* tree-ssa-structalias.h (alias_info): Remove num_references.
[official-gcc.git] / gcc / rtlanal.c
blob9292a4bb9bb35725f473406c8f7f46930c7144ce
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software
4 Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "hard-reg-set.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "target.h"
34 #include "output.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "real.h"
38 #include "regs.h"
39 #include "function.h"
41 /* Forward declarations */
42 static void set_of_1 (rtx, rtx, void *);
43 static bool covers_regno_p (rtx, unsigned int);
44 static bool covers_regno_no_parallel_p (rtx, unsigned int);
45 static int rtx_referenced_p_1 (rtx *, void *);
46 static int computed_jump_p_1 (rtx);
47 static void parms_set (rtx, rtx, void *);
49 static unsigned HOST_WIDE_INT cached_nonzero_bits (rtx, enum machine_mode,
50 rtx, enum machine_mode,
51 unsigned HOST_WIDE_INT);
52 static unsigned HOST_WIDE_INT nonzero_bits1 (rtx, enum machine_mode, rtx,
53 enum machine_mode,
54 unsigned HOST_WIDE_INT);
55 static unsigned int cached_num_sign_bit_copies (rtx, enum machine_mode, rtx,
56 enum machine_mode,
57 unsigned int);
58 static unsigned int num_sign_bit_copies1 (rtx, enum machine_mode, rtx,
59 enum machine_mode, unsigned int);
61 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
62 -1 if a code has no such operand. */
63 static int non_rtx_starting_operands[NUM_RTX_CODE];
65 /* Bit flags that specify the machine subtype we are compiling for.
66 Bits are tested using macros TARGET_... defined in the tm.h file
67 and set by `-m...' switches. Must be defined in rtlanal.c. */
69 int target_flags;
71 /* Return 1 if the value of X is unstable
72 (would be different at a different point in the program).
73 The frame pointer, arg pointer, etc. are considered stable
74 (within one function) and so is anything marked `unchanging'. */
76 int
77 rtx_unstable_p (rtx x)
79 RTX_CODE code = GET_CODE (x);
80 int i;
81 const char *fmt;
83 switch (code)
85 case MEM:
86 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
88 case CONST:
89 case CONST_INT:
90 case CONST_DOUBLE:
91 case CONST_VECTOR:
92 case SYMBOL_REF:
93 case LABEL_REF:
94 return 0;
96 case REG:
97 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
98 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
99 /* The arg pointer varies if it is not a fixed register. */
100 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
101 return 0;
102 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
103 /* ??? When call-clobbered, the value is stable modulo the restore
104 that must happen after a call. This currently screws up local-alloc
105 into believing that the restore is not needed. */
106 if (x == pic_offset_table_rtx)
107 return 0;
108 #endif
109 return 1;
111 case ASM_OPERANDS:
112 if (MEM_VOLATILE_P (x))
113 return 1;
115 /* Fall through. */
117 default:
118 break;
121 fmt = GET_RTX_FORMAT (code);
122 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
123 if (fmt[i] == 'e')
125 if (rtx_unstable_p (XEXP (x, i)))
126 return 1;
128 else if (fmt[i] == 'E')
130 int j;
131 for (j = 0; j < XVECLEN (x, i); j++)
132 if (rtx_unstable_p (XVECEXP (x, i, j)))
133 return 1;
136 return 0;
139 /* Return 1 if X has a value that can vary even between two
140 executions of the program. 0 means X can be compared reliably
141 against certain constants or near-constants.
142 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
143 zero, we are slightly more conservative.
144 The frame pointer and the arg pointer are considered constant. */
147 rtx_varies_p (rtx x, int for_alias)
149 RTX_CODE code;
150 int i;
151 const char *fmt;
153 if (!x)
154 return 0;
156 code = GET_CODE (x);
157 switch (code)
159 case MEM:
160 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
162 case CONST:
163 case CONST_INT:
164 case CONST_DOUBLE:
165 case CONST_VECTOR:
166 case SYMBOL_REF:
167 case LABEL_REF:
168 return 0;
170 case REG:
171 /* Note that we have to test for the actual rtx used for the frame
172 and arg pointers and not just the register number in case we have
173 eliminated the frame and/or arg pointer and are using it
174 for pseudos. */
175 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
176 /* The arg pointer varies if it is not a fixed register. */
177 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
178 return 0;
179 if (x == pic_offset_table_rtx
180 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
181 /* ??? When call-clobbered, the value is stable modulo the restore
182 that must happen after a call. This currently screws up
183 local-alloc into believing that the restore is not needed, so we
184 must return 0 only if we are called from alias analysis. */
185 && for_alias
186 #endif
188 return 0;
189 return 1;
191 case LO_SUM:
192 /* The operand 0 of a LO_SUM is considered constant
193 (in fact it is related specifically to operand 1)
194 during alias analysis. */
195 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
196 || rtx_varies_p (XEXP (x, 1), for_alias);
198 case ASM_OPERANDS:
199 if (MEM_VOLATILE_P (x))
200 return 1;
202 /* Fall through. */
204 default:
205 break;
208 fmt = GET_RTX_FORMAT (code);
209 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
210 if (fmt[i] == 'e')
212 if (rtx_varies_p (XEXP (x, i), for_alias))
213 return 1;
215 else if (fmt[i] == 'E')
217 int j;
218 for (j = 0; j < XVECLEN (x, i); j++)
219 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
220 return 1;
223 return 0;
226 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
227 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
228 whether nonzero is returned for unaligned memory accesses on strict
229 alignment machines. */
231 static int
232 rtx_addr_can_trap_p_1 (rtx x, enum machine_mode mode, bool unaligned_mems)
234 enum rtx_code code = GET_CODE (x);
236 switch (code)
238 case SYMBOL_REF:
239 return SYMBOL_REF_WEAK (x);
241 case LABEL_REF:
242 return 0;
244 case REG:
245 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
246 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
247 || x == stack_pointer_rtx
248 /* The arg pointer varies if it is not a fixed register. */
249 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
250 return 0;
251 /* All of the virtual frame registers are stack references. */
252 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
253 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
254 return 0;
255 return 1;
257 case CONST:
258 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
260 case PLUS:
261 /* An address is assumed not to trap if:
262 - it is an address that can't trap plus a constant integer,
263 with the proper remainder modulo the mode size if we are
264 considering unaligned memory references. */
265 if (!rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems)
266 && GET_CODE (XEXP (x, 1)) == CONST_INT)
268 HOST_WIDE_INT offset;
270 if (!STRICT_ALIGNMENT
271 || !unaligned_mems
272 || GET_MODE_SIZE (mode) == 0)
273 return 0;
275 offset = INTVAL (XEXP (x, 1));
277 #ifdef SPARC_STACK_BOUNDARY_HACK
278 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
279 the real alignment of %sp. However, when it does this, the
280 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
281 if (SPARC_STACK_BOUNDARY_HACK
282 && (XEXP (x, 0) == stack_pointer_rtx
283 || XEXP (x, 0) == hard_frame_pointer_rtx))
284 offset -= STACK_POINTER_OFFSET;
285 #endif
287 return offset % GET_MODE_SIZE (mode) != 0;
290 /* - or it is the pic register plus a constant. */
291 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
292 return 0;
294 return 1;
296 case LO_SUM:
297 case PRE_MODIFY:
298 return rtx_addr_can_trap_p_1 (XEXP (x, 1), mode, unaligned_mems);
300 case PRE_DEC:
301 case PRE_INC:
302 case POST_DEC:
303 case POST_INC:
304 case POST_MODIFY:
305 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
307 default:
308 break;
311 /* If it isn't one of the case above, it can cause a trap. */
312 return 1;
315 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
318 rtx_addr_can_trap_p (rtx x)
320 return rtx_addr_can_trap_p_1 (x, VOIDmode, false);
323 /* Return true if X is an address that is known to not be zero. */
325 bool
326 nonzero_address_p (rtx x)
328 enum rtx_code code = GET_CODE (x);
330 switch (code)
332 case SYMBOL_REF:
333 return !SYMBOL_REF_WEAK (x);
335 case LABEL_REF:
336 return true;
338 case REG:
339 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
340 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
341 || x == stack_pointer_rtx
342 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
343 return true;
344 /* All of the virtual frame registers are stack references. */
345 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
346 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
347 return true;
348 return false;
350 case CONST:
351 return nonzero_address_p (XEXP (x, 0));
353 case PLUS:
354 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
356 /* Pointers aren't allowed to wrap. If we've got a register
357 that is known to be a pointer, and a positive offset, then
358 the composite can't be zero. */
359 if (INTVAL (XEXP (x, 1)) > 0
360 && REG_P (XEXP (x, 0))
361 && REG_POINTER (XEXP (x, 0)))
362 return true;
364 return nonzero_address_p (XEXP (x, 0));
366 /* Handle PIC references. */
367 else if (XEXP (x, 0) == pic_offset_table_rtx
368 && CONSTANT_P (XEXP (x, 1)))
369 return true;
370 return false;
372 case PRE_MODIFY:
373 /* Similar to the above; allow positive offsets. Further, since
374 auto-inc is only allowed in memories, the register must be a
375 pointer. */
376 if (GET_CODE (XEXP (x, 1)) == CONST_INT
377 && INTVAL (XEXP (x, 1)) > 0)
378 return true;
379 return nonzero_address_p (XEXP (x, 0));
381 case PRE_INC:
382 /* Similarly. Further, the offset is always positive. */
383 return true;
385 case PRE_DEC:
386 case POST_DEC:
387 case POST_INC:
388 case POST_MODIFY:
389 return nonzero_address_p (XEXP (x, 0));
391 case LO_SUM:
392 return nonzero_address_p (XEXP (x, 1));
394 default:
395 break;
398 /* If it isn't one of the case above, might be zero. */
399 return false;
402 /* Return 1 if X refers to a memory location whose address
403 cannot be compared reliably with constant addresses,
404 or if X refers to a BLKmode memory object.
405 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
406 zero, we are slightly more conservative. */
409 rtx_addr_varies_p (rtx x, int for_alias)
411 enum rtx_code code;
412 int i;
413 const char *fmt;
415 if (x == 0)
416 return 0;
418 code = GET_CODE (x);
419 if (code == MEM)
420 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
422 fmt = GET_RTX_FORMAT (code);
423 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
424 if (fmt[i] == 'e')
426 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
427 return 1;
429 else if (fmt[i] == 'E')
431 int j;
432 for (j = 0; j < XVECLEN (x, i); j++)
433 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
434 return 1;
436 return 0;
439 /* Return the value of the integer term in X, if one is apparent;
440 otherwise return 0.
441 Only obvious integer terms are detected.
442 This is used in cse.c with the `related_value' field. */
444 HOST_WIDE_INT
445 get_integer_term (rtx x)
447 if (GET_CODE (x) == CONST)
448 x = XEXP (x, 0);
450 if (GET_CODE (x) == MINUS
451 && GET_CODE (XEXP (x, 1)) == CONST_INT)
452 return - INTVAL (XEXP (x, 1));
453 if (GET_CODE (x) == PLUS
454 && GET_CODE (XEXP (x, 1)) == CONST_INT)
455 return INTVAL (XEXP (x, 1));
456 return 0;
459 /* If X is a constant, return the value sans apparent integer term;
460 otherwise return 0.
461 Only obvious integer terms are detected. */
464 get_related_value (rtx x)
466 if (GET_CODE (x) != CONST)
467 return 0;
468 x = XEXP (x, 0);
469 if (GET_CODE (x) == PLUS
470 && GET_CODE (XEXP (x, 1)) == CONST_INT)
471 return XEXP (x, 0);
472 else if (GET_CODE (x) == MINUS
473 && GET_CODE (XEXP (x, 1)) == CONST_INT)
474 return XEXP (x, 0);
475 return 0;
478 /* Return the number of places FIND appears within X. If COUNT_DEST is
479 zero, we do not count occurrences inside the destination of a SET. */
482 count_occurrences (rtx x, rtx find, int count_dest)
484 int i, j;
485 enum rtx_code code;
486 const char *format_ptr;
487 int count;
489 if (x == find)
490 return 1;
492 code = GET_CODE (x);
494 switch (code)
496 case REG:
497 case CONST_INT:
498 case CONST_DOUBLE:
499 case CONST_VECTOR:
500 case SYMBOL_REF:
501 case CODE_LABEL:
502 case PC:
503 case CC0:
504 return 0;
506 case MEM:
507 if (MEM_P (find) && rtx_equal_p (x, find))
508 return 1;
509 break;
511 case SET:
512 if (SET_DEST (x) == find && ! count_dest)
513 return count_occurrences (SET_SRC (x), find, count_dest);
514 break;
516 default:
517 break;
520 format_ptr = GET_RTX_FORMAT (code);
521 count = 0;
523 for (i = 0; i < GET_RTX_LENGTH (code); i++)
525 switch (*format_ptr++)
527 case 'e':
528 count += count_occurrences (XEXP (x, i), find, count_dest);
529 break;
531 case 'E':
532 for (j = 0; j < XVECLEN (x, i); j++)
533 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
534 break;
537 return count;
540 /* Nonzero if register REG appears somewhere within IN.
541 Also works if REG is not a register; in this case it checks
542 for a subexpression of IN that is Lisp "equal" to REG. */
545 reg_mentioned_p (rtx reg, rtx in)
547 const char *fmt;
548 int i;
549 enum rtx_code code;
551 if (in == 0)
552 return 0;
554 if (reg == in)
555 return 1;
557 if (GET_CODE (in) == LABEL_REF)
558 return reg == XEXP (in, 0);
560 code = GET_CODE (in);
562 switch (code)
564 /* Compare registers by number. */
565 case REG:
566 return REG_P (reg) && REGNO (in) == REGNO (reg);
568 /* These codes have no constituent expressions
569 and are unique. */
570 case SCRATCH:
571 case CC0:
572 case PC:
573 return 0;
575 case CONST_INT:
576 case CONST_VECTOR:
577 case CONST_DOUBLE:
578 /* These are kept unique for a given value. */
579 return 0;
581 default:
582 break;
585 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
586 return 1;
588 fmt = GET_RTX_FORMAT (code);
590 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
592 if (fmt[i] == 'E')
594 int j;
595 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
596 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
597 return 1;
599 else if (fmt[i] == 'e'
600 && reg_mentioned_p (reg, XEXP (in, i)))
601 return 1;
603 return 0;
606 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
607 no CODE_LABEL insn. */
610 no_labels_between_p (rtx beg, rtx end)
612 rtx p;
613 if (beg == end)
614 return 0;
615 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
616 if (LABEL_P (p))
617 return 0;
618 return 1;
621 /* Nonzero if register REG is used in an insn between
622 FROM_INSN and TO_INSN (exclusive of those two). */
625 reg_used_between_p (rtx reg, rtx from_insn, rtx to_insn)
627 rtx insn;
629 if (from_insn == to_insn)
630 return 0;
632 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
633 if (INSN_P (insn)
634 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
635 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
636 return 1;
637 return 0;
640 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
641 is entirely replaced by a new value and the only use is as a SET_DEST,
642 we do not consider it a reference. */
645 reg_referenced_p (rtx x, rtx body)
647 int i;
649 switch (GET_CODE (body))
651 case SET:
652 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
653 return 1;
655 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
656 of a REG that occupies all of the REG, the insn references X if
657 it is mentioned in the destination. */
658 if (GET_CODE (SET_DEST (body)) != CC0
659 && GET_CODE (SET_DEST (body)) != PC
660 && !REG_P (SET_DEST (body))
661 && ! (GET_CODE (SET_DEST (body)) == SUBREG
662 && REG_P (SUBREG_REG (SET_DEST (body)))
663 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
664 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
665 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
666 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
667 && reg_overlap_mentioned_p (x, SET_DEST (body)))
668 return 1;
669 return 0;
671 case ASM_OPERANDS:
672 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
673 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
674 return 1;
675 return 0;
677 case CALL:
678 case USE:
679 case IF_THEN_ELSE:
680 return reg_overlap_mentioned_p (x, body);
682 case TRAP_IF:
683 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
685 case PREFETCH:
686 return reg_overlap_mentioned_p (x, XEXP (body, 0));
688 case UNSPEC:
689 case UNSPEC_VOLATILE:
690 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
691 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
692 return 1;
693 return 0;
695 case PARALLEL:
696 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
697 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
698 return 1;
699 return 0;
701 case CLOBBER:
702 if (MEM_P (XEXP (body, 0)))
703 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
704 return 1;
705 return 0;
707 case COND_EXEC:
708 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
709 return 1;
710 return reg_referenced_p (x, COND_EXEC_CODE (body));
712 default:
713 return 0;
717 /* Nonzero if register REG is set or clobbered in an insn between
718 FROM_INSN and TO_INSN (exclusive of those two). */
721 reg_set_between_p (rtx reg, rtx from_insn, rtx to_insn)
723 rtx insn;
725 if (from_insn == to_insn)
726 return 0;
728 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
729 if (INSN_P (insn) && reg_set_p (reg, insn))
730 return 1;
731 return 0;
734 /* Internals of reg_set_between_p. */
736 reg_set_p (rtx reg, rtx insn)
738 /* We can be passed an insn or part of one. If we are passed an insn,
739 check if a side-effect of the insn clobbers REG. */
740 if (INSN_P (insn)
741 && (FIND_REG_INC_NOTE (insn, reg)
742 || (CALL_P (insn)
743 && ((REG_P (reg)
744 && REGNO (reg) < FIRST_PSEUDO_REGISTER
745 && TEST_HARD_REG_BIT (regs_invalidated_by_call,
746 REGNO (reg)))
747 || MEM_P (reg)
748 || find_reg_fusage (insn, CLOBBER, reg)))))
749 return 1;
751 return set_of (reg, insn) != NULL_RTX;
754 /* Similar to reg_set_between_p, but check all registers in X. Return 0
755 only if none of them are modified between START and END. Return 1 if
756 X contains a MEM; this routine does usememory aliasing. */
759 modified_between_p (rtx x, rtx start, rtx end)
761 enum rtx_code code = GET_CODE (x);
762 const char *fmt;
763 int i, j;
764 rtx insn;
766 if (start == end)
767 return 0;
769 switch (code)
771 case CONST_INT:
772 case CONST_DOUBLE:
773 case CONST_VECTOR:
774 case CONST:
775 case SYMBOL_REF:
776 case LABEL_REF:
777 return 0;
779 case PC:
780 case CC0:
781 return 1;
783 case MEM:
784 if (modified_between_p (XEXP (x, 0), start, end))
785 return 1;
786 if (MEM_READONLY_P (x))
787 return 0;
788 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
789 if (memory_modified_in_insn_p (x, insn))
790 return 1;
791 return 0;
792 break;
794 case REG:
795 return reg_set_between_p (x, start, end);
797 default:
798 break;
801 fmt = GET_RTX_FORMAT (code);
802 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
804 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
805 return 1;
807 else if (fmt[i] == 'E')
808 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
809 if (modified_between_p (XVECEXP (x, i, j), start, end))
810 return 1;
813 return 0;
816 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
817 of them are modified in INSN. Return 1 if X contains a MEM; this routine
818 does use memory aliasing. */
821 modified_in_p (rtx x, rtx insn)
823 enum rtx_code code = GET_CODE (x);
824 const char *fmt;
825 int i, j;
827 switch (code)
829 case CONST_INT:
830 case CONST_DOUBLE:
831 case CONST_VECTOR:
832 case CONST:
833 case SYMBOL_REF:
834 case LABEL_REF:
835 return 0;
837 case PC:
838 case CC0:
839 return 1;
841 case MEM:
842 if (modified_in_p (XEXP (x, 0), insn))
843 return 1;
844 if (MEM_READONLY_P (x))
845 return 0;
846 if (memory_modified_in_insn_p (x, insn))
847 return 1;
848 return 0;
849 break;
851 case REG:
852 return reg_set_p (x, insn);
854 default:
855 break;
858 fmt = GET_RTX_FORMAT (code);
859 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
861 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
862 return 1;
864 else if (fmt[i] == 'E')
865 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
866 if (modified_in_p (XVECEXP (x, i, j), insn))
867 return 1;
870 return 0;
873 /* Helper function for set_of. */
874 struct set_of_data
876 rtx found;
877 rtx pat;
880 static void
881 set_of_1 (rtx x, rtx pat, void *data1)
883 struct set_of_data *data = (struct set_of_data *) (data1);
884 if (rtx_equal_p (x, data->pat)
885 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
886 data->found = pat;
889 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
890 (either directly or via STRICT_LOW_PART and similar modifiers). */
892 set_of (rtx pat, rtx insn)
894 struct set_of_data data;
895 data.found = NULL_RTX;
896 data.pat = pat;
897 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
898 return data.found;
901 /* Given an INSN, return a SET expression if this insn has only a single SET.
902 It may also have CLOBBERs, USEs, or SET whose output
903 will not be used, which we ignore. */
906 single_set_2 (rtx insn, rtx pat)
908 rtx set = NULL;
909 int set_verified = 1;
910 int i;
912 if (GET_CODE (pat) == PARALLEL)
914 for (i = 0; i < XVECLEN (pat, 0); i++)
916 rtx sub = XVECEXP (pat, 0, i);
917 switch (GET_CODE (sub))
919 case USE:
920 case CLOBBER:
921 break;
923 case SET:
924 /* We can consider insns having multiple sets, where all
925 but one are dead as single set insns. In common case
926 only single set is present in the pattern so we want
927 to avoid checking for REG_UNUSED notes unless necessary.
929 When we reach set first time, we just expect this is
930 the single set we are looking for and only when more
931 sets are found in the insn, we check them. */
932 if (!set_verified)
934 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
935 && !side_effects_p (set))
936 set = NULL;
937 else
938 set_verified = 1;
940 if (!set)
941 set = sub, set_verified = 0;
942 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
943 || side_effects_p (sub))
944 return NULL_RTX;
945 break;
947 default:
948 return NULL_RTX;
952 return set;
955 /* Given an INSN, return nonzero if it has more than one SET, else return
956 zero. */
959 multiple_sets (rtx insn)
961 int found;
962 int i;
964 /* INSN must be an insn. */
965 if (! INSN_P (insn))
966 return 0;
968 /* Only a PARALLEL can have multiple SETs. */
969 if (GET_CODE (PATTERN (insn)) == PARALLEL)
971 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
972 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
974 /* If we have already found a SET, then return now. */
975 if (found)
976 return 1;
977 else
978 found = 1;
982 /* Either zero or one SET. */
983 return 0;
986 /* Return nonzero if the destination of SET equals the source
987 and there are no side effects. */
990 set_noop_p (rtx set)
992 rtx src = SET_SRC (set);
993 rtx dst = SET_DEST (set);
995 if (dst == pc_rtx && src == pc_rtx)
996 return 1;
998 if (MEM_P (dst) && MEM_P (src))
999 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1001 if (GET_CODE (dst) == ZERO_EXTRACT)
1002 return rtx_equal_p (XEXP (dst, 0), src)
1003 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1004 && !side_effects_p (src);
1006 if (GET_CODE (dst) == STRICT_LOW_PART)
1007 dst = XEXP (dst, 0);
1009 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1011 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1012 return 0;
1013 src = SUBREG_REG (src);
1014 dst = SUBREG_REG (dst);
1017 return (REG_P (src) && REG_P (dst)
1018 && REGNO (src) == REGNO (dst));
1021 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1022 value to itself. */
1025 noop_move_p (rtx insn)
1027 rtx pat = PATTERN (insn);
1029 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1030 return 1;
1032 /* Insns carrying these notes are useful later on. */
1033 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1034 return 0;
1036 /* For now treat an insn with a REG_RETVAL note as a
1037 a special insn which should not be considered a no-op. */
1038 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
1039 return 0;
1041 if (GET_CODE (pat) == SET && set_noop_p (pat))
1042 return 1;
1044 if (GET_CODE (pat) == PARALLEL)
1046 int i;
1047 /* If nothing but SETs of registers to themselves,
1048 this insn can also be deleted. */
1049 for (i = 0; i < XVECLEN (pat, 0); i++)
1051 rtx tem = XVECEXP (pat, 0, i);
1053 if (GET_CODE (tem) == USE
1054 || GET_CODE (tem) == CLOBBER)
1055 continue;
1057 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1058 return 0;
1061 return 1;
1063 return 0;
1067 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1068 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1069 If the object was modified, if we hit a partial assignment to X, or hit a
1070 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1071 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1072 be the src. */
1075 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1077 rtx p;
1079 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1080 p = PREV_INSN (p))
1081 if (INSN_P (p))
1083 rtx set = single_set (p);
1084 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1086 if (set && rtx_equal_p (x, SET_DEST (set)))
1088 rtx src = SET_SRC (set);
1090 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1091 src = XEXP (note, 0);
1093 if ((valid_to == NULL_RTX
1094 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1095 /* Reject hard registers because we don't usually want
1096 to use them; we'd rather use a pseudo. */
1097 && (! (REG_P (src)
1098 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1100 *pinsn = p;
1101 return src;
1105 /* If set in non-simple way, we don't have a value. */
1106 if (reg_set_p (x, p))
1107 break;
1110 return x;
1113 /* Return nonzero if register in range [REGNO, ENDREGNO)
1114 appears either explicitly or implicitly in X
1115 other than being stored into.
1117 References contained within the substructure at LOC do not count.
1118 LOC may be zero, meaning don't ignore anything. */
1121 refers_to_regno_p (unsigned int regno, unsigned int endregno, rtx x,
1122 rtx *loc)
1124 int i;
1125 unsigned int x_regno;
1126 RTX_CODE code;
1127 const char *fmt;
1129 repeat:
1130 /* The contents of a REG_NONNEG note is always zero, so we must come here
1131 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1132 if (x == 0)
1133 return 0;
1135 code = GET_CODE (x);
1137 switch (code)
1139 case REG:
1140 x_regno = REGNO (x);
1142 /* If we modifying the stack, frame, or argument pointer, it will
1143 clobber a virtual register. In fact, we could be more precise,
1144 but it isn't worth it. */
1145 if ((x_regno == STACK_POINTER_REGNUM
1146 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1147 || x_regno == ARG_POINTER_REGNUM
1148 #endif
1149 || x_regno == FRAME_POINTER_REGNUM)
1150 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1151 return 1;
1153 return (endregno > x_regno
1154 && regno < x_regno + (x_regno < FIRST_PSEUDO_REGISTER
1155 ? hard_regno_nregs[x_regno][GET_MODE (x)]
1156 : 1));
1158 case SUBREG:
1159 /* If this is a SUBREG of a hard reg, we can see exactly which
1160 registers are being modified. Otherwise, handle normally. */
1161 if (REG_P (SUBREG_REG (x))
1162 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1164 unsigned int inner_regno = subreg_regno (x);
1165 unsigned int inner_endregno
1166 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1167 ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
1169 return endregno > inner_regno && regno < inner_endregno;
1171 break;
1173 case CLOBBER:
1174 case SET:
1175 if (&SET_DEST (x) != loc
1176 /* Note setting a SUBREG counts as referring to the REG it is in for
1177 a pseudo but not for hard registers since we can
1178 treat each word individually. */
1179 && ((GET_CODE (SET_DEST (x)) == SUBREG
1180 && loc != &SUBREG_REG (SET_DEST (x))
1181 && REG_P (SUBREG_REG (SET_DEST (x)))
1182 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1183 && refers_to_regno_p (regno, endregno,
1184 SUBREG_REG (SET_DEST (x)), loc))
1185 || (!REG_P (SET_DEST (x))
1186 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1187 return 1;
1189 if (code == CLOBBER || loc == &SET_SRC (x))
1190 return 0;
1191 x = SET_SRC (x);
1192 goto repeat;
1194 default:
1195 break;
1198 /* X does not match, so try its subexpressions. */
1200 fmt = GET_RTX_FORMAT (code);
1201 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1203 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1205 if (i == 0)
1207 x = XEXP (x, 0);
1208 goto repeat;
1210 else
1211 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1212 return 1;
1214 else if (fmt[i] == 'E')
1216 int j;
1217 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1218 if (loc != &XVECEXP (x, i, j)
1219 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1220 return 1;
1223 return 0;
1226 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1227 we check if any register number in X conflicts with the relevant register
1228 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1229 contains a MEM (we don't bother checking for memory addresses that can't
1230 conflict because we expect this to be a rare case. */
1233 reg_overlap_mentioned_p (rtx x, rtx in)
1235 unsigned int regno, endregno;
1237 /* If either argument is a constant, then modifying X can not
1238 affect IN. Here we look at IN, we can profitably combine
1239 CONSTANT_P (x) with the switch statement below. */
1240 if (CONSTANT_P (in))
1241 return 0;
1243 recurse:
1244 switch (GET_CODE (x))
1246 case STRICT_LOW_PART:
1247 case ZERO_EXTRACT:
1248 case SIGN_EXTRACT:
1249 /* Overly conservative. */
1250 x = XEXP (x, 0);
1251 goto recurse;
1253 case SUBREG:
1254 regno = REGNO (SUBREG_REG (x));
1255 if (regno < FIRST_PSEUDO_REGISTER)
1256 regno = subreg_regno (x);
1257 goto do_reg;
1259 case REG:
1260 regno = REGNO (x);
1261 do_reg:
1262 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1263 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
1264 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1266 case MEM:
1268 const char *fmt;
1269 int i;
1271 if (MEM_P (in))
1272 return 1;
1274 fmt = GET_RTX_FORMAT (GET_CODE (in));
1275 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1276 if (fmt[i] == 'e')
1278 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1279 return 1;
1281 else if (fmt[i] == 'E')
1283 int j;
1284 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1285 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1286 return 1;
1289 return 0;
1292 case SCRATCH:
1293 case PC:
1294 case CC0:
1295 return reg_mentioned_p (x, in);
1297 case PARALLEL:
1299 int i;
1301 /* If any register in here refers to it we return true. */
1302 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1303 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1304 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1305 return 1;
1306 return 0;
1309 default:
1310 gcc_assert (CONSTANT_P (x));
1311 return 0;
1315 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1316 (X would be the pattern of an insn).
1317 FUN receives two arguments:
1318 the REG, MEM, CC0 or PC being stored in or clobbered,
1319 the SET or CLOBBER rtx that does the store.
1321 If the item being stored in or clobbered is a SUBREG of a hard register,
1322 the SUBREG will be passed. */
1324 void
1325 note_stores (rtx x, void (*fun) (rtx, rtx, void *), void *data)
1327 int i;
1329 if (GET_CODE (x) == COND_EXEC)
1330 x = COND_EXEC_CODE (x);
1332 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1334 rtx dest = SET_DEST (x);
1336 while ((GET_CODE (dest) == SUBREG
1337 && (!REG_P (SUBREG_REG (dest))
1338 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1339 || GET_CODE (dest) == ZERO_EXTRACT
1340 || GET_CODE (dest) == STRICT_LOW_PART)
1341 dest = XEXP (dest, 0);
1343 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1344 each of whose first operand is a register. */
1345 if (GET_CODE (dest) == PARALLEL)
1347 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1348 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1349 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1351 else
1352 (*fun) (dest, x, data);
1355 else if (GET_CODE (x) == PARALLEL)
1356 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1357 note_stores (XVECEXP (x, 0, i), fun, data);
1360 /* Like notes_stores, but call FUN for each expression that is being
1361 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1362 FUN for each expression, not any interior subexpressions. FUN receives a
1363 pointer to the expression and the DATA passed to this function.
1365 Note that this is not quite the same test as that done in reg_referenced_p
1366 since that considers something as being referenced if it is being
1367 partially set, while we do not. */
1369 void
1370 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1372 rtx body = *pbody;
1373 int i;
1375 switch (GET_CODE (body))
1377 case COND_EXEC:
1378 (*fun) (&COND_EXEC_TEST (body), data);
1379 note_uses (&COND_EXEC_CODE (body), fun, data);
1380 return;
1382 case PARALLEL:
1383 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1384 note_uses (&XVECEXP (body, 0, i), fun, data);
1385 return;
1387 case USE:
1388 (*fun) (&XEXP (body, 0), data);
1389 return;
1391 case ASM_OPERANDS:
1392 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1393 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1394 return;
1396 case TRAP_IF:
1397 (*fun) (&TRAP_CONDITION (body), data);
1398 return;
1400 case PREFETCH:
1401 (*fun) (&XEXP (body, 0), data);
1402 return;
1404 case UNSPEC:
1405 case UNSPEC_VOLATILE:
1406 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1407 (*fun) (&XVECEXP (body, 0, i), data);
1408 return;
1410 case CLOBBER:
1411 if (MEM_P (XEXP (body, 0)))
1412 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1413 return;
1415 case SET:
1417 rtx dest = SET_DEST (body);
1419 /* For sets we replace everything in source plus registers in memory
1420 expression in store and operands of a ZERO_EXTRACT. */
1421 (*fun) (&SET_SRC (body), data);
1423 if (GET_CODE (dest) == ZERO_EXTRACT)
1425 (*fun) (&XEXP (dest, 1), data);
1426 (*fun) (&XEXP (dest, 2), data);
1429 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1430 dest = XEXP (dest, 0);
1432 if (MEM_P (dest))
1433 (*fun) (&XEXP (dest, 0), data);
1435 return;
1437 default:
1438 /* All the other possibilities never store. */
1439 (*fun) (pbody, data);
1440 return;
1444 /* Return nonzero if X's old contents don't survive after INSN.
1445 This will be true if X is (cc0) or if X is a register and
1446 X dies in INSN or because INSN entirely sets X.
1448 "Entirely set" means set directly and not through a SUBREG, or
1449 ZERO_EXTRACT, so no trace of the old contents remains.
1450 Likewise, REG_INC does not count.
1452 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1453 but for this use that makes no difference, since regs don't overlap
1454 during their lifetimes. Therefore, this function may be used
1455 at any time after deaths have been computed (in flow.c).
1457 If REG is a hard reg that occupies multiple machine registers, this
1458 function will only return 1 if each of those registers will be replaced
1459 by INSN. */
1462 dead_or_set_p (rtx insn, rtx x)
1464 unsigned int regno, last_regno;
1465 unsigned int i;
1467 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1468 if (GET_CODE (x) == CC0)
1469 return 1;
1471 gcc_assert (REG_P (x));
1473 regno = REGNO (x);
1474 last_regno = (regno >= FIRST_PSEUDO_REGISTER ? regno
1475 : regno + hard_regno_nregs[regno][GET_MODE (x)] - 1);
1477 for (i = regno; i <= last_regno; i++)
1478 if (! dead_or_set_regno_p (insn, i))
1479 return 0;
1481 return 1;
1484 /* Return TRUE iff DEST is a register or subreg of a register and
1485 doesn't change the number of words of the inner register, and any
1486 part of the register is TEST_REGNO. */
1488 static bool
1489 covers_regno_no_parallel_p (rtx dest, unsigned int test_regno)
1491 unsigned int regno, endregno;
1493 if (GET_CODE (dest) == SUBREG
1494 && (((GET_MODE_SIZE (GET_MODE (dest))
1495 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1496 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1497 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1498 dest = SUBREG_REG (dest);
1500 if (!REG_P (dest))
1501 return false;
1503 regno = REGNO (dest);
1504 endregno = (regno >= FIRST_PSEUDO_REGISTER ? regno + 1
1505 : regno + hard_regno_nregs[regno][GET_MODE (dest)]);
1506 return (test_regno >= regno && test_regno < endregno);
1509 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1510 any member matches the covers_regno_no_parallel_p criteria. */
1512 static bool
1513 covers_regno_p (rtx dest, unsigned int test_regno)
1515 if (GET_CODE (dest) == PARALLEL)
1517 /* Some targets place small structures in registers for return
1518 values of functions, and those registers are wrapped in
1519 PARALLELs that we may see as the destination of a SET. */
1520 int i;
1522 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1524 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1525 if (inner != NULL_RTX
1526 && covers_regno_no_parallel_p (inner, test_regno))
1527 return true;
1530 return false;
1532 else
1533 return covers_regno_no_parallel_p (dest, test_regno);
1536 /* Utility function for dead_or_set_p to check an individual register. Also
1537 called from flow.c. */
1540 dead_or_set_regno_p (rtx insn, unsigned int test_regno)
1542 rtx pattern;
1544 /* See if there is a death note for something that includes TEST_REGNO. */
1545 if (find_regno_note (insn, REG_DEAD, test_regno))
1546 return 1;
1548 if (CALL_P (insn)
1549 && find_regno_fusage (insn, CLOBBER, test_regno))
1550 return 1;
1552 pattern = PATTERN (insn);
1554 if (GET_CODE (pattern) == COND_EXEC)
1555 pattern = COND_EXEC_CODE (pattern);
1557 if (GET_CODE (pattern) == SET)
1558 return covers_regno_p (SET_DEST (pattern), test_regno);
1559 else if (GET_CODE (pattern) == PARALLEL)
1561 int i;
1563 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1565 rtx body = XVECEXP (pattern, 0, i);
1567 if (GET_CODE (body) == COND_EXEC)
1568 body = COND_EXEC_CODE (body);
1570 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1571 && covers_regno_p (SET_DEST (body), test_regno))
1572 return 1;
1576 return 0;
1579 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1580 If DATUM is nonzero, look for one whose datum is DATUM. */
1583 find_reg_note (rtx insn, enum reg_note kind, rtx datum)
1585 rtx link;
1587 gcc_assert (insn);
1589 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1590 if (! INSN_P (insn))
1591 return 0;
1592 if (datum == 0)
1594 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1595 if (REG_NOTE_KIND (link) == kind)
1596 return link;
1597 return 0;
1600 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1601 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1602 return link;
1603 return 0;
1606 /* Return the reg-note of kind KIND in insn INSN which applies to register
1607 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1608 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1609 it might be the case that the note overlaps REGNO. */
1612 find_regno_note (rtx insn, enum reg_note kind, unsigned int regno)
1614 rtx link;
1616 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1617 if (! INSN_P (insn))
1618 return 0;
1620 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1621 if (REG_NOTE_KIND (link) == kind
1622 /* Verify that it is a register, so that scratch and MEM won't cause a
1623 problem here. */
1624 && REG_P (XEXP (link, 0))
1625 && REGNO (XEXP (link, 0)) <= regno
1626 && ((REGNO (XEXP (link, 0))
1627 + (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
1628 : hard_regno_nregs[REGNO (XEXP (link, 0))]
1629 [GET_MODE (XEXP (link, 0))]))
1630 > regno))
1631 return link;
1632 return 0;
1635 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1636 has such a note. */
1639 find_reg_equal_equiv_note (rtx insn)
1641 rtx link;
1643 if (!INSN_P (insn))
1644 return 0;
1645 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1646 if (REG_NOTE_KIND (link) == REG_EQUAL
1647 || REG_NOTE_KIND (link) == REG_EQUIV)
1649 if (single_set (insn) == 0)
1650 return 0;
1651 return link;
1653 return NULL;
1656 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1657 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1660 find_reg_fusage (rtx insn, enum rtx_code code, rtx datum)
1662 /* If it's not a CALL_INSN, it can't possibly have a
1663 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1664 if (!CALL_P (insn))
1665 return 0;
1667 gcc_assert (datum);
1669 if (!REG_P (datum))
1671 rtx link;
1673 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1674 link;
1675 link = XEXP (link, 1))
1676 if (GET_CODE (XEXP (link, 0)) == code
1677 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1678 return 1;
1680 else
1682 unsigned int regno = REGNO (datum);
1684 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1685 to pseudo registers, so don't bother checking. */
1687 if (regno < FIRST_PSEUDO_REGISTER)
1689 unsigned int end_regno
1690 = regno + hard_regno_nregs[regno][GET_MODE (datum)];
1691 unsigned int i;
1693 for (i = regno; i < end_regno; i++)
1694 if (find_regno_fusage (insn, code, i))
1695 return 1;
1699 return 0;
1702 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1703 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1706 find_regno_fusage (rtx insn, enum rtx_code code, unsigned int regno)
1708 rtx link;
1710 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1711 to pseudo registers, so don't bother checking. */
1713 if (regno >= FIRST_PSEUDO_REGISTER
1714 || !CALL_P (insn) )
1715 return 0;
1717 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1719 unsigned int regnote;
1720 rtx op, reg;
1722 if (GET_CODE (op = XEXP (link, 0)) == code
1723 && REG_P (reg = XEXP (op, 0))
1724 && (regnote = REGNO (reg)) <= regno
1725 && regnote + hard_regno_nregs[regnote][GET_MODE (reg)] > regno)
1726 return 1;
1729 return 0;
1732 /* Return true if INSN is a call to a pure function. */
1735 pure_call_p (rtx insn)
1737 rtx link;
1739 if (!CALL_P (insn) || ! CONST_OR_PURE_CALL_P (insn))
1740 return 0;
1742 /* Look for the note that differentiates const and pure functions. */
1743 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1745 rtx u, m;
1747 if (GET_CODE (u = XEXP (link, 0)) == USE
1748 && MEM_P (m = XEXP (u, 0)) && GET_MODE (m) == BLKmode
1749 && GET_CODE (XEXP (m, 0)) == SCRATCH)
1750 return 1;
1753 return 0;
1756 /* Remove register note NOTE from the REG_NOTES of INSN. */
1758 void
1759 remove_note (rtx insn, rtx note)
1761 rtx link;
1763 if (note == NULL_RTX)
1764 return;
1766 if (REG_NOTES (insn) == note)
1768 REG_NOTES (insn) = XEXP (note, 1);
1769 return;
1772 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1773 if (XEXP (link, 1) == note)
1775 XEXP (link, 1) = XEXP (note, 1);
1776 return;
1779 gcc_unreachable ();
1782 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1783 return 1 if it is found. A simple equality test is used to determine if
1784 NODE matches. */
1787 in_expr_list_p (rtx listp, rtx node)
1789 rtx x;
1791 for (x = listp; x; x = XEXP (x, 1))
1792 if (node == XEXP (x, 0))
1793 return 1;
1795 return 0;
1798 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1799 remove that entry from the list if it is found.
1801 A simple equality test is used to determine if NODE matches. */
1803 void
1804 remove_node_from_expr_list (rtx node, rtx *listp)
1806 rtx temp = *listp;
1807 rtx prev = NULL_RTX;
1809 while (temp)
1811 if (node == XEXP (temp, 0))
1813 /* Splice the node out of the list. */
1814 if (prev)
1815 XEXP (prev, 1) = XEXP (temp, 1);
1816 else
1817 *listp = XEXP (temp, 1);
1819 return;
1822 prev = temp;
1823 temp = XEXP (temp, 1);
1827 /* Nonzero if X contains any volatile instructions. These are instructions
1828 which may cause unpredictable machine state instructions, and thus no
1829 instructions should be moved or combined across them. This includes
1830 only volatile asms and UNSPEC_VOLATILE instructions. */
1833 volatile_insn_p (rtx x)
1835 RTX_CODE code;
1837 code = GET_CODE (x);
1838 switch (code)
1840 case LABEL_REF:
1841 case SYMBOL_REF:
1842 case CONST_INT:
1843 case CONST:
1844 case CONST_DOUBLE:
1845 case CONST_VECTOR:
1846 case CC0:
1847 case PC:
1848 case REG:
1849 case SCRATCH:
1850 case CLOBBER:
1851 case ADDR_VEC:
1852 case ADDR_DIFF_VEC:
1853 case CALL:
1854 case MEM:
1855 return 0;
1857 case UNSPEC_VOLATILE:
1858 /* case TRAP_IF: This isn't clear yet. */
1859 return 1;
1861 case ASM_INPUT:
1862 case ASM_OPERANDS:
1863 if (MEM_VOLATILE_P (x))
1864 return 1;
1866 default:
1867 break;
1870 /* Recursively scan the operands of this expression. */
1873 const char *fmt = GET_RTX_FORMAT (code);
1874 int i;
1876 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1878 if (fmt[i] == 'e')
1880 if (volatile_insn_p (XEXP (x, i)))
1881 return 1;
1883 else if (fmt[i] == 'E')
1885 int j;
1886 for (j = 0; j < XVECLEN (x, i); j++)
1887 if (volatile_insn_p (XVECEXP (x, i, j)))
1888 return 1;
1892 return 0;
1895 /* Nonzero if X contains any volatile memory references
1896 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
1899 volatile_refs_p (rtx x)
1901 RTX_CODE code;
1903 code = GET_CODE (x);
1904 switch (code)
1906 case LABEL_REF:
1907 case SYMBOL_REF:
1908 case CONST_INT:
1909 case CONST:
1910 case CONST_DOUBLE:
1911 case CONST_VECTOR:
1912 case CC0:
1913 case PC:
1914 case REG:
1915 case SCRATCH:
1916 case CLOBBER:
1917 case ADDR_VEC:
1918 case ADDR_DIFF_VEC:
1919 return 0;
1921 case UNSPEC_VOLATILE:
1922 return 1;
1924 case MEM:
1925 case ASM_INPUT:
1926 case ASM_OPERANDS:
1927 if (MEM_VOLATILE_P (x))
1928 return 1;
1930 default:
1931 break;
1934 /* Recursively scan the operands of this expression. */
1937 const char *fmt = GET_RTX_FORMAT (code);
1938 int i;
1940 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1942 if (fmt[i] == 'e')
1944 if (volatile_refs_p (XEXP (x, i)))
1945 return 1;
1947 else if (fmt[i] == 'E')
1949 int j;
1950 for (j = 0; j < XVECLEN (x, i); j++)
1951 if (volatile_refs_p (XVECEXP (x, i, j)))
1952 return 1;
1956 return 0;
1959 /* Similar to above, except that it also rejects register pre- and post-
1960 incrementing. */
1963 side_effects_p (rtx x)
1965 RTX_CODE code;
1967 code = GET_CODE (x);
1968 switch (code)
1970 case LABEL_REF:
1971 case SYMBOL_REF:
1972 case CONST_INT:
1973 case CONST:
1974 case CONST_DOUBLE:
1975 case CONST_VECTOR:
1976 case CC0:
1977 case PC:
1978 case REG:
1979 case SCRATCH:
1980 case ADDR_VEC:
1981 case ADDR_DIFF_VEC:
1982 return 0;
1984 case CLOBBER:
1985 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
1986 when some combination can't be done. If we see one, don't think
1987 that we can simplify the expression. */
1988 return (GET_MODE (x) != VOIDmode);
1990 case PRE_INC:
1991 case PRE_DEC:
1992 case POST_INC:
1993 case POST_DEC:
1994 case PRE_MODIFY:
1995 case POST_MODIFY:
1996 case CALL:
1997 case UNSPEC_VOLATILE:
1998 /* case TRAP_IF: This isn't clear yet. */
1999 return 1;
2001 case MEM:
2002 case ASM_INPUT:
2003 case ASM_OPERANDS:
2004 if (MEM_VOLATILE_P (x))
2005 return 1;
2007 default:
2008 break;
2011 /* Recursively scan the operands of this expression. */
2014 const char *fmt = GET_RTX_FORMAT (code);
2015 int i;
2017 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2019 if (fmt[i] == 'e')
2021 if (side_effects_p (XEXP (x, i)))
2022 return 1;
2024 else if (fmt[i] == 'E')
2026 int j;
2027 for (j = 0; j < XVECLEN (x, i); j++)
2028 if (side_effects_p (XVECEXP (x, i, j)))
2029 return 1;
2033 return 0;
2036 enum may_trap_p_flags
2038 MTP_UNALIGNED_MEMS = 1,
2039 MTP_AFTER_MOVE = 2
2041 /* Return nonzero if evaluating rtx X might cause a trap.
2042 (FLAGS & MTP_UNALIGNED_MEMS) controls whether nonzero is returned for
2043 unaligned memory accesses on strict alignment machines. If
2044 (FLAGS & AFTER_MOVE) is true, returns nonzero even in case the expression
2045 cannot trap at its current location, but it might become trapping if moved
2046 elsewhere. */
2048 static int
2049 may_trap_p_1 (rtx x, unsigned flags)
2051 int i;
2052 enum rtx_code code;
2053 const char *fmt;
2054 bool unaligned_mems = (flags & MTP_UNALIGNED_MEMS) != 0;
2056 if (x == 0)
2057 return 0;
2058 code = GET_CODE (x);
2059 switch (code)
2061 /* Handle these cases quickly. */
2062 case CONST_INT:
2063 case CONST_DOUBLE:
2064 case CONST_VECTOR:
2065 case SYMBOL_REF:
2066 case LABEL_REF:
2067 case CONST:
2068 case PC:
2069 case CC0:
2070 case REG:
2071 case SCRATCH:
2072 return 0;
2074 case ASM_INPUT:
2075 case UNSPEC_VOLATILE:
2076 case TRAP_IF:
2077 return 1;
2079 case ASM_OPERANDS:
2080 return MEM_VOLATILE_P (x);
2082 /* Memory ref can trap unless it's a static var or a stack slot. */
2083 case MEM:
2084 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2085 reference; moving it out of condition might cause its address
2086 become invalid. */
2087 !(flags & MTP_AFTER_MOVE)
2088 && MEM_NOTRAP_P (x)
2089 && (!STRICT_ALIGNMENT || !unaligned_mems))
2090 return 0;
2091 return
2092 rtx_addr_can_trap_p_1 (XEXP (x, 0), GET_MODE (x), unaligned_mems);
2094 /* Division by a non-constant might trap. */
2095 case DIV:
2096 case MOD:
2097 case UDIV:
2098 case UMOD:
2099 if (HONOR_SNANS (GET_MODE (x)))
2100 return 1;
2101 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2102 return flag_trapping_math;
2103 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2104 return 1;
2105 break;
2107 case EXPR_LIST:
2108 /* An EXPR_LIST is used to represent a function call. This
2109 certainly may trap. */
2110 return 1;
2112 case GE:
2113 case GT:
2114 case LE:
2115 case LT:
2116 case LTGT:
2117 case COMPARE:
2118 /* Some floating point comparisons may trap. */
2119 if (!flag_trapping_math)
2120 break;
2121 /* ??? There is no machine independent way to check for tests that trap
2122 when COMPARE is used, though many targets do make this distinction.
2123 For instance, sparc uses CCFPE for compares which generate exceptions
2124 and CCFP for compares which do not generate exceptions. */
2125 if (HONOR_NANS (GET_MODE (x)))
2126 return 1;
2127 /* But often the compare has some CC mode, so check operand
2128 modes as well. */
2129 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2130 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2131 return 1;
2132 break;
2134 case EQ:
2135 case NE:
2136 if (HONOR_SNANS (GET_MODE (x)))
2137 return 1;
2138 /* Often comparison is CC mode, so check operand modes. */
2139 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2140 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2141 return 1;
2142 break;
2144 case FIX:
2145 /* Conversion of floating point might trap. */
2146 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2147 return 1;
2148 break;
2150 case NEG:
2151 case ABS:
2152 case SUBREG:
2153 /* These operations don't trap even with floating point. */
2154 break;
2156 default:
2157 /* Any floating arithmetic may trap. */
2158 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2159 && flag_trapping_math)
2160 return 1;
2163 fmt = GET_RTX_FORMAT (code);
2164 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2166 if (fmt[i] == 'e')
2168 if (may_trap_p_1 (XEXP (x, i), flags))
2169 return 1;
2171 else if (fmt[i] == 'E')
2173 int j;
2174 for (j = 0; j < XVECLEN (x, i); j++)
2175 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2176 return 1;
2179 return 0;
2182 /* Return nonzero if evaluating rtx X might cause a trap. */
2185 may_trap_p (rtx x)
2187 return may_trap_p_1 (x, 0);
2190 /* Return nonzero if evaluating rtx X might cause a trap, when the expression
2191 is moved from its current location by some optimization. */
2194 may_trap_after_code_motion_p (rtx x)
2196 return may_trap_p_1 (x, MTP_AFTER_MOVE);
2199 /* Same as above, but additionally return nonzero if evaluating rtx X might
2200 cause a fault. We define a fault for the purpose of this function as a
2201 erroneous execution condition that cannot be encountered during the normal
2202 execution of a valid program; the typical example is an unaligned memory
2203 access on a strict alignment machine. The compiler guarantees that it
2204 doesn't generate code that will fault from a valid program, but this
2205 guarantee doesn't mean anything for individual instructions. Consider
2206 the following example:
2208 struct S { int d; union { char *cp; int *ip; }; };
2210 int foo(struct S *s)
2212 if (s->d == 1)
2213 return *s->ip;
2214 else
2215 return *s->cp;
2218 on a strict alignment machine. In a valid program, foo will never be
2219 invoked on a structure for which d is equal to 1 and the underlying
2220 unique field of the union not aligned on a 4-byte boundary, but the
2221 expression *s->ip might cause a fault if considered individually.
2223 At the RTL level, potentially problematic expressions will almost always
2224 verify may_trap_p; for example, the above dereference can be emitted as
2225 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2226 However, suppose that foo is inlined in a caller that causes s->cp to
2227 point to a local character variable and guarantees that s->d is not set
2228 to 1; foo may have been effectively translated into pseudo-RTL as:
2230 if ((reg:SI) == 1)
2231 (set (reg:SI) (mem:SI (%fp - 7)))
2232 else
2233 (set (reg:QI) (mem:QI (%fp - 7)))
2235 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2236 memory reference to a stack slot, but it will certainly cause a fault
2237 on a strict alignment machine. */
2240 may_trap_or_fault_p (rtx x)
2242 return may_trap_p_1 (x, MTP_UNALIGNED_MEMS);
2245 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2246 i.e., an inequality. */
2249 inequality_comparisons_p (rtx x)
2251 const char *fmt;
2252 int len, i;
2253 enum rtx_code code = GET_CODE (x);
2255 switch (code)
2257 case REG:
2258 case SCRATCH:
2259 case PC:
2260 case CC0:
2261 case CONST_INT:
2262 case CONST_DOUBLE:
2263 case CONST_VECTOR:
2264 case CONST:
2265 case LABEL_REF:
2266 case SYMBOL_REF:
2267 return 0;
2269 case LT:
2270 case LTU:
2271 case GT:
2272 case GTU:
2273 case LE:
2274 case LEU:
2275 case GE:
2276 case GEU:
2277 return 1;
2279 default:
2280 break;
2283 len = GET_RTX_LENGTH (code);
2284 fmt = GET_RTX_FORMAT (code);
2286 for (i = 0; i < len; i++)
2288 if (fmt[i] == 'e')
2290 if (inequality_comparisons_p (XEXP (x, i)))
2291 return 1;
2293 else if (fmt[i] == 'E')
2295 int j;
2296 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2297 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2298 return 1;
2302 return 0;
2305 /* Replace any occurrence of FROM in X with TO. The function does
2306 not enter into CONST_DOUBLE for the replace.
2308 Note that copying is not done so X must not be shared unless all copies
2309 are to be modified. */
2312 replace_rtx (rtx x, rtx from, rtx to)
2314 int i, j;
2315 const char *fmt;
2317 /* The following prevents loops occurrence when we change MEM in
2318 CONST_DOUBLE onto the same CONST_DOUBLE. */
2319 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2320 return x;
2322 if (x == from)
2323 return to;
2325 /* Allow this function to make replacements in EXPR_LISTs. */
2326 if (x == 0)
2327 return 0;
2329 if (GET_CODE (x) == SUBREG)
2331 rtx new = replace_rtx (SUBREG_REG (x), from, to);
2333 if (GET_CODE (new) == CONST_INT)
2335 x = simplify_subreg (GET_MODE (x), new,
2336 GET_MODE (SUBREG_REG (x)),
2337 SUBREG_BYTE (x));
2338 gcc_assert (x);
2340 else
2341 SUBREG_REG (x) = new;
2343 return x;
2345 else if (GET_CODE (x) == ZERO_EXTEND)
2347 rtx new = replace_rtx (XEXP (x, 0), from, to);
2349 if (GET_CODE (new) == CONST_INT)
2351 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2352 new, GET_MODE (XEXP (x, 0)));
2353 gcc_assert (x);
2355 else
2356 XEXP (x, 0) = new;
2358 return x;
2361 fmt = GET_RTX_FORMAT (GET_CODE (x));
2362 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2364 if (fmt[i] == 'e')
2365 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2366 else if (fmt[i] == 'E')
2367 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2368 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2371 return x;
2374 /* Replace occurrences of the old label in *X with the new one.
2375 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2378 replace_label (rtx *x, void *data)
2380 rtx l = *x;
2381 rtx old_label = ((replace_label_data *) data)->r1;
2382 rtx new_label = ((replace_label_data *) data)->r2;
2383 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2385 if (l == NULL_RTX)
2386 return 0;
2388 if (GET_CODE (l) == SYMBOL_REF
2389 && CONSTANT_POOL_ADDRESS_P (l))
2391 rtx c = get_pool_constant (l);
2392 if (rtx_referenced_p (old_label, c))
2394 rtx new_c, new_l;
2395 replace_label_data *d = (replace_label_data *) data;
2397 /* Create a copy of constant C; replace the label inside
2398 but do not update LABEL_NUSES because uses in constant pool
2399 are not counted. */
2400 new_c = copy_rtx (c);
2401 d->update_label_nuses = false;
2402 for_each_rtx (&new_c, replace_label, data);
2403 d->update_label_nuses = update_label_nuses;
2405 /* Add the new constant NEW_C to constant pool and replace
2406 the old reference to constant by new reference. */
2407 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2408 *x = replace_rtx (l, l, new_l);
2410 return 0;
2413 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2414 field. This is not handled by for_each_rtx because it doesn't
2415 handle unprinted ('0') fields. */
2416 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2417 JUMP_LABEL (l) = new_label;
2419 if ((GET_CODE (l) == LABEL_REF
2420 || GET_CODE (l) == INSN_LIST)
2421 && XEXP (l, 0) == old_label)
2423 XEXP (l, 0) = new_label;
2424 if (update_label_nuses)
2426 ++LABEL_NUSES (new_label);
2427 --LABEL_NUSES (old_label);
2429 return 0;
2432 return 0;
2435 /* When *BODY is equal to X or X is directly referenced by *BODY
2436 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2437 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2439 static int
2440 rtx_referenced_p_1 (rtx *body, void *x)
2442 rtx y = (rtx) x;
2444 if (*body == NULL_RTX)
2445 return y == NULL_RTX;
2447 /* Return true if a label_ref *BODY refers to label Y. */
2448 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2449 return XEXP (*body, 0) == y;
2451 /* If *BODY is a reference to pool constant traverse the constant. */
2452 if (GET_CODE (*body) == SYMBOL_REF
2453 && CONSTANT_POOL_ADDRESS_P (*body))
2454 return rtx_referenced_p (y, get_pool_constant (*body));
2456 /* By default, compare the RTL expressions. */
2457 return rtx_equal_p (*body, y);
2460 /* Return true if X is referenced in BODY. */
2463 rtx_referenced_p (rtx x, rtx body)
2465 return for_each_rtx (&body, rtx_referenced_p_1, x);
2468 /* If INSN is a tablejump return true and store the label (before jump table) to
2469 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2471 bool
2472 tablejump_p (rtx insn, rtx *labelp, rtx *tablep)
2474 rtx label, table;
2476 if (JUMP_P (insn)
2477 && (label = JUMP_LABEL (insn)) != NULL_RTX
2478 && (table = next_active_insn (label)) != NULL_RTX
2479 && JUMP_P (table)
2480 && (GET_CODE (PATTERN (table)) == ADDR_VEC
2481 || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
2483 if (labelp)
2484 *labelp = label;
2485 if (tablep)
2486 *tablep = table;
2487 return true;
2489 return false;
2492 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2493 constant that is not in the constant pool and not in the condition
2494 of an IF_THEN_ELSE. */
2496 static int
2497 computed_jump_p_1 (rtx x)
2499 enum rtx_code code = GET_CODE (x);
2500 int i, j;
2501 const char *fmt;
2503 switch (code)
2505 case LABEL_REF:
2506 case PC:
2507 return 0;
2509 case CONST:
2510 case CONST_INT:
2511 case CONST_DOUBLE:
2512 case CONST_VECTOR:
2513 case SYMBOL_REF:
2514 case REG:
2515 return 1;
2517 case MEM:
2518 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2519 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2521 case IF_THEN_ELSE:
2522 return (computed_jump_p_1 (XEXP (x, 1))
2523 || computed_jump_p_1 (XEXP (x, 2)));
2525 default:
2526 break;
2529 fmt = GET_RTX_FORMAT (code);
2530 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2532 if (fmt[i] == 'e'
2533 && computed_jump_p_1 (XEXP (x, i)))
2534 return 1;
2536 else if (fmt[i] == 'E')
2537 for (j = 0; j < XVECLEN (x, i); j++)
2538 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2539 return 1;
2542 return 0;
2545 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2547 Tablejumps and casesi insns are not considered indirect jumps;
2548 we can recognize them by a (use (label_ref)). */
2551 computed_jump_p (rtx insn)
2553 int i;
2554 if (JUMP_P (insn))
2556 rtx pat = PATTERN (insn);
2558 if (find_reg_note (insn, REG_LABEL, NULL_RTX))
2559 return 0;
2560 else if (GET_CODE (pat) == PARALLEL)
2562 int len = XVECLEN (pat, 0);
2563 int has_use_labelref = 0;
2565 for (i = len - 1; i >= 0; i--)
2566 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2567 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2568 == LABEL_REF))
2569 has_use_labelref = 1;
2571 if (! has_use_labelref)
2572 for (i = len - 1; i >= 0; i--)
2573 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2574 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2575 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2576 return 1;
2578 else if (GET_CODE (pat) == SET
2579 && SET_DEST (pat) == pc_rtx
2580 && computed_jump_p_1 (SET_SRC (pat)))
2581 return 1;
2583 return 0;
2586 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2587 calls. Processes the subexpressions of EXP and passes them to F. */
2588 static int
2589 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2591 int result, i, j;
2592 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2593 rtx *x;
2595 for (; format[n] != '\0'; n++)
2597 switch (format[n])
2599 case 'e':
2600 /* Call F on X. */
2601 x = &XEXP (exp, n);
2602 result = (*f) (x, data);
2603 if (result == -1)
2604 /* Do not traverse sub-expressions. */
2605 continue;
2606 else if (result != 0)
2607 /* Stop the traversal. */
2608 return result;
2610 if (*x == NULL_RTX)
2611 /* There are no sub-expressions. */
2612 continue;
2614 i = non_rtx_starting_operands[GET_CODE (*x)];
2615 if (i >= 0)
2617 result = for_each_rtx_1 (*x, i, f, data);
2618 if (result != 0)
2619 return result;
2621 break;
2623 case 'V':
2624 case 'E':
2625 if (XVEC (exp, n) == 0)
2626 continue;
2627 for (j = 0; j < XVECLEN (exp, n); ++j)
2629 /* Call F on X. */
2630 x = &XVECEXP (exp, n, j);
2631 result = (*f) (x, data);
2632 if (result == -1)
2633 /* Do not traverse sub-expressions. */
2634 continue;
2635 else if (result != 0)
2636 /* Stop the traversal. */
2637 return result;
2639 if (*x == NULL_RTX)
2640 /* There are no sub-expressions. */
2641 continue;
2643 i = non_rtx_starting_operands[GET_CODE (*x)];
2644 if (i >= 0)
2646 result = for_each_rtx_1 (*x, i, f, data);
2647 if (result != 0)
2648 return result;
2651 break;
2653 default:
2654 /* Nothing to do. */
2655 break;
2659 return 0;
2662 /* Traverse X via depth-first search, calling F for each
2663 sub-expression (including X itself). F is also passed the DATA.
2664 If F returns -1, do not traverse sub-expressions, but continue
2665 traversing the rest of the tree. If F ever returns any other
2666 nonzero value, stop the traversal, and return the value returned
2667 by F. Otherwise, return 0. This function does not traverse inside
2668 tree structure that contains RTX_EXPRs, or into sub-expressions
2669 whose format code is `0' since it is not known whether or not those
2670 codes are actually RTL.
2672 This routine is very general, and could (should?) be used to
2673 implement many of the other routines in this file. */
2676 for_each_rtx (rtx *x, rtx_function f, void *data)
2678 int result;
2679 int i;
2681 /* Call F on X. */
2682 result = (*f) (x, data);
2683 if (result == -1)
2684 /* Do not traverse sub-expressions. */
2685 return 0;
2686 else if (result != 0)
2687 /* Stop the traversal. */
2688 return result;
2690 if (*x == NULL_RTX)
2691 /* There are no sub-expressions. */
2692 return 0;
2694 i = non_rtx_starting_operands[GET_CODE (*x)];
2695 if (i < 0)
2696 return 0;
2698 return for_each_rtx_1 (*x, i, f, data);
2702 /* Searches X for any reference to REGNO, returning the rtx of the
2703 reference found if any. Otherwise, returns NULL_RTX. */
2706 regno_use_in (unsigned int regno, rtx x)
2708 const char *fmt;
2709 int i, j;
2710 rtx tem;
2712 if (REG_P (x) && REGNO (x) == regno)
2713 return x;
2715 fmt = GET_RTX_FORMAT (GET_CODE (x));
2716 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2718 if (fmt[i] == 'e')
2720 if ((tem = regno_use_in (regno, XEXP (x, i))))
2721 return tem;
2723 else if (fmt[i] == 'E')
2724 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2725 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2726 return tem;
2729 return NULL_RTX;
2732 /* Return a value indicating whether OP, an operand of a commutative
2733 operation, is preferred as the first or second operand. The higher
2734 the value, the stronger the preference for being the first operand.
2735 We use negative values to indicate a preference for the first operand
2736 and positive values for the second operand. */
2739 commutative_operand_precedence (rtx op)
2741 enum rtx_code code = GET_CODE (op);
2743 /* Constants always come the second operand. Prefer "nice" constants. */
2744 if (code == CONST_INT)
2745 return -7;
2746 if (code == CONST_DOUBLE)
2747 return -6;
2748 op = avoid_constant_pool_reference (op);
2749 code = GET_CODE (op);
2751 switch (GET_RTX_CLASS (code))
2753 case RTX_CONST_OBJ:
2754 if (code == CONST_INT)
2755 return -5;
2756 if (code == CONST_DOUBLE)
2757 return -4;
2758 return -3;
2760 case RTX_EXTRA:
2761 /* SUBREGs of objects should come second. */
2762 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2763 return -2;
2765 if (!CONSTANT_P (op))
2766 return 0;
2767 else
2768 /* As for RTX_CONST_OBJ. */
2769 return -3;
2771 case RTX_OBJ:
2772 /* Complex expressions should be the first, so decrease priority
2773 of objects. */
2774 return -1;
2776 case RTX_COMM_ARITH:
2777 /* Prefer operands that are themselves commutative to be first.
2778 This helps to make things linear. In particular,
2779 (and (and (reg) (reg)) (not (reg))) is canonical. */
2780 return 4;
2782 case RTX_BIN_ARITH:
2783 /* If only one operand is a binary expression, it will be the first
2784 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2785 is canonical, although it will usually be further simplified. */
2786 return 2;
2788 case RTX_UNARY:
2789 /* Then prefer NEG and NOT. */
2790 if (code == NEG || code == NOT)
2791 return 1;
2793 default:
2794 return 0;
2798 /* Return 1 iff it is necessary to swap operands of commutative operation
2799 in order to canonicalize expression. */
2802 swap_commutative_operands_p (rtx x, rtx y)
2804 return (commutative_operand_precedence (x)
2805 < commutative_operand_precedence (y));
2808 /* Return 1 if X is an autoincrement side effect and the register is
2809 not the stack pointer. */
2811 auto_inc_p (rtx x)
2813 switch (GET_CODE (x))
2815 case PRE_INC:
2816 case POST_INC:
2817 case PRE_DEC:
2818 case POST_DEC:
2819 case PRE_MODIFY:
2820 case POST_MODIFY:
2821 /* There are no REG_INC notes for SP. */
2822 if (XEXP (x, 0) != stack_pointer_rtx)
2823 return 1;
2824 default:
2825 break;
2827 return 0;
2830 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
2832 loc_mentioned_in_p (rtx *loc, rtx in)
2834 enum rtx_code code = GET_CODE (in);
2835 const char *fmt = GET_RTX_FORMAT (code);
2836 int i, j;
2838 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2840 if (loc == &in->u.fld[i].rt_rtx)
2841 return 1;
2842 if (fmt[i] == 'e')
2844 if (loc_mentioned_in_p (loc, XEXP (in, i)))
2845 return 1;
2847 else if (fmt[i] == 'E')
2848 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
2849 if (loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
2850 return 1;
2852 return 0;
2855 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
2856 and SUBREG_BYTE, return the bit offset where the subreg begins
2857 (counting from the least significant bit of the operand). */
2859 unsigned int
2860 subreg_lsb_1 (enum machine_mode outer_mode,
2861 enum machine_mode inner_mode,
2862 unsigned int subreg_byte)
2864 unsigned int bitpos;
2865 unsigned int byte;
2866 unsigned int word;
2868 /* A paradoxical subreg begins at bit position 0. */
2869 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
2870 return 0;
2872 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2873 /* If the subreg crosses a word boundary ensure that
2874 it also begins and ends on a word boundary. */
2875 gcc_assert (!((subreg_byte % UNITS_PER_WORD
2876 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
2877 && (subreg_byte % UNITS_PER_WORD
2878 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
2880 if (WORDS_BIG_ENDIAN)
2881 word = (GET_MODE_SIZE (inner_mode)
2882 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
2883 else
2884 word = subreg_byte / UNITS_PER_WORD;
2885 bitpos = word * BITS_PER_WORD;
2887 if (BYTES_BIG_ENDIAN)
2888 byte = (GET_MODE_SIZE (inner_mode)
2889 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
2890 else
2891 byte = subreg_byte % UNITS_PER_WORD;
2892 bitpos += byte * BITS_PER_UNIT;
2894 return bitpos;
2897 /* Given a subreg X, return the bit offset where the subreg begins
2898 (counting from the least significant bit of the reg). */
2900 unsigned int
2901 subreg_lsb (rtx x)
2903 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
2904 SUBREG_BYTE (x));
2907 /* This function returns the regno offset of a subreg expression.
2908 xregno - A regno of an inner hard subreg_reg (or what will become one).
2909 xmode - The mode of xregno.
2910 offset - The byte offset.
2911 ymode - The mode of a top level SUBREG (or what may become one).
2912 RETURN - The regno offset which would be used. */
2913 unsigned int
2914 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
2915 unsigned int offset, enum machine_mode ymode)
2917 int nregs_xmode, nregs_ymode, nregs_xmode_unit_int;
2918 int mode_multiple, nregs_multiple;
2919 int y_offset;
2920 enum machine_mode xmode_unit, xmode_unit_int;
2922 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
2924 if (GET_MODE_INNER (xmode) == VOIDmode)
2925 xmode_unit = xmode;
2926 else
2927 xmode_unit = GET_MODE_INNER (xmode);
2929 if (FLOAT_MODE_P (xmode_unit))
2931 xmode_unit_int = int_mode_for_mode (xmode_unit);
2932 if (xmode_unit_int == BLKmode)
2933 /* It's probably bad to be here; a port should have an integer mode
2934 that's the same size as anything of which it takes a SUBREG. */
2935 xmode_unit_int = xmode_unit;
2937 else
2938 xmode_unit_int = xmode_unit;
2940 nregs_xmode_unit_int = hard_regno_nregs[xregno][xmode_unit_int];
2942 /* Adjust nregs_xmode to allow for 'holes'. */
2943 if (nregs_xmode_unit_int != hard_regno_nregs[xregno][xmode_unit])
2944 nregs_xmode = nregs_xmode_unit_int * GET_MODE_NUNITS (xmode);
2945 else
2946 nregs_xmode = hard_regno_nregs[xregno][xmode];
2948 nregs_ymode = hard_regno_nregs[xregno][ymode];
2950 /* If this is a big endian paradoxical subreg, which uses more actual
2951 hard registers than the original register, we must return a negative
2952 offset so that we find the proper highpart of the register. */
2953 if (offset == 0
2954 && nregs_ymode > nregs_xmode
2955 && (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
2956 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
2957 return nregs_xmode - nregs_ymode;
2959 if (offset == 0 || nregs_xmode == nregs_ymode)
2960 return 0;
2962 /* Size of ymode must not be greater than the size of xmode. */
2963 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
2964 gcc_assert (mode_multiple != 0);
2966 y_offset = offset / GET_MODE_SIZE (ymode);
2967 nregs_multiple = nregs_xmode / nregs_ymode;
2968 return (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
2971 /* This function returns true when the offset is representable via
2972 subreg_offset in the given regno.
2973 xregno - A regno of an inner hard subreg_reg (or what will become one).
2974 xmode - The mode of xregno.
2975 offset - The byte offset.
2976 ymode - The mode of a top level SUBREG (or what may become one).
2977 RETURN - Whether the offset is representable. */
2978 bool
2979 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
2980 unsigned int offset, enum machine_mode ymode)
2982 int nregs_xmode, nregs_ymode, nregs_xmode_unit, nregs_xmode_unit_int;
2983 int mode_multiple, nregs_multiple;
2984 int y_offset;
2985 enum machine_mode xmode_unit, xmode_unit_int;
2987 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
2989 if (GET_MODE_INNER (xmode) == VOIDmode)
2990 xmode_unit = xmode;
2991 else
2992 xmode_unit = GET_MODE_INNER (xmode);
2994 if (FLOAT_MODE_P (xmode_unit))
2996 xmode_unit_int = int_mode_for_mode (xmode_unit);
2997 if (xmode_unit_int == BLKmode)
2998 /* It's probably bad to be here; a port should have an integer mode
2999 that's the same size as anything of which it takes a SUBREG. */
3000 xmode_unit_int = xmode_unit;
3002 else
3003 xmode_unit_int = xmode_unit;
3005 nregs_xmode_unit = hard_regno_nregs[xregno][xmode_unit];
3006 nregs_xmode_unit_int = hard_regno_nregs[xregno][xmode_unit_int];
3008 /* If there are holes in a non-scalar mode in registers, we expect
3009 that it is made up of its units concatenated together. */
3010 if (nregs_xmode_unit != nregs_xmode_unit_int)
3012 gcc_assert (nregs_xmode_unit * GET_MODE_NUNITS (xmode)
3013 == hard_regno_nregs[xregno][xmode]);
3015 /* You can only ask for a SUBREG of a value with holes in the middle
3016 if you don't cross the holes. (Such a SUBREG should be done by
3017 picking a different register class, or doing it in memory if
3018 necessary.) An example of a value with holes is XCmode on 32-bit
3019 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3020 3 for each part, but in memory it's two 128-bit parts.
3021 Padding is assumed to be at the end (not necessarily the 'high part')
3022 of each unit. */
3023 if (nregs_xmode_unit != nregs_xmode_unit_int
3024 && (offset / GET_MODE_SIZE (xmode_unit_int) + 1
3025 < GET_MODE_NUNITS (xmode))
3026 && (offset / GET_MODE_SIZE (xmode_unit_int)
3027 != ((offset + GET_MODE_SIZE (ymode) - 1)
3028 / GET_MODE_SIZE (xmode_unit_int))))
3029 return false;
3031 nregs_xmode = nregs_xmode_unit_int * GET_MODE_NUNITS (xmode);
3033 else
3034 nregs_xmode = hard_regno_nregs[xregno][xmode];
3036 nregs_ymode = hard_regno_nregs[xregno][ymode];
3038 /* Paradoxical subregs are otherwise valid. */
3039 if (offset == 0
3040 && nregs_ymode > nregs_xmode
3041 && (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3042 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
3043 return true;
3045 /* Lowpart subregs are otherwise valid. */
3046 if (offset == subreg_lowpart_offset (ymode, xmode))
3047 return true;
3049 /* This should always pass, otherwise we don't know how to verify
3050 the constraint. These conditions may be relaxed but
3051 subreg_regno_offset would need to be redesigned. */
3052 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3053 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3055 /* The XMODE value can be seen as a vector of NREGS_XMODE
3056 values. The subreg must represent a lowpart of given field.
3057 Compute what field it is. */
3058 offset -= subreg_lowpart_offset (ymode,
3059 mode_for_size (GET_MODE_BITSIZE (xmode)
3060 / nregs_xmode,
3061 MODE_INT, 0));
3063 /* Size of ymode must not be greater than the size of xmode. */
3064 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3065 gcc_assert (mode_multiple != 0);
3067 y_offset = offset / GET_MODE_SIZE (ymode);
3068 nregs_multiple = nregs_xmode / nregs_ymode;
3070 gcc_assert ((offset % GET_MODE_SIZE (ymode)) == 0);
3071 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3073 return (!(y_offset % (mode_multiple / nregs_multiple)));
3076 /* Return the final regno that a subreg expression refers to. */
3077 unsigned int
3078 subreg_regno (rtx x)
3080 unsigned int ret;
3081 rtx subreg = SUBREG_REG (x);
3082 int regno = REGNO (subreg);
3084 ret = regno + subreg_regno_offset (regno,
3085 GET_MODE (subreg),
3086 SUBREG_BYTE (x),
3087 GET_MODE (x));
3088 return ret;
3091 struct parms_set_data
3093 int nregs;
3094 HARD_REG_SET regs;
3097 /* Helper function for noticing stores to parameter registers. */
3098 static void
3099 parms_set (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
3101 struct parms_set_data *d = data;
3102 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3103 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3105 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3106 d->nregs--;
3110 /* Look backward for first parameter to be loaded.
3111 Note that loads of all parameters will not necessarily be
3112 found if CSE has eliminated some of them (e.g., an argument
3113 to the outer function is passed down as a parameter).
3114 Do not skip BOUNDARY. */
3116 find_first_parameter_load (rtx call_insn, rtx boundary)
3118 struct parms_set_data parm;
3119 rtx p, before, first_set;
3121 /* Since different machines initialize their parameter registers
3122 in different orders, assume nothing. Collect the set of all
3123 parameter registers. */
3124 CLEAR_HARD_REG_SET (parm.regs);
3125 parm.nregs = 0;
3126 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3127 if (GET_CODE (XEXP (p, 0)) == USE
3128 && REG_P (XEXP (XEXP (p, 0), 0)))
3130 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3132 /* We only care about registers which can hold function
3133 arguments. */
3134 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3135 continue;
3137 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3138 parm.nregs++;
3140 before = call_insn;
3141 first_set = call_insn;
3143 /* Search backward for the first set of a register in this set. */
3144 while (parm.nregs && before != boundary)
3146 before = PREV_INSN (before);
3148 /* It is possible that some loads got CSEed from one call to
3149 another. Stop in that case. */
3150 if (CALL_P (before))
3151 break;
3153 /* Our caller needs either ensure that we will find all sets
3154 (in case code has not been optimized yet), or take care
3155 for possible labels in a way by setting boundary to preceding
3156 CODE_LABEL. */
3157 if (LABEL_P (before))
3159 gcc_assert (before == boundary);
3160 break;
3163 if (INSN_P (before))
3165 int nregs_old = parm.nregs;
3166 note_stores (PATTERN (before), parms_set, &parm);
3167 /* If we found something that did not set a parameter reg,
3168 we're done. Do not keep going, as that might result
3169 in hoisting an insn before the setting of a pseudo
3170 that is used by the hoisted insn. */
3171 if (nregs_old != parm.nregs)
3172 first_set = before;
3173 else
3174 break;
3177 return first_set;
3180 /* Return true if we should avoid inserting code between INSN and preceding
3181 call instruction. */
3183 bool
3184 keep_with_call_p (rtx insn)
3186 rtx set;
3188 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3190 if (REG_P (SET_DEST (set))
3191 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3192 && fixed_regs[REGNO (SET_DEST (set))]
3193 && general_operand (SET_SRC (set), VOIDmode))
3194 return true;
3195 if (REG_P (SET_SRC (set))
3196 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
3197 && REG_P (SET_DEST (set))
3198 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3199 return true;
3200 /* There may be a stack pop just after the call and before the store
3201 of the return register. Search for the actual store when deciding
3202 if we can break or not. */
3203 if (SET_DEST (set) == stack_pointer_rtx)
3205 rtx i2 = next_nonnote_insn (insn);
3206 if (i2 && keep_with_call_p (i2))
3207 return true;
3210 return false;
3213 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3214 to non-complex jumps. That is, direct unconditional, conditional,
3215 and tablejumps, but not computed jumps or returns. It also does
3216 not apply to the fallthru case of a conditional jump. */
3218 bool
3219 label_is_jump_target_p (rtx label, rtx jump_insn)
3221 rtx tmp = JUMP_LABEL (jump_insn);
3223 if (label == tmp)
3224 return true;
3226 if (tablejump_p (jump_insn, NULL, &tmp))
3228 rtvec vec = XVEC (PATTERN (tmp),
3229 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3230 int i, veclen = GET_NUM_ELEM (vec);
3232 for (i = 0; i < veclen; ++i)
3233 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3234 return true;
3237 return false;
3241 /* Return an estimate of the cost of computing rtx X.
3242 One use is in cse, to decide which expression to keep in the hash table.
3243 Another is in rtl generation, to pick the cheapest way to multiply.
3244 Other uses like the latter are expected in the future. */
3247 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED)
3249 int i, j;
3250 enum rtx_code code;
3251 const char *fmt;
3252 int total;
3254 if (x == 0)
3255 return 0;
3257 /* Compute the default costs of certain things.
3258 Note that targetm.rtx_costs can override the defaults. */
3260 code = GET_CODE (x);
3261 switch (code)
3263 case MULT:
3264 total = COSTS_N_INSNS (5);
3265 break;
3266 case DIV:
3267 case UDIV:
3268 case MOD:
3269 case UMOD:
3270 total = COSTS_N_INSNS (7);
3271 break;
3272 case USE:
3273 /* Used in loop.c and combine.c as a marker. */
3274 total = 0;
3275 break;
3276 default:
3277 total = COSTS_N_INSNS (1);
3280 switch (code)
3282 case REG:
3283 return 0;
3285 case SUBREG:
3286 total = 0;
3287 /* If we can't tie these modes, make this expensive. The larger
3288 the mode, the more expensive it is. */
3289 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3290 return COSTS_N_INSNS (2
3291 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3292 break;
3294 default:
3295 if (targetm.rtx_costs (x, code, outer_code, &total))
3296 return total;
3297 break;
3300 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3301 which is already in total. */
3303 fmt = GET_RTX_FORMAT (code);
3304 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3305 if (fmt[i] == 'e')
3306 total += rtx_cost (XEXP (x, i), code);
3307 else if (fmt[i] == 'E')
3308 for (j = 0; j < XVECLEN (x, i); j++)
3309 total += rtx_cost (XVECEXP (x, i, j), code);
3311 return total;
3314 /* Return cost of address expression X.
3315 Expect that X is properly formed address reference. */
3318 address_cost (rtx x, enum machine_mode mode)
3320 /* We may be asked for cost of various unusual addresses, such as operands
3321 of push instruction. It is not worthwhile to complicate writing
3322 of the target hook by such cases. */
3324 if (!memory_address_p (mode, x))
3325 return 1000;
3327 return targetm.address_cost (x);
3330 /* If the target doesn't override, compute the cost as with arithmetic. */
3333 default_address_cost (rtx x)
3335 return rtx_cost (x, MEM);
3339 unsigned HOST_WIDE_INT
3340 nonzero_bits (rtx x, enum machine_mode mode)
3342 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3345 unsigned int
3346 num_sign_bit_copies (rtx x, enum machine_mode mode)
3348 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3351 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3352 It avoids exponential behavior in nonzero_bits1 when X has
3353 identical subexpressions on the first or the second level. */
3355 static unsigned HOST_WIDE_INT
3356 cached_nonzero_bits (rtx x, enum machine_mode mode, rtx known_x,
3357 enum machine_mode known_mode,
3358 unsigned HOST_WIDE_INT known_ret)
3360 if (x == known_x && mode == known_mode)
3361 return known_ret;
3363 /* Try to find identical subexpressions. If found call
3364 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3365 precomputed value for the subexpression as KNOWN_RET. */
3367 if (ARITHMETIC_P (x))
3369 rtx x0 = XEXP (x, 0);
3370 rtx x1 = XEXP (x, 1);
3372 /* Check the first level. */
3373 if (x0 == x1)
3374 return nonzero_bits1 (x, mode, x0, mode,
3375 cached_nonzero_bits (x0, mode, known_x,
3376 known_mode, known_ret));
3378 /* Check the second level. */
3379 if (ARITHMETIC_P (x0)
3380 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3381 return nonzero_bits1 (x, mode, x1, mode,
3382 cached_nonzero_bits (x1, mode, known_x,
3383 known_mode, known_ret));
3385 if (ARITHMETIC_P (x1)
3386 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3387 return nonzero_bits1 (x, mode, x0, mode,
3388 cached_nonzero_bits (x0, mode, known_x,
3389 known_mode, known_ret));
3392 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3395 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3396 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3397 is less useful. We can't allow both, because that results in exponential
3398 run time recursion. There is a nullstone testcase that triggered
3399 this. This macro avoids accidental uses of num_sign_bit_copies. */
3400 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3402 /* Given an expression, X, compute which bits in X can be nonzero.
3403 We don't care about bits outside of those defined in MODE.
3405 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3406 an arithmetic operation, we can do better. */
3408 static unsigned HOST_WIDE_INT
3409 nonzero_bits1 (rtx x, enum machine_mode mode, rtx known_x,
3410 enum machine_mode known_mode,
3411 unsigned HOST_WIDE_INT known_ret)
3413 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3414 unsigned HOST_WIDE_INT inner_nz;
3415 enum rtx_code code;
3416 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3418 /* For floating-point values, assume all bits are needed. */
3419 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
3420 return nonzero;
3422 /* If X is wider than MODE, use its mode instead. */
3423 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3425 mode = GET_MODE (x);
3426 nonzero = GET_MODE_MASK (mode);
3427 mode_width = GET_MODE_BITSIZE (mode);
3430 if (mode_width > HOST_BITS_PER_WIDE_INT)
3431 /* Our only callers in this case look for single bit values. So
3432 just return the mode mask. Those tests will then be false. */
3433 return nonzero;
3435 #ifndef WORD_REGISTER_OPERATIONS
3436 /* If MODE is wider than X, but both are a single word for both the host
3437 and target machines, we can compute this from which bits of the
3438 object might be nonzero in its own mode, taking into account the fact
3439 that on many CISC machines, accessing an object in a wider mode
3440 causes the high-order bits to become undefined. So they are
3441 not known to be zero. */
3443 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3444 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3445 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3446 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3448 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3449 known_x, known_mode, known_ret);
3450 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3451 return nonzero;
3453 #endif
3455 code = GET_CODE (x);
3456 switch (code)
3458 case REG:
3459 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3460 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3461 all the bits above ptr_mode are known to be zero. */
3462 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3463 && REG_POINTER (x))
3464 nonzero &= GET_MODE_MASK (ptr_mode);
3465 #endif
3467 /* Include declared information about alignment of pointers. */
3468 /* ??? We don't properly preserve REG_POINTER changes across
3469 pointer-to-integer casts, so we can't trust it except for
3470 things that we know must be pointers. See execute/960116-1.c. */
3471 if ((x == stack_pointer_rtx
3472 || x == frame_pointer_rtx
3473 || x == arg_pointer_rtx)
3474 && REGNO_POINTER_ALIGN (REGNO (x)))
3476 unsigned HOST_WIDE_INT alignment
3477 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3479 #ifdef PUSH_ROUNDING
3480 /* If PUSH_ROUNDING is defined, it is possible for the
3481 stack to be momentarily aligned only to that amount,
3482 so we pick the least alignment. */
3483 if (x == stack_pointer_rtx && PUSH_ARGS)
3484 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3485 alignment);
3486 #endif
3488 nonzero &= ~(alignment - 1);
3492 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3493 rtx new = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3494 known_mode, known_ret,
3495 &nonzero_for_hook);
3497 if (new)
3498 nonzero_for_hook &= cached_nonzero_bits (new, mode, known_x,
3499 known_mode, known_ret);
3501 return nonzero_for_hook;
3504 case CONST_INT:
3505 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3506 /* If X is negative in MODE, sign-extend the value. */
3507 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
3508 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
3509 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
3510 #endif
3512 return INTVAL (x);
3514 case MEM:
3515 #ifdef LOAD_EXTEND_OP
3516 /* In many, if not most, RISC machines, reading a byte from memory
3517 zeros the rest of the register. Noticing that fact saves a lot
3518 of extra zero-extends. */
3519 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3520 nonzero &= GET_MODE_MASK (GET_MODE (x));
3521 #endif
3522 break;
3524 case EQ: case NE:
3525 case UNEQ: case LTGT:
3526 case GT: case GTU: case UNGT:
3527 case LT: case LTU: case UNLT:
3528 case GE: case GEU: case UNGE:
3529 case LE: case LEU: case UNLE:
3530 case UNORDERED: case ORDERED:
3531 /* If this produces an integer result, we know which bits are set.
3532 Code here used to clear bits outside the mode of X, but that is
3533 now done above. */
3534 /* Mind that MODE is the mode the caller wants to look at this
3535 operation in, and not the actual operation mode. We can wind
3536 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3537 that describes the results of a vector compare. */
3538 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3539 && mode_width <= HOST_BITS_PER_WIDE_INT)
3540 nonzero = STORE_FLAG_VALUE;
3541 break;
3543 case NEG:
3544 #if 0
3545 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3546 and num_sign_bit_copies. */
3547 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3548 == GET_MODE_BITSIZE (GET_MODE (x)))
3549 nonzero = 1;
3550 #endif
3552 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3553 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3554 break;
3556 case ABS:
3557 #if 0
3558 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3559 and num_sign_bit_copies. */
3560 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3561 == GET_MODE_BITSIZE (GET_MODE (x)))
3562 nonzero = 1;
3563 #endif
3564 break;
3566 case TRUNCATE:
3567 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3568 known_x, known_mode, known_ret)
3569 & GET_MODE_MASK (mode));
3570 break;
3572 case ZERO_EXTEND:
3573 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3574 known_x, known_mode, known_ret);
3575 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3576 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3577 break;
3579 case SIGN_EXTEND:
3580 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3581 Otherwise, show all the bits in the outer mode but not the inner
3582 may be nonzero. */
3583 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3584 known_x, known_mode, known_ret);
3585 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3587 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3588 if (inner_nz
3589 & (((HOST_WIDE_INT) 1
3590 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3591 inner_nz |= (GET_MODE_MASK (mode)
3592 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3595 nonzero &= inner_nz;
3596 break;
3598 case AND:
3599 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3600 known_x, known_mode, known_ret)
3601 & cached_nonzero_bits (XEXP (x, 1), mode,
3602 known_x, known_mode, known_ret);
3603 break;
3605 case XOR: case IOR:
3606 case UMIN: case UMAX: case SMIN: case SMAX:
3608 unsigned HOST_WIDE_INT nonzero0 =
3609 cached_nonzero_bits (XEXP (x, 0), mode,
3610 known_x, known_mode, known_ret);
3612 /* Don't call nonzero_bits for the second time if it cannot change
3613 anything. */
3614 if ((nonzero & nonzero0) != nonzero)
3615 nonzero &= nonzero0
3616 | cached_nonzero_bits (XEXP (x, 1), mode,
3617 known_x, known_mode, known_ret);
3619 break;
3621 case PLUS: case MINUS:
3622 case MULT:
3623 case DIV: case UDIV:
3624 case MOD: case UMOD:
3625 /* We can apply the rules of arithmetic to compute the number of
3626 high- and low-order zero bits of these operations. We start by
3627 computing the width (position of the highest-order nonzero bit)
3628 and the number of low-order zero bits for each value. */
3630 unsigned HOST_WIDE_INT nz0 =
3631 cached_nonzero_bits (XEXP (x, 0), mode,
3632 known_x, known_mode, known_ret);
3633 unsigned HOST_WIDE_INT nz1 =
3634 cached_nonzero_bits (XEXP (x, 1), mode,
3635 known_x, known_mode, known_ret);
3636 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3637 int width0 = floor_log2 (nz0) + 1;
3638 int width1 = floor_log2 (nz1) + 1;
3639 int low0 = floor_log2 (nz0 & -nz0);
3640 int low1 = floor_log2 (nz1 & -nz1);
3641 HOST_WIDE_INT op0_maybe_minusp
3642 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
3643 HOST_WIDE_INT op1_maybe_minusp
3644 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
3645 unsigned int result_width = mode_width;
3646 int result_low = 0;
3648 switch (code)
3650 case PLUS:
3651 result_width = MAX (width0, width1) + 1;
3652 result_low = MIN (low0, low1);
3653 break;
3654 case MINUS:
3655 result_low = MIN (low0, low1);
3656 break;
3657 case MULT:
3658 result_width = width0 + width1;
3659 result_low = low0 + low1;
3660 break;
3661 case DIV:
3662 if (width1 == 0)
3663 break;
3664 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3665 result_width = width0;
3666 break;
3667 case UDIV:
3668 if (width1 == 0)
3669 break;
3670 result_width = width0;
3671 break;
3672 case MOD:
3673 if (width1 == 0)
3674 break;
3675 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3676 result_width = MIN (width0, width1);
3677 result_low = MIN (low0, low1);
3678 break;
3679 case UMOD:
3680 if (width1 == 0)
3681 break;
3682 result_width = MIN (width0, width1);
3683 result_low = MIN (low0, low1);
3684 break;
3685 default:
3686 gcc_unreachable ();
3689 if (result_width < mode_width)
3690 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
3692 if (result_low > 0)
3693 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
3695 #ifdef POINTERS_EXTEND_UNSIGNED
3696 /* If pointers extend unsigned and this is an addition or subtraction
3697 to a pointer in Pmode, all the bits above ptr_mode are known to be
3698 zero. */
3699 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
3700 && (code == PLUS || code == MINUS)
3701 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
3702 nonzero &= GET_MODE_MASK (ptr_mode);
3703 #endif
3705 break;
3707 case ZERO_EXTRACT:
3708 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3709 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3710 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
3711 break;
3713 case SUBREG:
3714 /* If this is a SUBREG formed for a promoted variable that has
3715 been zero-extended, we know that at least the high-order bits
3716 are zero, though others might be too. */
3718 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
3719 nonzero = GET_MODE_MASK (GET_MODE (x))
3720 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
3721 known_x, known_mode, known_ret);
3723 /* If the inner mode is a single word for both the host and target
3724 machines, we can compute this from which bits of the inner
3725 object might be nonzero. */
3726 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
3727 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
3728 <= HOST_BITS_PER_WIDE_INT))
3730 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
3731 known_x, known_mode, known_ret);
3733 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
3734 /* If this is a typical RISC machine, we only have to worry
3735 about the way loads are extended. */
3736 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
3737 ? (((nonzero
3738 & (((unsigned HOST_WIDE_INT) 1
3739 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
3740 != 0))
3741 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
3742 || !MEM_P (SUBREG_REG (x)))
3743 #endif
3745 /* On many CISC machines, accessing an object in a wider mode
3746 causes the high-order bits to become undefined. So they are
3747 not known to be zero. */
3748 if (GET_MODE_SIZE (GET_MODE (x))
3749 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3750 nonzero |= (GET_MODE_MASK (GET_MODE (x))
3751 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
3754 break;
3756 case ASHIFTRT:
3757 case LSHIFTRT:
3758 case ASHIFT:
3759 case ROTATE:
3760 /* The nonzero bits are in two classes: any bits within MODE
3761 that aren't in GET_MODE (x) are always significant. The rest of the
3762 nonzero bits are those that are significant in the operand of
3763 the shift when shifted the appropriate number of bits. This
3764 shows that high-order bits are cleared by the right shift and
3765 low-order bits by left shifts. */
3766 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3767 && INTVAL (XEXP (x, 1)) >= 0
3768 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3770 enum machine_mode inner_mode = GET_MODE (x);
3771 unsigned int width = GET_MODE_BITSIZE (inner_mode);
3772 int count = INTVAL (XEXP (x, 1));
3773 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
3774 unsigned HOST_WIDE_INT op_nonzero =
3775 cached_nonzero_bits (XEXP (x, 0), mode,
3776 known_x, known_mode, known_ret);
3777 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
3778 unsigned HOST_WIDE_INT outer = 0;
3780 if (mode_width > width)
3781 outer = (op_nonzero & nonzero & ~mode_mask);
3783 if (code == LSHIFTRT)
3784 inner >>= count;
3785 else if (code == ASHIFTRT)
3787 inner >>= count;
3789 /* If the sign bit may have been nonzero before the shift, we
3790 need to mark all the places it could have been copied to
3791 by the shift as possibly nonzero. */
3792 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
3793 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
3795 else if (code == ASHIFT)
3796 inner <<= count;
3797 else
3798 inner = ((inner << (count % width)
3799 | (inner >> (width - (count % width)))) & mode_mask);
3801 nonzero &= (outer | inner);
3803 break;
3805 case FFS:
3806 case POPCOUNT:
3807 /* This is at most the number of bits in the mode. */
3808 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
3809 break;
3811 case CLZ:
3812 /* If CLZ has a known value at zero, then the nonzero bits are
3813 that value, plus the number of bits in the mode minus one. */
3814 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
3815 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
3816 else
3817 nonzero = -1;
3818 break;
3820 case CTZ:
3821 /* If CTZ has a known value at zero, then the nonzero bits are
3822 that value, plus the number of bits in the mode minus one. */
3823 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
3824 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
3825 else
3826 nonzero = -1;
3827 break;
3829 case PARITY:
3830 nonzero = 1;
3831 break;
3833 case IF_THEN_ELSE:
3835 unsigned HOST_WIDE_INT nonzero_true =
3836 cached_nonzero_bits (XEXP (x, 1), mode,
3837 known_x, known_mode, known_ret);
3839 /* Don't call nonzero_bits for the second time if it cannot change
3840 anything. */
3841 if ((nonzero & nonzero_true) != nonzero)
3842 nonzero &= nonzero_true
3843 | cached_nonzero_bits (XEXP (x, 2), mode,
3844 known_x, known_mode, known_ret);
3846 break;
3848 default:
3849 break;
3852 return nonzero;
3855 /* See the macro definition above. */
3856 #undef cached_num_sign_bit_copies
3859 /* The function cached_num_sign_bit_copies is a wrapper around
3860 num_sign_bit_copies1. It avoids exponential behavior in
3861 num_sign_bit_copies1 when X has identical subexpressions on the
3862 first or the second level. */
3864 static unsigned int
3865 cached_num_sign_bit_copies (rtx x, enum machine_mode mode, rtx known_x,
3866 enum machine_mode known_mode,
3867 unsigned int known_ret)
3869 if (x == known_x && mode == known_mode)
3870 return known_ret;
3872 /* Try to find identical subexpressions. If found call
3873 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
3874 the precomputed value for the subexpression as KNOWN_RET. */
3876 if (ARITHMETIC_P (x))
3878 rtx x0 = XEXP (x, 0);
3879 rtx x1 = XEXP (x, 1);
3881 /* Check the first level. */
3882 if (x0 == x1)
3883 return
3884 num_sign_bit_copies1 (x, mode, x0, mode,
3885 cached_num_sign_bit_copies (x0, mode, known_x,
3886 known_mode,
3887 known_ret));
3889 /* Check the second level. */
3890 if (ARITHMETIC_P (x0)
3891 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3892 return
3893 num_sign_bit_copies1 (x, mode, x1, mode,
3894 cached_num_sign_bit_copies (x1, mode, known_x,
3895 known_mode,
3896 known_ret));
3898 if (ARITHMETIC_P (x1)
3899 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3900 return
3901 num_sign_bit_copies1 (x, mode, x0, mode,
3902 cached_num_sign_bit_copies (x0, mode, known_x,
3903 known_mode,
3904 known_ret));
3907 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
3910 /* Return the number of bits at the high-order end of X that are known to
3911 be equal to the sign bit. X will be used in mode MODE; if MODE is
3912 VOIDmode, X will be used in its own mode. The returned value will always
3913 be between 1 and the number of bits in MODE. */
3915 static unsigned int
3916 num_sign_bit_copies1 (rtx x, enum machine_mode mode, rtx known_x,
3917 enum machine_mode known_mode,
3918 unsigned int known_ret)
3920 enum rtx_code code = GET_CODE (x);
3921 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
3922 int num0, num1, result;
3923 unsigned HOST_WIDE_INT nonzero;
3925 /* If we weren't given a mode, use the mode of X. If the mode is still
3926 VOIDmode, we don't know anything. Likewise if one of the modes is
3927 floating-point. */
3929 if (mode == VOIDmode)
3930 mode = GET_MODE (x);
3932 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
3933 return 1;
3935 /* For a smaller object, just ignore the high bits. */
3936 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
3938 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
3939 known_x, known_mode, known_ret);
3940 return MAX (1,
3941 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
3944 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
3946 #ifndef WORD_REGISTER_OPERATIONS
3947 /* If this machine does not do all register operations on the entire
3948 register and MODE is wider than the mode of X, we can say nothing
3949 at all about the high-order bits. */
3950 return 1;
3951 #else
3952 /* Likewise on machines that do, if the mode of the object is smaller
3953 than a word and loads of that size don't sign extend, we can say
3954 nothing about the high order bits. */
3955 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
3956 #ifdef LOAD_EXTEND_OP
3957 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
3958 #endif
3960 return 1;
3961 #endif
3964 switch (code)
3966 case REG:
3968 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3969 /* If pointers extend signed and this is a pointer in Pmode, say that
3970 all the bits above ptr_mode are known to be sign bit copies. */
3971 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
3972 && REG_POINTER (x))
3973 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
3974 #endif
3977 unsigned int copies_for_hook = 1, copies = 1;
3978 rtx new = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
3979 known_mode, known_ret,
3980 &copies_for_hook);
3982 if (new)
3983 copies = cached_num_sign_bit_copies (new, mode, known_x,
3984 known_mode, known_ret);
3986 if (copies > 1 || copies_for_hook > 1)
3987 return MAX (copies, copies_for_hook);
3989 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
3991 break;
3993 case MEM:
3994 #ifdef LOAD_EXTEND_OP
3995 /* Some RISC machines sign-extend all loads of smaller than a word. */
3996 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
3997 return MAX (1, ((int) bitwidth
3998 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
3999 #endif
4000 break;
4002 case CONST_INT:
4003 /* If the constant is negative, take its 1's complement and remask.
4004 Then see how many zero bits we have. */
4005 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
4006 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4007 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4008 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4010 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4012 case SUBREG:
4013 /* If this is a SUBREG for a promoted object that is sign-extended
4014 and we are looking at it in a wider mode, we know that at least the
4015 high-order bits are known to be sign bit copies. */
4017 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4019 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4020 known_x, known_mode, known_ret);
4021 return MAX ((int) bitwidth
4022 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4023 num0);
4026 /* For a smaller object, just ignore the high bits. */
4027 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4029 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4030 known_x, known_mode, known_ret);
4031 return MAX (1, (num0
4032 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4033 - bitwidth)));
4036 #ifdef WORD_REGISTER_OPERATIONS
4037 #ifdef LOAD_EXTEND_OP
4038 /* For paradoxical SUBREGs on machines where all register operations
4039 affect the entire register, just look inside. Note that we are
4040 passing MODE to the recursive call, so the number of sign bit copies
4041 will remain relative to that mode, not the inner mode. */
4043 /* This works only if loads sign extend. Otherwise, if we get a
4044 reload for the inner part, it may be loaded from the stack, and
4045 then we lose all sign bit copies that existed before the store
4046 to the stack. */
4048 if ((GET_MODE_SIZE (GET_MODE (x))
4049 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4050 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4051 && MEM_P (SUBREG_REG (x)))
4052 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4053 known_x, known_mode, known_ret);
4054 #endif
4055 #endif
4056 break;
4058 case SIGN_EXTRACT:
4059 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4060 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4061 break;
4063 case SIGN_EXTEND:
4064 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4065 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4066 known_x, known_mode, known_ret));
4068 case TRUNCATE:
4069 /* For a smaller object, just ignore the high bits. */
4070 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4071 known_x, known_mode, known_ret);
4072 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4073 - bitwidth)));
4075 case NOT:
4076 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4077 known_x, known_mode, known_ret);
4079 case ROTATE: case ROTATERT:
4080 /* If we are rotating left by a number of bits less than the number
4081 of sign bit copies, we can just subtract that amount from the
4082 number. */
4083 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4084 && INTVAL (XEXP (x, 1)) >= 0
4085 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4087 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4088 known_x, known_mode, known_ret);
4089 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4090 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4092 break;
4094 case NEG:
4095 /* In general, this subtracts one sign bit copy. But if the value
4096 is known to be positive, the number of sign bit copies is the
4097 same as that of the input. Finally, if the input has just one bit
4098 that might be nonzero, all the bits are copies of the sign bit. */
4099 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4100 known_x, known_mode, known_ret);
4101 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4102 return num0 > 1 ? num0 - 1 : 1;
4104 nonzero = nonzero_bits (XEXP (x, 0), mode);
4105 if (nonzero == 1)
4106 return bitwidth;
4108 if (num0 > 1
4109 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4110 num0--;
4112 return num0;
4114 case IOR: case AND: case XOR:
4115 case SMIN: case SMAX: case UMIN: case UMAX:
4116 /* Logical operations will preserve the number of sign-bit copies.
4117 MIN and MAX operations always return one of the operands. */
4118 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4119 known_x, known_mode, known_ret);
4120 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4121 known_x, known_mode, known_ret);
4122 return MIN (num0, num1);
4124 case PLUS: case MINUS:
4125 /* For addition and subtraction, we can have a 1-bit carry. However,
4126 if we are subtracting 1 from a positive number, there will not
4127 be such a carry. Furthermore, if the positive number is known to
4128 be 0 or 1, we know the result is either -1 or 0. */
4130 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4131 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4133 nonzero = nonzero_bits (XEXP (x, 0), mode);
4134 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4135 return (nonzero == 1 || nonzero == 0 ? bitwidth
4136 : bitwidth - floor_log2 (nonzero) - 1);
4139 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4140 known_x, known_mode, known_ret);
4141 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4142 known_x, known_mode, known_ret);
4143 result = MAX (1, MIN (num0, num1) - 1);
4145 #ifdef POINTERS_EXTEND_UNSIGNED
4146 /* If pointers extend signed and this is an addition or subtraction
4147 to a pointer in Pmode, all the bits above ptr_mode are known to be
4148 sign bit copies. */
4149 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4150 && (code == PLUS || code == MINUS)
4151 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4152 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4153 - GET_MODE_BITSIZE (ptr_mode) + 1),
4154 result);
4155 #endif
4156 return result;
4158 case MULT:
4159 /* The number of bits of the product is the sum of the number of
4160 bits of both terms. However, unless one of the terms if known
4161 to be positive, we must allow for an additional bit since negating
4162 a negative number can remove one sign bit copy. */
4164 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4165 known_x, known_mode, known_ret);
4166 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4167 known_x, known_mode, known_ret);
4169 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4170 if (result > 0
4171 && (bitwidth > HOST_BITS_PER_WIDE_INT
4172 || (((nonzero_bits (XEXP (x, 0), mode)
4173 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4174 && ((nonzero_bits (XEXP (x, 1), mode)
4175 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4176 result--;
4178 return MAX (1, result);
4180 case UDIV:
4181 /* The result must be <= the first operand. If the first operand
4182 has the high bit set, we know nothing about the number of sign
4183 bit copies. */
4184 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4185 return 1;
4186 else if ((nonzero_bits (XEXP (x, 0), mode)
4187 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4188 return 1;
4189 else
4190 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4191 known_x, known_mode, known_ret);
4193 case UMOD:
4194 /* The result must be <= the second operand. */
4195 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4196 known_x, known_mode, known_ret);
4198 case DIV:
4199 /* Similar to unsigned division, except that we have to worry about
4200 the case where the divisor is negative, in which case we have
4201 to add 1. */
4202 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4203 known_x, known_mode, known_ret);
4204 if (result > 1
4205 && (bitwidth > HOST_BITS_PER_WIDE_INT
4206 || (nonzero_bits (XEXP (x, 1), mode)
4207 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4208 result--;
4210 return result;
4212 case MOD:
4213 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4214 known_x, known_mode, known_ret);
4215 if (result > 1
4216 && (bitwidth > HOST_BITS_PER_WIDE_INT
4217 || (nonzero_bits (XEXP (x, 1), mode)
4218 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4219 result--;
4221 return result;
4223 case ASHIFTRT:
4224 /* Shifts by a constant add to the number of bits equal to the
4225 sign bit. */
4226 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4227 known_x, known_mode, known_ret);
4228 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4229 && INTVAL (XEXP (x, 1)) > 0)
4230 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4232 return num0;
4234 case ASHIFT:
4235 /* Left shifts destroy copies. */
4236 if (GET_CODE (XEXP (x, 1)) != CONST_INT
4237 || INTVAL (XEXP (x, 1)) < 0
4238 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
4239 return 1;
4241 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4242 known_x, known_mode, known_ret);
4243 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4245 case IF_THEN_ELSE:
4246 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4247 known_x, known_mode, known_ret);
4248 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4249 known_x, known_mode, known_ret);
4250 return MIN (num0, num1);
4252 case EQ: case NE: case GE: case GT: case LE: case LT:
4253 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4254 case GEU: case GTU: case LEU: case LTU:
4255 case UNORDERED: case ORDERED:
4256 /* If the constant is negative, take its 1's complement and remask.
4257 Then see how many zero bits we have. */
4258 nonzero = STORE_FLAG_VALUE;
4259 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4260 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4261 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4263 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4265 default:
4266 break;
4269 /* If we haven't been able to figure it out by one of the above rules,
4270 see if some of the high-order bits are known to be zero. If so,
4271 count those bits and return one less than that amount. If we can't
4272 safely compute the mask for this mode, always return BITWIDTH. */
4274 bitwidth = GET_MODE_BITSIZE (mode);
4275 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4276 return 1;
4278 nonzero = nonzero_bits (x, mode);
4279 return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4280 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4283 /* Calculate the rtx_cost of a single instruction. A return value of
4284 zero indicates an instruction pattern without a known cost. */
4287 insn_rtx_cost (rtx pat)
4289 int i, cost;
4290 rtx set;
4292 /* Extract the single set rtx from the instruction pattern.
4293 We can't use single_set since we only have the pattern. */
4294 if (GET_CODE (pat) == SET)
4295 set = pat;
4296 else if (GET_CODE (pat) == PARALLEL)
4298 set = NULL_RTX;
4299 for (i = 0; i < XVECLEN (pat, 0); i++)
4301 rtx x = XVECEXP (pat, 0, i);
4302 if (GET_CODE (x) == SET)
4304 if (set)
4305 return 0;
4306 set = x;
4309 if (!set)
4310 return 0;
4312 else
4313 return 0;
4315 cost = rtx_cost (SET_SRC (set), SET);
4316 return cost > 0 ? cost : COSTS_N_INSNS (1);
4319 /* Given an insn INSN and condition COND, return the condition in a
4320 canonical form to simplify testing by callers. Specifically:
4322 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4323 (2) Both operands will be machine operands; (cc0) will have been replaced.
4324 (3) If an operand is a constant, it will be the second operand.
4325 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4326 for GE, GEU, and LEU.
4328 If the condition cannot be understood, or is an inequality floating-point
4329 comparison which needs to be reversed, 0 will be returned.
4331 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4333 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4334 insn used in locating the condition was found. If a replacement test
4335 of the condition is desired, it should be placed in front of that
4336 insn and we will be sure that the inputs are still valid.
4338 If WANT_REG is nonzero, we wish the condition to be relative to that
4339 register, if possible. Therefore, do not canonicalize the condition
4340 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4341 to be a compare to a CC mode register.
4343 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4344 and at INSN. */
4347 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4348 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4350 enum rtx_code code;
4351 rtx prev = insn;
4352 rtx set;
4353 rtx tem;
4354 rtx op0, op1;
4355 int reverse_code = 0;
4356 enum machine_mode mode;
4357 basic_block bb = BLOCK_FOR_INSN (insn);
4359 code = GET_CODE (cond);
4360 mode = GET_MODE (cond);
4361 op0 = XEXP (cond, 0);
4362 op1 = XEXP (cond, 1);
4364 if (reverse)
4365 code = reversed_comparison_code (cond, insn);
4366 if (code == UNKNOWN)
4367 return 0;
4369 if (earliest)
4370 *earliest = insn;
4372 /* If we are comparing a register with zero, see if the register is set
4373 in the previous insn to a COMPARE or a comparison operation. Perform
4374 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4375 in cse.c */
4377 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4378 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4379 && op1 == CONST0_RTX (GET_MODE (op0))
4380 && op0 != want_reg)
4382 /* Set nonzero when we find something of interest. */
4383 rtx x = 0;
4385 #ifdef HAVE_cc0
4386 /* If comparison with cc0, import actual comparison from compare
4387 insn. */
4388 if (op0 == cc0_rtx)
4390 if ((prev = prev_nonnote_insn (prev)) == 0
4391 || !NONJUMP_INSN_P (prev)
4392 || (set = single_set (prev)) == 0
4393 || SET_DEST (set) != cc0_rtx)
4394 return 0;
4396 op0 = SET_SRC (set);
4397 op1 = CONST0_RTX (GET_MODE (op0));
4398 if (earliest)
4399 *earliest = prev;
4401 #endif
4403 /* If this is a COMPARE, pick up the two things being compared. */
4404 if (GET_CODE (op0) == COMPARE)
4406 op1 = XEXP (op0, 1);
4407 op0 = XEXP (op0, 0);
4408 continue;
4410 else if (!REG_P (op0))
4411 break;
4413 /* Go back to the previous insn. Stop if it is not an INSN. We also
4414 stop if it isn't a single set or if it has a REG_INC note because
4415 we don't want to bother dealing with it. */
4417 if ((prev = prev_nonnote_insn (prev)) == 0
4418 || !NONJUMP_INSN_P (prev)
4419 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4420 /* In cfglayout mode, there do not have to be labels at the
4421 beginning of a block, or jumps at the end, so the previous
4422 conditions would not stop us when we reach bb boundary. */
4423 || BLOCK_FOR_INSN (prev) != bb)
4424 break;
4426 set = set_of (op0, prev);
4428 if (set
4429 && (GET_CODE (set) != SET
4430 || !rtx_equal_p (SET_DEST (set), op0)))
4431 break;
4433 /* If this is setting OP0, get what it sets it to if it looks
4434 relevant. */
4435 if (set)
4437 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4438 #ifdef FLOAT_STORE_FLAG_VALUE
4439 REAL_VALUE_TYPE fsfv;
4440 #endif
4442 /* ??? We may not combine comparisons done in a CCmode with
4443 comparisons not done in a CCmode. This is to aid targets
4444 like Alpha that have an IEEE compliant EQ instruction, and
4445 a non-IEEE compliant BEQ instruction. The use of CCmode is
4446 actually artificial, simply to prevent the combination, but
4447 should not affect other platforms.
4449 However, we must allow VOIDmode comparisons to match either
4450 CCmode or non-CCmode comparison, because some ports have
4451 modeless comparisons inside branch patterns.
4453 ??? This mode check should perhaps look more like the mode check
4454 in simplify_comparison in combine. */
4456 if ((GET_CODE (SET_SRC (set)) == COMPARE
4457 || (((code == NE
4458 || (code == LT
4459 && GET_MODE_CLASS (inner_mode) == MODE_INT
4460 && (GET_MODE_BITSIZE (inner_mode)
4461 <= HOST_BITS_PER_WIDE_INT)
4462 && (STORE_FLAG_VALUE
4463 & ((HOST_WIDE_INT) 1
4464 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4465 #ifdef FLOAT_STORE_FLAG_VALUE
4466 || (code == LT
4467 && SCALAR_FLOAT_MODE_P (inner_mode)
4468 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4469 REAL_VALUE_NEGATIVE (fsfv)))
4470 #endif
4472 && COMPARISON_P (SET_SRC (set))))
4473 && (((GET_MODE_CLASS (mode) == MODE_CC)
4474 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4475 || mode == VOIDmode || inner_mode == VOIDmode))
4476 x = SET_SRC (set);
4477 else if (((code == EQ
4478 || (code == GE
4479 && (GET_MODE_BITSIZE (inner_mode)
4480 <= HOST_BITS_PER_WIDE_INT)
4481 && GET_MODE_CLASS (inner_mode) == MODE_INT
4482 && (STORE_FLAG_VALUE
4483 & ((HOST_WIDE_INT) 1
4484 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4485 #ifdef FLOAT_STORE_FLAG_VALUE
4486 || (code == GE
4487 && SCALAR_FLOAT_MODE_P (inner_mode)
4488 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4489 REAL_VALUE_NEGATIVE (fsfv)))
4490 #endif
4492 && COMPARISON_P (SET_SRC (set))
4493 && (((GET_MODE_CLASS (mode) == MODE_CC)
4494 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4495 || mode == VOIDmode || inner_mode == VOIDmode))
4498 reverse_code = 1;
4499 x = SET_SRC (set);
4501 else
4502 break;
4505 else if (reg_set_p (op0, prev))
4506 /* If this sets OP0, but not directly, we have to give up. */
4507 break;
4509 if (x)
4511 /* If the caller is expecting the condition to be valid at INSN,
4512 make sure X doesn't change before INSN. */
4513 if (valid_at_insn_p)
4514 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4515 break;
4516 if (COMPARISON_P (x))
4517 code = GET_CODE (x);
4518 if (reverse_code)
4520 code = reversed_comparison_code (x, prev);
4521 if (code == UNKNOWN)
4522 return 0;
4523 reverse_code = 0;
4526 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4527 if (earliest)
4528 *earliest = prev;
4532 /* If constant is first, put it last. */
4533 if (CONSTANT_P (op0))
4534 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4536 /* If OP0 is the result of a comparison, we weren't able to find what
4537 was really being compared, so fail. */
4538 if (!allow_cc_mode
4539 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4540 return 0;
4542 /* Canonicalize any ordered comparison with integers involving equality
4543 if we can do computations in the relevant mode and we do not
4544 overflow. */
4546 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
4547 && GET_CODE (op1) == CONST_INT
4548 && GET_MODE (op0) != VOIDmode
4549 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4551 HOST_WIDE_INT const_val = INTVAL (op1);
4552 unsigned HOST_WIDE_INT uconst_val = const_val;
4553 unsigned HOST_WIDE_INT max_val
4554 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4556 switch (code)
4558 case LE:
4559 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4560 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4561 break;
4563 /* When cross-compiling, const_val might be sign-extended from
4564 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4565 case GE:
4566 if ((HOST_WIDE_INT) (const_val & max_val)
4567 != (((HOST_WIDE_INT) 1
4568 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
4569 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4570 break;
4572 case LEU:
4573 if (uconst_val < max_val)
4574 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4575 break;
4577 case GEU:
4578 if (uconst_val != 0)
4579 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4580 break;
4582 default:
4583 break;
4587 /* Never return CC0; return zero instead. */
4588 if (CC0_P (op0))
4589 return 0;
4591 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4594 /* Given a jump insn JUMP, return the condition that will cause it to branch
4595 to its JUMP_LABEL. If the condition cannot be understood, or is an
4596 inequality floating-point comparison which needs to be reversed, 0 will
4597 be returned.
4599 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4600 insn used in locating the condition was found. If a replacement test
4601 of the condition is desired, it should be placed in front of that
4602 insn and we will be sure that the inputs are still valid. If EARLIEST
4603 is null, the returned condition will be valid at INSN.
4605 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4606 compare CC mode register.
4608 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4611 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4613 rtx cond;
4614 int reverse;
4615 rtx set;
4617 /* If this is not a standard conditional jump, we can't parse it. */
4618 if (!JUMP_P (jump)
4619 || ! any_condjump_p (jump))
4620 return 0;
4621 set = pc_set (jump);
4623 cond = XEXP (SET_SRC (set), 0);
4625 /* If this branches to JUMP_LABEL when the condition is false, reverse
4626 the condition. */
4627 reverse
4628 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4629 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
4631 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
4632 allow_cc_mode, valid_at_insn_p);
4635 /* Suppose that truncation from the machine mode of X to MODE is not a
4636 no-op. See if there is anything special about X so that we can
4637 assume it already contains a truncated value of MODE. */
4639 bool
4640 truncated_to_mode (enum machine_mode mode, rtx x)
4642 return REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x);
4646 /* Initialize non_rtx_starting_operands, which is used to speed up
4647 for_each_rtx. */
4648 void
4649 init_rtlanal (void)
4651 int i;
4652 for (i = 0; i < NUM_RTX_CODE; i++)
4654 const char *format = GET_RTX_FORMAT (i);
4655 const char *first = strpbrk (format, "eEV");
4656 non_rtx_starting_operands[i] = first ? first - format : -1;
4660 /* Check whether this is a constant pool constant. */
4661 bool
4662 constant_pool_constant_p (rtx x)
4664 x = avoid_constant_pool_reference (x);
4665 return GET_CODE (x) == CONST_DOUBLE;