NEW_SSA_NAMES. Otherwise, uses of old
2047 names may be considered to be live-in on blocks that contain
2048 definitions for their replacements. */
2049 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2050 prepare_def_site_for (ssa_name (i), blocks, insert_phi_p);
2052 /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
2053 OLD_SSA_NAMES, but we have to ignore its definition site. */
2054 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2056 if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
2057 prepare_def_site_for (ssa_name (i), blocks, insert_phi_p);
2058 prepare_use_sites_for (ssa_name (i), blocks, insert_phi_p);
2063 /* Dump all the names replaced by NAME to FILE. */
2065 void
2066 dump_names_replaced_by (FILE *file, tree name)
2068 unsigned i;
2069 bitmap old_set;
2070 bitmap_iterator bi;
2072 print_generic_expr (file, name, 0);
2073 fprintf (file, " -> { ");
2075 old_set = names_replaced_by (name);
2076 EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
2078 print_generic_expr (file, ssa_name (i), 0);
2079 fprintf (file, " ");
2082 fprintf (file, "}\n");
2086 /* Dump all the names replaced by NAME to stderr. */
2088 void
2089 debug_names_replaced_by (tree name)
2091 dump_names_replaced_by (stderr, name);
2095 /* Dump SSA update information to FILE. */
2097 void
2098 dump_update_ssa (FILE *file)
2100 unsigned i = 0;
2101 bitmap_iterator bi;
2103 if (!need_ssa_update_p ())
2104 return;
2106 if (new_ssa_names && sbitmap_first_set_bit (new_ssa_names) >= 0)
2108 sbitmap_iterator sbi;
2110 fprintf (file, "\nSSA replacement table\n");
2111 fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
2112 "O_1, ..., O_j\n\n");
2114 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2115 dump_names_replaced_by (file, ssa_name (i));
2117 fprintf (file, "\n");
2118 fprintf (file, "Number of virtual NEW -> OLD mappings: %7u\n",
2119 update_ssa_stats.num_virtual_mappings);
2120 fprintf (file, "Number of real NEW -> OLD mappings: %7u\n",
2121 update_ssa_stats.num_total_mappings
2122 - update_ssa_stats.num_virtual_mappings);
2123 fprintf (file, "Number of total NEW -> OLD mappings: %7u\n",
2124 update_ssa_stats.num_total_mappings);
2126 fprintf (file, "\nNumber of virtual symbols: %u\n",
2127 update_ssa_stats.num_virtual_symbols);
2130 if (syms_to_rename && !bitmap_empty_p (syms_to_rename))
2132 fprintf (file, "\n\nSymbols to be put in SSA form\n\n");
2133 EXECUTE_IF_SET_IN_BITMAP (syms_to_rename, 0, i, bi)
2135 print_generic_expr (file, referenced_var (i), 0);
2136 fprintf (file, " ");
2140 if (names_to_release && !bitmap_empty_p (names_to_release))
2142 fprintf (file, "\n\nSSA names to release after updating the SSA web\n\n");
2143 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2145 print_generic_expr (file, ssa_name (i), 0);
2146 fprintf (file, " ");
2150 fprintf (file, "\n\n");
2154 /* Dump SSA update information to stderr. */
2156 void
2157 debug_update_ssa (void)
2159 dump_update_ssa (stderr);
2163 /* Initialize data structures used for incremental SSA updates. */
2165 static void
2166 init_update_ssa (void)
2168 /* Reserve more space than the current number of names. The calls to
2169 add_new_name_mapping are typically done after creating new SSA
2170 names, so we'll need to reallocate these arrays. */
2171 old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2172 sbitmap_zero (old_ssa_names);
2174 new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2175 sbitmap_zero (new_ssa_names);
2177 repl_tbl = htab_create (20, repl_map_hash, repl_map_eq, repl_map_free);
2178 need_to_initialize_update_ssa_p = false;
2179 need_to_update_vops_p = false;
2180 syms_to_rename = BITMAP_ALLOC (NULL);
2181 names_to_release = NULL;
2182 memset (&update_ssa_stats, 0, sizeof (update_ssa_stats));
2183 update_ssa_stats.virtual_symbols = BITMAP_ALLOC (NULL);
2187 /* Deallocate data structures used for incremental SSA updates. */
2189 void
2190 delete_update_ssa (void)
2192 unsigned i;
2193 bitmap_iterator bi;
2195 sbitmap_free (old_ssa_names);
2196 old_ssa_names = NULL;
2198 sbitmap_free (new_ssa_names);
2199 new_ssa_names = NULL;
2201 htab_delete (repl_tbl);
2202 repl_tbl = NULL;
2204 need_to_initialize_update_ssa_p = true;
2205 need_to_update_vops_p = false;
2206 BITMAP_FREE (syms_to_rename);
2207 BITMAP_FREE (update_ssa_stats.virtual_symbols);
2209 if (names_to_release)
2211 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2212 release_ssa_name (ssa_name (i));
2213 BITMAP_FREE (names_to_release);
2216 for (i = 1; i < num_ssa_names; i++)
2218 tree n = ssa_name (i);
2220 if (n)
2222 free (SSA_NAME_AUX (n));
2223 SSA_NAME_AUX (n) = NULL;
2229 /* Create a new name for OLD_NAME in statement STMT and replace the
2230 operand pointed to by DEF_P with the newly created name. Return
2231 the new name and register the replacement mapping <NEW, OLD> in
2232 update_ssa's tables. */
2234 tree
2235 create_new_def_for (tree old_name, tree stmt, def_operand_p def)
2237 tree new_name = duplicate_ssa_name (old_name, stmt);
2239 SET_DEF (def, new_name);
2241 if (TREE_CODE (stmt) == PHI_NODE)
2243 edge e;
2244 edge_iterator ei;
2245 basic_block bb = bb_for_stmt (stmt);
2247 /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
2248 FOR_EACH_EDGE (e, ei, bb->preds)
2249 if (e->flags & EDGE_ABNORMAL)
2251 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = 1;
2252 break;
2256 register_new_name_mapping (new_name, old_name);
2258 /* For the benefit of passes that will be updating the SSA form on
2259 their own, set the current reaching definition of OLD_NAME to be
2260 NEW_NAME. */
2261 set_current_def (old_name, new_name);
2263 return new_name;
2267 /* Register name NEW to be a replacement for name OLD. This function
2268 must be called for every replacement that should be performed by
2269 update_ssa. */
2271 void
2272 register_new_name_mapping (tree new, tree old)
2274 if (need_to_initialize_update_ssa_p)
2275 init_update_ssa ();
2277 add_new_name_mapping (new, old);
2281 /* Register symbol SYM to be renamed by update_ssa. */
2283 void
2284 mark_sym_for_renaming (tree sym)
2286 if (need_to_initialize_update_ssa_p)
2287 init_update_ssa ();
2289 bitmap_set_bit (syms_to_rename, DECL_UID (sym));
2291 if (!is_gimple_reg (sym))
2292 need_to_update_vops_p = true;
2296 /* Register all the symbols in SET to be renamed by update_ssa. */
2298 void
2299 mark_set_for_renaming (bitmap set)
2301 bitmap_iterator bi;
2302 unsigned i;
2304 if (bitmap_empty_p (set))
2305 return;
2307 if (need_to_initialize_update_ssa_p)
2308 init_update_ssa ();
2310 bitmap_ior_into (syms_to_rename, set);
2312 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2313 if (!is_gimple_reg (referenced_var (i)))
2315 need_to_update_vops_p = true;
2316 break;
2321 /* Return true if there is any work to be done by update_ssa. */
2323 bool
2324 need_ssa_update_p (void)
2326 return syms_to_rename || old_ssa_names || new_ssa_names;
2330 /* Return true if name N has been registered in the replacement table. */
2332 bool
2333 name_registered_for_update_p (tree n)
2335 if (!need_ssa_update_p ())
2336 return false;
2338 return is_new_name (n)
2339 || is_old_name (n)
2340 || symbol_marked_for_renaming (SSA_NAME_VAR (n));
2344 /* Return the set of all the SSA names marked to be replaced. */
2346 bitmap
2347 ssa_names_to_replace (void)
2349 unsigned i = 0;
2350 bitmap ret;
2351 sbitmap_iterator sbi;
2353 ret = BITMAP_ALLOC (NULL);
2354 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2355 bitmap_set_bit (ret, i);
2357 return ret;
2361 /* Mark NAME to be released after update_ssa has finished. */
2363 void
2364 release_ssa_name_after_update_ssa (tree name)
2366 gcc_assert (!need_to_initialize_update_ssa_p);
2368 if (names_to_release == NULL)
2369 names_to_release = BITMAP_ALLOC (NULL);
2371 bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
2375 /* Insert new PHI nodes to replace VAR. DFS contains dominance
2376 frontier information. BLOCKS is the set of blocks to be updated.
2378 This is slightly different than the regular PHI insertion
2379 algorithm. The value of UPDATE_FLAGS controls how PHI nodes for
2380 real names (i.e., GIMPLE registers) are inserted:
2382 - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
2383 nodes inside the region affected by the block that defines VAR
2384 and the blocks that define all its replacements. All these
2385 definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
2387 First, we compute the entry point to the region (ENTRY). This is
2388 given by the nearest common dominator to all the definition
2389 blocks. When computing the iterated dominance frontier (IDF), any
2390 block not strictly dominated by ENTRY is ignored.
2392 We then call the standard PHI insertion algorithm with the pruned
2393 IDF.
2395 - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
2396 names is not pruned. PHI nodes are inserted at every IDF block. */
2398 static void
2399 insert_updated_phi_nodes_for (tree var, bitmap *dfs, bitmap blocks,
2400 unsigned update_flags)
2402 basic_block entry;
2403 struct def_blocks_d *db;
2404 bitmap idf, pruned_idf;
2405 bitmap_iterator bi;
2406 unsigned i;
2408 #if defined ENABLE_CHECKING
2409 if (TREE_CODE (var) == SSA_NAME)
2410 gcc_assert (is_old_name (var));
2411 else
2412 gcc_assert (symbol_marked_for_renaming (var));
2413 #endif
2415 /* Get all the definition sites for VAR. */
2416 db = find_def_blocks_for (var);
2418 /* No need to do anything if there were no definitions to VAR. */
2419 if (db == NULL || bitmap_empty_p (db->def_blocks))
2420 return;
2422 /* Compute the initial iterated dominance frontier. */
2423 idf = find_idf (db->def_blocks, dfs);
2424 pruned_idf = BITMAP_ALLOC (NULL);
2426 if (TREE_CODE (var) == SSA_NAME)
2428 if (update_flags == TODO_update_ssa)
2430 /* If doing regular SSA updates for GIMPLE registers, we are
2431 only interested in IDF blocks dominated by the nearest
2432 common dominator of all the definition blocks. */
2433 entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
2434 db->def_blocks);
2436 if (entry != ENTRY_BLOCK_PTR)
2437 EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
2438 if (BASIC_BLOCK (i) != entry
2439 && dominated_by_p (CDI_DOMINATORS, BASIC_BLOCK (i), entry))
2440 bitmap_set_bit (pruned_idf, i);
2442 else
2444 /* Otherwise, do not prune the IDF for VAR. */
2445 gcc_assert (update_flags == TODO_update_ssa_full_phi);
2446 bitmap_copy (pruned_idf, idf);
2449 else
2451 /* Otherwise, VAR is a symbol that needs to be put into SSA form
2452 for the first time, so we need to compute the full IDF for
2453 it. */
2454 bitmap_copy (pruned_idf, idf);
2457 if (!bitmap_empty_p (pruned_idf))
2459 /* Make sure that PRUNED_IDF blocks and all their feeding blocks
2460 are included in the region to be updated. The feeding blocks
2461 are important to guarantee that the PHI arguments are renamed
2462 properly. */
2463 bitmap_ior_into (blocks, pruned_idf);
2464 EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
2466 edge e;
2467 edge_iterator ei;
2468 basic_block bb = BASIC_BLOCK (i);
2470 FOR_EACH_EDGE (e, ei, bb->preds)
2471 if (e->src->index >= 0)
2472 bitmap_set_bit (blocks, e->src->index);
2475 insert_phi_nodes_for (var, pruned_idf, true);
2478 BITMAP_FREE (pruned_idf);
2479 BITMAP_FREE (idf);
2483 /* Heuristic to determine whether SSA name mappings for virtual names
2484 should be discarded and their symbols rewritten from scratch. When
2485 there is a large number of mappings for virtual names, the
2486 insertion of PHI nodes for the old names in the mappings takes
2487 considerable more time than if we inserted PHI nodes for the
2488 symbols instead.
2490 Currently the heuristic takes these stats into account:
2492 - Number of mappings for virtual SSA names.
2493 - Number of distinct virtual symbols involved in those mappings.
2495 If the number of virtual mappings is much larger than the number of
2496 virtual symbols, then it will be faster to compute PHI insertion
2497 spots for the symbols. Even if this involves traversing the whole
2498 CFG, which is what happens when symbols are renamed from scratch. */
2500 static bool
2501 switch_virtuals_to_full_rewrite_p (void)
2503 if (update_ssa_stats.num_virtual_mappings < (unsigned) MIN_VIRTUAL_MAPPINGS)
2504 return false;
2506 if (update_ssa_stats.num_virtual_mappings
2507 > (unsigned) VIRTUAL_MAPPINGS_TO_SYMS_RATIO
2508 * update_ssa_stats.num_virtual_symbols)
2509 return true;
2511 return false;
2515 /* Remove every virtual mapping and mark all the affected virtual
2516 symbols for renaming. */
2518 static void
2519 switch_virtuals_to_full_rewrite (void)
2521 unsigned i = 0;
2522 sbitmap_iterator sbi;
2524 if (dump_file)
2526 fprintf (dump_file, "\nEnabled virtual name mapping heuristic.\n");
2527 fprintf (dump_file, "\tNumber of virtual mappings: %7u\n",
2528 update_ssa_stats.num_virtual_mappings);
2529 fprintf (dump_file, "\tNumber of unique virtual symbols: %7u\n",
2530 update_ssa_stats.num_virtual_symbols);
2531 fprintf (dump_file, "Updating FUD-chains from top of CFG will be "
2532 "faster than processing\nthe name mappings.\n\n");
2535 /* Remove all virtual names from NEW_SSA_NAMES and OLD_SSA_NAMES.
2536 Note that it is not really necessary to remove the mappings from
2537 REPL_TBL, that would only waste time. */
2538 EXECUTE_IF_SET_IN_SBITMAP (new_ssa_names, 0, i, sbi)
2539 if (!is_gimple_reg (ssa_name (i)))
2540 RESET_BIT (new_ssa_names, i);
2542 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2543 if (!is_gimple_reg (ssa_name (i)))
2544 RESET_BIT (old_ssa_names, i);
2546 bitmap_ior_into (syms_to_rename, update_ssa_stats.virtual_symbols);
2550 /* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
2551 existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
2553 1- The names in OLD_SSA_NAMES dominated by the definitions of
2554 NEW_SSA_NAMES are all re-written to be reached by the
2555 appropriate definition from NEW_SSA_NAMES.
2557 2- If needed, new PHI nodes are added to the iterated dominance
2558 frontier of the blocks where each of NEW_SSA_NAMES are defined.
2560 The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
2561 calling register_new_name_mapping for every pair of names that the
2562 caller wants to replace.
2564 The caller identifies the new names that have been inserted and the
2565 names that need to be replaced by calling register_new_name_mapping
2566 for every pair <NEW, OLD>. Note that the function assumes that the
2567 new names have already been inserted in the IL.
2569 For instance, given the following code:
2571 1 L0:
2572 2 x_1 = PHI (0, x_5)
2573 3 if (x_1 < 10)
2574 4 if (x_1 > 7)
2575 5 y_2 = 0
2576 6 else
2577 7 y_3 = x_1 + x_7
2578 8 endif
2579 9 x_5 = x_1 + 1
2580 10 goto L0;
2581 11 endif
2583 Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
2585 1 L0:
2586 2 x_1 = PHI (0, x_5)
2587 3 if (x_1 < 10)
2588 4 x_10 = ...
2589 5 if (x_1 > 7)
2590 6 y_2 = 0
2591 7 else
2592 8 x_11 = ...
2593 9 y_3 = x_1 + x_7
2594 10 endif
2595 11 x_5 = x_1 + 1
2596 12 goto L0;
2597 13 endif
2599 We want to replace all the uses of x_1 with the new definitions of
2600 x_10 and x_11. Note that the only uses that should be replaced are
2601 those at lines 5, 9 and 11. Also, the use of x_7 at line 9 should
2602 *not* be replaced (this is why we cannot just mark symbol 'x' for
2603 renaming).
2605 Additionally, we may need to insert a PHI node at line 11 because
2606 that is a merge point for x_10 and x_11. So the use of x_1 at line
2607 11 will be replaced with the new PHI node. The insertion of PHI
2608 nodes is optional. They are not strictly necessary to preserve the
2609 SSA form, and depending on what the caller inserted, they may not
2610 even be useful for the optimizers. UPDATE_FLAGS controls various
2611 aspects of how update_ssa operates, see the documentation for
2612 TODO_update_ssa*. */
2614 void
2615 update_ssa (unsigned update_flags)
2617 bitmap blocks;
2618 basic_block bb, start_bb;
2619 bitmap_iterator bi;
2620 unsigned i = 0;
2621 sbitmap tmp;
2622 bool insert_phi_p;
2623 sbitmap_iterator sbi;
2625 if (!need_ssa_update_p ())
2626 return;
2628 timevar_push (TV_TREE_SSA_INCREMENTAL);
2630 /* Ensure that the dominance information is up-to-date. */
2631 calculate_dominance_info (CDI_DOMINATORS);
2633 /* Only one update flag should be set. */
2634 gcc_assert (update_flags == TODO_update_ssa
2635 || update_flags == TODO_update_ssa_no_phi
2636 || update_flags == TODO_update_ssa_full_phi
2637 || update_flags == TODO_update_ssa_only_virtuals);
2639 /* If we only need to update virtuals, remove all the mappings for
2640 real names before proceeding. The caller is responsible for
2641 having dealt with the name mappings before calling update_ssa. */
2642 if (update_flags == TODO_update_ssa_only_virtuals)
2644 sbitmap_zero (old_ssa_names);
2645 sbitmap_zero (new_ssa_names);
2646 htab_empty (repl_tbl);
2649 insert_phi_p = (update_flags != TODO_update_ssa_no_phi);
2651 if (insert_phi_p)
2653 /* If the caller requested PHI nodes to be added, initialize
2654 live-in information data structures (DEF_BLOCKS). */
2656 /* For each SSA name N, the DEF_BLOCKS table describes where the
2657 name is defined, which blocks have PHI nodes for N, and which
2658 blocks have uses of N (i.e., N is live-on-entry in those
2659 blocks). */
2660 def_blocks = htab_create (num_ssa_names, def_blocks_hash,
2661 def_blocks_eq, def_blocks_free);
2663 else
2665 def_blocks = NULL;
2668 blocks = BITMAP_ALLOC (NULL);
2670 /* Clear the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags
2671 for every statement and PHI node. */
2672 FOR_EACH_BB (bb)
2674 block_stmt_iterator si;
2675 tree phi;
2677 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2679 REWRITE_THIS_STMT (phi) = 0;
2680 REGISTER_DEFS_IN_THIS_STMT (phi) = 0;
2683 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
2685 tree stmt = bsi_stmt (si);
2686 /* We are going to use the operand cache API, such as
2687 SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST. The operand
2688 cache for each statement should be up-to-date. */
2689 gcc_assert (!stmt_modified_p (stmt));
2690 REWRITE_THIS_STMT (stmt) = 0;
2691 REGISTER_DEFS_IN_THIS_STMT (stmt) = 0;
2695 /* Heuristic to avoid massive slow downs when the replacement
2696 mappings include lots of virtual names. */
2697 if (insert_phi_p && switch_virtuals_to_full_rewrite_p ())
2698 switch_virtuals_to_full_rewrite ();
2700 /* If there are names defined in the replacement table, prepare
2701 definition and use sites for all the names in NEW_SSA_NAMES and
2702 OLD_SSA_NAMES. */
2703 if (sbitmap_first_set_bit (new_ssa_names) >= 0)
2705 prepare_names_to_update (blocks, insert_phi_p);
2707 /* If all the names in NEW_SSA_NAMES had been marked for
2708 removal, and there are no symbols to rename, then there's
2709 nothing else to do. */
2710 if (sbitmap_first_set_bit (new_ssa_names) < 0
2711 && bitmap_empty_p (syms_to_rename))
2712 goto done;
2715 /* Next, determine the block at which to start the renaming process. */
2716 if (!bitmap_empty_p (syms_to_rename))
2718 /* If we have to rename some symbols from scratch, we need to
2719 start the process at the root of the CFG. FIXME, it should
2720 be possible to determine the nearest block that had a
2721 definition for each of the symbols that are marked for
2722 updating. For now this seems more work than it's worth. */
2723 start_bb = ENTRY_BLOCK_PTR;
2725 /* Traverse the CFG looking for definitions and uses of symbols
2726 in SYMS_TO_RENAME. Mark interesting blocks and statements
2727 and set local live-in information for the PHI placement
2728 heuristics. */
2729 prepare_block_for_update (start_bb, blocks, insert_phi_p);
2731 else
2733 /* Otherwise, the entry block to the region is the nearest
2734 common dominator for the blocks in BLOCKS. */
2735 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS, blocks);
2738 /* If requested, insert PHI nodes at the iterated dominance frontier
2739 of every block, creating new definitions for names in OLD_SSA_NAMES
2740 and for symbols in SYMS_TO_RENAME. */
2741 if (insert_phi_p)
2743 bitmap *dfs;
2745 /* If the caller requested PHI nodes to be added, compute
2746 dominance frontiers. */
2747 dfs = XNEWVEC (bitmap, last_basic_block);
2748 FOR_EACH_BB (bb)
2749 dfs[bb->index] = BITMAP_ALLOC (NULL);
2750 compute_dominance_frontiers (dfs);
2752 if (sbitmap_first_set_bit (old_ssa_names) >= 0)
2754 sbitmap_iterator sbi;
2756 /* insert_update_phi_nodes_for will call add_new_name_mapping
2757 when inserting new PHI nodes, so the set OLD_SSA_NAMES
2758 will grow while we are traversing it (but it will not
2759 gain any new members). Copy OLD_SSA_NAMES to a temporary
2760 for traversal. */
2761 sbitmap tmp = sbitmap_alloc (old_ssa_names->n_bits);
2762 sbitmap_copy (tmp, old_ssa_names);
2763 EXECUTE_IF_SET_IN_SBITMAP (tmp, 0, i, sbi)
2764 insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks,
2765 update_flags);
2766 sbitmap_free (tmp);
2769 EXECUTE_IF_SET_IN_BITMAP (syms_to_rename, 0, i, bi)
2770 insert_updated_phi_nodes_for (referenced_var (i), dfs, blocks,
2771 update_flags);
2773 FOR_EACH_BB (bb)
2774 BITMAP_FREE (dfs[bb->index]);
2775 free (dfs);
2777 /* Insertion of PHI nodes may have added blocks to the region.
2778 We need to re-compute START_BB to include the newly added
2779 blocks. */
2780 if (start_bb != ENTRY_BLOCK_PTR)
2781 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS, blocks);
2784 /* Reset the current definition for name and symbol before renaming
2785 the sub-graph. */
2786 EXECUTE_IF_SET_IN_SBITMAP (old_ssa_names, 0, i, sbi)
2787 set_current_def (ssa_name (i), NULL_TREE);
2789 EXECUTE_IF_SET_IN_BITMAP (syms_to_rename, 0, i, bi)
2790 set_current_def (referenced_var (i), NULL_TREE);
2792 /* Now start the renaming process at START_BB. */
2793 tmp = sbitmap_alloc (last_basic_block);
2794 sbitmap_zero (tmp);
2795 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
2796 SET_BIT (tmp, i);
2798 rewrite_blocks (start_bb, REWRITE_UPDATE, tmp);
2800 sbitmap_free (tmp);
2802 /* Debugging dumps. */
2803 if (dump_file)
2805 int c;
2806 unsigned i;
2808 dump_update_ssa (dump_file);
2810 fprintf (dump_file, "Incremental SSA update started at block: %d\n\n",
2811 start_bb->index);
2813 c = 0;
2814 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
2815 c++;
2816 fprintf (dump_file, "Number of blocks in CFG: %d\n", last_basic_block);
2817 fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n\n",
2818 c, PERCENT (c, last_basic_block));
2820 if (dump_flags & TDF_DETAILS)
2822 fprintf (dump_file, "Affected blocks: ");
2823 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
2824 fprintf (dump_file, "%u ", i);
2825 fprintf (dump_file, "\n");
2828 fprintf (dump_file, "\n\n");
2831 /* Free allocated memory. */
2832 done:
2833 BITMAP_FREE (blocks);
2834 delete_update_ssa ();
2836 timevar_pop (TV_TREE_SSA_INCREMENTAL);