1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992-2022 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This pass converts stack-like registers from the "flat register
21 file" model that gcc uses, to a stack convention that the 387 uses.
23 * The form of the input:
25 On input, the function consists of insn that have had their
26 registers fully allocated to a set of "virtual" registers. Note that
27 the word "virtual" is used differently here than elsewhere in gcc: for
28 each virtual stack reg, there is a hard reg, but the mapping between
29 them is not known until this pass is run. On output, hard register
30 numbers have been substituted, and various pop and exchange insns have
31 been emitted. The hard register numbers and the virtual register
32 numbers completely overlap - before this pass, all stack register
33 numbers are virtual, and afterward they are all hard.
35 The virtual registers can be manipulated normally by gcc, and their
36 semantics are the same as for normal registers. After the hard
37 register numbers are substituted, the semantics of an insn containing
38 stack-like regs are not the same as for an insn with normal regs: for
39 instance, it is not safe to delete an insn that appears to be a no-op
40 move. In general, no insn containing hard regs should be changed
41 after this pass is done.
43 * The form of the output:
45 After this pass, hard register numbers represent the distance from
46 the current top of stack to the desired register. A reference to
47 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
48 represents the register just below that, and so forth. Also, REG_DEAD
49 notes indicate whether or not a stack register should be popped.
51 A "swap" insn looks like a parallel of two patterns, where each
52 pattern is a SET: one sets A to B, the other B to A.
54 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
55 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
56 will replace the existing stack top, not push a new value.
58 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
59 SET_SRC is REG or MEM.
61 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
62 appears ambiguous. As a special case, the presence of a REG_DEAD note
63 for FIRST_STACK_REG differentiates between a load insn and a pop.
65 If a REG_DEAD is present, the insn represents a "pop" that discards
66 the top of the register stack. If there is no REG_DEAD note, then the
67 insn represents a "dup" or a push of the current top of stack onto the
72 Existing REG_DEAD and REG_UNUSED notes for stack registers are
73 deleted and recreated from scratch. REG_DEAD is never created for a
74 SET_DEST, only REG_UNUSED.
78 There are several rules on the usage of stack-like regs in
79 asm_operands insns. These rules apply only to the operands that are
82 1. Given a set of input regs that die in an asm_operands, it is
83 necessary to know which are implicitly popped by the asm, and
84 which must be explicitly popped by gcc.
86 An input reg that is implicitly popped by the asm must be
87 explicitly clobbered, unless it is constrained to match an
90 2. For any input reg that is implicitly popped by an asm, it is
91 necessary to know how to adjust the stack to compensate for the pop.
92 If any non-popped input is closer to the top of the reg-stack than
93 the implicitly popped reg, it would not be possible to know what the
94 stack looked like - it's not clear how the rest of the stack "slides
97 All implicitly popped input regs must be closer to the top of
98 the reg-stack than any input that is not implicitly popped.
100 All explicitly referenced input operands may not "skip" a reg.
101 Otherwise we can have holes in the stack.
103 3. It is possible that if an input dies in an insn, reload might
104 use the input reg for an output reload. Consider this example:
106 asm ("foo" : "=t" (a) : "f" (b));
108 This asm says that input B is not popped by the asm, and that
109 the asm pushes a result onto the reg-stack, i.e., the stack is one
110 deeper after the asm than it was before. But, it is possible that
111 reload will think that it can use the same reg for both the input and
112 the output, if input B dies in this insn.
114 If any input operand uses the "f" constraint, all output reg
115 constraints must use the "&" earlyclobber.
117 The asm above would be written as
119 asm ("foo" : "=&t" (a) : "f" (b));
121 4. Some operands need to be in particular places on the stack. All
122 output operands fall in this category - there is no other way to
123 know which regs the outputs appear in unless the user indicates
124 this in the constraints.
126 Output operands must specifically indicate which reg an output
127 appears in after an asm. "=f" is not allowed: the operand
128 constraints must select a class with a single reg.
130 5. Output operands may not be "inserted" between existing stack regs.
131 Since no 387 opcode uses a read/write operand, all output operands
132 are dead before the asm_operands, and are pushed by the asm_operands.
133 It makes no sense to push anywhere but the top of the reg-stack.
135 Output operands must start at the top of the reg-stack: output
136 operands may not "skip" a reg.
138 6. Some asm statements may need extra stack space for internal
139 calculations. This can be guaranteed by clobbering stack registers
140 unrelated to the inputs and outputs.
142 Here are a couple of reasonable asms to want to write. This asm
143 takes one input, which is internally popped, and produces two outputs.
145 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
147 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
148 and replaces them with one output. The user must code the "st(1)"
149 clobber for reg-stack.cc to know that fyl2xp1 pops both inputs.
151 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
157 #include "coretypes.h"
163 #include "insn-config.h"
164 #include "memmodel.h"
166 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
169 #include "rtl-error.h"
172 #include "cfgbuild.h"
173 #include "cfgcleanup.h"
175 #include "tree-pass.h"
176 #include "rtl-iter.h"
177 #include "function-abi.h"
181 /* We use this array to cache info about insns, because otherwise we
182 spend too much time in stack_regs_mentioned_p.
184 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
185 the insn uses stack registers, two indicates the insn does not use
187 static vec
<char> stack_regs_mentioned_data
;
189 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
191 int regstack_completed
= 0;
193 /* This is the basic stack record. TOP is an index into REG[] such
194 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
196 If TOP is -2, REG[] is not yet initialized. Stack initialization
197 consists of placing each live reg in array `reg' and setting `top'
200 REG_SET indicates which registers are live. */
202 typedef struct stack_def
204 int top
; /* index to top stack element */
205 HARD_REG_SET reg_set
; /* set of live registers */
206 unsigned char reg
[REG_STACK_SIZE
];/* register - stack mapping */
209 /* This is used to carry information about basic blocks. It is
210 attached to the AUX field of the standard CFG block. */
212 typedef struct block_info_def
214 struct stack_def stack_in
; /* Input stack configuration. */
215 struct stack_def stack_out
; /* Output stack configuration. */
216 HARD_REG_SET out_reg_set
; /* Stack regs live on output. */
217 int done
; /* True if block already converted. */
218 int predecessors
; /* Number of predecessors that need
222 #define BLOCK_INFO(B) ((block_info) (B)->aux)
224 /* Passed to change_stack to indicate where to emit insns. */
231 /* The block we're currently working on. */
232 static basic_block current_block
;
234 /* In the current_block, whether we're processing the first register
235 stack or call instruction, i.e. the regstack is currently the
236 same as BLOCK_INFO(current_block)->stack_in. */
237 static bool starting_stack_p
;
239 /* This is the register file for all register after conversion. */
241 FP_mode_reg
[LAST_STACK_REG
+1-FIRST_STACK_REG
][(int) MAX_MACHINE_MODE
];
243 #define FP_MODE_REG(regno,mode) \
244 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
246 /* Used to initialize uninitialized registers. */
247 static rtx not_a_num
;
249 /* Forward declarations */
251 static int stack_regs_mentioned_p (const_rtx pat
);
252 static void pop_stack (stack_ptr
, int);
253 static rtx
*get_true_reg (rtx
*);
255 static int check_asm_stack_operands (rtx_insn
*);
256 static void get_asm_operands_in_out (rtx
, int *, int *);
257 static rtx
stack_result (tree
);
258 static void replace_reg (rtx
*, int);
259 static void remove_regno_note (rtx_insn
*, enum reg_note
, unsigned int);
260 static int get_hard_regnum (stack_ptr
, rtx
);
261 static rtx_insn
*emit_pop_insn (rtx_insn
*, stack_ptr
, rtx
, enum emit_where
);
262 static void swap_to_top (rtx_insn
*, stack_ptr
, rtx
, rtx
);
263 static bool move_for_stack_reg (rtx_insn
*, stack_ptr
, rtx
);
264 static bool move_nan_for_stack_reg (rtx_insn
*, stack_ptr
, rtx
);
265 static int swap_rtx_condition_1 (rtx
);
266 static int swap_rtx_condition (rtx_insn
*);
267 static void compare_for_stack_reg (rtx_insn
*, stack_ptr
, rtx
, bool);
268 static bool subst_stack_regs_pat (rtx_insn
*, stack_ptr
, rtx
);
269 static void subst_asm_stack_regs (rtx_insn
*, stack_ptr
);
270 static bool subst_stack_regs (rtx_insn
*, stack_ptr
);
271 static void change_stack (rtx_insn
*, stack_ptr
, stack_ptr
, enum emit_where
);
272 static void print_stack (FILE *, stack_ptr
);
273 static rtx_insn
*next_flags_user (rtx_insn
*);
275 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
278 stack_regs_mentioned_p (const_rtx pat
)
283 if (STACK_REG_P (pat
))
286 fmt
= GET_RTX_FORMAT (GET_CODE (pat
));
287 for (i
= GET_RTX_LENGTH (GET_CODE (pat
)) - 1; i
>= 0; i
--)
293 for (j
= XVECLEN (pat
, i
) - 1; j
>= 0; j
--)
294 if (stack_regs_mentioned_p (XVECEXP (pat
, i
, j
)))
297 else if (fmt
[i
] == 'e' && stack_regs_mentioned_p (XEXP (pat
, i
)))
304 /* Return nonzero if INSN mentions stacked registers, else return zero. */
307 stack_regs_mentioned (const_rtx insn
)
309 unsigned int uid
, max
;
312 if (! INSN_P (insn
) || !stack_regs_mentioned_data
.exists ())
315 uid
= INSN_UID (insn
);
316 max
= stack_regs_mentioned_data
.length ();
319 /* Allocate some extra size to avoid too many reallocs, but
320 do not grow too quickly. */
321 max
= uid
+ uid
/ 20 + 1;
322 stack_regs_mentioned_data
.safe_grow_cleared (max
, true);
325 test
= stack_regs_mentioned_data
[uid
];
328 /* This insn has yet to be examined. Do so now. */
329 test
= stack_regs_mentioned_p (PATTERN (insn
)) ? 1 : 2;
330 stack_regs_mentioned_data
[uid
] = test
;
336 static rtx ix86_flags_rtx
;
339 next_flags_user (rtx_insn
*insn
)
341 /* Search forward looking for the first use of this value.
342 Stop at block boundaries. */
344 while (insn
!= BB_END (current_block
))
346 insn
= NEXT_INSN (insn
);
348 if (INSN_P (insn
) && reg_mentioned_p (ix86_flags_rtx
, PATTERN (insn
)))
357 /* Reorganize the stack into ascending numbers, before this insn. */
360 straighten_stack (rtx_insn
*insn
, stack_ptr regstack
)
362 struct stack_def temp_stack
;
365 /* If there is only a single register on the stack, then the stack is
366 already in increasing order and no reorganization is needed.
368 Similarly if the stack is empty. */
369 if (regstack
->top
<= 0)
372 temp_stack
.reg_set
= regstack
->reg_set
;
374 for (top
= temp_stack
.top
= regstack
->top
; top
>= 0; top
--)
375 temp_stack
.reg
[top
] = FIRST_STACK_REG
+ temp_stack
.top
- top
;
377 change_stack (insn
, regstack
, &temp_stack
, EMIT_BEFORE
);
380 /* Pop a register from the stack. */
383 pop_stack (stack_ptr regstack
, int regno
)
385 int top
= regstack
->top
;
387 CLEAR_HARD_REG_BIT (regstack
->reg_set
, regno
);
389 /* If regno was not at the top of stack then adjust stack. */
390 if (regstack
->reg
[top
] != regno
)
393 for (i
= regstack
->top
; i
>= 0; i
--)
394 if (regstack
->reg
[i
] == regno
)
397 for (j
= i
; j
< top
; j
++)
398 regstack
->reg
[j
] = regstack
->reg
[j
+ 1];
404 /* Return a pointer to the REG expression within PAT. If PAT is not a
405 REG, possible enclosed by a conversion rtx, return the inner part of
406 PAT that stopped the search. */
409 get_true_reg (rtx
*pat
)
412 switch (GET_CODE (*pat
))
415 /* Eliminate FP subregister accesses in favor of the
416 actual FP register in use. */
418 rtx subreg
= SUBREG_REG (*pat
);
420 if (STACK_REG_P (subreg
))
422 int regno_off
= subreg_regno_offset (REGNO (subreg
),
426 *pat
= FP_MODE_REG (REGNO (subreg
) + regno_off
,
430 pat
= &XEXP (*pat
, 0);
435 if (!flag_unsafe_math_optimizations
)
442 pat
= &XEXP (*pat
, 0);
446 if (XINT (*pat
, 1) == UNSPEC_TRUNC_NOOP
447 || XINT (*pat
, 1) == UNSPEC_FILD_ATOMIC
)
448 pat
= &XVECEXP (*pat
, 0, 0);
456 /* Set if we find any malformed asms in a function. */
457 static bool any_malformed_asm
;
459 /* There are many rules that an asm statement for stack-like regs must
460 follow. Those rules are explained at the top of this file: the rule
461 numbers below refer to that explanation. */
464 check_asm_stack_operands (rtx_insn
*insn
)
468 int malformed_asm
= 0;
469 rtx body
= PATTERN (insn
);
471 char reg_used_as_output
[FIRST_PSEUDO_REGISTER
];
472 char implicitly_dies
[FIRST_PSEUDO_REGISTER
];
473 char explicitly_used
[FIRST_PSEUDO_REGISTER
];
475 rtx
*clobber_reg
= 0;
476 int n_inputs
, n_outputs
;
478 /* Find out what the constraints require. If no constraint
479 alternative matches, this asm is malformed. */
480 extract_constrain_insn (insn
);
482 preprocess_constraints (insn
);
484 get_asm_operands_in_out (body
, &n_outputs
, &n_inputs
);
486 if (which_alternative
< 0)
488 /* Avoid further trouble with this insn. */
489 PATTERN (insn
) = gen_rtx_USE (VOIDmode
, const0_rtx
);
492 const operand_alternative
*op_alt
= which_op_alt ();
494 /* Strip SUBREGs here to make the following code simpler. */
495 for (i
= 0; i
< recog_data
.n_operands
; i
++)
496 if (GET_CODE (recog_data
.operand
[i
]) == SUBREG
497 && REG_P (SUBREG_REG (recog_data
.operand
[i
])))
498 recog_data
.operand
[i
] = SUBREG_REG (recog_data
.operand
[i
]);
500 /* Set up CLOBBER_REG. */
504 if (GET_CODE (body
) == PARALLEL
)
506 clobber_reg
= XALLOCAVEC (rtx
, XVECLEN (body
, 0));
508 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
509 if (GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
511 rtx clobber
= XVECEXP (body
, 0, i
);
512 rtx reg
= XEXP (clobber
, 0);
514 if (GET_CODE (reg
) == SUBREG
&& REG_P (SUBREG_REG (reg
)))
515 reg
= SUBREG_REG (reg
);
517 if (STACK_REG_P (reg
))
519 clobber_reg
[n_clobbers
] = reg
;
525 /* Enforce rule #4: Output operands must specifically indicate which
526 reg an output appears in after an asm. "=f" is not allowed: the
527 operand constraints must select a class with a single reg.
529 Also enforce rule #5: Output operands must start at the top of
530 the reg-stack: output operands may not "skip" a reg. */
532 memset (reg_used_as_output
, 0, sizeof (reg_used_as_output
));
533 for (i
= 0; i
< n_outputs
; i
++)
534 if (STACK_REG_P (recog_data
.operand
[i
]))
536 if (reg_class_size
[(int) op_alt
[i
].cl
] != 1)
538 error_for_asm (insn
, "output constraint %d must specify a single register", i
);
545 for (j
= 0; j
< n_clobbers
; j
++)
546 if (REGNO (recog_data
.operand
[i
]) == REGNO (clobber_reg
[j
]))
548 error_for_asm (insn
, "output constraint %d cannot be "
549 "specified together with %qs clobber",
550 i
, reg_names
[REGNO (clobber_reg
[j
])]);
555 reg_used_as_output
[REGNO (recog_data
.operand
[i
])] = 1;
560 /* Search for first non-popped reg. */
561 for (i
= FIRST_STACK_REG
; i
< LAST_STACK_REG
+ 1; i
++)
562 if (! reg_used_as_output
[i
])
565 /* If there are any other popped regs, that's an error. */
566 for (; i
< LAST_STACK_REG
+ 1; i
++)
567 if (reg_used_as_output
[i
])
570 if (i
!= LAST_STACK_REG
+ 1)
572 error_for_asm (insn
, "output registers must be grouped at top of stack");
576 /* Enforce rule #2: All implicitly popped input regs must be closer
577 to the top of the reg-stack than any input that is not implicitly
580 memset (implicitly_dies
, 0, sizeof (implicitly_dies
));
581 memset (explicitly_used
, 0, sizeof (explicitly_used
));
582 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
583 if (STACK_REG_P (recog_data
.operand
[i
]))
585 /* An input reg is implicitly popped if it is tied to an
586 output, or if there is a CLOBBER for it. */
589 for (j
= 0; j
< n_clobbers
; j
++)
590 if (operands_match_p (clobber_reg
[j
], recog_data
.operand
[i
]))
593 if (j
< n_clobbers
|| op_alt
[i
].matches
>= 0)
594 implicitly_dies
[REGNO (recog_data
.operand
[i
])] = 1;
595 else if (reg_class_size
[(int) op_alt
[i
].cl
] == 1)
596 explicitly_used
[REGNO (recog_data
.operand
[i
])] = 1;
599 /* Search for first non-popped reg. */
600 for (i
= FIRST_STACK_REG
; i
< LAST_STACK_REG
+ 1; i
++)
601 if (! implicitly_dies
[i
])
604 /* If there are any other popped regs, that's an error. */
605 for (; i
< LAST_STACK_REG
+ 1; i
++)
606 if (implicitly_dies
[i
])
609 if (i
!= LAST_STACK_REG
+ 1)
612 "implicitly popped registers must be grouped "
617 /* Search for first not-explicitly used reg. */
618 for (i
= FIRST_STACK_REG
; i
< LAST_STACK_REG
+ 1; i
++)
619 if (! implicitly_dies
[i
] && ! explicitly_used
[i
])
622 /* If there are any other explicitly used regs, that's an error. */
623 for (; i
< LAST_STACK_REG
+ 1; i
++)
624 if (explicitly_used
[i
])
627 if (i
!= LAST_STACK_REG
+ 1)
630 "explicitly used registers must be grouped "
635 /* Enforce rule #3: If any input operand uses the "f" constraint, all
636 output constraints must use the "&" earlyclobber.
638 ??? Detect this more deterministically by having constrain_asm_operands
639 record any earlyclobber. */
641 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
642 if (STACK_REG_P (recog_data
.operand
[i
]) && op_alt
[i
].matches
== -1)
646 for (j
= 0; j
< n_outputs
; j
++)
647 if (operands_match_p (recog_data
.operand
[j
], recog_data
.operand
[i
]))
650 "output operand %d must use %<&%> constraint", j
);
657 /* Avoid further trouble with this insn. */
658 PATTERN (insn
) = gen_rtx_USE (VOIDmode
, const0_rtx
);
659 any_malformed_asm
= true;
666 /* Calculate the number of inputs and outputs in BODY, an
667 asm_operands. N_OPERANDS is the total number of operands, and
668 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
672 get_asm_operands_in_out (rtx body
, int *pout
, int *pin
)
674 rtx asmop
= extract_asm_operands (body
);
676 *pin
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
677 *pout
= (recog_data
.n_operands
678 - ASM_OPERANDS_INPUT_LENGTH (asmop
)
679 - ASM_OPERANDS_LABEL_LENGTH (asmop
));
682 /* If current function returns its result in an fp stack register,
683 return the REG. Otherwise, return 0. */
686 stack_result (tree decl
)
690 /* If the value is supposed to be returned in memory, then clearly
691 it is not returned in a stack register. */
692 if (aggregate_value_p (DECL_RESULT (decl
), decl
))
695 result
= DECL_RTL_IF_SET (DECL_RESULT (decl
));
697 result
= targetm
.calls
.function_value (TREE_TYPE (DECL_RESULT (decl
)),
700 return result
!= 0 && STACK_REG_P (result
) ? result
: 0;
705 * This section deals with stack register substitution, and forms the second
709 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
710 the desired hard REGNO. */
713 replace_reg (rtx
*reg
, int regno
)
715 gcc_assert (IN_RANGE (regno
, FIRST_STACK_REG
, LAST_STACK_REG
));
716 gcc_assert (STACK_REG_P (*reg
));
718 gcc_assert (GET_MODE_CLASS (GET_MODE (*reg
)) == MODE_FLOAT
719 || GET_MODE_CLASS (GET_MODE (*reg
)) == MODE_COMPLEX_FLOAT
);
721 *reg
= FP_MODE_REG (regno
, GET_MODE (*reg
));
724 /* Remove a note of type NOTE, which must be found, for register
725 number REGNO from INSN. Remove only one such note. */
728 remove_regno_note (rtx_insn
*insn
, enum reg_note note
, unsigned int regno
)
730 rtx
*note_link
, this_rtx
;
732 note_link
= ®_NOTES (insn
);
733 for (this_rtx
= *note_link
; this_rtx
; this_rtx
= XEXP (this_rtx
, 1))
734 if (REG_NOTE_KIND (this_rtx
) == note
735 && REG_P (XEXP (this_rtx
, 0)) && REGNO (XEXP (this_rtx
, 0)) == regno
)
737 *note_link
= XEXP (this_rtx
, 1);
741 note_link
= &XEXP (this_rtx
, 1);
746 /* Find the hard register number of virtual register REG in REGSTACK.
747 The hard register number is relative to the top of the stack. -1 is
748 returned if the register is not found. */
751 get_hard_regnum (stack_ptr regstack
, rtx reg
)
755 gcc_assert (STACK_REG_P (reg
));
757 for (i
= regstack
->top
; i
>= 0; i
--)
758 if (regstack
->reg
[i
] == REGNO (reg
))
761 return i
>= 0 ? (FIRST_STACK_REG
+ regstack
->top
- i
) : -1;
764 /* Emit an insn to pop virtual register REG before or after INSN.
765 REGSTACK is the stack state after INSN and is updated to reflect this
766 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
767 is represented as a SET whose destination is the register to be popped
768 and source is the top of stack. A death note for the top of stack
769 cases the movdf pattern to pop. */
772 emit_pop_insn (rtx_insn
*insn
, stack_ptr regstack
, rtx reg
,
773 enum emit_where where
)
775 machine_mode raw_mode
= reg_raw_mode
[FIRST_STACK_REG
];
780 /* For complex types take care to pop both halves. These may survive in
781 CLOBBER and USE expressions. */
782 if (COMPLEX_MODE_P (GET_MODE (reg
)))
784 rtx reg1
= FP_MODE_REG (REGNO (reg
), raw_mode
);
785 rtx reg2
= FP_MODE_REG (REGNO (reg
) + 1, raw_mode
);
788 if (get_hard_regnum (regstack
, reg1
) >= 0)
789 pop_insn
= emit_pop_insn (insn
, regstack
, reg1
, where
);
790 if (get_hard_regnum (regstack
, reg2
) >= 0)
791 pop_insn
= emit_pop_insn (insn
, regstack
, reg2
, where
);
792 gcc_assert (pop_insn
);
796 hard_regno
= get_hard_regnum (regstack
, reg
);
798 gcc_assert (hard_regno
>= FIRST_STACK_REG
);
800 pop_rtx
= gen_rtx_SET (FP_MODE_REG (hard_regno
, raw_mode
),
801 FP_MODE_REG (FIRST_STACK_REG
, raw_mode
));
803 if (where
== EMIT_AFTER
)
804 pop_insn
= emit_insn_after (pop_rtx
, insn
);
806 pop_insn
= emit_insn_before (pop_rtx
, insn
);
808 add_reg_note (pop_insn
, REG_DEAD
, FP_MODE_REG (FIRST_STACK_REG
, raw_mode
));
810 regstack
->reg
[regstack
->top
- (hard_regno
- FIRST_STACK_REG
)]
811 = regstack
->reg
[regstack
->top
];
813 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (reg
));
818 /* Emit an insn before or after INSN to swap virtual register REG with
819 the top of stack. REGSTACK is the stack state before the swap, and
820 is updated to reflect the swap. A swap insn is represented as a
821 PARALLEL of two patterns: each pattern moves one reg to the other.
823 If REG is already at the top of the stack, no insn is emitted. */
826 emit_swap_insn (rtx_insn
*insn
, stack_ptr regstack
, rtx reg
)
829 int other_reg
; /* swap regno temps */
830 rtx_insn
*i1
; /* the stack-reg insn prior to INSN */
831 rtx i1set
= NULL_RTX
; /* the SET rtx within I1 */
833 hard_regno
= get_hard_regnum (regstack
, reg
);
835 if (hard_regno
== FIRST_STACK_REG
)
837 if (hard_regno
== -1)
839 /* Something failed if the register wasn't on the stack. If we had
840 malformed asms, we zapped the instruction itself, but that didn't
841 produce the same pattern of register sets as before. To prevent
842 further failure, adjust REGSTACK to include REG at TOP. */
843 gcc_assert (any_malformed_asm
);
844 regstack
->reg
[++regstack
->top
] = REGNO (reg
);
847 gcc_assert (hard_regno
>= FIRST_STACK_REG
);
849 other_reg
= regstack
->top
- (hard_regno
- FIRST_STACK_REG
);
850 std::swap (regstack
->reg
[regstack
->top
], regstack
->reg
[other_reg
]);
852 /* Find the previous insn involving stack regs, but don't pass a
855 if (current_block
&& insn
!= BB_HEAD (current_block
))
857 rtx_insn
*tmp
= PREV_INSN (insn
);
858 rtx_insn
*limit
= PREV_INSN (BB_HEAD (current_block
));
863 || NOTE_INSN_BASIC_BLOCK_P (tmp
)
864 || (NONJUMP_INSN_P (tmp
)
865 && stack_regs_mentioned (tmp
)))
870 tmp
= PREV_INSN (tmp
);
875 && (i1set
= single_set (i1
)) != NULL_RTX
)
877 rtx i1src
= *get_true_reg (&SET_SRC (i1set
));
878 rtx i1dest
= *get_true_reg (&SET_DEST (i1set
));
880 /* If the previous register stack push was from the reg we are to
881 swap with, omit the swap. */
883 if (REG_P (i1dest
) && REGNO (i1dest
) == FIRST_STACK_REG
885 && REGNO (i1src
) == (unsigned) hard_regno
- 1
886 && find_regno_note (i1
, REG_DEAD
, FIRST_STACK_REG
) == NULL_RTX
)
889 /* If the previous insn wrote to the reg we are to swap with,
892 if (REG_P (i1dest
) && REGNO (i1dest
) == (unsigned) hard_regno
893 && REG_P (i1src
) && REGNO (i1src
) == FIRST_STACK_REG
894 && find_regno_note (i1
, REG_DEAD
, FIRST_STACK_REG
) == NULL_RTX
)
904 if possible. Similarly for fld1, fldz, fldpi etc. instead of any
905 of the loads or for float extension from memory. */
907 i1src
= SET_SRC (i1set
);
908 if (GET_CODE (i1src
) == FLOAT_EXTEND
)
909 i1src
= XEXP (i1src
, 0);
911 && REGNO (i1dest
) == FIRST_STACK_REG
912 && (MEM_P (i1src
) || GET_CODE (i1src
) == CONST_DOUBLE
)
913 && !side_effects_p (i1src
)
914 && hard_regno
== FIRST_STACK_REG
+ 1
915 && i1
!= BB_HEAD (current_block
))
917 /* i1 is the last insn that involves stack regs before insn, and
918 is known to be a load without other side-effects, i.e. fld b
919 in the above comment. */
922 rtx_insn
*tmp
= PREV_INSN (i1
);
923 rtx_insn
*limit
= PREV_INSN (BB_HEAD (current_block
));
924 /* Find the previous insn involving stack regs, but don't pass a
930 || NOTE_INSN_BASIC_BLOCK_P (tmp
)
931 || (NONJUMP_INSN_P (tmp
)
932 && stack_regs_mentioned (tmp
)))
937 tmp
= PREV_INSN (tmp
);
940 && (i2set
= single_set (i2
)) != NULL_RTX
)
942 rtx i2dest
= *get_true_reg (&SET_DEST (i2set
));
943 rtx i2src
= SET_SRC (i2set
);
944 if (GET_CODE (i2src
) == FLOAT_EXTEND
)
945 i2src
= XEXP (i2src
, 0);
946 /* If the last two insns before insn that involve
947 stack regs are loads, where the latter (i1)
948 pushes onto the register stack and thus
949 moves the value from the first load (i2) from
950 %st to %st(1), consider swapping them. */
952 && REGNO (i2dest
) == FIRST_STACK_REG
953 && (MEM_P (i2src
) || GET_CODE (i2src
) == CONST_DOUBLE
)
954 /* Ensure i2 doesn't have other side-effects. */
955 && !side_effects_p (i2src
)
956 /* And that the two instructions can actually be
957 swapped, i.e. there shouldn't be any stores
958 in between i2 and i1 that might alias with
959 the i1 memory, and the memory address can't
960 use registers set in between i2 and i1. */
961 && !modified_between_p (SET_SRC (i1set
), i2
, i1
))
963 /* Move i1 (fld b above) right before i2 (fld a
966 SET_PREV_INSN (i1
) = NULL_RTX
;
967 SET_NEXT_INSN (i1
) = NULL_RTX
;
968 set_block_for_insn (i1
, NULL
);
969 emit_insn_before (i1
, i2
);
976 /* Avoid emitting the swap if this is the first register stack insn
977 of the current_block. Instead update the current_block's stack_in
978 and let compensate edges take care of this for us. */
979 if (current_block
&& starting_stack_p
)
981 BLOCK_INFO (current_block
)->stack_in
= *regstack
;
982 starting_stack_p
= false;
986 machine_mode raw_mode
= reg_raw_mode
[FIRST_STACK_REG
];
987 rtx op1
= FP_MODE_REG (hard_regno
, raw_mode
);
988 rtx op2
= FP_MODE_REG (FIRST_STACK_REG
, raw_mode
);
990 = gen_rtx_PARALLEL (VOIDmode
,
991 gen_rtvec (2, gen_rtx_SET (op1
, op2
),
992 gen_rtx_SET (op2
, op1
)));
994 emit_insn_after (swap_rtx
, i1
);
995 else if (current_block
)
996 emit_insn_before (swap_rtx
, BB_HEAD (current_block
));
998 emit_insn_before (swap_rtx
, insn
);
1001 /* Emit an insns before INSN to swap virtual register SRC1 with
1002 the top of stack and virtual register SRC2 with second stack
1003 slot. REGSTACK is the stack state before the swaps, and
1004 is updated to reflect the swaps. A swap insn is represented as a
1005 PARALLEL of two patterns: each pattern moves one reg to the other.
1007 If SRC1 and/or SRC2 are already at the right place, no swap insn
1011 swap_to_top (rtx_insn
*insn
, stack_ptr regstack
, rtx src1
, rtx src2
)
1013 struct stack_def temp_stack
;
1016 temp_stack
= *regstack
;
1018 /* Place operand 1 at the top of stack. */
1019 regno
= get_hard_regnum (&temp_stack
, src1
);
1020 gcc_assert (regno
>= 0);
1021 if (regno
!= FIRST_STACK_REG
)
1023 k
= temp_stack
.top
- (regno
- FIRST_STACK_REG
);
1026 std::swap (temp_stack
.reg
[j
], temp_stack
.reg
[k
]);
1029 /* Place operand 2 next on the stack. */
1030 regno
= get_hard_regnum (&temp_stack
, src2
);
1031 gcc_assert (regno
>= 0);
1032 if (regno
!= FIRST_STACK_REG
+ 1)
1034 k
= temp_stack
.top
- (regno
- FIRST_STACK_REG
);
1035 j
= temp_stack
.top
- 1;
1037 std::swap (temp_stack
.reg
[j
], temp_stack
.reg
[k
]);
1040 change_stack (insn
, regstack
, &temp_stack
, EMIT_BEFORE
);
1043 /* Handle a move to or from a stack register in PAT, which is in INSN.
1044 REGSTACK is the current stack. Return whether a control flow insn
1045 was deleted in the process. */
1048 move_for_stack_reg (rtx_insn
*insn
, stack_ptr regstack
, rtx pat
)
1050 rtx
*psrc
= get_true_reg (&SET_SRC (pat
));
1051 rtx
*pdest
= get_true_reg (&SET_DEST (pat
));
1054 bool control_flow_insn_deleted
= false;
1056 src
= *psrc
; dest
= *pdest
;
1058 if (STACK_REG_P (src
) && STACK_REG_P (dest
))
1060 /* Write from one stack reg to another. If SRC dies here, then
1061 just change the register mapping and delete the insn. */
1063 note
= find_regno_note (insn
, REG_DEAD
, REGNO (src
));
1068 /* If this is a no-op move, there must not be a REG_DEAD note. */
1069 gcc_assert (REGNO (src
) != REGNO (dest
));
1071 for (i
= regstack
->top
; i
>= 0; i
--)
1072 if (regstack
->reg
[i
] == REGNO (src
))
1075 /* The destination must be dead, or life analysis is borked. */
1076 gcc_assert (get_hard_regnum (regstack
, dest
) < FIRST_STACK_REG
1077 || any_malformed_asm
);
1079 /* If the source is not live, this is yet another case of
1080 uninitialized variables. Load up a NaN instead. */
1082 return move_nan_for_stack_reg (insn
, regstack
, dest
);
1084 /* It is possible that the dest is unused after this insn.
1085 If so, just pop the src. */
1087 if (find_regno_note (insn
, REG_UNUSED
, REGNO (dest
)))
1088 emit_pop_insn (insn
, regstack
, src
, EMIT_AFTER
);
1091 regstack
->reg
[i
] = REGNO (dest
);
1092 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (dest
));
1093 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (src
));
1096 control_flow_insn_deleted
|= control_flow_insn_p (insn
);
1098 return control_flow_insn_deleted
;
1101 /* The source reg does not die. */
1103 /* If this appears to be a no-op move, delete it, or else it
1104 will confuse the machine description output patterns. But if
1105 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1106 for REG_UNUSED will not work for deleted insns. */
1108 if (REGNO (src
) == REGNO (dest
))
1110 if (find_regno_note (insn
, REG_UNUSED
, REGNO (dest
)))
1111 emit_pop_insn (insn
, regstack
, dest
, EMIT_AFTER
);
1113 control_flow_insn_deleted
|= control_flow_insn_p (insn
);
1115 return control_flow_insn_deleted
;
1118 /* The destination ought to be dead. */
1119 if (get_hard_regnum (regstack
, dest
) >= FIRST_STACK_REG
)
1120 gcc_assert (any_malformed_asm
);
1123 replace_reg (psrc
, get_hard_regnum (regstack
, src
));
1125 regstack
->reg
[++regstack
->top
] = REGNO (dest
);
1126 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (dest
));
1127 replace_reg (pdest
, FIRST_STACK_REG
);
1130 else if (STACK_REG_P (src
))
1132 /* Save from a stack reg to MEM, or possibly integer reg. Since
1133 only top of stack may be saved, emit an exchange first if
1136 emit_swap_insn (insn
, regstack
, src
);
1138 note
= find_regno_note (insn
, REG_DEAD
, REGNO (src
));
1141 replace_reg (&XEXP (note
, 0), FIRST_STACK_REG
);
1143 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (src
));
1145 else if ((GET_MODE (src
) == XFmode
)
1146 && regstack
->top
< REG_STACK_SIZE
- 1)
1148 /* A 387 cannot write an XFmode value to a MEM without
1149 clobbering the source reg. The output code can handle
1150 this by reading back the value from the MEM.
1151 But it is more efficient to use a temp register if one is
1152 available. Push the source value here if the register
1153 stack is not full, and then write the value to memory via
1156 rtx top_stack_reg
= FP_MODE_REG (FIRST_STACK_REG
, GET_MODE (src
));
1158 push_rtx
= gen_movxf (top_stack_reg
, top_stack_reg
);
1159 emit_insn_before (push_rtx
, insn
);
1160 add_reg_note (insn
, REG_DEAD
, top_stack_reg
);
1163 replace_reg (psrc
, FIRST_STACK_REG
);
1167 rtx pat
= PATTERN (insn
);
1169 gcc_assert (STACK_REG_P (dest
));
1171 /* Load from MEM, or possibly integer REG or constant, into the
1172 stack regs. The actual target is always the top of the
1173 stack. The stack mapping is changed to reflect that DEST is
1174 now at top of stack. */
1176 /* The destination ought to be dead. However, there is a
1177 special case with i387 UNSPEC_TAN, where destination is live
1178 (an argument to fptan) but inherent load of 1.0 is modelled
1179 as a load from a constant. */
1180 if (GET_CODE (pat
) == PARALLEL
1181 && XVECLEN (pat
, 0) == 2
1182 && GET_CODE (XVECEXP (pat
, 0, 1)) == SET
1183 && GET_CODE (SET_SRC (XVECEXP (pat
, 0, 1))) == UNSPEC
1184 && XINT (SET_SRC (XVECEXP (pat
, 0, 1)), 1) == UNSPEC_TAN
)
1185 emit_swap_insn (insn
, regstack
, dest
);
1187 gcc_assert (get_hard_regnum (regstack
, dest
) < FIRST_STACK_REG
1188 || any_malformed_asm
);
1190 gcc_assert (regstack
->top
< REG_STACK_SIZE
);
1192 regstack
->reg
[++regstack
->top
] = REGNO (dest
);
1193 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (dest
));
1194 replace_reg (pdest
, FIRST_STACK_REG
);
1197 return control_flow_insn_deleted
;
1200 /* A helper function which replaces INSN with a pattern that loads up
1201 a NaN into DEST, then invokes move_for_stack_reg. */
1204 move_nan_for_stack_reg (rtx_insn
*insn
, stack_ptr regstack
, rtx dest
)
1208 dest
= FP_MODE_REG (REGNO (dest
), SFmode
);
1209 pat
= gen_rtx_SET (dest
, not_a_num
);
1210 PATTERN (insn
) = pat
;
1211 INSN_CODE (insn
) = -1;
1213 return move_for_stack_reg (insn
, regstack
, pat
);
1216 /* Swap the condition on a branch, if there is one. Return true if we
1217 found a condition to swap. False if the condition was not used as
1221 swap_rtx_condition_1 (rtx pat
)
1226 if (COMPARISON_P (pat
))
1228 PUT_CODE (pat
, swap_condition (GET_CODE (pat
)));
1233 fmt
= GET_RTX_FORMAT (GET_CODE (pat
));
1234 for (i
= GET_RTX_LENGTH (GET_CODE (pat
)) - 1; i
>= 0; i
--)
1240 for (j
= XVECLEN (pat
, i
) - 1; j
>= 0; j
--)
1241 r
|= swap_rtx_condition_1 (XVECEXP (pat
, i
, j
));
1243 else if (fmt
[i
] == 'e')
1244 r
|= swap_rtx_condition_1 (XEXP (pat
, i
));
1252 swap_rtx_condition (rtx_insn
*insn
)
1254 rtx pat
= PATTERN (insn
);
1256 /* We're looking for a single set to an HImode temporary. */
1258 if (GET_CODE (pat
) == SET
1259 && REG_P (SET_DEST (pat
))
1260 && REGNO (SET_DEST (pat
)) == FLAGS_REG
)
1262 insn
= next_flags_user (insn
);
1263 if (insn
== NULL_RTX
)
1265 pat
= PATTERN (insn
);
1268 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1269 with the cc value right now. We may be able to search for one
1272 if (GET_CODE (pat
) == SET
1273 && GET_CODE (SET_SRC (pat
)) == UNSPEC
1274 && XINT (SET_SRC (pat
), 1) == UNSPEC_FNSTSW
)
1276 rtx dest
= SET_DEST (pat
);
1278 /* Search forward looking for the first use of this value.
1279 Stop at block boundaries. */
1280 while (insn
!= BB_END (current_block
))
1282 insn
= NEXT_INSN (insn
);
1283 if (INSN_P (insn
) && reg_mentioned_p (dest
, insn
))
1289 /* We haven't found it. */
1290 if (insn
== BB_END (current_block
))
1293 /* So we've found the insn using this value. If it is anything
1294 other than sahf or the value does not die (meaning we'd have
1295 to search further), then we must give up. */
1296 pat
= PATTERN (insn
);
1297 if (GET_CODE (pat
) != SET
1298 || GET_CODE (SET_SRC (pat
)) != UNSPEC
1299 || XINT (SET_SRC (pat
), 1) != UNSPEC_SAHF
1300 || ! dead_or_set_p (insn
, dest
))
1303 /* Now we are prepared to handle this. */
1304 insn
= next_flags_user (insn
);
1305 if (insn
== NULL_RTX
)
1307 pat
= PATTERN (insn
);
1310 if (swap_rtx_condition_1 (pat
))
1313 INSN_CODE (insn
) = -1;
1314 if (recog_memoized (insn
) == -1)
1316 /* In case the flags don't die here, recurse to try fix
1317 following user too. */
1318 else if (! dead_or_set_p (insn
, ix86_flags_rtx
))
1320 insn
= next_flags_user (insn
);
1321 if (!insn
|| !swap_rtx_condition (insn
))
1326 swap_rtx_condition_1 (pat
);
1334 /* Handle a comparison. Special care needs to be taken to avoid
1335 causing comparisons that a 387 cannot do correctly, such as EQ.
1337 Also, a pop insn may need to be emitted. The 387 does have an
1338 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1339 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1343 compare_for_stack_reg (rtx_insn
*insn
, stack_ptr regstack
,
1344 rtx pat_src
, bool can_pop_second_op
)
1347 rtx src1_note
, src2_note
;
1349 src1
= get_true_reg (&XEXP (pat_src
, 0));
1350 src2
= get_true_reg (&XEXP (pat_src
, 1));
1352 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1353 registers that die in this insn - move those to stack top first. */
1354 if ((! STACK_REG_P (*src1
)
1355 || (STACK_REG_P (*src2
)
1356 && get_hard_regnum (regstack
, *src2
) == FIRST_STACK_REG
))
1357 && swap_rtx_condition (insn
))
1359 std::swap (XEXP (pat_src
, 0), XEXP (pat_src
, 1));
1361 src1
= get_true_reg (&XEXP (pat_src
, 0));
1362 src2
= get_true_reg (&XEXP (pat_src
, 1));
1364 INSN_CODE (insn
) = -1;
1367 /* We will fix any death note later. */
1369 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1371 if (STACK_REG_P (*src2
))
1372 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1374 src2_note
= NULL_RTX
;
1376 emit_swap_insn (insn
, regstack
, *src1
);
1378 replace_reg (src1
, FIRST_STACK_REG
);
1380 if (STACK_REG_P (*src2
))
1381 replace_reg (src2
, get_hard_regnum (regstack
, *src2
));
1385 if (*src2
== CONST0_RTX (GET_MODE (*src2
)))
1387 /* This is `ftst' insn that can't pop register. */
1388 remove_regno_note (insn
, REG_DEAD
, REGNO (XEXP (src1_note
, 0)));
1389 emit_pop_insn (insn
, regstack
, XEXP (src1_note
, 0),
1394 pop_stack (regstack
, REGNO (XEXP (src1_note
, 0)));
1395 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1399 /* If the second operand dies, handle that. But if the operands are
1400 the same stack register, don't bother, because only one death is
1401 needed, and it was just handled. */
1404 && ! (STACK_REG_P (*src1
) && STACK_REG_P (*src2
)
1405 && REGNO (*src1
) == REGNO (*src2
)))
1407 /* As a special case, two regs may die in this insn if src2 is
1408 next to top of stack and the top of stack also dies. Since
1409 we have already popped src1, "next to top of stack" is really
1410 at top (FIRST_STACK_REG) now. */
1412 if (get_hard_regnum (regstack
, XEXP (src2_note
, 0)) == FIRST_STACK_REG
1413 && src1_note
&& can_pop_second_op
)
1415 pop_stack (regstack
, REGNO (XEXP (src2_note
, 0)));
1416 replace_reg (&XEXP (src2_note
, 0), FIRST_STACK_REG
+ 1);
1420 /* The 386 can only represent death of the first operand in
1421 the case handled above. In all other cases, emit a separate
1422 pop and remove the death note from here. */
1423 remove_regno_note (insn
, REG_DEAD
, REGNO (XEXP (src2_note
, 0)));
1424 emit_pop_insn (insn
, regstack
, XEXP (src2_note
, 0),
1430 /* Substitute hardware stack regs in debug insn INSN, using stack
1431 layout REGSTACK. If we can't find a hardware stack reg for any of
1432 the REGs in it, reset the debug insn. */
1435 subst_all_stack_regs_in_debug_insn (rtx_insn
*insn
, struct stack_def
*regstack
)
1437 subrtx_ptr_iterator::array_type array
;
1438 FOR_EACH_SUBRTX_PTR (iter
, array
, &INSN_VAR_LOCATION_LOC (insn
), NONCONST
)
1442 if (STACK_REG_P (x
))
1444 int hard_regno
= get_hard_regnum (regstack
, x
);
1446 /* If we can't find an active register, reset this debug insn. */
1447 if (hard_regno
== -1)
1449 INSN_VAR_LOCATION_LOC (insn
) = gen_rtx_UNKNOWN_VAR_LOC ();
1453 gcc_assert (hard_regno
>= FIRST_STACK_REG
);
1454 replace_reg (loc
, hard_regno
);
1455 iter
.skip_subrtxes ();
1460 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1461 is the current register layout. Return whether a control flow insn
1462 was deleted in the process. */
1465 subst_stack_regs_pat (rtx_insn
*insn
, stack_ptr regstack
, rtx pat
)
1468 bool control_flow_insn_deleted
= false;
1470 switch (GET_CODE (pat
))
1473 /* Deaths in USE insns can happen in non optimizing compilation.
1474 Handle them by popping the dying register. */
1475 src
= get_true_reg (&XEXP (pat
, 0));
1476 if (STACK_REG_P (*src
)
1477 && find_regno_note (insn
, REG_DEAD
, REGNO (*src
)))
1479 /* USEs are ignored for liveness information so USEs of dead
1480 register might happen. */
1481 if (TEST_HARD_REG_BIT (regstack
->reg_set
, REGNO (*src
)))
1482 emit_pop_insn (insn
, regstack
, *src
, EMIT_AFTER
);
1483 return control_flow_insn_deleted
;
1485 /* Uninitialized USE might happen for functions returning uninitialized
1486 value. We will properly initialize the USE on the edge to EXIT_BLOCK,
1487 so it is safe to ignore the use here. This is consistent with behavior
1488 of dataflow analyzer that ignores USE too. (This also imply that
1489 forcibly initializing the register to NaN here would lead to ICE later,
1490 since the REG_DEAD notes are not issued.) */
1500 dest
= get_true_reg (&XEXP (pat
, 0));
1501 if (STACK_REG_P (*dest
))
1503 note
= find_reg_note (insn
, REG_DEAD
, *dest
);
1505 if (pat
!= PATTERN (insn
))
1507 /* The fix_truncdi_1 pattern wants to be able to
1508 allocate its own scratch register. It does this by
1509 clobbering an fp reg so that it is assured of an
1510 empty reg-stack register. If the register is live,
1511 kill it now. Remove the DEAD/UNUSED note so we
1512 don't try to kill it later too.
1514 In reality the UNUSED note can be absent in some
1515 complicated cases when the register is reused for
1516 partially set variable. */
1519 emit_pop_insn (insn
, regstack
, *dest
, EMIT_BEFORE
);
1521 note
= find_reg_note (insn
, REG_UNUSED
, *dest
);
1523 remove_note (insn
, note
);
1524 replace_reg (dest
, FIRST_STACK_REG
+ 1);
1528 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1529 indicates an uninitialized value. Because reload removed
1530 all other clobbers, this must be due to a function
1531 returning without a value. Load up a NaN. */
1536 if (COMPLEX_MODE_P (GET_MODE (t
)))
1538 rtx u
= FP_MODE_REG (REGNO (t
) + 1, SFmode
);
1539 if (get_hard_regnum (regstack
, u
) == -1)
1541 rtx pat2
= gen_rtx_CLOBBER (VOIDmode
, u
);
1542 rtx_insn
*insn2
= emit_insn_before (pat2
, insn
);
1543 control_flow_insn_deleted
1544 |= move_nan_for_stack_reg (insn2
, regstack
, u
);
1547 if (get_hard_regnum (regstack
, t
) == -1)
1548 control_flow_insn_deleted
1549 |= move_nan_for_stack_reg (insn
, regstack
, t
);
1558 rtx
*src1
= (rtx
*) 0, *src2
;
1559 rtx src1_note
, src2_note
;
1562 dest
= get_true_reg (&SET_DEST (pat
));
1563 src
= get_true_reg (&SET_SRC (pat
));
1564 pat_src
= SET_SRC (pat
);
1566 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1567 if (STACK_REG_P (*src
)
1568 || (STACK_REG_P (*dest
)
1569 && (REG_P (*src
) || MEM_P (*src
)
1570 || CONST_DOUBLE_P (*src
))))
1572 control_flow_insn_deleted
|= move_for_stack_reg (insn
, regstack
, pat
);
1576 switch (GET_CODE (pat_src
))
1581 for (count
= REG_NREGS (*dest
); --count
>= 0;)
1583 regstack
->reg
[++regstack
->top
] = REGNO (*dest
) + count
;
1584 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
) + count
);
1587 replace_reg (dest
, FIRST_STACK_REG
);
1595 case FLOAT_TRUNCATE
:
1599 /* These insns only operate on the top of the stack. It's
1600 possible that the tstM case results in a REG_DEAD note on the
1604 src1
= get_true_reg (&XEXP (pat_src
, 0));
1606 emit_swap_insn (insn
, regstack
, *src1
);
1608 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1610 if (STACK_REG_P (*dest
))
1611 replace_reg (dest
, FIRST_STACK_REG
);
1615 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1617 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (*src1
));
1620 replace_reg (src1
, FIRST_STACK_REG
);
1625 /* On i386, reversed forms of subM3 and divM3 exist for
1626 MODE_FLOAT, so the same code that works for addM3 and mulM3
1630 /* These insns can accept the top of stack as a destination
1631 from a stack reg or mem, or can use the top of stack as a
1632 source and some other stack register (possibly top of stack)
1633 as a destination. */
1635 src1
= get_true_reg (&XEXP (pat_src
, 0));
1636 src2
= get_true_reg (&XEXP (pat_src
, 1));
1638 /* We will fix any death note later. */
1640 if (STACK_REG_P (*src1
))
1641 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1643 src1_note
= NULL_RTX
;
1644 if (STACK_REG_P (*src2
))
1645 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1647 src2_note
= NULL_RTX
;
1649 /* If either operand is not a stack register, then the dest
1650 must be top of stack. */
1652 if (! STACK_REG_P (*src1
) || ! STACK_REG_P (*src2
))
1653 emit_swap_insn (insn
, regstack
, *dest
);
1656 /* Both operands are REG. If neither operand is already
1657 at the top of stack, choose to make the one that is the
1658 dest the new top of stack. */
1660 int src1_hard_regnum
, src2_hard_regnum
;
1662 src1_hard_regnum
= get_hard_regnum (regstack
, *src1
);
1663 src2_hard_regnum
= get_hard_regnum (regstack
, *src2
);
1665 /* If the source is not live, this is yet another case of
1666 uninitialized variables. Load up a NaN instead. */
1667 if (src1_hard_regnum
== -1)
1669 rtx pat2
= gen_rtx_CLOBBER (VOIDmode
, *src1
);
1670 rtx_insn
*insn2
= emit_insn_before (pat2
, insn
);
1671 control_flow_insn_deleted
1672 |= move_nan_for_stack_reg (insn2
, regstack
, *src1
);
1674 if (src2_hard_regnum
== -1)
1676 rtx pat2
= gen_rtx_CLOBBER (VOIDmode
, *src2
);
1677 rtx_insn
*insn2
= emit_insn_before (pat2
, insn
);
1678 control_flow_insn_deleted
1679 |= move_nan_for_stack_reg (insn2
, regstack
, *src2
);
1682 if (src1_hard_regnum
!= FIRST_STACK_REG
1683 && src2_hard_regnum
!= FIRST_STACK_REG
)
1684 emit_swap_insn (insn
, regstack
, *dest
);
1687 if (STACK_REG_P (*src1
))
1688 replace_reg (src1
, get_hard_regnum (regstack
, *src1
));
1689 if (STACK_REG_P (*src2
))
1690 replace_reg (src2
, get_hard_regnum (regstack
, *src2
));
1694 rtx src1_reg
= XEXP (src1_note
, 0);
1696 /* If the register that dies is at the top of stack, then
1697 the destination is somewhere else - merely substitute it.
1698 But if the reg that dies is not at top of stack, then
1699 move the top of stack to the dead reg, as though we had
1700 done the insn and then a store-with-pop. */
1702 if (REGNO (src1_reg
) == regstack
->reg
[regstack
->top
])
1704 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1705 replace_reg (dest
, get_hard_regnum (regstack
, *dest
));
1709 int regno
= get_hard_regnum (regstack
, src1_reg
);
1711 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1712 replace_reg (dest
, regno
);
1714 regstack
->reg
[regstack
->top
- (regno
- FIRST_STACK_REG
)]
1715 = regstack
->reg
[regstack
->top
];
1718 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
1719 REGNO (XEXP (src1_note
, 0)));
1720 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1725 rtx src2_reg
= XEXP (src2_note
, 0);
1726 if (REGNO (src2_reg
) == regstack
->reg
[regstack
->top
])
1728 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1729 replace_reg (dest
, get_hard_regnum (regstack
, *dest
));
1733 int regno
= get_hard_regnum (regstack
, src2_reg
);
1735 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1736 replace_reg (dest
, regno
);
1738 regstack
->reg
[regstack
->top
- (regno
- FIRST_STACK_REG
)]
1739 = regstack
->reg
[regstack
->top
];
1742 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
1743 REGNO (XEXP (src2_note
, 0)));
1744 replace_reg (&XEXP (src2_note
, 0), FIRST_STACK_REG
);
1749 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1750 replace_reg (dest
, get_hard_regnum (regstack
, *dest
));
1753 /* Keep operand 1 matching with destination. */
1754 if (COMMUTATIVE_ARITH_P (pat_src
)
1755 && REG_P (*src1
) && REG_P (*src2
)
1756 && REGNO (*src1
) != REGNO (*dest
))
1758 int tmp
= REGNO (*src1
);
1759 replace_reg (src1
, REGNO (*src2
));
1760 replace_reg (src2
, tmp
);
1765 switch (XINT (pat_src
, 1))
1768 case UNSPEC_FIST_ATOMIC
:
1770 case UNSPEC_FIST_FLOOR
:
1771 case UNSPEC_FIST_CEIL
:
1773 /* These insns only operate on the top of the stack. */
1775 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1776 emit_swap_insn (insn
, regstack
, *src1
);
1778 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1780 if (STACK_REG_P (*dest
))
1781 replace_reg (dest
, FIRST_STACK_REG
);
1785 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1787 CLEAR_HARD_REG_BIT (regstack
->reg_set
, REGNO (*src1
));
1790 replace_reg (src1
, FIRST_STACK_REG
);
1795 /* This insn only operate on the top of the stack. */
1797 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1798 emit_swap_insn (insn
, regstack
, *src1
);
1800 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1802 replace_reg (src1
, FIRST_STACK_REG
);
1806 remove_regno_note (insn
, REG_DEAD
,
1807 REGNO (XEXP (src1_note
, 0)));
1808 emit_pop_insn (insn
, regstack
, XEXP (src1_note
, 0),
1816 case UNSPEC_FRNDINT
:
1819 case UNSPEC_FRNDINT_ROUNDEVEN
:
1820 case UNSPEC_FRNDINT_FLOOR
:
1821 case UNSPEC_FRNDINT_CEIL
:
1822 case UNSPEC_FRNDINT_TRUNC
:
1824 /* Above insns operate on the top of the stack. */
1826 case UNSPEC_SINCOS_COS
:
1827 case UNSPEC_XTRACT_FRACT
:
1829 /* Above insns operate on the top two stack slots,
1830 first part of one input, double output insn. */
1832 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1834 emit_swap_insn (insn
, regstack
, *src1
);
1836 /* Input should never die, it is replaced with output. */
1837 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1838 gcc_assert (!src1_note
);
1840 if (STACK_REG_P (*dest
))
1841 replace_reg (dest
, FIRST_STACK_REG
);
1843 replace_reg (src1
, FIRST_STACK_REG
);
1846 case UNSPEC_SINCOS_SIN
:
1847 case UNSPEC_XTRACT_EXP
:
1849 /* These insns operate on the top two stack slots,
1850 second part of one input, double output insn. */
1857 /* For UNSPEC_TAN, regstack->top is already increased
1858 by inherent load of constant 1.0. */
1860 /* Output value is generated in the second stack slot.
1861 Move current value from second slot to the top. */
1862 regstack
->reg
[regstack
->top
]
1863 = regstack
->reg
[regstack
->top
- 1];
1865 gcc_assert (STACK_REG_P (*dest
));
1867 regstack
->reg
[regstack
->top
- 1] = REGNO (*dest
);
1868 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1869 replace_reg (dest
, FIRST_STACK_REG
+ 1);
1871 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1873 replace_reg (src1
, FIRST_STACK_REG
);
1878 case UNSPEC_FYL2XP1
:
1879 /* These insns operate on the top two stack slots. */
1881 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1882 src2
= get_true_reg (&XVECEXP (pat_src
, 0, 1));
1884 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1885 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1887 swap_to_top (insn
, regstack
, *src1
, *src2
);
1889 replace_reg (src1
, FIRST_STACK_REG
);
1890 replace_reg (src2
, FIRST_STACK_REG
+ 1);
1893 replace_reg (&XEXP (src1_note
, 0), FIRST_STACK_REG
);
1895 replace_reg (&XEXP (src2_note
, 0), FIRST_STACK_REG
+ 1);
1897 /* Pop both input operands from the stack. */
1898 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
1899 regstack
->reg
[regstack
->top
]);
1900 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
1901 regstack
->reg
[regstack
->top
- 1]);
1904 /* Push the result back onto the stack. */
1905 regstack
->reg
[++regstack
->top
] = REGNO (*dest
);
1906 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1907 replace_reg (dest
, FIRST_STACK_REG
);
1910 case UNSPEC_FSCALE_FRACT
:
1911 case UNSPEC_FPREM_F
:
1912 case UNSPEC_FPREM1_F
:
1913 /* These insns operate on the top two stack slots,
1914 first part of double input, double output insn. */
1916 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1917 src2
= get_true_reg (&XVECEXP (pat_src
, 0, 1));
1919 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
1920 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
1922 /* Inputs should never die, they are
1923 replaced with outputs. */
1924 gcc_assert (!src1_note
);
1925 gcc_assert (!src2_note
);
1927 swap_to_top (insn
, regstack
, *src1
, *src2
);
1929 /* Push the result back onto stack. Empty stack slot
1930 will be filled in second part of insn. */
1931 if (STACK_REG_P (*dest
))
1933 regstack
->reg
[regstack
->top
] = REGNO (*dest
);
1934 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1935 replace_reg (dest
, FIRST_STACK_REG
);
1938 replace_reg (src1
, FIRST_STACK_REG
);
1939 replace_reg (src2
, FIRST_STACK_REG
+ 1);
1942 case UNSPEC_FSCALE_EXP
:
1943 case UNSPEC_FPREM_U
:
1944 case UNSPEC_FPREM1_U
:
1945 /* These insns operate on the top two stack slots,
1946 second part of double input, double output insn. */
1948 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1949 src2
= get_true_reg (&XVECEXP (pat_src
, 0, 1));
1951 /* Push the result back onto stack. Fill empty slot from
1952 first part of insn and fix top of stack pointer. */
1953 if (STACK_REG_P (*dest
))
1955 regstack
->reg
[regstack
->top
- 1] = REGNO (*dest
);
1956 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
1957 replace_reg (dest
, FIRST_STACK_REG
+ 1);
1960 replace_reg (src1
, FIRST_STACK_REG
);
1961 replace_reg (src2
, FIRST_STACK_REG
+ 1);
1964 case UNSPEC_C2_FLAG
:
1965 /* This insn operates on the top two stack slots,
1966 third part of C2 setting double input insn. */
1968 src1
= get_true_reg (&XVECEXP (pat_src
, 0, 0));
1969 src2
= get_true_reg (&XVECEXP (pat_src
, 0, 1));
1971 replace_reg (src1
, FIRST_STACK_REG
);
1972 replace_reg (src2
, FIRST_STACK_REG
+ 1);
1976 /* Combined fcomp+fnstsw generated for doing well with
1977 CSE. When optimizing this would have been broken
1980 pat_src
= XVECEXP (pat_src
, 0, 0);
1981 if (GET_CODE (pat_src
) == COMPARE
)
1988 pat_src
= XVECEXP (pat_src
, 0, 0);
1989 gcc_assert (GET_CODE (pat_src
) == COMPARE
);
1999 /* `fcomi' insn can't pop two regs. */
2000 compare_for_stack_reg (insn
, regstack
, pat_src
,
2001 REGNO (*dest
) != FLAGS_REG
);
2005 /* This insn requires the top of stack to be the destination. */
2007 src1
= get_true_reg (&XEXP (pat_src
, 1));
2008 src2
= get_true_reg (&XEXP (pat_src
, 2));
2010 src1_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src1
));
2011 src2_note
= find_regno_note (insn
, REG_DEAD
, REGNO (*src2
));
2013 /* If the comparison operator is an FP comparison operator,
2014 it is handled correctly by compare_for_stack_reg () who
2015 will move the destination to the top of stack. But if the
2016 comparison operator is not an FP comparison operator, we
2017 have to handle it here. */
2018 if (get_hard_regnum (regstack
, *dest
) >= FIRST_STACK_REG
2019 && REGNO (*dest
) != regstack
->reg
[regstack
->top
])
2021 /* In case one of operands is the top of stack and the operands
2022 dies, it is safe to make it the destination operand by
2023 reversing the direction of cmove and avoid fxch. */
2024 if ((REGNO (*src1
) == regstack
->reg
[regstack
->top
]
2026 || (REGNO (*src2
) == regstack
->reg
[regstack
->top
]
2029 int idx1
= (get_hard_regnum (regstack
, *src1
)
2031 int idx2
= (get_hard_regnum (regstack
, *src2
)
2034 /* Make reg-stack believe that the operands are already
2035 swapped on the stack */
2036 regstack
->reg
[regstack
->top
- idx1
] = REGNO (*src2
);
2037 regstack
->reg
[regstack
->top
- idx2
] = REGNO (*src1
);
2039 /* Reverse condition to compensate the operand swap.
2040 i386 do have comparison always reversible. */
2041 PUT_CODE (XEXP (pat_src
, 0),
2042 reversed_comparison_code (XEXP (pat_src
, 0), insn
));
2045 emit_swap_insn (insn
, regstack
, *dest
);
2053 src_note
[1] = src1_note
;
2054 src_note
[2] = src2_note
;
2056 if (STACK_REG_P (*src1
))
2057 replace_reg (src1
, get_hard_regnum (regstack
, *src1
));
2058 if (STACK_REG_P (*src2
))
2059 replace_reg (src2
, get_hard_regnum (regstack
, *src2
));
2061 for (i
= 1; i
<= 2; i
++)
2064 int regno
= REGNO (XEXP (src_note
[i
], 0));
2066 /* If the register that dies is not at the top of
2067 stack, then move the top of stack to the dead reg.
2068 Top of stack should never die, as it is the
2070 gcc_assert (regno
!= regstack
->reg
[regstack
->top
]);
2071 remove_regno_note (insn
, REG_DEAD
, regno
);
2072 emit_pop_insn (insn
, regstack
, XEXP (src_note
[i
], 0),
2077 /* Make dest the top of stack. Add dest to regstack if
2079 if (get_hard_regnum (regstack
, *dest
) < FIRST_STACK_REG
)
2080 regstack
->reg
[++regstack
->top
] = REGNO (*dest
);
2081 SET_HARD_REG_BIT (regstack
->reg_set
, REGNO (*dest
));
2082 replace_reg (dest
, FIRST_STACK_REG
);
2095 return control_flow_insn_deleted
;
2098 /* Substitute hard regnums for any stack regs in INSN, which has
2099 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
2100 before the insn, and is updated with changes made here.
2102 There are several requirements and assumptions about the use of
2103 stack-like regs in asm statements. These rules are enforced by
2104 record_asm_stack_regs; see comments there for details. Any
2105 asm_operands left in the RTL at this point may be assume to meet the
2106 requirements, since record_asm_stack_regs removes any problem asm. */
2109 subst_asm_stack_regs (rtx_insn
*insn
, stack_ptr regstack
)
2111 rtx body
= PATTERN (insn
);
2113 rtx
*note_reg
; /* Array of note contents */
2114 rtx
**note_loc
; /* Address of REG field of each note */
2115 enum reg_note
*note_kind
; /* The type of each note */
2117 rtx
*clobber_reg
= 0;
2118 rtx
**clobber_loc
= 0;
2120 struct stack_def temp_stack
;
2125 int n_inputs
, n_outputs
;
2127 if (! check_asm_stack_operands (insn
))
2130 /* Find out what the constraints required. If no constraint
2131 alternative matches, that is a compiler bug: we should have caught
2132 such an insn in check_asm_stack_operands. */
2133 extract_constrain_insn (insn
);
2135 preprocess_constraints (insn
);
2136 const operand_alternative
*op_alt
= which_op_alt ();
2138 get_asm_operands_in_out (body
, &n_outputs
, &n_inputs
);
2140 /* Strip SUBREGs here to make the following code simpler. */
2141 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2142 if (GET_CODE (recog_data
.operand
[i
]) == SUBREG
2143 && REG_P (SUBREG_REG (recog_data
.operand
[i
])))
2145 recog_data
.operand_loc
[i
] = & SUBREG_REG (recog_data
.operand
[i
]);
2146 recog_data
.operand
[i
] = SUBREG_REG (recog_data
.operand
[i
]);
2149 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2151 for (i
= 0, note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
2154 note_reg
= XALLOCAVEC (rtx
, i
);
2155 note_loc
= XALLOCAVEC (rtx
*, i
);
2156 note_kind
= XALLOCAVEC (enum reg_note
, i
);
2159 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
2161 if (GET_CODE (note
) != EXPR_LIST
)
2163 rtx reg
= XEXP (note
, 0);
2164 rtx
*loc
= & XEXP (note
, 0);
2166 if (GET_CODE (reg
) == SUBREG
&& REG_P (SUBREG_REG (reg
)))
2168 loc
= & SUBREG_REG (reg
);
2169 reg
= SUBREG_REG (reg
);
2172 if (STACK_REG_P (reg
)
2173 && (REG_NOTE_KIND (note
) == REG_DEAD
2174 || REG_NOTE_KIND (note
) == REG_UNUSED
))
2176 note_reg
[n_notes
] = reg
;
2177 note_loc
[n_notes
] = loc
;
2178 note_kind
[n_notes
] = REG_NOTE_KIND (note
);
2183 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2187 if (GET_CODE (body
) == PARALLEL
)
2189 clobber_reg
= XALLOCAVEC (rtx
, XVECLEN (body
, 0));
2190 clobber_loc
= XALLOCAVEC (rtx
*, XVECLEN (body
, 0));
2192 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
2193 if (GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
2195 rtx clobber
= XVECEXP (body
, 0, i
);
2196 rtx reg
= XEXP (clobber
, 0);
2197 rtx
*loc
= & XEXP (clobber
, 0);
2199 if (GET_CODE (reg
) == SUBREG
&& REG_P (SUBREG_REG (reg
)))
2201 loc
= & SUBREG_REG (reg
);
2202 reg
= SUBREG_REG (reg
);
2205 if (STACK_REG_P (reg
))
2207 clobber_reg
[n_clobbers
] = reg
;
2208 clobber_loc
[n_clobbers
] = loc
;
2214 temp_stack
= *regstack
;
2216 /* Put the input regs into the desired place in TEMP_STACK. */
2218 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
2219 if (STACK_REG_P (recog_data
.operand
[i
])
2220 && reg_class_subset_p (op_alt
[i
].cl
, FLOAT_REGS
)
2221 && op_alt
[i
].cl
!= FLOAT_REGS
)
2223 /* If an operand needs to be in a particular reg in
2224 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2225 these constraints are for single register classes, and
2226 reload guaranteed that operand[i] is already in that class,
2227 we can just use REGNO (recog_data.operand[i]) to know which
2228 actual reg this operand needs to be in. */
2230 int regno
= get_hard_regnum (&temp_stack
, recog_data
.operand
[i
]);
2232 gcc_assert (regno
>= 0);
2234 if ((unsigned int) regno
!= REGNO (recog_data
.operand
[i
]))
2236 /* recog_data.operand[i] is not in the right place. Find
2237 it and swap it with whatever is already in I's place.
2238 K is where recog_data.operand[i] is now. J is where it
2242 k
= temp_stack
.top
- (regno
- FIRST_STACK_REG
);
2244 - (REGNO (recog_data
.operand
[i
]) - FIRST_STACK_REG
));
2246 std::swap (temp_stack
.reg
[j
], temp_stack
.reg
[k
]);
2250 /* Emit insns before INSN to make sure the reg-stack is in the right
2253 change_stack (insn
, regstack
, &temp_stack
, EMIT_BEFORE
);
2255 /* Make the needed input register substitutions. Do death notes and
2256 clobbers too, because these are for inputs, not outputs. */
2258 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
2259 if (STACK_REG_P (recog_data
.operand
[i
]))
2261 int regnum
= get_hard_regnum (regstack
, recog_data
.operand
[i
]);
2263 gcc_assert (regnum
>= 0);
2265 replace_reg (recog_data
.operand_loc
[i
], regnum
);
2268 for (i
= 0; i
< n_notes
; i
++)
2269 if (note_kind
[i
] == REG_DEAD
)
2271 int regnum
= get_hard_regnum (regstack
, note_reg
[i
]);
2273 gcc_assert (regnum
>= 0);
2275 replace_reg (note_loc
[i
], regnum
);
2278 for (i
= 0; i
< n_clobbers
; i
++)
2280 /* It's OK for a CLOBBER to reference a reg that is not live.
2281 Don't try to replace it in that case. */
2282 int regnum
= get_hard_regnum (regstack
, clobber_reg
[i
]);
2285 replace_reg (clobber_loc
[i
], regnum
);
2288 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2290 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
2291 if (STACK_REG_P (recog_data
.operand
[i
]))
2293 /* An input reg is implicitly popped if it is tied to an
2294 output, or if there is a CLOBBER for it. */
2297 for (j
= 0; j
< n_clobbers
; j
++)
2298 if (operands_match_p (clobber_reg
[j
], recog_data
.operand
[i
]))
2301 if (j
< n_clobbers
|| op_alt
[i
].matches
>= 0)
2303 /* recog_data.operand[i] might not be at the top of stack.
2304 But that's OK, because all we need to do is pop the
2305 right number of regs off of the top of the reg-stack.
2306 record_asm_stack_regs guaranteed that all implicitly
2307 popped regs were grouped at the top of the reg-stack. */
2309 CLEAR_HARD_REG_BIT (regstack
->reg_set
,
2310 regstack
->reg
[regstack
->top
]);
2315 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2316 Note that there isn't any need to substitute register numbers.
2317 ??? Explain why this is true. */
2319 for (i
= LAST_STACK_REG
; i
>= FIRST_STACK_REG
; i
--)
2321 /* See if there is an output for this hard reg. */
2324 for (j
= 0; j
< n_outputs
; j
++)
2325 if (STACK_REG_P (recog_data
.operand
[j
])
2326 && REGNO (recog_data
.operand
[j
]) == (unsigned) i
)
2328 regstack
->reg
[++regstack
->top
] = i
;
2329 SET_HARD_REG_BIT (regstack
->reg_set
, i
);
2334 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2335 input that the asm didn't implicitly pop. If the asm didn't
2336 implicitly pop an input reg, that reg will still be live.
2338 Note that we can't use find_regno_note here: the register numbers
2339 in the death notes have already been substituted. */
2341 for (i
= 0; i
< n_outputs
; i
++)
2342 if (STACK_REG_P (recog_data
.operand
[i
]))
2346 for (j
= 0; j
< n_notes
; j
++)
2347 if (REGNO (recog_data
.operand
[i
]) == REGNO (note_reg
[j
])
2348 && note_kind
[j
] == REG_UNUSED
)
2350 insn
= emit_pop_insn (insn
, regstack
, recog_data
.operand
[i
],
2356 for (i
= n_outputs
; i
< n_outputs
+ n_inputs
; i
++)
2357 if (STACK_REG_P (recog_data
.operand
[i
]))
2361 for (j
= 0; j
< n_notes
; j
++)
2362 if (REGNO (recog_data
.operand
[i
]) == REGNO (note_reg
[j
])
2363 && note_kind
[j
] == REG_DEAD
2364 && TEST_HARD_REG_BIT (regstack
->reg_set
,
2365 REGNO (recog_data
.operand
[i
])))
2367 insn
= emit_pop_insn (insn
, regstack
, recog_data
.operand
[i
],
2374 /* Return true if a function call is allowed to alter some or all bits
2375 of any stack reg. */
2377 callee_clobbers_any_stack_reg (const function_abi
& callee_abi
)
2379 for (unsigned regno
= FIRST_STACK_REG
; regno
<= LAST_STACK_REG
; regno
++)
2380 if (callee_abi
.clobbers_at_least_part_of_reg_p (regno
))
2386 /* Substitute stack hard reg numbers for stack virtual registers in
2387 INSN. Non-stack register numbers are not changed. REGSTACK is the
2388 current stack content. Insns may be emitted as needed to arrange the
2389 stack for the 387 based on the contents of the insn. Return whether
2390 a control flow insn was deleted in the process. */
2393 subst_stack_regs (rtx_insn
*insn
, stack_ptr regstack
)
2395 rtx
*note_link
, note
;
2396 bool control_flow_insn_deleted
= false;
2399 /* If the target of the call doesn't clobber any stack registers,
2400 Don't clear the arguments. */
2402 && callee_clobbers_any_stack_reg (insn_callee_abi (insn
)))
2404 int top
= regstack
->top
;
2406 /* If there are any floating point parameters to be passed in
2407 registers for this call, make sure they are in the right
2412 straighten_stack (insn
, regstack
);
2414 /* Now mark the arguments as dead after the call. */
2416 while (regstack
->top
>= 0)
2418 CLEAR_HARD_REG_BIT (regstack
->reg_set
, FIRST_STACK_REG
+ regstack
->top
);
2424 /* Do the actual substitution if any stack regs are mentioned.
2425 Since we only record whether entire insn mentions stack regs, and
2426 subst_stack_regs_pat only works for patterns that contain stack regs,
2427 we must check each pattern in a parallel here. A call_value_pop could
2430 if (stack_regs_mentioned (insn
))
2432 int n_operands
= asm_noperands (PATTERN (insn
));
2433 if (n_operands
>= 0)
2435 /* This insn is an `asm' with operands. Decode the operands,
2436 decide how many are inputs, and do register substitution.
2437 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2439 subst_asm_stack_regs (insn
, regstack
);
2440 return control_flow_insn_deleted
;
2443 if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
2444 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
2446 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn
), 0, i
)))
2448 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, i
)) == CLOBBER
)
2449 XVECEXP (PATTERN (insn
), 0, i
)
2450 = shallow_copy_rtx (XVECEXP (PATTERN (insn
), 0, i
));
2451 control_flow_insn_deleted
2452 |= subst_stack_regs_pat (insn
, regstack
,
2453 XVECEXP (PATTERN (insn
), 0, i
));
2457 control_flow_insn_deleted
2458 |= subst_stack_regs_pat (insn
, regstack
, PATTERN (insn
));
2461 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2462 REG_UNUSED will already have been dealt with, so just return. */
2464 if (NOTE_P (insn
) || insn
->deleted ())
2465 return control_flow_insn_deleted
;
2467 /* If this a noreturn call, we can't insert pop insns after it.
2468 Instead, reset the stack state to empty. */
2470 && find_reg_note (insn
, REG_NORETURN
, NULL
))
2473 CLEAR_HARD_REG_SET (regstack
->reg_set
);
2474 return control_flow_insn_deleted
;
2477 /* If there is a REG_UNUSED note on a stack register on this insn,
2478 the indicated reg must be popped. The REG_UNUSED note is removed,
2479 since the form of the newly emitted pop insn references the reg,
2480 making it no longer `unset'. */
2482 note_link
= ®_NOTES (insn
);
2483 for (note
= *note_link
; note
; note
= XEXP (note
, 1))
2484 if (REG_NOTE_KIND (note
) == REG_UNUSED
&& STACK_REG_P (XEXP (note
, 0)))
2486 *note_link
= XEXP (note
, 1);
2487 insn
= emit_pop_insn (insn
, regstack
, XEXP (note
, 0), EMIT_AFTER
);
2490 note_link
= &XEXP (note
, 1);
2492 return control_flow_insn_deleted
;
2495 /* Change the organization of the stack so that it fits a new basic
2496 block. Some registers might have to be popped, but there can never be
2497 a register live in the new block that is not now live.
2499 Insert any needed insns before or after INSN, as indicated by
2500 WHERE. OLD is the original stack layout, and NEW is the desired
2501 form. OLD is updated to reflect the code emitted, i.e., it will be
2502 the same as NEW upon return.
2504 This function will not preserve block_end[]. But that information
2505 is no longer needed once this has executed. */
2508 change_stack (rtx_insn
*insn
, stack_ptr old
, stack_ptr new_stack
,
2509 enum emit_where where
)
2512 machine_mode raw_mode
= reg_raw_mode
[FIRST_STACK_REG
];
2513 rtx_insn
*update_end
= NULL
;
2516 /* Stack adjustments for the first insn in a block update the
2517 current_block's stack_in instead of inserting insns directly.
2518 compensate_edges will add the necessary code later. */
2521 && where
== EMIT_BEFORE
)
2523 BLOCK_INFO (current_block
)->stack_in
= *new_stack
;
2524 starting_stack_p
= false;
2529 /* We will be inserting new insns "backwards". If we are to insert
2530 after INSN, find the next insn, and insert before it. */
2532 if (where
== EMIT_AFTER
)
2534 if (current_block
&& BB_END (current_block
) == insn
)
2536 insn
= NEXT_INSN (insn
);
2539 /* Initialize partially dead variables. */
2540 for (i
= FIRST_STACK_REG
; i
< LAST_STACK_REG
+ 1; i
++)
2541 if (TEST_HARD_REG_BIT (new_stack
->reg_set
, i
)
2542 && !TEST_HARD_REG_BIT (old
->reg_set
, i
))
2544 old
->reg
[++old
->top
] = i
;
2545 SET_HARD_REG_BIT (old
->reg_set
, i
);
2546 emit_insn_before (gen_rtx_SET (FP_MODE_REG (i
, SFmode
), not_a_num
),
2550 /* Pop any registers that are not needed in the new block. */
2552 /* If the destination block's stack already has a specified layout
2553 and contains two or more registers, use a more intelligent algorithm
2554 to pop registers that minimizes the number of fxchs below. */
2555 if (new_stack
->top
> 0)
2557 bool slots
[REG_STACK_SIZE
];
2558 int pops
[REG_STACK_SIZE
];
2559 int next
, dest
, topsrc
;
2561 /* First pass to determine the free slots. */
2562 for (reg
= 0; reg
<= new_stack
->top
; reg
++)
2563 slots
[reg
] = TEST_HARD_REG_BIT (new_stack
->reg_set
, old
->reg
[reg
]);
2565 /* Second pass to allocate preferred slots. */
2567 for (reg
= old
->top
; reg
> new_stack
->top
; reg
--)
2568 if (TEST_HARD_REG_BIT (new_stack
->reg_set
, old
->reg
[reg
]))
2571 for (next
= 0; next
<= new_stack
->top
; next
++)
2572 if (!slots
[next
] && new_stack
->reg
[next
] == old
->reg
[reg
])
2574 /* If this is a preference for the new top of stack, record
2575 the fact by remembering it's old->reg in topsrc. */
2576 if (next
== new_stack
->top
)
2587 /* Intentionally, avoid placing the top of stack in it's correct
2588 location, if we still need to permute the stack below and we
2589 can usefully place it somewhere else. This is the case if any
2590 slot is still unallocated, in which case we should place the
2591 top of stack there. */
2593 for (reg
= 0; reg
< new_stack
->top
; reg
++)
2597 slots
[new_stack
->top
] = false;
2602 /* Third pass allocates remaining slots and emits pop insns. */
2603 next
= new_stack
->top
;
2604 for (reg
= old
->top
; reg
> new_stack
->top
; reg
--)
2609 /* Find next free slot. */
2614 emit_pop_insn (insn
, old
, FP_MODE_REG (old
->reg
[dest
], raw_mode
),
2620 /* The following loop attempts to maximize the number of times we
2621 pop the top of the stack, as this permits the use of the faster
2622 ffreep instruction on platforms that support it. */
2626 for (reg
= 0; reg
<= old
->top
; reg
++)
2627 if (TEST_HARD_REG_BIT (new_stack
->reg_set
, old
->reg
[reg
]))
2631 while (old
->top
>= live
)
2632 if (TEST_HARD_REG_BIT (new_stack
->reg_set
, old
->reg
[old
->top
]))
2634 while (TEST_HARD_REG_BIT (new_stack
->reg_set
, old
->reg
[next
]))
2636 emit_pop_insn (insn
, old
, FP_MODE_REG (old
->reg
[next
], raw_mode
),
2640 emit_pop_insn (insn
, old
, FP_MODE_REG (old
->reg
[old
->top
], raw_mode
),
2644 if (new_stack
->top
== -2)
2646 /* If the new block has never been processed, then it can inherit
2647 the old stack order. */
2649 new_stack
->top
= old
->top
;
2650 memcpy (new_stack
->reg
, old
->reg
, sizeof (new_stack
->reg
));
2654 /* This block has been entered before, and we must match the
2655 previously selected stack order. */
2657 /* By now, the only difference should be the order of the stack,
2658 not their depth or liveliness. */
2660 gcc_assert (old
->reg_set
== new_stack
->reg_set
);
2661 gcc_assert (old
->top
== new_stack
->top
);
2663 /* If the stack is not empty (new_stack->top != -1), loop here emitting
2664 swaps until the stack is correct.
2666 The worst case number of swaps emitted is N + 2, where N is the
2667 depth of the stack. In some cases, the reg at the top of
2668 stack may be correct, but swapped anyway in order to fix
2669 other regs. But since we never swap any other reg away from
2670 its correct slot, this algorithm will converge. */
2672 if (new_stack
->top
!= -1)
2675 /* Swap the reg at top of stack into the position it is
2676 supposed to be in, until the correct top of stack appears. */
2678 while (old
->reg
[old
->top
] != new_stack
->reg
[new_stack
->top
])
2680 for (reg
= new_stack
->top
; reg
>= 0; reg
--)
2681 if (new_stack
->reg
[reg
] == old
->reg
[old
->top
])
2684 gcc_assert (reg
!= -1);
2686 emit_swap_insn (insn
, old
,
2687 FP_MODE_REG (old
->reg
[reg
], raw_mode
));
2690 /* See if any regs remain incorrect. If so, bring an
2691 incorrect reg to the top of stack, and let the while loop
2694 for (reg
= new_stack
->top
; reg
>= 0; reg
--)
2695 if (new_stack
->reg
[reg
] != old
->reg
[reg
])
2697 emit_swap_insn (insn
, old
,
2698 FP_MODE_REG (old
->reg
[reg
], raw_mode
));
2703 /* At this point there must be no differences. */
2705 for (reg
= old
->top
; reg
>= 0; reg
--)
2706 gcc_assert (old
->reg
[reg
] == new_stack
->reg
[reg
]);
2711 for (update_end
= NEXT_INSN (update_end
); update_end
!= insn
;
2712 update_end
= NEXT_INSN (update_end
))
2714 set_block_for_insn (update_end
, current_block
);
2715 if (INSN_P (update_end
))
2716 df_insn_rescan (update_end
);
2718 BB_END (current_block
) = PREV_INSN (insn
);
2722 /* Print stack configuration. */
2725 print_stack (FILE *file
, stack_ptr s
)
2731 fprintf (file
, "uninitialized\n");
2732 else if (s
->top
== -1)
2733 fprintf (file
, "empty\n");
2738 for (i
= 0; i
<= s
->top
; ++i
)
2739 fprintf (file
, "%d ", s
->reg
[i
]);
2740 fputs ("]\n", file
);
2744 /* This function was doing life analysis. We now let the regular live
2745 code do it's job, so we only need to check some extra invariants
2746 that reg-stack expects. Primary among these being that all registers
2747 are initialized before use.
2749 The function returns true when code was emitted to CFG edges and
2750 commit_edge_insertions needs to be called. */
2753 convert_regs_entry (void)
2759 /* Load something into each stack register live at function entry.
2760 Such live registers can be caused by uninitialized variables or
2761 functions not returning values on all paths. In order to keep
2762 the push/pop code happy, and to not scrog the register stack, we
2763 must put something in these registers. Use a QNaN.
2765 Note that we are inserting converted code here. This code is
2766 never seen by the convert_regs pass. */
2768 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR_FOR_FN (cfun
)->succs
)
2770 basic_block block
= e
->dest
;
2771 block_info bi
= BLOCK_INFO (block
);
2774 for (reg
= LAST_STACK_REG
; reg
>= FIRST_STACK_REG
; --reg
)
2775 if (TEST_HARD_REG_BIT (bi
->stack_in
.reg_set
, reg
))
2779 bi
->stack_in
.reg
[++top
] = reg
;
2781 init
= gen_rtx_SET (FP_MODE_REG (FIRST_STACK_REG
, SFmode
),
2783 insert_insn_on_edge (init
, e
);
2787 bi
->stack_in
.top
= top
;
2793 /* Construct the desired stack for function exit. This will either
2794 be `empty', or the function return value at top-of-stack. */
2797 convert_regs_exit (void)
2799 int value_reg_low
, value_reg_high
;
2800 stack_ptr output_stack
;
2803 retvalue
= stack_result (current_function_decl
);
2804 value_reg_low
= value_reg_high
= -1;
2807 value_reg_low
= REGNO (retvalue
);
2808 value_reg_high
= END_REGNO (retvalue
) - 1;
2811 output_stack
= &BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun
))->stack_in
;
2812 if (value_reg_low
== -1)
2813 output_stack
->top
= -1;
2818 output_stack
->top
= value_reg_high
- value_reg_low
;
2819 for (reg
= value_reg_low
; reg
<= value_reg_high
; ++reg
)
2821 output_stack
->reg
[value_reg_high
- reg
] = reg
;
2822 SET_HARD_REG_BIT (output_stack
->reg_set
, reg
);
2827 /* Copy the stack info from the end of edge E's source block to the
2828 start of E's destination block. */
2831 propagate_stack (edge e
)
2833 stack_ptr src_stack
= &BLOCK_INFO (e
->src
)->stack_out
;
2834 stack_ptr dest_stack
= &BLOCK_INFO (e
->dest
)->stack_in
;
2837 /* Preserve the order of the original stack, but check whether
2838 any pops are needed. */
2839 dest_stack
->top
= -1;
2840 for (reg
= 0; reg
<= src_stack
->top
; ++reg
)
2841 if (TEST_HARD_REG_BIT (dest_stack
->reg_set
, src_stack
->reg
[reg
]))
2842 dest_stack
->reg
[++dest_stack
->top
] = src_stack
->reg
[reg
];
2844 /* Push in any partially dead values. */
2845 for (reg
= FIRST_STACK_REG
; reg
< LAST_STACK_REG
+ 1; reg
++)
2846 if (TEST_HARD_REG_BIT (dest_stack
->reg_set
, reg
)
2847 && !TEST_HARD_REG_BIT (src_stack
->reg_set
, reg
))
2848 dest_stack
->reg
[++dest_stack
->top
] = reg
;
2852 /* Adjust the stack of edge E's source block on exit to match the stack
2853 of it's target block upon input. The stack layouts of both blocks
2854 should have been defined by now. */
2857 compensate_edge (edge e
)
2859 basic_block source
= e
->src
, target
= e
->dest
;
2860 stack_ptr target_stack
= &BLOCK_INFO (target
)->stack_in
;
2861 stack_ptr source_stack
= &BLOCK_INFO (source
)->stack_out
;
2862 struct stack_def regstack
;
2866 fprintf (dump_file
, "Edge %d->%d: ", source
->index
, target
->index
);
2868 gcc_assert (target_stack
->top
!= -2);
2870 /* Check whether stacks are identical. */
2871 if (target_stack
->top
== source_stack
->top
)
2873 for (reg
= target_stack
->top
; reg
>= 0; --reg
)
2874 if (target_stack
->reg
[reg
] != source_stack
->reg
[reg
])
2880 fprintf (dump_file
, "no changes needed\n");
2887 fprintf (dump_file
, "correcting stack to ");
2888 print_stack (dump_file
, target_stack
);
2891 /* Abnormal calls may appear to have values live in st(0), but the
2892 abnormal return path will not have actually loaded the values. */
2893 if (e
->flags
& EDGE_ABNORMAL_CALL
)
2895 /* Assert that the lifetimes are as we expect -- one value
2896 live at st(0) on the end of the source block, and no
2897 values live at the beginning of the destination block.
2898 For complex return values, we may have st(1) live as well. */
2899 gcc_assert (source_stack
->top
== 0 || source_stack
->top
== 1);
2900 gcc_assert (target_stack
->top
== -1);
2904 /* Handle non-call EH edges specially. The normal return path have
2905 values in registers. These will be popped en masse by the unwind
2907 if (e
->flags
& EDGE_EH
)
2909 gcc_assert (target_stack
->top
== -1);
2913 /* We don't support abnormal edges. Global takes care to
2914 avoid any live register across them, so we should never
2915 have to insert instructions on such edges. */
2916 gcc_assert (! (e
->flags
& EDGE_ABNORMAL
));
2918 /* Make a copy of source_stack as change_stack is destructive. */
2919 regstack
= *source_stack
;
2921 /* It is better to output directly to the end of the block
2922 instead of to the edge, because emit_swap can do minimal
2923 insn scheduling. We can do this when there is only one
2924 edge out, and it is not abnormal. */
2925 if (EDGE_COUNT (source
->succs
) == 1)
2927 current_block
= source
;
2928 change_stack (BB_END (source
), ®stack
, target_stack
,
2929 (JUMP_P (BB_END (source
)) ? EMIT_BEFORE
: EMIT_AFTER
));
2936 current_block
= NULL
;
2939 /* ??? change_stack needs some point to emit insns after. */
2940 after
= emit_note (NOTE_INSN_DELETED
);
2942 change_stack (after
, ®stack
, target_stack
, EMIT_BEFORE
);
2947 set_insn_locations (seq
, e
->goto_locus
);
2948 insert_insn_on_edge (seq
, e
);
2954 /* Traverse all non-entry edges in the CFG, and emit the necessary
2955 edge compensation code to change the stack from stack_out of the
2956 source block to the stack_in of the destination block. */
2959 compensate_edges (void)
2961 bool inserted
= false;
2964 starting_stack_p
= false;
2966 FOR_EACH_BB_FN (bb
, cfun
)
2967 if (bb
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
))
2972 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2973 inserted
|= compensate_edge (e
);
2978 /* Select the better of two edges E1 and E2 to use to determine the
2979 stack layout for their shared destination basic block. This is
2980 typically the more frequently executed. The edge E1 may be NULL
2981 (in which case E2 is returned), but E2 is always non-NULL. */
2984 better_edge (edge e1
, edge e2
)
2989 if (e1
->count () > e2
->count ())
2991 if (e1
->count () < e2
->count ())
2994 /* Prefer critical edges to minimize inserting compensation code on
2997 if (EDGE_CRITICAL_P (e1
) != EDGE_CRITICAL_P (e2
))
2998 return EDGE_CRITICAL_P (e1
) ? e1
: e2
;
3000 /* Avoid non-deterministic behavior. */
3001 return (e1
->src
->index
< e2
->src
->index
) ? e1
: e2
;
3004 /* Convert stack register references in one block. Return true if the CFG
3005 has been modified in the process. */
3008 convert_regs_1 (basic_block block
)
3010 struct stack_def regstack
;
3011 block_info bi
= BLOCK_INFO (block
);
3013 rtx_insn
*insn
, *next
;
3014 bool control_flow_insn_deleted
= false;
3015 bool cfg_altered
= false;
3016 int debug_insns_with_starting_stack
= 0;
3018 /* Choose an initial stack layout, if one hasn't already been chosen. */
3019 if (bi
->stack_in
.top
== -2)
3021 edge e
, beste
= NULL
;
3024 /* Select the best incoming edge (typically the most frequent) to
3025 use as a template for this basic block. */
3026 FOR_EACH_EDGE (e
, ei
, block
->preds
)
3027 if (BLOCK_INFO (e
->src
)->done
)
3028 beste
= better_edge (beste
, e
);
3031 propagate_stack (beste
);
3034 /* No predecessors. Create an arbitrary input stack. */
3035 bi
->stack_in
.top
= -1;
3036 for (reg
= LAST_STACK_REG
; reg
>= FIRST_STACK_REG
; --reg
)
3037 if (TEST_HARD_REG_BIT (bi
->stack_in
.reg_set
, reg
))
3038 bi
->stack_in
.reg
[++bi
->stack_in
.top
] = reg
;
3044 fprintf (dump_file
, "\nBasic block %d\nInput stack: ", block
->index
);
3045 print_stack (dump_file
, &bi
->stack_in
);
3048 /* Process all insns in this block. Keep track of NEXT so that we
3049 don't process insns emitted while substituting in INSN. */
3050 current_block
= block
;
3051 next
= BB_HEAD (block
);
3052 regstack
= bi
->stack_in
;
3053 starting_stack_p
= true;
3058 next
= NEXT_INSN (insn
);
3060 /* Ensure we have not missed a block boundary. */
3062 if (insn
== BB_END (block
))
3065 /* Don't bother processing unless there is a stack reg
3066 mentioned or if it's a CALL_INSN. */
3067 if (DEBUG_BIND_INSN_P (insn
))
3069 if (starting_stack_p
)
3070 debug_insns_with_starting_stack
++;
3073 subst_all_stack_regs_in_debug_insn (insn
, ®stack
);
3075 /* Nothing must ever die at a debug insn. If something
3076 is referenced in it that becomes dead, it should have
3077 died before and the reference in the debug insn
3078 should have been removed so as to avoid changing code
3080 gcc_assert (!find_reg_note (insn
, REG_DEAD
, NULL
));
3083 else if (stack_regs_mentioned (insn
)
3088 fprintf (dump_file
, " insn %d input stack: ",
3090 print_stack (dump_file
, ®stack
);
3092 control_flow_insn_deleted
|= subst_stack_regs (insn
, ®stack
);
3093 starting_stack_p
= false;
3098 if (debug_insns_with_starting_stack
)
3100 /* Since it's the first non-debug instruction that determines
3101 the stack requirements of the current basic block, we refrain
3102 from updating debug insns before it in the loop above, and
3103 fix them up here. */
3104 for (insn
= BB_HEAD (block
); debug_insns_with_starting_stack
;
3105 insn
= NEXT_INSN (insn
))
3107 if (!DEBUG_BIND_INSN_P (insn
))
3110 debug_insns_with_starting_stack
--;
3111 subst_all_stack_regs_in_debug_insn (insn
, &bi
->stack_in
);
3117 fprintf (dump_file
, "Expected live registers [");
3118 for (reg
= FIRST_STACK_REG
; reg
<= LAST_STACK_REG
; ++reg
)
3119 if (TEST_HARD_REG_BIT (bi
->out_reg_set
, reg
))
3120 fprintf (dump_file
, " %d", reg
);
3121 fprintf (dump_file
, " ]\nOutput stack: ");
3122 print_stack (dump_file
, ®stack
);
3125 insn
= BB_END (block
);
3127 insn
= PREV_INSN (insn
);
3129 /* If the function is declared to return a value, but it returns one
3130 in only some cases, some registers might come live here. Emit
3131 necessary moves for them. */
3133 for (reg
= FIRST_STACK_REG
; reg
<= LAST_STACK_REG
; ++reg
)
3135 if (TEST_HARD_REG_BIT (bi
->out_reg_set
, reg
)
3136 && ! TEST_HARD_REG_BIT (regstack
.reg_set
, reg
))
3141 fprintf (dump_file
, "Emitting insn initializing reg %d\n", reg
);
3143 set
= gen_rtx_SET (FP_MODE_REG (reg
, SFmode
), not_a_num
);
3144 insn
= emit_insn_after (set
, insn
);
3145 control_flow_insn_deleted
|= subst_stack_regs (insn
, ®stack
);
3149 /* Amongst the insns possibly deleted during the substitution process above,
3150 might have been the only trapping insn in the block. We purge the now
3151 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
3152 called at the end of convert_regs. The order in which we process the
3153 blocks ensures that we never delete an already processed edge.
3155 Note that, at this point, the CFG may have been damaged by the emission
3156 of instructions after an abnormal call, which moves the basic block end
3157 (and is the reason why we call fixup_abnormal_edges later). So we must
3158 be sure that the trapping insn has been deleted before trying to purge
3159 dead edges, otherwise we risk purging valid edges.
3161 ??? We are normally supposed not to delete trapping insns, so we pretend
3162 that the insns deleted above don't actually trap. It would have been
3163 better to detect this earlier and avoid creating the EH edge in the first
3164 place, still, but we don't have enough information at that time. */
3166 if (control_flow_insn_deleted
)
3167 cfg_altered
|= purge_dead_edges (block
);
3169 /* Something failed if the stack lives don't match. If we had malformed
3170 asms, we zapped the instruction itself, but that didn't produce the
3171 same pattern of register kills as before. */
3173 gcc_assert (regstack
.reg_set
== bi
->out_reg_set
|| any_malformed_asm
);
3174 bi
->stack_out
= regstack
;
3180 /* Convert registers in all blocks reachable from BLOCK. Return true if the
3181 CFG has been modified in the process. */
3184 convert_regs_2 (basic_block block
)
3186 basic_block
*stack
, *sp
;
3187 bool cfg_altered
= false;
3189 /* We process the blocks in a top-down manner, in a way such that one block
3190 is only processed after all its predecessors. The number of predecessors
3191 of every block has already been computed. */
3193 stack
= XNEWVEC (basic_block
, n_basic_blocks_for_fn (cfun
));
3205 /* Processing BLOCK is achieved by convert_regs_1, which may purge
3206 some dead EH outgoing edge after the deletion of the trapping
3207 insn inside the block. Since the number of predecessors of
3208 BLOCK's successors was computed based on the initial edge set,
3209 we check the necessity to process some of these successors
3210 before such an edge deletion may happen. However, there is
3211 a pitfall: if BLOCK is the only predecessor of a successor and
3212 the edge between them happens to be deleted, the successor
3213 becomes unreachable and should not be processed. The problem
3214 is that there is no way to preventively detect this case so we
3215 stack the successor in all cases and hand over the task of
3216 fixing up the discrepancy to convert_regs_1. */
3218 FOR_EACH_EDGE (e
, ei
, block
->succs
)
3219 if (! (e
->flags
& EDGE_DFS_BACK
))
3221 BLOCK_INFO (e
->dest
)->predecessors
--;
3222 if (!BLOCK_INFO (e
->dest
)->predecessors
)
3226 cfg_altered
|= convert_regs_1 (block
);
3228 while (sp
!= stack
);
3235 /* Traverse all basic blocks in a function, converting the register
3236 references in each insn from the "flat" register file that gcc uses,
3237 to the stack-like registers the 387 uses. */
3242 bool cfg_altered
= false;
3248 /* Initialize uninitialized registers on function entry. */
3249 inserted
= convert_regs_entry ();
3251 /* Construct the desired stack for function exit. */
3252 convert_regs_exit ();
3253 BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun
))->done
= 1;
3255 /* ??? Future: process inner loops first, and give them arbitrary
3256 initial stacks which emit_swap_insn can modify. This ought to
3257 prevent double fxch that often appears at the head of a loop. */
3259 /* Process all blocks reachable from all entry points. */
3260 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR_FOR_FN (cfun
)->succs
)
3261 cfg_altered
|= convert_regs_2 (e
->dest
);
3263 /* ??? Process all unreachable blocks. Though there's no excuse
3264 for keeping these even when not optimizing. */
3265 FOR_EACH_BB_FN (b
, cfun
)
3267 block_info bi
= BLOCK_INFO (b
);
3270 cfg_altered
|= convert_regs_2 (b
);
3273 /* We must fix up abnormal edges before inserting compensation code
3274 because both mechanisms insert insns on edges. */
3275 inserted
|= fixup_abnormal_edges ();
3277 inserted
|= compensate_edges ();
3279 clear_aux_for_blocks ();
3282 commit_edge_insertions ();
3288 fputc ('\n', dump_file
);
3291 /* Convert register usage from "flat" register file usage to a "stack
3292 register file. FILE is the dump file, if used.
3294 Construct a CFG and run life analysis. Then convert each insn one
3295 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3296 code duplication created when the converter inserts pop insns on
3306 /* Clean up previous run. */
3307 stack_regs_mentioned_data
.release ();
3309 /* See if there is something to do. Flow analysis is quite
3310 expensive so we might save some compilation time. */
3311 for (i
= FIRST_STACK_REG
; i
<= LAST_STACK_REG
; i
++)
3312 if (df_regs_ever_live_p (i
))
3314 if (i
> LAST_STACK_REG
)
3317 df_note_add_problem ();
3320 mark_dfs_back_edges ();
3322 /* Set up block info for each basic block. */
3323 alloc_aux_for_blocks (sizeof (struct block_info_def
));
3324 FOR_EACH_BB_FN (bb
, cfun
)
3326 block_info bi
= BLOCK_INFO (bb
);
3331 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
3332 if (!(e
->flags
& EDGE_DFS_BACK
)
3333 && e
->src
!= ENTRY_BLOCK_PTR_FOR_FN (cfun
))
3336 /* Set current register status at last instruction `uninitialized'. */
3337 bi
->stack_in
.top
= -2;
3339 /* Copy live_at_end and live_at_start into temporaries. */
3340 for (reg
= FIRST_STACK_REG
; reg
<= LAST_STACK_REG
; reg
++)
3342 if (REGNO_REG_SET_P (DF_LR_OUT (bb
), reg
))
3343 SET_HARD_REG_BIT (bi
->out_reg_set
, reg
);
3344 if (REGNO_REG_SET_P (DF_LR_IN (bb
), reg
))
3345 SET_HARD_REG_BIT (bi
->stack_in
.reg_set
, reg
);
3349 /* Create the replacement registers up front. */
3350 for (i
= FIRST_STACK_REG
; i
<= LAST_STACK_REG
; i
++)
3353 FOR_EACH_MODE_IN_CLASS (mode
, MODE_FLOAT
)
3354 FP_MODE_REG (i
, mode
) = gen_rtx_REG (mode
, i
);
3355 FOR_EACH_MODE_IN_CLASS (mode
, MODE_COMPLEX_FLOAT
)
3356 FP_MODE_REG (i
, mode
) = gen_rtx_REG (mode
, i
);
3359 ix86_flags_rtx
= gen_rtx_REG (CCmode
, FLAGS_REG
);
3361 /* A QNaN for initializing uninitialized variables.
3363 ??? We can't load from constant memory in PIC mode, because
3364 we're inserting these instructions before the prologue and
3365 the PIC register hasn't been set up. In that case, fall back
3366 on zero, which we can get from `fldz'. */
3368 if ((flag_pic
&& !TARGET_64BIT
)
3369 || ix86_cmodel
== CM_LARGE
|| ix86_cmodel
== CM_LARGE_PIC
)
3370 not_a_num
= CONST0_RTX (SFmode
);
3375 real_nan (&r
, "", 1, SFmode
);
3376 not_a_num
= const_double_from_real_value (r
, SFmode
);
3377 not_a_num
= force_const_mem (SFmode
, not_a_num
);
3380 /* Allocate a cache for stack_regs_mentioned. */
3381 max_uid
= get_max_uid ();
3382 stack_regs_mentioned_data
.create (max_uid
+ 1);
3383 memset (stack_regs_mentioned_data
.address (),
3384 0, sizeof (char) * (max_uid
+ 1));
3387 any_malformed_asm
= false;
3389 free_aux_for_blocks ();
3392 #endif /* STACK_REGS */
3396 const pass_data pass_data_stack_regs
=
3398 RTL_PASS
, /* type */
3399 "*stack_regs", /* name */
3400 OPTGROUP_NONE
, /* optinfo_flags */
3401 TV_REG_STACK
, /* tv_id */
3402 0, /* properties_required */
3403 0, /* properties_provided */
3404 0, /* properties_destroyed */
3405 0, /* todo_flags_start */
3406 0, /* todo_flags_finish */
3409 class pass_stack_regs
: public rtl_opt_pass
3412 pass_stack_regs (gcc::context
*ctxt
)
3413 : rtl_opt_pass (pass_data_stack_regs
, ctxt
)
3416 /* opt_pass methods: */
3417 bool gate (function
*) final override
3426 }; // class pass_stack_regs
3431 make_pass_stack_regs (gcc::context
*ctxt
)
3433 return new pass_stack_regs (ctxt
);
3436 /* Convert register usage from flat register file usage to a stack
3439 rest_of_handle_stack_regs (void)
3442 if (reg_to_stack ())
3443 df_insn_rescan_all ();
3444 regstack_completed
= 1;
3451 const pass_data pass_data_stack_regs_run
=
3453 RTL_PASS
, /* type */
3455 OPTGROUP_NONE
, /* optinfo_flags */
3456 TV_REG_STACK
, /* tv_id */
3457 0, /* properties_required */
3458 0, /* properties_provided */
3459 0, /* properties_destroyed */
3460 0, /* todo_flags_start */
3461 TODO_df_finish
, /* todo_flags_finish */
3464 class pass_stack_regs_run
: public rtl_opt_pass
3467 pass_stack_regs_run (gcc::context
*ctxt
)
3468 : rtl_opt_pass (pass_data_stack_regs_run
, ctxt
)
3471 /* opt_pass methods: */
3472 unsigned int execute (function
*) final override
3474 return rest_of_handle_stack_regs ();
3477 }; // class pass_stack_regs_run
3482 make_pass_stack_regs_run (gcc::context
*ctxt
)
3484 return new pass_stack_regs_run (ctxt
);