Skip various cmp-mem-const tests on lp64 hppa*-*-*
[official-gcc.git] / gcc / ada / par-ch4.adb
blob2ff6e001f39ceaf48f40cfa77813f522ed90e34b
1 -----------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- P A R . C H 4 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2023, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 pragma Style_Checks (All_Checks);
27 -- Turn off subprogram body ordering check. Subprograms are in order
28 -- by RM section rather than alphabetical
30 with Stringt; use Stringt;
32 separate (Par)
33 package body Ch4 is
35 -- Attributes that cannot have arguments
37 Is_Parameterless_Attribute : constant Attribute_Set :=
38 (Attribute_Base |
39 Attribute_Body_Version |
40 Attribute_Class |
41 Attribute_External_Tag |
42 Attribute_Img |
43 Attribute_Loop_Entry |
44 Attribute_Old |
45 Attribute_Result |
46 Attribute_Stub_Type |
47 Attribute_Version |
48 Attribute_Type_Key => True,
49 others => False);
50 -- This map contains True for parameterless attributes that return a string
51 -- or a type. For those attributes, a left parenthesis after the attribute
52 -- should not be analyzed as the beginning of a parameters list because it
53 -- may denote a slice operation (X'Img (1 .. 2)) or a type conversion
54 -- (X'Class (Y)).
56 -- Note: Loop_Entry is in this list because, although it can take an
57 -- optional argument (the loop name), we can't distinguish that at parse
58 -- time from the case where no loop name is given and a legitimate index
59 -- expression is present. So we parse the argument as an indexed component
60 -- and the semantic analysis sorts out this syntactic ambiguity based on
61 -- the type and form of the expression.
63 -- Note that this map designates the minimum set of attributes where a
64 -- construct in parentheses that is not an argument can appear right
65 -- after the attribute. For attributes like 'Size, we do not put them
66 -- in the map. If someone writes X'Size (3), that's illegal in any case,
67 -- but we get a better error message by parsing the (3) as an illegal
68 -- argument to the attribute, rather than some meaningless junk that
69 -- follows the attribute.
71 -----------------------
72 -- Local Subprograms --
73 -----------------------
75 function P_Aggregate_Or_Paren_Expr return Node_Id;
76 function P_Allocator return Node_Id;
77 function P_Case_Expression_Alternative return Node_Id;
78 function P_Iterated_Component_Association return Node_Id;
79 function P_Record_Or_Array_Component_Association return Node_Id;
80 function P_Factor return Node_Id;
81 function P_Primary return Node_Id;
82 function P_Relation return Node_Id;
83 function P_Term return Node_Id;
84 function P_Declare_Expression return Node_Id;
85 function P_Reduction_Attribute_Reference (S : Node_Id)
86 return Node_Id;
88 function P_Binary_Adding_Operator return Node_Kind;
89 function P_Logical_Operator return Node_Kind;
90 function P_Multiplying_Operator return Node_Kind;
91 function P_Relational_Operator return Node_Kind;
92 function P_Unary_Adding_Operator return Node_Kind;
94 procedure Bad_Range_Attribute (Loc : Source_Ptr);
95 -- Called to place complaint about bad range attribute at the given
96 -- source location. Terminates by raising Error_Resync.
98 procedure Check_Bad_Exp;
99 -- Called after scanning a**b, posts error if ** detected
101 procedure P_Membership_Test (N : Node_Id);
102 -- N is the node for a N_In or N_Not_In node whose right operand has not
103 -- yet been processed. It is called just after scanning out the IN keyword.
104 -- On return, either Right_Opnd or Alternatives is set, as appropriate.
106 function P_Range_Attribute_Reference (Prefix_Node : Node_Id) return Node_Id;
107 -- Scan a range attribute reference. The caller has scanned out the
108 -- prefix. The current token is known to be an apostrophe and the
109 -- following token is known to be RANGE.
111 function P_Case_Expression return Node_Id;
112 -- Scans out a case expression. Called with Token pointing to the CASE
113 -- keyword, and returns pointing to the terminating right parent,
114 -- semicolon, or comma, but does not consume this terminating token.
116 function P_Unparen_Cond_Expr_Etc return Node_Id;
117 -- This function is called with Token pointing to IF, CASE, FOR, or
118 -- DECLARE, in a context that allows a conditional (if or case) expression,
119 -- a quantified expression, an iterated component association, or a declare
120 -- expression, if it is surrounded by parentheses. If not surrounded by
121 -- parentheses, the expression is still returned, but an error message is
122 -- issued.
124 -------------------------
125 -- Bad_Range_Attribute --
126 -------------------------
128 procedure Bad_Range_Attribute (Loc : Source_Ptr) is
129 begin
130 Error_Msg ("range attribute cannot be used in expression!", Loc);
131 Resync_Expression;
132 end Bad_Range_Attribute;
134 -------------------
135 -- Check_Bad_Exp --
136 -------------------
138 procedure Check_Bad_Exp is
139 begin
140 if Token = Tok_Double_Asterisk then
141 Error_Msg_SC ("parenthesization required for '*'*");
142 Scan; -- past **
143 Discard_Junk_Node (P_Primary);
144 Check_Bad_Exp;
145 end if;
146 end Check_Bad_Exp;
148 --------------------------
149 -- 4.1 Name (also 6.4) --
150 --------------------------
152 -- NAME ::=
153 -- DIRECT_NAME | EXPLICIT_DEREFERENCE
154 -- | INDEXED_COMPONENT | SLICE
155 -- | SELECTED_COMPONENT | ATTRIBUTE
156 -- | TYPE_CONVERSION | FUNCTION_CALL
157 -- | CHARACTER_LITERAL | TARGET_NAME
159 -- DIRECT_NAME ::= IDENTIFIER | OPERATOR_SYMBOL
161 -- PREFIX ::= NAME | IMPLICIT_DEREFERENCE
163 -- EXPLICIT_DEREFERENCE ::= NAME . all
165 -- IMPLICIT_DEREFERENCE ::= NAME
167 -- INDEXED_COMPONENT ::= PREFIX (EXPRESSION {, EXPRESSION})
169 -- SLICE ::= PREFIX (DISCRETE_RANGE)
171 -- SELECTED_COMPONENT ::= PREFIX . SELECTOR_NAME
173 -- SELECTOR_NAME ::= IDENTIFIER | CHARACTER_LITERAL | OPERATOR_SYMBOL
175 -- ATTRIBUTE_REFERENCE ::= PREFIX ' ATTRIBUTE_DESIGNATOR
177 -- ATTRIBUTE_DESIGNATOR ::=
178 -- IDENTIFIER [(static_EXPRESSION)]
179 -- | access | delta | digits
181 -- FUNCTION_CALL ::=
182 -- function_NAME
183 -- | function_PREFIX ACTUAL_PARAMETER_PART
185 -- ACTUAL_PARAMETER_PART ::=
186 -- (PARAMETER_ASSOCIATION {,PARAMETER_ASSOCIATION})
188 -- PARAMETER_ASSOCIATION ::=
189 -- [formal_parameter_SELECTOR_NAME =>] EXPLICIT_ACTUAL_PARAMETER
191 -- EXPLICIT_ACTUAL_PARAMETER ::= EXPRESSION | variable_NAME
193 -- TARGET_NAME ::= @ (AI12-0125-3: abbreviation for LHS)
195 -- Note: syntactically a procedure call looks just like a function call,
196 -- so this routine is in practice used to scan out procedure calls as well.
198 -- On return, Expr_Form is set to either EF_Name or EF_Simple_Name
200 -- Error recovery: can raise Error_Resync
202 -- Note: if on return Token = Tok_Apostrophe, then the apostrophe must be
203 -- followed by either a left paren (qualified expression case), or by
204 -- range (range attribute case). All other uses of apostrophe (i.e. all
205 -- other attributes) are handled in this routine.
207 -- Error recovery: can raise Error_Resync
209 function P_Name return Node_Id is
210 Scan_State : Saved_Scan_State;
211 Name_Node : Node_Id;
212 Prefix_Node : Node_Id;
213 Ident_Node : Node_Id;
214 Expr_Node : Node_Id;
215 Range_Node : Node_Id;
216 Arg_Node : Node_Id;
218 Arg_List : List_Id := No_List; -- kill junk warning
219 Attr_Name : Name_Id := No_Name; -- kill junk warning
221 begin
222 -- Case of not a name
224 if Token not in Token_Class_Name then
226 -- If it looks like start of expression, complain and scan expression
228 if Token in Token_Class_Literal | Tok_Left_Paren then
229 Error_Msg_SC ("name expected");
230 return P_Expression;
232 -- Otherwise some other junk, not much we can do
234 else
235 Error_Msg_AP ("name expected");
236 raise Error_Resync;
237 end if;
238 end if;
240 -- Loop through designators in qualified name
241 -- AI12-0125 : target_name
243 if Token = Tok_At_Sign then
244 Scan_Reserved_Identifier (Force_Msg => False);
246 if Present (Current_Assign_Node) then
247 Set_Has_Target_Names (Current_Assign_Node);
248 end if;
249 end if;
251 Name_Node := Token_Node;
253 loop
254 Scan; -- past designator
255 exit when Token /= Tok_Dot;
256 Save_Scan_State (Scan_State); -- at dot
257 Scan; -- past dot
259 -- If we do not have another designator after the dot, then join
260 -- the normal circuit to handle a dot extension (may be .all or
261 -- character literal case). Otherwise loop back to scan the next
262 -- designator.
264 if Token not in Token_Class_Desig then
265 goto Scan_Name_Extension_Dot;
266 else
267 Prefix_Node := Name_Node;
268 Name_Node := New_Node (N_Selected_Component, Prev_Token_Ptr);
269 Set_Prefix (Name_Node, Prefix_Node);
270 Set_Selector_Name (Name_Node, Token_Node);
271 end if;
272 end loop;
274 -- We have now scanned out a qualified designator. If the last token is
275 -- an operator symbol, then we certainly do not have the Snam case, so
276 -- we can just use the normal name extension check circuit
278 if Prev_Token = Tok_Operator_Symbol then
279 goto Scan_Name_Extension;
280 end if;
282 -- We have scanned out a qualified simple name, check for name
283 -- extension. Note that we know there is no dot here at this stage,
284 -- so the only possible cases of name extension are apostrophe followed
285 -- by '(' or '['.
287 if Token = Tok_Apostrophe then
288 Save_Scan_State (Scan_State); -- at apostrophe
289 Scan; -- past apostrophe
291 -- Qualified expression in Ada 2012 mode (treated as a name)
293 if Ada_Version >= Ada_2012
294 and then Token in Tok_Left_Paren | Tok_Left_Bracket
295 then
296 goto Scan_Name_Extension_Apostrophe;
298 -- If left paren not in Ada 2012, then it is not part of the name,
299 -- since qualified expressions are not names in prior versions of
300 -- Ada, so return with Token backed up to point to the apostrophe.
301 -- The treatment for the range attribute is similar (we do not
302 -- consider x'range to be a name in this grammar).
304 elsif Token in Tok_Left_Paren | Tok_Range then
305 Restore_Scan_State (Scan_State); -- to apostrophe
306 Expr_Form := EF_Simple_Name;
307 return Name_Node;
309 -- Otherwise we have the case of a name extended by an attribute
311 else
312 goto Scan_Name_Extension_Apostrophe;
313 end if;
315 -- Check case of qualified simple name extended by a left parenthesis
317 elsif Token = Tok_Left_Paren then
318 Scan; -- past left paren
319 goto Scan_Name_Extension_Left_Paren;
321 -- Otherwise the qualified simple name is not extended, so return
323 else
324 Expr_Form := EF_Simple_Name;
325 return Name_Node;
326 end if;
328 -- Loop scanning past name extensions. A label is used for control
329 -- transfer for this loop for ease of interfacing with the finite state
330 -- machine in the parenthesis scanning circuit, and also to allow for
331 -- passing in control to the appropriate point from the above code.
333 <<Scan_Name_Extension>>
335 -- Character literal used as name cannot be extended. Also this
336 -- cannot be a call, since the name for a call must be a designator.
337 -- Return in these cases, or if there is no name extension
339 if Token not in Token_Class_Namext
340 or else Prev_Token = Tok_Char_Literal
341 then
342 Expr_Form := EF_Name;
343 return Name_Node;
344 end if;
346 -- Merge here when we know there is a name extension
348 <<Scan_Name_Extension_OK>>
350 case Token is
351 when Tok_Left_Paren =>
352 Scan; -- past left paren
353 goto Scan_Name_Extension_Left_Paren;
355 when Tok_Apostrophe =>
356 Save_Scan_State (Scan_State); -- at apostrophe
357 Scan; -- past apostrophe
358 goto Scan_Name_Extension_Apostrophe;
360 when Tok_Dot =>
361 Save_Scan_State (Scan_State); -- at dot
362 Scan; -- past dot
363 goto Scan_Name_Extension_Dot;
365 when others => raise Program_Error;
366 end case;
368 -- Case of name extended by dot (selection), dot is already skipped
369 -- and the scan state at the point of the dot is saved in Scan_State.
371 <<Scan_Name_Extension_Dot>>
373 -- Explicit dereference case
375 if Token = Tok_All then
376 Prefix_Node := Name_Node;
377 Name_Node := New_Node (N_Explicit_Dereference, Token_Ptr);
378 Set_Prefix (Name_Node, Prefix_Node);
379 Scan; -- past ALL
380 goto Scan_Name_Extension;
382 -- Selected component case
384 elsif Token in Token_Class_Name then
385 Prefix_Node := Name_Node;
386 Name_Node := New_Node (N_Selected_Component, Prev_Token_Ptr);
387 Set_Prefix (Name_Node, Prefix_Node);
388 Set_Selector_Name (Name_Node, Token_Node);
389 Scan; -- past selector
390 goto Scan_Name_Extension;
392 -- Reserved identifier as selector
394 elsif Is_Reserved_Identifier then
395 Scan_Reserved_Identifier (Force_Msg => False);
396 Prefix_Node := Name_Node;
397 Name_Node := New_Node (N_Selected_Component, Prev_Token_Ptr);
398 Set_Prefix (Name_Node, Prefix_Node);
399 Set_Selector_Name (Name_Node, Token_Node);
400 Scan; -- past identifier used as selector
401 goto Scan_Name_Extension;
403 -- If dot is at end of line and followed by nothing legal,
404 -- then assume end of name and quit (dot will be taken as
405 -- an incorrect form of some other punctuation by our caller).
407 elsif Token_Is_At_Start_Of_Line then
408 Restore_Scan_State (Scan_State);
409 return Name_Node;
411 -- Here if nothing legal after the dot
413 else
414 Error_Msg_AP ("selector expected");
415 raise Error_Resync;
416 end if;
418 -- Here for an apostrophe as name extension. The scan position at the
419 -- apostrophe has already been saved, and the apostrophe scanned out.
421 <<Scan_Name_Extension_Apostrophe>>
423 Scan_Apostrophe : declare
424 function Apostrophe_Should_Be_Semicolon return Boolean;
425 -- Checks for case where apostrophe should probably be
426 -- a semicolon, and if so, gives appropriate message,
427 -- resets the scan pointer to the apostrophe, changes
428 -- the current token to Tok_Semicolon, and returns True.
429 -- Otherwise returns False.
431 ------------------------------------
432 -- Apostrophe_Should_Be_Semicolon --
433 ------------------------------------
435 function Apostrophe_Should_Be_Semicolon return Boolean is
436 begin
437 if Token_Is_At_Start_Of_Line then
438 Restore_Scan_State (Scan_State); -- to apostrophe
439 Error_Msg_SC ("|""''"" should be "";""");
440 Token := Tok_Semicolon;
441 return True;
442 else
443 return False;
444 end if;
445 end Apostrophe_Should_Be_Semicolon;
447 -- Start of processing for Scan_Apostrophe
449 begin
450 -- Check for qualified expression case in Ada 2012 mode
452 if Ada_Version >= Ada_2012
453 and then Token in Tok_Left_Paren | Tok_Left_Bracket
454 then
455 Name_Node := P_Qualified_Expression (Name_Node);
456 goto Scan_Name_Extension;
458 -- If range attribute after apostrophe, then return with Token
459 -- pointing to the apostrophe. Note that in this case the prefix
460 -- need not be a simple name (cases like A.all'range). Similarly
461 -- if there is a left paren after the apostrophe, then we also
462 -- return with Token pointing to the apostrophe (this is the
463 -- aggregate case, or some error case).
465 elsif Token in Tok_Range | Tok_Left_Paren then
466 Restore_Scan_State (Scan_State); -- to apostrophe
467 Expr_Form := EF_Name;
468 return Name_Node;
470 -- Here for cases where attribute designator is an identifier
472 elsif Token = Tok_Identifier then
473 Attr_Name := Token_Name;
475 if not Is_Attribute_Name (Attr_Name) then
476 if Apostrophe_Should_Be_Semicolon then
477 Expr_Form := EF_Name;
478 return Name_Node;
480 -- Here for a bad attribute name
482 else
483 Signal_Bad_Attribute;
484 Scan; -- past bad identifier
486 if Token = Tok_Left_Paren then
487 Scan; -- past left paren
489 loop
490 Discard_Junk_Node (P_Expression_If_OK);
491 exit when not Comma_Present;
492 end loop;
494 T_Right_Paren;
495 end if;
497 return Error;
498 end if;
499 end if;
501 if Style_Check then
502 Style.Check_Attribute_Name (False);
503 end if;
505 -- Here for case of attribute designator is not an identifier
507 else
508 if Token = Tok_Delta then
509 Attr_Name := Name_Delta;
511 elsif Token = Tok_Digits then
512 Attr_Name := Name_Digits;
514 elsif Token = Tok_Access then
515 Attr_Name := Name_Access;
517 elsif Token = Tok_Mod and then Ada_Version >= Ada_95 then
518 Attr_Name := Name_Mod;
520 elsif Apostrophe_Should_Be_Semicolon then
521 Expr_Form := EF_Name;
522 return Name_Node;
524 else
525 Error_Msg_AP ("attribute designator expected");
526 raise Error_Resync;
527 end if;
529 if Style_Check then
530 Style.Check_Attribute_Name (True);
531 end if;
532 end if;
534 -- We come here with an OK attribute scanned, and corresponding
535 -- Attribute identifier node stored in Ident_Node.
537 Prefix_Node := Name_Node;
538 Name_Node := New_Node (N_Attribute_Reference, Prev_Token_Ptr);
539 Scan; -- past attribute designator
540 Set_Prefix (Name_Node, Prefix_Node);
541 Set_Attribute_Name (Name_Node, Attr_Name);
543 -- Scan attribute arguments/designator. We skip this if we know
544 -- that the attribute cannot have an argument (see documentation
545 -- of Is_Parameterless_Attribute for further details).
547 if Token = Tok_Left_Paren
548 and then not
549 Is_Parameterless_Attribute (Get_Attribute_Id (Attr_Name))
550 then
551 -- Attribute Update contains an array or record association
552 -- list which provides new values for various components or
553 -- elements. The list is parsed as an aggregate, and we get
554 -- better error handling by knowing that in the parser.
556 if Attr_Name = Name_Update then
557 Set_Expressions (Name_Node, New_List);
558 Append (P_Aggregate, Expressions (Name_Node));
560 -- All other cases of parsing attribute arguments
562 else
563 Set_Expressions (Name_Node, New_List);
564 Scan; -- past left paren
566 loop
567 declare
568 Expr : constant Node_Id := P_Expression_If_OK;
569 Rnam : Node_Id;
571 begin
572 -- Case of => for named notation
574 if Token = Tok_Arrow then
576 -- Named notation allowed only for the special
577 -- case of System'Restriction_Set (No_Dependence =>
578 -- unit_NAME), in which case construct a parameter
579 -- assocation node and append to the arguments.
581 if Attr_Name = Name_Restriction_Set
582 and then Nkind (Expr) = N_Identifier
583 and then Chars (Expr) = Name_No_Dependence
584 then
585 Scan; -- past arrow
586 Rnam := P_Name;
587 Append_To (Expressions (Name_Node),
588 Make_Parameter_Association (Sloc (Rnam),
589 Selector_Name => Expr,
590 Explicit_Actual_Parameter => Rnam));
591 exit;
593 -- For all other cases named notation is illegal
595 else
596 Error_Msg_SC
597 ("named parameters not permitted "
598 & "for attributes");
599 Scan; -- past junk arrow
600 end if;
602 -- Here for normal case (not => for named parameter)
604 else
605 -- Special handling for 'Image in Ada 2012, where
606 -- the attribute can be parameterless and its value
607 -- can be the prefix of a slice. Rewrite name as a
608 -- slice, Expr is its low bound.
610 if Token = Tok_Dot_Dot
611 and then Attr_Name = Name_Image
612 and then Ada_Version >= Ada_2012
613 then
614 Set_Expressions (Name_Node, No_List);
615 Prefix_Node := Name_Node;
616 Name_Node :=
617 New_Node (N_Slice, Sloc (Prefix_Node));
618 Set_Prefix (Name_Node, Prefix_Node);
619 Range_Node := New_Node (N_Range, Token_Ptr);
620 Set_Low_Bound (Range_Node, Expr);
621 Scan; -- past ..
622 Expr_Node := P_Expression;
623 Check_Simple_Expression (Expr_Node);
624 Set_High_Bound (Range_Node, Expr_Node);
625 Set_Discrete_Range (Name_Node, Range_Node);
626 T_Right_Paren;
628 goto Scan_Name_Extension;
630 else
631 Append (Expr, Expressions (Name_Node));
632 exit when not Comma_Present;
633 end if;
634 end if;
635 end;
636 end loop;
638 T_Right_Paren;
639 end if;
640 end if;
642 goto Scan_Name_Extension;
643 end Scan_Apostrophe;
645 -- Here for left parenthesis extending name (left paren skipped)
647 <<Scan_Name_Extension_Left_Paren>>
649 -- We now have to scan through a list of items, terminated by a
650 -- right parenthesis. The scan is handled by a finite state
651 -- machine. The possibilities are:
653 -- (discrete_range)
655 -- This is a slice. This case is handled in LP_State_Init
657 -- (expression, expression, ..)
659 -- This is interpreted as an indexed component, i.e. as a
660 -- case of a name which can be extended in the normal manner.
661 -- This case is handled by LP_State_Name or LP_State_Expr.
663 -- Note: if and case expressions (without an extra level of
664 -- parentheses) are permitted in this context).
666 -- (..., identifier => expression , ...)
668 -- If there is at least one occurrence of identifier => (but
669 -- none of the other cases apply), then we have a call.
671 -- Test for Id => case
673 if Token = Tok_Identifier then
674 Save_Scan_State (Scan_State); -- at Id
675 Scan; -- past Id
677 -- Test for => (allow := as an error substitute)
679 if Token in Tok_Arrow | Tok_Colon_Equal then
680 Restore_Scan_State (Scan_State); -- to Id
681 Arg_List := New_List;
682 goto LP_State_Call;
684 else
685 Restore_Scan_State (Scan_State); -- to Id
686 end if;
687 end if;
689 -- Here we have an expression after all
691 Expr_Node := P_Expression_Or_Range_Attribute_If_OK;
693 -- Check cases of discrete range for a slice
695 -- First possibility: Range_Attribute_Reference
697 if Expr_Form = EF_Range_Attr then
698 Range_Node := Expr_Node;
700 -- Second possibility: Simple_expression .. Simple_expression
702 elsif Token = Tok_Dot_Dot then
703 Check_Simple_Expression (Expr_Node);
704 Range_Node := New_Node (N_Range, Token_Ptr);
705 Set_Low_Bound (Range_Node, Expr_Node);
706 Scan; -- past ..
707 Expr_Node := P_Expression;
708 Check_Simple_Expression (Expr_Node);
709 Set_High_Bound (Range_Node, Expr_Node);
711 -- Third possibility: Type_name range Range
713 elsif Token = Tok_Range then
714 if Expr_Form /= EF_Simple_Name then
715 Error_Msg_SC ("subtype mark must precede RANGE");
716 raise Error_Resync;
717 end if;
719 Range_Node := P_Subtype_Indication (Expr_Node);
721 -- Otherwise we just have an expression. It is true that we might
722 -- have a subtype mark without a range constraint but this case
723 -- is syntactically indistinguishable from the expression case.
725 else
726 Arg_List := New_List;
727 goto LP_State_Expr;
728 end if;
730 -- Fall through here with unmistakable Discrete range scanned,
731 -- which means that we definitely have the case of a slice. The
732 -- Discrete range is in Range_Node.
734 if Token = Tok_Comma then
735 Error_Msg_SC ("slice cannot have more than one dimension");
736 raise Error_Resync;
738 elsif Token /= Tok_Right_Paren then
739 if Token = Tok_Arrow then
741 -- This may be an aggregate that is missing a qualification
743 Error_Msg_SC
744 ("context of aggregate must be a qualified expression");
745 raise Error_Resync;
747 else
748 T_Right_Paren;
749 raise Error_Resync;
750 end if;
752 else
753 Scan; -- past right paren
754 Prefix_Node := Name_Node;
755 Name_Node := New_Node (N_Slice, Sloc (Prefix_Node));
756 Set_Prefix (Name_Node, Prefix_Node);
757 Set_Discrete_Range (Name_Node, Range_Node);
759 -- An operator node is legal as a prefix to other names,
760 -- but not for a slice.
762 if Nkind (Prefix_Node) = N_Operator_Symbol then
763 Error_Msg_N ("illegal prefix for slice", Prefix_Node);
764 end if;
766 -- If we have a name extension, go scan it
768 if Token in Token_Class_Namext then
769 goto Scan_Name_Extension_OK;
771 -- Otherwise return (a slice is a name, but is not a call)
773 else
774 Expr_Form := EF_Name;
775 return Name_Node;
776 end if;
777 end if;
779 -- In LP_State_Expr, we have scanned one or more expressions, and
780 -- so we have a call or an indexed component which is a name. On
781 -- entry we have the expression just scanned in Expr_Node and
782 -- Arg_List contains the list of expressions encountered so far
784 <<LP_State_Expr>>
785 Append (Expr_Node, Arg_List);
787 if Token = Tok_Arrow then
788 Error_Msg
789 ("expect identifier in parameter association", Sloc (Expr_Node));
790 Scan; -- past arrow
792 elsif not Comma_Present then
793 T_Right_Paren;
795 Prefix_Node := Name_Node;
796 Name_Node := New_Node (N_Indexed_Component, Sloc (Prefix_Node));
797 Set_Prefix (Name_Node, Prefix_Node);
798 Set_Expressions (Name_Node, Arg_List);
800 goto Scan_Name_Extension;
801 end if;
803 -- Comma present (and scanned out), test for identifier => case
804 -- Test for identifier => case
806 if Token = Tok_Identifier then
807 Save_Scan_State (Scan_State); -- at Id
808 Scan; -- past Id
810 -- Test for => (allow := as error substitute)
812 if Token in Tok_Arrow | Tok_Colon_Equal then
813 Restore_Scan_State (Scan_State); -- to Id
814 goto LP_State_Call;
816 -- Otherwise it's just an expression after all, so backup
818 else
819 Restore_Scan_State (Scan_State); -- to Id
820 end if;
821 end if;
823 -- Here we have an expression after all, so stay in this state
825 Expr_Node := P_Expression_If_OK;
826 goto LP_State_Expr;
828 -- LP_State_Call corresponds to the situation in which at least one
829 -- instance of Id => Expression has been encountered, so we know that
830 -- we do not have a name, but rather a call. We enter it with the
831 -- scan pointer pointing to the next argument to scan, and Arg_List
832 -- containing the list of arguments scanned so far.
834 <<LP_State_Call>>
836 -- Test for case of Id => Expression (named parameter)
838 if Token = Tok_Identifier then
839 Save_Scan_State (Scan_State); -- at Id
840 Ident_Node := Token_Node;
841 Scan; -- past Id
843 -- Deal with => (allow := as incorrect substitute)
845 if Token in Tok_Arrow | Tok_Colon_Equal then
846 Arg_Node := New_Node (N_Parameter_Association, Prev_Token_Ptr);
847 Set_Selector_Name (Arg_Node, Ident_Node);
848 T_Arrow;
849 Set_Explicit_Actual_Parameter (Arg_Node, P_Expression);
850 Append (Arg_Node, Arg_List);
852 -- If a comma follows, go back and scan next entry
854 if Comma_Present then
855 goto LP_State_Call;
857 -- Otherwise we have the end of a call
859 else
860 Prefix_Node := Name_Node;
861 Name_Node := New_Node (N_Function_Call, Sloc (Prefix_Node));
862 Set_Name (Name_Node, Prefix_Node);
863 Set_Parameter_Associations (Name_Node, Arg_List);
864 T_Right_Paren;
866 if Token in Token_Class_Namext then
867 goto Scan_Name_Extension_OK;
869 -- This is a case of a call which cannot be a name
871 else
872 Expr_Form := EF_Name;
873 return Name_Node;
874 end if;
875 end if;
877 -- Not named parameter: Id started an expression after all
879 else
880 Restore_Scan_State (Scan_State); -- to Id
881 end if;
882 end if;
884 -- Here if entry did not start with Id => which means that it
885 -- is a positional parameter, which is not allowed, since we
886 -- have seen at least one named parameter already.
888 Error_Msg_SC
889 ("positional parameter association " &
890 "not allowed after named one");
892 Expr_Node := P_Expression_If_OK;
894 -- Leaving the '>' in an association is not unusual, so suggest
895 -- a possible fix.
897 if Nkind (Expr_Node) = N_Op_Eq then
898 Error_Msg_N ("\maybe `='>` was intended", Expr_Node);
899 end if;
901 -- We go back to scanning out expressions, so that we do not get
902 -- multiple error messages when several positional parameters
903 -- follow a named parameter.
905 goto LP_State_Expr;
907 -- End of treatment for name extensions starting with left paren
909 -- End of loop through name extensions
911 end P_Name;
913 -- This function parses a restricted form of Names which are either
914 -- designators, or designators preceded by a sequence of prefixes
915 -- that are direct names.
917 -- Error recovery: cannot raise Error_Resync
919 function P_Function_Name return Node_Id is
920 Designator_Node : Node_Id;
921 Prefix_Node : Node_Id;
922 Selector_Node : Node_Id;
923 Dot_Sloc : Source_Ptr := No_Location;
925 begin
926 -- Prefix_Node is set to the gathered prefix so far, Empty means that
927 -- no prefix has been scanned. This allows us to build up the result
928 -- in the required right recursive manner.
930 Prefix_Node := Empty;
932 -- Loop through prefixes
934 loop
935 Designator_Node := Token_Node;
937 if Token not in Token_Class_Desig then
938 return P_Identifier; -- let P_Identifier issue the error message
940 else -- Token in Token_Class_Desig
941 Scan; -- past designator
942 exit when Token /= Tok_Dot;
943 end if;
945 -- Here at a dot, with token just before it in Designator_Node
947 if No (Prefix_Node) then
948 Prefix_Node := Designator_Node;
949 else
950 Selector_Node := New_Node (N_Selected_Component, Dot_Sloc);
951 Set_Prefix (Selector_Node, Prefix_Node);
952 Set_Selector_Name (Selector_Node, Designator_Node);
953 Prefix_Node := Selector_Node;
954 end if;
956 Dot_Sloc := Token_Ptr;
957 Scan; -- past dot
958 end loop;
960 -- Fall out of the loop having just scanned a designator
962 if No (Prefix_Node) then
963 return Designator_Node;
964 else
965 Selector_Node := New_Node (N_Selected_Component, Dot_Sloc);
966 Set_Prefix (Selector_Node, Prefix_Node);
967 Set_Selector_Name (Selector_Node, Designator_Node);
968 return Selector_Node;
969 end if;
971 exception
972 when Error_Resync =>
973 return Error;
974 end P_Function_Name;
976 -- This function parses a restricted form of Names which are either
977 -- identifiers, or identifiers preceded by a sequence of prefixes
978 -- that are direct names.
980 -- Error recovery: cannot raise Error_Resync
982 function P_Qualified_Simple_Name return Node_Id is
983 Designator_Node : Node_Id;
984 Prefix_Node : Node_Id;
985 Selector_Node : Node_Id;
986 Dot_Sloc : Source_Ptr := No_Location;
988 begin
989 -- Prefix node is set to the gathered prefix so far, Empty means that
990 -- no prefix has been scanned. This allows us to build up the result
991 -- in the required right recursive manner.
993 Prefix_Node := Empty;
995 -- Loop through prefixes
997 loop
998 Designator_Node := Token_Node;
1000 if Token = Tok_Identifier then
1001 Scan; -- past identifier
1002 exit when Token /= Tok_Dot;
1004 elsif Token not in Token_Class_Desig then
1005 return P_Identifier; -- let P_Identifier issue the error message
1007 else
1008 Scan; -- past designator
1010 if Token /= Tok_Dot then
1011 Error_Msg_SP ("identifier expected");
1012 return Error;
1013 end if;
1014 end if;
1016 -- Here at a dot, with token just before it in Designator_Node
1018 if No (Prefix_Node) then
1019 Prefix_Node := Designator_Node;
1020 else
1021 Selector_Node := New_Node (N_Selected_Component, Dot_Sloc);
1022 Set_Prefix (Selector_Node, Prefix_Node);
1023 Set_Selector_Name (Selector_Node, Designator_Node);
1024 Prefix_Node := Selector_Node;
1025 end if;
1027 Dot_Sloc := Token_Ptr;
1028 Scan; -- past dot
1029 end loop;
1031 -- Fall out of the loop having just scanned an identifier
1033 if No (Prefix_Node) then
1034 return Designator_Node;
1035 else
1036 Selector_Node := New_Node (N_Selected_Component, Dot_Sloc);
1037 Set_Prefix (Selector_Node, Prefix_Node);
1038 Set_Selector_Name (Selector_Node, Designator_Node);
1039 return Selector_Node;
1040 end if;
1042 exception
1043 when Error_Resync =>
1044 return Error;
1045 end P_Qualified_Simple_Name;
1047 -- This procedure differs from P_Qualified_Simple_Name only in that it
1048 -- raises Error_Resync if any error is encountered. It only returns after
1049 -- scanning a valid qualified simple name.
1051 -- Error recovery: can raise Error_Resync
1053 function P_Qualified_Simple_Name_Resync return Node_Id is
1054 Designator_Node : Node_Id;
1055 Prefix_Node : Node_Id;
1056 Selector_Node : Node_Id;
1057 Dot_Sloc : Source_Ptr := No_Location;
1059 begin
1060 Prefix_Node := Empty;
1062 -- Loop through prefixes
1064 loop
1065 Designator_Node := Token_Node;
1067 if Token = Tok_Identifier then
1068 Scan; -- past identifier
1069 exit when Token /= Tok_Dot;
1071 elsif Token not in Token_Class_Desig then
1072 Discard_Junk_Node (P_Identifier); -- to issue the error message
1073 raise Error_Resync;
1075 else
1076 Scan; -- past designator
1078 if Token /= Tok_Dot then
1079 Error_Msg_SP ("identifier expected");
1080 raise Error_Resync;
1081 end if;
1082 end if;
1084 -- Here at a dot, with token just before it in Designator_Node
1086 if No (Prefix_Node) then
1087 Prefix_Node := Designator_Node;
1088 else
1089 Selector_Node := New_Node (N_Selected_Component, Dot_Sloc);
1090 Set_Prefix (Selector_Node, Prefix_Node);
1091 Set_Selector_Name (Selector_Node, Designator_Node);
1092 Prefix_Node := Selector_Node;
1093 end if;
1095 Dot_Sloc := Token_Ptr;
1096 Scan; -- past period
1097 end loop;
1099 -- Fall out of the loop having just scanned an identifier
1101 if No (Prefix_Node) then
1102 return Designator_Node;
1103 else
1104 Selector_Node := New_Node (N_Selected_Component, Dot_Sloc);
1105 Set_Prefix (Selector_Node, Prefix_Node);
1106 Set_Selector_Name (Selector_Node, Designator_Node);
1107 return Selector_Node;
1108 end if;
1109 end P_Qualified_Simple_Name_Resync;
1111 ----------------------
1112 -- 4.1 Direct_Name --
1113 ----------------------
1115 -- Parsed by P_Name and other functions in section 4.1
1117 -----------------
1118 -- 4.1 Prefix --
1119 -----------------
1121 -- Parsed by P_Name (4.1)
1123 -------------------------------
1124 -- 4.1 Explicit Dereference --
1125 -------------------------------
1127 -- Parsed by P_Name (4.1)
1129 -------------------------------
1130 -- 4.1 Implicit_Dereference --
1131 -------------------------------
1133 -- Parsed by P_Name (4.1)
1135 ----------------------------
1136 -- 4.1 Indexed Component --
1137 ----------------------------
1139 -- Parsed by P_Name (4.1)
1141 ----------------
1142 -- 4.1 Slice --
1143 ----------------
1145 -- Parsed by P_Name (4.1)
1147 -----------------------------
1148 -- 4.1 Selected_Component --
1149 -----------------------------
1151 -- Parsed by P_Name (4.1)
1153 ------------------------
1154 -- 4.1 Selector Name --
1155 ------------------------
1157 -- Parsed by P_Name (4.1)
1159 ------------------------------
1160 -- 4.1 Attribute Reference --
1161 ------------------------------
1163 -- Parsed by P_Name (4.1)
1165 -------------------------------
1166 -- 4.1 Attribute Designator --
1167 -------------------------------
1169 -- Parsed by P_Name (4.1)
1171 --------------------------------------
1172 -- 4.1.4 Range Attribute Reference --
1173 --------------------------------------
1175 -- RANGE_ATTRIBUTE_REFERENCE ::= PREFIX ' RANGE_ATTRIBUTE_DESIGNATOR
1177 -- RANGE_ATTRIBUTE_DESIGNATOR ::= range [(static_EXPRESSION)]
1179 -- In the grammar, a RANGE attribute is simply a name, but its use is
1180 -- highly restricted, so in the parser, we do not regard it as a name.
1181 -- Instead, P_Name returns without scanning the 'RANGE part of the
1182 -- attribute, and the caller uses the following function to construct
1183 -- a range attribute in places where it is appropriate.
1185 -- Note that RANGE here is treated essentially as an identifier,
1186 -- rather than a reserved word.
1188 -- The caller has parsed the prefix, i.e. a name, and Token points to
1189 -- the apostrophe. The token after the apostrophe is known to be RANGE
1190 -- at this point. The prefix node becomes the prefix of the attribute.
1192 -- Error_Recovery: Cannot raise Error_Resync
1194 function P_Range_Attribute_Reference
1195 (Prefix_Node : Node_Id)
1196 return Node_Id
1198 Attr_Node : Node_Id;
1200 begin
1201 Attr_Node := New_Node (N_Attribute_Reference, Token_Ptr);
1202 Set_Prefix (Attr_Node, Prefix_Node);
1203 Scan; -- past apostrophe
1205 if Style_Check then
1206 Style.Check_Attribute_Name (True);
1207 end if;
1209 Set_Attribute_Name (Attr_Node, Name_Range);
1210 Scan; -- past RANGE
1212 if Token = Tok_Left_Paren then
1213 Scan; -- past left paren
1214 Set_Expressions (Attr_Node, New_List (P_Expression_If_OK));
1215 T_Right_Paren;
1216 end if;
1218 return Attr_Node;
1219 end P_Range_Attribute_Reference;
1221 -------------------------------------
1222 -- P_Reduction_Attribute_Reference --
1223 -------------------------------------
1225 function P_Reduction_Attribute_Reference (S : Node_Id)
1226 return Node_Id
1228 Attr_Node : Node_Id;
1229 Attr_Name : Name_Id;
1231 begin
1232 Attr_Name := Token_Name;
1233 Scan; -- past Reduce
1234 Attr_Node := New_Node (N_Attribute_Reference, Token_Ptr);
1235 Set_Attribute_Name (Attr_Node, Attr_Name);
1236 if Attr_Name /= Name_Reduce then
1237 Error_Msg ("Reduce attribute expected", Prev_Token_Ptr);
1238 end if;
1240 Set_Prefix (Attr_Node, S);
1241 Set_Expressions (Attr_Node, New_List);
1242 T_Left_Paren;
1243 Append (P_Name, Expressions (Attr_Node));
1244 T_Comma;
1245 Append (P_Expression, Expressions (Attr_Node));
1246 T_Right_Paren;
1248 return Attr_Node;
1249 end P_Reduction_Attribute_Reference;
1251 ---------------------------------------
1252 -- 4.1.4 Range Attribute Designator --
1253 ---------------------------------------
1255 -- Parsed by P_Range_Attribute_Reference (4.4)
1257 ---------------------------------------------
1258 -- 4.1.4 (2) Reduction_Attribute_Reference --
1259 ---------------------------------------------
1261 -- parsed by P_Reduction_Attribute_Reference
1263 --------------------
1264 -- 4.3 Aggregate --
1265 --------------------
1267 -- AGGREGATE ::= RECORD_AGGREGATE | EXTENSION_AGGREGATE | ARRAY_AGGREGATE
1269 -- Parsed by P_Aggregate_Or_Paren_Expr (4.3), except in the case where
1270 -- an aggregate is known to be required (code statement, extension
1271 -- aggregate), in which cases this routine performs the necessary check
1272 -- that we have an aggregate rather than a parenthesized expression
1274 -- Error recovery: can raise Error_Resync
1276 function P_Aggregate return Node_Id is
1277 Aggr_Sloc : constant Source_Ptr := Token_Ptr;
1278 Aggr_Node : constant Node_Id := P_Aggregate_Or_Paren_Expr;
1280 begin
1281 if Nkind (Aggr_Node) /= N_Aggregate
1282 and then
1283 Nkind (Aggr_Node) /= N_Extension_Aggregate
1284 and then Ada_Version < Ada_2022
1285 then
1286 Error_Msg
1287 ("aggregate may not have single positional component", Aggr_Sloc);
1288 return Error;
1289 else
1290 return Aggr_Node;
1291 end if;
1292 end P_Aggregate;
1294 ------------------------------------------------
1295 -- 4.3 Aggregate or Parenthesized Expression --
1296 ------------------------------------------------
1298 -- This procedure parses out either an aggregate or a parenthesized
1299 -- expression (these two constructs are closely related, since a
1300 -- parenthesized expression looks like an aggregate with a single
1301 -- positional component).
1303 -- AGGREGATE ::=
1304 -- RECORD_AGGREGATE | EXTENSION_AGGREGATE | ARRAY_AGGREGATE
1306 -- RECORD_AGGREGATE ::= (RECORD_COMPONENT_ASSOCIATION_LIST)
1308 -- RECORD_COMPONENT_ASSOCIATION_LIST ::=
1309 -- RECORD_COMPONENT_ASSOCIATION {, RECORD_COMPONENT_ASSOCIATION}
1310 -- | null record
1312 -- RECORD_COMPONENT_ASSOCIATION ::=
1313 -- [COMPONENT_CHOICE_LIST =>] EXPRESSION
1315 -- COMPONENT_CHOICE_LIST ::=
1316 -- component_SELECTOR_NAME {| component_SELECTOR_NAME}
1317 -- | others
1319 -- EXTENSION_AGGREGATE ::=
1320 -- (ANCESTOR_PART with RECORD_COMPONENT_ASSOCIATION_LIST)
1322 -- ANCESTOR_PART ::= EXPRESSION | SUBTYPE_MARK
1324 -- ARRAY_AGGREGATE ::=
1325 -- POSITIONAL_ARRAY_AGGREGATE | NAMED_ARRAY_AGGREGATE
1327 -- POSITIONAL_ARRAY_AGGREGATE ::=
1328 -- (EXPRESSION, EXPRESSION {, EXPRESSION})
1329 -- | (EXPRESSION {, EXPRESSION}, others => EXPRESSION)
1330 -- | (EXPRESSION {, EXPRESSION}, others => <>)
1332 -- NAMED_ARRAY_AGGREGATE ::=
1333 -- (ARRAY_COMPONENT_ASSOCIATION {, ARRAY_COMPONENT_ASSOCIATION})
1335 -- PRIMARY ::= (EXPRESSION);
1337 -- Error recovery: can raise Error_Resync
1339 -- Note: POSITIONAL_ARRAY_AGGREGATE rule has been extended to give support
1340 -- to Ada 2005 limited aggregates (AI-287)
1342 function P_Aggregate_Or_Paren_Expr return Node_Id is
1343 Aggregate_Node : Node_Id;
1344 Expr_List : List_Id;
1345 Assoc_List : List_Id;
1346 Expr_Node : Node_Id;
1347 Lparen_Sloc : Source_Ptr;
1348 Scan_State : Saved_Scan_State;
1350 procedure Box_Error;
1351 -- Called if <> is encountered as positional aggregate element. Issues
1352 -- error message and sets Expr_Node to Error.
1354 function Is_Quantified_Expression return Boolean;
1355 -- The presence of iterated component associations requires a one
1356 -- token lookahead to distinguish it from quantified expressions.
1358 ---------------
1359 -- Box_Error --
1360 ---------------
1362 procedure Box_Error is
1363 begin
1364 Error_Msg_Ada_2005_Extension ("'<'> in aggregate");
1366 -- Ada 2005 (AI-287): The box notation is allowed only with named
1367 -- notation because positional notation might be error prone. For
1368 -- example, in "(X, <>, Y, <>)", there is no type associated with
1369 -- the boxes, so you might not be leaving out the components you
1370 -- thought you were leaving out.
1372 Error_Msg_SC ("(Ada 2005) box only allowed with named notation");
1373 Scan; -- past box
1374 Expr_Node := Error;
1375 end Box_Error;
1377 ------------------------------
1378 -- Is_Quantified_Expression --
1379 ------------------------------
1381 function Is_Quantified_Expression return Boolean is
1382 Maybe : Boolean;
1383 Scan_State : Saved_Scan_State;
1385 begin
1386 Save_Scan_State (Scan_State);
1387 Scan; -- past FOR
1388 Maybe := Token in Tok_All | Tok_Some;
1389 Restore_Scan_State (Scan_State); -- to FOR
1390 return Maybe;
1391 end Is_Quantified_Expression;
1393 Start_Token : constant Token_Type := Token;
1394 -- Used to prevent mismatches (...] and [...)
1396 Saved_Delta_Aggregate_Flag : constant Boolean := Inside_Delta_Aggregate;
1398 -- Start of processing for P_Aggregate_Or_Paren_Expr
1400 begin
1401 Lparen_Sloc := Token_Ptr;
1402 if Token = Tok_Left_Bracket then
1403 Scan;
1405 -- Special case for null aggregate in Ada 2022
1407 if Token = Tok_Right_Bracket then
1408 Scan; -- past ]
1409 Aggregate_Node := New_Node (N_Aggregate, Lparen_Sloc);
1410 Set_Expressions (Aggregate_Node, New_List);
1411 Set_Component_Associations (Aggregate_Node, New_List);
1412 Set_Is_Homogeneous_Aggregate (Aggregate_Node);
1413 return Aggregate_Node;
1414 end if;
1415 else
1416 T_Left_Paren;
1417 end if;
1419 -- Note on parentheses count. For cases like an if expression, the
1420 -- parens here really count as real parentheses for the paren count,
1421 -- so we adjust the paren count accordingly after scanning the expr.
1423 -- If expression
1425 if Token = Tok_If then
1426 Expr_Node := P_If_Expression;
1427 T_Right_Paren;
1428 Set_Paren_Count (Expr_Node, Paren_Count (Expr_Node) + 1);
1429 return Expr_Node;
1431 -- Case expression
1433 elsif Token = Tok_Case then
1434 Expr_Node := P_Case_Expression;
1435 T_Right_Paren;
1436 Set_Paren_Count (Expr_Node, Paren_Count (Expr_Node) + 1);
1437 return Expr_Node;
1439 -- Quantified expression
1441 elsif Token = Tok_For and then Is_Quantified_Expression then
1442 Expr_Node := P_Quantified_Expression;
1443 T_Right_Paren;
1444 Set_Paren_Count (Expr_Node, Paren_Count (Expr_Node) + 1);
1445 return Expr_Node;
1447 -- Note: the mechanism used here of rescanning the initial expression
1448 -- is distinctly unpleasant, but it saves a lot of fiddling in scanning
1449 -- out the discrete choice list.
1451 -- Deal with expression and extension aggregates first
1453 elsif Token /= Tok_Others then
1454 Save_Scan_State (Scan_State); -- at start of expression
1456 -- Deal with (NULL RECORD)
1458 if Token = Tok_Null then
1459 Scan; -- past NULL
1461 if Token = Tok_Record then
1462 Aggregate_Node := New_Node (N_Aggregate, Lparen_Sloc);
1463 Set_Null_Record_Present (Aggregate_Node, True);
1464 Scan; -- past RECORD
1465 T_Right_Paren;
1466 return Aggregate_Node;
1467 else
1468 Restore_Scan_State (Scan_State); -- to NULL that must be expr
1469 end if;
1471 elsif Token = Tok_For then
1472 Aggregate_Node := New_Node (N_Aggregate, Lparen_Sloc);
1473 Expr_Node := P_Iterated_Component_Association;
1474 goto Aggregate;
1475 end if;
1477 -- Scan expression, handling box appearing as positional argument
1479 if Token = Tok_Box then
1480 Box_Error;
1481 else
1482 Expr_Node := P_Expression_Or_Range_Attribute_If_OK;
1483 end if;
1485 -- Extension or Delta aggregate
1487 if Token = Tok_With then
1488 if Nkind (Expr_Node) = N_Attribute_Reference
1489 and then Attribute_Name (Expr_Node) = Name_Range
1490 then
1491 Bad_Range_Attribute (Sloc (Expr_Node));
1492 return Error;
1493 end if;
1495 if Ada_Version = Ada_83 then
1496 Error_Msg_SC ("(Ada 83) extension aggregate not allowed");
1497 end if;
1499 Scan; -- past WITH
1500 if Token = Tok_Delta then
1501 Scan; -- past DELTA
1502 Inside_Delta_Aggregate := True;
1503 Aggregate_Node := New_Node (N_Delta_Aggregate, Lparen_Sloc);
1504 Set_Expression (Aggregate_Node, Expr_Node);
1505 Expr_Node := Empty;
1507 goto Aggregate;
1509 else
1510 Aggregate_Node := New_Node (N_Extension_Aggregate, Lparen_Sloc);
1511 Set_Ancestor_Part (Aggregate_Node, Expr_Node);
1512 end if;
1514 -- Deal with WITH NULL RECORD case
1516 if Token = Tok_Null then
1517 Save_Scan_State (Scan_State); -- at NULL
1518 Scan; -- past NULL
1520 if Token = Tok_Record then
1521 Scan; -- past RECORD
1522 Set_Null_Record_Present (Aggregate_Node, True);
1523 T_Right_Paren;
1524 return Aggregate_Node;
1526 else
1527 Restore_Scan_State (Scan_State); -- to NULL that must be expr
1528 end if;
1529 end if;
1531 if Token /= Tok_Others then
1532 Save_Scan_State (Scan_State);
1533 Expr_Node := P_Expression;
1534 else
1535 Expr_Node := Empty;
1536 end if;
1538 -- Expression
1540 elsif Token = Tok_Right_Paren or else Token in Token_Class_Eterm then
1541 if Nkind (Expr_Node) = N_Attribute_Reference
1542 and then Attribute_Name (Expr_Node) = Name_Range
1543 then
1544 Error_Msg
1545 ("|parentheses not allowed for range attribute", Lparen_Sloc);
1546 Scan; -- past right paren
1547 return Expr_Node;
1548 end if;
1550 -- Bump paren count of expression
1552 if Expr_Node /= Error then
1553 Set_Paren_Count (Expr_Node, Paren_Count (Expr_Node) + 1);
1554 end if;
1556 T_Right_Paren; -- past right paren (error message if none)
1557 return Expr_Node;
1559 -- Normal aggregate
1561 else
1562 Aggregate_Node := New_Node (N_Aggregate, Lparen_Sloc);
1563 end if;
1565 -- Others
1567 else
1568 Aggregate_Node := New_Node (N_Aggregate, Lparen_Sloc);
1569 Expr_Node := Empty;
1570 end if;
1572 -- Prepare to scan list of component associations
1573 <<Aggregate>>
1574 Expr_List := No_List; -- don't set yet, maybe all named entries
1575 Assoc_List := No_List; -- don't set yet, maybe all positional entries
1577 -- This loop scans through component associations. On entry to the
1578 -- loop, an expression has been scanned at the start of the current
1579 -- association unless initial token was OTHERS, in which case
1580 -- Expr_Node is set to Empty.
1582 loop
1583 -- Deal with others association first. This is a named association
1585 if No (Expr_Node) then
1586 Append_New (P_Record_Or_Array_Component_Association, Assoc_List);
1588 -- Improper use of WITH
1590 elsif Token = Tok_With then
1591 Error_Msg_SC ("WITH must be preceded by single expression in " &
1592 "extension aggregate");
1593 raise Error_Resync;
1595 -- Range attribute can only appear as part of a discrete choice list
1597 elsif Nkind (Expr_Node) = N_Attribute_Reference
1598 and then Attribute_Name (Expr_Node) = Name_Range
1599 and then Token /= Tok_Arrow
1600 and then Token /= Tok_Vertical_Bar
1601 then
1602 Bad_Range_Attribute (Sloc (Expr_Node));
1603 return Error;
1605 -- Assume positional case if comma, right paren, or literal or
1606 -- identifier or OTHERS follows (the latter cases are missing
1607 -- comma cases). Also assume positional if a semicolon follows,
1608 -- which can happen if there are missing parens.
1609 -- In Ada 2012 and 2022 an iterated association can appear.
1611 elsif Nkind (Expr_Node) in
1612 N_Iterated_Component_Association | N_Iterated_Element_Association
1613 then
1614 Append_New (Expr_Node, Assoc_List);
1616 elsif Token in Tok_Comma | Tok_Right_Paren | Tok_Others
1617 | Token_Class_Lit_Or_Name | Tok_Semicolon
1618 then
1619 if Present (Assoc_List) then
1620 Error_Msg_BC -- CODEFIX
1621 ("""='>"" expected (positional association cannot follow "
1622 & "named association)");
1623 end if;
1625 Append_New (Expr_Node, Expr_List);
1627 -- Check for aggregate followed by left parent, maybe missing comma
1629 elsif Nkind (Expr_Node) = N_Aggregate
1630 and then Token = Tok_Left_Paren
1631 then
1632 T_Comma;
1634 Append_New (Expr_Node, Expr_List);
1636 elsif Token = Tok_Right_Bracket then
1637 Append_New (Expr_Node, Expr_List);
1638 exit;
1640 -- Anything else is assumed to be a named association
1642 else
1643 Restore_Scan_State (Scan_State); -- to start of expression
1645 Append_New (P_Record_Or_Array_Component_Association, Assoc_List);
1646 end if;
1648 exit when not Comma_Present;
1650 -- If we are at an expression terminator, something is seriously
1651 -- wrong, so let's get out now, before we start eating up stuff
1652 -- that doesn't belong to us.
1654 if Token in Token_Class_Eterm and then Token /= Tok_For then
1655 Error_Msg_AP
1656 ("expecting expression or component association");
1657 exit;
1658 end if;
1660 -- Deal with misused box
1662 if Token = Tok_Box then
1663 Box_Error;
1665 -- Otherwise initiate for reentry to top of loop by scanning an
1666 -- initial expression, unless the first token is OTHERS or FOR,
1667 -- which indicates an iterated component association.
1669 elsif Token = Tok_Others then
1670 Expr_Node := Empty;
1672 elsif Token = Tok_For then
1673 Expr_Node := P_Iterated_Component_Association;
1675 else
1676 Save_Scan_State (Scan_State); -- at start of expression
1677 Expr_Node := P_Expression_Or_Range_Attribute_If_OK;
1679 end if;
1680 end loop;
1682 -- All component associations (positional and named) have been scanned.
1683 -- Scan ] or ) based on Start_Token.
1685 case Start_Token is
1686 when Tok_Left_Bracket =>
1688 Set_Component_Associations (Aggregate_Node, Assoc_List);
1689 Set_Is_Homogeneous_Aggregate (Aggregate_Node);
1690 T_Right_Bracket;
1692 if Token = Tok_Apostrophe then
1693 Scan;
1695 if Token = Tok_Identifier then
1696 return P_Reduction_Attribute_Reference (Aggregate_Node);
1697 end if;
1698 end if;
1699 when Tok_Left_Paren =>
1700 if Nkind (Aggregate_Node) = N_Aggregate then
1701 Set_Is_Parenthesis_Aggregate (Aggregate_Node);
1702 end if;
1704 T_Right_Paren;
1705 when others => raise Program_Error;
1706 end case;
1708 if Nkind (Aggregate_Node) /= N_Delta_Aggregate then
1709 Set_Expressions (Aggregate_Node, Expr_List);
1710 end if;
1712 Set_Component_Associations (Aggregate_Node, Assoc_List);
1714 -- Inside_Delta_Aggregate is only tested if Serious_Errors = 0, so
1715 -- it is ok if we fail to restore the saved I_D_A value in an error
1716 -- path. In particular, it is ok that we do not restore it if
1717 -- Error_Resync is propagated. Earlier return statements (which return
1718 -- without restoring the saved I_D_A value) should either be in error
1719 -- paths or in paths where I_D_A could not have been modified.
1721 Inside_Delta_Aggregate := Saved_Delta_Aggregate_Flag;
1723 return Aggregate_Node;
1724 end P_Aggregate_Or_Paren_Expr;
1726 ------------------------------------------------
1727 -- 4.3 Record or Array Component Association --
1728 ------------------------------------------------
1730 -- RECORD_COMPONENT_ASSOCIATION ::=
1731 -- [COMPONENT_CHOICE_LIST =>] EXPRESSION
1732 -- | COMPONENT_CHOICE_LIST => <>
1734 -- COMPONENT_CHOICE_LIST =>
1735 -- component_SELECTOR_NAME {| component_SELECTOR_NAME}
1736 -- | others
1738 -- ARRAY_COMPONENT_ASSOCIATION ::=
1739 -- DISCRETE_CHOICE_LIST => EXPRESSION
1740 -- | DISCRETE_CHOICE_LIST => <>
1741 -- | ITERATED_COMPONENT_ASSOCIATION
1743 -- Note: this routine only handles the named cases, including others.
1744 -- Cases where the component choice list is not present have already
1745 -- been handled directly.
1747 -- Error recovery: can raise Error_Resync
1749 -- Note: RECORD_COMPONENT_ASSOCIATION and ARRAY_COMPONENT_ASSOCIATION
1750 -- rules have been extended to give support to Ada 2005 limited
1751 -- aggregates (AI-287)
1753 function P_Record_Or_Array_Component_Association return Node_Id is
1754 Assoc_Node : Node_Id;
1755 Box_Present : Boolean := False;
1756 Box_With_Identifier_Present : Boolean := False;
1757 begin
1758 -- A loop indicates an iterated_component_association
1760 if Token = Tok_For then
1761 return P_Iterated_Component_Association;
1762 end if;
1764 Assoc_Node := New_Node (N_Component_Association, Token_Ptr);
1765 Set_Binding_Chars (Assoc_Node, No_Name);
1767 Set_Choices (Assoc_Node, P_Discrete_Choice_List);
1768 Set_Sloc (Assoc_Node, Token_Ptr);
1769 TF_Arrow;
1771 if Token = Tok_Box then
1773 -- Ada 2005(AI-287): The box notation is used to indicate the
1774 -- default initialization of aggregate components
1776 Error_Msg_Ada_2005_Extension ("component association with '<'>");
1778 Box_Present := True;
1779 Set_Box_Present (Assoc_Node);
1780 Scan; -- past box
1781 elsif Token = Tok_Less then
1782 declare
1783 Scan_State : Saved_Scan_State;
1784 Id : Node_Id;
1785 begin
1786 Save_Scan_State (Scan_State);
1787 Scan; -- past "<"
1788 if Token = Tok_Identifier then
1789 Id := P_Defining_Identifier;
1790 if Token = Tok_Greater then
1791 if Core_Extensions_Allowed then
1792 Set_Box_Present (Assoc_Node);
1793 Set_Binding_Chars (Assoc_Node, Chars (Id));
1794 Box_Present := True;
1795 Box_With_Identifier_Present := True;
1796 Scan; -- past ">"
1797 else
1798 Error_Msg_GNAT_Extension
1799 ("identifier within box", Token_Ptr);
1800 Box_Present := True;
1801 -- Avoid cascading errors by ignoring the identifier
1802 end if;
1803 end if;
1804 end if;
1805 if not Box_Present then
1806 -- it wasn't an "is <identifier>", so restore.
1807 Restore_Scan_State (Scan_State);
1808 end if;
1809 end;
1810 end if;
1812 if not Box_Present then
1813 Set_Expression (Assoc_Node, P_Expression);
1814 end if;
1816 -- Check for "is <identifier>" for aggregate that is part of
1817 -- a pattern for a general case statement.
1819 if Token = Tok_Is then
1820 declare
1821 Scan_State : Saved_Scan_State;
1822 Id : Node_Id;
1823 begin
1824 Save_Scan_State (Scan_State);
1825 Scan; -- past "is"
1826 if Token = Tok_Identifier then
1827 Id := P_Defining_Identifier;
1829 if not Core_Extensions_Allowed then
1830 Error_Msg_GNAT_Extension
1831 ("IS following component association", Token_Ptr);
1832 elsif Box_With_Identifier_Present then
1833 Error_Msg
1834 ("Both identifier-in-box and trailing identifier"
1835 & " specified for one component association",
1836 Token_Ptr);
1837 else
1838 Set_Binding_Chars (Assoc_Node, Chars (Id));
1839 end if;
1840 else
1841 -- It wasn't an "is <identifier>", so restore.
1842 Restore_Scan_State (Scan_State);
1843 end if;
1844 end;
1845 end if;
1847 return Assoc_Node;
1848 end P_Record_Or_Array_Component_Association;
1850 -----------------------------
1851 -- 4.3.1 Record Aggregate --
1852 -----------------------------
1854 -- Case of enumeration aggregate is parsed by P_Aggregate (4.3)
1855 -- All other cases are parsed by P_Aggregate_Or_Paren_Expr (4.3)
1857 ----------------------------------------------
1858 -- 4.3.1 Record Component Association List --
1859 ----------------------------------------------
1861 -- Parsed by P_Aggregate_Or_Paren_Expr (4.3)
1863 ----------------------------------
1864 -- 4.3.1 Component Choice List --
1865 ----------------------------------
1867 -- Parsed by P_Aggregate_Or_Paren_Expr (4.3)
1869 --------------------------------
1870 -- 4.3.1 Extension Aggregate --
1871 --------------------------------
1873 -- Parsed by P_Aggregate_Or_Paren_Expr (4.3)
1875 --------------------------
1876 -- 4.3.1 Ancestor Part --
1877 --------------------------
1879 -- Parsed by P_Aggregate_Or_Paren_Expr (4.3)
1881 ----------------------------
1882 -- 4.3.1 Array Aggregate --
1883 ----------------------------
1885 -- Parsed by P_Aggregate_Or_Paren_Expr (4.3)
1887 ---------------------------------------
1888 -- 4.3.1 Positional Array Aggregate --
1889 ---------------------------------------
1891 -- Parsed by P_Aggregate_Or_Paren_Expr (4.3)
1893 ----------------------------------
1894 -- 4.3.1 Named Array Aggregate --
1895 ----------------------------------
1897 -- Parsed by P_Aggregate_Or_Paren_Expr (4.3)
1899 ----------------------------------------
1900 -- 4.3.1 Array Component Association --
1901 ----------------------------------------
1903 -- Parsed by P_Aggregate_Or_Paren_Expr (4.3)
1905 ---------------------
1906 -- 4.4 Expression --
1907 ---------------------
1909 -- This procedure parses EXPRESSION or CHOICE_EXPRESSION
1911 -- EXPRESSION ::=
1912 -- RELATION {LOGICAL_OPERATOR RELATION}
1914 -- CHOICE_EXPRESSION ::=
1915 -- CHOICE_RELATION {LOGICAL_OPERATOR CHOICE_RELATION}
1917 -- LOGICAL_OPERATOR ::= and | and then | or | or else | xor
1919 -- On return, Expr_Form indicates the categorization of the expression
1920 -- EF_Range_Attr is not a possible value (if a range attribute is found,
1921 -- an error message is given, and Error is returned).
1923 -- Error recovery: cannot raise Error_Resync
1925 function P_Expression return Node_Id is
1926 Logical_Op : Node_Kind;
1927 Prev_Logical_Op : Node_Kind;
1928 Op_Location : Source_Ptr;
1929 Node1 : Node_Id;
1930 Node2 : Node_Id;
1932 begin
1933 Node1 := P_Relation;
1935 if Token in Token_Class_Logop then
1936 Prev_Logical_Op := N_Empty;
1938 loop
1939 Op_Location := Token_Ptr;
1940 Logical_Op := P_Logical_Operator;
1942 if Prev_Logical_Op /= N_Empty and then
1943 Logical_Op /= Prev_Logical_Op
1944 then
1945 Error_Msg
1946 ("mixed logical operators in expression", Op_Location);
1947 Prev_Logical_Op := N_Empty;
1948 else
1949 Prev_Logical_Op := Logical_Op;
1950 end if;
1952 Node2 := Node1;
1953 Node1 := New_Op_Node (Logical_Op, Op_Location);
1954 Set_Left_Opnd (Node1, Node2);
1955 Set_Right_Opnd (Node1, P_Relation);
1957 -- Check for case of errant comma or semicolon
1959 if Token in Tok_Comma | Tok_Semicolon then
1960 declare
1961 Com : constant Boolean := Token = Tok_Comma;
1962 Scan_State : Saved_Scan_State;
1963 Logop : Node_Kind;
1965 begin
1966 Save_Scan_State (Scan_State); -- at comma/semicolon
1967 Scan; -- past comma/semicolon
1969 -- Check for AND THEN or OR ELSE after comma/semicolon. We
1970 -- do not deal with AND/OR because those cases get mixed up
1971 -- with the select alternatives case.
1973 if Token in Tok_And | Tok_Or then
1974 Logop := P_Logical_Operator;
1975 Restore_Scan_State (Scan_State); -- to comma/semicolon
1977 if Logop in N_And_Then | N_Or_Else then
1978 Scan; -- past comma/semicolon
1980 if Com then
1981 Error_Msg_SP -- CODEFIX
1982 ("|extra "","" ignored");
1983 else
1984 Error_Msg_SP -- CODEFIX
1985 ("|extra "";"" ignored");
1986 end if;
1988 else
1989 Restore_Scan_State (Scan_State); -- to comma/semicolon
1990 end if;
1992 else
1993 Restore_Scan_State (Scan_State); -- to comma/semicolon
1994 end if;
1995 end;
1996 end if;
1998 exit when Token not in Token_Class_Logop;
1999 end loop;
2001 Expr_Form := EF_Non_Simple;
2002 end if;
2004 if Token = Tok_Apostrophe then
2005 Bad_Range_Attribute (Token_Ptr);
2006 return Error;
2007 else
2008 return Node1;
2009 end if;
2010 end P_Expression;
2012 -- This function is identical to the normal P_Expression, except that it
2013 -- also permits the appearance of a case, conditional, or quantified
2014 -- expression if the call immediately follows a left paren, and followed
2015 -- by a right parenthesis. These forms are allowed if these conditions
2016 -- are not met, but an error message will be issued.
2018 function P_Expression_If_OK return Node_Id is
2019 begin
2020 -- Case of conditional, case or quantified expression
2022 if Token in Tok_Case | Tok_If | Tok_For | Tok_Declare then
2023 return P_Unparen_Cond_Expr_Etc;
2025 -- Normal case, not case/conditional/quantified expression
2027 else
2028 return P_Expression;
2029 end if;
2030 end P_Expression_If_OK;
2032 -- This function is identical to the normal P_Expression, except that it
2033 -- checks that the expression scan did not stop on a right paren. It is
2034 -- called in all contexts where a right parenthesis cannot legitimately
2035 -- follow an expression.
2037 -- Error recovery: cannot raise Error_Resync
2039 function P_Expression_No_Right_Paren return Node_Id is
2040 Expr : constant Node_Id := P_Expression;
2041 begin
2042 Ignore (Tok_Right_Paren);
2043 return Expr;
2044 end P_Expression_No_Right_Paren;
2046 ----------------------------------------
2047 -- 4.4 Expression_Or_Range_Attribute --
2048 ----------------------------------------
2050 -- EXPRESSION ::=
2051 -- RELATION {and RELATION} | RELATION {and then RELATION}
2052 -- | RELATION {or RELATION} | RELATION {or else RELATION}
2053 -- | RELATION {xor RELATION}
2055 -- RANGE_ATTRIBUTE_REFERENCE ::= PREFIX ' RANGE_ATTRIBUTE_DESIGNATOR
2057 -- RANGE_ATTRIBUTE_DESIGNATOR ::= range [(static_EXPRESSION)]
2059 -- On return, Expr_Form indicates the categorization of the expression
2060 -- and EF_Range_Attr is one of the possibilities.
2062 -- Error recovery: cannot raise Error_Resync
2064 -- In the grammar, a RANGE attribute is simply a name, but its use is
2065 -- highly restricted, so in the parser, we do not regard it as a name.
2066 -- Instead, P_Name returns without scanning the 'RANGE part of the
2067 -- attribute, and P_Expression_Or_Range_Attribute handles the range
2068 -- attribute reference. In the normal case where a range attribute is
2069 -- not allowed, an error message is issued by P_Expression.
2071 function P_Expression_Or_Range_Attribute return Node_Id is
2072 Logical_Op : Node_Kind;
2073 Prev_Logical_Op : Node_Kind;
2074 Op_Location : Source_Ptr;
2075 Node1 : Node_Id;
2076 Node2 : Node_Id;
2077 Attr_Node : Node_Id;
2079 begin
2080 Node1 := P_Relation;
2082 if Token = Tok_Apostrophe then
2083 Attr_Node := P_Range_Attribute_Reference (Node1);
2084 Expr_Form := EF_Range_Attr;
2085 return Attr_Node;
2087 elsif Token in Token_Class_Logop then
2088 Prev_Logical_Op := N_Empty;
2090 loop
2091 Op_Location := Token_Ptr;
2092 Logical_Op := P_Logical_Operator;
2094 if Prev_Logical_Op /= N_Empty and then
2095 Logical_Op /= Prev_Logical_Op
2096 then
2097 Error_Msg
2098 ("mixed logical operators in expression", Op_Location);
2099 Prev_Logical_Op := N_Empty;
2100 else
2101 Prev_Logical_Op := Logical_Op;
2102 end if;
2104 Node2 := Node1;
2105 Node1 := New_Op_Node (Logical_Op, Op_Location);
2106 Set_Left_Opnd (Node1, Node2);
2107 Set_Right_Opnd (Node1, P_Relation);
2108 exit when Token not in Token_Class_Logop;
2109 end loop;
2111 Expr_Form := EF_Non_Simple;
2112 end if;
2114 if Token = Tok_Apostrophe then
2115 Bad_Range_Attribute (Token_Ptr);
2116 return Error;
2117 else
2118 return Node1;
2119 end if;
2120 end P_Expression_Or_Range_Attribute;
2122 -- Version that allows a non-parenthesized case, conditional, or quantified
2123 -- expression if the call immediately follows a left paren, and followed
2124 -- by a right parenthesis. These forms are allowed if these conditions
2125 -- are not met, but an error message will be issued.
2127 function P_Expression_Or_Range_Attribute_If_OK return Node_Id is
2128 begin
2129 -- Case of conditional, case or quantified expression
2131 if Token in Tok_Case | Tok_If | Tok_For | Tok_Declare then
2132 return P_Unparen_Cond_Expr_Etc;
2134 -- Normal case, not one of the above expression types
2136 else
2137 return P_Expression_Or_Range_Attribute;
2138 end if;
2139 end P_Expression_Or_Range_Attribute_If_OK;
2141 -------------------
2142 -- 4.4 Relation --
2143 -------------------
2145 -- This procedure scans both relations and choice relations
2147 -- CHOICE_RELATION ::=
2148 -- SIMPLE_EXPRESSION [RELATIONAL_OPERATOR SIMPLE_EXPRESSION]
2150 -- RELATION ::=
2151 -- SIMPLE_EXPRESSION [not] in MEMBERSHIP_CHOICE_LIST
2152 -- | RAISE_EXPRESSION
2154 -- MEMBERSHIP_CHOICE_LIST ::=
2155 -- MEMBERSHIP_CHOICE {'|' MEMBERSHIP CHOICE}
2157 -- MEMBERSHIP_CHOICE ::=
2158 -- CHOICE_EXPRESSION | RANGE | SUBTYPE_MARK
2160 -- RAISE_EXPRESSION ::= raise exception_NAME [with string_EXPRESSION]
2162 -- On return, Expr_Form indicates the categorization of the expression
2164 -- Note: if Token = Tok_Apostrophe on return, then Expr_Form is set to
2165 -- EF_Simple_Name and the following token is RANGE (range attribute case).
2167 -- Error recovery: cannot raise Error_Resync. If an error occurs within an
2168 -- expression, then tokens are scanned until either a non-expression token,
2169 -- a right paren (not matched by a left paren) or a comma, is encountered.
2171 function P_Relation return Node_Id is
2172 Node1, Node2 : Node_Id;
2173 Optok : Source_Ptr;
2175 begin
2176 -- First check for raise expression
2178 if Token = Tok_Raise then
2179 Expr_Form := EF_Non_Simple;
2180 return P_Raise_Expression;
2181 end if;
2183 -- All other cases
2185 Node1 := P_Simple_Expression;
2187 if Token not in Token_Class_Relop then
2188 return Node1;
2190 else
2191 -- Here we have a relational operator following. If so then scan it
2192 -- out. Note that the assignment symbol := is treated as a relational
2193 -- operator to improve the error recovery when it is misused for =.
2194 -- P_Relational_Operator also parses the IN and NOT IN operations.
2196 Optok := Token_Ptr;
2197 Node2 := New_Op_Node (P_Relational_Operator, Optok);
2198 Set_Left_Opnd (Node2, Node1);
2200 -- Case of IN or NOT IN
2202 if Prev_Token = Tok_In then
2203 P_Membership_Test (Node2);
2205 -- Case of relational operator (= /= < <= > >=)
2207 else
2208 Set_Right_Opnd (Node2, P_Simple_Expression);
2209 end if;
2211 Expr_Form := EF_Non_Simple;
2213 if Token in Token_Class_Relop then
2214 Error_Msg_SC ("unexpected relational operator");
2215 raise Error_Resync;
2216 end if;
2218 return Node2;
2219 end if;
2221 -- If any error occurs, then scan to the next expression terminator symbol
2222 -- or comma or right paren at the outer (i.e. current) parentheses level.
2223 -- The flags are set to indicate a normal simple expression.
2225 exception
2226 when Error_Resync =>
2227 Resync_Expression;
2228 Expr_Form := EF_Simple;
2229 return Error;
2230 end P_Relation;
2232 ----------------------------
2233 -- 4.4 Simple Expression --
2234 ----------------------------
2236 -- SIMPLE_EXPRESSION ::=
2237 -- [UNARY_ADDING_OPERATOR] TERM {BINARY_ADDING_OPERATOR TERM}
2239 -- On return, Expr_Form indicates the categorization of the expression
2241 -- Note: if Token = Tok_Apostrophe on return, then Expr_Form is set to
2242 -- EF_Simple_Name and the following token is RANGE (range attribute case).
2244 -- Error recovery: cannot raise Error_Resync. If an error occurs within an
2245 -- expression, then tokens are scanned until either a non-expression token,
2246 -- a right paren (not matched by a left paren) or a comma, is encountered.
2248 -- Note: P_Simple_Expression is called only internally by higher level
2249 -- expression routines. In cases in the grammar where a simple expression
2250 -- is required, the approach is to scan an expression, and then post an
2251 -- appropriate error message if the expression obtained is not simple. This
2252 -- gives better error recovery and treatment.
2254 function P_Simple_Expression return Node_Id is
2255 Scan_State : Saved_Scan_State;
2256 Node1 : Node_Id;
2257 Node2 : Node_Id;
2258 Tokptr : Source_Ptr;
2260 function At_Start_Of_Attribute return Boolean;
2261 -- Tests if we have quote followed by attribute name, if so, return True
2262 -- otherwise return False.
2264 ---------------------------
2265 -- At_Start_Of_Attribute --
2266 ---------------------------
2268 function At_Start_Of_Attribute return Boolean is
2269 begin
2270 if Token /= Tok_Apostrophe then
2271 return False;
2273 else
2274 declare
2275 Scan_State : Saved_Scan_State;
2277 begin
2278 Save_Scan_State (Scan_State);
2279 Scan; -- past quote
2281 if Token = Tok_Identifier
2282 and then Is_Attribute_Name (Chars (Token_Node))
2283 then
2284 Restore_Scan_State (Scan_State);
2285 return True;
2286 else
2287 Restore_Scan_State (Scan_State);
2288 return False;
2289 end if;
2290 end;
2291 end if;
2292 end At_Start_Of_Attribute;
2294 -- Start of processing for P_Simple_Expression
2296 begin
2297 -- Check for cases starting with a name. There are two reasons for
2298 -- special casing. First speed things up by catching a common case
2299 -- without going through several routine layers. Second the caller must
2300 -- be informed via Expr_Form when the simple expression is a name.
2302 if Token in Token_Class_Name then
2303 Node1 := P_Name;
2305 -- Deal with apostrophe cases
2307 if Token = Tok_Apostrophe then
2308 Save_Scan_State (Scan_State); -- at apostrophe
2309 Scan; -- past apostrophe
2311 -- If qualified expression, scan it out and fall through
2313 if Token = Tok_Left_Paren then
2314 Node1 := P_Qualified_Expression (Node1);
2315 Expr_Form := EF_Simple;
2317 -- If range attribute, then we return with Token pointing to the
2318 -- apostrophe. Note: avoid the normal error check on exit. We
2319 -- know that the expression really is complete in this case.
2321 else -- Token = Tok_Range then
2322 Restore_Scan_State (Scan_State); -- to apostrophe
2323 Expr_Form := EF_Simple_Name;
2324 return Node1;
2325 end if;
2326 end if;
2328 -- If an expression terminator follows, the previous processing
2329 -- completely scanned out the expression (a common case), and
2330 -- left Expr_Form set appropriately for returning to our caller.
2332 if Token in Token_Class_Sterm then
2333 null;
2335 -- Handle '}' as expression terminator of an interpolated
2336 -- expression.
2338 elsif Inside_Interpolated_String_Literal
2339 and then Token = Tok_Right_Curly_Bracket
2340 then
2341 null;
2343 -- If we do not have an expression terminator, then complete the
2344 -- scan of a simple expression. This code duplicates the code
2345 -- found in P_Term and P_Factor.
2347 else
2348 if Token = Tok_Double_Asterisk then
2349 if Style_Check then
2350 Style.Check_Exponentiation_Operator;
2351 end if;
2353 Node2 := New_Op_Node (N_Op_Expon, Token_Ptr);
2354 Scan; -- past **
2355 Set_Left_Opnd (Node2, Node1);
2356 Set_Right_Opnd (Node2, P_Primary);
2357 Check_Bad_Exp;
2358 Node1 := Node2;
2359 end if;
2361 loop
2362 exit when Token not in Token_Class_Mulop;
2363 Tokptr := Token_Ptr;
2364 Node2 := New_Op_Node (P_Multiplying_Operator, Tokptr);
2366 if Style_Check then
2367 Style.Check_Binary_Operator;
2368 end if;
2370 Scan; -- past operator
2371 Set_Left_Opnd (Node2, Node1);
2372 Set_Right_Opnd (Node2, P_Factor);
2373 Node1 := Node2;
2374 end loop;
2376 loop
2377 exit when Token not in Token_Class_Binary_Addop;
2378 Tokptr := Token_Ptr;
2379 Node2 := New_Op_Node (P_Binary_Adding_Operator, Tokptr);
2381 if Style_Check then
2382 Style.Check_Binary_Operator;
2383 end if;
2385 Scan; -- past operator
2386 Set_Left_Opnd (Node2, Node1);
2387 Set_Right_Opnd (Node2, P_Term);
2388 Node1 := Node2;
2389 end loop;
2391 Expr_Form := EF_Simple;
2392 end if;
2394 -- Cases where simple expression does not start with a name
2396 else
2397 -- Scan initial sign and initial Term
2399 if Token in Token_Class_Unary_Addop then
2400 Tokptr := Token_Ptr;
2401 Node1 := New_Op_Node (P_Unary_Adding_Operator, Tokptr);
2403 if Style_Check then
2404 Style.Check_Unary_Plus_Or_Minus (Inside_Depends);
2405 end if;
2407 Scan; -- past operator
2408 Set_Right_Opnd (Node1, P_Term);
2409 else
2410 Node1 := P_Term;
2411 end if;
2413 -- In the following, we special-case a sequence of concatenations of
2414 -- string literals, such as "aaa" & "bbb" & ... & "ccc", with nothing
2415 -- else mixed in. For such a sequence, we return a tree representing
2416 -- "" & "aaabbb...ccc" (a single concatenation). This is done only if
2417 -- the number of concatenations is large. If semantic analysis
2418 -- resolves the "&" to a predefined one, then this folding gives the
2419 -- right answer. Otherwise, semantic analysis will complain about a
2420 -- capacity-exceeded error. The purpose of this trick is to avoid
2421 -- creating a deeply nested tree, which would cause deep recursion
2422 -- during semantics, causing stack overflow. This way, we can handle
2423 -- enormous concatenations in the normal case of predefined "&". We
2424 -- first build up the normal tree, and then rewrite it if
2425 -- appropriate.
2427 declare
2428 Num_Concats_Threshold : constant Positive := 1000;
2429 -- Arbitrary threshold value to enable optimization
2431 First_Node : constant Node_Id := Node1;
2432 Is_Strlit_Concat : Boolean;
2433 -- True iff we've parsed a sequence of concatenations of string
2434 -- literals, with nothing else mixed in.
2436 Num_Concats : Natural;
2437 -- Number of "&" operators if Is_Strlit_Concat is True
2439 begin
2440 Is_Strlit_Concat :=
2441 Nkind (Node1) = N_String_Literal
2442 and then Token = Tok_Ampersand;
2443 Num_Concats := 0;
2445 -- Scan out sequence of terms separated by binary adding operators
2447 loop
2448 exit when Token not in Token_Class_Binary_Addop;
2449 Tokptr := Token_Ptr;
2450 Node2 := New_Op_Node (P_Binary_Adding_Operator, Tokptr);
2452 if Style_Check and then not Debug_Flag_Dot_QQ then
2453 Style.Check_Binary_Operator;
2454 end if;
2456 Scan; -- past operator
2457 Set_Left_Opnd (Node2, Node1);
2458 Node1 := P_Term;
2459 Set_Right_Opnd (Node2, Node1);
2461 -- Check if we're still concatenating string literals
2463 Is_Strlit_Concat :=
2464 Is_Strlit_Concat
2465 and then Nkind (Node2) = N_Op_Concat
2466 and then Nkind (Node1) = N_String_Literal;
2468 if Is_Strlit_Concat then
2469 Num_Concats := Num_Concats + 1;
2470 end if;
2472 Node1 := Node2;
2473 end loop;
2475 -- If we have an enormous series of concatenations of string
2476 -- literals, rewrite as explained above. The Is_Folded_In_Parser
2477 -- flag tells semantic analysis that if the "&" is not predefined,
2478 -- the folded value is wrong.
2480 if Is_Strlit_Concat
2481 and then Num_Concats >= Num_Concats_Threshold
2482 then
2483 declare
2484 Strlit_Concat_Val : String_Id;
2485 -- Contains the folded value (which will be correct if the
2486 -- "&" operators are the predefined ones).
2488 Cur_Node : Node_Id;
2489 -- For walking up the tree
2491 New_Node : Node_Id;
2492 -- Folded node to replace Node1
2494 Loc : constant Source_Ptr := Sloc (First_Node);
2496 begin
2497 -- Walk up the tree starting at the leftmost string literal
2498 -- (First_Node), building up the Strlit_Concat_Val as we
2499 -- go. Note that we do not use recursion here -- the whole
2500 -- point is to avoid recursively walking that enormous tree.
2502 Start_String;
2503 Store_String_Chars (Strval (First_Node));
2505 Cur_Node := Parent (First_Node);
2506 while Present (Cur_Node) loop
2507 pragma Assert (Nkind (Cur_Node) = N_Op_Concat and then
2508 Nkind (Right_Opnd (Cur_Node)) = N_String_Literal);
2510 Store_String_Chars (Strval (Right_Opnd (Cur_Node)));
2511 Cur_Node := Parent (Cur_Node);
2512 end loop;
2514 Strlit_Concat_Val := End_String;
2516 -- Create new folded node, and rewrite result with a concat-
2517 -- enation of an empty string literal and the folded node.
2519 New_Node :=
2520 Make_Op_Concat (Loc,
2521 Make_String_Literal (Loc, Null_String_Id),
2522 Make_String_Literal (Loc, Strlit_Concat_Val,
2523 Is_Folded_In_Parser => True));
2524 Rewrite (Node1, New_Node);
2525 end;
2526 end if;
2527 end;
2529 -- All done, we clearly do not have name or numeric literal so this
2530 -- is a case of a simple expression which is some other possibility.
2532 Expr_Form := EF_Simple;
2533 end if;
2535 -- If all extensions are enabled and we have a deep delta aggregate
2536 -- whose type is an array type with an element type that is a
2537 -- record type, then we can encounter legal things like
2538 -- with delta (Some_Index_Expression).Some_Component
2539 -- where a parenthesized expression precedes a dot.
2540 -- Similarly, if the element type is an array type then we can see
2541 -- with delta (Some_Index_Expression)(Another_Index_Expression)
2542 -- where a parenthesized expression precedes a left parenthesis.
2544 if Token in Tok_Dot | Tok_Left_Paren
2545 and then Prev_Token = Tok_Right_Paren
2546 and then Serious_Errors_Detected = 0
2547 and then Inside_Delta_Aggregate
2548 and then All_Extensions_Allowed
2549 then
2550 if Token = Tok_Dot then
2551 Node2 := New_Node (N_Selected_Component, Token_Ptr);
2552 Scan; -- past dot
2553 declare
2554 Tail : constant Node_Id := P_Simple_Expression;
2555 -- remaining selectors occurring after the dot
2557 Rover : Node_Id := Tail;
2558 Prev : Node_Id := Empty;
2559 begin
2560 -- If Tail already has a prefix, then we want to prepend
2561 -- Node1 onto that prefix and then return Tail.
2562 -- Otherwise, Tail should simply be an identifier so
2563 -- we want to build a Selected_Component with Tail as the
2564 -- selector name and return that.
2566 Set_Prefix (Node2, Node1);
2568 while Nkind (Rover)
2569 in N_Indexed_Component | N_Selected_Component loop
2570 Prev := Rover;
2571 Rover := Prefix (Rover);
2572 end loop;
2574 case Nkind (Prev) is
2575 when N_Selected_Component | N_Indexed_Component =>
2576 -- We've scanned a dot, so an identifier should follow
2577 if Nkind (Prefix (Prev)) = N_Identifier then
2578 Set_Selector_Name (Node2, Prefix (Prev));
2579 Set_Prefix (Prev, Node2);
2580 return Tail;
2581 end if;
2583 when N_Empty =>
2584 -- We've scanned a dot, so an identifier should follow
2585 if Nkind (Tail) = N_Identifier then
2586 Set_Selector_Name (Node2, Tail);
2587 return Node2;
2588 end if;
2590 when others =>
2591 null;
2592 end case;
2594 -- fall through to error case
2595 end;
2596 else
2597 Node2 := New_Node (N_Indexed_Component, Token_Ptr);
2598 declare
2599 Tail : constant Node_Id := P_Simple_Expression;
2600 -- remaining selectors
2602 Rover : Node_Id := Tail;
2603 Prev : Node_Id := Empty;
2604 begin
2605 -- If Tail already has a prefix, then we want to prepend
2606 -- Node1 onto that prefix and then return Tail.
2607 -- Otherwise, Tail should be an index expression and
2608 -- we want to build an Indexed_Component with Tail as the
2609 -- index value and return that.
2611 Set_Prefix (Node2, Node1);
2613 while Nkind (Rover)
2614 in N_Indexed_Component | N_Selected_Component loop
2615 Prev := Rover;
2616 Rover := Prefix (Rover);
2617 end loop;
2619 case Nkind (Prev) is
2620 when N_Selected_Component | N_Indexed_Component =>
2621 Set_Expressions (Node2, New_List (Prefix (Prev)));
2622 Set_Prefix (Prev, Node2);
2623 return Tail;
2625 when N_Empty =>
2626 Set_Expressions (Node2, New_List (Tail));
2627 return Node2;
2629 when others =>
2630 null;
2631 end case;
2633 -- fall through to error case
2634 end;
2635 end if;
2636 end if;
2638 -- Come here at end of simple expression, where we do a couple of
2639 -- special checks to improve error recovery.
2641 -- Special test to improve error recovery. If the current token is a
2642 -- period, then someone is trying to do selection on something that is
2643 -- not a name, e.g. a qualified expression.
2645 if Token = Tok_Dot then
2646 Error_Msg_SC ("prefix for selection is not a name");
2648 -- If qualified expression, comment and continue, otherwise
2649 -- something is pretty nasty so do an Error_Resync call.
2651 if Ada_Version < Ada_2012
2652 and then Nkind (Node1) = N_Qualified_Expression
2653 then
2654 Error_Msg_SC ("\would be legal in Ada 2012 mode");
2655 else
2656 raise Error_Resync;
2657 end if;
2658 end if;
2660 -- Special test to improve error recovery: If the current token is
2661 -- not the first token on a line (as determined by checking the
2662 -- previous token position with the start of the current line),
2663 -- then we insist that we have an appropriate terminating token.
2664 -- Consider the following two examples:
2666 -- 1) if A nad B then ...
2668 -- 2) A := B
2669 -- C := D
2671 -- In the first example, we would like to issue a binary operator
2672 -- expected message and resynchronize to the then. In the second
2673 -- example, we do not want to issue a binary operator message, so
2674 -- that instead we will get the missing semicolon message. This
2675 -- distinction is of course a heuristic which does not always work,
2676 -- but in practice it is quite effective.
2678 -- Note: the one case in which we do not go through this circuit is
2679 -- when we have scanned a range attribute and want to return with
2680 -- Token pointing to the apostrophe. The apostrophe is not normally
2681 -- an expression terminator, and is not in Token_Class_Sterm, but
2682 -- in this special case we know that the expression is complete.
2684 -- We disable this error recovery machinery when we are processing an
2685 -- interpolated string and we reach the expression terminator '}'.
2687 if not Token_Is_At_Start_Of_Line
2688 and then Token not in Token_Class_Sterm
2689 and then not (Inside_Interpolated_String_Literal
2690 and then Token = Tok_Right_Curly_Bracket)
2691 then
2692 -- Normally the right error message is indeed that we expected a
2693 -- binary operator, but in the case of being between a right and left
2694 -- paren, e.g. in an aggregate, a more likely error is missing comma.
2696 if Prev_Token = Tok_Right_Paren and then Token = Tok_Left_Paren then
2697 T_Comma;
2699 -- And if we have a quote, we may have a bad attribute
2701 elsif At_Start_Of_Attribute then
2702 Error_Msg_SC ("prefix of attribute must be a name");
2704 if Ada_Version >= Ada_2012 then
2705 Error_Msg_SC ("\qualify expression to turn it into a name");
2706 end if;
2708 -- Normal case for binary operator expected message
2710 else
2711 Error_Msg_AP ("binary operator expected");
2712 end if;
2714 raise Error_Resync;
2716 else
2717 return Node1;
2718 end if;
2720 -- If any error occurs, then scan to next expression terminator symbol
2721 -- or comma, right paren or vertical bar at the outer (i.e. current) paren
2722 -- level. Expr_Form is set to indicate a normal simple expression.
2724 exception
2725 when Error_Resync =>
2726 Resync_Expression;
2727 Expr_Form := EF_Simple;
2728 return Error;
2729 end P_Simple_Expression;
2731 -----------------------------------------------
2732 -- 4.4 Simple Expression or Range Attribute --
2733 -----------------------------------------------
2735 -- SIMPLE_EXPRESSION ::=
2736 -- [UNARY_ADDING_OPERATOR] TERM {BINARY_ADDING_OPERATOR TERM}
2738 -- RANGE_ATTRIBUTE_REFERENCE ::= PREFIX ' RANGE_ATTRIBUTE_DESIGNATOR
2740 -- RANGE_ATTRIBUTE_DESIGNATOR ::= range [(static_EXPRESSION)]
2742 -- Error recovery: cannot raise Error_Resync
2744 function P_Simple_Expression_Or_Range_Attribute return Node_Id is
2745 Sexpr : Node_Id;
2746 Attr_Node : Node_Id;
2748 begin
2749 -- We don't just want to roar ahead and call P_Simple_Expression
2750 -- here, since we want to handle the case of a parenthesized range
2751 -- attribute cleanly.
2753 if Token = Tok_Left_Paren then
2754 declare
2755 Lptr : constant Source_Ptr := Token_Ptr;
2756 Scan_State : Saved_Scan_State;
2758 begin
2759 Save_Scan_State (Scan_State);
2760 Scan; -- past left paren
2761 Sexpr := P_Simple_Expression;
2763 if Token = Tok_Apostrophe then
2764 Attr_Node := P_Range_Attribute_Reference (Sexpr);
2765 Expr_Form := EF_Range_Attr;
2767 if Token = Tok_Right_Paren then
2768 Scan; -- scan past right paren if present
2769 end if;
2771 Error_Msg ("parentheses not allowed for range attribute", Lptr);
2773 return Attr_Node;
2774 end if;
2776 Restore_Scan_State (Scan_State);
2777 end;
2778 end if;
2780 -- Here after dealing with parenthesized range attribute
2782 Sexpr := P_Simple_Expression;
2784 if Token = Tok_Apostrophe then
2785 Attr_Node := P_Range_Attribute_Reference (Sexpr);
2786 Expr_Form := EF_Range_Attr;
2787 return Attr_Node;
2789 else
2790 return Sexpr;
2791 end if;
2792 end P_Simple_Expression_Or_Range_Attribute;
2794 ---------------
2795 -- 4.4 Term --
2796 ---------------
2798 -- TERM ::= FACTOR {MULTIPLYING_OPERATOR FACTOR}
2800 -- Error recovery: can raise Error_Resync
2802 function P_Term return Node_Id is
2803 Node1, Node2 : Node_Id;
2804 Tokptr : Source_Ptr;
2806 begin
2807 Node1 := P_Factor;
2809 loop
2810 exit when Token not in Token_Class_Mulop;
2811 Tokptr := Token_Ptr;
2812 Node2 := New_Op_Node (P_Multiplying_Operator, Tokptr);
2814 if Style_Check and then not Debug_Flag_Dot_QQ then
2815 Style.Check_Binary_Operator;
2816 end if;
2818 Scan; -- past operator
2819 Set_Left_Opnd (Node2, Node1);
2820 Set_Right_Opnd (Node2, P_Factor);
2821 Node1 := Node2;
2822 end loop;
2824 return Node1;
2825 end P_Term;
2827 -----------------
2828 -- 4.4 Factor --
2829 -----------------
2831 -- FACTOR ::= PRIMARY [** PRIMARY] | abs PRIMARY | not PRIMARY
2833 -- Error recovery: can raise Error_Resync
2835 function P_Factor return Node_Id is
2836 Node1 : Node_Id;
2837 Node2 : Node_Id;
2839 begin
2840 if Token = Tok_Abs then
2841 Node1 := New_Op_Node (N_Op_Abs, Token_Ptr);
2843 if Style_Check then
2844 Style.Check_Abs_Not;
2845 end if;
2847 Scan; -- past ABS
2848 Set_Right_Opnd (Node1, P_Primary);
2849 return Node1;
2851 elsif Token = Tok_Not then
2852 Node1 := New_Op_Node (N_Op_Not, Token_Ptr);
2854 if Style_Check then
2855 Style.Check_Abs_Not;
2856 end if;
2858 Scan; -- past NOT
2859 Set_Right_Opnd (Node1, P_Primary);
2860 return Node1;
2862 else
2863 Node1 := P_Primary;
2865 if Token = Tok_Double_Asterisk then
2866 Node2 := New_Op_Node (N_Op_Expon, Token_Ptr);
2867 Scan; -- past **
2868 Set_Left_Opnd (Node2, Node1);
2869 Set_Right_Opnd (Node2, P_Primary);
2870 Check_Bad_Exp;
2871 return Node2;
2872 else
2873 return Node1;
2874 end if;
2875 end if;
2876 end P_Factor;
2878 ------------------
2879 -- 4.4 Primary --
2880 ------------------
2882 -- PRIMARY ::=
2883 -- NUMERIC_LITERAL | null
2884 -- | STRING_LITERAL | AGGREGATE
2885 -- | NAME | QUALIFIED_EXPRESSION
2886 -- | ALLOCATOR | (EXPRESSION) | QUANTIFIED_EXPRESSION
2887 -- | REDUCTION_ATTRIBUTE_REFERENCE
2889 -- Error recovery: can raise Error_Resync
2891 function P_Primary return Node_Id is
2892 Scan_State : Saved_Scan_State;
2893 Node1 : Node_Id;
2895 Lparen : constant Boolean := Prev_Token = Tok_Left_Paren;
2896 -- Remember if previous token is a left parenthesis. This is used to
2897 -- deal with checking whether IF/CASE/FOR expressions appearing as
2898 -- primaries require extra parenthesization.
2900 begin
2901 -- The loop runs more than once only if misplaced pragmas are found
2902 -- or if a misplaced unary minus is skipped.
2904 loop
2905 case Token is
2907 -- Name token can start a name, call or qualified expression, all
2908 -- of which are acceptable possibilities for primary. Note also
2909 -- that string literal is included in name (as operator symbol)
2910 -- and type conversion is included in name (as indexed component).
2912 when Tok_Char_Literal
2913 | Tok_Identifier
2914 | Tok_Operator_Symbol
2916 Node1 := P_Name;
2918 -- All done unless apostrophe follows
2920 if Token /= Tok_Apostrophe then
2921 return Node1;
2923 -- Apostrophe following means that we have either just parsed
2924 -- the subtype mark of a qualified expression, or the prefix
2925 -- or a range attribute.
2927 else -- Token = Tok_Apostrophe
2928 Save_Scan_State (Scan_State); -- at apostrophe
2929 Scan; -- past apostrophe
2931 -- If range attribute, then this is always an error, since
2932 -- the only legitimate case (where the scanned expression is
2933 -- a qualified simple name) is handled at the level of the
2934 -- Simple_Expression processing. This case corresponds to a
2935 -- usage such as 3 + A'Range, which is always illegal.
2937 if Token = Tok_Range then
2938 Restore_Scan_State (Scan_State); -- to apostrophe
2939 Bad_Range_Attribute (Token_Ptr);
2940 return Error;
2942 -- If left paren, then we have a qualified expression.
2943 -- Note that P_Name guarantees that in this case, where
2944 -- Token = Tok_Apostrophe on return, the only two possible
2945 -- tokens following the apostrophe are left paren and
2946 -- RANGE, so we know we have a left paren here.
2948 else -- Token = Tok_Left_Paren
2949 return P_Qualified_Expression (Node1);
2951 end if;
2952 end if;
2954 -- Numeric or string literal
2956 when Tok_Integer_Literal
2957 | Tok_Real_Literal
2958 | Tok_String_Literal
2960 Node1 := Token_Node;
2961 Scan; -- past number
2962 return Node1;
2964 -- Left paren, starts aggregate or parenthesized expression
2966 when Tok_Left_Paren =>
2967 declare
2968 Expr : constant Node_Id := P_Aggregate_Or_Paren_Expr;
2970 begin
2971 if Nkind (Expr) = N_Attribute_Reference
2972 and then Attribute_Name (Expr) = Name_Range
2973 then
2974 Bad_Range_Attribute (Sloc (Expr));
2975 end if;
2977 return Expr;
2978 end;
2980 when Tok_Left_Bracket =>
2981 return P_Aggregate;
2983 when Tok_Left_Interpolated_String =>
2984 return P_Interpolated_String_Literal;
2986 -- Allocator
2988 when Tok_New =>
2989 return P_Allocator;
2991 -- Null
2993 when Tok_Null =>
2994 Scan; -- past NULL
2995 return New_Node (N_Null, Prev_Token_Ptr);
2997 -- Pragma, not allowed here, so just skip past it
2999 when Tok_Pragma =>
3000 P_Pragmas_Misplaced;
3002 -- Deal with IF (possible unparenthesized if expression)
3004 when Tok_If =>
3006 -- If this looks like a real if, defined as an IF appearing at
3007 -- the start of a new line, then we consider we have a missing
3008 -- operand. If in Ada 2012 and the IF is not properly indented
3009 -- for a statement, we prefer to issue a message about an ill-
3010 -- parenthesized if expression.
3012 if Token_Is_At_Start_Of_Line
3013 and then not
3014 (Ada_Version >= Ada_2012
3015 and then
3016 (Style_Check_Indentation = 0
3017 or else
3018 Start_Column rem Style_Check_Indentation /= 0))
3019 then
3020 Error_Msg_AP ("missing operand");
3021 return Error;
3023 -- If this looks like an if expression, then treat it that way
3024 -- with an error message if not explicitly surrounded by
3025 -- parentheses.
3027 elsif Ada_Version >= Ada_2012 then
3028 Node1 := P_If_Expression;
3030 if not (Lparen and then Token = Tok_Right_Paren) then
3031 Error_Msg
3032 ("if expression must be parenthesized", Sloc (Node1));
3033 end if;
3035 return Node1;
3037 -- Otherwise treat as misused identifier
3039 else
3040 return P_Identifier;
3041 end if;
3043 -- Deal with CASE (possible unparenthesized case expression)
3045 when Tok_Case =>
3047 -- If this looks like a real case, defined as a CASE appearing
3048 -- the start of a new line, then we consider we have a missing
3049 -- operand. If in Ada 2012 and the CASE is not properly
3050 -- indented for a statement, we prefer to issue a message about
3051 -- an ill-parenthesized case expression.
3053 if Token_Is_At_Start_Of_Line
3054 and then not
3055 (Ada_Version >= Ada_2012
3056 and then Style_Check_Indentation /= 0
3057 and then Start_Column rem Style_Check_Indentation /= 0)
3058 then
3059 Error_Msg_AP ("missing operand");
3060 return Error;
3062 -- If this looks like a case expression, then treat it that way
3063 -- with an error message if not within parentheses.
3065 elsif Ada_Version >= Ada_2012 then
3066 Node1 := P_Case_Expression;
3068 if not (Lparen and then Token = Tok_Right_Paren) then
3069 Error_Msg
3070 ("case expression must be parenthesized", Sloc (Node1));
3071 end if;
3073 return Node1;
3075 -- Otherwise treat as misused identifier
3077 else
3078 return P_Identifier;
3079 end if;
3081 -- For [all | some] indicates a quantified expression
3083 when Tok_For =>
3084 if Token_Is_At_Start_Of_Line then
3085 Error_Msg_AP ("misplaced loop");
3086 return Error;
3088 elsif Ada_Version >= Ada_2012 then
3089 Save_Scan_State (Scan_State);
3090 Scan; -- past FOR
3092 if Token in Tok_All | Tok_Some then
3093 Restore_Scan_State (Scan_State); -- To FOR
3094 Node1 := P_Quantified_Expression;
3096 if not (Lparen and then Token = Tok_Right_Paren) then
3097 Error_Msg
3098 ("quantified expression must be parenthesized",
3099 Sloc (Node1));
3100 end if;
3101 else
3102 Restore_Scan_State (Scan_State); -- To FOR
3103 Node1 := P_Iterated_Component_Association;
3104 end if;
3106 return Node1;
3108 -- Otherwise treat as misused identifier
3110 else
3111 return P_Identifier;
3112 end if;
3114 -- Minus may well be an improper attempt at a unary minus. Give
3115 -- a message, skip the minus and keep going.
3117 when Tok_Minus =>
3118 Error_Msg_SC ("parentheses required for unary minus");
3119 Scan; -- past minus
3121 when Tok_At_Sign => -- AI12-0125 : target_name
3122 Error_Msg_Ada_2022_Feature ("target name", Token_Ptr);
3124 Node1 := P_Name;
3125 return Node1;
3127 -- Anything else is illegal as the first token of a primary, but
3128 -- we test for some common errors, to improve error messages.
3130 when others =>
3131 if Is_Reserved_Identifier then
3132 return P_Identifier;
3134 elsif Prev_Token = Tok_Comma then
3135 Error_Msg_SP -- CODEFIX
3136 ("|extra "","" ignored");
3137 raise Error_Resync;
3139 else
3140 Error_Msg_AP ("missing operand");
3141 raise Error_Resync;
3142 end if;
3143 end case;
3144 end loop;
3145 end P_Primary;
3147 -------------------------------
3148 -- 4.4 Quantified_Expression --
3149 -------------------------------
3151 -- QUANTIFIED_EXPRESSION ::=
3152 -- for QUANTIFIER LOOP_PARAMETER_SPECIFICATION => PREDICATE |
3153 -- for QUANTIFIER ITERATOR_SPECIFICATION => PREDICATE
3155 function P_Quantified_Expression return Node_Id is
3156 I_Spec : Node_Id;
3157 Node1 : Node_Id;
3159 begin
3160 Error_Msg_Ada_2012_Feature ("quantified expression", Token_Ptr);
3161 Scan; -- past FOR
3162 Node1 := New_Node (N_Quantified_Expression, Prev_Token_Ptr);
3164 if Token = Tok_All then
3165 Set_All_Present (Node1);
3166 elsif Token /= Tok_Some then
3167 Error_Msg_AP ("missing quantifier");
3168 raise Error_Resync;
3169 end if;
3171 Scan; -- past ALL or SOME
3172 I_Spec := P_Loop_Parameter_Specification;
3174 if Nkind (I_Spec) = N_Loop_Parameter_Specification then
3175 Set_Loop_Parameter_Specification (Node1, I_Spec);
3176 else
3177 Set_Iterator_Specification (Node1, I_Spec);
3178 end if;
3180 if Token = Tok_Arrow then
3181 Scan;
3182 Set_Condition (Node1, P_Expression);
3183 return Node1;
3184 else
3185 Error_Msg_AP ("missing arrow");
3186 raise Error_Resync;
3187 end if;
3188 end P_Quantified_Expression;
3190 ---------------------------
3191 -- 4.5 Logical Operator --
3192 ---------------------------
3194 -- LOGICAL_OPERATOR ::= and | or | xor
3196 -- Note: AND THEN and OR ELSE are also treated as logical operators
3197 -- by the parser (even though they are not operators semantically)
3199 -- The value returned is the appropriate Node_Kind code for the operator
3200 -- On return, Token points to the token following the scanned operator.
3202 -- The caller has checked that the first token is a legitimate logical
3203 -- operator token (i.e. is either XOR, AND, OR).
3205 -- Error recovery: cannot raise Error_Resync
3207 function P_Logical_Operator return Node_Kind is
3208 begin
3209 if Token = Tok_And then
3210 if Style_Check then
3211 Style.Check_Binary_Operator;
3212 end if;
3214 Scan; -- past AND
3216 if Token = Tok_Then then
3217 Scan; -- past THEN
3218 return N_And_Then;
3219 else
3220 return N_Op_And;
3221 end if;
3223 elsif Token = Tok_Or then
3224 if Style_Check then
3225 Style.Check_Binary_Operator;
3226 end if;
3228 Scan; -- past OR
3230 if Token = Tok_Else then
3231 Scan; -- past ELSE
3232 return N_Or_Else;
3233 else
3234 return N_Op_Or;
3235 end if;
3237 else -- Token = Tok_Xor
3238 if Style_Check then
3239 Style.Check_Binary_Operator;
3240 end if;
3242 Scan; -- past XOR
3243 return N_Op_Xor;
3244 end if;
3245 end P_Logical_Operator;
3247 ------------------------------
3248 -- 4.5 Relational Operator --
3249 ------------------------------
3251 -- RELATIONAL_OPERATOR ::= = | /= | < | <= | > | >=
3253 -- The value returned is the appropriate Node_Kind code for the operator.
3254 -- On return, Token points to the operator token, NOT past it.
3256 -- The caller has checked that the first token is a legitimate relational
3257 -- operator token (i.e. is one of the operator tokens listed above).
3259 -- Error recovery: cannot raise Error_Resync
3261 function P_Relational_Operator return Node_Kind is
3262 Op_Kind : Node_Kind;
3263 Relop_Node : constant array (Token_Class_Relop) of Node_Kind :=
3264 (Tok_Less => N_Op_Lt,
3265 Tok_Equal => N_Op_Eq,
3266 Tok_Greater => N_Op_Gt,
3267 Tok_Not_Equal => N_Op_Ne,
3268 Tok_Greater_Equal => N_Op_Ge,
3269 Tok_Less_Equal => N_Op_Le,
3270 Tok_In => N_In,
3271 Tok_Not => N_Not_In,
3272 Tok_Box => N_Op_Ne);
3274 begin
3275 if Token = Tok_Box then
3276 Error_Msg_SC -- CODEFIX
3277 ("|""'<'>"" should be ""/=""");
3278 end if;
3280 Op_Kind := Relop_Node (Token);
3282 if Style_Check then
3283 Style.Check_Binary_Operator;
3284 end if;
3286 Scan; -- past operator token
3288 -- Deal with NOT IN, if previous token was NOT, we must have IN now
3290 if Prev_Token = Tok_Not then
3292 -- Style check, for NOT IN, we require one space between NOT and IN
3294 if Style_Check and then Token = Tok_In then
3295 Style.Check_Not_In;
3296 end if;
3298 T_In;
3299 end if;
3301 return Op_Kind;
3302 end P_Relational_Operator;
3304 ---------------------------------
3305 -- 4.5 Binary Adding Operator --
3306 ---------------------------------
3308 -- BINARY_ADDING_OPERATOR ::= + | - | &
3310 -- The value returned is the appropriate Node_Kind code for the operator.
3311 -- On return, Token points to the operator token (NOT past it).
3313 -- The caller has checked that the first token is a legitimate adding
3314 -- operator token (i.e. is one of the operator tokens listed above).
3316 -- Error recovery: cannot raise Error_Resync
3318 function P_Binary_Adding_Operator return Node_Kind is
3319 Addop_Node : constant array (Token_Class_Binary_Addop) of Node_Kind :=
3320 (Tok_Ampersand => N_Op_Concat,
3321 Tok_Minus => N_Op_Subtract,
3322 Tok_Plus => N_Op_Add);
3323 begin
3324 return Addop_Node (Token);
3325 end P_Binary_Adding_Operator;
3327 --------------------------------
3328 -- 4.5 Unary Adding Operator --
3329 --------------------------------
3331 -- UNARY_ADDING_OPERATOR ::= + | -
3333 -- The value returned is the appropriate Node_Kind code for the operator.
3334 -- On return, Token points to the operator token (NOT past it).
3336 -- The caller has checked that the first token is a legitimate adding
3337 -- operator token (i.e. is one of the operator tokens listed above).
3339 -- Error recovery: cannot raise Error_Resync
3341 function P_Unary_Adding_Operator return Node_Kind is
3342 Addop_Node : constant array (Token_Class_Unary_Addop) of Node_Kind :=
3343 (Tok_Minus => N_Op_Minus,
3344 Tok_Plus => N_Op_Plus);
3345 begin
3346 return Addop_Node (Token);
3347 end P_Unary_Adding_Operator;
3349 -------------------------------
3350 -- 4.5 Multiplying Operator --
3351 -------------------------------
3353 -- MULTIPLYING_OPERATOR ::= * | / | mod | rem
3355 -- The value returned is the appropriate Node_Kind code for the operator.
3356 -- On return, Token points to the operator token (NOT past it).
3358 -- The caller has checked that the first token is a legitimate multiplying
3359 -- operator token (i.e. is one of the operator tokens listed above).
3361 -- Error recovery: cannot raise Error_Resync
3363 function P_Multiplying_Operator return Node_Kind is
3364 Mulop_Node : constant array (Token_Class_Mulop) of Node_Kind :=
3365 (Tok_Asterisk => N_Op_Multiply,
3366 Tok_Mod => N_Op_Mod,
3367 Tok_Rem => N_Op_Rem,
3368 Tok_Slash => N_Op_Divide);
3369 begin
3370 return Mulop_Node (Token);
3371 end P_Multiplying_Operator;
3373 --------------------------------------
3374 -- 4.5 Highest Precedence Operator --
3375 --------------------------------------
3377 -- Parsed by P_Factor (4.4)
3379 -- Note: this rule is not in fact used by the grammar at any point
3381 --------------------------
3382 -- 4.6 Type Conversion --
3383 --------------------------
3385 -- Parsed by P_Primary as a Name (4.1)
3387 -------------------------------
3388 -- 4.7 Qualified Expression --
3389 -------------------------------
3391 -- QUALIFIED_EXPRESSION ::=
3392 -- SUBTYPE_MARK ' (EXPRESSION) | SUBTYPE_MARK ' AGGREGATE
3394 -- The caller has scanned the name which is the Subtype_Mark parameter
3395 -- and scanned past the single quote following the subtype mark. The
3396 -- caller has not checked that this name is in fact appropriate for
3397 -- a subtype mark name (i.e. it is a selected component or identifier).
3399 -- Error_Recovery: cannot raise Error_Resync
3401 function P_Qualified_Expression (Subtype_Mark : Node_Id) return Node_Id is
3402 Qual_Node : Node_Id;
3403 begin
3404 Qual_Node := New_Node (N_Qualified_Expression, Prev_Token_Ptr);
3405 Set_Subtype_Mark (Qual_Node, Check_Subtype_Mark (Subtype_Mark));
3406 Set_Expression (Qual_Node, P_Aggregate_Or_Paren_Expr);
3407 return Qual_Node;
3408 end P_Qualified_Expression;
3410 --------------------
3411 -- 4.8 Allocator --
3412 --------------------
3414 -- ALLOCATOR ::=
3415 -- new [SUBPOOL_SPECIFICATION] SUBTYPE_INDICATION
3416 -- | new [SUBPOOL_SPECIFICATION] QUALIFIED_EXPRESSION
3418 -- SUBPOOL_SPECIFICATION ::= (subpool_handle_NAME)
3420 -- The caller has checked that the initial token is NEW
3422 -- Error recovery: can raise Error_Resync
3424 function P_Allocator return Node_Id is
3425 Alloc_Node : Node_Id;
3426 Type_Node : Node_Id;
3427 Null_Exclusion_Present : Boolean;
3429 begin
3430 Alloc_Node := New_Node (N_Allocator, Token_Ptr);
3431 T_New;
3433 -- Scan subpool_specification if present (Ada 2012 (AI05-0111-3))
3435 -- Scan Null_Exclusion if present (Ada 2005 (AI-231))
3437 if Token = Tok_Left_Paren then
3438 Scan; -- past (
3439 Set_Subpool_Handle_Name (Alloc_Node, P_Name);
3440 T_Right_Paren;
3442 Error_Msg_Ada_2012_Feature
3443 ("|subpool specification",
3444 Sloc (Subpool_Handle_Name (Alloc_Node)));
3445 end if;
3447 Null_Exclusion_Present := P_Null_Exclusion;
3448 Set_Null_Exclusion_Present (Alloc_Node, Null_Exclusion_Present);
3449 Type_Node := P_Subtype_Mark_Resync;
3451 if Token = Tok_Apostrophe then
3452 Scan; -- past apostrophe
3453 Set_Expression (Alloc_Node, P_Qualified_Expression (Type_Node));
3454 else
3455 Set_Expression
3456 (Alloc_Node,
3457 P_Subtype_Indication (Type_Node, Null_Exclusion_Present));
3459 -- AI05-0104: An explicit null exclusion is not allowed for an
3460 -- allocator without initialization. In previous versions of the
3461 -- language it just raises constraint error.
3463 if Ada_Version >= Ada_2012 and then Null_Exclusion_Present then
3464 Error_Msg_N
3465 ("an allocator with a subtype indication "
3466 & "cannot have a null exclusion", Alloc_Node);
3467 end if;
3468 end if;
3470 return Alloc_Node;
3471 end P_Allocator;
3473 -----------------------
3474 -- P_Case_Expression --
3475 -----------------------
3477 function P_Case_Expression return Node_Id is
3478 Loc : constant Source_Ptr := Token_Ptr;
3479 Case_Node : Node_Id;
3480 Save_State : Saved_Scan_State;
3482 begin
3483 Error_Msg_Ada_2012_Feature ("|case expression", Token_Ptr);
3484 Scan; -- past CASE
3485 Case_Node :=
3486 Make_Case_Expression (Loc,
3487 Expression => P_Expression_No_Right_Paren,
3488 Alternatives => New_List);
3489 T_Is;
3491 -- We now have scanned out CASE expression IS, scan alternatives
3493 loop
3494 T_When;
3495 Append_To (Alternatives (Case_Node), P_Case_Expression_Alternative);
3497 -- Missing comma if WHEN (more alternatives present)
3499 if Token = Tok_When then
3500 T_Comma;
3502 -- A semicolon followed by "when" is probably meant to be a comma
3504 elsif Token = Tok_Semicolon then
3505 Save_Scan_State (Save_State);
3506 Scan; -- past the semicolon
3508 if Token /= Tok_When then
3509 Restore_Scan_State (Save_State);
3510 exit;
3511 end if;
3513 Error_Msg_SP -- CODEFIX
3514 ("|"";"" should be "",""");
3516 -- If comma/WHEN, skip comma and we have another alternative
3518 elsif Token = Tok_Comma then
3519 Save_Scan_State (Save_State);
3520 Scan; -- past comma
3522 if Token /= Tok_When then
3523 Restore_Scan_State (Save_State);
3524 exit;
3525 end if;
3527 -- If no comma or WHEN, definitely done
3529 else
3530 exit;
3531 end if;
3532 end loop;
3534 -- If we have an END CASE, diagnose as not needed
3536 if Token = Tok_End then
3537 Error_Msg_SC ("`END CASE` not allowed at end of case expression");
3538 Scan; -- past END
3540 if Token = Tok_Case then
3541 Scan; -- past CASE;
3542 end if;
3543 end if;
3545 -- Return the Case_Expression node
3547 return Case_Node;
3548 end P_Case_Expression;
3550 -----------------------------------
3551 -- P_Case_Expression_Alternative --
3552 -----------------------------------
3554 -- CASE_STATEMENT_ALTERNATIVE ::=
3555 -- when DISCRETE_CHOICE_LIST =>
3556 -- EXPRESSION
3558 -- The caller has checked that and scanned past the initial WHEN token
3559 -- Error recovery: can raise Error_Resync
3561 function P_Case_Expression_Alternative return Node_Id is
3562 Case_Alt_Node : Node_Id;
3563 begin
3564 Case_Alt_Node := New_Node (N_Case_Expression_Alternative, Token_Ptr);
3565 Set_Discrete_Choices (Case_Alt_Node, P_Discrete_Choice_List);
3566 TF_Arrow;
3567 Set_Expression (Case_Alt_Node, P_Expression);
3568 return Case_Alt_Node;
3569 end P_Case_Expression_Alternative;
3571 --------------------------------------
3572 -- P_Iterated_Component_Association --
3573 --------------------------------------
3575 -- ITERATED_COMPONENT_ASSOCIATION ::=
3576 -- for DEFINING_IDENTIFIER in DISCRETE_CHOICE_LIST => EXPRESSION
3577 -- for ITERATOR_SPECIFICATION => EXPRESSION
3579 function P_Iterated_Component_Association return Node_Id is
3580 Assoc_Node : Node_Id;
3581 Choice : Node_Id;
3582 Filter : Node_Id := Empty;
3583 Id : Node_Id;
3584 Iter_Spec : Node_Id;
3585 Loop_Spec : Node_Id;
3586 State : Saved_Scan_State;
3588 procedure Build_Iterated_Element_Association;
3589 -- If the iterator includes a key expression or a filter, it is
3590 -- an Ada 2022 Iterator_Element_Association within a container
3591 -- aggregate.
3593 ----------------------------------------
3594 -- Build_Iterated_Element_Association --
3595 ----------------------------------------
3597 procedure Build_Iterated_Element_Association is
3598 begin
3599 -- Build loop_parameter_specification
3601 Loop_Spec :=
3602 New_Node (N_Loop_Parameter_Specification, Prev_Token_Ptr);
3603 Set_Defining_Identifier (Loop_Spec, Id);
3605 Choice := First (Discrete_Choices (Assoc_Node));
3606 Assoc_Node :=
3607 New_Node (N_Iterated_Element_Association, Prev_Token_Ptr);
3608 Set_Loop_Parameter_Specification (Assoc_Node, Loop_Spec);
3610 if Present (Next (Choice)) then
3611 Error_Msg_N ("expect loop parameter specification", Choice);
3612 end if;
3614 Remove (Choice);
3615 Set_Discrete_Subtype_Definition (Loop_Spec, Choice);
3616 Set_Iterator_Filter (Loop_Spec, Filter);
3617 end Build_Iterated_Element_Association;
3619 -- Start of processing for P_Iterated_Component_Association
3621 begin
3622 Scan; -- past FOR
3623 Save_Scan_State (State);
3625 -- A lookahead is necessary to differentiate between the
3626 -- Ada 2012 form with a choice list, and the Ada 2022 element
3627 -- iterator form, recognized by the presence of "OF". Other
3628 -- disambiguation requires context and is done during semantic
3629 -- analysis. Note that "for X in E" is syntactically ambiguous:
3630 -- if E is a subtype indication this is a loop parameter spec,
3631 -- while if E a name it is an iterator_specification, and the
3632 -- disambiguation takes place during semantic analysis.
3633 -- In addition, if "use" is present after the specification,
3634 -- this is an Iterated_Element_Association that carries a
3635 -- key_expression, and we generate the appropriate node.
3636 -- Finally, the Iterated_Element form is reserved for container
3637 -- aggregates, and is illegal in array aggregates.
3639 Id := P_Defining_Identifier;
3640 Assoc_Node :=
3641 New_Node (N_Iterated_Component_Association, Prev_Token_Ptr);
3643 case Token is
3644 when Tok_In =>
3645 Set_Defining_Identifier (Assoc_Node, Id);
3646 T_In;
3647 Set_Discrete_Choices (Assoc_Node, P_Discrete_Choice_List);
3649 -- The iterator may include a filter
3651 if Token = Tok_When then
3652 Scan; -- past WHEN
3653 Filter := P_Condition;
3654 end if;
3656 if Token = Tok_Use then
3658 -- Ada 2022 Key-expression is present, rewrite node as an
3659 -- Iterated_Element_Association.
3661 Scan; -- past USE
3662 Build_Iterated_Element_Association;
3663 Set_Key_Expression (Assoc_Node, P_Expression);
3665 elsif Present (Filter) then
3666 -- A loop_parameter_specification also indicates an Ada 2022
3667 -- construct, in contrast with a subtype indication used in
3668 -- array aggregates.
3670 Build_Iterated_Element_Association;
3671 end if;
3673 TF_Arrow;
3674 Set_Expression (Assoc_Node, P_Expression);
3676 when Tok_Of =>
3677 Restore_Scan_State (State);
3678 Scan; -- past OF
3679 Iter_Spec := P_Iterator_Specification (Id);
3680 Set_Iterator_Specification (Assoc_Node, Iter_Spec);
3682 if Token = Tok_Use then
3683 Scan; -- past USE
3684 -- This is an iterated_element_association
3686 Assoc_Node :=
3687 New_Node (N_Iterated_Element_Association, Prev_Token_Ptr);
3688 Set_Iterator_Specification (Assoc_Node, Iter_Spec);
3689 Set_Key_Expression (Assoc_Node, P_Expression);
3690 end if;
3692 TF_Arrow;
3693 Set_Expression (Assoc_Node, P_Expression);
3695 when others =>
3696 Error_Msg_AP ("missing IN or OF");
3697 end case;
3699 return Assoc_Node;
3700 end P_Iterated_Component_Association;
3702 ---------------------
3703 -- P_If_Expression --
3704 ---------------------
3706 -- IF_EXPRESSION ::=
3707 -- if CONDITION then DEPENDENT_EXPRESSION
3708 -- {elsif CONDITION then DEPENDENT_EXPRESSION}
3709 -- [else DEPENDENT_EXPRESSION]
3711 -- DEPENDENT_EXPRESSION ::= EXPRESSION
3713 function P_If_Expression return Node_Id is
3714 function P_If_Expression_Internal
3715 (Loc : Source_Ptr;
3716 Cond : Node_Id) return Node_Id;
3717 -- This is the internal recursive routine that does all the work, it is
3718 -- recursive since it is used to process ELSIF parts, which internally
3719 -- are N_If_Expression nodes with the Is_Elsif flag set. The calling
3720 -- sequence is like the outer function except that the caller passes
3721 -- the conditional expression (scanned using P_Expression), and the
3722 -- scan pointer points just past this expression. Loc points to the
3723 -- IF or ELSIF token.
3725 ------------------------------
3726 -- P_If_Expression_Internal --
3727 ------------------------------
3729 function P_If_Expression_Internal
3730 (Loc : Source_Ptr;
3731 Cond : Node_Id) return Node_Id
3733 Exprs : constant List_Id := New_List;
3734 Expr : Node_Id;
3735 State : Saved_Scan_State;
3736 Eptr : Source_Ptr;
3738 begin
3739 -- All cases except where we are at right paren
3741 if Token /= Tok_Right_Paren then
3742 TF_Then;
3743 Append_To (Exprs, P_Condition (Cond));
3744 Append_To (Exprs, P_Expression);
3746 -- Case of right paren (missing THEN phrase). Note that we know this
3747 -- is the IF case, since the caller dealt with this possibility in
3748 -- the ELSIF case.
3750 else
3751 Error_Msg_BC ("missing THEN phrase");
3752 Append_To (Exprs, P_Condition (Cond));
3753 end if;
3755 -- We now have scanned out IF expr THEN expr
3757 -- Check for common error of semicolon before the ELSE
3759 if Token = Tok_Semicolon then
3760 Save_Scan_State (State);
3761 Scan; -- past semicolon
3763 if Token in Tok_Else | Tok_Elsif then
3764 Error_Msg_SP -- CODEFIX
3765 ("|extra "";"" ignored");
3767 else
3768 Restore_Scan_State (State);
3769 end if;
3770 end if;
3772 -- Scan out ELSIF sequence if present
3774 if Token = Tok_Elsif then
3775 Eptr := Token_Ptr;
3776 Scan; -- past ELSIF
3777 Expr := P_Expression;
3779 -- If we are at a right paren, we assume the ELSIF should be ELSE
3781 if Token = Tok_Right_Paren then
3782 Error_Msg ("ELSIF should be ELSE", Eptr);
3783 Append_To (Exprs, Expr);
3785 -- Otherwise we have an OK ELSIF
3787 else
3788 Expr := P_If_Expression_Internal (Eptr, Expr);
3789 Set_Is_Elsif (Expr);
3790 Append_To (Exprs, Expr);
3791 end if;
3793 -- Scan out ELSE phrase if present
3795 elsif Token = Tok_Else then
3797 -- Scan out ELSE expression
3799 Scan; -- Past ELSE
3800 Append_To (Exprs, P_Expression);
3802 -- Skip redundant ELSE parts
3804 while Token = Tok_Else loop
3805 Error_Msg_SC ("only one ELSE part is allowed");
3806 Scan; -- past ELSE
3807 Discard_Junk_Node (P_Expression);
3808 end loop;
3810 -- Two expression case (implied True, filled in during semantics)
3812 else
3813 null;
3814 end if;
3816 -- If we have an END IF, diagnose as not needed
3818 if Token = Tok_End then
3819 Error_Msg_SC ("`END IF` not allowed at end of if expression");
3820 Scan; -- past END
3822 if Token = Tok_If then
3823 Scan; -- past IF;
3824 end if;
3825 end if;
3827 -- Return the If_Expression node
3829 return Make_If_Expression (Loc, Expressions => Exprs);
3830 end P_If_Expression_Internal;
3832 -- Local variables
3834 Loc : constant Source_Ptr := Token_Ptr;
3835 If_Expr : Node_Id;
3837 -- Start of processing for P_If_Expression
3839 begin
3840 Error_Msg_Ada_2012_Feature ("|if expression", Token_Ptr);
3841 Scan; -- past IF
3842 Inside_If_Expression := Inside_If_Expression + 1;
3843 If_Expr := P_If_Expression_Internal (Loc, P_Expression);
3844 Inside_If_Expression := Inside_If_Expression - 1;
3845 return If_Expr;
3846 end P_If_Expression;
3848 --------------------------
3849 -- P_Declare_Expression --
3850 --------------------------
3852 -- DECLARE_EXPRESSION ::=
3853 -- DECLARE {DECLARE_ITEM}
3854 -- begin BODY_EXPRESSION
3856 -- DECLARE_ITEM ::= OBJECT_DECLARATION
3857 -- | OBJECT_RENAMING_DECLARATION
3859 function P_Declare_Expression return Node_Id is
3860 Loc : constant Source_Ptr := Token_Ptr;
3861 begin
3862 Scan; -- past DECLARE
3864 declare
3865 Actions : constant List_Id := P_Basic_Declarative_Items
3866 (Declare_Expression => True);
3867 -- Most declarative items allowed by P_Basic_Declarative_Items are
3868 -- illegal; semantic analysis will deal with that.
3869 begin
3870 if Token = Tok_Begin then
3871 Scan;
3872 else
3873 Error_Msg_SC -- CODEFIX
3874 ("BEGIN expected!");
3875 end if;
3877 declare
3878 Expression : constant Node_Id := P_Expression;
3879 Result : constant Node_Id :=
3880 Make_Expression_With_Actions (Loc, Actions, Expression);
3881 begin
3882 Error_Msg_Ada_2022_Feature ("declare expression", Loc);
3884 return Result;
3885 end;
3886 end;
3887 end P_Declare_Expression;
3889 -----------------------
3890 -- P_Membership_Test --
3891 -----------------------
3893 -- MEMBERSHIP_CHOICE_LIST ::= MEMBERSHIP_CHOICE {'|' MEMBERSHIP_CHOICE}
3894 -- MEMBERSHIP_CHOICE ::= CHOICE_EXPRESSION | range | subtype_mark
3896 procedure P_Membership_Test (N : Node_Id) is
3897 Alt : constant Node_Id :=
3898 P_Range_Or_Subtype_Mark
3899 (Allow_Simple_Expression => (Ada_Version >= Ada_2012));
3901 begin
3902 -- Set case
3904 if Token = Tok_Vertical_Bar then
3905 Error_Msg_Ada_2012_Feature ("set notation", Token_Ptr);
3906 Set_Alternatives (N, New_List (Alt));
3907 Set_Right_Opnd (N, Empty);
3909 -- Loop to accumulate alternatives
3911 while Token = Tok_Vertical_Bar loop
3912 Scan; -- past vertical bar
3913 Append_To
3914 (Alternatives (N),
3915 P_Range_Or_Subtype_Mark (Allow_Simple_Expression => True));
3916 end loop;
3918 -- Not set case
3920 else
3921 Set_Right_Opnd (N, Alt);
3922 Set_Alternatives (N, No_List);
3923 end if;
3924 end P_Membership_Test;
3926 -----------------------------
3927 -- P_Unparen_Cond_Expr_Etc --
3928 -----------------------------
3930 function P_Unparen_Cond_Expr_Etc return Node_Id is
3931 Lparen : constant Boolean := Prev_Token = Tok_Left_Paren;
3933 Result : Node_Id;
3934 Scan_State : Saved_Scan_State;
3936 begin
3937 -- Case expression
3939 if Token = Tok_Case then
3940 Result := P_Case_Expression;
3942 if not (Lparen and then Token = Tok_Right_Paren) then
3943 Error_Msg_N ("case expression must be parenthesized!", Result);
3944 end if;
3946 -- If expression
3948 elsif Token = Tok_If then
3949 Result := P_If_Expression;
3951 if not (Lparen and then Token = Tok_Right_Paren) then
3952 Error_Msg_N ("if expression must be parenthesized!", Result);
3953 end if;
3955 -- Quantified expression or iterated component association
3957 elsif Token = Tok_For then
3959 Save_Scan_State (Scan_State);
3960 Scan; -- past FOR
3962 if Token in Tok_All | Tok_Some then
3963 Restore_Scan_State (Scan_State);
3964 Result := P_Quantified_Expression;
3966 if not (Lparen and then Token = Tok_Right_Paren) then
3967 Error_Msg_N
3968 ("quantified expression must be parenthesized!", Result);
3969 end if;
3971 else
3972 -- If no quantifier keyword, this is an iterated component in
3973 -- an aggregate.
3975 Restore_Scan_State (Scan_State);
3976 Result := P_Iterated_Component_Association;
3977 end if;
3979 -- Declare expression
3981 elsif Token = Tok_Declare then
3982 Result := P_Declare_Expression;
3984 if not (Lparen and then Token = Tok_Right_Paren) then
3985 Error_Msg_N ("declare expression must be parenthesized!", Result);
3986 end if;
3988 -- No other possibility should exist (caller was supposed to check)
3990 else
3991 raise Program_Error;
3992 end if;
3994 -- Return expression (possibly after having given message)
3996 return Result;
3997 end P_Unparen_Cond_Expr_Etc;
3999 end Ch4;