2006-12-16 Manuel Lopez-Ibanez <manu@gcc.gnu.org>
[official-gcc.git] / gcc / tree-vrp.c
blob483607ec5544f8a46d3e86ad419e7e338b9372eb
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "diagnostic.h"
35 #include "cfgloop.h"
36 #include "tree-scalar-evolution.h"
37 #include "tree-ssa-propagate.h"
38 #include "tree-chrec.h"
40 /* Set of SSA names found during the dominator traversal of a
41 sub-graph in find_assert_locations. */
42 static sbitmap found_in_subgraph;
44 /* Local functions. */
45 static int compare_values (tree val1, tree val2);
47 /* Location information for ASSERT_EXPRs. Each instance of this
48 structure describes an ASSERT_EXPR for an SSA name. Since a single
49 SSA name may have more than one assertion associated with it, these
50 locations are kept in a linked list attached to the corresponding
51 SSA name. */
52 struct assert_locus_d
54 /* Basic block where the assertion would be inserted. */
55 basic_block bb;
57 /* Some assertions need to be inserted on an edge (e.g., assertions
58 generated by COND_EXPRs). In those cases, BB will be NULL. */
59 edge e;
61 /* Pointer to the statement that generated this assertion. */
62 block_stmt_iterator si;
64 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
65 enum tree_code comp_code;
67 /* Value being compared against. */
68 tree val;
70 /* Next node in the linked list. */
71 struct assert_locus_d *next;
74 typedef struct assert_locus_d *assert_locus_t;
76 /* If bit I is present, it means that SSA name N_i has a list of
77 assertions that should be inserted in the IL. */
78 static bitmap need_assert_for;
80 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
81 holds a list of ASSERT_LOCUS_T nodes that describe where
82 ASSERT_EXPRs for SSA name N_I should be inserted. */
83 static assert_locus_t *asserts_for;
85 /* Set of blocks visited in find_assert_locations. Used to avoid
86 visiting the same block more than once. */
87 static sbitmap blocks_visited;
89 /* Value range array. After propagation, VR_VALUE[I] holds the range
90 of values that SSA name N_I may take. */
91 static value_range_t **vr_value;
94 /* Return true if ARG is marked with the nonnull attribute in the
95 current function signature. */
97 static bool
98 nonnull_arg_p (tree arg)
100 tree t, attrs, fntype;
101 unsigned HOST_WIDE_INT arg_num;
103 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
105 fntype = TREE_TYPE (current_function_decl);
106 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
108 /* If "nonnull" wasn't specified, we know nothing about the argument. */
109 if (attrs == NULL_TREE)
110 return false;
112 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
113 if (TREE_VALUE (attrs) == NULL_TREE)
114 return true;
116 /* Get the position number for ARG in the function signature. */
117 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
119 t = TREE_CHAIN (t), arg_num++)
121 if (t == arg)
122 break;
125 gcc_assert (t == arg);
127 /* Now see if ARG_NUM is mentioned in the nonnull list. */
128 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
130 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
131 return true;
134 return false;
138 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
140 static void
141 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
142 tree max, bitmap equiv)
144 #if defined ENABLE_CHECKING
145 /* Check the validity of the range. */
146 if (t == VR_RANGE || t == VR_ANTI_RANGE)
148 int cmp;
150 gcc_assert (min && max);
152 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
153 gcc_assert (min != TYPE_MIN_VALUE (TREE_TYPE (min))
154 || max != TYPE_MAX_VALUE (TREE_TYPE (max)));
156 cmp = compare_values (min, max);
157 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
160 if (t == VR_UNDEFINED || t == VR_VARYING)
161 gcc_assert (min == NULL_TREE && max == NULL_TREE);
163 if (t == VR_UNDEFINED || t == VR_VARYING)
164 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
165 #endif
167 vr->type = t;
168 vr->min = min;
169 vr->max = max;
171 /* Since updating the equivalence set involves deep copying the
172 bitmaps, only do it if absolutely necessary. */
173 if (vr->equiv == NULL)
174 vr->equiv = BITMAP_ALLOC (NULL);
176 if (equiv != vr->equiv)
178 if (equiv && !bitmap_empty_p (equiv))
179 bitmap_copy (vr->equiv, equiv);
180 else
181 bitmap_clear (vr->equiv);
186 /* Copy value range FROM into value range TO. */
188 static inline void
189 copy_value_range (value_range_t *to, value_range_t *from)
191 set_value_range (to, from->type, from->min, from->max, from->equiv);
194 /* Set value range VR to a non-negative range of type TYPE. */
196 static inline void
197 set_value_range_to_nonnegative (value_range_t *vr, tree type)
199 tree zero = build_int_cst (type, 0);
200 set_value_range (vr, VR_RANGE, zero, TYPE_MAX_VALUE (type), vr->equiv);
203 /* Set value range VR to a non-NULL range of type TYPE. */
205 static inline void
206 set_value_range_to_nonnull (value_range_t *vr, tree type)
208 tree zero = build_int_cst (type, 0);
209 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
213 /* Set value range VR to a NULL range of type TYPE. */
215 static inline void
216 set_value_range_to_null (value_range_t *vr, tree type)
218 tree zero = build_int_cst (type, 0);
219 set_value_range (vr, VR_RANGE, zero, zero, vr->equiv);
223 /* Set value range VR to VR_VARYING. */
225 static inline void
226 set_value_range_to_varying (value_range_t *vr)
228 vr->type = VR_VARYING;
229 vr->min = vr->max = NULL_TREE;
230 if (vr->equiv)
231 bitmap_clear (vr->equiv);
235 /* Set value range VR to VR_UNDEFINED. */
237 static inline void
238 set_value_range_to_undefined (value_range_t *vr)
240 vr->type = VR_UNDEFINED;
241 vr->min = vr->max = NULL_TREE;
242 if (vr->equiv)
243 bitmap_clear (vr->equiv);
247 /* Return value range information for VAR.
249 If we have no values ranges recorded (ie, VRP is not running), then
250 return NULL. Otherwise create an empty range if none existed for VAR. */
252 static value_range_t *
253 get_value_range (tree var)
255 value_range_t *vr;
256 tree sym;
257 unsigned ver = SSA_NAME_VERSION (var);
259 /* If we have no recorded ranges, then return NULL. */
260 if (! vr_value)
261 return NULL;
263 vr = vr_value[ver];
264 if (vr)
265 return vr;
267 /* Create a default value range. */
268 vr_value[ver] = vr = XCNEW (value_range_t);
270 /* Allocate an equivalence set. */
271 vr->equiv = BITMAP_ALLOC (NULL);
273 /* If VAR is a default definition, the variable can take any value
274 in VAR's type. */
275 sym = SSA_NAME_VAR (var);
276 if (SSA_NAME_IS_DEFAULT_DEF (var))
278 /* Try to use the "nonnull" attribute to create ~[0, 0]
279 anti-ranges for pointers. Note that this is only valid with
280 default definitions of PARM_DECLs. */
281 if (TREE_CODE (sym) == PARM_DECL
282 && POINTER_TYPE_P (TREE_TYPE (sym))
283 && nonnull_arg_p (sym))
284 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
285 else
286 set_value_range_to_varying (vr);
289 return vr;
292 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
294 static inline bool
295 vrp_operand_equal_p (tree val1, tree val2)
297 return (val1 == val2
298 || (val1 && val2
299 && operand_equal_p (val1, val2, 0)));
302 /* Return true, if the bitmaps B1 and B2 are equal. */
304 static inline bool
305 vrp_bitmap_equal_p (bitmap b1, bitmap b2)
307 return (b1 == b2
308 || (b1 && b2
309 && bitmap_equal_p (b1, b2)));
312 /* Update the value range and equivalence set for variable VAR to
313 NEW_VR. Return true if NEW_VR is different from VAR's previous
314 value.
316 NOTE: This function assumes that NEW_VR is a temporary value range
317 object created for the sole purpose of updating VAR's range. The
318 storage used by the equivalence set from NEW_VR will be freed by
319 this function. Do not call update_value_range when NEW_VR
320 is the range object associated with another SSA name. */
322 static inline bool
323 update_value_range (tree var, value_range_t *new_vr)
325 value_range_t *old_vr;
326 bool is_new;
328 /* Update the value range, if necessary. */
329 old_vr = get_value_range (var);
330 is_new = old_vr->type != new_vr->type
331 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
332 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
333 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
335 if (is_new)
336 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
337 new_vr->equiv);
339 BITMAP_FREE (new_vr->equiv);
340 new_vr->equiv = NULL;
342 return is_new;
346 /* Add VAR and VAR's equivalence set to EQUIV. */
348 static void
349 add_equivalence (bitmap equiv, tree var)
351 unsigned ver = SSA_NAME_VERSION (var);
352 value_range_t *vr = vr_value[ver];
354 bitmap_set_bit (equiv, ver);
355 if (vr && vr->equiv)
356 bitmap_ior_into (equiv, vr->equiv);
360 /* Return true if VR is ~[0, 0]. */
362 static inline bool
363 range_is_nonnull (value_range_t *vr)
365 return vr->type == VR_ANTI_RANGE
366 && integer_zerop (vr->min)
367 && integer_zerop (vr->max);
371 /* Return true if VR is [0, 0]. */
373 static inline bool
374 range_is_null (value_range_t *vr)
376 return vr->type == VR_RANGE
377 && integer_zerop (vr->min)
378 && integer_zerop (vr->max);
382 /* Return true if value range VR involves at least one symbol. */
384 static inline bool
385 symbolic_range_p (value_range_t *vr)
387 return (!is_gimple_min_invariant (vr->min)
388 || !is_gimple_min_invariant (vr->max));
391 /* Like tree_expr_nonnegative_p, but this function uses value ranges
392 obtained so far. */
394 static bool
395 vrp_expr_computes_nonnegative (tree expr)
397 return tree_expr_nonnegative_p (expr);
400 /* Like tree_expr_nonzero_p, but this function uses value ranges
401 obtained so far. */
403 static bool
404 vrp_expr_computes_nonzero (tree expr)
406 if (tree_expr_nonzero_p (expr))
407 return true;
409 /* If we have an expression of the form &X->a, then the expression
410 is nonnull if X is nonnull. */
411 if (TREE_CODE (expr) == ADDR_EXPR)
413 tree base = get_base_address (TREE_OPERAND (expr, 0));
415 if (base != NULL_TREE
416 && TREE_CODE (base) == INDIRECT_REF
417 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
419 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
420 if (range_is_nonnull (vr))
421 return true;
425 return false;
428 /* Returns true if EXPR is a valid value (as expected by compare_values) --
429 a gimple invariant, or SSA_NAME +- CST. */
431 static bool
432 valid_value_p (tree expr)
434 if (TREE_CODE (expr) == SSA_NAME)
435 return true;
437 if (TREE_CODE (expr) == PLUS_EXPR
438 || TREE_CODE (expr) == MINUS_EXPR)
439 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
440 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
442 return is_gimple_min_invariant (expr);
445 /* Return
446 1 if VAL < VAL2
447 0 if !(VAL < VAL2)
448 -2 if those are incomparable. */
449 static inline int
450 operand_less_p (tree val, tree val2)
452 tree tcmp;
453 /* LT is folded faster than GE and others. Inline the common case. */
454 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
456 if (TYPE_UNSIGNED (TREE_TYPE (val)))
457 return INT_CST_LT_UNSIGNED (val, val2);
458 else
459 return INT_CST_LT (val, val2);
461 else
462 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
463 if (!tcmp)
464 return -2;
465 return !integer_zerop (tcmp);
468 /* Compare two values VAL1 and VAL2. Return
470 -2 if VAL1 and VAL2 cannot be compared at compile-time,
471 -1 if VAL1 < VAL2,
472 0 if VAL1 == VAL2,
473 +1 if VAL1 > VAL2, and
474 +2 if VAL1 != VAL2
476 This is similar to tree_int_cst_compare but supports pointer values
477 and values that cannot be compared at compile time. */
479 static int
480 compare_values (tree val1, tree val2)
482 if (val1 == val2)
483 return 0;
485 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
486 both integers. */
487 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
488 == POINTER_TYPE_P (TREE_TYPE (val2)));
490 if ((TREE_CODE (val1) == SSA_NAME
491 || TREE_CODE (val1) == PLUS_EXPR
492 || TREE_CODE (val1) == MINUS_EXPR)
493 && (TREE_CODE (val2) == SSA_NAME
494 || TREE_CODE (val2) == PLUS_EXPR
495 || TREE_CODE (val2) == MINUS_EXPR))
497 tree n1, c1, n2, c2;
498 enum tree_code code1, code2;
500 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
501 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
502 same name, return -2. */
503 if (TREE_CODE (val1) == SSA_NAME)
505 code1 = SSA_NAME;
506 n1 = val1;
507 c1 = NULL_TREE;
509 else
511 code1 = TREE_CODE (val1);
512 n1 = TREE_OPERAND (val1, 0);
513 c1 = TREE_OPERAND (val1, 1);
514 if (tree_int_cst_sgn (c1) == -1)
516 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
517 if (!c1)
518 return -2;
519 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
523 if (TREE_CODE (val2) == SSA_NAME)
525 code2 = SSA_NAME;
526 n2 = val2;
527 c2 = NULL_TREE;
529 else
531 code2 = TREE_CODE (val2);
532 n2 = TREE_OPERAND (val2, 0);
533 c2 = TREE_OPERAND (val2, 1);
534 if (tree_int_cst_sgn (c2) == -1)
536 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
537 if (!c2)
538 return -2;
539 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
543 /* Both values must use the same name. */
544 if (n1 != n2)
545 return -2;
547 if (code1 == SSA_NAME
548 && code2 == SSA_NAME)
549 /* NAME == NAME */
550 return 0;
552 /* If overflow is defined we cannot simplify more. */
553 if (TYPE_UNSIGNED (TREE_TYPE (val1))
554 || flag_wrapv)
555 return -2;
557 if (code1 == SSA_NAME)
559 if (code2 == PLUS_EXPR)
560 /* NAME < NAME + CST */
561 return -1;
562 else if (code2 == MINUS_EXPR)
563 /* NAME > NAME - CST */
564 return 1;
566 else if (code1 == PLUS_EXPR)
568 if (code2 == SSA_NAME)
569 /* NAME + CST > NAME */
570 return 1;
571 else if (code2 == PLUS_EXPR)
572 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
573 return compare_values (c1, c2);
574 else if (code2 == MINUS_EXPR)
575 /* NAME + CST1 > NAME - CST2 */
576 return 1;
578 else if (code1 == MINUS_EXPR)
580 if (code2 == SSA_NAME)
581 /* NAME - CST < NAME */
582 return -1;
583 else if (code2 == PLUS_EXPR)
584 /* NAME - CST1 < NAME + CST2 */
585 return -1;
586 else if (code2 == MINUS_EXPR)
587 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
588 C1 and C2 are swapped in the call to compare_values. */
589 return compare_values (c2, c1);
592 gcc_unreachable ();
595 /* We cannot compare non-constants. */
596 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
597 return -2;
599 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
601 /* We cannot compare overflowed values. */
602 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
603 return -2;
605 return tree_int_cst_compare (val1, val2);
607 else
609 tree t;
611 /* First see if VAL1 and VAL2 are not the same. */
612 if (val1 == val2 || operand_equal_p (val1, val2, 0))
613 return 0;
615 /* If VAL1 is a lower address than VAL2, return -1. */
616 if (operand_less_p (val1, val2) == 1)
617 return -1;
619 /* If VAL1 is a higher address than VAL2, return +1. */
620 if (operand_less_p (val2, val1) == 1)
621 return 1;
623 /* If VAL1 is different than VAL2, return +2.
624 For integer constants we either have already returned -1 or 1
625 or they are equivalent. We still might suceed prove something
626 about non-trivial operands. */
627 if (TREE_CODE (val1) != INTEGER_CST
628 || TREE_CODE (val2) != INTEGER_CST)
630 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
631 if (t && tree_expr_nonzero_p (t))
632 return 2;
635 return -2;
640 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
641 0 if VAL is not inside VR,
642 -2 if we cannot tell either way.
644 FIXME, the current semantics of this functions are a bit quirky
645 when taken in the context of VRP. In here we do not care
646 about VR's type. If VR is the anti-range ~[3, 5] the call
647 value_inside_range (4, VR) will return 1.
649 This is counter-intuitive in a strict sense, but the callers
650 currently expect this. They are calling the function
651 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
652 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
653 themselves.
655 This also applies to value_ranges_intersect_p and
656 range_includes_zero_p. The semantics of VR_RANGE and
657 VR_ANTI_RANGE should be encoded here, but that also means
658 adapting the users of these functions to the new semantics.
660 Benchmark compile/20001226-1.c compilation time after changing this
661 function. */
663 static inline int
664 value_inside_range (tree val, value_range_t * vr)
666 int cmp1, cmp2;
668 cmp1 = operand_less_p (val, vr->min);
669 if (cmp1 == -2)
670 return -2;
671 if (cmp1 == 1)
672 return 0;
674 cmp2 = operand_less_p (vr->max, val);
675 if (cmp2 == -2)
676 return -2;
678 return !cmp2;
682 /* Return true if value ranges VR0 and VR1 have a non-empty
683 intersection.
685 Benchmark compile/20001226-1.c compilation time after changing this
686 function.
689 static inline bool
690 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
692 /* The value ranges do not intersect if the maximum of the first range is
693 less than the minimum of the second range or vice versa.
694 When those relations are unknown, we can't do any better. */
695 if (operand_less_p (vr0->max, vr1->min) != 0)
696 return false;
697 if (operand_less_p (vr1->max, vr0->min) != 0)
698 return false;
699 return true;
703 /* Return true if VR includes the value zero, false otherwise. FIXME,
704 currently this will return false for an anti-range like ~[-4, 3].
705 This will be wrong when the semantics of value_inside_range are
706 modified (currently the users of this function expect these
707 semantics). */
709 static inline bool
710 range_includes_zero_p (value_range_t *vr)
712 tree zero;
714 gcc_assert (vr->type != VR_UNDEFINED
715 && vr->type != VR_VARYING
716 && !symbolic_range_p (vr));
718 zero = build_int_cst (TREE_TYPE (vr->min), 0);
719 return (value_inside_range (zero, vr) == 1);
722 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
723 false otherwise or if no value range information is available. */
725 bool
726 ssa_name_nonnegative_p (tree t)
728 value_range_t *vr = get_value_range (t);
730 if (!vr)
731 return false;
733 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
734 which would return a useful value should be encoded as a VR_RANGE. */
735 if (vr->type == VR_RANGE)
737 int result = compare_values (vr->min, integer_zero_node);
739 return (result == 0 || result == 1);
741 return false;
744 /* Return true if T, an SSA_NAME, is known to be nonzero. Return
745 false otherwise or if no value range information is available. */
747 bool
748 ssa_name_nonzero_p (tree t)
750 value_range_t *vr = get_value_range (t);
752 if (!vr)
753 return false;
755 /* A VR_RANGE which does not include zero is a nonzero value. */
756 if (vr->type == VR_RANGE && !symbolic_range_p (vr))
757 return ! range_includes_zero_p (vr);
759 /* A VR_ANTI_RANGE which does include zero is a nonzero value. */
760 if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
761 return range_includes_zero_p (vr);
763 return false;
767 /* Extract value range information from an ASSERT_EXPR EXPR and store
768 it in *VR_P. */
770 static void
771 extract_range_from_assert (value_range_t *vr_p, tree expr)
773 tree var, cond, limit, min, max, type;
774 value_range_t *var_vr, *limit_vr;
775 enum tree_code cond_code;
777 var = ASSERT_EXPR_VAR (expr);
778 cond = ASSERT_EXPR_COND (expr);
780 gcc_assert (COMPARISON_CLASS_P (cond));
782 /* Find VAR in the ASSERT_EXPR conditional. */
783 if (var == TREE_OPERAND (cond, 0))
785 /* If the predicate is of the form VAR COMP LIMIT, then we just
786 take LIMIT from the RHS and use the same comparison code. */
787 limit = TREE_OPERAND (cond, 1);
788 cond_code = TREE_CODE (cond);
790 else
792 /* If the predicate is of the form LIMIT COMP VAR, then we need
793 to flip around the comparison code to create the proper range
794 for VAR. */
795 limit = TREE_OPERAND (cond, 0);
796 cond_code = swap_tree_comparison (TREE_CODE (cond));
799 type = TREE_TYPE (limit);
800 gcc_assert (limit != var);
802 /* For pointer arithmetic, we only keep track of pointer equality
803 and inequality. */
804 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
806 set_value_range_to_varying (vr_p);
807 return;
810 /* If LIMIT is another SSA name and LIMIT has a range of its own,
811 try to use LIMIT's range to avoid creating symbolic ranges
812 unnecessarily. */
813 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
815 /* LIMIT's range is only interesting if it has any useful information. */
816 if (limit_vr
817 && (limit_vr->type == VR_UNDEFINED
818 || limit_vr->type == VR_VARYING
819 || symbolic_range_p (limit_vr)))
820 limit_vr = NULL;
822 /* Initially, the new range has the same set of equivalences of
823 VAR's range. This will be revised before returning the final
824 value. Since assertions may be chained via mutually exclusive
825 predicates, we will need to trim the set of equivalences before
826 we are done. */
827 gcc_assert (vr_p->equiv == NULL);
828 vr_p->equiv = BITMAP_ALLOC (NULL);
829 add_equivalence (vr_p->equiv, var);
831 /* Extract a new range based on the asserted comparison for VAR and
832 LIMIT's value range. Notice that if LIMIT has an anti-range, we
833 will only use it for equality comparisons (EQ_EXPR). For any
834 other kind of assertion, we cannot derive a range from LIMIT's
835 anti-range that can be used to describe the new range. For
836 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
837 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
838 no single range for x_2 that could describe LE_EXPR, so we might
839 as well build the range [b_4, +INF] for it. */
840 if (cond_code == EQ_EXPR)
842 enum value_range_type range_type;
844 if (limit_vr)
846 range_type = limit_vr->type;
847 min = limit_vr->min;
848 max = limit_vr->max;
850 else
852 range_type = VR_RANGE;
853 min = limit;
854 max = limit;
857 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
859 /* When asserting the equality VAR == LIMIT and LIMIT is another
860 SSA name, the new range will also inherit the equivalence set
861 from LIMIT. */
862 if (TREE_CODE (limit) == SSA_NAME)
863 add_equivalence (vr_p->equiv, limit);
865 else if (cond_code == NE_EXPR)
867 /* As described above, when LIMIT's range is an anti-range and
868 this assertion is an inequality (NE_EXPR), then we cannot
869 derive anything from the anti-range. For instance, if
870 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
871 not imply that VAR's range is [0, 0]. So, in the case of
872 anti-ranges, we just assert the inequality using LIMIT and
873 not its anti-range.
875 If LIMIT_VR is a range, we can only use it to build a new
876 anti-range if LIMIT_VR is a single-valued range. For
877 instance, if LIMIT_VR is [0, 1], the predicate
878 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
879 Rather, it means that for value 0 VAR should be ~[0, 0]
880 and for value 1, VAR should be ~[1, 1]. We cannot
881 represent these ranges.
883 The only situation in which we can build a valid
884 anti-range is when LIMIT_VR is a single-valued range
885 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
886 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
887 if (limit_vr
888 && limit_vr->type == VR_RANGE
889 && compare_values (limit_vr->min, limit_vr->max) == 0)
891 min = limit_vr->min;
892 max = limit_vr->max;
894 else
896 /* In any other case, we cannot use LIMIT's range to build a
897 valid anti-range. */
898 min = max = limit;
901 /* If MIN and MAX cover the whole range for their type, then
902 just use the original LIMIT. */
903 if (INTEGRAL_TYPE_P (type)
904 && min == TYPE_MIN_VALUE (type)
905 && max == TYPE_MAX_VALUE (type))
906 min = max = limit;
908 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
910 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
912 min = TYPE_MIN_VALUE (type);
914 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
915 max = limit;
916 else
918 /* If LIMIT_VR is of the form [N1, N2], we need to build the
919 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
920 LT_EXPR. */
921 max = limit_vr->max;
924 /* If the maximum value forces us to be out of bounds, simply punt.
925 It would be pointless to try and do anything more since this
926 all should be optimized away above us. */
927 if (cond_code == LT_EXPR && compare_values (max, min) == 0)
928 set_value_range_to_varying (vr_p);
929 else
931 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
932 if (cond_code == LT_EXPR)
934 tree one = build_int_cst (type, 1);
935 max = fold_build2 (MINUS_EXPR, type, max, one);
938 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
941 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
943 max = TYPE_MAX_VALUE (type);
945 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
946 min = limit;
947 else
949 /* If LIMIT_VR is of the form [N1, N2], we need to build the
950 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
951 GT_EXPR. */
952 min = limit_vr->min;
955 /* If the minimum value forces us to be out of bounds, simply punt.
956 It would be pointless to try and do anything more since this
957 all should be optimized away above us. */
958 if (cond_code == GT_EXPR && compare_values (min, max) == 0)
959 set_value_range_to_varying (vr_p);
960 else
962 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
963 if (cond_code == GT_EXPR)
965 tree one = build_int_cst (type, 1);
966 min = fold_build2 (PLUS_EXPR, type, min, one);
969 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
972 else
973 gcc_unreachable ();
975 /* If VAR already had a known range, it may happen that the new
976 range we have computed and VAR's range are not compatible. For
977 instance,
979 if (p_5 == NULL)
980 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
981 x_7 = p_6->fld;
982 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
984 While the above comes from a faulty program, it will cause an ICE
985 later because p_8 and p_6 will have incompatible ranges and at
986 the same time will be considered equivalent. A similar situation
987 would arise from
989 if (i_5 > 10)
990 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
991 if (i_5 < 5)
992 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
994 Again i_6 and i_7 will have incompatible ranges. It would be
995 pointless to try and do anything with i_7's range because
996 anything dominated by 'if (i_5 < 5)' will be optimized away.
997 Note, due to the wa in which simulation proceeds, the statement
998 i_7 = ASSERT_EXPR <...> we would never be visited because the
999 conditional 'if (i_5 < 5)' always evaluates to false. However,
1000 this extra check does not hurt and may protect against future
1001 changes to VRP that may get into a situation similar to the
1002 NULL pointer dereference example.
1004 Note that these compatibility tests are only needed when dealing
1005 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1006 are both anti-ranges, they will always be compatible, because two
1007 anti-ranges will always have a non-empty intersection. */
1009 var_vr = get_value_range (var);
1011 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1012 ranges or anti-ranges. */
1013 if (vr_p->type == VR_VARYING
1014 || vr_p->type == VR_UNDEFINED
1015 || var_vr->type == VR_VARYING
1016 || var_vr->type == VR_UNDEFINED
1017 || symbolic_range_p (vr_p)
1018 || symbolic_range_p (var_vr))
1019 return;
1021 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1023 /* If the two ranges have a non-empty intersection, we can
1024 refine the resulting range. Since the assert expression
1025 creates an equivalency and at the same time it asserts a
1026 predicate, we can take the intersection of the two ranges to
1027 get better precision. */
1028 if (value_ranges_intersect_p (var_vr, vr_p))
1030 /* Use the larger of the two minimums. */
1031 if (compare_values (vr_p->min, var_vr->min) == -1)
1032 min = var_vr->min;
1033 else
1034 min = vr_p->min;
1036 /* Use the smaller of the two maximums. */
1037 if (compare_values (vr_p->max, var_vr->max) == 1)
1038 max = var_vr->max;
1039 else
1040 max = vr_p->max;
1042 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1044 else
1046 /* The two ranges do not intersect, set the new range to
1047 VARYING, because we will not be able to do anything
1048 meaningful with it. */
1049 set_value_range_to_varying (vr_p);
1052 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1053 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1055 /* A range and an anti-range will cancel each other only if
1056 their ends are the same. For instance, in the example above,
1057 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1058 so VR_P should be set to VR_VARYING. */
1059 if (compare_values (var_vr->min, vr_p->min) == 0
1060 && compare_values (var_vr->max, vr_p->max) == 0)
1061 set_value_range_to_varying (vr_p);
1062 else
1064 tree min, max, anti_min, anti_max, real_min, real_max;
1066 /* We want to compute the logical AND of the two ranges;
1067 there are three cases to consider.
1070 1. The VR_ANTI_RANGE range is completely within the
1071 VR_RANGE and the endpoints of the ranges are
1072 different. In that case the resulting range
1073 should be whichever range is more precise.
1074 Typically that will be the VR_RANGE.
1076 2. The VR_ANTI_RANGE is completely disjoint from
1077 the VR_RANGE. In this case the resulting range
1078 should be the VR_RANGE.
1080 3. There is some overlap between the VR_ANTI_RANGE
1081 and the VR_RANGE.
1083 3a. If the high limit of the VR_ANTI_RANGE resides
1084 within the VR_RANGE, then the result is a new
1085 VR_RANGE starting at the high limit of the
1086 the VR_ANTI_RANGE + 1 and extending to the
1087 high limit of the original VR_RANGE.
1089 3b. If the low limit of the VR_ANTI_RANGE resides
1090 within the VR_RANGE, then the result is a new
1091 VR_RANGE starting at the low limit of the original
1092 VR_RANGE and extending to the low limit of the
1093 VR_ANTI_RANGE - 1. */
1094 if (vr_p->type == VR_ANTI_RANGE)
1096 anti_min = vr_p->min;
1097 anti_max = vr_p->max;
1098 real_min = var_vr->min;
1099 real_max = var_vr->max;
1101 else
1103 anti_min = var_vr->min;
1104 anti_max = var_vr->max;
1105 real_min = vr_p->min;
1106 real_max = vr_p->max;
1110 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1111 not including any endpoints. */
1112 if (compare_values (anti_max, real_max) == -1
1113 && compare_values (anti_min, real_min) == 1)
1115 set_value_range (vr_p, VR_RANGE, real_min,
1116 real_max, vr_p->equiv);
1118 /* Case 2, VR_ANTI_RANGE completely disjoint from
1119 VR_RANGE. */
1120 else if (compare_values (anti_min, real_max) == 1
1121 || compare_values (anti_max, real_min) == -1)
1123 set_value_range (vr_p, VR_RANGE, real_min,
1124 real_max, vr_p->equiv);
1126 /* Case 3a, the anti-range extends into the low
1127 part of the real range. Thus creating a new
1128 low for the real range. */
1129 else if ((compare_values (anti_max, real_min) == 1
1130 || compare_values (anti_max, real_min) == 0)
1131 && compare_values (anti_max, real_max) == -1)
1133 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1134 anti_max,
1135 build_int_cst (TREE_TYPE (var_vr->min), 1));
1136 max = real_max;
1137 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1139 /* Case 3b, the anti-range extends into the high
1140 part of the real range. Thus creating a new
1141 higher for the real range. */
1142 else if (compare_values (anti_min, real_min) == 1
1143 && (compare_values (anti_min, real_max) == -1
1144 || compare_values (anti_min, real_max) == 0))
1146 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1147 anti_min,
1148 build_int_cst (TREE_TYPE (var_vr->min), 1));
1149 min = real_min;
1150 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1157 /* Extract range information from SSA name VAR and store it in VR. If
1158 VAR has an interesting range, use it. Otherwise, create the
1159 range [VAR, VAR] and return it. This is useful in situations where
1160 we may have conditionals testing values of VARYING names. For
1161 instance,
1163 x_3 = y_5;
1164 if (x_3 > y_5)
1167 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1168 always false. */
1170 static void
1171 extract_range_from_ssa_name (value_range_t *vr, tree var)
1173 value_range_t *var_vr = get_value_range (var);
1175 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1176 copy_value_range (vr, var_vr);
1177 else
1178 set_value_range (vr, VR_RANGE, var, var, NULL);
1180 add_equivalence (vr->equiv, var);
1184 /* Wrapper around int_const_binop. If the operation overflows and we
1185 are not using wrapping arithmetic, then adjust the result to be
1186 -INF or +INF depending on CODE, VAL1 and VAL2. */
1188 static inline tree
1189 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1191 tree res;
1193 res = int_const_binop (code, val1, val2, 0);
1195 /* If we are not using wrapping arithmetic, operate symbolically
1196 on -INF and +INF. */
1197 if (TYPE_UNSIGNED (TREE_TYPE (val1))
1198 || flag_wrapv)
1200 int checkz = compare_values (res, val1);
1201 bool overflow = false;
1203 /* Ensure that res = val1 [+*] val2 >= val1
1204 or that res = val1 - val2 <= val1. */
1205 if ((code == PLUS_EXPR
1206 && !(checkz == 1 || checkz == 0))
1207 || (code == MINUS_EXPR
1208 && !(checkz == 0 || checkz == -1)))
1210 overflow = true;
1212 /* Checking for multiplication overflow is done by dividing the
1213 output of the multiplication by the first input of the
1214 multiplication. If the result of that division operation is
1215 not equal to the second input of the multiplication, then the
1216 multiplication overflowed. */
1217 else if (code == MULT_EXPR && !integer_zerop (val1))
1219 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1220 res,
1221 val1, 0);
1222 int check = compare_values (tmp, val2);
1224 if (check != 0)
1225 overflow = true;
1228 if (overflow)
1230 res = copy_node (res);
1231 TREE_OVERFLOW (res) = 1;
1235 else if (TREE_OVERFLOW (res)
1236 && !TREE_OVERFLOW (val1)
1237 && !TREE_OVERFLOW (val2))
1239 /* If the operation overflowed but neither VAL1 nor VAL2 are
1240 overflown, return -INF or +INF depending on the operation
1241 and the combination of signs of the operands. */
1242 int sgn1 = tree_int_cst_sgn (val1);
1243 int sgn2 = tree_int_cst_sgn (val2);
1245 /* Notice that we only need to handle the restricted set of
1246 operations handled by extract_range_from_binary_expr.
1247 Among them, only multiplication, addition and subtraction
1248 can yield overflow without overflown operands because we
1249 are working with integral types only... except in the
1250 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1251 for division too. */
1253 /* For multiplication, the sign of the overflow is given
1254 by the comparison of the signs of the operands. */
1255 if ((code == MULT_EXPR && sgn1 == sgn2)
1256 /* For addition, the operands must be of the same sign
1257 to yield an overflow. Its sign is therefore that
1258 of one of the operands, for example the first. */
1259 || (code == PLUS_EXPR && sgn1 > 0)
1260 /* For subtraction, the operands must be of different
1261 signs to yield an overflow. Its sign is therefore
1262 that of the first operand or the opposite of that
1263 of the second operand. A first operand of 0 counts
1264 as positive here, for the corner case 0 - (-INF),
1265 which overflows, but must yield +INF. */
1266 || (code == MINUS_EXPR && sgn1 >= 0)
1267 /* For division, the only case is -INF / -1 = +INF. */
1268 || code == TRUNC_DIV_EXPR
1269 || code == FLOOR_DIV_EXPR
1270 || code == CEIL_DIV_EXPR
1271 || code == EXACT_DIV_EXPR
1272 || code == ROUND_DIV_EXPR)
1273 return TYPE_MAX_VALUE (TREE_TYPE (res));
1274 else
1275 return TYPE_MIN_VALUE (TREE_TYPE (res));
1278 return res;
1282 /* Extract range information from a binary expression EXPR based on
1283 the ranges of each of its operands and the expression code. */
1285 static void
1286 extract_range_from_binary_expr (value_range_t *vr, tree expr)
1288 enum tree_code code = TREE_CODE (expr);
1289 enum value_range_type type;
1290 tree op0, op1, min, max;
1291 int cmp;
1292 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1293 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1295 /* Not all binary expressions can be applied to ranges in a
1296 meaningful way. Handle only arithmetic operations. */
1297 if (code != PLUS_EXPR
1298 && code != MINUS_EXPR
1299 && code != MULT_EXPR
1300 && code != TRUNC_DIV_EXPR
1301 && code != FLOOR_DIV_EXPR
1302 && code != CEIL_DIV_EXPR
1303 && code != EXACT_DIV_EXPR
1304 && code != ROUND_DIV_EXPR
1305 && code != MIN_EXPR
1306 && code != MAX_EXPR
1307 && code != BIT_AND_EXPR
1308 && code != TRUTH_ANDIF_EXPR
1309 && code != TRUTH_ORIF_EXPR
1310 && code != TRUTH_AND_EXPR
1311 && code != TRUTH_OR_EXPR)
1313 set_value_range_to_varying (vr);
1314 return;
1317 /* Get value ranges for each operand. For constant operands, create
1318 a new value range with the operand to simplify processing. */
1319 op0 = TREE_OPERAND (expr, 0);
1320 if (TREE_CODE (op0) == SSA_NAME)
1321 vr0 = *(get_value_range (op0));
1322 else if (is_gimple_min_invariant (op0))
1323 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1324 else
1325 set_value_range_to_varying (&vr0);
1327 op1 = TREE_OPERAND (expr, 1);
1328 if (TREE_CODE (op1) == SSA_NAME)
1329 vr1 = *(get_value_range (op1));
1330 else if (is_gimple_min_invariant (op1))
1331 set_value_range (&vr1, VR_RANGE, op1, op1, NULL);
1332 else
1333 set_value_range_to_varying (&vr1);
1335 /* If either range is UNDEFINED, so is the result. */
1336 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
1338 set_value_range_to_undefined (vr);
1339 return;
1342 /* The type of the resulting value range defaults to VR0.TYPE. */
1343 type = vr0.type;
1345 /* Refuse to operate on VARYING ranges, ranges of different kinds
1346 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
1347 because we may be able to derive a useful range even if one of
1348 the operands is VR_VARYING or symbolic range. TODO, we may be
1349 able to derive anti-ranges in some cases. */
1350 if (code != BIT_AND_EXPR
1351 && code != TRUTH_AND_EXPR
1352 && code != TRUTH_OR_EXPR
1353 && (vr0.type == VR_VARYING
1354 || vr1.type == VR_VARYING
1355 || vr0.type != vr1.type
1356 || symbolic_range_p (&vr0)
1357 || symbolic_range_p (&vr1)))
1359 set_value_range_to_varying (vr);
1360 return;
1363 /* Now evaluate the expression to determine the new range. */
1364 if (POINTER_TYPE_P (TREE_TYPE (expr))
1365 || POINTER_TYPE_P (TREE_TYPE (op0))
1366 || POINTER_TYPE_P (TREE_TYPE (op1)))
1368 /* For pointer types, we are really only interested in asserting
1369 whether the expression evaluates to non-NULL. FIXME, we used
1370 to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR), but
1371 ivopts is generating expressions with pointer multiplication
1372 in them. */
1373 if (code == PLUS_EXPR)
1375 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
1376 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1377 else if (range_is_null (&vr0) && range_is_null (&vr1))
1378 set_value_range_to_null (vr, TREE_TYPE (expr));
1379 else
1380 set_value_range_to_varying (vr);
1382 else
1384 /* Subtracting from a pointer, may yield 0, so just drop the
1385 resulting range to varying. */
1386 set_value_range_to_varying (vr);
1389 return;
1392 /* For integer ranges, apply the operation to each end of the
1393 range and see what we end up with. */
1394 if (code == TRUTH_ANDIF_EXPR
1395 || code == TRUTH_ORIF_EXPR
1396 || code == TRUTH_AND_EXPR
1397 || code == TRUTH_OR_EXPR)
1399 /* If one of the operands is zero, we know that the whole
1400 expression evaluates zero. */
1401 if (code == TRUTH_AND_EXPR
1402 && ((vr0.type == VR_RANGE
1403 && integer_zerop (vr0.min)
1404 && integer_zerop (vr0.max))
1405 || (vr1.type == VR_RANGE
1406 && integer_zerop (vr1.min)
1407 && integer_zerop (vr1.max))))
1409 type = VR_RANGE;
1410 min = max = build_int_cst (TREE_TYPE (expr), 0);
1412 /* If one of the operands is one, we know that the whole
1413 expression evaluates one. */
1414 else if (code == TRUTH_OR_EXPR
1415 && ((vr0.type == VR_RANGE
1416 && integer_onep (vr0.min)
1417 && integer_onep (vr0.max))
1418 || (vr1.type == VR_RANGE
1419 && integer_onep (vr1.min)
1420 && integer_onep (vr1.max))))
1422 type = VR_RANGE;
1423 min = max = build_int_cst (TREE_TYPE (expr), 1);
1425 else if (vr0.type != VR_VARYING
1426 && vr1.type != VR_VARYING
1427 && vr0.type == vr1.type
1428 && !symbolic_range_p (&vr0)
1429 && !symbolic_range_p (&vr1))
1431 /* Boolean expressions cannot be folded with int_const_binop. */
1432 min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
1433 max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
1435 else
1437 set_value_range_to_varying (vr);
1438 return;
1441 else if (code == PLUS_EXPR
1442 || code == MIN_EXPR
1443 || code == MAX_EXPR)
1445 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1446 VR_VARYING. It would take more effort to compute a precise
1447 range for such a case. For example, if we have op0 == 1 and
1448 op1 == -1 with their ranges both being ~[0,0], we would have
1449 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1450 Note that we are guaranteed to have vr0.type == vr1.type at
1451 this point. */
1452 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
1454 set_value_range_to_varying (vr);
1455 return;
1458 /* For operations that make the resulting range directly
1459 proportional to the original ranges, apply the operation to
1460 the same end of each range. */
1461 min = vrp_int_const_binop (code, vr0.min, vr1.min);
1462 max = vrp_int_const_binop (code, vr0.max, vr1.max);
1464 else if (code == MULT_EXPR
1465 || code == TRUNC_DIV_EXPR
1466 || code == FLOOR_DIV_EXPR
1467 || code == CEIL_DIV_EXPR
1468 || code == EXACT_DIV_EXPR
1469 || code == ROUND_DIV_EXPR)
1471 tree val[4];
1472 size_t i;
1474 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1475 drop to VR_VARYING. It would take more effort to compute a
1476 precise range for such a case. For example, if we have
1477 op0 == 65536 and op1 == 65536 with their ranges both being
1478 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1479 we cannot claim that the product is in ~[0,0]. Note that we
1480 are guaranteed to have vr0.type == vr1.type at this
1481 point. */
1482 if (code == MULT_EXPR
1483 && vr0.type == VR_ANTI_RANGE
1484 && (flag_wrapv || TYPE_UNSIGNED (TREE_TYPE (op0))))
1486 set_value_range_to_varying (vr);
1487 return;
1490 /* Multiplications and divisions are a bit tricky to handle,
1491 depending on the mix of signs we have in the two ranges, we
1492 need to operate on different values to get the minimum and
1493 maximum values for the new range. One approach is to figure
1494 out all the variations of range combinations and do the
1495 operations.
1497 However, this involves several calls to compare_values and it
1498 is pretty convoluted. It's simpler to do the 4 operations
1499 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1500 MAX1) and then figure the smallest and largest values to form
1501 the new range. */
1503 /* Divisions by zero result in a VARYING value. */
1504 if (code != MULT_EXPR
1505 && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
1507 set_value_range_to_varying (vr);
1508 return;
1511 /* Compute the 4 cross operations. */
1512 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
1514 val[1] = (vr1.max != vr1.min)
1515 ? vrp_int_const_binop (code, vr0.min, vr1.max)
1516 : NULL_TREE;
1518 val[2] = (vr0.max != vr0.min)
1519 ? vrp_int_const_binop (code, vr0.max, vr1.min)
1520 : NULL_TREE;
1522 val[3] = (vr0.min != vr0.max && vr1.min != vr1.max)
1523 ? vrp_int_const_binop (code, vr0.max, vr1.max)
1524 : NULL_TREE;
1526 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1527 of VAL[i]. */
1528 min = val[0];
1529 max = val[0];
1530 for (i = 1; i < 4; i++)
1532 if (!is_gimple_min_invariant (min) || TREE_OVERFLOW (min)
1533 || !is_gimple_min_invariant (max) || TREE_OVERFLOW (max))
1534 break;
1536 if (val[i])
1538 if (!is_gimple_min_invariant (val[i]) || TREE_OVERFLOW (val[i]))
1540 /* If we found an overflowed value, set MIN and MAX
1541 to it so that we set the resulting range to
1542 VARYING. */
1543 min = max = val[i];
1544 break;
1547 if (compare_values (val[i], min) == -1)
1548 min = val[i];
1550 if (compare_values (val[i], max) == 1)
1551 max = val[i];
1555 else if (code == MINUS_EXPR)
1557 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
1558 VR_VARYING. It would take more effort to compute a precise
1559 range for such a case. For example, if we have op0 == 1 and
1560 op1 == 1 with their ranges both being ~[0,0], we would have
1561 op0 - op1 == 0, so we cannot claim that the difference is in
1562 ~[0,0]. Note that we are guaranteed to have
1563 vr0.type == vr1.type at this point. */
1564 if (vr0.type == VR_ANTI_RANGE)
1566 set_value_range_to_varying (vr);
1567 return;
1570 /* For MINUS_EXPR, apply the operation to the opposite ends of
1571 each range. */
1572 min = vrp_int_const_binop (code, vr0.min, vr1.max);
1573 max = vrp_int_const_binop (code, vr0.max, vr1.min);
1575 else if (code == BIT_AND_EXPR)
1577 if (vr0.type == VR_RANGE
1578 && vr0.min == vr0.max
1579 && tree_expr_nonnegative_p (vr0.max)
1580 && TREE_CODE (vr0.max) == INTEGER_CST)
1582 min = build_int_cst (TREE_TYPE (expr), 0);
1583 max = vr0.max;
1585 else if (vr1.type == VR_RANGE
1586 && vr1.min == vr1.max
1587 && tree_expr_nonnegative_p (vr1.max)
1588 && TREE_CODE (vr1.max) == INTEGER_CST)
1590 type = VR_RANGE;
1591 min = build_int_cst (TREE_TYPE (expr), 0);
1592 max = vr1.max;
1594 else
1596 set_value_range_to_varying (vr);
1597 return;
1600 else
1601 gcc_unreachable ();
1603 /* If either MIN or MAX overflowed, then set the resulting range to
1604 VARYING. */
1605 if (!is_gimple_min_invariant (min) || TREE_OVERFLOW (min)
1606 || !is_gimple_min_invariant (max) || TREE_OVERFLOW (max))
1608 set_value_range_to_varying (vr);
1609 return;
1612 cmp = compare_values (min, max);
1613 if (cmp == -2 || cmp == 1)
1615 /* If the new range has its limits swapped around (MIN > MAX),
1616 then the operation caused one of them to wrap around, mark
1617 the new range VARYING. */
1618 set_value_range_to_varying (vr);
1620 else
1621 set_value_range (vr, type, min, max, NULL);
1625 /* Extract range information from a unary expression EXPR based on
1626 the range of its operand and the expression code. */
1628 static void
1629 extract_range_from_unary_expr (value_range_t *vr, tree expr)
1631 enum tree_code code = TREE_CODE (expr);
1632 tree min, max, op0;
1633 int cmp;
1634 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1636 /* Refuse to operate on certain unary expressions for which we
1637 cannot easily determine a resulting range. */
1638 if (code == FIX_TRUNC_EXPR
1639 || code == FLOAT_EXPR
1640 || code == BIT_NOT_EXPR
1641 || code == NON_LVALUE_EXPR
1642 || code == CONJ_EXPR)
1644 set_value_range_to_varying (vr);
1645 return;
1648 /* Get value ranges for the operand. For constant operands, create
1649 a new value range with the operand to simplify processing. */
1650 op0 = TREE_OPERAND (expr, 0);
1651 if (TREE_CODE (op0) == SSA_NAME)
1652 vr0 = *(get_value_range (op0));
1653 else if (is_gimple_min_invariant (op0))
1654 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1655 else
1656 set_value_range_to_varying (&vr0);
1658 /* If VR0 is UNDEFINED, so is the result. */
1659 if (vr0.type == VR_UNDEFINED)
1661 set_value_range_to_undefined (vr);
1662 return;
1665 /* Refuse to operate on symbolic ranges, or if neither operand is
1666 a pointer or integral type. */
1667 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
1668 && !POINTER_TYPE_P (TREE_TYPE (op0)))
1669 || (vr0.type != VR_VARYING
1670 && symbolic_range_p (&vr0)))
1672 set_value_range_to_varying (vr);
1673 return;
1676 /* If the expression involves pointers, we are only interested in
1677 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
1678 if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
1680 if (range_is_nonnull (&vr0) || tree_expr_nonzero_p (expr))
1681 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1682 else if (range_is_null (&vr0))
1683 set_value_range_to_null (vr, TREE_TYPE (expr));
1684 else
1685 set_value_range_to_varying (vr);
1687 return;
1690 /* Handle unary expressions on integer ranges. */
1691 if (code == NOP_EXPR || code == CONVERT_EXPR)
1693 tree inner_type = TREE_TYPE (op0);
1694 tree outer_type = TREE_TYPE (expr);
1696 /* If VR0 represents a simple range, then try to convert
1697 the min and max values for the range to the same type
1698 as OUTER_TYPE. If the results compare equal to VR0's
1699 min and max values and the new min is still less than
1700 or equal to the new max, then we can safely use the newly
1701 computed range for EXPR. This allows us to compute
1702 accurate ranges through many casts. */
1703 if (vr0.type == VR_RANGE
1704 || (vr0.type == VR_VARYING
1705 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)))
1707 tree new_min, new_max, orig_min, orig_max;
1709 /* Convert the input operand min/max to OUTER_TYPE. If
1710 the input has no range information, then use the min/max
1711 for the input's type. */
1712 if (vr0.type == VR_RANGE)
1714 orig_min = vr0.min;
1715 orig_max = vr0.max;
1717 else
1719 orig_min = TYPE_MIN_VALUE (inner_type);
1720 orig_max = TYPE_MAX_VALUE (inner_type);
1723 new_min = fold_convert (outer_type, orig_min);
1724 new_max = fold_convert (outer_type, orig_max);
1726 /* Verify the new min/max values are gimple values and
1727 that they compare equal to the original input's
1728 min/max values. */
1729 if (is_gimple_val (new_min)
1730 && is_gimple_val (new_max)
1731 && tree_int_cst_equal (new_min, orig_min)
1732 && tree_int_cst_equal (new_max, orig_max)
1733 && compare_values (new_min, new_max) <= 0
1734 && compare_values (new_min, new_max) >= -1)
1736 set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
1737 return;
1741 /* When converting types of different sizes, set the result to
1742 VARYING. Things like sign extensions and precision loss may
1743 change the range. For instance, if x_3 is of type 'long long
1744 int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
1745 is impossible to know at compile time whether y_5 will be
1746 ~[0, 0]. */
1747 if (TYPE_SIZE (inner_type) != TYPE_SIZE (outer_type)
1748 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
1750 set_value_range_to_varying (vr);
1751 return;
1755 /* Conversion of a VR_VARYING value to a wider type can result
1756 in a usable range. So wait until after we've handled conversions
1757 before dropping the result to VR_VARYING if we had a source
1758 operand that is VR_VARYING. */
1759 if (vr0.type == VR_VARYING)
1761 set_value_range_to_varying (vr);
1762 return;
1765 /* Apply the operation to each end of the range and see what we end
1766 up with. */
1767 if (code == NEGATE_EXPR
1768 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1770 /* NEGATE_EXPR flips the range around. We need to treat
1771 TYPE_MIN_VALUE specially dependent on wrapping, range type
1772 and if it was used as minimum or maximum value:
1773 -~[MIN, MIN] == ~[MIN, MIN]
1774 -[MIN, 0] == [0, MAX] for -fno-wrapv
1775 -[MIN, 0] == [0, MIN] for -fwrapv (will be set to varying later) */
1776 min = vr0.max == TYPE_MIN_VALUE (TREE_TYPE (expr))
1777 ? TYPE_MIN_VALUE (TREE_TYPE (expr))
1778 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1780 max = vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr))
1781 ? (vr0.type == VR_ANTI_RANGE || flag_wrapv
1782 ? TYPE_MIN_VALUE (TREE_TYPE (expr))
1783 : TYPE_MAX_VALUE (TREE_TYPE (expr)))
1784 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1787 else if (code == NEGATE_EXPR
1788 && TYPE_UNSIGNED (TREE_TYPE (expr)))
1790 if (!range_includes_zero_p (&vr0))
1792 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1793 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1795 else
1797 if (range_is_null (&vr0))
1798 set_value_range_to_null (vr, TREE_TYPE (expr));
1799 else
1800 set_value_range_to_varying (vr);
1801 return;
1804 else if (code == ABS_EXPR
1805 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1807 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
1808 useful range. */
1809 if (flag_wrapv
1810 && ((vr0.type == VR_RANGE
1811 && vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
1812 || (vr0.type == VR_ANTI_RANGE
1813 && vr0.min != TYPE_MIN_VALUE (TREE_TYPE (expr))
1814 && !range_includes_zero_p (&vr0))))
1816 set_value_range_to_varying (vr);
1817 return;
1820 /* ABS_EXPR may flip the range around, if the original range
1821 included negative values. */
1822 min = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
1823 ? TYPE_MAX_VALUE (TREE_TYPE (expr))
1824 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1826 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1828 cmp = compare_values (min, max);
1830 /* If a VR_ANTI_RANGEs contains zero, then we have
1831 ~[-INF, min(MIN, MAX)]. */
1832 if (vr0.type == VR_ANTI_RANGE)
1834 if (range_includes_zero_p (&vr0))
1836 tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
1838 /* Take the lower of the two values. */
1839 if (cmp != 1)
1840 max = min;
1842 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
1843 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
1844 flag_wrapv is set and the original anti-range doesn't include
1845 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
1846 min = (flag_wrapv && vr0.min != type_min_value
1847 ? int_const_binop (PLUS_EXPR,
1848 type_min_value,
1849 integer_one_node, 0)
1850 : type_min_value);
1852 else
1854 /* All else has failed, so create the range [0, INF], even for
1855 flag_wrapv since TYPE_MIN_VALUE is in the original
1856 anti-range. */
1857 vr0.type = VR_RANGE;
1858 min = build_int_cst (TREE_TYPE (expr), 0);
1859 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
1863 /* If the range contains zero then we know that the minimum value in the
1864 range will be zero. */
1865 else if (range_includes_zero_p (&vr0))
1867 if (cmp == 1)
1868 max = min;
1869 min = build_int_cst (TREE_TYPE (expr), 0);
1871 else
1873 /* If the range was reversed, swap MIN and MAX. */
1874 if (cmp == 1)
1876 tree t = min;
1877 min = max;
1878 max = t;
1882 else
1884 /* Otherwise, operate on each end of the range. */
1885 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1886 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1889 cmp = compare_values (min, max);
1890 if (cmp == -2 || cmp == 1)
1892 /* If the new range has its limits swapped around (MIN > MAX),
1893 then the operation caused one of them to wrap around, mark
1894 the new range VARYING. */
1895 set_value_range_to_varying (vr);
1897 else
1898 set_value_range (vr, vr0.type, min, max, NULL);
1902 /* Extract range information from a comparison expression EXPR based
1903 on the range of its operand and the expression code. */
1905 static void
1906 extract_range_from_comparison (value_range_t *vr, tree expr)
1908 tree val = vrp_evaluate_conditional (expr, false);
1909 if (val)
1911 /* Since this expression was found on the RHS of an assignment,
1912 its type may be different from _Bool. Convert VAL to EXPR's
1913 type. */
1914 val = fold_convert (TREE_TYPE (expr), val);
1915 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
1917 else
1918 set_value_range_to_varying (vr);
1922 /* Try to compute a useful range out of expression EXPR and store it
1923 in *VR. */
1925 static void
1926 extract_range_from_expr (value_range_t *vr, tree expr)
1928 enum tree_code code = TREE_CODE (expr);
1930 if (code == ASSERT_EXPR)
1931 extract_range_from_assert (vr, expr);
1932 else if (code == SSA_NAME)
1933 extract_range_from_ssa_name (vr, expr);
1934 else if (TREE_CODE_CLASS (code) == tcc_binary
1935 || code == TRUTH_ANDIF_EXPR
1936 || code == TRUTH_ORIF_EXPR
1937 || code == TRUTH_AND_EXPR
1938 || code == TRUTH_OR_EXPR
1939 || code == TRUTH_XOR_EXPR)
1940 extract_range_from_binary_expr (vr, expr);
1941 else if (TREE_CODE_CLASS (code) == tcc_unary)
1942 extract_range_from_unary_expr (vr, expr);
1943 else if (TREE_CODE_CLASS (code) == tcc_comparison)
1944 extract_range_from_comparison (vr, expr);
1945 else if (is_gimple_min_invariant (expr))
1946 set_value_range (vr, VR_RANGE, expr, expr, NULL);
1947 else
1948 set_value_range_to_varying (vr);
1950 /* If we got a varying range from the tests above, try a final
1951 time to derive a nonnegative or nonzero range. This time
1952 relying primarily on generic routines in fold in conjunction
1953 with range data. */
1954 if (vr->type == VR_VARYING)
1956 if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
1957 && vrp_expr_computes_nonnegative (expr))
1958 set_value_range_to_nonnegative (vr, TREE_TYPE (expr));
1959 else if (vrp_expr_computes_nonzero (expr))
1960 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1964 /* Given a range VR, a LOOP and a variable VAR, determine whether it
1965 would be profitable to adjust VR using scalar evolution information
1966 for VAR. If so, update VR with the new limits. */
1968 static void
1969 adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
1970 tree var)
1972 tree init, step, chrec, tmin, tmax, min, max, type;
1973 enum ev_direction dir;
1975 /* TODO. Don't adjust anti-ranges. An anti-range may provide
1976 better opportunities than a regular range, but I'm not sure. */
1977 if (vr->type == VR_ANTI_RANGE)
1978 return;
1980 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
1981 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1982 return;
1984 init = initial_condition_in_loop_num (chrec, loop->num);
1985 step = evolution_part_in_loop_num (chrec, loop->num);
1987 /* If STEP is symbolic, we can't know whether INIT will be the
1988 minimum or maximum value in the range. Also, unless INIT is
1989 a simple expression, compare_values and possibly other functions
1990 in tree-vrp won't be able to handle it. */
1991 if (step == NULL_TREE
1992 || !is_gimple_min_invariant (step)
1993 || !valid_value_p (init))
1994 return;
1996 dir = scev_direction (chrec);
1997 if (/* Do not adjust ranges if we do not know whether the iv increases
1998 or decreases, ... */
1999 dir == EV_DIR_UNKNOWN
2000 /* ... or if it may wrap. */
2001 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
2002 true))
2003 return;
2005 type = TREE_TYPE (var);
2006 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
2007 tmin = lower_bound_in_type (type, type);
2008 else
2009 tmin = TYPE_MIN_VALUE (type);
2010 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
2011 tmax = upper_bound_in_type (type, type);
2012 else
2013 tmax = TYPE_MAX_VALUE (type);
2015 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2017 min = tmin;
2018 max = tmax;
2020 /* For VARYING or UNDEFINED ranges, just about anything we get
2021 from scalar evolutions should be better. */
2023 if (dir == EV_DIR_DECREASES)
2024 max = init;
2025 else
2026 min = init;
2028 /* If we would create an invalid range, then just assume we
2029 know absolutely nothing. This may be over-conservative,
2030 but it's clearly safe, and should happen only in unreachable
2031 parts of code, or for invalid programs. */
2032 if (compare_values (min, max) == 1)
2033 return;
2035 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2037 else if (vr->type == VR_RANGE)
2039 min = vr->min;
2040 max = vr->max;
2042 if (dir == EV_DIR_DECREASES)
2044 /* INIT is the maximum value. If INIT is lower than VR->MAX
2045 but no smaller than VR->MIN, set VR->MAX to INIT. */
2046 if (compare_values (init, max) == -1)
2048 max = init;
2050 /* If we just created an invalid range with the minimum
2051 greater than the maximum, we fail conservatively.
2052 This should happen only in unreachable
2053 parts of code, or for invalid programs. */
2054 if (compare_values (min, max) == 1)
2055 return;
2058 else
2060 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
2061 if (compare_values (init, min) == 1)
2063 min = init;
2065 /* Again, avoid creating invalid range by failing. */
2066 if (compare_values (min, max) == 1)
2067 return;
2071 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2076 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
2078 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
2079 all the values in the ranges.
2081 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
2083 - Return NULL_TREE if it is not always possible to determine the
2084 value of the comparison. */
2087 static tree
2088 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1)
2090 /* VARYING or UNDEFINED ranges cannot be compared. */
2091 if (vr0->type == VR_VARYING
2092 || vr0->type == VR_UNDEFINED
2093 || vr1->type == VR_VARYING
2094 || vr1->type == VR_UNDEFINED)
2095 return NULL_TREE;
2097 /* Anti-ranges need to be handled separately. */
2098 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
2100 /* If both are anti-ranges, then we cannot compute any
2101 comparison. */
2102 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
2103 return NULL_TREE;
2105 /* These comparisons are never statically computable. */
2106 if (comp == GT_EXPR
2107 || comp == GE_EXPR
2108 || comp == LT_EXPR
2109 || comp == LE_EXPR)
2110 return NULL_TREE;
2112 /* Equality can be computed only between a range and an
2113 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
2114 if (vr0->type == VR_RANGE)
2116 /* To simplify processing, make VR0 the anti-range. */
2117 value_range_t *tmp = vr0;
2118 vr0 = vr1;
2119 vr1 = tmp;
2122 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
2124 if (compare_values (vr0->min, vr1->min) == 0
2125 && compare_values (vr0->max, vr1->max) == 0)
2126 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2128 return NULL_TREE;
2131 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
2132 operands around and change the comparison code. */
2133 if (comp == GT_EXPR || comp == GE_EXPR)
2135 value_range_t *tmp;
2136 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
2137 tmp = vr0;
2138 vr0 = vr1;
2139 vr1 = tmp;
2142 if (comp == EQ_EXPR)
2144 /* Equality may only be computed if both ranges represent
2145 exactly one value. */
2146 if (compare_values (vr0->min, vr0->max) == 0
2147 && compare_values (vr1->min, vr1->max) == 0)
2149 int cmp_min = compare_values (vr0->min, vr1->min);
2150 int cmp_max = compare_values (vr0->max, vr1->max);
2151 if (cmp_min == 0 && cmp_max == 0)
2152 return boolean_true_node;
2153 else if (cmp_min != -2 && cmp_max != -2)
2154 return boolean_false_node;
2156 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
2157 else if (compare_values (vr0->min, vr1->max) == 1
2158 || compare_values (vr1->min, vr0->max) == 1)
2159 return boolean_false_node;
2161 return NULL_TREE;
2163 else if (comp == NE_EXPR)
2165 int cmp1, cmp2;
2167 /* If VR0 is completely to the left or completely to the right
2168 of VR1, they are always different. Notice that we need to
2169 make sure that both comparisons yield similar results to
2170 avoid comparing values that cannot be compared at
2171 compile-time. */
2172 cmp1 = compare_values (vr0->max, vr1->min);
2173 cmp2 = compare_values (vr0->min, vr1->max);
2174 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
2175 return boolean_true_node;
2177 /* If VR0 and VR1 represent a single value and are identical,
2178 return false. */
2179 else if (compare_values (vr0->min, vr0->max) == 0
2180 && compare_values (vr1->min, vr1->max) == 0
2181 && compare_values (vr0->min, vr1->min) == 0
2182 && compare_values (vr0->max, vr1->max) == 0)
2183 return boolean_false_node;
2185 /* Otherwise, they may or may not be different. */
2186 else
2187 return NULL_TREE;
2189 else if (comp == LT_EXPR || comp == LE_EXPR)
2191 int tst;
2193 /* If VR0 is to the left of VR1, return true. */
2194 tst = compare_values (vr0->max, vr1->min);
2195 if ((comp == LT_EXPR && tst == -1)
2196 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2197 return boolean_true_node;
2199 /* If VR0 is to the right of VR1, return false. */
2200 tst = compare_values (vr0->min, vr1->max);
2201 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2202 || (comp == LE_EXPR && tst == 1))
2203 return boolean_false_node;
2205 /* Otherwise, we don't know. */
2206 return NULL_TREE;
2209 gcc_unreachable ();
2213 /* Given a value range VR, a value VAL and a comparison code COMP, return
2214 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
2215 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
2216 always returns false. Return NULL_TREE if it is not always
2217 possible to determine the value of the comparison. */
2219 static tree
2220 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val)
2222 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2223 return NULL_TREE;
2225 /* Anti-ranges need to be handled separately. */
2226 if (vr->type == VR_ANTI_RANGE)
2228 /* For anti-ranges, the only predicates that we can compute at
2229 compile time are equality and inequality. */
2230 if (comp == GT_EXPR
2231 || comp == GE_EXPR
2232 || comp == LT_EXPR
2233 || comp == LE_EXPR)
2234 return NULL_TREE;
2236 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
2237 if (value_inside_range (val, vr) == 1)
2238 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2240 return NULL_TREE;
2243 if (comp == EQ_EXPR)
2245 /* EQ_EXPR may only be computed if VR represents exactly
2246 one value. */
2247 if (compare_values (vr->min, vr->max) == 0)
2249 int cmp = compare_values (vr->min, val);
2250 if (cmp == 0)
2251 return boolean_true_node;
2252 else if (cmp == -1 || cmp == 1 || cmp == 2)
2253 return boolean_false_node;
2255 else if (compare_values (val, vr->min) == -1
2256 || compare_values (vr->max, val) == -1)
2257 return boolean_false_node;
2259 return NULL_TREE;
2261 else if (comp == NE_EXPR)
2263 /* If VAL is not inside VR, then they are always different. */
2264 if (compare_values (vr->max, val) == -1
2265 || compare_values (vr->min, val) == 1)
2266 return boolean_true_node;
2268 /* If VR represents exactly one value equal to VAL, then return
2269 false. */
2270 if (compare_values (vr->min, vr->max) == 0
2271 && compare_values (vr->min, val) == 0)
2272 return boolean_false_node;
2274 /* Otherwise, they may or may not be different. */
2275 return NULL_TREE;
2277 else if (comp == LT_EXPR || comp == LE_EXPR)
2279 int tst;
2281 /* If VR is to the left of VAL, return true. */
2282 tst = compare_values (vr->max, val);
2283 if ((comp == LT_EXPR && tst == -1)
2284 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2285 return boolean_true_node;
2287 /* If VR is to the right of VAL, return false. */
2288 tst = compare_values (vr->min, val);
2289 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2290 || (comp == LE_EXPR && tst == 1))
2291 return boolean_false_node;
2293 /* Otherwise, we don't know. */
2294 return NULL_TREE;
2296 else if (comp == GT_EXPR || comp == GE_EXPR)
2298 int tst;
2300 /* If VR is to the right of VAL, return true. */
2301 tst = compare_values (vr->min, val);
2302 if ((comp == GT_EXPR && tst == 1)
2303 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
2304 return boolean_true_node;
2306 /* If VR is to the left of VAL, return false. */
2307 tst = compare_values (vr->max, val);
2308 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
2309 || (comp == GE_EXPR && tst == -1))
2310 return boolean_false_node;
2312 /* Otherwise, we don't know. */
2313 return NULL_TREE;
2316 gcc_unreachable ();
2320 /* Debugging dumps. */
2322 void dump_value_range (FILE *, value_range_t *);
2323 void debug_value_range (value_range_t *);
2324 void dump_all_value_ranges (FILE *);
2325 void debug_all_value_ranges (void);
2326 void dump_vr_equiv (FILE *, bitmap);
2327 void debug_vr_equiv (bitmap);
2330 /* Dump value range VR to FILE. */
2332 void
2333 dump_value_range (FILE *file, value_range_t *vr)
2335 if (vr == NULL)
2336 fprintf (file, "[]");
2337 else if (vr->type == VR_UNDEFINED)
2338 fprintf (file, "UNDEFINED");
2339 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
2341 tree type = TREE_TYPE (vr->min);
2343 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
2345 if (INTEGRAL_TYPE_P (type)
2346 && !TYPE_UNSIGNED (type)
2347 && vr->min == TYPE_MIN_VALUE (type))
2348 fprintf (file, "-INF");
2349 else
2350 print_generic_expr (file, vr->min, 0);
2352 fprintf (file, ", ");
2354 if (INTEGRAL_TYPE_P (type)
2355 && vr->max == TYPE_MAX_VALUE (type))
2356 fprintf (file, "+INF");
2357 else
2358 print_generic_expr (file, vr->max, 0);
2360 fprintf (file, "]");
2362 if (vr->equiv)
2364 bitmap_iterator bi;
2365 unsigned i, c = 0;
2367 fprintf (file, " EQUIVALENCES: { ");
2369 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
2371 print_generic_expr (file, ssa_name (i), 0);
2372 fprintf (file, " ");
2373 c++;
2376 fprintf (file, "} (%u elements)", c);
2379 else if (vr->type == VR_VARYING)
2380 fprintf (file, "VARYING");
2381 else
2382 fprintf (file, "INVALID RANGE");
2386 /* Dump value range VR to stderr. */
2388 void
2389 debug_value_range (value_range_t *vr)
2391 dump_value_range (stderr, vr);
2392 fprintf (stderr, "\n");
2396 /* Dump value ranges of all SSA_NAMEs to FILE. */
2398 void
2399 dump_all_value_ranges (FILE *file)
2401 size_t i;
2403 for (i = 0; i < num_ssa_names; i++)
2405 if (vr_value[i])
2407 print_generic_expr (file, ssa_name (i), 0);
2408 fprintf (file, ": ");
2409 dump_value_range (file, vr_value[i]);
2410 fprintf (file, "\n");
2414 fprintf (file, "\n");
2418 /* Dump all value ranges to stderr. */
2420 void
2421 debug_all_value_ranges (void)
2423 dump_all_value_ranges (stderr);
2427 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
2428 create a new SSA name N and return the assertion assignment
2429 'V = ASSERT_EXPR <V, V OP W>'. */
2431 static tree
2432 build_assert_expr_for (tree cond, tree v)
2434 tree n, assertion;
2436 gcc_assert (TREE_CODE (v) == SSA_NAME);
2437 n = duplicate_ssa_name (v, NULL_TREE);
2439 if (COMPARISON_CLASS_P (cond))
2441 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
2442 assertion = build2 (GIMPLE_MODIFY_STMT, TREE_TYPE (v), n, a);
2444 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
2446 /* Given !V, build the assignment N = false. */
2447 tree op0 = TREE_OPERAND (cond, 0);
2448 gcc_assert (op0 == v);
2449 assertion = build2 (GIMPLE_MODIFY_STMT, TREE_TYPE (v), n,
2450 boolean_false_node);
2452 else if (TREE_CODE (cond) == SSA_NAME)
2454 /* Given V, build the assignment N = true. */
2455 gcc_assert (v == cond);
2456 assertion = build2 (GIMPLE_MODIFY_STMT,
2457 TREE_TYPE (v), n, boolean_true_node);
2459 else
2460 gcc_unreachable ();
2462 SSA_NAME_DEF_STMT (n) = assertion;
2464 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
2465 operand of the ASSERT_EXPR. Register the new name and the old one
2466 in the replacement table so that we can fix the SSA web after
2467 adding all the ASSERT_EXPRs. */
2468 register_new_name_mapping (n, v);
2470 return assertion;
2474 /* Return false if EXPR is a predicate expression involving floating
2475 point values. */
2477 static inline bool
2478 fp_predicate (tree expr)
2480 return (COMPARISON_CLASS_P (expr)
2481 && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
2485 /* If the range of values taken by OP can be inferred after STMT executes,
2486 return the comparison code (COMP_CODE_P) and value (VAL_P) that
2487 describes the inferred range. Return true if a range could be
2488 inferred. */
2490 static bool
2491 infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
2493 *val_p = NULL_TREE;
2494 *comp_code_p = ERROR_MARK;
2496 /* Do not attempt to infer anything in names that flow through
2497 abnormal edges. */
2498 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
2499 return false;
2501 /* Similarly, don't infer anything from statements that may throw
2502 exceptions. */
2503 if (tree_could_throw_p (stmt))
2504 return false;
2506 /* If STMT is the last statement of a basic block with no
2507 successors, there is no point inferring anything about any of its
2508 operands. We would not be able to find a proper insertion point
2509 for the assertion, anyway. */
2510 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (bb_for_stmt (stmt)->succs) == 0)
2511 return false;
2513 /* We can only assume that a pointer dereference will yield
2514 non-NULL if -fdelete-null-pointer-checks is enabled. */
2515 if (flag_delete_null_pointer_checks && POINTER_TYPE_P (TREE_TYPE (op)))
2517 bool is_store;
2518 unsigned num_uses, num_derefs;
2520 count_uses_and_derefs (op, stmt, &num_uses, &num_derefs, &is_store);
2521 if (num_derefs > 0)
2523 *val_p = build_int_cst (TREE_TYPE (op), 0);
2524 *comp_code_p = NE_EXPR;
2525 return true;
2529 return false;
2533 void dump_asserts_for (FILE *, tree);
2534 void debug_asserts_for (tree);
2535 void dump_all_asserts (FILE *);
2536 void debug_all_asserts (void);
2538 /* Dump all the registered assertions for NAME to FILE. */
2540 void
2541 dump_asserts_for (FILE *file, tree name)
2543 assert_locus_t loc;
2545 fprintf (file, "Assertions to be inserted for ");
2546 print_generic_expr (file, name, 0);
2547 fprintf (file, "\n");
2549 loc = asserts_for[SSA_NAME_VERSION (name)];
2550 while (loc)
2552 fprintf (file, "\t");
2553 print_generic_expr (file, bsi_stmt (loc->si), 0);
2554 fprintf (file, "\n\tBB #%d", loc->bb->index);
2555 if (loc->e)
2557 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
2558 loc->e->dest->index);
2559 dump_edge_info (file, loc->e, 0);
2561 fprintf (file, "\n\tPREDICATE: ");
2562 print_generic_expr (file, name, 0);
2563 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
2564 print_generic_expr (file, loc->val, 0);
2565 fprintf (file, "\n\n");
2566 loc = loc->next;
2569 fprintf (file, "\n");
2573 /* Dump all the registered assertions for NAME to stderr. */
2575 void
2576 debug_asserts_for (tree name)
2578 dump_asserts_for (stderr, name);
2582 /* Dump all the registered assertions for all the names to FILE. */
2584 void
2585 dump_all_asserts (FILE *file)
2587 unsigned i;
2588 bitmap_iterator bi;
2590 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
2591 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
2592 dump_asserts_for (file, ssa_name (i));
2593 fprintf (file, "\n");
2597 /* Dump all the registered assertions for all the names to stderr. */
2599 void
2600 debug_all_asserts (void)
2602 dump_all_asserts (stderr);
2606 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
2607 'NAME COMP_CODE VAL' at a location that dominates block BB or
2608 E->DEST, then register this location as a possible insertion point
2609 for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
2611 BB, E and SI provide the exact insertion point for the new
2612 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
2613 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
2614 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
2615 must not be NULL. */
2617 static void
2618 register_new_assert_for (tree name,
2619 enum tree_code comp_code,
2620 tree val,
2621 basic_block bb,
2622 edge e,
2623 block_stmt_iterator si)
2625 assert_locus_t n, loc, last_loc;
2626 bool found;
2627 basic_block dest_bb;
2629 #if defined ENABLE_CHECKING
2630 gcc_assert (bb == NULL || e == NULL);
2632 if (e == NULL)
2633 gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
2634 && TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
2635 #endif
2637 /* The new assertion A will be inserted at BB or E. We need to
2638 determine if the new location is dominated by a previously
2639 registered location for A. If we are doing an edge insertion,
2640 assume that A will be inserted at E->DEST. Note that this is not
2641 necessarily true.
2643 If E is a critical edge, it will be split. But even if E is
2644 split, the new block will dominate the same set of blocks that
2645 E->DEST dominates.
2647 The reverse, however, is not true, blocks dominated by E->DEST
2648 will not be dominated by the new block created to split E. So,
2649 if the insertion location is on a critical edge, we will not use
2650 the new location to move another assertion previously registered
2651 at a block dominated by E->DEST. */
2652 dest_bb = (bb) ? bb : e->dest;
2654 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
2655 VAL at a block dominating DEST_BB, then we don't need to insert a new
2656 one. Similarly, if the same assertion already exists at a block
2657 dominated by DEST_BB and the new location is not on a critical
2658 edge, then update the existing location for the assertion (i.e.,
2659 move the assertion up in the dominance tree).
2661 Note, this is implemented as a simple linked list because there
2662 should not be more than a handful of assertions registered per
2663 name. If this becomes a performance problem, a table hashed by
2664 COMP_CODE and VAL could be implemented. */
2665 loc = asserts_for[SSA_NAME_VERSION (name)];
2666 last_loc = loc;
2667 found = false;
2668 while (loc)
2670 if (loc->comp_code == comp_code
2671 && (loc->val == val
2672 || operand_equal_p (loc->val, val, 0)))
2674 /* If the assertion NAME COMP_CODE VAL has already been
2675 registered at a basic block that dominates DEST_BB, then
2676 we don't need to insert the same assertion again. Note
2677 that we don't check strict dominance here to avoid
2678 replicating the same assertion inside the same basic
2679 block more than once (e.g., when a pointer is
2680 dereferenced several times inside a block).
2682 An exception to this rule are edge insertions. If the
2683 new assertion is to be inserted on edge E, then it will
2684 dominate all the other insertions that we may want to
2685 insert in DEST_BB. So, if we are doing an edge
2686 insertion, don't do this dominance check. */
2687 if (e == NULL
2688 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
2689 return;
2691 /* Otherwise, if E is not a critical edge and DEST_BB
2692 dominates the existing location for the assertion, move
2693 the assertion up in the dominance tree by updating its
2694 location information. */
2695 if ((e == NULL || !EDGE_CRITICAL_P (e))
2696 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
2698 loc->bb = dest_bb;
2699 loc->e = e;
2700 loc->si = si;
2701 return;
2705 /* Update the last node of the list and move to the next one. */
2706 last_loc = loc;
2707 loc = loc->next;
2710 /* If we didn't find an assertion already registered for
2711 NAME COMP_CODE VAL, add a new one at the end of the list of
2712 assertions associated with NAME. */
2713 n = XNEW (struct assert_locus_d);
2714 n->bb = dest_bb;
2715 n->e = e;
2716 n->si = si;
2717 n->comp_code = comp_code;
2718 n->val = val;
2719 n->next = NULL;
2721 if (last_loc)
2722 last_loc->next = n;
2723 else
2724 asserts_for[SSA_NAME_VERSION (name)] = n;
2726 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
2729 /* COND is a predicate which uses NAME. Extract a suitable test code
2730 and value and store them into *CODE_P and *VAL_P so the predicate
2731 is normalized to NAME *CODE_P *VAL_P.
2733 If no extraction was possible, return FALSE, otherwise return TRUE.
2735 If INVERT is true, then we invert the result stored into *CODE_P. */
2737 static bool
2738 extract_code_and_val_from_cond (tree name, tree cond, bool invert,
2739 enum tree_code *code_p, tree *val_p)
2741 enum tree_code comp_code;
2742 tree val;
2744 /* Predicates may be a single SSA name or NAME OP VAL. */
2745 if (cond == name)
2747 /* If the predicate is a name, it must be NAME, in which
2748 case we create the predicate NAME == true or
2749 NAME == false accordingly. */
2750 comp_code = EQ_EXPR;
2751 val = invert ? boolean_false_node : boolean_true_node;
2753 else
2755 /* Otherwise, we have a comparison of the form NAME COMP VAL
2756 or VAL COMP NAME. */
2757 if (name == TREE_OPERAND (cond, 1))
2759 /* If the predicate is of the form VAL COMP NAME, flip
2760 COMP around because we need to register NAME as the
2761 first operand in the predicate. */
2762 comp_code = swap_tree_comparison (TREE_CODE (cond));
2763 val = TREE_OPERAND (cond, 0);
2765 else
2767 /* The comparison is of the form NAME COMP VAL, so the
2768 comparison code remains unchanged. */
2769 comp_code = TREE_CODE (cond);
2770 val = TREE_OPERAND (cond, 1);
2773 /* Invert the comparison code as necessary. */
2774 if (invert)
2775 comp_code = invert_tree_comparison (comp_code, 0);
2777 /* VRP does not handle float types. */
2778 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
2779 return false;
2781 /* Do not register always-false predicates.
2782 FIXME: this works around a limitation in fold() when dealing with
2783 enumerations. Given 'enum { N1, N2 } x;', fold will not
2784 fold 'if (x > N2)' to 'if (0)'. */
2785 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
2786 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2788 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
2789 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
2791 if (comp_code == GT_EXPR
2792 && (!max
2793 || compare_values (val, max) == 0))
2794 return false;
2796 if (comp_code == LT_EXPR
2797 && (!min
2798 || compare_values (val, min) == 0))
2799 return false;
2802 *code_p = comp_code;
2803 *val_p = val;
2804 return true;
2807 /* OP is an operand of a truth value expression which is known to have
2808 a particular value. Register any asserts for OP and for any
2809 operands in OP's defining statement.
2811 If CODE is EQ_EXPR, then we want to register OP is zero (false),
2812 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
2814 static bool
2815 register_edge_assert_for_1 (tree op, enum tree_code code,
2816 edge e, block_stmt_iterator bsi)
2818 bool retval = false;
2819 tree op_def, rhs, val;
2821 /* We only care about SSA_NAMEs. */
2822 if (TREE_CODE (op) != SSA_NAME)
2823 return false;
2825 /* We know that OP will have a zero or nonzero value. If OP is used
2826 more than once go ahead and register an assert for OP.
2828 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
2829 it will always be set for OP (because OP is used in a COND_EXPR in
2830 the subgraph). */
2831 if (!has_single_use (op))
2833 val = build_int_cst (TREE_TYPE (op), 0);
2834 register_new_assert_for (op, code, val, NULL, e, bsi);
2835 retval = true;
2838 /* Now look at how OP is set. If it's set from a comparison,
2839 a truth operation or some bit operations, then we may be able
2840 to register information about the operands of that assignment. */
2841 op_def = SSA_NAME_DEF_STMT (op);
2842 if (TREE_CODE (op_def) != GIMPLE_MODIFY_STMT)
2843 return retval;
2845 rhs = GIMPLE_STMT_OPERAND (op_def, 1);
2847 if (COMPARISON_CLASS_P (rhs))
2849 bool invert = (code == EQ_EXPR ? true : false);
2850 tree op0 = TREE_OPERAND (rhs, 0);
2851 tree op1 = TREE_OPERAND (rhs, 1);
2853 /* Conditionally register an assert for each SSA_NAME in the
2854 comparison. */
2855 if (TREE_CODE (op0) == SSA_NAME
2856 && !has_single_use (op0)
2857 && extract_code_and_val_from_cond (op0, rhs,
2858 invert, &code, &val))
2860 register_new_assert_for (op0, code, val, NULL, e, bsi);
2861 retval = true;
2864 /* Similarly for the second operand of the comparison. */
2865 if (TREE_CODE (op1) == SSA_NAME
2866 && !has_single_use (op1)
2867 && extract_code_and_val_from_cond (op1, rhs,
2868 invert, &code, &val))
2870 register_new_assert_for (op1, code, val, NULL, e, bsi);
2871 retval = true;
2874 else if ((code == NE_EXPR
2875 && (TREE_CODE (rhs) == TRUTH_AND_EXPR
2876 || TREE_CODE (rhs) == BIT_AND_EXPR))
2877 || (code == EQ_EXPR
2878 && (TREE_CODE (rhs) == TRUTH_OR_EXPR
2879 || TREE_CODE (rhs) == BIT_IOR_EXPR)))
2881 /* Recurse on each operand. */
2882 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
2883 code, e, bsi);
2884 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 1),
2885 code, e, bsi);
2887 else if (TREE_CODE (rhs) == TRUTH_NOT_EXPR)
2889 /* Recurse, flipping CODE. */
2890 code = invert_tree_comparison (code, false);
2891 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
2892 code, e, bsi);
2894 else if (TREE_CODE (rhs) == SSA_NAME)
2896 /* Recurse through the copy. */
2897 retval |= register_edge_assert_for_1 (rhs, code, e, bsi);
2899 else if (TREE_CODE (rhs) == NOP_EXPR
2900 || TREE_CODE (rhs) == CONVERT_EXPR
2901 || TREE_CODE (rhs) == VIEW_CONVERT_EXPR
2902 || TREE_CODE (rhs) == NON_LVALUE_EXPR)
2904 /* Recurse through the type conversion. */
2905 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
2906 code, e, bsi);
2909 return retval;
2912 /* Try to register an edge assertion for SSA name NAME on edge E for
2913 the condition COND contributing to the conditional jump pointed to by SI.
2914 Return true if an assertion for NAME could be registered. */
2916 static bool
2917 register_edge_assert_for (tree name, edge e, block_stmt_iterator si, tree cond)
2919 tree val;
2920 enum tree_code comp_code;
2921 bool retval = false;
2922 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
2924 /* Do not attempt to infer anything in names that flow through
2925 abnormal edges. */
2926 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
2927 return false;
2929 if (!extract_code_and_val_from_cond (name, cond, is_else_edge,
2930 &comp_code, &val))
2931 return false;
2933 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
2934 reachable from E. */
2935 if (TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
2937 register_new_assert_for (name, comp_code, val, NULL, e, si);
2938 retval = true;
2941 /* If COND is effectively an equality test of an SSA_NAME against
2942 the value zero or one, then we may be able to assert values
2943 for SSA_NAMEs which flow into COND. */
2945 /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
2946 statement of NAME we can assert both operands of the TRUTH_AND_EXPR
2947 have nonzero value. */
2948 if (((comp_code == EQ_EXPR && integer_onep (val))
2949 || (comp_code == NE_EXPR && integer_zerop (val))))
2951 tree def_stmt = SSA_NAME_DEF_STMT (name);
2953 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
2954 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == TRUTH_AND_EXPR
2955 || TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == BIT_AND_EXPR))
2957 tree op0 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
2958 tree op1 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 1);
2959 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
2960 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
2964 /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
2965 statement of NAME we can assert both operands of the TRUTH_OR_EXPR
2966 have zero value. */
2967 if (((comp_code == EQ_EXPR && integer_zerop (val))
2968 || (comp_code == NE_EXPR && integer_onep (val))))
2970 tree def_stmt = SSA_NAME_DEF_STMT (name);
2972 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
2973 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == TRUTH_OR_EXPR
2974 || TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == BIT_IOR_EXPR))
2976 tree op0 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
2977 tree op1 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 1);
2978 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
2979 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
2983 return retval;
2987 static bool find_assert_locations (basic_block bb);
2989 /* Determine whether the outgoing edges of BB should receive an
2990 ASSERT_EXPR for each of the operands of BB's LAST statement.
2991 The last statement of BB must be a COND_EXPR or a SWITCH_EXPR.
2993 If any of the sub-graphs rooted at BB have an interesting use of
2994 the predicate operands, an assert location node is added to the
2995 list of assertions for the corresponding operands. */
2997 static bool
2998 find_conditional_asserts (basic_block bb, tree last)
3000 bool need_assert;
3001 block_stmt_iterator bsi;
3002 tree op;
3003 edge_iterator ei;
3004 edge e;
3005 ssa_op_iter iter;
3007 need_assert = false;
3008 bsi = bsi_for_stmt (last);
3010 /* Look for uses of the operands in each of the sub-graphs
3011 rooted at BB. We need to check each of the outgoing edges
3012 separately, so that we know what kind of ASSERT_EXPR to
3013 insert. */
3014 FOR_EACH_EDGE (e, ei, bb->succs)
3016 if (e->dest == bb)
3017 continue;
3019 /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
3020 Otherwise, when we finish traversing each of the sub-graphs, we
3021 won't know whether the variables were found in the sub-graphs or
3022 if they had been found in a block upstream from BB.
3024 This is actually a bad idea is some cases, particularly jump
3025 threading. Consider a CFG like the following:
3035 Assume that one or more operands in the conditional at the
3036 end of block 0 are used in a conditional in block 2, but not
3037 anywhere in block 1. In this case we will not insert any
3038 assert statements in block 1, which may cause us to miss
3039 opportunities to optimize, particularly for jump threading. */
3040 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3041 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3043 /* Traverse the strictly dominated sub-graph rooted at E->DEST
3044 to determine if any of the operands in the conditional
3045 predicate are used. */
3046 if (e->dest != bb)
3047 need_assert |= find_assert_locations (e->dest);
3049 /* Register the necessary assertions for each operand in the
3050 conditional predicate. */
3051 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3052 need_assert |= register_edge_assert_for (op, e, bsi,
3053 COND_EXPR_COND (last));
3056 /* Finally, indicate that we have found the operands in the
3057 conditional. */
3058 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3059 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3061 return need_assert;
3065 /* Traverse all the statements in block BB looking for statements that
3066 may generate useful assertions for the SSA names in their operand.
3067 If a statement produces a useful assertion A for name N_i, then the
3068 list of assertions already generated for N_i is scanned to
3069 determine if A is actually needed.
3071 If N_i already had the assertion A at a location dominating the
3072 current location, then nothing needs to be done. Otherwise, the
3073 new location for A is recorded instead.
3075 1- For every statement S in BB, all the variables used by S are
3076 added to bitmap FOUND_IN_SUBGRAPH.
3078 2- If statement S uses an operand N in a way that exposes a known
3079 value range for N, then if N was not already generated by an
3080 ASSERT_EXPR, create a new assert location for N. For instance,
3081 if N is a pointer and the statement dereferences it, we can
3082 assume that N is not NULL.
3084 3- COND_EXPRs are a special case of #2. We can derive range
3085 information from the predicate but need to insert different
3086 ASSERT_EXPRs for each of the sub-graphs rooted at the
3087 conditional block. If the last statement of BB is a conditional
3088 expression of the form 'X op Y', then
3090 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
3092 b) If the conditional is the only entry point to the sub-graph
3093 corresponding to the THEN_CLAUSE, recurse into it. On
3094 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
3095 an ASSERT_EXPR is added for the corresponding variable.
3097 c) Repeat step (b) on the ELSE_CLAUSE.
3099 d) Mark X and Y in FOUND_IN_SUBGRAPH.
3101 For instance,
3103 if (a == 9)
3104 b = a;
3105 else
3106 b = c + 1;
3108 In this case, an assertion on the THEN clause is useful to
3109 determine that 'a' is always 9 on that edge. However, an assertion
3110 on the ELSE clause would be unnecessary.
3112 4- If BB does not end in a conditional expression, then we recurse
3113 into BB's dominator children.
3115 At the end of the recursive traversal, every SSA name will have a
3116 list of locations where ASSERT_EXPRs should be added. When a new
3117 location for name N is found, it is registered by calling
3118 register_new_assert_for. That function keeps track of all the
3119 registered assertions to prevent adding unnecessary assertions.
3120 For instance, if a pointer P_4 is dereferenced more than once in a
3121 dominator tree, only the location dominating all the dereference of
3122 P_4 will receive an ASSERT_EXPR.
3124 If this function returns true, then it means that there are names
3125 for which we need to generate ASSERT_EXPRs. Those assertions are
3126 inserted by process_assert_insertions.
3128 TODO. Handle SWITCH_EXPR. */
3130 static bool
3131 find_assert_locations (basic_block bb)
3133 block_stmt_iterator si;
3134 tree last, phi;
3135 bool need_assert;
3136 basic_block son;
3138 if (TEST_BIT (blocks_visited, bb->index))
3139 return false;
3141 SET_BIT (blocks_visited, bb->index);
3143 need_assert = false;
3145 /* Traverse all PHI nodes in BB marking used operands. */
3146 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3148 use_operand_p arg_p;
3149 ssa_op_iter i;
3151 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
3153 tree arg = USE_FROM_PTR (arg_p);
3154 if (TREE_CODE (arg) == SSA_NAME)
3156 gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
3157 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
3162 /* Traverse all the statements in BB marking used names and looking
3163 for statements that may infer assertions for their used operands. */
3164 last = NULL_TREE;
3165 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
3167 tree stmt, op;
3168 ssa_op_iter i;
3170 stmt = bsi_stmt (si);
3172 /* See if we can derive an assertion for any of STMT's operands. */
3173 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
3175 tree value;
3176 enum tree_code comp_code;
3178 /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
3179 the sub-graph of a conditional block, when we return from
3180 this recursive walk, our parent will use the
3181 FOUND_IN_SUBGRAPH bitset to determine if one of the
3182 operands it was looking for was present in the sub-graph. */
3183 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3185 /* If OP is used in such a way that we can infer a value
3186 range for it, and we don't find a previous assertion for
3187 it, create a new assertion location node for OP. */
3188 if (infer_value_range (stmt, op, &comp_code, &value))
3190 /* If we are able to infer a nonzero value range for OP,
3191 then walk backwards through the use-def chain to see if OP
3192 was set via a typecast.
3194 If so, then we can also infer a nonzero value range
3195 for the operand of the NOP_EXPR. */
3196 if (comp_code == NE_EXPR && integer_zerop (value))
3198 tree t = op;
3199 tree def_stmt = SSA_NAME_DEF_STMT (t);
3201 while (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
3202 && TREE_CODE
3203 (GIMPLE_STMT_OPERAND (def_stmt, 1)) == NOP_EXPR
3204 && TREE_CODE
3205 (TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1),
3206 0)) == SSA_NAME
3207 && POINTER_TYPE_P
3208 (TREE_TYPE (TREE_OPERAND
3209 (GIMPLE_STMT_OPERAND (def_stmt,
3210 1), 0))))
3212 t = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
3213 def_stmt = SSA_NAME_DEF_STMT (t);
3215 /* Note we want to register the assert for the
3216 operand of the NOP_EXPR after SI, not after the
3217 conversion. */
3218 if (! has_single_use (t))
3220 register_new_assert_for (t, comp_code, value,
3221 bb, NULL, si);
3222 need_assert = true;
3227 /* If OP is used only once, namely in this STMT, don't
3228 bother creating an ASSERT_EXPR for it. Such an
3229 ASSERT_EXPR would do nothing but increase compile time. */
3230 if (!has_single_use (op))
3232 register_new_assert_for (op, comp_code, value, bb, NULL, si);
3233 need_assert = true;
3238 /* Remember the last statement of the block. */
3239 last = stmt;
3242 /* If BB's last statement is a conditional expression
3243 involving integer operands, recurse into each of the sub-graphs
3244 rooted at BB to determine if we need to add ASSERT_EXPRs. */
3245 if (last
3246 && TREE_CODE (last) == COND_EXPR
3247 && !fp_predicate (COND_EXPR_COND (last))
3248 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
3249 need_assert |= find_conditional_asserts (bb, last);
3251 /* Recurse into the dominator children of BB. */
3252 for (son = first_dom_son (CDI_DOMINATORS, bb);
3253 son;
3254 son = next_dom_son (CDI_DOMINATORS, son))
3255 need_assert |= find_assert_locations (son);
3257 return need_assert;
3261 /* Create an ASSERT_EXPR for NAME and insert it in the location
3262 indicated by LOC. Return true if we made any edge insertions. */
3264 static bool
3265 process_assert_insertions_for (tree name, assert_locus_t loc)
3267 /* Build the comparison expression NAME_i COMP_CODE VAL. */
3268 tree stmt, cond, assert_expr;
3269 edge_iterator ei;
3270 edge e;
3272 cond = build2 (loc->comp_code, boolean_type_node, name, loc->val);
3273 assert_expr = build_assert_expr_for (cond, name);
3275 if (loc->e)
3277 /* We have been asked to insert the assertion on an edge. This
3278 is used only by COND_EXPR and SWITCH_EXPR assertions. */
3279 #if defined ENABLE_CHECKING
3280 gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
3281 || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
3282 #endif
3284 bsi_insert_on_edge (loc->e, assert_expr);
3285 return true;
3288 /* Otherwise, we can insert right after LOC->SI iff the
3289 statement must not be the last statement in the block. */
3290 stmt = bsi_stmt (loc->si);
3291 if (!stmt_ends_bb_p (stmt))
3293 bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
3294 return false;
3297 /* If STMT must be the last statement in BB, we can only insert new
3298 assertions on the non-abnormal edge out of BB. Note that since
3299 STMT is not control flow, there may only be one non-abnormal edge
3300 out of BB. */
3301 FOR_EACH_EDGE (e, ei, loc->bb->succs)
3302 if (!(e->flags & EDGE_ABNORMAL))
3304 bsi_insert_on_edge (e, assert_expr);
3305 return true;
3308 gcc_unreachable ();
3312 /* Process all the insertions registered for every name N_i registered
3313 in NEED_ASSERT_FOR. The list of assertions to be inserted are
3314 found in ASSERTS_FOR[i]. */
3316 static void
3317 process_assert_insertions (void)
3319 unsigned i;
3320 bitmap_iterator bi;
3321 bool update_edges_p = false;
3322 int num_asserts = 0;
3324 if (dump_file && (dump_flags & TDF_DETAILS))
3325 dump_all_asserts (dump_file);
3327 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3329 assert_locus_t loc = asserts_for[i];
3330 gcc_assert (loc);
3332 while (loc)
3334 assert_locus_t next = loc->next;
3335 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
3336 free (loc);
3337 loc = next;
3338 num_asserts++;
3342 if (update_edges_p)
3343 bsi_commit_edge_inserts ();
3345 if (dump_file && (dump_flags & TDF_STATS))
3346 fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
3347 num_asserts);
3351 /* Traverse the flowgraph looking for conditional jumps to insert range
3352 expressions. These range expressions are meant to provide information
3353 to optimizations that need to reason in terms of value ranges. They
3354 will not be expanded into RTL. For instance, given:
3356 x = ...
3357 y = ...
3358 if (x < y)
3359 y = x - 2;
3360 else
3361 x = y + 3;
3363 this pass will transform the code into:
3365 x = ...
3366 y = ...
3367 if (x < y)
3369 x = ASSERT_EXPR <x, x < y>
3370 y = x - 2
3372 else
3374 y = ASSERT_EXPR <y, x <= y>
3375 x = y + 3
3378 The idea is that once copy and constant propagation have run, other
3379 optimizations will be able to determine what ranges of values can 'x'
3380 take in different paths of the code, simply by checking the reaching
3381 definition of 'x'. */
3383 static void
3384 insert_range_assertions (void)
3386 edge e;
3387 edge_iterator ei;
3388 bool update_ssa_p;
3390 found_in_subgraph = sbitmap_alloc (num_ssa_names);
3391 sbitmap_zero (found_in_subgraph);
3393 blocks_visited = sbitmap_alloc (last_basic_block);
3394 sbitmap_zero (blocks_visited);
3396 need_assert_for = BITMAP_ALLOC (NULL);
3397 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
3399 calculate_dominance_info (CDI_DOMINATORS);
3401 update_ssa_p = false;
3402 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3403 if (find_assert_locations (e->dest))
3404 update_ssa_p = true;
3406 if (update_ssa_p)
3408 process_assert_insertions ();
3409 update_ssa (TODO_update_ssa_no_phi);
3412 if (dump_file && (dump_flags & TDF_DETAILS))
3414 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
3415 dump_function_to_file (current_function_decl, dump_file, dump_flags);
3418 sbitmap_free (found_in_subgraph);
3419 free (asserts_for);
3420 BITMAP_FREE (need_assert_for);
3424 /* Convert range assertion expressions into the implied copies and
3425 copy propagate away the copies. Doing the trivial copy propagation
3426 here avoids the need to run the full copy propagation pass after
3427 VRP.
3429 FIXME, this will eventually lead to copy propagation removing the
3430 names that had useful range information attached to them. For
3431 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
3432 then N_i will have the range [3, +INF].
3434 However, by converting the assertion into the implied copy
3435 operation N_i = N_j, we will then copy-propagate N_j into the uses
3436 of N_i and lose the range information. We may want to hold on to
3437 ASSERT_EXPRs a little while longer as the ranges could be used in
3438 things like jump threading.
3440 The problem with keeping ASSERT_EXPRs around is that passes after
3441 VRP need to handle them appropriately.
3443 Another approach would be to make the range information a first
3444 class property of the SSA_NAME so that it can be queried from
3445 any pass. This is made somewhat more complex by the need for
3446 multiple ranges to be associated with one SSA_NAME. */
3448 static void
3449 remove_range_assertions (void)
3451 basic_block bb;
3452 block_stmt_iterator si;
3454 /* Note that the BSI iterator bump happens at the bottom of the
3455 loop and no bump is necessary if we're removing the statement
3456 referenced by the current BSI. */
3457 FOR_EACH_BB (bb)
3458 for (si = bsi_start (bb); !bsi_end_p (si);)
3460 tree stmt = bsi_stmt (si);
3461 tree use_stmt;
3463 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
3464 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1)) == ASSERT_EXPR)
3466 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1), var;
3467 tree cond = fold (ASSERT_EXPR_COND (rhs));
3468 use_operand_p use_p;
3469 imm_use_iterator iter;
3471 gcc_assert (cond != boolean_false_node);
3473 /* Propagate the RHS into every use of the LHS. */
3474 var = ASSERT_EXPR_VAR (rhs);
3475 FOR_EACH_IMM_USE_STMT (use_stmt, iter,
3476 GIMPLE_STMT_OPERAND (stmt, 0))
3477 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3479 SET_USE (use_p, var);
3480 gcc_assert (TREE_CODE (var) == SSA_NAME);
3483 /* And finally, remove the copy, it is not needed. */
3484 bsi_remove (&si, true);
3486 else
3487 bsi_next (&si);
3490 sbitmap_free (blocks_visited);
3494 /* Return true if STMT is interesting for VRP. */
3496 static bool
3497 stmt_interesting_for_vrp (tree stmt)
3499 if (TREE_CODE (stmt) == PHI_NODE
3500 && is_gimple_reg (PHI_RESULT (stmt))
3501 && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
3502 || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
3503 return true;
3504 else if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
3506 tree lhs = GIMPLE_STMT_OPERAND (stmt, 0);
3507 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
3509 /* In general, assignments with virtual operands are not useful
3510 for deriving ranges, with the obvious exception of calls to
3511 builtin functions. */
3512 if (TREE_CODE (lhs) == SSA_NAME
3513 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3514 || POINTER_TYPE_P (TREE_TYPE (lhs)))
3515 && ((TREE_CODE (rhs) == CALL_EXPR
3516 && TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
3517 && DECL_P (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0))
3518 && DECL_IS_BUILTIN (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0)))
3519 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)))
3520 return true;
3522 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
3523 return true;
3525 return false;
3529 /* Initialize local data structures for VRP. */
3531 static void
3532 vrp_initialize (void)
3534 basic_block bb;
3536 vr_value = XCNEWVEC (value_range_t *, num_ssa_names);
3538 FOR_EACH_BB (bb)
3540 block_stmt_iterator si;
3541 tree phi;
3543 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3545 if (!stmt_interesting_for_vrp (phi))
3547 tree lhs = PHI_RESULT (phi);
3548 set_value_range_to_varying (get_value_range (lhs));
3549 DONT_SIMULATE_AGAIN (phi) = true;
3551 else
3552 DONT_SIMULATE_AGAIN (phi) = false;
3555 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
3557 tree stmt = bsi_stmt (si);
3559 if (!stmt_interesting_for_vrp (stmt))
3561 ssa_op_iter i;
3562 tree def;
3563 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
3564 set_value_range_to_varying (get_value_range (def));
3565 DONT_SIMULATE_AGAIN (stmt) = true;
3567 else
3569 DONT_SIMULATE_AGAIN (stmt) = false;
3576 /* Visit assignment STMT. If it produces an interesting range, record
3577 the SSA name in *OUTPUT_P. */
3579 static enum ssa_prop_result
3580 vrp_visit_assignment (tree stmt, tree *output_p)
3582 tree lhs, rhs, def;
3583 ssa_op_iter iter;
3585 lhs = GIMPLE_STMT_OPERAND (stmt, 0);
3586 rhs = GIMPLE_STMT_OPERAND (stmt, 1);
3588 /* We only keep track of ranges in integral and pointer types. */
3589 if (TREE_CODE (lhs) == SSA_NAME
3590 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3591 /* It is valid to have NULL MIN/MAX values on a type. See
3592 build_range_type. */
3593 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
3594 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
3595 || POINTER_TYPE_P (TREE_TYPE (lhs))))
3597 struct loop *l;
3598 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3600 extract_range_from_expr (&new_vr, rhs);
3602 /* If STMT is inside a loop, we may be able to know something
3603 else about the range of LHS by examining scalar evolution
3604 information. */
3605 if (current_loops && (l = loop_containing_stmt (stmt)))
3606 adjust_range_with_scev (&new_vr, l, stmt, lhs);
3608 if (update_value_range (lhs, &new_vr))
3610 *output_p = lhs;
3612 if (dump_file && (dump_flags & TDF_DETAILS))
3614 fprintf (dump_file, "Found new range for ");
3615 print_generic_expr (dump_file, lhs, 0);
3616 fprintf (dump_file, ": ");
3617 dump_value_range (dump_file, &new_vr);
3618 fprintf (dump_file, "\n\n");
3621 if (new_vr.type == VR_VARYING)
3622 return SSA_PROP_VARYING;
3624 return SSA_PROP_INTERESTING;
3627 return SSA_PROP_NOT_INTERESTING;
3630 /* Every other statement produces no useful ranges. */
3631 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
3632 set_value_range_to_varying (get_value_range (def));
3634 return SSA_PROP_VARYING;
3638 /* Compare all the value ranges for names equivalent to VAR with VAL
3639 using comparison code COMP. Return the same value returned by
3640 compare_range_with_value. */
3642 static tree
3643 compare_name_with_value (enum tree_code comp, tree var, tree val)
3645 bitmap_iterator bi;
3646 unsigned i;
3647 bitmap e;
3648 tree retval, t;
3650 t = retval = NULL_TREE;
3652 /* Get the set of equivalences for VAR. */
3653 e = get_value_range (var)->equiv;
3655 /* Add VAR to its own set of equivalences so that VAR's value range
3656 is processed by this loop (otherwise, we would have to replicate
3657 the body of the loop just to check VAR's value range). */
3658 bitmap_set_bit (e, SSA_NAME_VERSION (var));
3660 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
3662 value_range_t equiv_vr = *(vr_value[i]);
3664 /* If name N_i does not have a valid range, use N_i as its own
3665 range. This allows us to compare against names that may
3666 have N_i in their ranges. */
3667 if (equiv_vr.type == VR_VARYING || equiv_vr.type == VR_UNDEFINED)
3669 equiv_vr.type = VR_RANGE;
3670 equiv_vr.min = ssa_name (i);
3671 equiv_vr.max = ssa_name (i);
3674 t = compare_range_with_value (comp, &equiv_vr, val);
3675 if (t)
3677 /* If we get different answers from different members
3678 of the equivalence set this check must be in a dead
3679 code region. Folding it to a trap representation
3680 would be correct here. For now just return don't-know. */
3681 if (retval != NULL
3682 && t != retval)
3684 retval = NULL_TREE;
3685 break;
3687 retval = t;
3691 /* Remove VAR from its own equivalence set. */
3692 bitmap_clear_bit (e, SSA_NAME_VERSION (var));
3694 if (retval)
3695 return retval;
3697 /* We couldn't find a non-NULL value for the predicate. */
3698 return NULL_TREE;
3702 /* Given a comparison code COMP and names N1 and N2, compare all the
3703 ranges equivalent to N1 against all the ranges equivalent to N2
3704 to determine the value of N1 COMP N2. Return the same value
3705 returned by compare_ranges. */
3707 static tree
3708 compare_names (enum tree_code comp, tree n1, tree n2)
3710 tree t, retval;
3711 bitmap e1, e2;
3712 bitmap_iterator bi1, bi2;
3713 unsigned i1, i2;
3715 /* Compare the ranges of every name equivalent to N1 against the
3716 ranges of every name equivalent to N2. */
3717 e1 = get_value_range (n1)->equiv;
3718 e2 = get_value_range (n2)->equiv;
3720 /* Add N1 and N2 to their own set of equivalences to avoid
3721 duplicating the body of the loop just to check N1 and N2
3722 ranges. */
3723 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
3724 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
3726 /* If the equivalence sets have a common intersection, then the two
3727 names can be compared without checking their ranges. */
3728 if (bitmap_intersect_p (e1, e2))
3730 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3731 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3733 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
3734 ? boolean_true_node
3735 : boolean_false_node;
3738 /* Otherwise, compare all the equivalent ranges. First, add N1 and
3739 N2 to their own set of equivalences to avoid duplicating the body
3740 of the loop just to check N1 and N2 ranges. */
3741 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
3743 value_range_t vr1 = *(vr_value[i1]);
3745 /* If the range is VARYING or UNDEFINED, use the name itself. */
3746 if (vr1.type == VR_VARYING || vr1.type == VR_UNDEFINED)
3748 vr1.type = VR_RANGE;
3749 vr1.min = ssa_name (i1);
3750 vr1.max = ssa_name (i1);
3753 t = retval = NULL_TREE;
3754 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
3756 value_range_t vr2 = *(vr_value[i2]);
3758 if (vr2.type == VR_VARYING || vr2.type == VR_UNDEFINED)
3760 vr2.type = VR_RANGE;
3761 vr2.min = ssa_name (i2);
3762 vr2.max = ssa_name (i2);
3765 t = compare_ranges (comp, &vr1, &vr2);
3766 if (t)
3768 /* If we get different answers from different members
3769 of the equivalence set this check must be in a dead
3770 code region. Folding it to a trap representation
3771 would be correct here. For now just return don't-know. */
3772 if (retval != NULL
3773 && t != retval)
3775 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3776 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3777 return NULL_TREE;
3779 retval = t;
3783 if (retval)
3785 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3786 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3787 return retval;
3791 /* None of the equivalent ranges are useful in computing this
3792 comparison. */
3793 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3794 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3795 return NULL_TREE;
3799 /* Given a conditional predicate COND, try to determine if COND yields
3800 true or false based on the value ranges of its operands. Return
3801 BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
3802 BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
3803 NULL if the conditional cannot be evaluated at compile time.
3805 If USE_EQUIV_P is true, the ranges of all the names equivalent with
3806 the operands in COND are used when trying to compute its value.
3807 This is only used during final substitution. During propagation,
3808 we only check the range of each variable and not its equivalents. */
3810 tree
3811 vrp_evaluate_conditional (tree cond, bool use_equiv_p)
3813 gcc_assert (TREE_CODE (cond) == SSA_NAME
3814 || TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
3816 if (TREE_CODE (cond) == SSA_NAME)
3818 value_range_t *vr;
3819 tree retval;
3821 if (use_equiv_p)
3822 retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node);
3823 else
3825 value_range_t *vr = get_value_range (cond);
3826 retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node);
3829 /* If COND has a known boolean range, return it. */
3830 if (retval)
3831 return retval;
3833 /* Otherwise, if COND has a symbolic range of exactly one value,
3834 return it. */
3835 vr = get_value_range (cond);
3836 if (vr->type == VR_RANGE && vr->min == vr->max)
3837 return vr->min;
3839 else
3841 tree op0 = TREE_OPERAND (cond, 0);
3842 tree op1 = TREE_OPERAND (cond, 1);
3844 /* We only deal with integral and pointer types. */
3845 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
3846 && !POINTER_TYPE_P (TREE_TYPE (op0)))
3847 return NULL_TREE;
3849 if (use_equiv_p)
3851 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
3852 return compare_names (TREE_CODE (cond), op0, op1);
3853 else if (TREE_CODE (op0) == SSA_NAME)
3854 return compare_name_with_value (TREE_CODE (cond), op0, op1);
3855 else if (TREE_CODE (op1) == SSA_NAME)
3856 return compare_name_with_value (
3857 swap_tree_comparison (TREE_CODE (cond)), op1, op0);
3859 else
3861 value_range_t *vr0, *vr1;
3863 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
3864 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
3866 if (vr0 && vr1)
3867 return compare_ranges (TREE_CODE (cond), vr0, vr1);
3868 else if (vr0 && vr1 == NULL)
3869 return compare_range_with_value (TREE_CODE (cond), vr0, op1);
3870 else if (vr0 == NULL && vr1)
3871 return compare_range_with_value (
3872 swap_tree_comparison (TREE_CODE (cond)), vr1, op0);
3876 /* Anything else cannot be computed statically. */
3877 return NULL_TREE;
3881 /* Visit conditional statement STMT. If we can determine which edge
3882 will be taken out of STMT's basic block, record it in
3883 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
3884 SSA_PROP_VARYING. */
3886 static enum ssa_prop_result
3887 vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
3889 tree cond, val;
3891 *taken_edge_p = NULL;
3893 /* FIXME. Handle SWITCH_EXPRs. But first, the assert pass needs to
3894 add ASSERT_EXPRs for them. */
3895 if (TREE_CODE (stmt) == SWITCH_EXPR)
3896 return SSA_PROP_VARYING;
3898 cond = COND_EXPR_COND (stmt);
3900 if (dump_file && (dump_flags & TDF_DETAILS))
3902 tree use;
3903 ssa_op_iter i;
3905 fprintf (dump_file, "\nVisiting conditional with predicate: ");
3906 print_generic_expr (dump_file, cond, 0);
3907 fprintf (dump_file, "\nWith known ranges\n");
3909 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
3911 fprintf (dump_file, "\t");
3912 print_generic_expr (dump_file, use, 0);
3913 fprintf (dump_file, ": ");
3914 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
3917 fprintf (dump_file, "\n");
3920 /* Compute the value of the predicate COND by checking the known
3921 ranges of each of its operands.
3923 Note that we cannot evaluate all the equivalent ranges here
3924 because those ranges may not yet be final and with the current
3925 propagation strategy, we cannot determine when the value ranges
3926 of the names in the equivalence set have changed.
3928 For instance, given the following code fragment
3930 i_5 = PHI <8, i_13>
3932 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
3933 if (i_14 == 1)
3936 Assume that on the first visit to i_14, i_5 has the temporary
3937 range [8, 8] because the second argument to the PHI function is
3938 not yet executable. We derive the range ~[0, 0] for i_14 and the
3939 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
3940 the first time, since i_14 is equivalent to the range [8, 8], we
3941 determine that the predicate is always false.
3943 On the next round of propagation, i_13 is determined to be
3944 VARYING, which causes i_5 to drop down to VARYING. So, another
3945 visit to i_14 is scheduled. In this second visit, we compute the
3946 exact same range and equivalence set for i_14, namely ~[0, 0] and
3947 { i_5 }. But we did not have the previous range for i_5
3948 registered, so vrp_visit_assignment thinks that the range for
3949 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
3950 is not visited again, which stops propagation from visiting
3951 statements in the THEN clause of that if().
3953 To properly fix this we would need to keep the previous range
3954 value for the names in the equivalence set. This way we would've
3955 discovered that from one visit to the other i_5 changed from
3956 range [8, 8] to VR_VARYING.
3958 However, fixing this apparent limitation may not be worth the
3959 additional checking. Testing on several code bases (GCC, DLV,
3960 MICO, TRAMP3D and SPEC2000) showed that doing this results in
3961 4 more predicates folded in SPEC. */
3962 val = vrp_evaluate_conditional (cond, false);
3963 if (val)
3964 *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
3966 if (dump_file && (dump_flags & TDF_DETAILS))
3968 fprintf (dump_file, "\nPredicate evaluates to: ");
3969 if (val == NULL_TREE)
3970 fprintf (dump_file, "DON'T KNOW\n");
3971 else
3972 print_generic_stmt (dump_file, val, 0);
3975 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
3979 /* Evaluate statement STMT. If the statement produces a useful range,
3980 return SSA_PROP_INTERESTING and record the SSA name with the
3981 interesting range into *OUTPUT_P.
3983 If STMT is a conditional branch and we can determine its truth
3984 value, the taken edge is recorded in *TAKEN_EDGE_P.
3986 If STMT produces a varying value, return SSA_PROP_VARYING. */
3988 static enum ssa_prop_result
3989 vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
3991 tree def;
3992 ssa_op_iter iter;
3993 stmt_ann_t ann;
3995 if (dump_file && (dump_flags & TDF_DETAILS))
3997 fprintf (dump_file, "\nVisiting statement:\n");
3998 print_generic_stmt (dump_file, stmt, dump_flags);
3999 fprintf (dump_file, "\n");
4002 ann = stmt_ann (stmt);
4003 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
4005 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
4007 /* In general, assignments with virtual operands are not useful
4008 for deriving ranges, with the obvious exception of calls to
4009 builtin functions. */
4010 if ((TREE_CODE (rhs) == CALL_EXPR
4011 && TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
4012 && DECL_P (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0))
4013 && DECL_IS_BUILTIN (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0)))
4014 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
4015 return vrp_visit_assignment (stmt, output_p);
4017 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
4018 return vrp_visit_cond_stmt (stmt, taken_edge_p);
4020 /* All other statements produce nothing of interest for VRP, so mark
4021 their outputs varying and prevent further simulation. */
4022 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
4023 set_value_range_to_varying (get_value_range (def));
4025 return SSA_PROP_VARYING;
4029 /* Meet operation for value ranges. Given two value ranges VR0 and
4030 VR1, store in VR0 a range that contains both VR0 and VR1. This
4031 may not be the smallest possible such range. */
4033 static void
4034 vrp_meet (value_range_t *vr0, value_range_t *vr1)
4036 if (vr0->type == VR_UNDEFINED)
4038 copy_value_range (vr0, vr1);
4039 return;
4042 if (vr1->type == VR_UNDEFINED)
4044 /* Nothing to do. VR0 already has the resulting range. */
4045 return;
4048 if (vr0->type == VR_VARYING)
4050 /* Nothing to do. VR0 already has the resulting range. */
4051 return;
4054 if (vr1->type == VR_VARYING)
4056 set_value_range_to_varying (vr0);
4057 return;
4060 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
4062 int cmp;
4063 tree min, max;
4065 /* Compute the convex hull of the ranges. The lower limit of
4066 the new range is the minimum of the two ranges. If they
4067 cannot be compared, then give up. */
4068 cmp = compare_values (vr0->min, vr1->min);
4069 if (cmp == 0 || cmp == 1)
4070 min = vr1->min;
4071 else if (cmp == -1)
4072 min = vr0->min;
4073 else
4074 goto give_up;
4076 /* Similarly, the upper limit of the new range is the maximum
4077 of the two ranges. If they cannot be compared, then
4078 give up. */
4079 cmp = compare_values (vr0->max, vr1->max);
4080 if (cmp == 0 || cmp == -1)
4081 max = vr1->max;
4082 else if (cmp == 1)
4083 max = vr0->max;
4084 else
4085 goto give_up;
4087 /* The resulting set of equivalences is the intersection of
4088 the two sets. */
4089 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
4090 bitmap_and_into (vr0->equiv, vr1->equiv);
4091 else if (vr0->equiv && !vr1->equiv)
4092 bitmap_clear (vr0->equiv);
4094 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
4096 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
4098 /* Two anti-ranges meet only if their complements intersect.
4099 Only handle the case of identical ranges. */
4100 if (compare_values (vr0->min, vr1->min) == 0
4101 && compare_values (vr0->max, vr1->max) == 0
4102 && compare_values (vr0->min, vr0->max) == 0)
4104 /* The resulting set of equivalences is the intersection of
4105 the two sets. */
4106 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
4107 bitmap_and_into (vr0->equiv, vr1->equiv);
4108 else if (vr0->equiv && !vr1->equiv)
4109 bitmap_clear (vr0->equiv);
4111 else
4112 goto give_up;
4114 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
4116 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
4117 only handle the case where the ranges have an empty intersection.
4118 The result of the meet operation is the anti-range. */
4119 if (!symbolic_range_p (vr0)
4120 && !symbolic_range_p (vr1)
4121 && !value_ranges_intersect_p (vr0, vr1))
4123 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
4124 set. We need to compute the intersection of the two
4125 equivalence sets. */
4126 if (vr1->type == VR_ANTI_RANGE)
4127 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
4129 /* The resulting set of equivalences is the intersection of
4130 the two sets. */
4131 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
4132 bitmap_and_into (vr0->equiv, vr1->equiv);
4133 else if (vr0->equiv && !vr1->equiv)
4134 bitmap_clear (vr0->equiv);
4136 else
4137 goto give_up;
4139 else
4140 gcc_unreachable ();
4142 return;
4144 give_up:
4145 /* Failed to find an efficient meet. Before giving up and setting
4146 the result to VARYING, see if we can at least derive a useful
4147 anti-range. FIXME, all this nonsense about distinguishing
4148 anti-ranges from ranges is necessary because of the odd
4149 semantics of range_includes_zero_p and friends. */
4150 if (!symbolic_range_p (vr0)
4151 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
4152 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
4153 && !symbolic_range_p (vr1)
4154 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
4155 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
4157 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
4159 /* Since this meet operation did not result from the meeting of
4160 two equivalent names, VR0 cannot have any equivalences. */
4161 if (vr0->equiv)
4162 bitmap_clear (vr0->equiv);
4164 else
4165 set_value_range_to_varying (vr0);
4169 /* Visit all arguments for PHI node PHI that flow through executable
4170 edges. If a valid value range can be derived from all the incoming
4171 value ranges, set a new range for the LHS of PHI. */
4173 static enum ssa_prop_result
4174 vrp_visit_phi_node (tree phi)
4176 int i;
4177 tree lhs = PHI_RESULT (phi);
4178 value_range_t *lhs_vr = get_value_range (lhs);
4179 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
4181 copy_value_range (&vr_result, lhs_vr);
4183 if (dump_file && (dump_flags & TDF_DETAILS))
4185 fprintf (dump_file, "\nVisiting PHI node: ");
4186 print_generic_expr (dump_file, phi, dump_flags);
4189 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
4191 edge e = PHI_ARG_EDGE (phi, i);
4193 if (dump_file && (dump_flags & TDF_DETAILS))
4195 fprintf (dump_file,
4196 "\n Argument #%d (%d -> %d %sexecutable)\n",
4197 i, e->src->index, e->dest->index,
4198 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
4201 if (e->flags & EDGE_EXECUTABLE)
4203 tree arg = PHI_ARG_DEF (phi, i);
4204 value_range_t vr_arg;
4206 if (TREE_CODE (arg) == SSA_NAME)
4207 vr_arg = *(get_value_range (arg));
4208 else
4210 vr_arg.type = VR_RANGE;
4211 vr_arg.min = arg;
4212 vr_arg.max = arg;
4213 vr_arg.equiv = NULL;
4216 if (dump_file && (dump_flags & TDF_DETAILS))
4218 fprintf (dump_file, "\t");
4219 print_generic_expr (dump_file, arg, dump_flags);
4220 fprintf (dump_file, "\n\tValue: ");
4221 dump_value_range (dump_file, &vr_arg);
4222 fprintf (dump_file, "\n");
4225 vrp_meet (&vr_result, &vr_arg);
4227 if (vr_result.type == VR_VARYING)
4228 break;
4232 if (vr_result.type == VR_VARYING)
4233 goto varying;
4235 /* To prevent infinite iterations in the algorithm, derive ranges
4236 when the new value is slightly bigger or smaller than the
4237 previous one. */
4238 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE)
4240 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
4242 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
4243 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
4245 /* If the new minimum is smaller or larger than the previous
4246 one, go all the way to -INF. In the first case, to avoid
4247 iterating millions of times to reach -INF, and in the
4248 other case to avoid infinite bouncing between different
4249 minimums. */
4250 if (cmp_min > 0 || cmp_min < 0)
4251 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
4253 /* Similarly, if the new maximum is smaller or larger than
4254 the previous one, go all the way to +INF. */
4255 if (cmp_max < 0 || cmp_max > 0)
4256 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
4258 /* If we ended up with a (-INF, +INF) range, set it to
4259 VARYING. */
4260 if (vr_result.min == TYPE_MIN_VALUE (TREE_TYPE (vr_result.min))
4261 && vr_result.max == TYPE_MAX_VALUE (TREE_TYPE (vr_result.max)))
4262 goto varying;
4266 /* If the new range is different than the previous value, keep
4267 iterating. */
4268 if (update_value_range (lhs, &vr_result))
4269 return SSA_PROP_INTERESTING;
4271 /* Nothing changed, don't add outgoing edges. */
4272 return SSA_PROP_NOT_INTERESTING;
4274 /* No match found. Set the LHS to VARYING. */
4275 varying:
4276 set_value_range_to_varying (lhs_vr);
4277 return SSA_PROP_VARYING;
4280 /* Simplify a division or modulo operator to a right shift or
4281 bitwise and if the first operand is unsigned or is greater
4282 than zero and the second operand is an exact power of two. */
4284 static void
4285 simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
4287 tree val = NULL;
4288 tree op = TREE_OPERAND (rhs, 0);
4289 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
4291 if (TYPE_UNSIGNED (TREE_TYPE (op)))
4293 val = integer_one_node;
4295 else
4297 val = compare_range_with_value (GT_EXPR, vr, integer_zero_node);
4300 if (val && integer_onep (val))
4302 tree t;
4303 tree op0 = TREE_OPERAND (rhs, 0);
4304 tree op1 = TREE_OPERAND (rhs, 1);
4306 if (rhs_code == TRUNC_DIV_EXPR)
4308 t = build_int_cst (NULL_TREE, tree_log2 (op1));
4309 t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
4311 else
4313 t = build_int_cst (TREE_TYPE (op1), 1);
4314 t = int_const_binop (MINUS_EXPR, op1, t, 0);
4315 t = fold_convert (TREE_TYPE (op0), t);
4316 t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
4319 GIMPLE_STMT_OPERAND (stmt, 1) = t;
4320 update_stmt (stmt);
4324 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
4325 ABS_EXPR. If the operand is <= 0, then simplify the
4326 ABS_EXPR into a NEGATE_EXPR. */
4328 static void
4329 simplify_abs_using_ranges (tree stmt, tree rhs)
4331 tree val = NULL;
4332 tree op = TREE_OPERAND (rhs, 0);
4333 tree type = TREE_TYPE (op);
4334 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
4336 if (TYPE_UNSIGNED (type))
4338 val = integer_zero_node;
4340 else if (vr)
4342 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node);
4343 if (!val)
4345 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node);
4347 if (val)
4349 if (integer_zerop (val))
4350 val = integer_one_node;
4351 else if (integer_onep (val))
4352 val = integer_zero_node;
4356 if (val
4357 && (integer_onep (val) || integer_zerop (val)))
4359 tree t;
4361 if (integer_onep (val))
4362 t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
4363 else
4364 t = op;
4366 GIMPLE_STMT_OPERAND (stmt, 1) = t;
4367 update_stmt (stmt);
4372 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
4373 a known value range VR.
4375 If there is one and only one value which will satisfy the
4376 conditional, then return that value. Else return NULL. */
4378 static tree
4379 test_for_singularity (enum tree_code cond_code, tree op0,
4380 tree op1, value_range_t *vr)
4382 tree min = NULL;
4383 tree max = NULL;
4385 /* Extract minimum/maximum values which satisfy the
4386 the conditional as it was written. */
4387 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
4389 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
4391 max = op1;
4392 if (cond_code == LT_EXPR)
4394 tree one = build_int_cst (TREE_TYPE (op0), 1);
4395 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
4398 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
4400 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
4402 min = op1;
4403 if (cond_code == GT_EXPR)
4405 tree one = build_int_cst (TREE_TYPE (op0), 1);
4406 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
4410 /* Now refine the minimum and maximum values using any
4411 value range information we have for op0. */
4412 if (min && max)
4414 if (compare_values (vr->min, min) == -1)
4415 min = min;
4416 else
4417 min = vr->min;
4418 if (compare_values (vr->max, max) == 1)
4419 max = max;
4420 else
4421 max = vr->max;
4423 /* If the new min/max values have converged to a single value,
4424 then there is only one value which can satisfy the condition,
4425 return that value. */
4426 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
4427 return min;
4429 return NULL;
4432 /* Simplify a conditional using a relational operator to an equality
4433 test if the range information indicates only one value can satisfy
4434 the original conditional. */
4436 static void
4437 simplify_cond_using_ranges (tree stmt)
4439 tree cond = COND_EXPR_COND (stmt);
4440 tree op0 = TREE_OPERAND (cond, 0);
4441 tree op1 = TREE_OPERAND (cond, 1);
4442 enum tree_code cond_code = TREE_CODE (cond);
4444 if (cond_code != NE_EXPR
4445 && cond_code != EQ_EXPR
4446 && TREE_CODE (op0) == SSA_NAME
4447 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
4448 && is_gimple_min_invariant (op1))
4450 value_range_t *vr = get_value_range (op0);
4452 /* If we have range information for OP0, then we might be
4453 able to simplify this conditional. */
4454 if (vr->type == VR_RANGE)
4456 tree new = test_for_singularity (cond_code, op0, op1, vr);
4458 if (new)
4460 if (dump_file)
4462 fprintf (dump_file, "Simplified relational ");
4463 print_generic_expr (dump_file, cond, 0);
4464 fprintf (dump_file, " into ");
4467 COND_EXPR_COND (stmt)
4468 = build2 (EQ_EXPR, boolean_type_node, op0, new);
4469 update_stmt (stmt);
4471 if (dump_file)
4473 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
4474 fprintf (dump_file, "\n");
4476 return;
4480 /* Try again after inverting the condition. We only deal
4481 with integral types here, so no need to worry about
4482 issues with inverting FP comparisons. */
4483 cond_code = invert_tree_comparison (cond_code, false);
4484 new = test_for_singularity (cond_code, op0, op1, vr);
4486 if (new)
4488 if (dump_file)
4490 fprintf (dump_file, "Simplified relational ");
4491 print_generic_expr (dump_file, cond, 0);
4492 fprintf (dump_file, " into ");
4495 COND_EXPR_COND (stmt)
4496 = build2 (NE_EXPR, boolean_type_node, op0, new);
4497 update_stmt (stmt);
4499 if (dump_file)
4501 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
4502 fprintf (dump_file, "\n");
4504 return;
4511 /* Simplify STMT using ranges if possible. */
4513 void
4514 simplify_stmt_using_ranges (tree stmt)
4516 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
4518 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
4519 enum tree_code rhs_code = TREE_CODE (rhs);
4521 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
4522 and BIT_AND_EXPR respectively if the first operand is greater
4523 than zero and the second operand is an exact power of two. */
4524 if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
4525 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
4526 && integer_pow2p (TREE_OPERAND (rhs, 1)))
4527 simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
4529 /* Transform ABS (X) into X or -X as appropriate. */
4530 if (rhs_code == ABS_EXPR
4531 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
4532 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
4533 simplify_abs_using_ranges (stmt, rhs);
4535 else if (TREE_CODE (stmt) == COND_EXPR
4536 && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
4538 simplify_cond_using_ranges (stmt);
4542 /* Stack of dest,src equivalency pairs that need to be restored after
4543 each attempt to thread a block's incoming edge to an outgoing edge.
4545 A NULL entry is used to mark the end of pairs which need to be
4546 restored. */
4547 static VEC(tree,heap) *stack;
4549 /* A trivial wrapper so that we can present the generic jump
4550 threading code with a simple API for simplifying statements. */
4551 static tree
4552 simplify_stmt_for_jump_threading (tree stmt)
4554 /* We only use VRP information to simplify conditionals. This is
4555 overly conservative, but it's unclear if doing more would be
4556 worth the compile time cost. */
4557 if (TREE_CODE (stmt) != COND_EXPR)
4558 return NULL;
4560 return vrp_evaluate_conditional (COND_EXPR_COND (stmt), true);
4563 /* Blocks which have more than one predecessor and more than
4564 one successor present jump threading opportunities. ie,
4565 when the block is reached from a specific predecessor, we
4566 may be able to determine which of the outgoing edges will
4567 be traversed. When this optimization applies, we are able
4568 to avoid conditionals at runtime and we may expose secondary
4569 optimization opportunities.
4571 This routine is effectively a driver for the generic jump
4572 threading code. It basically just presents the generic code
4573 with edges that may be suitable for jump threading.
4575 Unlike DOM, we do not iterate VRP if jump threading was successful.
4576 While iterating may expose new opportunities for VRP, it is expected
4577 those opportunities would be very limited and the compile time cost
4578 to expose those opportunities would be significant.
4580 As jump threading opportunities are discovered, they are registered
4581 for later realization. */
4583 static void
4584 identify_jump_threads (void)
4586 basic_block bb;
4587 tree dummy;
4589 /* Ugh. When substituting values earlier in this pass we can
4590 wipe the dominance information. So rebuild the dominator
4591 information as we need it within the jump threading code. */
4592 calculate_dominance_info (CDI_DOMINATORS);
4594 /* We do not allow VRP information to be used for jump threading
4595 across a back edge in the CFG. Otherwise it becomes too
4596 difficult to avoid eliminating loop exit tests. Of course
4597 EDGE_DFS_BACK is not accurate at this time so we have to
4598 recompute it. */
4599 mark_dfs_back_edges ();
4601 /* Allocate our unwinder stack to unwind any temporary equivalences
4602 that might be recorded. */
4603 stack = VEC_alloc (tree, heap, 20);
4605 /* To avoid lots of silly node creation, we create a single
4606 conditional and just modify it in-place when attempting to
4607 thread jumps. */
4608 dummy = build2 (EQ_EXPR, boolean_type_node, NULL, NULL);
4609 dummy = build3 (COND_EXPR, void_type_node, dummy, NULL, NULL);
4611 /* Walk through all the blocks finding those which present a
4612 potential jump threading opportunity. We could set this up
4613 as a dominator walker and record data during the walk, but
4614 I doubt it's worth the effort for the classes of jump
4615 threading opportunities we are trying to identify at this
4616 point in compilation. */
4617 FOR_EACH_BB (bb)
4619 tree last, cond;
4621 /* If the generic jump threading code does not find this block
4622 interesting, then there is nothing to do. */
4623 if (! potentially_threadable_block (bb))
4624 continue;
4626 /* We only care about blocks ending in a COND_EXPR. While there
4627 may be some value in handling SWITCH_EXPR here, I doubt it's
4628 terribly important. */
4629 last = bsi_stmt (bsi_last (bb));
4630 if (TREE_CODE (last) != COND_EXPR)
4631 continue;
4633 /* We're basically looking for any kind of conditional with
4634 integral type arguments. */
4635 cond = COND_EXPR_COND (last);
4636 if ((TREE_CODE (cond) == SSA_NAME
4637 && INTEGRAL_TYPE_P (TREE_TYPE (cond)))
4638 || (COMPARISON_CLASS_P (cond)
4639 && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
4640 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 0)))
4641 && (TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME
4642 || is_gimple_min_invariant (TREE_OPERAND (cond, 1)))
4643 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))))
4645 edge_iterator ei;
4646 edge e;
4648 /* We've got a block with multiple predecessors and multiple
4649 successors which also ends in a suitable conditional. For
4650 each predecessor, see if we can thread it to a specific
4651 successor. */
4652 FOR_EACH_EDGE (e, ei, bb->preds)
4654 /* Do not thread across back edges or abnormal edges
4655 in the CFG. */
4656 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
4657 continue;
4659 thread_across_edge (dummy, e, true,
4660 &stack,
4661 simplify_stmt_for_jump_threading);
4666 /* We do not actually update the CFG or SSA graphs at this point as
4667 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
4668 handle ASSERT_EXPRs gracefully. */
4671 /* We identified all the jump threading opportunities earlier, but could
4672 not transform the CFG at that time. This routine transforms the
4673 CFG and arranges for the dominator tree to be rebuilt if necessary.
4675 Note the SSA graph update will occur during the normal TODO
4676 processing by the pass manager. */
4677 static void
4678 finalize_jump_threads (void)
4680 bool cfg_altered = false;
4681 cfg_altered = thread_through_all_blocks ();
4683 /* If we threaded jumps, then we need to recompute the dominance
4684 information, to safely do that we must clean up the CFG first. */
4685 if (cfg_altered)
4687 free_dominance_info (CDI_DOMINATORS);
4688 cleanup_tree_cfg ();
4689 calculate_dominance_info (CDI_DOMINATORS);
4691 VEC_free (tree, heap, stack);
4695 /* Traverse all the blocks folding conditionals with known ranges. */
4697 static void
4698 vrp_finalize (void)
4700 size_t i;
4701 prop_value_t *single_val_range;
4702 bool do_value_subst_p;
4704 if (dump_file)
4706 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
4707 dump_all_value_ranges (dump_file);
4708 fprintf (dump_file, "\n");
4711 /* We may have ended with ranges that have exactly one value. Those
4712 values can be substituted as any other copy/const propagated
4713 value using substitute_and_fold. */
4714 single_val_range = XCNEWVEC (prop_value_t, num_ssa_names);
4716 do_value_subst_p = false;
4717 for (i = 0; i < num_ssa_names; i++)
4718 if (vr_value[i]
4719 && vr_value[i]->type == VR_RANGE
4720 && vr_value[i]->min == vr_value[i]->max)
4722 single_val_range[i].value = vr_value[i]->min;
4723 do_value_subst_p = true;
4726 if (!do_value_subst_p)
4728 /* We found no single-valued ranges, don't waste time trying to
4729 do single value substitution in substitute_and_fold. */
4730 free (single_val_range);
4731 single_val_range = NULL;
4734 substitute_and_fold (single_val_range, true);
4736 /* We must identify jump threading opportunities before we release
4737 the datastructures built by VRP. */
4738 identify_jump_threads ();
4740 /* Free allocated memory. */
4741 for (i = 0; i < num_ssa_names; i++)
4742 if (vr_value[i])
4744 BITMAP_FREE (vr_value[i]->equiv);
4745 free (vr_value[i]);
4748 free (single_val_range);
4749 free (vr_value);
4751 /* So that we can distinguish between VRP data being available
4752 and not available. */
4753 vr_value = NULL;
4757 /* Main entry point to VRP (Value Range Propagation). This pass is
4758 loosely based on J. R. C. Patterson, ``Accurate Static Branch
4759 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
4760 Programming Language Design and Implementation, pp. 67-78, 1995.
4761 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
4763 This is essentially an SSA-CCP pass modified to deal with ranges
4764 instead of constants.
4766 While propagating ranges, we may find that two or more SSA name
4767 have equivalent, though distinct ranges. For instance,
4769 1 x_9 = p_3->a;
4770 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
4771 3 if (p_4 == q_2)
4772 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
4773 5 endif
4774 6 if (q_2)
4776 In the code above, pointer p_5 has range [q_2, q_2], but from the
4777 code we can also determine that p_5 cannot be NULL and, if q_2 had
4778 a non-varying range, p_5's range should also be compatible with it.
4780 These equivalences are created by two expressions: ASSERT_EXPR and
4781 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
4782 result of another assertion, then we can use the fact that p_5 and
4783 p_4 are equivalent when evaluating p_5's range.
4785 Together with value ranges, we also propagate these equivalences
4786 between names so that we can take advantage of information from
4787 multiple ranges when doing final replacement. Note that this
4788 equivalency relation is transitive but not symmetric.
4790 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
4791 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
4792 in contexts where that assertion does not hold (e.g., in line 6).
4794 TODO, the main difference between this pass and Patterson's is that
4795 we do not propagate edge probabilities. We only compute whether
4796 edges can be taken or not. That is, instead of having a spectrum
4797 of jump probabilities between 0 and 1, we only deal with 0, 1 and
4798 DON'T KNOW. In the future, it may be worthwhile to propagate
4799 probabilities to aid branch prediction. */
4801 static unsigned int
4802 execute_vrp (void)
4804 insert_range_assertions ();
4806 loop_optimizer_init (LOOPS_NORMAL);
4807 if (current_loops)
4808 scev_initialize ();
4810 vrp_initialize ();
4811 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
4812 vrp_finalize ();
4814 if (current_loops)
4816 scev_finalize ();
4817 loop_optimizer_finalize ();
4820 /* ASSERT_EXPRs must be removed before finalizing jump threads
4821 as finalizing jump threads calls the CFG cleanup code which
4822 does not properly handle ASSERT_EXPRs. */
4823 remove_range_assertions ();
4825 /* If we exposed any new variables, go ahead and put them into
4826 SSA form now, before we handle jump threading. This simplifies
4827 interactions between rewriting of _DECL nodes into SSA form
4828 and rewriting SSA_NAME nodes into SSA form after block
4829 duplication and CFG manipulation. */
4830 update_ssa (TODO_update_ssa);
4832 finalize_jump_threads ();
4833 return 0;
4836 static bool
4837 gate_vrp (void)
4839 return flag_tree_vrp != 0;
4842 struct tree_opt_pass pass_vrp =
4844 "vrp", /* name */
4845 gate_vrp, /* gate */
4846 execute_vrp, /* execute */
4847 NULL, /* sub */
4848 NULL, /* next */
4849 0, /* static_pass_number */
4850 TV_TREE_VRP, /* tv_id */
4851 PROP_ssa | PROP_alias, /* properties_required */
4852 0, /* properties_provided */
4853 0, /* properties_destroyed */
4854 0, /* todo_flags_start */
4855 TODO_cleanup_cfg
4856 | TODO_ggc_collect
4857 | TODO_verify_ssa
4858 | TODO_dump_func
4859 | TODO_update_ssa
4860 | TODO_update_smt_usage, /* todo_flags_finish */
4861 0 /* letter */