* tree-ssa-structalias.h (alias_info): Remove num_references.
[official-gcc.git] / gcc / lambda-code.c
blobbf00c053d95280177f00830b3bfc49d497dfaf2b
1 /* Loop transformation code generation
2 Copyright (C) 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dberlin@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "tree.h"
28 #include "target.h"
29 #include "rtl.h"
30 #include "basic-block.h"
31 #include "diagnostic.h"
32 #include "tree-flow.h"
33 #include "tree-dump.h"
34 #include "timevar.h"
35 #include "cfgloop.h"
36 #include "expr.h"
37 #include "optabs.h"
38 #include "tree-chrec.h"
39 #include "tree-data-ref.h"
40 #include "tree-pass.h"
41 #include "tree-scalar-evolution.h"
42 #include "vec.h"
43 #include "lambda.h"
44 #include "vecprim.h"
46 /* This loop nest code generation is based on non-singular matrix
47 math.
49 A little terminology and a general sketch of the algorithm. See "A singular
50 loop transformation framework based on non-singular matrices" by Wei Li and
51 Keshav Pingali for formal proofs that the various statements below are
52 correct.
54 A loop iteration space represents the points traversed by the loop. A point in the
55 iteration space can be represented by a vector of size <loop depth>. You can
56 therefore represent the iteration space as an integral combinations of a set
57 of basis vectors.
59 A loop iteration space is dense if every integer point between the loop
60 bounds is a point in the iteration space. Every loop with a step of 1
61 therefore has a dense iteration space.
63 for i = 1 to 3, step 1 is a dense iteration space.
65 A loop iteration space is sparse if it is not dense. That is, the iteration
66 space skips integer points that are within the loop bounds.
68 for i = 1 to 3, step 2 is a sparse iteration space, because the integer point
69 2 is skipped.
71 Dense source spaces are easy to transform, because they don't skip any
72 points to begin with. Thus we can compute the exact bounds of the target
73 space using min/max and floor/ceil.
75 For a dense source space, we take the transformation matrix, decompose it
76 into a lower triangular part (H) and a unimodular part (U).
77 We then compute the auxiliary space from the unimodular part (source loop
78 nest . U = auxiliary space) , which has two important properties:
79 1. It traverses the iterations in the same lexicographic order as the source
80 space.
81 2. It is a dense space when the source is a dense space (even if the target
82 space is going to be sparse).
84 Given the auxiliary space, we use the lower triangular part to compute the
85 bounds in the target space by simple matrix multiplication.
86 The gaps in the target space (IE the new loop step sizes) will be the
87 diagonals of the H matrix.
89 Sparse source spaces require another step, because you can't directly compute
90 the exact bounds of the auxiliary and target space from the sparse space.
91 Rather than try to come up with a separate algorithm to handle sparse source
92 spaces directly, we just find a legal transformation matrix that gives you
93 the sparse source space, from a dense space, and then transform the dense
94 space.
96 For a regular sparse space, you can represent the source space as an integer
97 lattice, and the base space of that lattice will always be dense. Thus, we
98 effectively use the lattice to figure out the transformation from the lattice
99 base space, to the sparse iteration space (IE what transform was applied to
100 the dense space to make it sparse). We then compose this transform with the
101 transformation matrix specified by the user (since our matrix transformations
102 are closed under composition, this is okay). We can then use the base space
103 (which is dense) plus the composed transformation matrix, to compute the rest
104 of the transform using the dense space algorithm above.
106 In other words, our sparse source space (B) is decomposed into a dense base
107 space (A), and a matrix (L) that transforms A into B, such that A.L = B.
108 We then compute the composition of L and the user transformation matrix (T),
109 so that T is now a transform from A to the result, instead of from B to the
110 result.
111 IE A.(LT) = result instead of B.T = result
112 Since A is now a dense source space, we can use the dense source space
113 algorithm above to compute the result of applying transform (LT) to A.
115 Fourier-Motzkin elimination is used to compute the bounds of the base space
116 of the lattice. */
118 static bool perfect_nestify (struct loops *,
119 struct loop *, VEC(tree,heap) *,
120 VEC(tree,heap) *, VEC(int,heap) *,
121 VEC(tree,heap) *);
122 /* Lattice stuff that is internal to the code generation algorithm. */
124 typedef struct
126 /* Lattice base matrix. */
127 lambda_matrix base;
128 /* Lattice dimension. */
129 int dimension;
130 /* Origin vector for the coefficients. */
131 lambda_vector origin;
132 /* Origin matrix for the invariants. */
133 lambda_matrix origin_invariants;
134 /* Number of invariants. */
135 int invariants;
136 } *lambda_lattice;
138 #define LATTICE_BASE(T) ((T)->base)
139 #define LATTICE_DIMENSION(T) ((T)->dimension)
140 #define LATTICE_ORIGIN(T) ((T)->origin)
141 #define LATTICE_ORIGIN_INVARIANTS(T) ((T)->origin_invariants)
142 #define LATTICE_INVARIANTS(T) ((T)->invariants)
144 static bool lle_equal (lambda_linear_expression, lambda_linear_expression,
145 int, int);
146 static lambda_lattice lambda_lattice_new (int, int);
147 static lambda_lattice lambda_lattice_compute_base (lambda_loopnest);
149 static tree find_induction_var_from_exit_cond (struct loop *);
151 /* Create a new lambda body vector. */
153 lambda_body_vector
154 lambda_body_vector_new (int size)
156 lambda_body_vector ret;
158 ret = ggc_alloc (sizeof (*ret));
159 LBV_COEFFICIENTS (ret) = lambda_vector_new (size);
160 LBV_SIZE (ret) = size;
161 LBV_DENOMINATOR (ret) = 1;
162 return ret;
165 /* Compute the new coefficients for the vector based on the
166 *inverse* of the transformation matrix. */
168 lambda_body_vector
169 lambda_body_vector_compute_new (lambda_trans_matrix transform,
170 lambda_body_vector vect)
172 lambda_body_vector temp;
173 int depth;
175 /* Make sure the matrix is square. */
176 gcc_assert (LTM_ROWSIZE (transform) == LTM_COLSIZE (transform));
178 depth = LTM_ROWSIZE (transform);
180 temp = lambda_body_vector_new (depth);
181 LBV_DENOMINATOR (temp) =
182 LBV_DENOMINATOR (vect) * LTM_DENOMINATOR (transform);
183 lambda_vector_matrix_mult (LBV_COEFFICIENTS (vect), depth,
184 LTM_MATRIX (transform), depth,
185 LBV_COEFFICIENTS (temp));
186 LBV_SIZE (temp) = LBV_SIZE (vect);
187 return temp;
190 /* Print out a lambda body vector. */
192 void
193 print_lambda_body_vector (FILE * outfile, lambda_body_vector body)
195 print_lambda_vector (outfile, LBV_COEFFICIENTS (body), LBV_SIZE (body));
198 /* Return TRUE if two linear expressions are equal. */
200 static bool
201 lle_equal (lambda_linear_expression lle1, lambda_linear_expression lle2,
202 int depth, int invariants)
204 int i;
206 if (lle1 == NULL || lle2 == NULL)
207 return false;
208 if (LLE_CONSTANT (lle1) != LLE_CONSTANT (lle2))
209 return false;
210 if (LLE_DENOMINATOR (lle1) != LLE_DENOMINATOR (lle2))
211 return false;
212 for (i = 0; i < depth; i++)
213 if (LLE_COEFFICIENTS (lle1)[i] != LLE_COEFFICIENTS (lle2)[i])
214 return false;
215 for (i = 0; i < invariants; i++)
216 if (LLE_INVARIANT_COEFFICIENTS (lle1)[i] !=
217 LLE_INVARIANT_COEFFICIENTS (lle2)[i])
218 return false;
219 return true;
222 /* Create a new linear expression with dimension DIM, and total number
223 of invariants INVARIANTS. */
225 lambda_linear_expression
226 lambda_linear_expression_new (int dim, int invariants)
228 lambda_linear_expression ret;
230 ret = ggc_alloc_cleared (sizeof (*ret));
232 LLE_COEFFICIENTS (ret) = lambda_vector_new (dim);
233 LLE_CONSTANT (ret) = 0;
234 LLE_INVARIANT_COEFFICIENTS (ret) = lambda_vector_new (invariants);
235 LLE_DENOMINATOR (ret) = 1;
236 LLE_NEXT (ret) = NULL;
238 return ret;
241 /* Print out a linear expression EXPR, with SIZE coefficients, to OUTFILE.
242 The starting letter used for variable names is START. */
244 static void
245 print_linear_expression (FILE * outfile, lambda_vector expr, int size,
246 char start)
248 int i;
249 bool first = true;
250 for (i = 0; i < size; i++)
252 if (expr[i] != 0)
254 if (first)
256 if (expr[i] < 0)
257 fprintf (outfile, "-");
258 first = false;
260 else if (expr[i] > 0)
261 fprintf (outfile, " + ");
262 else
263 fprintf (outfile, " - ");
264 if (abs (expr[i]) == 1)
265 fprintf (outfile, "%c", start + i);
266 else
267 fprintf (outfile, "%d%c", abs (expr[i]), start + i);
272 /* Print out a lambda linear expression structure, EXPR, to OUTFILE. The
273 depth/number of coefficients is given by DEPTH, the number of invariants is
274 given by INVARIANTS, and the character to start variable names with is given
275 by START. */
277 void
278 print_lambda_linear_expression (FILE * outfile,
279 lambda_linear_expression expr,
280 int depth, int invariants, char start)
282 fprintf (outfile, "\tLinear expression: ");
283 print_linear_expression (outfile, LLE_COEFFICIENTS (expr), depth, start);
284 fprintf (outfile, " constant: %d ", LLE_CONSTANT (expr));
285 fprintf (outfile, " invariants: ");
286 print_linear_expression (outfile, LLE_INVARIANT_COEFFICIENTS (expr),
287 invariants, 'A');
288 fprintf (outfile, " denominator: %d\n", LLE_DENOMINATOR (expr));
291 /* Print a lambda loop structure LOOP to OUTFILE. The depth/number of
292 coefficients is given by DEPTH, the number of invariants is
293 given by INVARIANTS, and the character to start variable names with is given
294 by START. */
296 void
297 print_lambda_loop (FILE * outfile, lambda_loop loop, int depth,
298 int invariants, char start)
300 int step;
301 lambda_linear_expression expr;
303 gcc_assert (loop);
305 expr = LL_LINEAR_OFFSET (loop);
306 step = LL_STEP (loop);
307 fprintf (outfile, " step size = %d \n", step);
309 if (expr)
311 fprintf (outfile, " linear offset: \n");
312 print_lambda_linear_expression (outfile, expr, depth, invariants,
313 start);
316 fprintf (outfile, " lower bound: \n");
317 for (expr = LL_LOWER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
318 print_lambda_linear_expression (outfile, expr, depth, invariants, start);
319 fprintf (outfile, " upper bound: \n");
320 for (expr = LL_UPPER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
321 print_lambda_linear_expression (outfile, expr, depth, invariants, start);
324 /* Create a new loop nest structure with DEPTH loops, and INVARIANTS as the
325 number of invariants. */
327 lambda_loopnest
328 lambda_loopnest_new (int depth, int invariants)
330 lambda_loopnest ret;
331 ret = ggc_alloc (sizeof (*ret));
333 LN_LOOPS (ret) = ggc_alloc_cleared (depth * sizeof (lambda_loop));
334 LN_DEPTH (ret) = depth;
335 LN_INVARIANTS (ret) = invariants;
337 return ret;
340 /* Print a lambda loopnest structure, NEST, to OUTFILE. The starting
341 character to use for loop names is given by START. */
343 void
344 print_lambda_loopnest (FILE * outfile, lambda_loopnest nest, char start)
346 int i;
347 for (i = 0; i < LN_DEPTH (nest); i++)
349 fprintf (outfile, "Loop %c\n", start + i);
350 print_lambda_loop (outfile, LN_LOOPS (nest)[i], LN_DEPTH (nest),
351 LN_INVARIANTS (nest), 'i');
352 fprintf (outfile, "\n");
356 /* Allocate a new lattice structure of DEPTH x DEPTH, with INVARIANTS number
357 of invariants. */
359 static lambda_lattice
360 lambda_lattice_new (int depth, int invariants)
362 lambda_lattice ret;
363 ret = ggc_alloc (sizeof (*ret));
364 LATTICE_BASE (ret) = lambda_matrix_new (depth, depth);
365 LATTICE_ORIGIN (ret) = lambda_vector_new (depth);
366 LATTICE_ORIGIN_INVARIANTS (ret) = lambda_matrix_new (depth, invariants);
367 LATTICE_DIMENSION (ret) = depth;
368 LATTICE_INVARIANTS (ret) = invariants;
369 return ret;
372 /* Compute the lattice base for NEST. The lattice base is essentially a
373 non-singular transform from a dense base space to a sparse iteration space.
374 We use it so that we don't have to specially handle the case of a sparse
375 iteration space in other parts of the algorithm. As a result, this routine
376 only does something interesting (IE produce a matrix that isn't the
377 identity matrix) if NEST is a sparse space. */
379 static lambda_lattice
380 lambda_lattice_compute_base (lambda_loopnest nest)
382 lambda_lattice ret;
383 int depth, invariants;
384 lambda_matrix base;
386 int i, j, step;
387 lambda_loop loop;
388 lambda_linear_expression expression;
390 depth = LN_DEPTH (nest);
391 invariants = LN_INVARIANTS (nest);
393 ret = lambda_lattice_new (depth, invariants);
394 base = LATTICE_BASE (ret);
395 for (i = 0; i < depth; i++)
397 loop = LN_LOOPS (nest)[i];
398 gcc_assert (loop);
399 step = LL_STEP (loop);
400 /* If we have a step of 1, then the base is one, and the
401 origin and invariant coefficients are 0. */
402 if (step == 1)
404 for (j = 0; j < depth; j++)
405 base[i][j] = 0;
406 base[i][i] = 1;
407 LATTICE_ORIGIN (ret)[i] = 0;
408 for (j = 0; j < invariants; j++)
409 LATTICE_ORIGIN_INVARIANTS (ret)[i][j] = 0;
411 else
413 /* Otherwise, we need the lower bound expression (which must
414 be an affine function) to determine the base. */
415 expression = LL_LOWER_BOUND (loop);
416 gcc_assert (expression && !LLE_NEXT (expression)
417 && LLE_DENOMINATOR (expression) == 1);
419 /* The lower triangular portion of the base is going to be the
420 coefficient times the step */
421 for (j = 0; j < i; j++)
422 base[i][j] = LLE_COEFFICIENTS (expression)[j]
423 * LL_STEP (LN_LOOPS (nest)[j]);
424 base[i][i] = step;
425 for (j = i + 1; j < depth; j++)
426 base[i][j] = 0;
428 /* Origin for this loop is the constant of the lower bound
429 expression. */
430 LATTICE_ORIGIN (ret)[i] = LLE_CONSTANT (expression);
432 /* Coefficient for the invariants are equal to the invariant
433 coefficients in the expression. */
434 for (j = 0; j < invariants; j++)
435 LATTICE_ORIGIN_INVARIANTS (ret)[i][j] =
436 LLE_INVARIANT_COEFFICIENTS (expression)[j];
439 return ret;
442 /* Compute the least common multiple of two numbers A and B . */
444 static int
445 lcm (int a, int b)
447 return (abs (a) * abs (b) / gcd (a, b));
450 /* Perform Fourier-Motzkin elimination to calculate the bounds of the
451 auxiliary nest.
452 Fourier-Motzkin is a way of reducing systems of linear inequalities so that
453 it is easy to calculate the answer and bounds.
454 A sketch of how it works:
455 Given a system of linear inequalities, ai * xj >= bk, you can always
456 rewrite the constraints so they are all of the form
457 a <= x, or x <= b, or x >= constant for some x in x1 ... xj (and some b
458 in b1 ... bk, and some a in a1...ai)
459 You can then eliminate this x from the non-constant inequalities by
460 rewriting these as a <= b, x >= constant, and delete the x variable.
461 You can then repeat this for any remaining x variables, and then we have
462 an easy to use variable <= constant (or no variables at all) form that we
463 can construct our bounds from.
465 In our case, each time we eliminate, we construct part of the bound from
466 the ith variable, then delete the ith variable.
468 Remember the constant are in our vector a, our coefficient matrix is A,
469 and our invariant coefficient matrix is B.
471 SIZE is the size of the matrices being passed.
472 DEPTH is the loop nest depth.
473 INVARIANTS is the number of loop invariants.
474 A, B, and a are the coefficient matrix, invariant coefficient, and a
475 vector of constants, respectively. */
477 static lambda_loopnest
478 compute_nest_using_fourier_motzkin (int size,
479 int depth,
480 int invariants,
481 lambda_matrix A,
482 lambda_matrix B,
483 lambda_vector a)
486 int multiple, f1, f2;
487 int i, j, k;
488 lambda_linear_expression expression;
489 lambda_loop loop;
490 lambda_loopnest auxillary_nest;
491 lambda_matrix swapmatrix, A1, B1;
492 lambda_vector swapvector, a1;
493 int newsize;
495 A1 = lambda_matrix_new (128, depth);
496 B1 = lambda_matrix_new (128, invariants);
497 a1 = lambda_vector_new (128);
499 auxillary_nest = lambda_loopnest_new (depth, invariants);
501 for (i = depth - 1; i >= 0; i--)
503 loop = lambda_loop_new ();
504 LN_LOOPS (auxillary_nest)[i] = loop;
505 LL_STEP (loop) = 1;
507 for (j = 0; j < size; j++)
509 if (A[j][i] < 0)
511 /* Any linear expression in the matrix with a coefficient less
512 than 0 becomes part of the new lower bound. */
513 expression = lambda_linear_expression_new (depth, invariants);
515 for (k = 0; k < i; k++)
516 LLE_COEFFICIENTS (expression)[k] = A[j][k];
518 for (k = 0; k < invariants; k++)
519 LLE_INVARIANT_COEFFICIENTS (expression)[k] = -1 * B[j][k];
521 LLE_DENOMINATOR (expression) = -1 * A[j][i];
522 LLE_CONSTANT (expression) = -1 * a[j];
524 /* Ignore if identical to the existing lower bound. */
525 if (!lle_equal (LL_LOWER_BOUND (loop),
526 expression, depth, invariants))
528 LLE_NEXT (expression) = LL_LOWER_BOUND (loop);
529 LL_LOWER_BOUND (loop) = expression;
533 else if (A[j][i] > 0)
535 /* Any linear expression with a coefficient greater than 0
536 becomes part of the new upper bound. */
537 expression = lambda_linear_expression_new (depth, invariants);
538 for (k = 0; k < i; k++)
539 LLE_COEFFICIENTS (expression)[k] = -1 * A[j][k];
541 for (k = 0; k < invariants; k++)
542 LLE_INVARIANT_COEFFICIENTS (expression)[k] = B[j][k];
544 LLE_DENOMINATOR (expression) = A[j][i];
545 LLE_CONSTANT (expression) = a[j];
547 /* Ignore if identical to the existing upper bound. */
548 if (!lle_equal (LL_UPPER_BOUND (loop),
549 expression, depth, invariants))
551 LLE_NEXT (expression) = LL_UPPER_BOUND (loop);
552 LL_UPPER_BOUND (loop) = expression;
558 /* This portion creates a new system of linear inequalities by deleting
559 the i'th variable, reducing the system by one variable. */
560 newsize = 0;
561 for (j = 0; j < size; j++)
563 /* If the coefficient for the i'th variable is 0, then we can just
564 eliminate the variable straightaway. Otherwise, we have to
565 multiply through by the coefficients we are eliminating. */
566 if (A[j][i] == 0)
568 lambda_vector_copy (A[j], A1[newsize], depth);
569 lambda_vector_copy (B[j], B1[newsize], invariants);
570 a1[newsize] = a[j];
571 newsize++;
573 else if (A[j][i] > 0)
575 for (k = 0; k < size; k++)
577 if (A[k][i] < 0)
579 multiple = lcm (A[j][i], A[k][i]);
580 f1 = multiple / A[j][i];
581 f2 = -1 * multiple / A[k][i];
583 lambda_vector_add_mc (A[j], f1, A[k], f2,
584 A1[newsize], depth);
585 lambda_vector_add_mc (B[j], f1, B[k], f2,
586 B1[newsize], invariants);
587 a1[newsize] = f1 * a[j] + f2 * a[k];
588 newsize++;
594 swapmatrix = A;
595 A = A1;
596 A1 = swapmatrix;
598 swapmatrix = B;
599 B = B1;
600 B1 = swapmatrix;
602 swapvector = a;
603 a = a1;
604 a1 = swapvector;
606 size = newsize;
609 return auxillary_nest;
612 /* Compute the loop bounds for the auxiliary space NEST.
613 Input system used is Ax <= b. TRANS is the unimodular transformation.
614 Given the original nest, this function will
615 1. Convert the nest into matrix form, which consists of a matrix for the
616 coefficients, a matrix for the
617 invariant coefficients, and a vector for the constants.
618 2. Use the matrix form to calculate the lattice base for the nest (which is
619 a dense space)
620 3. Compose the dense space transform with the user specified transform, to
621 get a transform we can easily calculate transformed bounds for.
622 4. Multiply the composed transformation matrix times the matrix form of the
623 loop.
624 5. Transform the newly created matrix (from step 4) back into a loop nest
625 using fourier motzkin elimination to figure out the bounds. */
627 static lambda_loopnest
628 lambda_compute_auxillary_space (lambda_loopnest nest,
629 lambda_trans_matrix trans)
631 lambda_matrix A, B, A1, B1;
632 lambda_vector a, a1;
633 lambda_matrix invertedtrans;
634 int depth, invariants, size;
635 int i, j;
636 lambda_loop loop;
637 lambda_linear_expression expression;
638 lambda_lattice lattice;
640 depth = LN_DEPTH (nest);
641 invariants = LN_INVARIANTS (nest);
643 /* Unfortunately, we can't know the number of constraints we'll have
644 ahead of time, but this should be enough even in ridiculous loop nest
645 cases. We must not go over this limit. */
646 A = lambda_matrix_new (128, depth);
647 B = lambda_matrix_new (128, invariants);
648 a = lambda_vector_new (128);
650 A1 = lambda_matrix_new (128, depth);
651 B1 = lambda_matrix_new (128, invariants);
652 a1 = lambda_vector_new (128);
654 /* Store the bounds in the equation matrix A, constant vector a, and
655 invariant matrix B, so that we have Ax <= a + B.
656 This requires a little equation rearranging so that everything is on the
657 correct side of the inequality. */
658 size = 0;
659 for (i = 0; i < depth; i++)
661 loop = LN_LOOPS (nest)[i];
663 /* First we do the lower bound. */
664 if (LL_STEP (loop) > 0)
665 expression = LL_LOWER_BOUND (loop);
666 else
667 expression = LL_UPPER_BOUND (loop);
669 for (; expression != NULL; expression = LLE_NEXT (expression))
671 /* Fill in the coefficient. */
672 for (j = 0; j < i; j++)
673 A[size][j] = LLE_COEFFICIENTS (expression)[j];
675 /* And the invariant coefficient. */
676 for (j = 0; j < invariants; j++)
677 B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
679 /* And the constant. */
680 a[size] = LLE_CONSTANT (expression);
682 /* Convert (2x+3y+2+b)/4 <= z to 2x+3y-4z <= -2-b. IE put all
683 constants and single variables on */
684 A[size][i] = -1 * LLE_DENOMINATOR (expression);
685 a[size] *= -1;
686 for (j = 0; j < invariants; j++)
687 B[size][j] *= -1;
689 size++;
690 /* Need to increase matrix sizes above. */
691 gcc_assert (size <= 127);
695 /* Then do the exact same thing for the upper bounds. */
696 if (LL_STEP (loop) > 0)
697 expression = LL_UPPER_BOUND (loop);
698 else
699 expression = LL_LOWER_BOUND (loop);
701 for (; expression != NULL; expression = LLE_NEXT (expression))
703 /* Fill in the coefficient. */
704 for (j = 0; j < i; j++)
705 A[size][j] = LLE_COEFFICIENTS (expression)[j];
707 /* And the invariant coefficient. */
708 for (j = 0; j < invariants; j++)
709 B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
711 /* And the constant. */
712 a[size] = LLE_CONSTANT (expression);
714 /* Convert z <= (2x+3y+2+b)/4 to -2x-3y+4z <= 2+b. */
715 for (j = 0; j < i; j++)
716 A[size][j] *= -1;
717 A[size][i] = LLE_DENOMINATOR (expression);
718 size++;
719 /* Need to increase matrix sizes above. */
720 gcc_assert (size <= 127);
725 /* Compute the lattice base x = base * y + origin, where y is the
726 base space. */
727 lattice = lambda_lattice_compute_base (nest);
729 /* Ax <= a + B then becomes ALy <= a+B - A*origin. L is the lattice base */
731 /* A1 = A * L */
732 lambda_matrix_mult (A, LATTICE_BASE (lattice), A1, size, depth, depth);
734 /* a1 = a - A * origin constant. */
735 lambda_matrix_vector_mult (A, size, depth, LATTICE_ORIGIN (lattice), a1);
736 lambda_vector_add_mc (a, 1, a1, -1, a1, size);
738 /* B1 = B - A * origin invariant. */
739 lambda_matrix_mult (A, LATTICE_ORIGIN_INVARIANTS (lattice), B1, size, depth,
740 invariants);
741 lambda_matrix_add_mc (B, 1, B1, -1, B1, size, invariants);
743 /* Now compute the auxiliary space bounds by first inverting U, multiplying
744 it by A1, then performing fourier motzkin. */
746 invertedtrans = lambda_matrix_new (depth, depth);
748 /* Compute the inverse of U. */
749 lambda_matrix_inverse (LTM_MATRIX (trans),
750 invertedtrans, depth);
752 /* A = A1 inv(U). */
753 lambda_matrix_mult (A1, invertedtrans, A, size, depth, depth);
755 return compute_nest_using_fourier_motzkin (size, depth, invariants,
756 A, B1, a1);
759 /* Compute the loop bounds for the target space, using the bounds of
760 the auxiliary nest AUXILLARY_NEST, and the triangular matrix H.
761 The target space loop bounds are computed by multiplying the triangular
762 matrix H by the auxiliary nest, to get the new loop bounds. The sign of
763 the loop steps (positive or negative) is then used to swap the bounds if
764 the loop counts downwards.
765 Return the target loopnest. */
767 static lambda_loopnest
768 lambda_compute_target_space (lambda_loopnest auxillary_nest,
769 lambda_trans_matrix H, lambda_vector stepsigns)
771 lambda_matrix inverse, H1;
772 int determinant, i, j;
773 int gcd1, gcd2;
774 int factor;
776 lambda_loopnest target_nest;
777 int depth, invariants;
778 lambda_matrix target;
780 lambda_loop auxillary_loop, target_loop;
781 lambda_linear_expression expression, auxillary_expr, target_expr, tmp_expr;
783 depth = LN_DEPTH (auxillary_nest);
784 invariants = LN_INVARIANTS (auxillary_nest);
786 inverse = lambda_matrix_new (depth, depth);
787 determinant = lambda_matrix_inverse (LTM_MATRIX (H), inverse, depth);
789 /* H1 is H excluding its diagonal. */
790 H1 = lambda_matrix_new (depth, depth);
791 lambda_matrix_copy (LTM_MATRIX (H), H1, depth, depth);
793 for (i = 0; i < depth; i++)
794 H1[i][i] = 0;
796 /* Computes the linear offsets of the loop bounds. */
797 target = lambda_matrix_new (depth, depth);
798 lambda_matrix_mult (H1, inverse, target, depth, depth, depth);
800 target_nest = lambda_loopnest_new (depth, invariants);
802 for (i = 0; i < depth; i++)
805 /* Get a new loop structure. */
806 target_loop = lambda_loop_new ();
807 LN_LOOPS (target_nest)[i] = target_loop;
809 /* Computes the gcd of the coefficients of the linear part. */
810 gcd1 = lambda_vector_gcd (target[i], i);
812 /* Include the denominator in the GCD. */
813 gcd1 = gcd (gcd1, determinant);
815 /* Now divide through by the gcd. */
816 for (j = 0; j < i; j++)
817 target[i][j] = target[i][j] / gcd1;
819 expression = lambda_linear_expression_new (depth, invariants);
820 lambda_vector_copy (target[i], LLE_COEFFICIENTS (expression), depth);
821 LLE_DENOMINATOR (expression) = determinant / gcd1;
822 LLE_CONSTANT (expression) = 0;
823 lambda_vector_clear (LLE_INVARIANT_COEFFICIENTS (expression),
824 invariants);
825 LL_LINEAR_OFFSET (target_loop) = expression;
828 /* For each loop, compute the new bounds from H. */
829 for (i = 0; i < depth; i++)
831 auxillary_loop = LN_LOOPS (auxillary_nest)[i];
832 target_loop = LN_LOOPS (target_nest)[i];
833 LL_STEP (target_loop) = LTM_MATRIX (H)[i][i];
834 factor = LTM_MATRIX (H)[i][i];
836 /* First we do the lower bound. */
837 auxillary_expr = LL_LOWER_BOUND (auxillary_loop);
839 for (; auxillary_expr != NULL;
840 auxillary_expr = LLE_NEXT (auxillary_expr))
842 target_expr = lambda_linear_expression_new (depth, invariants);
843 lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
844 depth, inverse, depth,
845 LLE_COEFFICIENTS (target_expr));
846 lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
847 LLE_COEFFICIENTS (target_expr), depth,
848 factor);
850 LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
851 lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
852 LLE_INVARIANT_COEFFICIENTS (target_expr),
853 invariants);
854 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
855 LLE_INVARIANT_COEFFICIENTS (target_expr),
856 invariants, factor);
857 LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
859 if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
861 LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
862 * determinant;
863 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
864 (target_expr),
865 LLE_INVARIANT_COEFFICIENTS
866 (target_expr), invariants,
867 determinant);
868 LLE_DENOMINATOR (target_expr) =
869 LLE_DENOMINATOR (target_expr) * determinant;
871 /* Find the gcd and divide by it here, rather than doing it
872 at the tree level. */
873 gcd1 = lambda_vector_gcd (LLE_COEFFICIENTS (target_expr), depth);
874 gcd2 = lambda_vector_gcd (LLE_INVARIANT_COEFFICIENTS (target_expr),
875 invariants);
876 gcd1 = gcd (gcd1, gcd2);
877 gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
878 gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
879 for (j = 0; j < depth; j++)
880 LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
881 for (j = 0; j < invariants; j++)
882 LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
883 LLE_CONSTANT (target_expr) /= gcd1;
884 LLE_DENOMINATOR (target_expr) /= gcd1;
885 /* Ignore if identical to existing bound. */
886 if (!lle_equal (LL_LOWER_BOUND (target_loop), target_expr, depth,
887 invariants))
889 LLE_NEXT (target_expr) = LL_LOWER_BOUND (target_loop);
890 LL_LOWER_BOUND (target_loop) = target_expr;
893 /* Now do the upper bound. */
894 auxillary_expr = LL_UPPER_BOUND (auxillary_loop);
896 for (; auxillary_expr != NULL;
897 auxillary_expr = LLE_NEXT (auxillary_expr))
899 target_expr = lambda_linear_expression_new (depth, invariants);
900 lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
901 depth, inverse, depth,
902 LLE_COEFFICIENTS (target_expr));
903 lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
904 LLE_COEFFICIENTS (target_expr), depth,
905 factor);
906 LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
907 lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
908 LLE_INVARIANT_COEFFICIENTS (target_expr),
909 invariants);
910 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
911 LLE_INVARIANT_COEFFICIENTS (target_expr),
912 invariants, factor);
913 LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
915 if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
917 LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
918 * determinant;
919 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
920 (target_expr),
921 LLE_INVARIANT_COEFFICIENTS
922 (target_expr), invariants,
923 determinant);
924 LLE_DENOMINATOR (target_expr) =
925 LLE_DENOMINATOR (target_expr) * determinant;
927 /* Find the gcd and divide by it here, instead of at the
928 tree level. */
929 gcd1 = lambda_vector_gcd (LLE_COEFFICIENTS (target_expr), depth);
930 gcd2 = lambda_vector_gcd (LLE_INVARIANT_COEFFICIENTS (target_expr),
931 invariants);
932 gcd1 = gcd (gcd1, gcd2);
933 gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
934 gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
935 for (j = 0; j < depth; j++)
936 LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
937 for (j = 0; j < invariants; j++)
938 LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
939 LLE_CONSTANT (target_expr) /= gcd1;
940 LLE_DENOMINATOR (target_expr) /= gcd1;
941 /* Ignore if equal to existing bound. */
942 if (!lle_equal (LL_UPPER_BOUND (target_loop), target_expr, depth,
943 invariants))
945 LLE_NEXT (target_expr) = LL_UPPER_BOUND (target_loop);
946 LL_UPPER_BOUND (target_loop) = target_expr;
950 for (i = 0; i < depth; i++)
952 target_loop = LN_LOOPS (target_nest)[i];
953 /* If necessary, exchange the upper and lower bounds and negate
954 the step size. */
955 if (stepsigns[i] < 0)
957 LL_STEP (target_loop) *= -1;
958 tmp_expr = LL_LOWER_BOUND (target_loop);
959 LL_LOWER_BOUND (target_loop) = LL_UPPER_BOUND (target_loop);
960 LL_UPPER_BOUND (target_loop) = tmp_expr;
963 return target_nest;
966 /* Compute the step signs of TRANS, using TRANS and stepsigns. Return the new
967 result. */
969 static lambda_vector
970 lambda_compute_step_signs (lambda_trans_matrix trans, lambda_vector stepsigns)
972 lambda_matrix matrix, H;
973 int size;
974 lambda_vector newsteps;
975 int i, j, factor, minimum_column;
976 int temp;
978 matrix = LTM_MATRIX (trans);
979 size = LTM_ROWSIZE (trans);
980 H = lambda_matrix_new (size, size);
982 newsteps = lambda_vector_new (size);
983 lambda_vector_copy (stepsigns, newsteps, size);
985 lambda_matrix_copy (matrix, H, size, size);
987 for (j = 0; j < size; j++)
989 lambda_vector row;
990 row = H[j];
991 for (i = j; i < size; i++)
992 if (row[i] < 0)
993 lambda_matrix_col_negate (H, size, i);
994 while (lambda_vector_first_nz (row, size, j + 1) < size)
996 minimum_column = lambda_vector_min_nz (row, size, j);
997 lambda_matrix_col_exchange (H, size, j, minimum_column);
999 temp = newsteps[j];
1000 newsteps[j] = newsteps[minimum_column];
1001 newsteps[minimum_column] = temp;
1003 for (i = j + 1; i < size; i++)
1005 factor = row[i] / row[j];
1006 lambda_matrix_col_add (H, size, j, i, -1 * factor);
1010 return newsteps;
1013 /* Transform NEST according to TRANS, and return the new loopnest.
1014 This involves
1015 1. Computing a lattice base for the transformation
1016 2. Composing the dense base with the specified transformation (TRANS)
1017 3. Decomposing the combined transformation into a lower triangular portion,
1018 and a unimodular portion.
1019 4. Computing the auxiliary nest using the unimodular portion.
1020 5. Computing the target nest using the auxiliary nest and the lower
1021 triangular portion. */
1023 lambda_loopnest
1024 lambda_loopnest_transform (lambda_loopnest nest, lambda_trans_matrix trans)
1026 lambda_loopnest auxillary_nest, target_nest;
1028 int depth, invariants;
1029 int i, j;
1030 lambda_lattice lattice;
1031 lambda_trans_matrix trans1, H, U;
1032 lambda_loop loop;
1033 lambda_linear_expression expression;
1034 lambda_vector origin;
1035 lambda_matrix origin_invariants;
1036 lambda_vector stepsigns;
1037 int f;
1039 depth = LN_DEPTH (nest);
1040 invariants = LN_INVARIANTS (nest);
1042 /* Keep track of the signs of the loop steps. */
1043 stepsigns = lambda_vector_new (depth);
1044 for (i = 0; i < depth; i++)
1046 if (LL_STEP (LN_LOOPS (nest)[i]) > 0)
1047 stepsigns[i] = 1;
1048 else
1049 stepsigns[i] = -1;
1052 /* Compute the lattice base. */
1053 lattice = lambda_lattice_compute_base (nest);
1054 trans1 = lambda_trans_matrix_new (depth, depth);
1056 /* Multiply the transformation matrix by the lattice base. */
1058 lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_BASE (lattice),
1059 LTM_MATRIX (trans1), depth, depth, depth);
1061 /* Compute the Hermite normal form for the new transformation matrix. */
1062 H = lambda_trans_matrix_new (depth, depth);
1063 U = lambda_trans_matrix_new (depth, depth);
1064 lambda_matrix_hermite (LTM_MATRIX (trans1), depth, LTM_MATRIX (H),
1065 LTM_MATRIX (U));
1067 /* Compute the auxiliary loop nest's space from the unimodular
1068 portion. */
1069 auxillary_nest = lambda_compute_auxillary_space (nest, U);
1071 /* Compute the loop step signs from the old step signs and the
1072 transformation matrix. */
1073 stepsigns = lambda_compute_step_signs (trans1, stepsigns);
1075 /* Compute the target loop nest space from the auxiliary nest and
1076 the lower triangular matrix H. */
1077 target_nest = lambda_compute_target_space (auxillary_nest, H, stepsigns);
1078 origin = lambda_vector_new (depth);
1079 origin_invariants = lambda_matrix_new (depth, invariants);
1080 lambda_matrix_vector_mult (LTM_MATRIX (trans), depth, depth,
1081 LATTICE_ORIGIN (lattice), origin);
1082 lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_ORIGIN_INVARIANTS (lattice),
1083 origin_invariants, depth, depth, invariants);
1085 for (i = 0; i < depth; i++)
1087 loop = LN_LOOPS (target_nest)[i];
1088 expression = LL_LINEAR_OFFSET (loop);
1089 if (lambda_vector_zerop (LLE_COEFFICIENTS (expression), depth))
1090 f = 1;
1091 else
1092 f = LLE_DENOMINATOR (expression);
1094 LLE_CONSTANT (expression) += f * origin[i];
1096 for (j = 0; j < invariants; j++)
1097 LLE_INVARIANT_COEFFICIENTS (expression)[j] +=
1098 f * origin_invariants[i][j];
1101 return target_nest;
1105 /* Convert a gcc tree expression EXPR to a lambda linear expression, and
1106 return the new expression. DEPTH is the depth of the loopnest.
1107 OUTERINDUCTIONVARS is an array of the induction variables for outer loops
1108 in this nest. INVARIANTS is the array of invariants for the loop. EXTRA
1109 is the amount we have to add/subtract from the expression because of the
1110 type of comparison it is used in. */
1112 static lambda_linear_expression
1113 gcc_tree_to_linear_expression (int depth, tree expr,
1114 VEC(tree,heap) *outerinductionvars,
1115 VEC(tree,heap) *invariants, int extra)
1117 lambda_linear_expression lle = NULL;
1118 switch (TREE_CODE (expr))
1120 case INTEGER_CST:
1122 lle = lambda_linear_expression_new (depth, 2 * depth);
1123 LLE_CONSTANT (lle) = TREE_INT_CST_LOW (expr);
1124 if (extra != 0)
1125 LLE_CONSTANT (lle) += extra;
1127 LLE_DENOMINATOR (lle) = 1;
1129 break;
1130 case SSA_NAME:
1132 tree iv, invar;
1133 size_t i;
1134 for (i = 0; VEC_iterate (tree, outerinductionvars, i, iv); i++)
1135 if (iv != NULL)
1137 if (SSA_NAME_VAR (iv) == SSA_NAME_VAR (expr))
1139 lle = lambda_linear_expression_new (depth, 2 * depth);
1140 LLE_COEFFICIENTS (lle)[i] = 1;
1141 if (extra != 0)
1142 LLE_CONSTANT (lle) = extra;
1144 LLE_DENOMINATOR (lle) = 1;
1147 for (i = 0; VEC_iterate (tree, invariants, i, invar); i++)
1148 if (invar != NULL)
1150 if (SSA_NAME_VAR (invar) == SSA_NAME_VAR (expr))
1152 lle = lambda_linear_expression_new (depth, 2 * depth);
1153 LLE_INVARIANT_COEFFICIENTS (lle)[i] = 1;
1154 if (extra != 0)
1155 LLE_CONSTANT (lle) = extra;
1156 LLE_DENOMINATOR (lle) = 1;
1160 break;
1161 default:
1162 return NULL;
1165 return lle;
1168 /* Return the depth of the loopnest NEST */
1170 static int
1171 depth_of_nest (struct loop *nest)
1173 size_t depth = 0;
1174 while (nest)
1176 depth++;
1177 nest = nest->inner;
1179 return depth;
1183 /* Return true if OP is invariant in LOOP and all outer loops. */
1185 static bool
1186 invariant_in_loop_and_outer_loops (struct loop *loop, tree op)
1188 if (is_gimple_min_invariant (op))
1189 return true;
1190 if (loop->depth == 0)
1191 return true;
1192 if (!expr_invariant_in_loop_p (loop, op))
1193 return false;
1194 if (loop->outer
1195 && !invariant_in_loop_and_outer_loops (loop->outer, op))
1196 return false;
1197 return true;
1200 /* Generate a lambda loop from a gcc loop LOOP. Return the new lambda loop,
1201 or NULL if it could not be converted.
1202 DEPTH is the depth of the loop.
1203 INVARIANTS is a pointer to the array of loop invariants.
1204 The induction variable for this loop should be stored in the parameter
1205 OURINDUCTIONVAR.
1206 OUTERINDUCTIONVARS is an array of induction variables for outer loops. */
1208 static lambda_loop
1209 gcc_loop_to_lambda_loop (struct loop *loop, int depth,
1210 VEC(tree,heap) ** invariants,
1211 tree * ourinductionvar,
1212 VEC(tree,heap) * outerinductionvars,
1213 VEC(tree,heap) ** lboundvars,
1214 VEC(tree,heap) ** uboundvars,
1215 VEC(int,heap) ** steps)
1217 tree phi;
1218 tree exit_cond;
1219 tree access_fn, inductionvar;
1220 tree step;
1221 lambda_loop lloop = NULL;
1222 lambda_linear_expression lbound, ubound;
1223 tree test;
1224 int stepint;
1225 int extra = 0;
1226 tree lboundvar, uboundvar, uboundresult;
1228 /* Find out induction var and exit condition. */
1229 inductionvar = find_induction_var_from_exit_cond (loop);
1230 exit_cond = get_loop_exit_condition (loop);
1232 if (inductionvar == NULL || exit_cond == NULL)
1234 if (dump_file && (dump_flags & TDF_DETAILS))
1235 fprintf (dump_file,
1236 "Unable to convert loop: Cannot determine exit condition or induction variable for loop.\n");
1237 return NULL;
1240 test = TREE_OPERAND (exit_cond, 0);
1242 if (SSA_NAME_DEF_STMT (inductionvar) == NULL_TREE)
1245 if (dump_file && (dump_flags & TDF_DETAILS))
1246 fprintf (dump_file,
1247 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1249 return NULL;
1252 phi = SSA_NAME_DEF_STMT (inductionvar);
1253 if (TREE_CODE (phi) != PHI_NODE)
1255 phi = SINGLE_SSA_TREE_OPERAND (phi, SSA_OP_USE);
1256 if (!phi)
1259 if (dump_file && (dump_flags & TDF_DETAILS))
1260 fprintf (dump_file,
1261 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1263 return NULL;
1266 phi = SSA_NAME_DEF_STMT (phi);
1267 if (TREE_CODE (phi) != PHI_NODE)
1270 if (dump_file && (dump_flags & TDF_DETAILS))
1271 fprintf (dump_file,
1272 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1273 return NULL;
1278 /* The induction variable name/version we want to put in the array is the
1279 result of the induction variable phi node. */
1280 *ourinductionvar = PHI_RESULT (phi);
1281 access_fn = instantiate_parameters
1282 (loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
1283 if (access_fn == chrec_dont_know)
1285 if (dump_file && (dump_flags & TDF_DETAILS))
1286 fprintf (dump_file,
1287 "Unable to convert loop: Access function for induction variable phi is unknown\n");
1289 return NULL;
1292 step = evolution_part_in_loop_num (access_fn, loop->num);
1293 if (!step || step == chrec_dont_know)
1295 if (dump_file && (dump_flags & TDF_DETAILS))
1296 fprintf (dump_file,
1297 "Unable to convert loop: Cannot determine step of loop.\n");
1299 return NULL;
1301 if (TREE_CODE (step) != INTEGER_CST)
1304 if (dump_file && (dump_flags & TDF_DETAILS))
1305 fprintf (dump_file,
1306 "Unable to convert loop: Step of loop is not integer.\n");
1307 return NULL;
1310 stepint = TREE_INT_CST_LOW (step);
1312 /* Only want phis for induction vars, which will have two
1313 arguments. */
1314 if (PHI_NUM_ARGS (phi) != 2)
1316 if (dump_file && (dump_flags & TDF_DETAILS))
1317 fprintf (dump_file,
1318 "Unable to convert loop: PHI node for induction variable has >2 arguments\n");
1319 return NULL;
1322 /* Another induction variable check. One argument's source should be
1323 in the loop, one outside the loop. */
1324 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 0)->src)
1325 && flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 1)->src))
1328 if (dump_file && (dump_flags & TDF_DETAILS))
1329 fprintf (dump_file,
1330 "Unable to convert loop: PHI edges both inside loop, or both outside loop.\n");
1332 return NULL;
1335 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 0)->src))
1337 lboundvar = PHI_ARG_DEF (phi, 1);
1338 lbound = gcc_tree_to_linear_expression (depth, lboundvar,
1339 outerinductionvars, *invariants,
1342 else
1344 lboundvar = PHI_ARG_DEF (phi, 0);
1345 lbound = gcc_tree_to_linear_expression (depth, lboundvar,
1346 outerinductionvars, *invariants,
1350 if (!lbound)
1353 if (dump_file && (dump_flags & TDF_DETAILS))
1354 fprintf (dump_file,
1355 "Unable to convert loop: Cannot convert lower bound to linear expression\n");
1357 return NULL;
1359 /* One part of the test may be a loop invariant tree. */
1360 VEC_reserve (tree, heap, *invariants, 1);
1361 if (TREE_CODE (TREE_OPERAND (test, 1)) == SSA_NAME
1362 && invariant_in_loop_and_outer_loops (loop, TREE_OPERAND (test, 1)))
1363 VEC_quick_push (tree, *invariants, TREE_OPERAND (test, 1));
1364 else if (TREE_CODE (TREE_OPERAND (test, 0)) == SSA_NAME
1365 && invariant_in_loop_and_outer_loops (loop, TREE_OPERAND (test, 0)))
1366 VEC_quick_push (tree, *invariants, TREE_OPERAND (test, 0));
1368 /* The non-induction variable part of the test is the upper bound variable.
1370 if (TREE_OPERAND (test, 0) == inductionvar)
1371 uboundvar = TREE_OPERAND (test, 1);
1372 else
1373 uboundvar = TREE_OPERAND (test, 0);
1376 /* We only size the vectors assuming we have, at max, 2 times as many
1377 invariants as we do loops (one for each bound).
1378 This is just an arbitrary number, but it has to be matched against the
1379 code below. */
1380 gcc_assert (VEC_length (tree, *invariants) <= (unsigned int) (2 * depth));
1383 /* We might have some leftover. */
1384 if (TREE_CODE (test) == LT_EXPR)
1385 extra = -1 * stepint;
1386 else if (TREE_CODE (test) == NE_EXPR)
1387 extra = -1 * stepint;
1388 else if (TREE_CODE (test) == GT_EXPR)
1389 extra = -1 * stepint;
1390 else if (TREE_CODE (test) == EQ_EXPR)
1391 extra = 1 * stepint;
1393 ubound = gcc_tree_to_linear_expression (depth, uboundvar,
1394 outerinductionvars,
1395 *invariants, extra);
1396 uboundresult = build2 (PLUS_EXPR, TREE_TYPE (uboundvar), uboundvar,
1397 build_int_cst (TREE_TYPE (uboundvar), extra));
1398 VEC_safe_push (tree, heap, *uboundvars, uboundresult);
1399 VEC_safe_push (tree, heap, *lboundvars, lboundvar);
1400 VEC_safe_push (int, heap, *steps, stepint);
1401 if (!ubound)
1403 if (dump_file && (dump_flags & TDF_DETAILS))
1404 fprintf (dump_file,
1405 "Unable to convert loop: Cannot convert upper bound to linear expression\n");
1406 return NULL;
1409 lloop = lambda_loop_new ();
1410 LL_STEP (lloop) = stepint;
1411 LL_LOWER_BOUND (lloop) = lbound;
1412 LL_UPPER_BOUND (lloop) = ubound;
1413 return lloop;
1416 /* Given a LOOP, find the induction variable it is testing against in the exit
1417 condition. Return the induction variable if found, NULL otherwise. */
1419 static tree
1420 find_induction_var_from_exit_cond (struct loop *loop)
1422 tree expr = get_loop_exit_condition (loop);
1423 tree ivarop;
1424 tree test;
1425 if (expr == NULL_TREE)
1426 return NULL_TREE;
1427 if (TREE_CODE (expr) != COND_EXPR)
1428 return NULL_TREE;
1429 test = TREE_OPERAND (expr, 0);
1430 if (!COMPARISON_CLASS_P (test))
1431 return NULL_TREE;
1433 /* Find the side that is invariant in this loop. The ivar must be the other
1434 side. */
1436 if (expr_invariant_in_loop_p (loop, TREE_OPERAND (test, 0)))
1437 ivarop = TREE_OPERAND (test, 1);
1438 else if (expr_invariant_in_loop_p (loop, TREE_OPERAND (test, 1)))
1439 ivarop = TREE_OPERAND (test, 0);
1440 else
1441 return NULL_TREE;
1443 if (TREE_CODE (ivarop) != SSA_NAME)
1444 return NULL_TREE;
1445 return ivarop;
1448 DEF_VEC_P(lambda_loop);
1449 DEF_VEC_ALLOC_P(lambda_loop,heap);
1451 /* Generate a lambda loopnest from a gcc loopnest LOOP_NEST.
1452 Return the new loop nest.
1453 INDUCTIONVARS is a pointer to an array of induction variables for the
1454 loopnest that will be filled in during this process.
1455 INVARIANTS is a pointer to an array of invariants that will be filled in
1456 during this process. */
1458 lambda_loopnest
1459 gcc_loopnest_to_lambda_loopnest (struct loops *currloops,
1460 struct loop * loop_nest,
1461 VEC(tree,heap) **inductionvars,
1462 VEC(tree,heap) **invariants,
1463 bool need_perfect_nest)
1465 lambda_loopnest ret = NULL;
1466 struct loop *temp;
1467 int depth = 0;
1468 size_t i;
1469 VEC(lambda_loop,heap) *loops = NULL;
1470 VEC(tree,heap) *uboundvars = NULL;
1471 VEC(tree,heap) *lboundvars = NULL;
1472 VEC(int,heap) *steps = NULL;
1473 lambda_loop newloop;
1474 tree inductionvar = NULL;
1476 depth = depth_of_nest (loop_nest);
1477 temp = loop_nest;
1478 while (temp)
1480 newloop = gcc_loop_to_lambda_loop (temp, depth, invariants,
1481 &inductionvar, *inductionvars,
1482 &lboundvars, &uboundvars,
1483 &steps);
1484 if (!newloop)
1485 return NULL;
1486 VEC_safe_push (tree, heap, *inductionvars, inductionvar);
1487 VEC_safe_push (lambda_loop, heap, loops, newloop);
1488 temp = temp->inner;
1490 if (need_perfect_nest)
1492 if (!perfect_nestify (currloops, loop_nest,
1493 lboundvars, uboundvars, steps, *inductionvars))
1495 if (dump_file)
1496 fprintf (dump_file,
1497 "Not a perfect loop nest and couldn't convert to one.\n");
1498 goto fail;
1500 else if (dump_file)
1501 fprintf (dump_file,
1502 "Successfully converted loop nest to perfect loop nest.\n");
1504 ret = lambda_loopnest_new (depth, 2 * depth);
1505 for (i = 0; VEC_iterate (lambda_loop, loops, i, newloop); i++)
1506 LN_LOOPS (ret)[i] = newloop;
1507 fail:
1508 VEC_free (lambda_loop, heap, loops);
1509 VEC_free (tree, heap, uboundvars);
1510 VEC_free (tree, heap, lboundvars);
1511 VEC_free (int, heap, steps);
1513 return ret;
1516 /* Convert a lambda body vector LBV to a gcc tree, and return the new tree.
1517 STMTS_TO_INSERT is a pointer to a tree where the statements we need to be
1518 inserted for us are stored. INDUCTION_VARS is the array of induction
1519 variables for the loop this LBV is from. TYPE is the tree type to use for
1520 the variables and trees involved. */
1522 static tree
1523 lbv_to_gcc_expression (lambda_body_vector lbv,
1524 tree type, VEC(tree,heap) *induction_vars,
1525 tree *stmts_to_insert)
1527 tree stmts, stmt, resvar, name;
1528 tree iv;
1529 size_t i;
1530 tree_stmt_iterator tsi;
1532 /* Create a statement list and a linear expression temporary. */
1533 stmts = alloc_stmt_list ();
1534 resvar = create_tmp_var (type, "lbvtmp");
1535 add_referenced_tmp_var (resvar);
1537 /* Start at 0. */
1538 stmt = build2 (MODIFY_EXPR, void_type_node, resvar, integer_zero_node);
1539 name = make_ssa_name (resvar, stmt);
1540 TREE_OPERAND (stmt, 0) = name;
1541 tsi = tsi_last (stmts);
1542 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1544 for (i = 0; VEC_iterate (tree, induction_vars, i, iv); i++)
1546 if (LBV_COEFFICIENTS (lbv)[i] != 0)
1548 tree newname;
1549 tree coeffmult;
1551 /* newname = coefficient * induction_variable */
1552 coeffmult = build_int_cst (type, LBV_COEFFICIENTS (lbv)[i]);
1553 stmt = build2 (MODIFY_EXPR, void_type_node, resvar,
1554 fold_build2 (MULT_EXPR, type, iv, coeffmult));
1556 newname = make_ssa_name (resvar, stmt);
1557 TREE_OPERAND (stmt, 0) = newname;
1558 fold_stmt (&stmt);
1559 tsi = tsi_last (stmts);
1560 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1562 /* name = name + newname */
1563 stmt = build2 (MODIFY_EXPR, void_type_node, resvar,
1564 build2 (PLUS_EXPR, type, name, newname));
1565 name = make_ssa_name (resvar, stmt);
1566 TREE_OPERAND (stmt, 0) = name;
1567 fold_stmt (&stmt);
1568 tsi = tsi_last (stmts);
1569 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1574 /* Handle any denominator that occurs. */
1575 if (LBV_DENOMINATOR (lbv) != 1)
1577 tree denominator = build_int_cst (type, LBV_DENOMINATOR (lbv));
1578 stmt = build2 (MODIFY_EXPR, void_type_node, resvar,
1579 build2 (CEIL_DIV_EXPR, type, name, denominator));
1580 name = make_ssa_name (resvar, stmt);
1581 TREE_OPERAND (stmt, 0) = name;
1582 fold_stmt (&stmt);
1583 tsi = tsi_last (stmts);
1584 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1586 *stmts_to_insert = stmts;
1587 return name;
1590 /* Convert a linear expression from coefficient and constant form to a
1591 gcc tree.
1592 Return the tree that represents the final value of the expression.
1593 LLE is the linear expression to convert.
1594 OFFSET is the linear offset to apply to the expression.
1595 TYPE is the tree type to use for the variables and math.
1596 INDUCTION_VARS is a vector of induction variables for the loops.
1597 INVARIANTS is a vector of the loop nest invariants.
1598 WRAP specifies what tree code to wrap the results in, if there is more than
1599 one (it is either MAX_EXPR, or MIN_EXPR).
1600 STMTS_TO_INSERT Is a pointer to the statement list we fill in with
1601 statements that need to be inserted for the linear expression. */
1603 static tree
1604 lle_to_gcc_expression (lambda_linear_expression lle,
1605 lambda_linear_expression offset,
1606 tree type,
1607 VEC(tree,heap) *induction_vars,
1608 VEC(tree,heap) *invariants,
1609 enum tree_code wrap, tree *stmts_to_insert)
1611 tree stmts, stmt, resvar, name;
1612 size_t i;
1613 tree_stmt_iterator tsi;
1614 tree iv, invar;
1615 VEC(tree,heap) *results = NULL;
1617 gcc_assert (wrap == MAX_EXPR || wrap == MIN_EXPR);
1618 name = NULL_TREE;
1619 /* Create a statement list and a linear expression temporary. */
1620 stmts = alloc_stmt_list ();
1621 resvar = create_tmp_var (type, "lletmp");
1622 add_referenced_tmp_var (resvar);
1624 /* Build up the linear expressions, and put the variable representing the
1625 result in the results array. */
1626 for (; lle != NULL; lle = LLE_NEXT (lle))
1628 /* Start at name = 0. */
1629 stmt = build2 (MODIFY_EXPR, void_type_node, resvar, integer_zero_node);
1630 name = make_ssa_name (resvar, stmt);
1631 TREE_OPERAND (stmt, 0) = name;
1632 fold_stmt (&stmt);
1633 tsi = tsi_last (stmts);
1634 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1636 /* First do the induction variables.
1637 at the end, name = name + all the induction variables added
1638 together. */
1639 for (i = 0; VEC_iterate (tree, induction_vars, i, iv); i++)
1641 if (LLE_COEFFICIENTS (lle)[i] != 0)
1643 tree newname;
1644 tree mult;
1645 tree coeff;
1647 /* mult = induction variable * coefficient. */
1648 if (LLE_COEFFICIENTS (lle)[i] == 1)
1650 mult = VEC_index (tree, induction_vars, i);
1652 else
1654 coeff = build_int_cst (type,
1655 LLE_COEFFICIENTS (lle)[i]);
1656 mult = fold_build2 (MULT_EXPR, type, iv, coeff);
1659 /* newname = mult */
1660 stmt = build2 (MODIFY_EXPR, void_type_node, resvar, mult);
1661 newname = make_ssa_name (resvar, stmt);
1662 TREE_OPERAND (stmt, 0) = newname;
1663 fold_stmt (&stmt);
1664 tsi = tsi_last (stmts);
1665 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1667 /* name = name + newname */
1668 stmt = build2 (MODIFY_EXPR, void_type_node, resvar,
1669 build2 (PLUS_EXPR, type, name, newname));
1670 name = make_ssa_name (resvar, stmt);
1671 TREE_OPERAND (stmt, 0) = name;
1672 fold_stmt (&stmt);
1673 tsi = tsi_last (stmts);
1674 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1678 /* Handle our invariants.
1679 At the end, we have name = name + result of adding all multiplied
1680 invariants. */
1681 for (i = 0; VEC_iterate (tree, invariants, i, invar); i++)
1683 if (LLE_INVARIANT_COEFFICIENTS (lle)[i] != 0)
1685 tree newname;
1686 tree mult;
1687 tree coeff;
1688 int invcoeff = LLE_INVARIANT_COEFFICIENTS (lle)[i];
1689 /* mult = invariant * coefficient */
1690 if (invcoeff == 1)
1692 mult = invar;
1694 else
1696 coeff = build_int_cst (type, invcoeff);
1697 mult = fold_build2 (MULT_EXPR, type, invar, coeff);
1700 /* newname = mult */
1701 stmt = build2 (MODIFY_EXPR, void_type_node, resvar, mult);
1702 newname = make_ssa_name (resvar, stmt);
1703 TREE_OPERAND (stmt, 0) = newname;
1704 fold_stmt (&stmt);
1705 tsi = tsi_last (stmts);
1706 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1708 /* name = name + newname */
1709 stmt = build2 (MODIFY_EXPR, void_type_node, resvar,
1710 build2 (PLUS_EXPR, type, name, newname));
1711 name = make_ssa_name (resvar, stmt);
1712 TREE_OPERAND (stmt, 0) = name;
1713 fold_stmt (&stmt);
1714 tsi = tsi_last (stmts);
1715 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1719 /* Now handle the constant.
1720 name = name + constant. */
1721 if (LLE_CONSTANT (lle) != 0)
1723 stmt = build2 (MODIFY_EXPR, void_type_node, resvar,
1724 build2 (PLUS_EXPR, type, name,
1725 build_int_cst (type, LLE_CONSTANT (lle))));
1726 name = make_ssa_name (resvar, stmt);
1727 TREE_OPERAND (stmt, 0) = name;
1728 fold_stmt (&stmt);
1729 tsi = tsi_last (stmts);
1730 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1733 /* Now handle the offset.
1734 name = name + linear offset. */
1735 if (LLE_CONSTANT (offset) != 0)
1737 stmt = build2 (MODIFY_EXPR, void_type_node, resvar,
1738 build2 (PLUS_EXPR, type, name,
1739 build_int_cst (type, LLE_CONSTANT (offset))));
1740 name = make_ssa_name (resvar, stmt);
1741 TREE_OPERAND (stmt, 0) = name;
1742 fold_stmt (&stmt);
1743 tsi = tsi_last (stmts);
1744 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1747 /* Handle any denominator that occurs. */
1748 if (LLE_DENOMINATOR (lle) != 1)
1750 stmt = build_int_cst (type, LLE_DENOMINATOR (lle));
1751 stmt = build2 (wrap == MAX_EXPR ? CEIL_DIV_EXPR : FLOOR_DIV_EXPR,
1752 type, name, stmt);
1753 stmt = build2 (MODIFY_EXPR, void_type_node, resvar, stmt);
1755 /* name = {ceil, floor}(name/denominator) */
1756 name = make_ssa_name (resvar, stmt);
1757 TREE_OPERAND (stmt, 0) = name;
1758 tsi = tsi_last (stmts);
1759 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1761 VEC_safe_push (tree, heap, results, name);
1764 /* Again, out of laziness, we don't handle this case yet. It's not
1765 hard, it just hasn't occurred. */
1766 gcc_assert (VEC_length (tree, results) <= 2);
1768 /* We may need to wrap the results in a MAX_EXPR or MIN_EXPR. */
1769 if (VEC_length (tree, results) > 1)
1771 tree op1 = VEC_index (tree, results, 0);
1772 tree op2 = VEC_index (tree, results, 1);
1773 stmt = build2 (MODIFY_EXPR, void_type_node, resvar,
1774 build2 (wrap, type, op1, op2));
1775 name = make_ssa_name (resvar, stmt);
1776 TREE_OPERAND (stmt, 0) = name;
1777 tsi = tsi_last (stmts);
1778 tsi_link_after (&tsi, stmt, TSI_CONTINUE_LINKING);
1781 VEC_free (tree, heap, results);
1783 *stmts_to_insert = stmts;
1784 return name;
1787 /* Transform a lambda loopnest NEW_LOOPNEST, which had TRANSFORM applied to
1788 it, back into gcc code. This changes the
1789 loops, their induction variables, and their bodies, so that they
1790 match the transformed loopnest.
1791 OLD_LOOPNEST is the loopnest before we've replaced it with the new
1792 loopnest.
1793 OLD_IVS is a vector of induction variables from the old loopnest.
1794 INVARIANTS is a vector of loop invariants from the old loopnest.
1795 NEW_LOOPNEST is the new lambda loopnest to replace OLD_LOOPNEST with.
1796 TRANSFORM is the matrix transform that was applied to OLD_LOOPNEST to get
1797 NEW_LOOPNEST. */
1799 void
1800 lambda_loopnest_to_gcc_loopnest (struct loop *old_loopnest,
1801 VEC(tree,heap) *old_ivs,
1802 VEC(tree,heap) *invariants,
1803 lambda_loopnest new_loopnest,
1804 lambda_trans_matrix transform)
1806 struct loop *temp;
1807 size_t i = 0;
1808 size_t depth = 0;
1809 VEC(tree,heap) *new_ivs = NULL;
1810 tree oldiv;
1812 block_stmt_iterator bsi;
1814 if (dump_file)
1816 transform = lambda_trans_matrix_inverse (transform);
1817 fprintf (dump_file, "Inverse of transformation matrix:\n");
1818 print_lambda_trans_matrix (dump_file, transform);
1820 depth = depth_of_nest (old_loopnest);
1821 temp = old_loopnest;
1823 while (temp)
1825 lambda_loop newloop;
1826 basic_block bb;
1827 edge exit;
1828 tree ivvar, ivvarinced, exitcond, stmts;
1829 enum tree_code testtype;
1830 tree newupperbound, newlowerbound;
1831 lambda_linear_expression offset;
1832 tree type;
1833 bool insert_after;
1834 tree inc_stmt;
1836 oldiv = VEC_index (tree, old_ivs, i);
1837 type = TREE_TYPE (oldiv);
1839 /* First, build the new induction variable temporary */
1841 ivvar = create_tmp_var (type, "lnivtmp");
1842 add_referenced_tmp_var (ivvar);
1844 VEC_safe_push (tree, heap, new_ivs, ivvar);
1846 newloop = LN_LOOPS (new_loopnest)[i];
1848 /* Linear offset is a bit tricky to handle. Punt on the unhandled
1849 cases for now. */
1850 offset = LL_LINEAR_OFFSET (newloop);
1852 gcc_assert (LLE_DENOMINATOR (offset) == 1 &&
1853 lambda_vector_zerop (LLE_COEFFICIENTS (offset), depth));
1855 /* Now build the new lower bounds, and insert the statements
1856 necessary to generate it on the loop preheader. */
1857 newlowerbound = lle_to_gcc_expression (LL_LOWER_BOUND (newloop),
1858 LL_LINEAR_OFFSET (newloop),
1859 type,
1860 new_ivs,
1861 invariants, MAX_EXPR, &stmts);
1862 bsi_insert_on_edge (loop_preheader_edge (temp), stmts);
1863 bsi_commit_edge_inserts ();
1864 /* Build the new upper bound and insert its statements in the
1865 basic block of the exit condition */
1866 newupperbound = lle_to_gcc_expression (LL_UPPER_BOUND (newloop),
1867 LL_LINEAR_OFFSET (newloop),
1868 type,
1869 new_ivs,
1870 invariants, MIN_EXPR, &stmts);
1871 exit = temp->single_exit;
1872 exitcond = get_loop_exit_condition (temp);
1873 bb = bb_for_stmt (exitcond);
1874 bsi = bsi_start (bb);
1875 bsi_insert_after (&bsi, stmts, BSI_NEW_STMT);
1877 /* Create the new iv. */
1879 standard_iv_increment_position (temp, &bsi, &insert_after);
1880 create_iv (newlowerbound,
1881 build_int_cst (type, LL_STEP (newloop)),
1882 ivvar, temp, &bsi, insert_after, &ivvar,
1883 NULL);
1885 /* Unfortunately, the incremented ivvar that create_iv inserted may not
1886 dominate the block containing the exit condition.
1887 So we simply create our own incremented iv to use in the new exit
1888 test, and let redundancy elimination sort it out. */
1889 inc_stmt = build2 (PLUS_EXPR, type,
1890 ivvar, build_int_cst (type, LL_STEP (newloop)));
1891 inc_stmt = build2 (MODIFY_EXPR, void_type_node, SSA_NAME_VAR (ivvar),
1892 inc_stmt);
1893 ivvarinced = make_ssa_name (SSA_NAME_VAR (ivvar), inc_stmt);
1894 TREE_OPERAND (inc_stmt, 0) = ivvarinced;
1895 bsi = bsi_for_stmt (exitcond);
1896 bsi_insert_before (&bsi, inc_stmt, BSI_SAME_STMT);
1898 /* Replace the exit condition with the new upper bound
1899 comparison. */
1901 testtype = LL_STEP (newloop) >= 0 ? LE_EXPR : GE_EXPR;
1903 /* We want to build a conditional where true means exit the loop, and
1904 false means continue the loop.
1905 So swap the testtype if this isn't the way things are.*/
1907 if (exit->flags & EDGE_FALSE_VALUE)
1908 testtype = swap_tree_comparison (testtype);
1910 COND_EXPR_COND (exitcond) = build2 (testtype,
1911 boolean_type_node,
1912 newupperbound, ivvarinced);
1913 update_stmt (exitcond);
1914 VEC_replace (tree, new_ivs, i, ivvar);
1916 i++;
1917 temp = temp->inner;
1920 /* Rewrite uses of the old ivs so that they are now specified in terms of
1921 the new ivs. */
1923 for (i = 0; VEC_iterate (tree, old_ivs, i, oldiv); i++)
1925 imm_use_iterator imm_iter;
1926 use_operand_p imm_use;
1927 tree oldiv_def;
1928 tree oldiv_stmt = SSA_NAME_DEF_STMT (oldiv);
1930 if (TREE_CODE (oldiv_stmt) == PHI_NODE)
1931 oldiv_def = PHI_RESULT (oldiv_stmt);
1932 else
1933 oldiv_def = SINGLE_SSA_TREE_OPERAND (oldiv_stmt, SSA_OP_DEF);
1934 gcc_assert (oldiv_def != NULL_TREE);
1936 FOR_EACH_IMM_USE_SAFE (imm_use, imm_iter, oldiv_def)
1938 tree stmt = USE_STMT (imm_use);
1939 use_operand_p use_p;
1940 ssa_op_iter iter;
1941 gcc_assert (TREE_CODE (stmt) != PHI_NODE);
1942 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1944 if (USE_FROM_PTR (use_p) == oldiv)
1946 tree newiv, stmts;
1947 lambda_body_vector lbv, newlbv;
1948 /* Compute the new expression for the induction
1949 variable. */
1950 depth = VEC_length (tree, new_ivs);
1951 lbv = lambda_body_vector_new (depth);
1952 LBV_COEFFICIENTS (lbv)[i] = 1;
1954 newlbv = lambda_body_vector_compute_new (transform, lbv);
1956 newiv = lbv_to_gcc_expression (newlbv, TREE_TYPE (oldiv),
1957 new_ivs, &stmts);
1958 bsi = bsi_for_stmt (stmt);
1959 /* Insert the statements to build that
1960 expression. */
1961 bsi_insert_before (&bsi, stmts, BSI_SAME_STMT);
1962 propagate_value (use_p, newiv);
1963 update_stmt (stmt);
1969 VEC_free (tree, heap, new_ivs);
1972 /* Return TRUE if this is not interesting statement from the perspective of
1973 determining if we have a perfect loop nest. */
1975 static bool
1976 not_interesting_stmt (tree stmt)
1978 /* Note that COND_EXPR's aren't interesting because if they were exiting the
1979 loop, we would have already failed the number of exits tests. */
1980 if (TREE_CODE (stmt) == LABEL_EXPR
1981 || TREE_CODE (stmt) == GOTO_EXPR
1982 || TREE_CODE (stmt) == COND_EXPR)
1983 return true;
1984 return false;
1987 /* Return TRUE if PHI uses DEF for it's in-the-loop edge for LOOP. */
1989 static bool
1990 phi_loop_edge_uses_def (struct loop *loop, tree phi, tree def)
1992 int i;
1993 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
1994 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, i)->src))
1995 if (PHI_ARG_DEF (phi, i) == def)
1996 return true;
1997 return false;
2000 /* Return TRUE if STMT is a use of PHI_RESULT. */
2002 static bool
2003 stmt_uses_phi_result (tree stmt, tree phi_result)
2005 tree use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
2007 /* This is conservatively true, because we only want SIMPLE bumpers
2008 of the form x +- constant for our pass. */
2009 return (use == phi_result);
2012 /* STMT is a bumper stmt for LOOP if the version it defines is used in the
2013 in-loop-edge in a phi node, and the operand it uses is the result of that
2014 phi node.
2015 I.E. i_29 = i_3 + 1
2016 i_3 = PHI (0, i_29); */
2018 static bool
2019 stmt_is_bumper_for_loop (struct loop *loop, tree stmt)
2021 tree use;
2022 tree def;
2023 imm_use_iterator iter;
2024 use_operand_p use_p;
2026 def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF);
2027 if (!def)
2028 return false;
2030 FOR_EACH_IMM_USE_FAST (use_p, iter, def)
2032 use = USE_STMT (use_p);
2033 if (TREE_CODE (use) == PHI_NODE)
2035 if (phi_loop_edge_uses_def (loop, use, def))
2036 if (stmt_uses_phi_result (stmt, PHI_RESULT (use)))
2037 return true;
2040 return false;
2044 /* Return true if LOOP is a perfect loop nest.
2045 Perfect loop nests are those loop nests where all code occurs in the
2046 innermost loop body.
2047 If S is a program statement, then
2049 i.e.
2050 DO I = 1, 20
2052 DO J = 1, 20
2054 END DO
2055 END DO
2056 is not a perfect loop nest because of S1.
2058 DO I = 1, 20
2059 DO J = 1, 20
2062 END DO
2063 END DO
2064 is a perfect loop nest.
2066 Since we don't have high level loops anymore, we basically have to walk our
2067 statements and ignore those that are there because the loop needs them (IE
2068 the induction variable increment, and jump back to the top of the loop). */
2070 bool
2071 perfect_nest_p (struct loop *loop)
2073 basic_block *bbs;
2074 size_t i;
2075 tree exit_cond;
2077 if (!loop->inner)
2078 return true;
2079 bbs = get_loop_body (loop);
2080 exit_cond = get_loop_exit_condition (loop);
2081 for (i = 0; i < loop->num_nodes; i++)
2083 if (bbs[i]->loop_father == loop)
2085 block_stmt_iterator bsi;
2086 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi); bsi_next (&bsi))
2088 tree stmt = bsi_stmt (bsi);
2089 if (stmt == exit_cond
2090 || not_interesting_stmt (stmt)
2091 || stmt_is_bumper_for_loop (loop, stmt))
2092 continue;
2093 free (bbs);
2094 return false;
2098 free (bbs);
2099 /* See if the inner loops are perfectly nested as well. */
2100 if (loop->inner)
2101 return perfect_nest_p (loop->inner);
2102 return true;
2105 /* Replace the USES of X in STMT, or uses with the same step as X with Y. */
2107 static void
2108 replace_uses_equiv_to_x_with_y (struct loop *loop, tree stmt, tree x,
2109 int xstep, tree y)
2111 ssa_op_iter iter;
2112 use_operand_p use_p;
2114 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
2116 tree use = USE_FROM_PTR (use_p);
2117 tree step = NULL_TREE;
2118 tree access_fn = NULL_TREE;
2121 access_fn = instantiate_parameters
2122 (loop, analyze_scalar_evolution (loop, use));
2123 if (access_fn != NULL_TREE && access_fn != chrec_dont_know)
2124 step = evolution_part_in_loop_num (access_fn, loop->num);
2125 if ((step && step != chrec_dont_know
2126 && TREE_CODE (step) == INTEGER_CST
2127 && int_cst_value (step) == xstep)
2128 || USE_FROM_PTR (use_p) == x)
2129 SET_USE (use_p, y);
2133 /* Return TRUE if STMT uses tree OP in it's uses. */
2135 static bool
2136 stmt_uses_op (tree stmt, tree op)
2138 ssa_op_iter iter;
2139 tree use;
2141 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
2143 if (use == op)
2144 return true;
2146 return false;
2149 /* Return true if STMT is an exit PHI for LOOP */
2151 static bool
2152 exit_phi_for_loop_p (struct loop *loop, tree stmt)
2155 if (TREE_CODE (stmt) != PHI_NODE
2156 || PHI_NUM_ARGS (stmt) != 1
2157 || bb_for_stmt (stmt) != loop->single_exit->dest)
2158 return false;
2160 return true;
2163 /* Return true if STMT can be put back into the loop INNER, by
2164 copying it to the beginning of that loop and changing the uses. */
2166 static bool
2167 can_put_in_inner_loop (struct loop *inner, tree stmt)
2169 imm_use_iterator imm_iter;
2170 use_operand_p use_p;
2172 gcc_assert (TREE_CODE (stmt) == MODIFY_EXPR);
2173 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)
2174 || !expr_invariant_in_loop_p (inner, TREE_OPERAND (stmt, 1)))
2175 return false;
2177 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, TREE_OPERAND (stmt, 0))
2179 if (!exit_phi_for_loop_p (inner, USE_STMT (use_p)))
2181 basic_block immbb = bb_for_stmt (USE_STMT (use_p));
2183 if (!flow_bb_inside_loop_p (inner, immbb))
2184 return false;
2187 return true;
2190 /* Return true if STMT can be put *after* the inner loop of LOOP. */
2191 static bool
2192 can_put_after_inner_loop (struct loop *loop, tree stmt)
2194 imm_use_iterator imm_iter;
2195 use_operand_p use_p;
2197 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
2198 return false;
2200 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, TREE_OPERAND (stmt, 0))
2202 if (!exit_phi_for_loop_p (loop, USE_STMT (use_p)))
2204 basic_block immbb = bb_for_stmt (USE_STMT (use_p));
2206 if (!dominated_by_p (CDI_DOMINATORS,
2207 immbb,
2208 loop->inner->header)
2209 && !can_put_in_inner_loop (loop->inner, stmt))
2210 return false;
2213 return true;
2218 /* Return TRUE if LOOP is an imperfect nest that we can convert to a perfect
2219 one. LOOPIVS is a vector of induction variables, one per loop.
2220 ATM, we only handle imperfect nests of depth 2, where all of the statements
2221 occur after the inner loop. */
2223 static bool
2224 can_convert_to_perfect_nest (struct loop *loop,
2225 VEC(tree,heap) *loopivs)
2227 basic_block *bbs;
2228 tree exit_condition, phi;
2229 size_t i;
2230 block_stmt_iterator bsi;
2231 basic_block exitdest;
2233 /* Can't handle triply nested+ loops yet. */
2234 if (!loop->inner || loop->inner->inner)
2235 return false;
2237 bbs = get_loop_body (loop);
2238 exit_condition = get_loop_exit_condition (loop);
2239 for (i = 0; i < loop->num_nodes; i++)
2241 if (bbs[i]->loop_father == loop)
2243 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi); bsi_next (&bsi))
2245 size_t j;
2246 tree stmt = bsi_stmt (bsi);
2247 tree iv;
2249 if (stmt == exit_condition
2250 || not_interesting_stmt (stmt)
2251 || stmt_is_bumper_for_loop (loop, stmt))
2252 continue;
2253 /* If the statement uses inner loop ivs, we == screwed. */
2254 for (j = 1; VEC_iterate (tree, loopivs, j, iv); j++)
2255 if (stmt_uses_op (stmt, iv))
2256 goto fail;
2258 /* If this is a scalar operation that can be put back
2259 into the inner loop, or after the inner loop, through
2260 copying, then do so. This works on the theory that
2261 any amount of scalar code we have to reduplicate
2262 into or after the loops is less expensive that the
2263 win we get from rearranging the memory walk
2264 the loop is doing so that it has better
2265 cache behavior. */
2266 if (TREE_CODE (stmt) == MODIFY_EXPR
2267 && (can_put_in_inner_loop (loop->inner, stmt)
2268 || can_put_after_inner_loop (loop, stmt)))
2269 continue;
2271 /* Otherwise, if the bb of a statement we care about isn't
2272 dominated by the header of the inner loop, then we can't
2273 handle this case right now. This test ensures that the
2274 statement comes completely *after* the inner loop. */
2275 if (!dominated_by_p (CDI_DOMINATORS,
2276 bb_for_stmt (stmt),
2277 loop->inner->header))
2278 goto fail;
2283 /* We also need to make sure the loop exit only has simple copy phis in it,
2284 otherwise we don't know how to transform it into a perfect nest right
2285 now. */
2286 exitdest = loop->single_exit->dest;
2288 for (phi = phi_nodes (exitdest); phi; phi = PHI_CHAIN (phi))
2289 if (PHI_NUM_ARGS (phi) != 1)
2290 goto fail;
2292 free (bbs);
2293 return true;
2295 fail:
2296 free (bbs);
2297 return false;
2300 /* Transform the loop nest into a perfect nest, if possible.
2301 LOOPS is the current struct loops *
2302 LOOP is the loop nest to transform into a perfect nest
2303 LBOUNDS are the lower bounds for the loops to transform
2304 UBOUNDS are the upper bounds for the loops to transform
2305 STEPS is the STEPS for the loops to transform.
2306 LOOPIVS is the induction variables for the loops to transform.
2308 Basically, for the case of
2310 FOR (i = 0; i < 50; i++)
2312 FOR (j =0; j < 50; j++)
2314 <whatever>
2316 <some code>
2319 This function will transform it into a perfect loop nest by splitting the
2320 outer loop into two loops, like so:
2322 FOR (i = 0; i < 50; i++)
2324 FOR (j = 0; j < 50; j++)
2326 <whatever>
2330 FOR (i = 0; i < 50; i ++)
2332 <some code>
2335 Return FALSE if we can't make this loop into a perfect nest. */
2337 static bool
2338 perfect_nestify (struct loops *loops,
2339 struct loop *loop,
2340 VEC(tree,heap) *lbounds,
2341 VEC(tree,heap) *ubounds,
2342 VEC(int,heap) *steps,
2343 VEC(tree,heap) *loopivs)
2345 basic_block *bbs;
2346 tree exit_condition;
2347 tree then_label, else_label, cond_stmt;
2348 basic_block preheaderbb, headerbb, bodybb, latchbb, olddest;
2349 int i;
2350 block_stmt_iterator bsi;
2351 bool insert_after;
2352 edge e;
2353 struct loop *newloop;
2354 tree phi;
2355 tree uboundvar;
2356 tree stmt;
2357 tree oldivvar, ivvar, ivvarinced;
2358 VEC(tree,heap) *phis = NULL;
2360 if (!can_convert_to_perfect_nest (loop, loopivs))
2361 return false;
2363 /* Create the new loop */
2365 olddest = loop->single_exit->dest;
2366 preheaderbb = loop_split_edge_with (loop->single_exit, NULL);
2367 headerbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2369 /* Push the exit phi nodes that we are moving. */
2370 for (phi = phi_nodes (olddest); phi; phi = PHI_CHAIN (phi))
2372 VEC_reserve (tree, heap, phis, 2);
2373 VEC_quick_push (tree, phis, PHI_RESULT (phi));
2374 VEC_quick_push (tree, phis, PHI_ARG_DEF (phi, 0));
2376 e = redirect_edge_and_branch (single_succ_edge (preheaderbb), headerbb);
2378 /* Remove the exit phis from the old basic block. Make sure to set
2379 PHI_RESULT to null so it doesn't get released. */
2380 while (phi_nodes (olddest) != NULL)
2382 SET_PHI_RESULT (phi_nodes (olddest), NULL);
2383 remove_phi_node (phi_nodes (olddest), NULL);
2386 /* and add them back to the new basic block. */
2387 while (VEC_length (tree, phis) != 0)
2389 tree def;
2390 tree phiname;
2391 def = VEC_pop (tree, phis);
2392 phiname = VEC_pop (tree, phis);
2393 phi = create_phi_node (phiname, preheaderbb);
2394 add_phi_arg (phi, def, single_pred_edge (preheaderbb));
2396 flush_pending_stmts (e);
2397 VEC_free (tree, heap, phis);
2399 bodybb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2400 latchbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2401 make_edge (headerbb, bodybb, EDGE_FALLTHRU);
2402 then_label = build1 (GOTO_EXPR, void_type_node, tree_block_label (latchbb));
2403 else_label = build1 (GOTO_EXPR, void_type_node, tree_block_label (olddest));
2404 cond_stmt = build3 (COND_EXPR, void_type_node,
2405 build2 (NE_EXPR, boolean_type_node,
2406 integer_one_node,
2407 integer_zero_node),
2408 then_label, else_label);
2409 bsi = bsi_start (bodybb);
2410 bsi_insert_after (&bsi, cond_stmt, BSI_NEW_STMT);
2411 e = make_edge (bodybb, olddest, EDGE_FALSE_VALUE);
2412 make_edge (bodybb, latchbb, EDGE_TRUE_VALUE);
2413 make_edge (latchbb, headerbb, EDGE_FALLTHRU);
2415 /* Update the loop structures. */
2416 newloop = duplicate_loop (loops, loop, olddest->loop_father);
2417 newloop->header = headerbb;
2418 newloop->latch = latchbb;
2419 newloop->single_exit = e;
2420 add_bb_to_loop (latchbb, newloop);
2421 add_bb_to_loop (bodybb, newloop);
2422 add_bb_to_loop (headerbb, newloop);
2423 set_immediate_dominator (CDI_DOMINATORS, bodybb, headerbb);
2424 set_immediate_dominator (CDI_DOMINATORS, headerbb, preheaderbb);
2425 set_immediate_dominator (CDI_DOMINATORS, preheaderbb,
2426 loop->single_exit->src);
2427 set_immediate_dominator (CDI_DOMINATORS, latchbb, bodybb);
2428 set_immediate_dominator (CDI_DOMINATORS, olddest, bodybb);
2429 /* Create the new iv. */
2430 oldivvar = VEC_index (tree, loopivs, 0);
2431 ivvar = create_tmp_var (TREE_TYPE (oldivvar), "perfectiv");
2432 add_referenced_tmp_var (ivvar);
2433 standard_iv_increment_position (newloop, &bsi, &insert_after);
2434 create_iv (VEC_index (tree, lbounds, 0),
2435 build_int_cst (TREE_TYPE (oldivvar), VEC_index (int, steps, 0)),
2436 ivvar, newloop, &bsi, insert_after, &ivvar, &ivvarinced);
2438 /* Create the new upper bound. This may be not just a variable, so we copy
2439 it to one just in case. */
2441 exit_condition = get_loop_exit_condition (newloop);
2442 uboundvar = create_tmp_var (integer_type_node, "uboundvar");
2443 add_referenced_tmp_var (uboundvar);
2444 stmt = build2 (MODIFY_EXPR, void_type_node, uboundvar,
2445 VEC_index (tree, ubounds, 0));
2446 uboundvar = make_ssa_name (uboundvar, stmt);
2447 TREE_OPERAND (stmt, 0) = uboundvar;
2449 if (insert_after)
2450 bsi_insert_after (&bsi, stmt, BSI_SAME_STMT);
2451 else
2452 bsi_insert_before (&bsi, stmt, BSI_SAME_STMT);
2453 update_stmt (stmt);
2454 COND_EXPR_COND (exit_condition) = build2 (GE_EXPR,
2455 boolean_type_node,
2456 uboundvar,
2457 ivvarinced);
2458 update_stmt (exit_condition);
2459 bbs = get_loop_body_in_dom_order (loop);
2460 /* Now move the statements, and replace the induction variable in the moved
2461 statements with the correct loop induction variable. */
2462 oldivvar = VEC_index (tree, loopivs, 0);
2463 for (i = loop->num_nodes - 1; i >= 0 ; i--)
2465 block_stmt_iterator tobsi = bsi_last (bodybb);
2466 if (bbs[i]->loop_father == loop)
2468 /* If this is true, we are *before* the inner loop.
2469 If this isn't true, we are *after* it.
2471 The only time can_convert_to_perfect_nest returns true when we
2472 have statements before the inner loop is if they can be moved
2473 into the inner loop.
2475 The only time can_convert_to_perfect_nest returns true when we
2476 have statements after the inner loop is if they can be moved into
2477 the new split loop. */
2479 if (dominated_by_p (CDI_DOMINATORS, loop->inner->header, bbs[i]))
2481 for (bsi = bsi_last (bbs[i]); !bsi_end_p (bsi);)
2483 use_operand_p use_p;
2484 imm_use_iterator imm_iter;
2485 tree stmt = bsi_stmt (bsi);
2487 if (stmt == exit_condition
2488 || not_interesting_stmt (stmt)
2489 || stmt_is_bumper_for_loop (loop, stmt))
2491 if (!bsi_end_p (bsi))
2492 bsi_prev (&bsi);
2493 continue;
2496 /* Make copies of this statement to put it back next
2497 to its uses. */
2498 FOR_EACH_IMM_USE_SAFE (use_p, imm_iter,
2499 TREE_OPERAND (stmt, 0))
2501 tree imm_stmt = USE_STMT (use_p);
2502 if (!exit_phi_for_loop_p (loop->inner, imm_stmt))
2504 block_stmt_iterator tobsi;
2505 tree newname;
2506 tree newstmt;
2508 newstmt = unshare_expr (stmt);
2509 tobsi = bsi_after_labels (bb_for_stmt (imm_stmt));
2510 newname = TREE_OPERAND (newstmt, 0);
2511 newname = SSA_NAME_VAR (newname);
2512 newname = make_ssa_name (newname, newstmt);
2513 TREE_OPERAND (newstmt, 0) = newname;
2514 SET_USE (use_p, TREE_OPERAND (newstmt, 0));
2515 bsi_insert_before (&tobsi, newstmt, BSI_SAME_STMT);
2516 update_stmt (newstmt);
2517 update_stmt (imm_stmt);
2520 if (!bsi_end_p (bsi))
2521 bsi_prev (&bsi);
2524 else
2526 /* Note that the bsi only needs to be explicitly incremented
2527 when we don't move something, since it is automatically
2528 incremented when we do. */
2529 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi);)
2531 ssa_op_iter i;
2532 tree n, stmt = bsi_stmt (bsi);
2534 if (stmt == exit_condition
2535 || not_interesting_stmt (stmt)
2536 || stmt_is_bumper_for_loop (loop, stmt))
2538 bsi_next (&bsi);
2539 continue;
2542 replace_uses_equiv_to_x_with_y (loop, stmt,
2543 oldivvar,
2544 VEC_index (int, steps, 0),
2545 ivvar);
2546 bsi_move_before (&bsi, &tobsi);
2548 /* If the statement has any virtual operands, they may
2549 need to be rewired because the original loop may
2550 still reference them. */
2551 FOR_EACH_SSA_TREE_OPERAND (n, stmt, i, SSA_OP_ALL_VIRTUALS)
2552 mark_sym_for_renaming (SSA_NAME_VAR (n));
2559 free (bbs);
2560 return perfect_nest_p (loop);
2563 /* Return true if TRANS is a legal transformation matrix that respects
2564 the dependence vectors in DISTS and DIRS. The conservative answer
2565 is false.
2567 "Wolfe proves that a unimodular transformation represented by the
2568 matrix T is legal when applied to a loop nest with a set of
2569 lexicographically non-negative distance vectors RDG if and only if
2570 for each vector d in RDG, (T.d >= 0) is lexicographically positive.
2571 i.e.: if and only if it transforms the lexicographically positive
2572 distance vectors to lexicographically positive vectors. Note that
2573 a unimodular matrix must transform the zero vector (and only it) to
2574 the zero vector." S.Muchnick. */
2576 bool
2577 lambda_transform_legal_p (lambda_trans_matrix trans,
2578 int nb_loops,
2579 VEC (ddr_p, heap) *dependence_relations)
2581 unsigned int i, j;
2582 lambda_vector distres;
2583 struct data_dependence_relation *ddr;
2585 gcc_assert (LTM_COLSIZE (trans) == nb_loops
2586 && LTM_ROWSIZE (trans) == nb_loops);
2588 /* When there is an unknown relation in the dependence_relations, we
2589 know that it is no worth looking at this loop nest: give up. */
2590 ddr = VEC_index (ddr_p, dependence_relations, 0);
2591 if (ddr == NULL)
2592 return true;
2593 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2594 return false;
2596 distres = lambda_vector_new (nb_loops);
2598 /* For each distance vector in the dependence graph. */
2599 for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
2601 /* Don't care about relations for which we know that there is no
2602 dependence, nor about read-read (aka. output-dependences):
2603 these data accesses can happen in any order. */
2604 if (DDR_ARE_DEPENDENT (ddr) == chrec_known
2605 || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
2606 continue;
2608 /* Conservatively answer: "this transformation is not valid". */
2609 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2610 return false;
2612 /* If the dependence could not be captured by a distance vector,
2613 conservatively answer that the transform is not valid. */
2614 if (DDR_NUM_DIST_VECTS (ddr) == 0)
2615 return false;
2617 /* Compute trans.dist_vect */
2618 for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
2620 lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
2621 DDR_DIST_VECT (ddr, j), distres);
2623 if (!lambda_vector_lexico_pos (distres, nb_loops))
2624 return false;
2627 return true;