Skip various cmp-mem-const tests on lp64 hppa*-*-*
[official-gcc.git] / gcc / ada / sem_attr.ads
blobf383ab50000d9a0c49aa84b62acfb27440b7b5ab
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ A T T R --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1992-2023, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- You should have received a copy of the GNU General Public License along --
19 -- with this program; see file COPYING3. If not see --
20 -- <http://www.gnu.org/licenses/>. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 -- Attribute handling is isolated in a separate package to ease the addition
28 -- of implementation defined attributes. Logically this processing belongs
29 -- in chapter 4. See Sem_Ch4 for a description of the relation of the
30 -- Analyze and Resolve routines for expression components.
32 -- This spec also documents all GNAT implementation defined pragmas
34 with Exp_Tss; use Exp_Tss;
35 with Namet; use Namet;
36 with Snames; use Snames;
37 with Types; use Types;
39 package Sem_Attr is
41 -----------------------------------------
42 -- Implementation Dependent Attributes --
43 -----------------------------------------
45 -- This section describes the implementation dependent attributes provided
46 -- in GNAT, as well as constructing an array of flags indicating which
47 -- attributes these are.
49 Attribute_Impl_Def : constant Attribute_Set :=
52 ------------------
53 -- Abort_Signal --
54 ------------------
56 Attribute_Abort_Signal => True,
57 -- Standard'Abort_Signal (Standard is the only allowed prefix) provides
58 -- the entity for the special exception used to signal task abort or
59 -- asynchronous transfer of control. Normally this attribute should only
60 -- be used in the tasking runtime (it is highly peculiar, and completely
61 -- outside the normal semantics of Ada, for a user program to intercept
62 -- the abort exception).
64 ------------------
65 -- Address_Size --
66 ------------------
68 Attribute_Address_Size => True,
69 -- Standard'Address_Size (Standard is the only allowed prefix) is
70 -- a static constant giving the number of bits in an Address. It
71 -- is used primarily for constructing the definition of Memory_Size
72 -- in package Standard, but may be freely used in user programs.
73 -- This is a static attribute.
75 ---------------
76 -- Asm_Input --
77 ---------------
79 Attribute_Asm_Input => True,
80 -- Used only in conjunction with the Asm subprograms in package
81 -- Machine_Code to construct machine instructions. See documentation
82 -- in package Machine_Code in file s-maccod.ads.
84 ----------------
85 -- Asm_Output --
86 ----------------
88 Attribute_Asm_Output => True,
89 -- Used only in conjunction with the Asm subprograms in package
90 -- Machine_Code to construct machine instructions. See documentation
91 -- in package Machine_Code in file s-maccod.ads.
93 ---------
94 -- Bit --
95 ---------
97 Attribute_Bit => True,
98 -- Obj'Bit, where Obj is any object, yields the bit offset within the
99 -- storage unit (byte) that contains the first bit of storage allocated
100 -- for the object. The attribute value is of type Universal_Integer,
101 -- and is always a non-negative number not exceeding the value of
102 -- System.Storage_Unit.
104 -- For an object that is a variable or a constant allocated in a
105 -- register, the value is zero. (The use of this attribute does not
106 -- force the allocation of a variable to memory).
108 -- For an object that is a formal parameter, this attribute applies to
109 -- either the matching actual parameter or to a copy of the matching
110 -- actual parameter.
112 -- For an access object the value is zero. Note that Obj.all'Bit is
113 -- subject to an Access_Check for the designated object. Similarly
114 -- for a record component X.C'Bit is subject to a discriminant check
115 -- and X(I).Bit and X(I1..I2)'Bit are subject to index checks.
117 -- This attribute is designed to be compatible with the DEC Ada
118 -- definition and implementation of the Bit attribute.
120 ------------------
121 -- Code_Address --
122 ------------------
124 Attribute_Code_Address => True,
125 -- The reference subp'Code_Address, where subp is a subprogram entity,
126 -- gives the address of the first generated instruction for the sub-
127 -- program. This is often, but not always the same as the 'Address
128 -- value, which is the address to be used in a call. The differences
129 -- occur in the case of a nested procedure (where Address yields the
130 -- address of the trampoline code used to load the static link), and on
131 -- some systems which use procedure descriptors (in which case Address
132 -- yields the address of the descriptor).
134 -----------------------
135 -- Default_Bit_Order --
136 -----------------------
138 Attribute_Default_Bit_Order => True,
139 -- Standard'Default_Bit_Order (Standard is the only permissible prefix)
140 -- provides the value System.Default_Bit_Order as a Pos value (0 for
141 -- High_Order_First, 1 for Low_Order_First). This is used to construct
142 -- the definition of Default_Bit_Order in package System. This is a
143 -- static attribute.
145 ----------------------------------
146 -- Default_Scalar_Storage_Order --
147 ----------------------------------
149 Attribute_Default_Scalar_Storage_Order => True,
150 -- Standard'Default_Scalar_Storage_Order (Standard is the
151 -- only permissible prefix) provides the current value of the
152 -- default scalar storage order (as specified using pragma
153 -- Default_Scalar_Storage_Order, or equal to Default_Bit_Order if
154 -- unspecified) as a System.Bit_Order value. This is a static attribute.
156 -----------
157 -- Deref --
158 -----------
160 Attribute_Deref => True,
161 -- typ'Deref (expr) is valid only if expr is of type System'Address.
162 -- The result is an object of type typ that is obtained by treating the
163 -- address as an access-to-typ value that points to the result. It is
164 -- basically equivalent to (atyp!expr).all where atyp is an access type
165 -- for the type.
167 ---------------
168 -- Elab_Body --
169 ---------------
171 Attribute_Elab_Body => True,
172 -- This attribute can only be applied to a program unit name. It
173 -- returns the entity for the corresponding elaboration procedure for
174 -- elaborating the body of the referenced unit. This is used in the main
175 -- generated elaboration procedure by the binder, and is not normally
176 -- used in any other context, but there may be specialized situations in
177 -- which it is useful to be able to call this elaboration procedure from
178 -- Ada code, e.g. if it is necessary to do selective reelaboration to
179 -- fix some error.
181 --------------------
182 -- Elab_Subp_Body --
183 --------------------
185 Attribute_Elab_Subp_Body => True,
186 -- This attribute can only be applied to a library level subprogram
187 -- name and is only relevant in CodePeer mode. It returns the entity
188 -- for the corresponding elaboration procedure for elaborating the body
189 -- of the referenced subprogram unit. This is used in the main generated
190 -- elaboration procedure by the binder in CodePeer mode only.
192 ---------------
193 -- Elab_Spec --
194 ---------------
196 Attribute_Elab_Spec => True,
197 -- This attribute can only be applied to a program unit name. It
198 -- returns the entity for the corresponding elaboration procedure for
199 -- elaborating the spec of the referenced unit. This is used in the main
200 -- generated elaboration procedure by the binder, and is not normally
201 -- used in any other context, but there may be specialized situations in
202 -- which it is useful to be able to call this elaboration procedure from
203 -- Ada code, e.g. if it is necessary to do selective reelaboration to
204 -- fix some error.
206 ----------------
207 -- Elaborated --
208 ----------------
210 Attribute_Elaborated => True,
211 -- Lunit'Elaborated, where Lunit is a library unit, yields a boolean
212 -- value indicating whether or not the body of the designated library
213 -- unit has been elaborated yet.
215 -----------------------
216 -- Finalization_Size --
217 -----------------------
219 Attribute_Finalization_Size => True,
220 -- For every object or non-class-wide-type, Finalization_Size returns
221 -- the size of the hidden header used for finalization purposes as if
222 -- the object or type was allocated on the heap. The size of the header
223 -- does take into account any extra padding due to alignment issues.
225 -----------------
226 -- Fixed_Value --
227 -----------------
229 Attribute_Fixed_Value => True,
230 -- For every fixed-point type S, S'Fixed_Value denotes a function
231 -- with the following specification:
233 -- function S'Fixed_Value (Arg : universal_integer) return S;
235 -- The value returned is the fixed-point value V such that
237 -- V = Arg * S'Small
239 -- The effect is thus equivalent to first converting the argument to
240 -- the integer type used to represent S, and then doing an unchecked
241 -- conversion to the fixed-point type. This attribute is primarily
242 -- intended for use in implementation of the input-output functions
243 -- for fixed-point values.
245 -----------------------
246 -- Has_Discriminants --
247 -----------------------
249 Attribute_Has_Discriminants => True,
250 -- Gtyp'Has_Discriminants, where Gtyp is a generic formal type, yields
251 -- a Boolean value indicating whether or not the actual instantiation
252 -- type has discriminants.
254 ---------
255 -- Img --
256 ---------
258 Attribute_Img => True,
259 -- The 'Img function is defined for any prefix, P, that denotes an
260 -- object of scalar type T. P'Img is equivalent to T'Image (P). This
261 -- is convenient for debugging. For example:
263 -- Put_Line ("X = " & X'Img);
265 -- has the same meaning as the more verbose:
267 -- Put_Line ("X = " & Temperature_Type'Image (X));
269 -- where Temperature_Type is the subtype of the object X.
271 -------------------
272 -- Integer_Value --
273 -------------------
275 Attribute_Integer_Value => True,
276 -- For every integer type S, S'Integer_Value denotes a function
277 -- with the following specification:
279 -- function S'Integer_Value (Arg : universal_fixed) return S;
281 -- The value returned is the integer value V, such that
283 -- Arg = V * fixed-type'Small
285 -- The effect is thus equivalent to first doing an unchecked convert
286 -- from the fixed-point type to its corresponding implementation type,
287 -- and then converting the result to the target integer type. This
288 -- attribute is primarily intended for use in implementation of the
289 -- standard input-output functions for fixed-point values.
291 Attribute_Invalid_Value => True,
292 -- For every scalar type, S'Invalid_Value designates an undefined value
293 -- of the type. If possible this value is an invalid value, and in fact
294 -- is identical to the value that would be set if Initialize_Scalars
295 -- mode were in effect (including the behavior of its value on
296 -- environment variables or binder switches). The intended use is to
297 -- set a value where initialization is required (e.g. as a result of the
298 -- coding standards in use), but logically no initialization is needed,
299 -- and the value should never be accessed.
301 Attribute_Loop_Entry => True,
302 -- For every object of a non-limited type, S'Loop_Entry [(Loop_Name)]
303 -- denotes the constant value of prefix S at the point of entry into the
304 -- related loop. The type of the attribute is the type of the prefix.
306 ------------------
307 -- Machine_Size --
308 ------------------
310 Attribute_Machine_Size => True,
311 -- This attribute is identical to the Object_Size attribute. It is
312 -- provided for compatibility with the DEC attribute of this name.
314 ----------------------
315 -- Max_Integer_Size --
316 ----------------------
318 Attribute_Max_Integer_Size => True,
319 -- Standard'Max_Integer_Size (Standard is the only permissible prefix)
320 -- provides values System.Min_Int and System.Max_Int, and is intended
321 -- primarily for constructing these definitions in package System. This
322 -- is a static attribute.
324 -----------------------
325 -- Maximum_Alignment --
326 -----------------------
328 Attribute_Maximum_Alignment => True,
329 -- Standard'Maximum_Alignment (Standard is the only permissible prefix)
330 -- provides the maximum useful alignment value for the target. This is a
331 -- static value that can be used to specify the alignment for an object,
332 -- guaranteeing that it is properly aligned in all cases. The time this
333 -- is useful is when an external object is imported and its alignment
334 -- requirements are unknown. This is a static attribute.
336 --------------------
337 -- Mechanism_Code --
338 --------------------
340 Attribute_Mechanism_Code => True,
341 -- function'Mechanism_Code yields an integer code for the mechanism
342 -- used for the result of function, and subprogram'Mechanism_Code (n)
343 -- yields the mechanism used for formal parameter number n (a static
344 -- integer value, 1 = first parameter). The code returned is:
346 -- 1 = by copy (value)
347 -- 2 = by reference
348 -- 3 = by descriptor (default descriptor type)
349 -- 4 = by descriptor (UBS unaligned bit string)
350 -- 5 = by descriptor (UBSB aligned bit string with arbitrary bounds)
351 -- 6 = by descriptor (UBA unaligned bit array)
352 -- 7 = by descriptor (S string, also scalar access type parameter)
353 -- 8 = by descriptor (SB string with arbitrary bounds)
354 -- 9 = by descriptor (A contiguous array)
355 -- 10 = by descriptor (NCA non-contiguous array)
357 --------------------
358 -- Null_Parameter --
359 --------------------
361 Attribute_Null_Parameter => True,
362 -- A reference T'Null_Parameter denotes an (imaginary) object of type
363 -- or subtype T allocated at (machine) address zero. The attribute is
364 -- allowed only as the default expression of a formal parameter, or
365 -- as an actual expression of a subprogram call. In either case, the
366 -- subprogram must be imported.
368 -- The identity of the object is represented by the address zero in
369 -- the argument list, independent of the passing mechanism (explicit
370 -- or default).
372 -- The reason that this capability is needed is that for a record or
373 -- other composite object passed by reference, there is no other way
374 -- of specifying that a zero address should be passed.
376 -----------------
377 -- Object_Size --
378 -----------------
380 Attribute_Object_Size => True,
381 -- Type'Object_Size is the same as Type'Size for all types except
382 -- fixed-point types and discrete types. For fixed-point types and
383 -- discrete types, this attribute gives the size used for default
384 -- allocation of objects and components of the size. See section in
385 -- Einfo ("Handling of Type'Size values") for further details.
387 -------------------------
388 -- Passed_By_Reference --
389 -------------------------
391 Attribute_Passed_By_Reference => True,
392 -- T'Passed_By_Reference for any subtype T returns a boolean value that
393 -- is true if the type is normally passed by reference and false if the
394 -- type is normally passed by copy in calls. For scalar types, the
395 -- result is always False and is static. For non-scalar types, the
396 -- result is non-static (since it is computed by Gigi).
398 ------------------
399 -- Range_Length --
400 ------------------
402 Attribute_Range_Length => True,
403 -- T'Range_Length for any discrete type T yields the number of values
404 -- represented by the subtype (zero for a null range). The result is
405 -- static for static subtypes. Note that Range_Length applied to the
406 -- index subtype of a one dimensional array always gives the same result
407 -- as Range applied to the array itself. The result is of type universal
408 -- integer.
410 ---------
411 -- Ref --
412 ---------
414 Attribute_Ref => True,
415 -- System.Address'Ref (Address is the only permissible prefix) is
416 -- equivalent to System'To_Address, provided for compatibility with
417 -- other compilers.
419 ------------------
420 -- Storage_Unit --
421 ------------------
423 Attribute_Storage_Unit => True,
424 -- Standard'Storage_Unit (Standard is the only permissible prefix)
425 -- provides the value System.Storage_Unit, and is intended primarily
426 -- for constructing this definition in package System (see note above
427 -- in Default_Bit_Order description). The is a static attribute.
429 ---------------
430 -- Stub_Type --
431 ---------------
433 Attribute_Stub_Type => True,
434 -- The GNAT implementation of remote access-to-classwide types is
435 -- organised as described in AARM E.4(20.t): a value of an RACW type
436 -- (designating a remote object) is represented as a normal access
437 -- value, pointing to a "stub" object which in turn contains the
438 -- necessary information to contact the designated remote object. A
439 -- call on any dispatching operation of such a stub object does the
440 -- remote call, if necessary, using the information in the stub object
441 -- to locate the target partition, etc.
443 -- For a prefix T that denotes a remote access-to-classwide type,
444 -- T'Stub_Type denotes the type of the corresponding stub objects.
446 -- By construction, the layout of T'Stub_Type is identical to that of
447 -- System.Partition_Interface.RACW_Stub_Type (see implementation notes
448 -- in body of Exp_Dist).
450 -----------------
451 -- Target_Name --
452 -----------------
454 Attribute_Target_Name => True,
455 -- Standard'Target_Name yields the string identifying the target for the
456 -- compilation, taken from Sdefault.Target_Name.
458 ----------------
459 -- To_Address --
460 ----------------
462 Attribute_To_Address => True,
463 -- System'To_Address (System is the only permissible prefix) is a
464 -- function that takes any integer value, and converts it into an
465 -- address value. The semantics is to first convert the integer value to
466 -- type Integer_Address according to normal conversion rules, and then
467 -- to convert this to an address using the same semantics as the
468 -- System.Storage_Elements.To_Address function. The important difference
469 -- is that this is a static attribute so it can be used in
470 -- initializations in preelaborate packages.
472 ----------------
473 -- Type_Class --
474 ----------------
476 Attribute_Type_Class => True,
477 -- T'Type_Class for any type or subtype T yields the value of the type
478 -- class for the full type of T. If T is a generic formal type, then the
479 -- value is the value for the corresponding actual subtype. The value of
480 -- this attribute is of type System.Aux_DEC.Type_Class, which has the
481 -- following definition:
483 -- type Type_Class is
484 -- (Type_Class_Enumeration,
485 -- Type_Class_Integer,
486 -- Type_Class_Fixed_Point,
487 -- Type_Class_Floating_Point,
488 -- Type_Class_Array,
489 -- Type_Class_Record,
490 -- Type_Class_Access,
491 -- Type_Class_Task,
492 -- Type_Class_Address);
494 -- Protected types yield the value Type_Class_Task, which thus applies
495 -- to all concurrent types. This attribute is designed to be compatible
496 -- with the DEC Ada attribute of the same name.
498 -- Note: if pragma Extend_System is used to merge the definitions of
499 -- Aux_DEC into System, then the type Type_Class can be referenced
500 -- as an entity within System, as can its enumeration literals.
502 ------------------------------
503 -- Universal_Literal_String --
504 ------------------------------
506 Attribute_Universal_Literal_String => True,
507 -- The prefix of 'Universal_Literal_String must be a named number.
508 -- The static result is the string consisting of the characters of
509 -- the number as defined in the original source. This allows the
510 -- user program to access the actual text of named numbers without
511 -- intermediate conversions and without the need to enclose the
512 -- strings in quotes (which would preclude their use as numbers).
514 -------------------------
515 -- Unrestricted_Access --
516 -------------------------
518 Attribute_Unrestricted_Access => True,
519 -- The Unrestricted_Access attribute is similar to Access except that
520 -- all accessibility and aliased view checks are omitted. This is very
521 -- much a user-beware attribute. Basically its status is very similar
522 -- to Address, for which it is a desirable replacement where the value
523 -- desired is an access type. In other words, its effect is identical
524 -- to first taking 'Address and then doing an unchecked conversion to
525 -- a desired access type. Note that in GNAT, but not necessarily in
526 -- other implementations, the use of static chains for inner level
527 -- subprograms means that Unrestricted_Access applied to a subprogram
528 -- yields a value that can be called as long as the subprogram is in
529 -- scope (normal Ada 95 accessibility rules restrict this usage).
531 ---------------
532 -- VADS_Size --
533 ---------------
535 Attribute_VADS_Size => True,
536 -- Typ'VADS_Size yields the Size value typically yielded by some Ada 83
537 -- compilers. The differences between VADS_Size and Size is that for
538 -- scalar types for which no Size has been specified, VADS_Size yields
539 -- the Object_Size rather than the Value_Size. For example, while
540 -- Natural'Size is typically 31, the value of Natural'VADS_Size is 32.
541 -- For all other types, Size and VADS_Size yield the same value.
543 -------------------
544 -- Valid_Scalars --
545 -------------------
547 Attribute_Valid_Scalars => True,
548 -- Obj'Valid_Scalars can be applied to any object. The result depends
549 -- on the type of the object:
551 -- For a scalar type, the result is the same as obj'Valid
553 -- For an array object, the result is True if the result of applying
554 -- Valid_Scalars to every component is True. For an empty array the
555 -- result is True.
557 -- For a record object, the result is True if the result of applying
558 -- Valid_Scalars to every component is True. For class-wide types,
559 -- only the components of the base type are checked. For variant
560 -- records, only the components actually present are checked. The
561 -- discriminants, if any, are also checked. If there are no components
562 -- or discriminants, the result is True.
564 -- For any other type that has discriminants, the result is True if
565 -- the result of applying Valid_Scalars to each discriminant is True.
567 -- For all other types, the result is always True
569 -- A warning is given for a trivially True result, when the attribute
570 -- is applied to an object that is not of scalar, array, or record
571 -- type, or in the composite case if no scalar subcomponents exist. For
572 -- a variant record, the warning is given only if none of the variants
573 -- have scalar subcomponents. In addition, the warning is suppressed
574 -- for private types, or generic formal types in an instance.
576 ----------------
577 -- Value_Size --
578 ----------------
580 Attribute_Value_Size => True,
581 -- Type'Value_Size is the number of bits required to represent value of
582 -- the given subtype. It is the same as Type'Size, but, unlike Size, may
583 -- be set for non-first subtypes. See section in Einfo ("Handling of
584 -- type'Size values") for further details.
586 ---------------
587 -- Word_Size --
588 ---------------
590 Attribute_Word_Size => True,
591 -- Standard'Word_Size (Standard is the only permissible prefix)
592 -- provides the value System.Word_Size, and is intended primarily
593 -- for constructing this definition in package System (see note above
594 -- in Default_Bit_Order description). This is a static attribute.
596 others => False);
598 -- The following table lists all attributes that yield a result of a
599 -- universal type.
601 Universal_Type_Attribute : constant array (Attribute_Id) of Boolean :=
602 (Attribute_Aft => True,
603 Attribute_Alignment => True,
604 Attribute_Component_Size => True,
605 Attribute_Count => True,
606 Attribute_Delta => True,
607 Attribute_Digits => True,
608 Attribute_Exponent => True,
609 Attribute_First_Bit => True,
610 Attribute_Fore => True,
611 Attribute_Last_Bit => True,
612 Attribute_Length => True,
613 Attribute_Machine_Emax => True,
614 Attribute_Machine_Emin => True,
615 Attribute_Machine_Mantissa => True,
616 Attribute_Machine_Radix => True,
617 Attribute_Max_Alignment_For_Allocation => True,
618 Attribute_Max_Size_In_Storage_Elements => True,
619 Attribute_Model_Emin => True,
620 Attribute_Model_Epsilon => True,
621 Attribute_Model_Mantissa => True,
622 Attribute_Model_Small => True,
623 Attribute_Modulus => True,
624 Attribute_Pos => True,
625 Attribute_Position => True,
626 Attribute_Safe_First => True,
627 Attribute_Safe_Last => True,
628 Attribute_Scale => True,
629 Attribute_Size => True,
630 Attribute_Small => True,
631 Attribute_Wide_Wide_Width => True,
632 Attribute_Wide_Width => True,
633 Attribute_Width => True,
634 others => False);
636 -----------------
637 -- Subprograms --
638 -----------------
640 procedure Analyze_Attribute (N : Node_Id);
641 -- Performs bottom up semantic analysis of an attribute. Note that the
642 -- parser has already checked that type returning attributes appear only
643 -- in appropriate contexts (i.e. in subtype marks, or as prefixes for
644 -- other attributes).
646 function Name_Implies_Lvalue_Prefix (Nam : Name_Id) return Boolean;
647 -- Determine whether the name of an attribute reference categorizes its
648 -- prefix as an lvalue. The following attributes fall under this bracket
649 -- by directly or indirectly modifying their prefixes.
650 -- Access
651 -- Address
652 -- Input
653 -- Read
654 -- Unchecked_Access
655 -- Unrestricted_Access
657 procedure Resolve_Attribute (N : Node_Id; Typ : Entity_Id);
658 -- Performs type resolution of attribute. If the attribute yields a
659 -- universal value, mark its type as that of the context. On the other
660 -- hand, if the context itself is universal (as in T'Val (T'Pos (X)), mark
661 -- the type as being the largest type of that class that can be used at
662 -- run-time. This is correct since either the value gets folded (in which
663 -- case it doesn't matter what type of the class we give if, since the
664 -- folding uses universal arithmetic anyway) or it doesn't get folded (in
665 -- which case it is going to be dealt with at runtime, and the largest type
666 -- is right).
668 function Stream_Attribute_Available
669 (Typ : Entity_Id;
670 Nam : TSS_Name_Type;
671 Partial_View : Entity_Id := Empty) return Boolean;
672 -- For a limited type Typ, return True if and only if the given attribute
673 -- is available. For Ada 2005, availability is defined by 13.13.2(36/1).
674 -- For Ada 95, an attribute is considered to be available if it has been
675 -- specified using an attribute definition clause for the type, or for its
676 -- full view, or for an ancestor of either. Parameter Partial_View is used
677 -- only internally, when checking for an attribute definition clause that
678 -- is not visible (Ada 95 only).
680 end Sem_Attr;