Skip various cmp-mem-const tests on lp64 hppa*-*-*
[official-gcc.git] / gcc / ada / sem_aux.adb
blobc8fbdb0b11725487d86df33a86f956df6ffd6881
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ A U X --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2023, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Einfo; use Einfo;
28 with Einfo.Entities; use Einfo.Entities;
29 with Einfo.Utils; use Einfo.Utils;
30 with Nlists; use Nlists;
31 with Sinfo; use Sinfo;
32 with Sinfo.Nodes; use Sinfo.Nodes;
33 with Sinfo.Utils; use Sinfo.Utils;
34 with Snames; use Snames;
35 with Stand; use Stand;
36 with Uintp; use Uintp;
38 package body Sem_Aux is
40 ----------------------
41 -- Ancestor_Subtype --
42 ----------------------
44 function Ancestor_Subtype (Typ : Entity_Id) return Entity_Id is
45 begin
46 -- If this is first subtype, or is a base type, then there is no
47 -- ancestor subtype, so we return Empty to indicate this fact.
49 if Is_First_Subtype (Typ) or else Is_Base_Type (Typ) then
50 return Empty;
51 end if;
53 declare
54 D : constant Node_Id := Declaration_Node (Typ);
56 begin
57 -- If we have a subtype declaration, get the ancestor subtype
59 if Nkind (D) = N_Subtype_Declaration then
60 if Nkind (Subtype_Indication (D)) = N_Subtype_Indication then
61 return Entity (Subtype_Mark (Subtype_Indication (D)));
62 else
63 return Entity (Subtype_Indication (D));
64 end if;
66 -- If not, then no subtype indication is available
68 else
69 return Empty;
70 end if;
71 end;
72 end Ancestor_Subtype;
74 --------------------
75 -- Available_View --
76 --------------------
78 function Available_View (Ent : Entity_Id) return Entity_Id is
79 begin
80 -- Obtain the non-limited view (if available)
82 if Has_Non_Limited_View (Ent) then
83 return Get_Full_View (Non_Limited_View (Ent));
85 -- In all other cases, return entity unchanged
87 else
88 return Ent;
89 end if;
90 end Available_View;
92 --------------------
93 -- Constant_Value --
94 --------------------
96 function Constant_Value (Ent : Entity_Id) return Node_Id is
97 D : constant Node_Id := Declaration_Node (Ent);
98 Full_D : Node_Id;
100 begin
101 -- If we have no declaration node, then return no constant value. Not
102 -- clear how this can happen, but it does sometimes and this is the
103 -- safest approach.
105 if No (D) then
106 return Empty;
108 -- Normal case where a declaration node is present
110 elsif Nkind (D) = N_Object_Renaming_Declaration then
111 return Renamed_Object (Ent);
113 -- If this is a component declaration whose entity is a constant, it is
114 -- a prival within a protected function (and so has no constant value).
116 elsif Nkind (D) = N_Component_Declaration then
117 return Empty;
119 -- If there is an expression, return it
121 elsif Present (Expression (D)) then
122 return Expression (D);
124 -- For a constant, see if we have a full view
126 elsif Ekind (Ent) = E_Constant
127 and then Present (Full_View (Ent))
128 then
129 Full_D := Parent (Full_View (Ent));
131 -- The full view may have been rewritten as an object renaming
133 if Nkind (Full_D) = N_Object_Renaming_Declaration then
134 return Name (Full_D);
135 else
136 return Expression (Full_D);
137 end if;
139 -- Otherwise we have no expression to return
141 else
142 return Empty;
143 end if;
144 end Constant_Value;
146 ---------------------------------
147 -- Corresponding_Unsigned_Type --
148 ---------------------------------
150 function Corresponding_Unsigned_Type (Typ : Entity_Id) return Entity_Id is
151 pragma Assert (Is_Signed_Integer_Type (Typ));
152 Siz : constant Uint := Esize (Base_Type (Typ));
153 begin
154 if Siz = Esize (Standard_Short_Short_Integer) then
155 return Standard_Short_Short_Unsigned;
156 elsif Siz = Esize (Standard_Short_Integer) then
157 return Standard_Short_Unsigned;
158 elsif Siz = Esize (Standard_Unsigned) then
159 return Standard_Unsigned;
160 elsif Siz = Esize (Standard_Long_Integer) then
161 return Standard_Long_Unsigned;
162 elsif Siz = Esize (Standard_Long_Long_Integer) then
163 return Standard_Long_Long_Unsigned;
164 elsif Siz = Esize (Standard_Long_Long_Long_Integer) then
165 return Standard_Long_Long_Long_Unsigned;
166 else
167 raise Program_Error;
168 end if;
169 end Corresponding_Unsigned_Type;
171 -----------------------------
172 -- Enclosing_Dynamic_Scope --
173 -----------------------------
175 function Enclosing_Dynamic_Scope (Ent : Entity_Id) return Entity_Id is
176 S : Entity_Id;
178 begin
179 -- The following test is an error defense against some syntax errors
180 -- that can leave scopes very messed up.
182 if Ent = Standard_Standard then
183 return Ent;
184 end if;
186 -- Normal case, search enclosing scopes
188 -- Note: the test for Present (S) should not be required, it defends
189 -- against an ill-formed tree.
191 S := Scope (Ent);
192 loop
193 -- If we somehow got an empty value for Scope, the tree must be
194 -- malformed. Rather than blow up we return Standard in this case.
196 if No (S) then
197 return Standard_Standard;
199 -- Quit if we get to standard or a dynamic scope. We must also
200 -- handle enclosing scopes that have a full view; required to
201 -- locate enclosing scopes that are synchronized private types
202 -- whose full view is a task type.
204 elsif S = Standard_Standard
205 or else Is_Dynamic_Scope (S)
206 or else (Is_Private_Type (S)
207 and then Present (Full_View (S))
208 and then Is_Dynamic_Scope (Full_View (S)))
209 then
210 return S;
212 -- Otherwise keep climbing
214 else
215 S := Scope (S);
216 end if;
217 end loop;
218 end Enclosing_Dynamic_Scope;
220 ------------------------
221 -- First_Discriminant --
222 ------------------------
224 function First_Discriminant (Typ : Entity_Id) return Entity_Id is
225 Ent : Entity_Id;
227 begin
228 pragma Assert
229 (Has_Discriminants (Typ) or else Has_Unknown_Discriminants (Typ));
231 Ent := First_Entity (Typ);
233 -- The discriminants are not necessarily contiguous, because access
234 -- discriminants will generate itypes. They are not the first entities
235 -- either because the tag must be ahead of them.
237 if Chars (Ent) = Name_uTag then
238 Next_Entity (Ent);
239 end if;
241 -- Skip all hidden stored discriminants if any
243 while Present (Ent) loop
244 exit when Ekind (Ent) = E_Discriminant
245 and then not Is_Completely_Hidden (Ent);
247 Next_Entity (Ent);
248 end loop;
250 -- Call may be on a private type with unknown discriminants, in which
251 -- case Ent is Empty, and as per the spec, we return Empty in this case.
253 -- Historical note: The assertion in previous versions that Ent is a
254 -- discriminant was overly cautious and prevented convenient application
255 -- of this function in the gnatprove context.
257 return Ent;
258 end First_Discriminant;
260 -------------------------------
261 -- First_Stored_Discriminant --
262 -------------------------------
264 function First_Stored_Discriminant (Typ : Entity_Id) return Entity_Id is
265 Ent : Entity_Id;
267 function Has_Completely_Hidden_Discriminant
268 (Typ : Entity_Id) return Boolean;
269 -- Scans the Discriminants to see whether any are Completely_Hidden
270 -- (the mechanism for describing non-specified stored discriminants)
271 -- Note that the entity list for the type may contain anonymous access
272 -- types created by expressions that constrain access discriminants.
274 ----------------------------------------
275 -- Has_Completely_Hidden_Discriminant --
276 ----------------------------------------
278 function Has_Completely_Hidden_Discriminant
279 (Typ : Entity_Id) return Boolean
281 Ent : Entity_Id;
283 begin
284 pragma Assert (Ekind (Typ) = E_Discriminant);
286 Ent := Typ;
287 while Present (Ent) loop
289 -- Skip anonymous types that may be created by expressions
290 -- used as discriminant constraints on inherited discriminants.
292 if Is_Itype (Ent) then
293 null;
295 elsif Ekind (Ent) = E_Discriminant
296 and then Is_Completely_Hidden (Ent)
297 then
298 return True;
299 end if;
301 Next_Entity (Ent);
302 end loop;
304 return False;
305 end Has_Completely_Hidden_Discriminant;
307 -- Start of processing for First_Stored_Discriminant
309 begin
310 pragma Assert
311 (Has_Discriminants (Typ)
312 or else Has_Unknown_Discriminants (Typ));
314 Ent := First_Entity (Typ);
316 if Chars (Ent) = Name_uTag then
317 Next_Entity (Ent);
318 end if;
320 if Has_Completely_Hidden_Discriminant (Ent) then
321 while Present (Ent) loop
322 exit when Ekind (Ent) = E_Discriminant
323 and then Is_Completely_Hidden (Ent);
324 Next_Entity (Ent);
325 end loop;
326 end if;
328 pragma Assert (Ekind (Ent) = E_Discriminant);
330 return Ent;
331 end First_Stored_Discriminant;
333 -------------------
334 -- First_Subtype --
335 -------------------
337 function First_Subtype (Typ : Entity_Id) return Entity_Id is
338 B : constant Entity_Id := Base_Type (Typ);
339 F : Node_Id := Freeze_Node (B);
340 Ent : Entity_Id;
342 begin
343 -- The freeze node of a ghost type might have been rewritten in a null
344 -- statement by the time gigi calls First_Subtype on the corresponding
345 -- type.
347 if Nkind (F) = N_Null_Statement then
348 F := Original_Node (F);
349 end if;
351 -- If the base type has no freeze node, it is a type in Standard, and
352 -- always acts as its own first subtype, except where it is one of the
353 -- predefined integer types. If the type is formal, it is also a first
354 -- subtype, and its base type has no freeze node. On the other hand, a
355 -- subtype of a generic formal is not its own first subtype. Its base
356 -- type, if anonymous, is attached to the formal type declaration from
357 -- which the first subtype is obtained.
359 if No (F) then
360 if B = Base_Type (Standard_Integer) then
361 return Standard_Integer;
363 elsif B = Base_Type (Standard_Long_Integer) then
364 return Standard_Long_Integer;
366 elsif B = Base_Type (Standard_Short_Short_Integer) then
367 return Standard_Short_Short_Integer;
369 elsif B = Base_Type (Standard_Short_Integer) then
370 return Standard_Short_Integer;
372 elsif B = Base_Type (Standard_Long_Long_Integer) then
373 return Standard_Long_Long_Integer;
375 elsif B = Base_Type (Standard_Long_Long_Long_Integer) then
376 return Standard_Long_Long_Long_Integer;
378 elsif Is_Generic_Type (Typ) then
379 if Present (Parent (B)) then
380 return Defining_Identifier (Parent (B));
381 else
382 return Defining_Identifier (Associated_Node_For_Itype (B));
383 end if;
385 else
386 return B;
387 end if;
389 -- Otherwise we check the freeze node, if it has a First_Subtype_Link
390 -- then we use that link, otherwise (happens with some Itypes), we use
391 -- the base type itself.
393 else
394 Ent := First_Subtype_Link (F);
396 if Present (Ent) then
397 return Ent;
398 else
399 return B;
400 end if;
401 end if;
402 end First_Subtype;
404 -------------------------
405 -- First_Tag_Component --
406 -------------------------
408 function First_Tag_Component (Typ : Entity_Id) return Entity_Id is
409 Comp : Entity_Id;
410 Ctyp : Entity_Id;
412 begin
413 pragma Assert (Is_Tagged_Type (Typ)
414 or else Is_Class_Wide_Equivalent_Type (Typ));
416 Ctyp := Typ;
418 if Is_Class_Wide_Type (Ctyp) then
419 Ctyp := Root_Type (Ctyp);
420 end if;
422 if Is_Private_Type (Ctyp) then
423 Ctyp := Underlying_Type (Ctyp);
425 -- If the underlying type is missing then the source program has
426 -- errors and there is nothing else to do (the full-type declaration
427 -- associated with the private type declaration is missing).
429 if No (Ctyp) then
430 return Empty;
431 end if;
432 end if;
434 Comp := First_Entity (Ctyp);
435 while Present (Comp) loop
436 if Is_Tag (Comp) then
437 return Comp;
438 end if;
440 Next_Entity (Comp);
441 end loop;
443 -- No tag component found
445 return Empty;
446 end First_Tag_Component;
448 -----------------------
449 -- Get_Called_Entity --
450 -----------------------
452 function Get_Called_Entity (Call : Node_Id) return Entity_Id is
453 Nam : constant Node_Id := Name (Call);
454 Id : Entity_Id;
456 begin
457 if Nkind (Nam) = N_Explicit_Dereference then
458 Id := Etype (Nam);
459 pragma Assert (Ekind (Id) = E_Subprogram_Type);
461 elsif Nkind (Nam) = N_Selected_Component then
462 Id := Entity (Selector_Name (Nam));
464 elsif Nkind (Nam) = N_Indexed_Component then
465 Id := Entity (Selector_Name (Prefix (Nam)));
467 else
468 Id := Entity (Nam);
469 end if;
471 return Id;
472 end Get_Called_Entity;
474 ------------------
475 -- Get_Rep_Item --
476 ------------------
478 function Get_Rep_Item
479 (E : Entity_Id;
480 Nam : Name_Id;
481 Check_Parents : Boolean := True) return Node_Id
483 N : Node_Id;
485 begin
486 N := First_Rep_Item (E);
487 while Present (N) loop
489 -- Only one of Priority / Interrupt_Priority can be specified, so
490 -- return whichever one is present to catch illegal duplication.
492 if Nkind (N) = N_Pragma
493 and then
494 (Pragma_Name_Unmapped (N) = Nam
495 or else (Nam = Name_Priority
496 and then Pragma_Name (N) =
497 Name_Interrupt_Priority)
498 or else (Nam = Name_Interrupt_Priority
499 and then Pragma_Name (N) = Name_Priority))
500 then
501 if Check_Parents then
502 return N;
504 -- If Check_Parents is False, return N if the pragma doesn't
505 -- appear in the Rep_Item chain of the parent.
507 else
508 declare
509 Par : constant Entity_Id := Nearest_Ancestor (E);
510 -- This node represents the parent type of type E (if any)
512 begin
513 if No (Par) then
514 return N;
516 elsif not Present_In_Rep_Item (Par, N) then
517 return N;
518 end if;
519 end;
520 end if;
522 elsif Nkind (N) = N_Attribute_Definition_Clause
523 and then
524 (Chars (N) = Nam
525 or else (Nam = Name_Priority
526 and then Chars (N) = Name_Interrupt_Priority))
527 then
528 if Check_Parents or else Entity (N) = E then
529 return N;
530 end if;
532 elsif Nkind (N) = N_Aspect_Specification
533 and then
534 (Chars (Identifier (N)) = Nam
535 or else
536 (Nam = Name_Priority
537 and then Chars (Identifier (N)) = Name_Interrupt_Priority))
538 then
539 if Check_Parents then
540 return N;
542 elsif Entity (N) = E then
543 return N;
544 end if;
546 -- A Ghost-related aspect, if disabled, may have been replaced by a
547 -- null statement.
549 elsif Nkind (N) = N_Null_Statement then
550 N := Original_Node (N);
551 end if;
553 Next_Rep_Item (N);
554 end loop;
556 return Empty;
557 end Get_Rep_Item;
559 function Get_Rep_Item
560 (E : Entity_Id;
561 Nam1 : Name_Id;
562 Nam2 : Name_Id;
563 Check_Parents : Boolean := True) return Node_Id
565 Nam1_Item : constant Node_Id := Get_Rep_Item (E, Nam1, Check_Parents);
566 Nam2_Item : constant Node_Id := Get_Rep_Item (E, Nam2, Check_Parents);
568 N : Node_Id;
570 begin
571 -- Check both Nam1_Item and Nam2_Item are present
573 if No (Nam1_Item) then
574 return Nam2_Item;
575 elsif No (Nam2_Item) then
576 return Nam1_Item;
577 end if;
579 -- Return the first node encountered in the list
581 N := First_Rep_Item (E);
582 while Present (N) loop
583 if N = Nam1_Item or else N = Nam2_Item then
584 return N;
585 end if;
587 Next_Rep_Item (N);
588 end loop;
590 return Empty;
591 end Get_Rep_Item;
593 --------------------
594 -- Get_Rep_Pragma --
595 --------------------
597 function Get_Rep_Pragma
598 (E : Entity_Id;
599 Nam : Name_Id;
600 Check_Parents : Boolean := True) return Node_Id
602 N : constant Node_Id := Get_Rep_Item (E, Nam, Check_Parents);
604 begin
605 if Present (N) and then Nkind (N) = N_Pragma then
606 return N;
607 end if;
609 return Empty;
610 end Get_Rep_Pragma;
612 function Get_Rep_Pragma
613 (E : Entity_Id;
614 Nam1 : Name_Id;
615 Nam2 : Name_Id;
616 Check_Parents : Boolean := True) return Node_Id
618 Nam1_Item : constant Node_Id := Get_Rep_Pragma (E, Nam1, Check_Parents);
619 Nam2_Item : constant Node_Id := Get_Rep_Pragma (E, Nam2, Check_Parents);
621 N : Node_Id;
623 begin
624 -- Check both Nam1_Item and Nam2_Item are present
626 if No (Nam1_Item) then
627 return Nam2_Item;
628 elsif No (Nam2_Item) then
629 return Nam1_Item;
630 end if;
632 -- Return the first node encountered in the list
634 N := First_Rep_Item (E);
635 while Present (N) loop
636 if N = Nam1_Item or else N = Nam2_Item then
637 return N;
638 end if;
640 Next_Rep_Item (N);
641 end loop;
643 return Empty;
644 end Get_Rep_Pragma;
646 ---------------------------------
647 -- Has_External_Tag_Rep_Clause --
648 ---------------------------------
650 function Has_External_Tag_Rep_Clause (T : Entity_Id) return Boolean is
651 begin
652 pragma Assert (Is_Tagged_Type (T));
653 return Has_Rep_Item (T, Name_External_Tag, Check_Parents => False);
654 end Has_External_Tag_Rep_Clause;
656 ------------------
657 -- Has_Rep_Item --
658 ------------------
660 function Has_Rep_Item
661 (E : Entity_Id;
662 Nam : Name_Id;
663 Check_Parents : Boolean := True) return Boolean
665 begin
666 return Present (Get_Rep_Item (E, Nam, Check_Parents));
667 end Has_Rep_Item;
669 function Has_Rep_Item
670 (E : Entity_Id;
671 Nam1 : Name_Id;
672 Nam2 : Name_Id;
673 Check_Parents : Boolean := True) return Boolean
675 begin
676 return Present (Get_Rep_Item (E, Nam1, Nam2, Check_Parents));
677 end Has_Rep_Item;
679 --------------------
680 -- Has_Rep_Pragma --
681 --------------------
683 function Has_Rep_Pragma
684 (E : Entity_Id;
685 Nam : Name_Id;
686 Check_Parents : Boolean := True) return Boolean
688 begin
689 return Present (Get_Rep_Pragma (E, Nam, Check_Parents));
690 end Has_Rep_Pragma;
692 function Has_Rep_Pragma
693 (E : Entity_Id;
694 Nam1 : Name_Id;
695 Nam2 : Name_Id;
696 Check_Parents : Boolean := True) return Boolean
698 begin
699 return Present (Get_Rep_Pragma (E, Nam1, Nam2, Check_Parents));
700 end Has_Rep_Pragma;
702 --------------------------------
703 -- Has_Unconstrained_Elements --
704 --------------------------------
706 function Has_Unconstrained_Elements (T : Entity_Id) return Boolean is
707 U_T : constant Entity_Id := Underlying_Type (T);
708 begin
709 if No (U_T) then
710 return False;
711 elsif Is_Record_Type (U_T) then
712 return Has_Discriminants (U_T) and then not Is_Constrained (U_T);
713 elsif Is_Array_Type (U_T) then
714 return Has_Unconstrained_Elements (Component_Type (U_T));
715 else
716 return False;
717 end if;
718 end Has_Unconstrained_Elements;
720 ----------------------
721 -- Has_Variant_Part --
722 ----------------------
724 function Has_Variant_Part (Typ : Entity_Id) return Boolean is
725 FSTyp : Entity_Id;
726 Decl : Node_Id;
727 TDef : Node_Id;
728 CList : Node_Id;
730 begin
731 FSTyp := First_Subtype (Typ);
733 if not Has_Discriminants (FSTyp) then
734 return False;
735 end if;
737 -- Proceed with cautious checks here, return False if tree is not
738 -- as expected (may be caused by prior errors).
740 Decl := Declaration_Node (FSTyp);
742 if Nkind (Decl) /= N_Full_Type_Declaration then
743 return False;
744 end if;
746 TDef := Type_Definition (Decl);
748 if Nkind (TDef) /= N_Record_Definition then
749 return False;
750 end if;
752 CList := Component_List (TDef);
754 if Nkind (CList) /= N_Component_List then
755 return False;
756 else
757 return Present (Variant_Part (CList));
758 end if;
759 end Has_Variant_Part;
761 ---------------------
762 -- In_Generic_Body --
763 ---------------------
765 function In_Generic_Body (Id : Entity_Id) return Boolean is
766 S : Entity_Id;
768 begin
769 -- Climb scopes looking for generic body
771 S := Id;
772 while Present (S) and then S /= Standard_Standard loop
774 -- Generic package body
776 if Ekind (S) = E_Generic_Package
777 and then In_Package_Body (S)
778 then
779 return True;
781 -- Generic subprogram body
783 elsif Is_Subprogram (S)
784 and then Nkind (Unit_Declaration_Node (S)) =
785 N_Generic_Subprogram_Declaration
786 then
787 return True;
788 end if;
790 S := Scope (S);
791 end loop;
793 -- False if top of scope stack without finding a generic body
795 return False;
796 end In_Generic_Body;
798 -------------------------------
799 -- Initialization_Suppressed --
800 -------------------------------
802 function Initialization_Suppressed (Typ : Entity_Id) return Boolean is
803 begin
804 return Suppress_Initialization (Typ)
805 or else Suppress_Initialization (Base_Type (Typ));
806 end Initialization_Suppressed;
808 ----------------
809 -- Initialize --
810 ----------------
812 procedure Initialize is
813 begin
814 Obsolescent_Warnings.Init;
815 end Initialize;
817 -------------
818 -- Is_Body --
819 -------------
821 function Is_Body (N : Node_Id) return Boolean is
822 begin
823 return Nkind (N) in
824 N_Body_Stub | N_Entry_Body | N_Package_Body | N_Protected_Body |
825 N_Subprogram_Body | N_Task_Body;
826 end Is_Body;
828 ---------------------
829 -- Is_By_Copy_Type --
830 ---------------------
832 function Is_By_Copy_Type (Ent : Entity_Id) return Boolean is
833 begin
834 -- If Id is a private type whose full declaration has not been seen,
835 -- we assume for now that it is not a By_Copy type. Clearly this
836 -- attribute should not be used before the type is frozen, but it is
837 -- needed to build the associated record of a protected type. Another
838 -- place where some lookahead for a full view is needed ???
840 return
841 Is_Elementary_Type (Ent)
842 or else (Is_Private_Type (Ent)
843 and then Present (Underlying_Type (Ent))
844 and then Is_Elementary_Type (Underlying_Type (Ent)));
845 end Is_By_Copy_Type;
847 --------------------------
848 -- Is_By_Reference_Type --
849 --------------------------
851 function Is_By_Reference_Type (Ent : Entity_Id) return Boolean is
852 Btype : constant Entity_Id := Base_Type (Ent);
854 begin
855 if Is_Private_Type (Btype) then
856 declare
857 Utyp : constant Entity_Id := Underlying_Type (Btype);
858 begin
859 if No (Utyp) then
860 return False;
861 else
862 return Is_By_Reference_Type (Utyp);
863 end if;
864 end;
866 elsif Is_Incomplete_Type (Btype) then
867 declare
868 Ftyp : constant Entity_Id := Full_View (Btype);
869 begin
870 -- Return true for a tagged incomplete type built as a shadow
871 -- entity in Build_Limited_Views. It can appear in the profile
872 -- of a thunk and the back end needs to know how it is passed.
874 if No (Ftyp) then
875 return Is_Tagged_Type (Btype);
876 else
877 return Is_By_Reference_Type (Ftyp);
878 end if;
879 end;
881 elsif Is_Concurrent_Type (Btype) then
882 return True;
884 elsif Is_Record_Type (Btype) then
885 if Is_Limited_Record (Btype)
886 or else Is_Tagged_Type (Btype)
887 or else Is_Volatile (Btype)
888 then
889 return True;
891 else
892 declare
893 C : Entity_Id;
895 begin
896 C := First_Component (Btype);
897 while Present (C) loop
899 -- For each component, test if its type is a by reference
900 -- type and if its type is volatile. Also test the component
901 -- itself for being volatile. This happens for example when
902 -- a Volatile aspect is added to a component.
904 if Is_By_Reference_Type (Etype (C))
905 or else Is_Volatile (Etype (C))
906 or else Is_Volatile (C)
907 then
908 return True;
909 end if;
911 Next_Component (C);
912 end loop;
913 end;
915 return False;
916 end if;
918 elsif Is_Array_Type (Btype) then
919 return
920 Is_Volatile (Btype)
921 or else Is_By_Reference_Type (Component_Type (Btype))
922 or else Is_Volatile (Component_Type (Btype))
923 or else Has_Volatile_Components (Btype);
925 else
926 return False;
927 end if;
928 end Is_By_Reference_Type;
930 -------------------------
931 -- Is_Definite_Subtype --
932 -------------------------
934 function Is_Definite_Subtype (T : Entity_Id) return Boolean is
935 pragma Assert (Is_Type (T));
936 K : constant Entity_Kind := Ekind (T);
938 begin
939 if Is_Constrained (T) then
940 return True;
942 elsif K in Array_Kind
943 or else K in Class_Wide_Kind
944 or else Has_Unknown_Discriminants (T)
945 then
946 return False;
948 -- Known discriminants: definite if there are default values. Note that
949 -- if any discriminant has a default, they all do.
951 elsif Has_Discriminants (T) then
952 return Present (Discriminant_Default_Value (First_Discriminant (T)));
954 else
955 return True;
956 end if;
957 end Is_Definite_Subtype;
959 ---------------------
960 -- Is_Derived_Type --
961 ---------------------
963 function Is_Derived_Type (Ent : Entity_Id) return B is
964 Par : Node_Id;
966 begin
967 if Is_Type (Ent)
968 and then Base_Type (Ent) /= Root_Type (Ent)
969 and then not Is_Class_Wide_Type (Ent)
971 -- An access_to_subprogram whose result type is a limited view can
972 -- appear in a return statement, without the full view of the result
973 -- type being available. Do not interpret this as a derived type.
975 and then Ekind (Ent) /= E_Subprogram_Type
976 then
977 if not Is_Numeric_Type (Root_Type (Ent)) then
978 return True;
980 else
981 Par := Parent (First_Subtype (Ent));
983 return Present (Par)
984 and then Nkind (Par) = N_Full_Type_Declaration
985 and then Nkind (Type_Definition (Par)) =
986 N_Derived_Type_Definition;
987 end if;
989 else
990 return False;
991 end if;
992 end Is_Derived_Type;
994 -----------------------
995 -- Is_Generic_Formal --
996 -----------------------
998 function Is_Generic_Formal (E : Entity_Id) return Boolean is
999 Kind : Node_Kind;
1001 begin
1002 if No (E) then
1003 return False;
1004 else
1005 -- Formal derived types are rewritten as private extensions, so
1006 -- examine original node.
1008 Kind := Nkind (Original_Node (Parent (E)));
1010 return
1011 Kind in N_Formal_Object_Declaration | N_Formal_Type_Declaration
1012 or else Is_Formal_Subprogram (E)
1013 or else
1014 (Ekind (E) = E_Package
1015 and then Nkind (Original_Node (Unit_Declaration_Node (E))) =
1016 N_Formal_Package_Declaration);
1017 end if;
1018 end Is_Generic_Formal;
1020 ---------------------
1021 -- Is_Limited_Type --
1022 ---------------------
1024 function Is_Limited_Type (Ent : Entity_Id) return Boolean is
1025 Btype : Entity_Id;
1026 Rtype : Entity_Id;
1028 begin
1029 if not Is_Type (Ent) then
1030 return False;
1031 end if;
1033 Btype := Base_Type (Ent);
1034 Rtype := Root_Type (Btype);
1036 if Ekind (Btype) = E_Limited_Private_Type
1037 or else Is_Limited_Composite (Btype)
1038 then
1039 return True;
1041 elsif Is_Concurrent_Type (Btype) then
1042 return True;
1044 -- The Is_Limited_Record flag normally indicates that the type is
1045 -- limited. The exception is that a type does not inherit limitedness
1046 -- from its interface ancestor. So the type may be derived from a
1047 -- limited interface, but is not limited.
1049 elsif Is_Limited_Record (Ent)
1050 and then not Is_Interface (Ent)
1051 then
1052 return True;
1054 -- Otherwise we will look around to see if there is some other reason
1055 -- for it to be limited, except that if an error was posted on the
1056 -- entity, then just assume it is non-limited, because it can cause
1057 -- trouble to recurse into a murky entity resulting from other errors.
1059 elsif Error_Posted (Ent) then
1060 return False;
1062 elsif Is_Record_Type (Btype) then
1064 if Is_Limited_Interface (Ent) then
1065 return True;
1067 -- AI-419: limitedness is not inherited from a limited interface
1069 elsif Is_Limited_Record (Rtype) then
1070 return not Is_Interface (Rtype)
1071 or else Is_Protected_Interface (Rtype)
1072 or else Is_Synchronized_Interface (Rtype)
1073 or else Is_Task_Interface (Rtype);
1075 elsif Is_Class_Wide_Type (Btype) then
1076 return Is_Limited_Type (Rtype);
1078 else
1079 declare
1080 C : Entity_Id := First_Component (Btype);
1081 begin
1082 while Present (C) loop
1083 if Is_Limited_Type (Etype (C)) then
1084 return True;
1085 end if;
1087 Next_Component (C);
1088 end loop;
1089 end;
1091 return False;
1092 end if;
1094 elsif Is_Array_Type (Btype) then
1095 return Is_Limited_Type (Component_Type (Btype));
1097 else
1098 return False;
1099 end if;
1100 end Is_Limited_Type;
1102 -------------------------------
1103 -- Is_Immutably_Limited_Type --
1104 -------------------------------
1106 function Is_Immutably_Limited_Type (Ent : Entity_Id) return Boolean is
1107 Btype : constant Entity_Id := Available_View (Base_Type (Ent));
1109 begin
1110 if Is_Limited_Record (Btype) then
1111 return True;
1113 elsif Ekind (Btype) = E_Limited_Private_Type
1114 and then Nkind (Parent (Btype)) = N_Formal_Type_Declaration
1115 then
1116 return not In_Package_Body (Scope ((Btype)));
1118 elsif Is_Private_Type (Btype) then
1120 -- AI05-0063: A type derived from a limited private formal type is
1121 -- not immutably limited in a generic body.
1123 if Is_Derived_Type (Btype)
1124 and then Is_Generic_Type (Etype (Btype))
1125 then
1126 if not Is_Limited_Type (Etype (Btype)) then
1127 return False;
1129 -- A descendant of a limited formal type is not immutably limited
1130 -- in the generic body, or in the body of a generic child.
1132 elsif Ekind (Scope (Etype (Btype))) = E_Generic_Package then
1133 return not In_Package_Body (Scope (Btype));
1135 else
1136 return False;
1137 end if;
1139 else
1140 return False;
1141 end if;
1143 elsif Is_Concurrent_Type (Btype) then
1144 return True;
1146 else
1147 return False;
1148 end if;
1149 end Is_Immutably_Limited_Type;
1151 --------------------------------
1152 -- Is_Inherently_Limited_Type --
1153 --------------------------------
1155 function Is_Inherently_Limited_Type (Ent : Entity_Id) return Boolean is
1156 Btype : constant Entity_Id := Available_View (Base_Type (Ent));
1158 begin
1159 if Is_Limited_Record (Btype) then
1160 return True;
1162 elsif Ekind (Btype) = E_Limited_Private_Type
1163 and then Nkind (Parent (Btype)) = N_Formal_Type_Declaration
1164 then
1165 return not In_Package_Body (Scope ((Btype)));
1167 elsif Is_Private_Type (Btype) then
1169 -- AI05-0063: A type derived from a limited private formal type is
1170 -- not immutably limited in a generic body.
1172 if Is_Derived_Type (Btype)
1173 and then Is_Generic_Type (Etype (Btype))
1174 then
1175 if not Is_Limited_Type (Etype (Btype)) then
1176 return False;
1178 -- A descendant of a limited formal type is not immutably limited
1179 -- in the generic body, or in the body of a generic child.
1181 elsif Ekind (Scope (Etype (Btype))) = E_Generic_Package then
1182 return not In_Package_Body (Scope (Btype));
1184 else
1185 return False;
1186 end if;
1188 else
1189 declare
1190 Utyp : constant Entity_Id := Underlying_Type (Btype);
1191 begin
1192 if No (Utyp) then
1193 return False;
1194 else
1195 return Is_Inherently_Limited_Type (Utyp);
1196 end if;
1197 end;
1198 end if;
1200 elsif Is_Concurrent_Type (Btype) then
1201 return True;
1203 elsif Is_Record_Type (Btype) then
1205 -- Note that we return True for all limited interfaces, even though
1206 -- (unsynchronized) limited interfaces can have descendants that are
1207 -- nonlimited, because this is a predicate on the type itself, and
1208 -- things like functions with limited interface results need to be
1209 -- handled as build in place even though they might return objects
1210 -- of a type that is not inherently limited.
1212 if Is_Class_Wide_Type (Btype) then
1213 return Is_Inherently_Limited_Type (Root_Type (Btype));
1215 else
1216 declare
1217 C : Entity_Id;
1219 begin
1220 C := First_Component (Btype);
1221 while Present (C) loop
1223 -- Don't consider components with interface types (which can
1224 -- only occur in the case of a _parent component anyway).
1225 -- They don't have any components, plus it would cause this
1226 -- function to return true for nonlimited types derived from
1227 -- limited interfaces.
1229 if not Is_Interface (Etype (C))
1230 and then Is_Inherently_Limited_Type (Etype (C))
1231 then
1232 return True;
1233 end if;
1235 Next_Component (C);
1236 end loop;
1237 end;
1239 return False;
1240 end if;
1242 elsif Is_Array_Type (Btype) then
1243 return Is_Inherently_Limited_Type (Component_Type (Btype));
1245 else
1246 return False;
1247 end if;
1248 end Is_Inherently_Limited_Type;
1250 ----------------------
1251 -- Nearest_Ancestor --
1252 ----------------------
1254 function Nearest_Ancestor (Typ : Entity_Id) return Entity_Id is
1255 D : constant Node_Id := Original_Node (Declaration_Node (Typ));
1256 -- We use the original node of the declaration, because derived
1257 -- types from record subtypes are rewritten as record declarations,
1258 -- and it is the original declaration that carries the ancestor.
1260 begin
1261 -- If we have a subtype declaration, get the ancestor subtype
1263 if Nkind (D) = N_Subtype_Declaration then
1264 if Nkind (Subtype_Indication (D)) = N_Subtype_Indication then
1265 return Entity (Subtype_Mark (Subtype_Indication (D)));
1266 else
1267 return Entity (Subtype_Indication (D));
1268 end if;
1270 -- If derived type declaration, find who we are derived from
1272 elsif Nkind (D) = N_Full_Type_Declaration
1273 and then Nkind (Type_Definition (D)) = N_Derived_Type_Definition
1274 then
1275 declare
1276 DTD : constant Entity_Id := Type_Definition (D);
1277 SI : constant Entity_Id := Subtype_Indication (DTD);
1278 begin
1279 if Is_Entity_Name (SI) then
1280 return Entity (SI);
1281 else
1282 return Entity (Subtype_Mark (SI));
1283 end if;
1284 end;
1286 -- If this is a concurrent declaration with a nonempty interface list,
1287 -- get the first progenitor. Account for case of a record type created
1288 -- for a concurrent type (which is the only case that seems to occur
1289 -- in practice).
1291 elsif Nkind (D) = N_Full_Type_Declaration
1292 and then (Is_Concurrent_Type (Defining_Identifier (D))
1293 or else Is_Concurrent_Record_Type (Defining_Identifier (D)))
1294 and then Is_Non_Empty_List (Interface_List (Type_Definition (D)))
1295 then
1296 return Entity (First (Interface_List (Type_Definition (D))));
1298 -- If derived type and private type, get the full view to find who we
1299 -- are derived from.
1301 elsif Is_Derived_Type (Typ)
1302 and then Is_Private_Type (Typ)
1303 and then Present (Full_View (Typ))
1304 then
1305 return Nearest_Ancestor (Full_View (Typ));
1307 -- Otherwise, nothing useful to return, return Empty
1309 else
1310 return Empty;
1311 end if;
1312 end Nearest_Ancestor;
1314 ---------------------------
1315 -- Nearest_Dynamic_Scope --
1316 ---------------------------
1318 function Nearest_Dynamic_Scope (Ent : Entity_Id) return Entity_Id is
1319 begin
1320 if Is_Dynamic_Scope (Ent) then
1321 return Ent;
1322 else
1323 return Enclosing_Dynamic_Scope (Ent);
1324 end if;
1325 end Nearest_Dynamic_Scope;
1327 ------------------------
1328 -- Next_Tag_Component --
1329 ------------------------
1331 function Next_Tag_Component (Tag : Entity_Id) return Entity_Id is
1332 Comp : Entity_Id;
1334 begin
1335 pragma Assert (Is_Tag (Tag));
1337 -- Loop to look for next tag component
1339 Comp := Next_Entity (Tag);
1340 while Present (Comp) loop
1341 if Is_Tag (Comp) then
1342 pragma Assert (Chars (Comp) /= Name_uTag);
1343 return Comp;
1344 end if;
1346 Next_Entity (Comp);
1347 end loop;
1349 -- No tag component found
1351 return Empty;
1352 end Next_Tag_Component;
1354 --------------------------
1355 -- Number_Discriminants --
1356 --------------------------
1358 function Number_Discriminants (Typ : Entity_Id) return Pos is
1359 N : Nat := 0;
1360 Discr : Entity_Id := First_Discriminant (Typ);
1362 begin
1363 while Present (Discr) loop
1364 N := N + 1;
1365 Next_Discriminant (Discr);
1366 end loop;
1368 return N;
1369 end Number_Discriminants;
1371 ----------------------------------------------
1372 -- Object_Type_Has_Constrained_Partial_View --
1373 ----------------------------------------------
1375 function Object_Type_Has_Constrained_Partial_View
1376 (Typ : Entity_Id;
1377 Scop : Entity_Id) return Boolean
1379 begin
1380 return Has_Constrained_Partial_View (Typ)
1381 or else (In_Generic_Body (Scop)
1382 and then Is_Generic_Type (Base_Type (Typ))
1383 and then (Is_Private_Type (Base_Type (Typ))
1384 or else Is_Derived_Type (Base_Type (Typ)))
1385 and then not Is_Tagged_Type (Typ)
1386 and then not (Is_Array_Type (Typ)
1387 and then not Is_Constrained (Typ))
1388 and then Has_Discriminants (Typ));
1389 end Object_Type_Has_Constrained_Partial_View;
1391 ------------------
1392 -- Package_Body --
1393 ------------------
1395 function Package_Body (E : Entity_Id) return Node_Id is
1396 Body_Decl : Node_Id;
1397 Body_Id : constant Opt_E_Package_Body_Id :=
1398 Corresponding_Body (Package_Spec (E));
1400 begin
1401 if Present (Body_Id) then
1402 Body_Decl := Parent (Body_Id);
1404 if Nkind (Body_Decl) = N_Defining_Program_Unit_Name then
1405 Body_Decl := Parent (Body_Decl);
1406 end if;
1408 pragma Assert (Nkind (Body_Decl) = N_Package_Body);
1410 return Body_Decl;
1411 else
1412 return Empty;
1413 end if;
1414 end Package_Body;
1416 ------------------
1417 -- Package_Spec --
1418 ------------------
1420 function Package_Spec (E : Entity_Id) return Node_Id is
1421 begin
1422 return Parent (Package_Specification (E));
1423 end Package_Spec;
1425 ---------------------------
1426 -- Package_Specification --
1427 ---------------------------
1429 function Package_Specification (E : Entity_Id) return Node_Id is
1430 N : Node_Id;
1432 begin
1433 pragma Assert (Is_Package_Or_Generic_Package (E));
1435 N := Parent (E);
1437 if Nkind (N) = N_Defining_Program_Unit_Name then
1438 N := Parent (N);
1439 end if;
1441 pragma Assert (Nkind (N) = N_Package_Specification);
1443 return N;
1444 end Package_Specification;
1446 ---------------------
1447 -- Subprogram_Body --
1448 ---------------------
1450 function Subprogram_Body (E : Entity_Id) return Node_Id is
1451 Body_E : constant Entity_Id := Subprogram_Body_Entity (E);
1453 begin
1454 if No (Body_E) then
1455 return Empty;
1456 else
1457 return Parent (Subprogram_Specification (Body_E));
1458 end if;
1459 end Subprogram_Body;
1461 ----------------------------
1462 -- Subprogram_Body_Entity --
1463 ----------------------------
1465 function Subprogram_Body_Entity (E : Entity_Id) return Entity_Id is
1466 N : constant Node_Id := Parent (Subprogram_Specification (E));
1467 -- Declaration for E
1469 begin
1470 -- If this declaration is not a subprogram body, then it must be a
1471 -- subprogram declaration or body stub, from which we can retrieve the
1472 -- entity for the corresponding subprogram body if any, or an abstract
1473 -- subprogram declaration, for which we return Empty.
1475 case Nkind (N) is
1476 when N_Subprogram_Body =>
1477 return E;
1479 when N_Subprogram_Body_Stub
1480 | N_Subprogram_Declaration
1482 return Corresponding_Body (N);
1484 when others =>
1485 return Empty;
1486 end case;
1487 end Subprogram_Body_Entity;
1489 ---------------------
1490 -- Subprogram_Spec --
1491 ---------------------
1493 function Subprogram_Spec (E : Entity_Id) return Node_Id is
1494 N : constant Node_Id := Parent (Subprogram_Specification (E));
1495 -- Declaration for E
1497 begin
1498 -- This declaration is either subprogram declaration or a subprogram
1499 -- body, in which case return Empty.
1501 if Nkind (N) = N_Subprogram_Declaration then
1502 return N;
1503 else
1504 return Empty;
1505 end if;
1506 end Subprogram_Spec;
1508 ------------------------------
1509 -- Subprogram_Specification --
1510 ------------------------------
1512 function Subprogram_Specification (E : Entity_Id) return Node_Id is
1513 N : Node_Id;
1515 begin
1516 N := Parent (E);
1518 if Nkind (N) = N_Defining_Program_Unit_Name then
1519 N := Parent (N);
1520 end if;
1522 -- If the Parent pointer of E is not a subprogram specification node
1523 -- (going through an intermediate N_Defining_Program_Unit_Name node
1524 -- for subprogram units), then E is an inherited operation. Its parent
1525 -- points to the type derivation that produces the inheritance: that's
1526 -- the node that generates the subprogram specification. Its alias
1527 -- is the parent subprogram, and that one points to a subprogram
1528 -- declaration, or to another type declaration if this is a hierarchy
1529 -- of derivations.
1531 if Nkind (N) not in N_Subprogram_Specification then
1532 pragma Assert (Present (Alias (E)));
1533 N := Subprogram_Specification (Alias (E));
1534 end if;
1536 return N;
1537 end Subprogram_Specification;
1539 --------------------
1540 -- Ultimate_Alias --
1541 --------------------
1543 function Ultimate_Alias (Prim : Entity_Id) return Entity_Id is
1544 E : Entity_Id := Prim;
1546 begin
1547 while Present (Alias (E)) loop
1548 pragma Assert (Alias (E) /= E);
1549 E := Alias (E);
1550 end loop;
1552 return E;
1553 end Ultimate_Alias;
1555 --------------------------
1556 -- Unit_Declaration_Node --
1557 --------------------------
1559 function Unit_Declaration_Node (Unit_Id : Entity_Id) return Node_Id is
1560 N : Node_Id := Parent (Unit_Id);
1562 begin
1563 -- Predefined operators do not have a full function declaration
1565 if Ekind (Unit_Id) = E_Operator then
1566 return N;
1567 end if;
1569 -- Isn't there some better way to express the following ???
1571 while Nkind (N) /= N_Abstract_Subprogram_Declaration
1572 and then Nkind (N) /= N_Entry_Body
1573 and then Nkind (N) /= N_Entry_Declaration
1574 and then Nkind (N) /= N_Formal_Package_Declaration
1575 and then Nkind (N) /= N_Function_Instantiation
1576 and then Nkind (N) /= N_Generic_Package_Declaration
1577 and then Nkind (N) /= N_Generic_Subprogram_Declaration
1578 and then Nkind (N) /= N_Package_Declaration
1579 and then Nkind (N) /= N_Package_Body
1580 and then Nkind (N) /= N_Package_Instantiation
1581 and then Nkind (N) /= N_Package_Renaming_Declaration
1582 and then Nkind (N) /= N_Procedure_Instantiation
1583 and then Nkind (N) /= N_Protected_Body
1584 and then Nkind (N) /= N_Protected_Type_Declaration
1585 and then Nkind (N) /= N_Subprogram_Declaration
1586 and then Nkind (N) /= N_Subprogram_Body
1587 and then Nkind (N) /= N_Subprogram_Body_Stub
1588 and then Nkind (N) /= N_Subprogram_Renaming_Declaration
1589 and then Nkind (N) /= N_Task_Body
1590 and then Nkind (N) /= N_Task_Type_Declaration
1591 and then Nkind (N) not in N_Formal_Subprogram_Declaration
1592 and then Nkind (N) not in N_Generic_Renaming_Declaration
1593 loop
1594 N := Parent (N);
1596 -- We don't use Assert here, because that causes an infinite loop
1597 -- when assertions are turned off. Better to crash.
1599 if No (N) then
1600 raise Program_Error;
1601 end if;
1602 end loop;
1604 return N;
1605 end Unit_Declaration_Node;
1607 end Sem_Aux;