c++: Tweaks for -Wredundant-move [PR107363]
[official-gcc.git] / gcc / function.cc
blobd3da20ede7f2c6e03be152e2ac25c69dc78ae281
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2022 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "backend.h"
38 #include "target.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "gimple-expr.h"
42 #include "cfghooks.h"
43 #include "df.h"
44 #include "memmodel.h"
45 #include "tm_p.h"
46 #include "stringpool.h"
47 #include "expmed.h"
48 #include "optabs.h"
49 #include "opts.h"
50 #include "regs.h"
51 #include "emit-rtl.h"
52 #include "recog.h"
53 #include "rtl-error.h"
54 #include "hard-reg-set.h"
55 #include "alias.h"
56 #include "fold-const.h"
57 #include "stor-layout.h"
58 #include "varasm.h"
59 #include "except.h"
60 #include "dojump.h"
61 #include "explow.h"
62 #include "calls.h"
63 #include "expr.h"
64 #include "optabs-tree.h"
65 #include "output.h"
66 #include "langhooks.h"
67 #include "common/common-target.h"
68 #include "gimplify.h"
69 #include "tree-pass.h"
70 #include "cfgrtl.h"
71 #include "cfganal.h"
72 #include "cfgbuild.h"
73 #include "cfgcleanup.h"
74 #include "cfgexpand.h"
75 #include "shrink-wrap.h"
76 #include "toplev.h"
77 #include "rtl-iter.h"
78 #include "tree-dfa.h"
79 #include "tree-ssa.h"
80 #include "stringpool.h"
81 #include "attribs.h"
82 #include "gimple.h"
83 #include "options.h"
84 #include "function-abi.h"
85 #include "value-range.h"
86 #include "gimple-range.h"
88 /* So we can assign to cfun in this file. */
89 #undef cfun
91 #ifndef STACK_ALIGNMENT_NEEDED
92 #define STACK_ALIGNMENT_NEEDED 1
93 #endif
95 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
97 /* Round a value to the lowest integer less than it that is a multiple of
98 the required alignment. Avoid using division in case the value is
99 negative. Assume the alignment is a power of two. */
100 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
102 /* Similar, but round to the next highest integer that meets the
103 alignment. */
104 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
106 /* Nonzero once virtual register instantiation has been done.
107 assign_stack_local uses frame_pointer_rtx when this is nonzero.
108 calls.cc:emit_library_call_value_1 uses it to set up
109 post-instantiation libcalls. */
110 int virtuals_instantiated;
112 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
113 static GTY(()) int funcdef_no;
115 /* These variables hold pointers to functions to create and destroy
116 target specific, per-function data structures. */
117 struct machine_function * (*init_machine_status) (void);
119 /* The currently compiled function. */
120 struct function *cfun = 0;
122 /* These hashes record the prologue and epilogue insns. */
124 struct insn_cache_hasher : ggc_cache_ptr_hash<rtx_def>
126 static hashval_t hash (rtx x) { return htab_hash_pointer (x); }
127 static bool equal (rtx a, rtx b) { return a == b; }
130 static GTY((cache))
131 hash_table<insn_cache_hasher> *prologue_insn_hash;
132 static GTY((cache))
133 hash_table<insn_cache_hasher> *epilogue_insn_hash;
136 hash_table<used_type_hasher> *types_used_by_vars_hash = NULL;
137 vec<tree, va_gc> *types_used_by_cur_var_decl;
139 /* Forward declarations. */
141 static class temp_slot *find_temp_slot_from_address (rtx);
142 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
143 static void pad_below (struct args_size *, machine_mode, tree);
144 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
145 static int all_blocks (tree, tree *);
146 static tree *get_block_vector (tree, int *);
147 extern tree debug_find_var_in_block_tree (tree, tree);
148 /* We always define `record_insns' even if it's not used so that we
149 can always export `prologue_epilogue_contains'. */
150 static void record_insns (rtx_insn *, rtx, hash_table<insn_cache_hasher> **)
151 ATTRIBUTE_UNUSED;
152 static bool contains (const rtx_insn *, hash_table<insn_cache_hasher> *);
153 static void prepare_function_start (void);
154 static void do_clobber_return_reg (rtx, void *);
155 static void do_use_return_reg (rtx, void *);
158 /* Stack of nested functions. */
159 /* Keep track of the cfun stack. */
161 static vec<function *> function_context_stack;
163 /* Save the current context for compilation of a nested function.
164 This is called from language-specific code. */
166 void
167 push_function_context (void)
169 if (cfun == 0)
170 allocate_struct_function (NULL, false);
172 function_context_stack.safe_push (cfun);
173 set_cfun (NULL);
176 /* Restore the last saved context, at the end of a nested function.
177 This function is called from language-specific code. */
179 void
180 pop_function_context (void)
182 struct function *p = function_context_stack.pop ();
183 set_cfun (p);
184 current_function_decl = p->decl;
186 /* Reset variables that have known state during rtx generation. */
187 virtuals_instantiated = 0;
188 generating_concat_p = 1;
191 /* Clear out all parts of the state in F that can safely be discarded
192 after the function has been parsed, but not compiled, to let
193 garbage collection reclaim the memory. */
195 void
196 free_after_parsing (struct function *f)
198 f->language = 0;
201 /* Clear out all parts of the state in F that can safely be discarded
202 after the function has been compiled, to let garbage collection
203 reclaim the memory. */
205 void
206 free_after_compilation (struct function *f)
208 prologue_insn_hash = NULL;
209 epilogue_insn_hash = NULL;
211 free (crtl->emit.regno_pointer_align);
213 memset (crtl, 0, sizeof (struct rtl_data));
214 f->eh = NULL;
215 f->machine = NULL;
216 f->cfg = NULL;
217 f->curr_properties &= ~PROP_cfg;
219 regno_reg_rtx = NULL;
222 /* Return size needed for stack frame based on slots so far allocated.
223 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
224 the caller may have to do that. */
226 poly_int64
227 get_frame_size (void)
229 if (FRAME_GROWS_DOWNWARD)
230 return -frame_offset;
231 else
232 return frame_offset;
235 /* Issue an error message and return TRUE if frame OFFSET overflows in
236 the signed target pointer arithmetics for function FUNC. Otherwise
237 return FALSE. */
239 bool
240 frame_offset_overflow (poly_int64 offset, tree func)
242 poly_uint64 size = FRAME_GROWS_DOWNWARD ? -offset : offset;
243 unsigned HOST_WIDE_INT limit
244 = ((HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (Pmode) - 1))
245 /* Leave room for the fixed part of the frame. */
246 - 64 * UNITS_PER_WORD);
248 if (!coeffs_in_range_p (size, 0U, limit))
250 unsigned HOST_WIDE_INT hwisize;
251 if (size.is_constant (&hwisize))
252 error_at (DECL_SOURCE_LOCATION (func),
253 "total size of local objects %wu exceeds maximum %wu",
254 hwisize, limit);
255 else
256 error_at (DECL_SOURCE_LOCATION (func),
257 "total size of local objects exceeds maximum %wu",
258 limit);
259 return true;
262 return false;
265 /* Return the minimum spill slot alignment for a register of mode MODE. */
267 unsigned int
268 spill_slot_alignment (machine_mode mode ATTRIBUTE_UNUSED)
270 return STACK_SLOT_ALIGNMENT (NULL_TREE, mode, GET_MODE_ALIGNMENT (mode));
273 /* Return stack slot alignment in bits for TYPE and MODE. */
275 static unsigned int
276 get_stack_local_alignment (tree type, machine_mode mode)
278 unsigned int alignment;
280 if (mode == BLKmode)
281 alignment = BIGGEST_ALIGNMENT;
282 else
283 alignment = GET_MODE_ALIGNMENT (mode);
285 /* Allow the frond-end to (possibly) increase the alignment of this
286 stack slot. */
287 if (! type)
288 type = lang_hooks.types.type_for_mode (mode, 0);
290 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
293 /* Determine whether it is possible to fit a stack slot of size SIZE and
294 alignment ALIGNMENT into an area in the stack frame that starts at
295 frame offset START and has a length of LENGTH. If so, store the frame
296 offset to be used for the stack slot in *POFFSET and return true;
297 return false otherwise. This function will extend the frame size when
298 given a start/length pair that lies at the end of the frame. */
300 static bool
301 try_fit_stack_local (poly_int64 start, poly_int64 length,
302 poly_int64 size, unsigned int alignment,
303 poly_int64_pod *poffset)
305 poly_int64 this_frame_offset;
306 int frame_off, frame_alignment, frame_phase;
308 /* Calculate how many bytes the start of local variables is off from
309 stack alignment. */
310 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
311 frame_off = targetm.starting_frame_offset () % frame_alignment;
312 frame_phase = frame_off ? frame_alignment - frame_off : 0;
314 /* Round the frame offset to the specified alignment. */
316 if (FRAME_GROWS_DOWNWARD)
317 this_frame_offset
318 = (aligned_lower_bound (start + length - size - frame_phase, alignment)
319 + frame_phase);
320 else
321 this_frame_offset
322 = aligned_upper_bound (start - frame_phase, alignment) + frame_phase;
324 /* See if it fits. If this space is at the edge of the frame,
325 consider extending the frame to make it fit. Our caller relies on
326 this when allocating a new slot. */
327 if (maybe_lt (this_frame_offset, start))
329 if (known_eq (frame_offset, start))
330 frame_offset = this_frame_offset;
331 else
332 return false;
334 else if (maybe_gt (this_frame_offset + size, start + length))
336 if (known_eq (frame_offset, start + length))
337 frame_offset = this_frame_offset + size;
338 else
339 return false;
342 *poffset = this_frame_offset;
343 return true;
346 /* Create a new frame_space structure describing free space in the stack
347 frame beginning at START and ending at END, and chain it into the
348 function's frame_space_list. */
350 static void
351 add_frame_space (poly_int64 start, poly_int64 end)
353 class frame_space *space = ggc_alloc<frame_space> ();
354 space->next = crtl->frame_space_list;
355 crtl->frame_space_list = space;
356 space->start = start;
357 space->length = end - start;
360 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
361 with machine mode MODE.
363 ALIGN controls the amount of alignment for the address of the slot:
364 0 means according to MODE,
365 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
366 -2 means use BITS_PER_UNIT,
367 positive specifies alignment boundary in bits.
369 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
370 alignment and ASLK_RECORD_PAD bit set if we should remember
371 extra space we allocated for alignment purposes. When we are
372 called from assign_stack_temp_for_type, it is not set so we don't
373 track the same stack slot in two independent lists.
375 We do not round to stack_boundary here. */
378 assign_stack_local_1 (machine_mode mode, poly_int64 size,
379 int align, int kind)
381 rtx x, addr;
382 poly_int64 bigend_correction = 0;
383 poly_int64 slot_offset = 0, old_frame_offset;
384 unsigned int alignment, alignment_in_bits;
386 if (align == 0)
388 alignment = get_stack_local_alignment (NULL, mode);
389 alignment /= BITS_PER_UNIT;
391 else if (align == -1)
393 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
394 size = aligned_upper_bound (size, alignment);
396 else if (align == -2)
397 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
398 else
399 alignment = align / BITS_PER_UNIT;
401 alignment_in_bits = alignment * BITS_PER_UNIT;
403 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
404 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
406 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
407 alignment = MAX_SUPPORTED_STACK_ALIGNMENT / BITS_PER_UNIT;
410 if (SUPPORTS_STACK_ALIGNMENT)
412 if (crtl->stack_alignment_estimated < alignment_in_bits)
414 if (!crtl->stack_realign_processed)
415 crtl->stack_alignment_estimated = alignment_in_bits;
416 else
418 /* If stack is realigned and stack alignment value
419 hasn't been finalized, it is OK not to increase
420 stack_alignment_estimated. The bigger alignment
421 requirement is recorded in stack_alignment_needed
422 below. */
423 gcc_assert (!crtl->stack_realign_finalized);
424 if (!crtl->stack_realign_needed)
426 /* It is OK to reduce the alignment as long as the
427 requested size is 0 or the estimated stack
428 alignment >= mode alignment. */
429 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
430 || known_eq (size, 0)
431 || (crtl->stack_alignment_estimated
432 >= GET_MODE_ALIGNMENT (mode)));
433 alignment_in_bits = crtl->stack_alignment_estimated;
434 alignment = alignment_in_bits / BITS_PER_UNIT;
440 if (crtl->stack_alignment_needed < alignment_in_bits)
441 crtl->stack_alignment_needed = alignment_in_bits;
442 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
443 crtl->max_used_stack_slot_alignment = alignment_in_bits;
445 if (mode != BLKmode || maybe_ne (size, 0))
447 if (kind & ASLK_RECORD_PAD)
449 class frame_space **psp;
451 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
453 class frame_space *space = *psp;
454 if (!try_fit_stack_local (space->start, space->length, size,
455 alignment, &slot_offset))
456 continue;
457 *psp = space->next;
458 if (known_gt (slot_offset, space->start))
459 add_frame_space (space->start, slot_offset);
460 if (known_lt (slot_offset + size, space->start + space->length))
461 add_frame_space (slot_offset + size,
462 space->start + space->length);
463 goto found_space;
467 else if (!STACK_ALIGNMENT_NEEDED)
469 slot_offset = frame_offset;
470 goto found_space;
473 old_frame_offset = frame_offset;
475 if (FRAME_GROWS_DOWNWARD)
477 frame_offset -= size;
478 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
480 if (kind & ASLK_RECORD_PAD)
482 if (known_gt (slot_offset, frame_offset))
483 add_frame_space (frame_offset, slot_offset);
484 if (known_lt (slot_offset + size, old_frame_offset))
485 add_frame_space (slot_offset + size, old_frame_offset);
488 else
490 frame_offset += size;
491 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
493 if (kind & ASLK_RECORD_PAD)
495 if (known_gt (slot_offset, old_frame_offset))
496 add_frame_space (old_frame_offset, slot_offset);
497 if (known_lt (slot_offset + size, frame_offset))
498 add_frame_space (slot_offset + size, frame_offset);
502 found_space:
503 /* On a big-endian machine, if we are allocating more space than we will use,
504 use the least significant bytes of those that are allocated. */
505 if (mode != BLKmode)
507 /* The slot size can sometimes be smaller than the mode size;
508 e.g. the rs6000 port allocates slots with a vector mode
509 that have the size of only one element. However, the slot
510 size must always be ordered wrt to the mode size, in the
511 same way as for a subreg. */
512 gcc_checking_assert (ordered_p (GET_MODE_SIZE (mode), size));
513 if (BYTES_BIG_ENDIAN && maybe_lt (GET_MODE_SIZE (mode), size))
514 bigend_correction = size - GET_MODE_SIZE (mode);
517 /* If we have already instantiated virtual registers, return the actual
518 address relative to the frame pointer. */
519 if (virtuals_instantiated)
520 addr = plus_constant (Pmode, frame_pointer_rtx,
521 trunc_int_for_mode
522 (slot_offset + bigend_correction
523 + targetm.starting_frame_offset (), Pmode));
524 else
525 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
526 trunc_int_for_mode
527 (slot_offset + bigend_correction,
528 Pmode));
530 x = gen_rtx_MEM (mode, addr);
531 set_mem_align (x, alignment_in_bits);
532 MEM_NOTRAP_P (x) = 1;
534 vec_safe_push (stack_slot_list, x);
536 if (frame_offset_overflow (frame_offset, current_function_decl))
537 frame_offset = 0;
539 return x;
542 /* Wrap up assign_stack_local_1 with last parameter as false. */
545 assign_stack_local (machine_mode mode, poly_int64 size, int align)
547 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
550 /* In order to evaluate some expressions, such as function calls returning
551 structures in memory, we need to temporarily allocate stack locations.
552 We record each allocated temporary in the following structure.
554 Associated with each temporary slot is a nesting level. When we pop up
555 one level, all temporaries associated with the previous level are freed.
556 Normally, all temporaries are freed after the execution of the statement
557 in which they were created. However, if we are inside a ({...}) grouping,
558 the result may be in a temporary and hence must be preserved. If the
559 result could be in a temporary, we preserve it if we can determine which
560 one it is in. If we cannot determine which temporary may contain the
561 result, all temporaries are preserved. A temporary is preserved by
562 pretending it was allocated at the previous nesting level. */
564 class GTY(()) temp_slot {
565 public:
566 /* Points to next temporary slot. */
567 class temp_slot *next;
568 /* Points to previous temporary slot. */
569 class temp_slot *prev;
570 /* The rtx to used to reference the slot. */
571 rtx slot;
572 /* The size, in units, of the slot. */
573 poly_int64 size;
574 /* The type of the object in the slot, or zero if it doesn't correspond
575 to a type. We use this to determine whether a slot can be reused.
576 It can be reused if objects of the type of the new slot will always
577 conflict with objects of the type of the old slot. */
578 tree type;
579 /* The alignment (in bits) of the slot. */
580 unsigned int align;
581 /* Nonzero if this temporary is currently in use. */
582 char in_use;
583 /* Nesting level at which this slot is being used. */
584 int level;
585 /* The offset of the slot from the frame_pointer, including extra space
586 for alignment. This info is for combine_temp_slots. */
587 poly_int64 base_offset;
588 /* The size of the slot, including extra space for alignment. This
589 info is for combine_temp_slots. */
590 poly_int64 full_size;
593 /* Entry for the below hash table. */
594 struct GTY((for_user)) temp_slot_address_entry {
595 hashval_t hash;
596 rtx address;
597 class temp_slot *temp_slot;
600 struct temp_address_hasher : ggc_ptr_hash<temp_slot_address_entry>
602 static hashval_t hash (temp_slot_address_entry *);
603 static bool equal (temp_slot_address_entry *, temp_slot_address_entry *);
606 /* A table of addresses that represent a stack slot. The table is a mapping
607 from address RTXen to a temp slot. */
608 static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table;
609 static size_t n_temp_slots_in_use;
611 /* Removes temporary slot TEMP from LIST. */
613 static void
614 cut_slot_from_list (class temp_slot *temp, class temp_slot **list)
616 if (temp->next)
617 temp->next->prev = temp->prev;
618 if (temp->prev)
619 temp->prev->next = temp->next;
620 else
621 *list = temp->next;
623 temp->prev = temp->next = NULL;
626 /* Inserts temporary slot TEMP to LIST. */
628 static void
629 insert_slot_to_list (class temp_slot *temp, class temp_slot **list)
631 temp->next = *list;
632 if (*list)
633 (*list)->prev = temp;
634 temp->prev = NULL;
635 *list = temp;
638 /* Returns the list of used temp slots at LEVEL. */
640 static class temp_slot **
641 temp_slots_at_level (int level)
643 if (level >= (int) vec_safe_length (used_temp_slots))
644 vec_safe_grow_cleared (used_temp_slots, level + 1, true);
646 return &(*used_temp_slots)[level];
649 /* Returns the maximal temporary slot level. */
651 static int
652 max_slot_level (void)
654 if (!used_temp_slots)
655 return -1;
657 return used_temp_slots->length () - 1;
660 /* Moves temporary slot TEMP to LEVEL. */
662 static void
663 move_slot_to_level (class temp_slot *temp, int level)
665 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
666 insert_slot_to_list (temp, temp_slots_at_level (level));
667 temp->level = level;
670 /* Make temporary slot TEMP available. */
672 static void
673 make_slot_available (class temp_slot *temp)
675 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
676 insert_slot_to_list (temp, &avail_temp_slots);
677 temp->in_use = 0;
678 temp->level = -1;
679 n_temp_slots_in_use--;
682 /* Compute the hash value for an address -> temp slot mapping.
683 The value is cached on the mapping entry. */
684 static hashval_t
685 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
687 int do_not_record = 0;
688 return hash_rtx (t->address, GET_MODE (t->address),
689 &do_not_record, NULL, false);
692 /* Return the hash value for an address -> temp slot mapping. */
693 hashval_t
694 temp_address_hasher::hash (temp_slot_address_entry *t)
696 return t->hash;
699 /* Compare two address -> temp slot mapping entries. */
700 bool
701 temp_address_hasher::equal (temp_slot_address_entry *t1,
702 temp_slot_address_entry *t2)
704 return exp_equiv_p (t1->address, t2->address, 0, true);
707 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
708 static void
709 insert_temp_slot_address (rtx address, class temp_slot *temp_slot)
711 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
712 t->address = copy_rtx (address);
713 t->temp_slot = temp_slot;
714 t->hash = temp_slot_address_compute_hash (t);
715 *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t;
718 /* Remove an address -> temp slot mapping entry if the temp slot is
719 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
721 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *)
723 const struct temp_slot_address_entry *t = *slot;
724 if (! t->temp_slot->in_use)
725 temp_slot_address_table->clear_slot (slot);
726 return 1;
729 /* Remove all mappings of addresses to unused temp slots. */
730 static void
731 remove_unused_temp_slot_addresses (void)
733 /* Use quicker clearing if there aren't any active temp slots. */
734 if (n_temp_slots_in_use)
735 temp_slot_address_table->traverse
736 <void *, remove_unused_temp_slot_addresses_1> (NULL);
737 else
738 temp_slot_address_table->empty ();
741 /* Find the temp slot corresponding to the object at address X. */
743 static class temp_slot *
744 find_temp_slot_from_address (rtx x)
746 class temp_slot *p;
747 struct temp_slot_address_entry tmp, *t;
749 /* First try the easy way:
750 See if X exists in the address -> temp slot mapping. */
751 tmp.address = x;
752 tmp.temp_slot = NULL;
753 tmp.hash = temp_slot_address_compute_hash (&tmp);
754 t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash);
755 if (t)
756 return t->temp_slot;
758 /* If we have a sum involving a register, see if it points to a temp
759 slot. */
760 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
761 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
762 return p;
763 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
764 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
765 return p;
767 /* Last resort: Address is a virtual stack var address. */
768 poly_int64 offset;
769 if (strip_offset (x, &offset) == virtual_stack_vars_rtx)
771 int i;
772 for (i = max_slot_level (); i >= 0; i--)
773 for (p = *temp_slots_at_level (i); p; p = p->next)
774 if (known_in_range_p (offset, p->base_offset, p->full_size))
775 return p;
778 return NULL;
781 /* Allocate a temporary stack slot and record it for possible later
782 reuse.
784 MODE is the machine mode to be given to the returned rtx.
786 SIZE is the size in units of the space required. We do no rounding here
787 since assign_stack_local will do any required rounding.
789 TYPE is the type that will be used for the stack slot. */
792 assign_stack_temp_for_type (machine_mode mode, poly_int64 size, tree type)
794 unsigned int align;
795 class temp_slot *p, *best_p = 0, *selected = NULL, **pp;
796 rtx slot;
798 gcc_assert (known_size_p (size));
800 align = get_stack_local_alignment (type, mode);
802 /* Try to find an available, already-allocated temporary of the proper
803 mode which meets the size and alignment requirements. Choose the
804 smallest one with the closest alignment.
806 If assign_stack_temp is called outside of the tree->rtl expansion,
807 we cannot reuse the stack slots (that may still refer to
808 VIRTUAL_STACK_VARS_REGNUM). */
809 if (!virtuals_instantiated)
811 for (p = avail_temp_slots; p; p = p->next)
813 if (p->align >= align
814 && known_ge (p->size, size)
815 && GET_MODE (p->slot) == mode
816 && objects_must_conflict_p (p->type, type)
817 && (best_p == 0
818 || (known_eq (best_p->size, p->size)
819 ? best_p->align > p->align
820 : known_ge (best_p->size, p->size))))
822 if (p->align == align && known_eq (p->size, size))
824 selected = p;
825 cut_slot_from_list (selected, &avail_temp_slots);
826 best_p = 0;
827 break;
829 best_p = p;
834 /* Make our best, if any, the one to use. */
835 if (best_p)
837 selected = best_p;
838 cut_slot_from_list (selected, &avail_temp_slots);
840 /* If there are enough aligned bytes left over, make them into a new
841 temp_slot so that the extra bytes don't get wasted. Do this only
842 for BLKmode slots, so that we can be sure of the alignment. */
843 if (GET_MODE (best_p->slot) == BLKmode)
845 int alignment = best_p->align / BITS_PER_UNIT;
846 poly_int64 rounded_size = aligned_upper_bound (size, alignment);
848 if (known_ge (best_p->size - rounded_size, alignment))
850 p = ggc_alloc<temp_slot> ();
851 p->in_use = 0;
852 p->size = best_p->size - rounded_size;
853 p->base_offset = best_p->base_offset + rounded_size;
854 p->full_size = best_p->full_size - rounded_size;
855 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
856 p->align = best_p->align;
857 p->type = best_p->type;
858 insert_slot_to_list (p, &avail_temp_slots);
860 vec_safe_push (stack_slot_list, p->slot);
862 best_p->size = rounded_size;
863 best_p->full_size = rounded_size;
868 /* If we still didn't find one, make a new temporary. */
869 if (selected == 0)
871 poly_int64 frame_offset_old = frame_offset;
873 p = ggc_alloc<temp_slot> ();
875 /* We are passing an explicit alignment request to assign_stack_local.
876 One side effect of that is assign_stack_local will not round SIZE
877 to ensure the frame offset remains suitably aligned.
879 So for requests which depended on the rounding of SIZE, we go ahead
880 and round it now. We also make sure ALIGNMENT is at least
881 BIGGEST_ALIGNMENT. */
882 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
883 p->slot = assign_stack_local_1 (mode,
884 (mode == BLKmode
885 ? aligned_upper_bound (size,
886 (int) align
887 / BITS_PER_UNIT)
888 : size),
889 align, 0);
891 p->align = align;
893 /* The following slot size computation is necessary because we don't
894 know the actual size of the temporary slot until assign_stack_local
895 has performed all the frame alignment and size rounding for the
896 requested temporary. Note that extra space added for alignment
897 can be either above or below this stack slot depending on which
898 way the frame grows. We include the extra space if and only if it
899 is above this slot. */
900 if (FRAME_GROWS_DOWNWARD)
901 p->size = frame_offset_old - frame_offset;
902 else
903 p->size = size;
905 /* Now define the fields used by combine_temp_slots. */
906 if (FRAME_GROWS_DOWNWARD)
908 p->base_offset = frame_offset;
909 p->full_size = frame_offset_old - frame_offset;
911 else
913 p->base_offset = frame_offset_old;
914 p->full_size = frame_offset - frame_offset_old;
917 selected = p;
920 p = selected;
921 p->in_use = 1;
922 p->type = type;
923 p->level = temp_slot_level;
924 n_temp_slots_in_use++;
926 pp = temp_slots_at_level (p->level);
927 insert_slot_to_list (p, pp);
928 insert_temp_slot_address (XEXP (p->slot, 0), p);
930 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
931 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
932 vec_safe_push (stack_slot_list, slot);
934 /* If we know the alias set for the memory that will be used, use
935 it. If there's no TYPE, then we don't know anything about the
936 alias set for the memory. */
937 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
938 set_mem_align (slot, align);
940 /* If a type is specified, set the relevant flags. */
941 if (type != 0)
942 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
943 MEM_NOTRAP_P (slot) = 1;
945 return slot;
948 /* Allocate a temporary stack slot and record it for possible later
949 reuse. First two arguments are same as in preceding function. */
952 assign_stack_temp (machine_mode mode, poly_int64 size)
954 return assign_stack_temp_for_type (mode, size, NULL_TREE);
957 /* Assign a temporary.
958 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
959 and so that should be used in error messages. In either case, we
960 allocate of the given type.
961 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
962 it is 0 if a register is OK.
963 DONT_PROMOTE is 1 if we should not promote values in register
964 to wider modes. */
967 assign_temp (tree type_or_decl, int memory_required,
968 int dont_promote ATTRIBUTE_UNUSED)
970 tree type, decl;
971 machine_mode mode;
972 #ifdef PROMOTE_MODE
973 int unsignedp;
974 #endif
976 if (DECL_P (type_or_decl))
977 decl = type_or_decl, type = TREE_TYPE (decl);
978 else
979 decl = NULL, type = type_or_decl;
981 mode = TYPE_MODE (type);
982 #ifdef PROMOTE_MODE
983 unsignedp = TYPE_UNSIGNED (type);
984 #endif
986 /* Allocating temporaries of TREE_ADDRESSABLE type must be done in the front
987 end. See also create_tmp_var for the gimplification-time check. */
988 gcc_assert (!TREE_ADDRESSABLE (type) && COMPLETE_TYPE_P (type));
990 if (mode == BLKmode || memory_required)
992 poly_int64 size;
993 rtx tmp;
995 /* Unfortunately, we don't yet know how to allocate variable-sized
996 temporaries. However, sometimes we can find a fixed upper limit on
997 the size, so try that instead. */
998 if (!poly_int_tree_p (TYPE_SIZE_UNIT (type), &size))
999 size = max_int_size_in_bytes (type);
1001 /* Zero sized arrays are a GNU C extension. Set size to 1 to avoid
1002 problems with allocating the stack space. */
1003 if (known_eq (size, 0))
1004 size = 1;
1006 /* The size of the temporary may be too large to fit into an integer. */
1007 /* ??? Not sure this should happen except for user silliness, so limit
1008 this to things that aren't compiler-generated temporaries. The
1009 rest of the time we'll die in assign_stack_temp_for_type. */
1010 if (decl
1011 && !known_size_p (size)
1012 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
1014 error ("size of variable %q+D is too large", decl);
1015 size = 1;
1018 tmp = assign_stack_temp_for_type (mode, size, type);
1019 return tmp;
1022 #ifdef PROMOTE_MODE
1023 if (! dont_promote)
1024 mode = promote_mode (type, mode, &unsignedp);
1025 #endif
1027 return gen_reg_rtx (mode);
1030 /* Combine temporary stack slots which are adjacent on the stack.
1032 This allows for better use of already allocated stack space. This is only
1033 done for BLKmode slots because we can be sure that we won't have alignment
1034 problems in this case. */
1036 static void
1037 combine_temp_slots (void)
1039 class temp_slot *p, *q, *next, *next_q;
1040 int num_slots;
1042 /* We can't combine slots, because the information about which slot
1043 is in which alias set will be lost. */
1044 if (flag_strict_aliasing)
1045 return;
1047 /* If there are a lot of temp slots, don't do anything unless
1048 high levels of optimization. */
1049 if (! flag_expensive_optimizations)
1050 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1051 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1052 return;
1054 for (p = avail_temp_slots; p; p = next)
1056 int delete_p = 0;
1058 next = p->next;
1060 if (GET_MODE (p->slot) != BLKmode)
1061 continue;
1063 for (q = p->next; q; q = next_q)
1065 int delete_q = 0;
1067 next_q = q->next;
1069 if (GET_MODE (q->slot) != BLKmode)
1070 continue;
1072 if (known_eq (p->base_offset + p->full_size, q->base_offset))
1074 /* Q comes after P; combine Q into P. */
1075 p->size += q->size;
1076 p->full_size += q->full_size;
1077 delete_q = 1;
1079 else if (known_eq (q->base_offset + q->full_size, p->base_offset))
1081 /* P comes after Q; combine P into Q. */
1082 q->size += p->size;
1083 q->full_size += p->full_size;
1084 delete_p = 1;
1085 break;
1087 if (delete_q)
1088 cut_slot_from_list (q, &avail_temp_slots);
1091 /* Either delete P or advance past it. */
1092 if (delete_p)
1093 cut_slot_from_list (p, &avail_temp_slots);
1097 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1098 slot that previously was known by OLD_RTX. */
1100 void
1101 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1103 class temp_slot *p;
1105 if (rtx_equal_p (old_rtx, new_rtx))
1106 return;
1108 p = find_temp_slot_from_address (old_rtx);
1110 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1111 NEW_RTX is a register, see if one operand of the PLUS is a
1112 temporary location. If so, NEW_RTX points into it. Otherwise,
1113 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1114 in common between them. If so, try a recursive call on those
1115 values. */
1116 if (p == 0)
1118 if (GET_CODE (old_rtx) != PLUS)
1119 return;
1121 if (REG_P (new_rtx))
1123 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1124 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1125 return;
1127 else if (GET_CODE (new_rtx) != PLUS)
1128 return;
1130 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1131 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1132 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1133 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1134 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1135 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1136 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1137 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1139 return;
1142 /* Otherwise add an alias for the temp's address. */
1143 insert_temp_slot_address (new_rtx, p);
1146 /* If X could be a reference to a temporary slot, mark that slot as
1147 belonging to the to one level higher than the current level. If X
1148 matched one of our slots, just mark that one. Otherwise, we can't
1149 easily predict which it is, so upgrade all of them.
1151 This is called when an ({...}) construct occurs and a statement
1152 returns a value in memory. */
1154 void
1155 preserve_temp_slots (rtx x)
1157 class temp_slot *p = 0, *next;
1159 if (x == 0)
1160 return;
1162 /* If X is a register that is being used as a pointer, see if we have
1163 a temporary slot we know it points to. */
1164 if (REG_P (x) && REG_POINTER (x))
1165 p = find_temp_slot_from_address (x);
1167 /* If X is not in memory or is at a constant address, it cannot be in
1168 a temporary slot. */
1169 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1170 return;
1172 /* First see if we can find a match. */
1173 if (p == 0)
1174 p = find_temp_slot_from_address (XEXP (x, 0));
1176 if (p != 0)
1178 if (p->level == temp_slot_level)
1179 move_slot_to_level (p, temp_slot_level - 1);
1180 return;
1183 /* Otherwise, preserve all non-kept slots at this level. */
1184 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1186 next = p->next;
1187 move_slot_to_level (p, temp_slot_level - 1);
1191 /* Free all temporaries used so far. This is normally called at the
1192 end of generating code for a statement. */
1194 void
1195 free_temp_slots (void)
1197 class temp_slot *p, *next;
1198 bool some_available = false;
1200 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1202 next = p->next;
1203 make_slot_available (p);
1204 some_available = true;
1207 if (some_available)
1209 remove_unused_temp_slot_addresses ();
1210 combine_temp_slots ();
1214 /* Push deeper into the nesting level for stack temporaries. */
1216 void
1217 push_temp_slots (void)
1219 temp_slot_level++;
1222 /* Pop a temporary nesting level. All slots in use in the current level
1223 are freed. */
1225 void
1226 pop_temp_slots (void)
1228 free_temp_slots ();
1229 temp_slot_level--;
1232 /* Initialize temporary slots. */
1234 void
1235 init_temp_slots (void)
1237 /* We have not allocated any temporaries yet. */
1238 avail_temp_slots = 0;
1239 vec_alloc (used_temp_slots, 0);
1240 temp_slot_level = 0;
1241 n_temp_slots_in_use = 0;
1243 /* Set up the table to map addresses to temp slots. */
1244 if (! temp_slot_address_table)
1245 temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (32);
1246 else
1247 temp_slot_address_table->empty ();
1250 /* Functions and data structures to keep track of the values hard regs
1251 had at the start of the function. */
1253 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1254 and has_hard_reg_initial_val.. */
1255 struct GTY(()) initial_value_pair {
1256 rtx hard_reg;
1257 rtx pseudo;
1259 /* ??? This could be a VEC but there is currently no way to define an
1260 opaque VEC type. This could be worked around by defining struct
1261 initial_value_pair in function.h. */
1262 struct GTY(()) initial_value_struct {
1263 int num_entries;
1264 int max_entries;
1265 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1268 /* If a pseudo represents an initial hard reg (or expression), return
1269 it, else return NULL_RTX. */
1272 get_hard_reg_initial_reg (rtx reg)
1274 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1275 int i;
1277 if (ivs == 0)
1278 return NULL_RTX;
1280 for (i = 0; i < ivs->num_entries; i++)
1281 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1282 return ivs->entries[i].hard_reg;
1284 return NULL_RTX;
1287 /* Make sure that there's a pseudo register of mode MODE that stores the
1288 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1291 get_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1293 struct initial_value_struct *ivs;
1294 rtx rv;
1296 rv = has_hard_reg_initial_val (mode, regno);
1297 if (rv)
1298 return rv;
1300 ivs = crtl->hard_reg_initial_vals;
1301 if (ivs == 0)
1303 ivs = ggc_alloc<initial_value_struct> ();
1304 ivs->num_entries = 0;
1305 ivs->max_entries = 5;
1306 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1307 crtl->hard_reg_initial_vals = ivs;
1310 if (ivs->num_entries >= ivs->max_entries)
1312 ivs->max_entries += 5;
1313 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1314 ivs->max_entries);
1317 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1318 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1320 return ivs->entries[ivs->num_entries++].pseudo;
1323 /* See if get_hard_reg_initial_val has been used to create a pseudo
1324 for the initial value of hard register REGNO in mode MODE. Return
1325 the associated pseudo if so, otherwise return NULL. */
1328 has_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1330 struct initial_value_struct *ivs;
1331 int i;
1333 ivs = crtl->hard_reg_initial_vals;
1334 if (ivs != 0)
1335 for (i = 0; i < ivs->num_entries; i++)
1336 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1337 && REGNO (ivs->entries[i].hard_reg) == regno)
1338 return ivs->entries[i].pseudo;
1340 return NULL_RTX;
1343 unsigned int
1344 emit_initial_value_sets (void)
1346 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1347 int i;
1348 rtx_insn *seq;
1350 if (ivs == 0)
1351 return 0;
1353 start_sequence ();
1354 for (i = 0; i < ivs->num_entries; i++)
1355 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1356 seq = get_insns ();
1357 end_sequence ();
1359 emit_insn_at_entry (seq);
1360 return 0;
1363 /* Return the hardreg-pseudoreg initial values pair entry I and
1364 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1365 bool
1366 initial_value_entry (int i, rtx *hreg, rtx *preg)
1368 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1369 if (!ivs || i >= ivs->num_entries)
1370 return false;
1372 *hreg = ivs->entries[i].hard_reg;
1373 *preg = ivs->entries[i].pseudo;
1374 return true;
1377 /* These routines are responsible for converting virtual register references
1378 to the actual hard register references once RTL generation is complete.
1380 The following four variables are used for communication between the
1381 routines. They contain the offsets of the virtual registers from their
1382 respective hard registers. */
1384 static poly_int64 in_arg_offset;
1385 static poly_int64 var_offset;
1386 static poly_int64 dynamic_offset;
1387 static poly_int64 out_arg_offset;
1388 static poly_int64 cfa_offset;
1390 /* In most machines, the stack pointer register is equivalent to the bottom
1391 of the stack. */
1393 #ifndef STACK_POINTER_OFFSET
1394 #define STACK_POINTER_OFFSET 0
1395 #endif
1397 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1398 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1399 #endif
1401 /* If not defined, pick an appropriate default for the offset of dynamically
1402 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1403 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1405 #ifndef STACK_DYNAMIC_OFFSET
1407 /* The bottom of the stack points to the actual arguments. If
1408 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1409 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1410 stack space for register parameters is not pushed by the caller, but
1411 rather part of the fixed stack areas and hence not included in
1412 `crtl->outgoing_args_size'. Nevertheless, we must allow
1413 for it when allocating stack dynamic objects. */
1415 #ifdef INCOMING_REG_PARM_STACK_SPACE
1416 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1417 ((ACCUMULATE_OUTGOING_ARGS \
1418 ? (crtl->outgoing_args_size \
1419 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1420 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1421 : 0) + (STACK_POINTER_OFFSET))
1422 #else
1423 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1424 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : poly_int64 (0)) \
1425 + (STACK_POINTER_OFFSET))
1426 #endif
1427 #endif
1430 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1431 is a virtual register, return the equivalent hard register and set the
1432 offset indirectly through the pointer. Otherwise, return 0. */
1434 static rtx
1435 instantiate_new_reg (rtx x, poly_int64_pod *poffset)
1437 rtx new_rtx;
1438 poly_int64 offset;
1440 if (x == virtual_incoming_args_rtx)
1442 if (stack_realign_drap)
1444 /* Replace virtual_incoming_args_rtx with internal arg
1445 pointer if DRAP is used to realign stack. */
1446 new_rtx = crtl->args.internal_arg_pointer;
1447 offset = 0;
1449 else
1450 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1452 else if (x == virtual_stack_vars_rtx)
1453 new_rtx = frame_pointer_rtx, offset = var_offset;
1454 else if (x == virtual_stack_dynamic_rtx)
1455 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1456 else if (x == virtual_outgoing_args_rtx)
1457 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1458 else if (x == virtual_cfa_rtx)
1460 #ifdef FRAME_POINTER_CFA_OFFSET
1461 new_rtx = frame_pointer_rtx;
1462 #else
1463 new_rtx = arg_pointer_rtx;
1464 #endif
1465 offset = cfa_offset;
1467 else if (x == virtual_preferred_stack_boundary_rtx)
1469 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1470 offset = 0;
1472 else
1473 return NULL_RTX;
1475 *poffset = offset;
1476 return new_rtx;
1479 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1480 registers present inside of *LOC. The expression is simplified,
1481 as much as possible, but is not to be considered "valid" in any sense
1482 implied by the target. Return true if any change is made. */
1484 static bool
1485 instantiate_virtual_regs_in_rtx (rtx *loc)
1487 if (!*loc)
1488 return false;
1489 bool changed = false;
1490 subrtx_ptr_iterator::array_type array;
1491 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
1493 rtx *loc = *iter;
1494 if (rtx x = *loc)
1496 rtx new_rtx;
1497 poly_int64 offset;
1498 switch (GET_CODE (x))
1500 case REG:
1501 new_rtx = instantiate_new_reg (x, &offset);
1502 if (new_rtx)
1504 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1505 changed = true;
1507 iter.skip_subrtxes ();
1508 break;
1510 case PLUS:
1511 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1512 if (new_rtx)
1514 XEXP (x, 0) = new_rtx;
1515 *loc = plus_constant (GET_MODE (x), x, offset, true);
1516 changed = true;
1517 iter.skip_subrtxes ();
1518 break;
1521 /* FIXME -- from old code */
1522 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1523 we can commute the PLUS and SUBREG because pointers into the
1524 frame are well-behaved. */
1525 break;
1527 default:
1528 break;
1532 return changed;
1535 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1536 matches the predicate for insn CODE operand OPERAND. */
1538 static int
1539 safe_insn_predicate (int code, int operand, rtx x)
1541 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1544 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1545 registers present inside of insn. The result will be a valid insn. */
1547 static void
1548 instantiate_virtual_regs_in_insn (rtx_insn *insn)
1550 poly_int64 offset;
1551 int insn_code, i;
1552 bool any_change = false;
1553 rtx set, new_rtx, x;
1554 rtx_insn *seq;
1556 /* There are some special cases to be handled first. */
1557 set = single_set (insn);
1558 if (set)
1560 /* We're allowed to assign to a virtual register. This is interpreted
1561 to mean that the underlying register gets assigned the inverse
1562 transformation. This is used, for example, in the handling of
1563 non-local gotos. */
1564 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1565 if (new_rtx)
1567 start_sequence ();
1569 instantiate_virtual_regs_in_rtx (&SET_SRC (set));
1570 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1571 gen_int_mode (-offset, GET_MODE (new_rtx)));
1572 x = force_operand (x, new_rtx);
1573 if (x != new_rtx)
1574 emit_move_insn (new_rtx, x);
1576 seq = get_insns ();
1577 end_sequence ();
1579 emit_insn_before (seq, insn);
1580 delete_insn (insn);
1581 return;
1584 /* Handle a straight copy from a virtual register by generating a
1585 new add insn. The difference between this and falling through
1586 to the generic case is avoiding a new pseudo and eliminating a
1587 move insn in the initial rtl stream. */
1588 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1589 if (new_rtx
1590 && maybe_ne (offset, 0)
1591 && REG_P (SET_DEST (set))
1592 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1594 start_sequence ();
1596 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1597 gen_int_mode (offset,
1598 GET_MODE (SET_DEST (set))),
1599 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1600 if (x != SET_DEST (set))
1601 emit_move_insn (SET_DEST (set), x);
1603 seq = get_insns ();
1604 end_sequence ();
1606 emit_insn_before (seq, insn);
1607 delete_insn (insn);
1608 return;
1611 extract_insn (insn);
1612 insn_code = INSN_CODE (insn);
1614 /* Handle a plus involving a virtual register by determining if the
1615 operands remain valid if they're modified in place. */
1616 poly_int64 delta;
1617 if (GET_CODE (SET_SRC (set)) == PLUS
1618 && recog_data.n_operands >= 3
1619 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1620 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1621 && poly_int_rtx_p (recog_data.operand[2], &delta)
1622 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1624 offset += delta;
1626 /* If the sum is zero, then replace with a plain move. */
1627 if (known_eq (offset, 0)
1628 && REG_P (SET_DEST (set))
1629 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1631 start_sequence ();
1632 emit_move_insn (SET_DEST (set), new_rtx);
1633 seq = get_insns ();
1634 end_sequence ();
1636 emit_insn_before (seq, insn);
1637 delete_insn (insn);
1638 return;
1641 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1643 /* Using validate_change and apply_change_group here leaves
1644 recog_data in an invalid state. Since we know exactly what
1645 we want to check, do those two by hand. */
1646 if (safe_insn_predicate (insn_code, 1, new_rtx)
1647 && safe_insn_predicate (insn_code, 2, x))
1649 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1650 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1651 any_change = true;
1653 /* Fall through into the regular operand fixup loop in
1654 order to take care of operands other than 1 and 2. */
1658 else
1660 extract_insn (insn);
1661 insn_code = INSN_CODE (insn);
1664 /* In the general case, we expect virtual registers to appear only in
1665 operands, and then only as either bare registers or inside memories. */
1666 for (i = 0; i < recog_data.n_operands; ++i)
1668 x = recog_data.operand[i];
1669 switch (GET_CODE (x))
1671 case MEM:
1673 rtx addr = XEXP (x, 0);
1675 if (!instantiate_virtual_regs_in_rtx (&addr))
1676 continue;
1678 start_sequence ();
1679 x = replace_equiv_address (x, addr, true);
1680 /* It may happen that the address with the virtual reg
1681 was valid (e.g. based on the virtual stack reg, which might
1682 be acceptable to the predicates with all offsets), whereas
1683 the address now isn't anymore, for instance when the address
1684 is still offsetted, but the base reg isn't virtual-stack-reg
1685 anymore. Below we would do a force_reg on the whole operand,
1686 but this insn might actually only accept memory. Hence,
1687 before doing that last resort, try to reload the address into
1688 a register, so this operand stays a MEM. */
1689 if (!safe_insn_predicate (insn_code, i, x))
1691 addr = force_reg (GET_MODE (addr), addr);
1692 x = replace_equiv_address (x, addr, true);
1694 seq = get_insns ();
1695 end_sequence ();
1696 if (seq)
1697 emit_insn_before (seq, insn);
1699 break;
1701 case REG:
1702 new_rtx = instantiate_new_reg (x, &offset);
1703 if (new_rtx == NULL)
1704 continue;
1705 if (known_eq (offset, 0))
1706 x = new_rtx;
1707 else
1709 start_sequence ();
1711 /* Careful, special mode predicates may have stuff in
1712 insn_data[insn_code].operand[i].mode that isn't useful
1713 to us for computing a new value. */
1714 /* ??? Recognize address_operand and/or "p" constraints
1715 to see if (plus new offset) is a valid before we put
1716 this through expand_simple_binop. */
1717 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1718 gen_int_mode (offset, GET_MODE (x)),
1719 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1720 seq = get_insns ();
1721 end_sequence ();
1722 emit_insn_before (seq, insn);
1724 break;
1726 case SUBREG:
1727 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1728 if (new_rtx == NULL)
1729 continue;
1730 if (maybe_ne (offset, 0))
1732 start_sequence ();
1733 new_rtx = expand_simple_binop
1734 (GET_MODE (new_rtx), PLUS, new_rtx,
1735 gen_int_mode (offset, GET_MODE (new_rtx)),
1736 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1737 seq = get_insns ();
1738 end_sequence ();
1739 emit_insn_before (seq, insn);
1741 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1742 GET_MODE (new_rtx), SUBREG_BYTE (x));
1743 gcc_assert (x);
1744 break;
1746 default:
1747 continue;
1750 /* At this point, X contains the new value for the operand.
1751 Validate the new value vs the insn predicate. Note that
1752 asm insns will have insn_code -1 here. */
1753 if (!safe_insn_predicate (insn_code, i, x))
1755 start_sequence ();
1756 if (REG_P (x))
1758 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1759 x = copy_to_reg (x);
1761 else
1762 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1763 seq = get_insns ();
1764 end_sequence ();
1765 if (seq)
1766 emit_insn_before (seq, insn);
1769 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1770 any_change = true;
1773 if (any_change)
1775 /* Propagate operand changes into the duplicates. */
1776 for (i = 0; i < recog_data.n_dups; ++i)
1777 *recog_data.dup_loc[i]
1778 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1780 /* Force re-recognition of the instruction for validation. */
1781 INSN_CODE (insn) = -1;
1784 if (asm_noperands (PATTERN (insn)) >= 0)
1786 if (!check_asm_operands (PATTERN (insn)))
1788 error_for_asm (insn, "impossible constraint in %<asm%>");
1789 /* For asm goto, instead of fixing up all the edges
1790 just clear the template and clear input and output operands
1791 and strip away clobbers. */
1792 if (JUMP_P (insn))
1794 rtx asm_op = extract_asm_operands (PATTERN (insn));
1795 PATTERN (insn) = asm_op;
1796 PUT_MODE (asm_op, VOIDmode);
1797 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1798 ASM_OPERANDS_OUTPUT_CONSTRAINT (asm_op) = "";
1799 ASM_OPERANDS_OUTPUT_IDX (asm_op) = 0;
1800 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1801 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1803 else
1804 delete_insn (insn);
1807 else
1809 if (recog_memoized (insn) < 0)
1810 fatal_insn_not_found (insn);
1814 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1815 do any instantiation required. */
1817 void
1818 instantiate_decl_rtl (rtx x)
1820 rtx addr;
1822 if (x == 0)
1823 return;
1825 /* If this is a CONCAT, recurse for the pieces. */
1826 if (GET_CODE (x) == CONCAT)
1828 instantiate_decl_rtl (XEXP (x, 0));
1829 instantiate_decl_rtl (XEXP (x, 1));
1830 return;
1833 /* If this is not a MEM, no need to do anything. Similarly if the
1834 address is a constant or a register that is not a virtual register. */
1835 if (!MEM_P (x))
1836 return;
1838 addr = XEXP (x, 0);
1839 if (CONSTANT_P (addr)
1840 || (REG_P (addr)
1841 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1842 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1843 return;
1845 instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
1848 /* Helper for instantiate_decls called via walk_tree: Process all decls
1849 in the given DECL_VALUE_EXPR. */
1851 static tree
1852 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1854 tree t = *tp;
1855 if (! EXPR_P (t))
1857 *walk_subtrees = 0;
1858 if (DECL_P (t))
1860 if (DECL_RTL_SET_P (t))
1861 instantiate_decl_rtl (DECL_RTL (t));
1862 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1863 && DECL_INCOMING_RTL (t))
1864 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1865 if ((VAR_P (t) || TREE_CODE (t) == RESULT_DECL)
1866 && DECL_HAS_VALUE_EXPR_P (t))
1868 tree v = DECL_VALUE_EXPR (t);
1869 walk_tree (&v, instantiate_expr, NULL, NULL);
1873 return NULL;
1876 /* Subroutine of instantiate_decls: Process all decls in the given
1877 BLOCK node and all its subblocks. */
1879 static void
1880 instantiate_decls_1 (tree let)
1882 tree t;
1884 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1886 if (DECL_RTL_SET_P (t))
1887 instantiate_decl_rtl (DECL_RTL (t));
1888 if (VAR_P (t) && DECL_HAS_VALUE_EXPR_P (t))
1890 tree v = DECL_VALUE_EXPR (t);
1891 walk_tree (&v, instantiate_expr, NULL, NULL);
1895 /* Process all subblocks. */
1896 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1897 instantiate_decls_1 (t);
1900 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1901 all virtual registers in their DECL_RTL's. */
1903 static void
1904 instantiate_decls (tree fndecl)
1906 tree decl;
1907 unsigned ix;
1909 /* Process all parameters of the function. */
1910 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1912 instantiate_decl_rtl (DECL_RTL (decl));
1913 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1914 if (DECL_HAS_VALUE_EXPR_P (decl))
1916 tree v = DECL_VALUE_EXPR (decl);
1917 walk_tree (&v, instantiate_expr, NULL, NULL);
1921 if ((decl = DECL_RESULT (fndecl))
1922 && TREE_CODE (decl) == RESULT_DECL)
1924 if (DECL_RTL_SET_P (decl))
1925 instantiate_decl_rtl (DECL_RTL (decl));
1926 if (DECL_HAS_VALUE_EXPR_P (decl))
1928 tree v = DECL_VALUE_EXPR (decl);
1929 walk_tree (&v, instantiate_expr, NULL, NULL);
1933 /* Process the saved static chain if it exists. */
1934 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1935 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1936 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1938 /* Now process all variables defined in the function or its subblocks. */
1939 if (DECL_INITIAL (fndecl))
1940 instantiate_decls_1 (DECL_INITIAL (fndecl));
1942 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1943 if (DECL_RTL_SET_P (decl))
1944 instantiate_decl_rtl (DECL_RTL (decl));
1945 vec_free (cfun->local_decls);
1948 /* Pass through the INSNS of function FNDECL and convert virtual register
1949 references to hard register references. */
1951 static unsigned int
1952 instantiate_virtual_regs (void)
1954 rtx_insn *insn;
1956 /* Compute the offsets to use for this function. */
1957 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1958 var_offset = targetm.starting_frame_offset ();
1959 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1960 out_arg_offset = STACK_POINTER_OFFSET;
1961 #ifdef FRAME_POINTER_CFA_OFFSET
1962 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1963 #else
1964 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1965 #endif
1967 /* Initialize recognition, indicating that volatile is OK. */
1968 init_recog ();
1970 /* Scan through all the insns, instantiating every virtual register still
1971 present. */
1972 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1973 if (INSN_P (insn))
1975 /* These patterns in the instruction stream can never be recognized.
1976 Fortunately, they shouldn't contain virtual registers either. */
1977 if (GET_CODE (PATTERN (insn)) == USE
1978 || GET_CODE (PATTERN (insn)) == CLOBBER
1979 || GET_CODE (PATTERN (insn)) == ASM_INPUT
1980 || DEBUG_MARKER_INSN_P (insn))
1981 continue;
1982 else if (DEBUG_BIND_INSN_P (insn))
1983 instantiate_virtual_regs_in_rtx (INSN_VAR_LOCATION_PTR (insn));
1984 else
1985 instantiate_virtual_regs_in_insn (insn);
1987 if (insn->deleted ())
1988 continue;
1990 instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));
1992 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1993 if (CALL_P (insn))
1994 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
1997 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1998 instantiate_decls (current_function_decl);
2000 targetm.instantiate_decls ();
2002 /* Indicate that, from now on, assign_stack_local should use
2003 frame_pointer_rtx. */
2004 virtuals_instantiated = 1;
2006 return 0;
2009 namespace {
2011 const pass_data pass_data_instantiate_virtual_regs =
2013 RTL_PASS, /* type */
2014 "vregs", /* name */
2015 OPTGROUP_NONE, /* optinfo_flags */
2016 TV_NONE, /* tv_id */
2017 0, /* properties_required */
2018 0, /* properties_provided */
2019 0, /* properties_destroyed */
2020 0, /* todo_flags_start */
2021 0, /* todo_flags_finish */
2024 class pass_instantiate_virtual_regs : public rtl_opt_pass
2026 public:
2027 pass_instantiate_virtual_regs (gcc::context *ctxt)
2028 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
2031 /* opt_pass methods: */
2032 unsigned int execute (function *) final override
2034 return instantiate_virtual_regs ();
2037 }; // class pass_instantiate_virtual_regs
2039 } // anon namespace
2041 rtl_opt_pass *
2042 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
2044 return new pass_instantiate_virtual_regs (ctxt);
2048 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
2049 This means a type for which function calls must pass an address to the
2050 function or get an address back from the function.
2051 EXP may be a type node or an expression (whose type is tested). */
2054 aggregate_value_p (const_tree exp, const_tree fntype)
2056 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2057 int i, regno, nregs;
2058 rtx reg;
2060 if (fntype)
2061 switch (TREE_CODE (fntype))
2063 case CALL_EXPR:
2065 tree fndecl = get_callee_fndecl (fntype);
2066 if (fndecl)
2067 fntype = TREE_TYPE (fndecl);
2068 else if (CALL_EXPR_FN (fntype))
2069 fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype)));
2070 else
2071 /* For internal functions, assume nothing needs to be
2072 returned in memory. */
2073 return 0;
2075 break;
2076 case FUNCTION_DECL:
2077 fntype = TREE_TYPE (fntype);
2078 break;
2079 case FUNCTION_TYPE:
2080 case METHOD_TYPE:
2081 break;
2082 case IDENTIFIER_NODE:
2083 fntype = NULL_TREE;
2084 break;
2085 default:
2086 /* We don't expect other tree types here. */
2087 gcc_unreachable ();
2090 if (VOID_TYPE_P (type))
2091 return 0;
2093 /* If a record should be passed the same as its first (and only) member
2094 don't pass it as an aggregate. */
2095 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2096 return aggregate_value_p (first_field (type), fntype);
2098 /* If the front end has decided that this needs to be passed by
2099 reference, do so. */
2100 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2101 && DECL_BY_REFERENCE (exp))
2102 return 1;
2104 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2105 if (fntype && TREE_ADDRESSABLE (fntype))
2106 return 1;
2108 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2109 and thus can't be returned in registers. */
2110 if (TREE_ADDRESSABLE (type))
2111 return 1;
2113 if (TYPE_EMPTY_P (type))
2114 return 0;
2116 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2117 return 1;
2119 if (targetm.calls.return_in_memory (type, fntype))
2120 return 1;
2122 /* Make sure we have suitable call-clobbered regs to return
2123 the value in; if not, we must return it in memory. */
2124 reg = hard_function_value (type, 0, fntype, 0);
2126 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2127 it is OK. */
2128 if (!REG_P (reg))
2129 return 0;
2131 /* Use the default ABI if the type of the function isn't known.
2132 The scheme for handling interoperability between different ABIs
2133 requires us to be able to tell when we're calling a function with
2134 a nondefault ABI. */
2135 const predefined_function_abi &abi = (fntype
2136 ? fntype_abi (fntype)
2137 : default_function_abi);
2138 regno = REGNO (reg);
2139 nregs = hard_regno_nregs (regno, TYPE_MODE (type));
2140 for (i = 0; i < nregs; i++)
2141 if (!fixed_regs[regno + i] && !abi.clobbers_full_reg_p (regno + i))
2142 return 1;
2144 return 0;
2147 /* Return true if we should assign DECL a pseudo register; false if it
2148 should live on the local stack. */
2150 bool
2151 use_register_for_decl (const_tree decl)
2153 if (TREE_CODE (decl) == SSA_NAME)
2155 /* We often try to use the SSA_NAME, instead of its underlying
2156 decl, to get type information and guide decisions, to avoid
2157 differences of behavior between anonymous and named
2158 variables, but in this one case we have to go for the actual
2159 variable if there is one. The main reason is that, at least
2160 at -O0, we want to place user variables on the stack, but we
2161 don't mind using pseudos for anonymous or ignored temps.
2162 Should we take the SSA_NAME, we'd conclude all SSA_NAMEs
2163 should go in pseudos, whereas their corresponding variables
2164 might have to go on the stack. So, disregarding the decl
2165 here would negatively impact debug info at -O0, enable
2166 coalescing between SSA_NAMEs that ought to get different
2167 stack/pseudo assignments, and get the incoming argument
2168 processing thoroughly confused by PARM_DECLs expected to live
2169 in stack slots but assigned to pseudos. */
2170 if (!SSA_NAME_VAR (decl))
2171 return TYPE_MODE (TREE_TYPE (decl)) != BLKmode
2172 && !(flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)));
2174 decl = SSA_NAME_VAR (decl);
2177 /* Honor volatile. */
2178 if (TREE_SIDE_EFFECTS (decl))
2179 return false;
2181 /* Honor addressability. */
2182 if (TREE_ADDRESSABLE (decl))
2183 return false;
2185 /* RESULT_DECLs are a bit special in that they're assigned without
2186 regard to use_register_for_decl, but we generally only store in
2187 them. If we coalesce their SSA NAMEs, we'd better return a
2188 result that matches the assignment in expand_function_start. */
2189 if (TREE_CODE (decl) == RESULT_DECL)
2191 /* If it's not an aggregate, we're going to use a REG or a
2192 PARALLEL containing a REG. */
2193 if (!aggregate_value_p (decl, current_function_decl))
2194 return true;
2196 /* If expand_function_start determines the return value, we'll
2197 use MEM if it's not by reference. */
2198 if (cfun->returns_pcc_struct
2199 || (targetm.calls.struct_value_rtx
2200 (TREE_TYPE (current_function_decl), 1)))
2201 return DECL_BY_REFERENCE (decl);
2203 /* Otherwise, we're taking an extra all.function_result_decl
2204 argument. It's set up in assign_parms_augmented_arg_list,
2205 under the (negated) conditions above, and then it's used to
2206 set up the RESULT_DECL rtl in assign_params, after looping
2207 over all parameters. Now, if the RESULT_DECL is not by
2208 reference, we'll use a MEM either way. */
2209 if (!DECL_BY_REFERENCE (decl))
2210 return false;
2212 /* Otherwise, if RESULT_DECL is DECL_BY_REFERENCE, it will take
2213 the function_result_decl's assignment. Since it's a pointer,
2214 we can short-circuit a number of the tests below, and we must
2215 duplicate them because we don't have the function_result_decl
2216 to test. */
2217 if (!targetm.calls.allocate_stack_slots_for_args ())
2218 return true;
2219 /* We don't set DECL_IGNORED_P for the function_result_decl. */
2220 if (optimize)
2221 return true;
2222 if (cfun->tail_call_marked)
2223 return true;
2224 /* We don't set DECL_REGISTER for the function_result_decl. */
2225 return false;
2228 /* Only register-like things go in registers. */
2229 if (DECL_MODE (decl) == BLKmode)
2230 return false;
2232 /* If -ffloat-store specified, don't put explicit float variables
2233 into registers. */
2234 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2235 propagates values across these stores, and it probably shouldn't. */
2236 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2237 return false;
2239 if (!targetm.calls.allocate_stack_slots_for_args ())
2240 return true;
2242 /* If we're not interested in tracking debugging information for
2243 this decl, then we can certainly put it in a register. */
2244 if (DECL_IGNORED_P (decl))
2245 return true;
2247 if (optimize)
2248 return true;
2250 /* Thunks force a tail call even at -O0 so we need to avoid creating a
2251 dangling reference in case the parameter is passed by reference. */
2252 if (TREE_CODE (decl) == PARM_DECL && cfun->tail_call_marked)
2253 return true;
2255 if (!DECL_REGISTER (decl))
2256 return false;
2258 /* When not optimizing, disregard register keyword for types that
2259 could have methods, otherwise the methods won't be callable from
2260 the debugger. */
2261 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (decl)))
2262 return false;
2264 return true;
2267 /* Structures to communicate between the subroutines of assign_parms.
2268 The first holds data persistent across all parameters, the second
2269 is cleared out for each parameter. */
2271 struct assign_parm_data_all
2273 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2274 should become a job of the target or otherwise encapsulated. */
2275 CUMULATIVE_ARGS args_so_far_v;
2276 cumulative_args_t args_so_far;
2277 struct args_size stack_args_size;
2278 tree function_result_decl;
2279 tree orig_fnargs;
2280 rtx_insn *first_conversion_insn;
2281 rtx_insn *last_conversion_insn;
2282 HOST_WIDE_INT pretend_args_size;
2283 HOST_WIDE_INT extra_pretend_bytes;
2284 int reg_parm_stack_space;
2287 struct assign_parm_data_one
2289 tree nominal_type;
2290 function_arg_info arg;
2291 rtx entry_parm;
2292 rtx stack_parm;
2293 machine_mode nominal_mode;
2294 machine_mode passed_mode;
2295 struct locate_and_pad_arg_data locate;
2296 int partial;
2299 /* A subroutine of assign_parms. Initialize ALL. */
2301 static void
2302 assign_parms_initialize_all (struct assign_parm_data_all *all)
2304 tree fntype ATTRIBUTE_UNUSED;
2306 memset (all, 0, sizeof (*all));
2308 fntype = TREE_TYPE (current_function_decl);
2310 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2311 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2312 #else
2313 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2314 current_function_decl, -1);
2315 #endif
2316 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2318 #ifdef INCOMING_REG_PARM_STACK_SPACE
2319 all->reg_parm_stack_space
2320 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2321 #endif
2324 /* If ARGS contains entries with complex types, split the entry into two
2325 entries of the component type. Return a new list of substitutions are
2326 needed, else the old list. */
2328 static void
2329 split_complex_args (vec<tree> *args)
2331 unsigned i;
2332 tree p;
2334 FOR_EACH_VEC_ELT (*args, i, p)
2336 tree type = TREE_TYPE (p);
2337 if (TREE_CODE (type) == COMPLEX_TYPE
2338 && targetm.calls.split_complex_arg (type))
2340 tree decl;
2341 tree subtype = TREE_TYPE (type);
2342 bool addressable = TREE_ADDRESSABLE (p);
2344 /* Rewrite the PARM_DECL's type with its component. */
2345 p = copy_node (p);
2346 TREE_TYPE (p) = subtype;
2347 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2348 SET_DECL_MODE (p, VOIDmode);
2349 DECL_SIZE (p) = NULL;
2350 DECL_SIZE_UNIT (p) = NULL;
2351 /* If this arg must go in memory, put it in a pseudo here.
2352 We can't allow it to go in memory as per normal parms,
2353 because the usual place might not have the imag part
2354 adjacent to the real part. */
2355 DECL_ARTIFICIAL (p) = addressable;
2356 DECL_IGNORED_P (p) = addressable;
2357 TREE_ADDRESSABLE (p) = 0;
2358 layout_decl (p, 0);
2359 (*args)[i] = p;
2361 /* Build a second synthetic decl. */
2362 decl = build_decl (EXPR_LOCATION (p),
2363 PARM_DECL, NULL_TREE, subtype);
2364 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2365 DECL_ARTIFICIAL (decl) = addressable;
2366 DECL_IGNORED_P (decl) = addressable;
2367 layout_decl (decl, 0);
2368 args->safe_insert (++i, decl);
2373 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2374 the hidden struct return argument, and (abi willing) complex args.
2375 Return the new parameter list. */
2377 static vec<tree>
2378 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2380 tree fndecl = current_function_decl;
2381 tree fntype = TREE_TYPE (fndecl);
2382 vec<tree> fnargs = vNULL;
2383 tree arg;
2385 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2386 fnargs.safe_push (arg);
2388 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2390 /* If struct value address is treated as the first argument, make it so. */
2391 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2392 && ! cfun->returns_pcc_struct
2393 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2395 tree type = build_pointer_type (TREE_TYPE (fntype));
2396 tree decl;
2398 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2399 PARM_DECL, get_identifier (".result_ptr"), type);
2400 DECL_ARG_TYPE (decl) = type;
2401 DECL_ARTIFICIAL (decl) = 1;
2402 DECL_NAMELESS (decl) = 1;
2403 TREE_CONSTANT (decl) = 1;
2404 /* We don't set DECL_IGNORED_P or DECL_REGISTER here. If this
2405 changes, the end of the RESULT_DECL handling block in
2406 use_register_for_decl must be adjusted to match. */
2408 DECL_CHAIN (decl) = all->orig_fnargs;
2409 all->orig_fnargs = decl;
2410 fnargs.safe_insert (0, decl);
2412 all->function_result_decl = decl;
2415 /* If the target wants to split complex arguments into scalars, do so. */
2416 if (targetm.calls.split_complex_arg)
2417 split_complex_args (&fnargs);
2419 return fnargs;
2422 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2423 data for the parameter. Incorporate ABI specifics such as pass-by-
2424 reference and type promotion. */
2426 static void
2427 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2428 struct assign_parm_data_one *data)
2430 int unsignedp;
2432 #ifndef BROKEN_VALUE_INITIALIZATION
2433 *data = assign_parm_data_one ();
2434 #else
2435 /* Old versions of GCC used to miscompile the above by only initializing
2436 the members with explicit constructors and copying garbage
2437 to the other members. */
2438 assign_parm_data_one zero_data = {};
2439 *data = zero_data;
2440 #endif
2442 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2443 if (!cfun->stdarg)
2444 data->arg.named = 1; /* No variadic parms. */
2445 else if (DECL_CHAIN (parm))
2446 data->arg.named = 1; /* Not the last non-variadic parm. */
2447 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2448 data->arg.named = 1; /* Only variadic ones are unnamed. */
2449 else
2450 data->arg.named = 0; /* Treat as variadic. */
2452 data->nominal_type = TREE_TYPE (parm);
2453 data->arg.type = DECL_ARG_TYPE (parm);
2455 /* Look out for errors propagating this far. Also, if the parameter's
2456 type is void then its value doesn't matter. */
2457 if (TREE_TYPE (parm) == error_mark_node
2458 /* This can happen after weird syntax errors
2459 or if an enum type is defined among the parms. */
2460 || TREE_CODE (parm) != PARM_DECL
2461 || data->arg.type == NULL
2462 || VOID_TYPE_P (data->nominal_type))
2464 data->nominal_type = data->arg.type = void_type_node;
2465 data->nominal_mode = data->passed_mode = data->arg.mode = VOIDmode;
2466 return;
2469 /* Find mode of arg as it is passed, and mode of arg as it should be
2470 during execution of this function. */
2471 data->passed_mode = data->arg.mode = TYPE_MODE (data->arg.type);
2472 data->nominal_mode = TYPE_MODE (data->nominal_type);
2474 /* If the parm is to be passed as a transparent union or record, use the
2475 type of the first field for the tests below. We have already verified
2476 that the modes are the same. */
2477 if (RECORD_OR_UNION_TYPE_P (data->arg.type)
2478 && TYPE_TRANSPARENT_AGGR (data->arg.type))
2479 data->arg.type = TREE_TYPE (first_field (data->arg.type));
2481 /* See if this arg was passed by invisible reference. */
2482 if (apply_pass_by_reference_rules (&all->args_so_far_v, data->arg))
2484 data->nominal_type = data->arg.type;
2485 data->passed_mode = data->nominal_mode = data->arg.mode;
2488 /* Find mode as it is passed by the ABI. */
2489 unsignedp = TYPE_UNSIGNED (data->arg.type);
2490 data->arg.mode
2491 = promote_function_mode (data->arg.type, data->arg.mode, &unsignedp,
2492 TREE_TYPE (current_function_decl), 0);
2495 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2497 static void
2498 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2499 struct assign_parm_data_one *data, bool no_rtl)
2501 int varargs_pretend_bytes = 0;
2503 function_arg_info last_named_arg = data->arg;
2504 last_named_arg.named = true;
2505 targetm.calls.setup_incoming_varargs (all->args_so_far, last_named_arg,
2506 &varargs_pretend_bytes, no_rtl);
2508 /* If the back-end has requested extra stack space, record how much is
2509 needed. Do not change pretend_args_size otherwise since it may be
2510 nonzero from an earlier partial argument. */
2511 if (varargs_pretend_bytes > 0)
2512 all->pretend_args_size = varargs_pretend_bytes;
2515 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2516 the incoming location of the current parameter. */
2518 static void
2519 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2520 struct assign_parm_data_one *data)
2522 HOST_WIDE_INT pretend_bytes = 0;
2523 rtx entry_parm;
2524 bool in_regs;
2526 if (data->arg.mode == VOIDmode)
2528 data->entry_parm = data->stack_parm = const0_rtx;
2529 return;
2532 targetm.calls.warn_parameter_passing_abi (all->args_so_far,
2533 data->arg.type);
2535 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2536 data->arg);
2537 if (entry_parm == 0)
2538 data->arg.mode = data->passed_mode;
2540 /* Determine parm's home in the stack, in case it arrives in the stack
2541 or we should pretend it did. Compute the stack position and rtx where
2542 the argument arrives and its size.
2544 There is one complexity here: If this was a parameter that would
2545 have been passed in registers, but wasn't only because it is
2546 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2547 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2548 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2549 as it was the previous time. */
2550 in_regs = (entry_parm != 0);
2551 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2552 in_regs = true;
2553 #endif
2554 if (!in_regs && !data->arg.named)
2556 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2558 rtx tem;
2559 function_arg_info named_arg = data->arg;
2560 named_arg.named = true;
2561 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2562 named_arg);
2563 in_regs = tem != NULL;
2567 /* If this parameter was passed both in registers and in the stack, use
2568 the copy on the stack. */
2569 if (targetm.calls.must_pass_in_stack (data->arg))
2570 entry_parm = 0;
2572 if (entry_parm)
2574 int partial;
2576 partial = targetm.calls.arg_partial_bytes (all->args_so_far, data->arg);
2577 data->partial = partial;
2579 /* The caller might already have allocated stack space for the
2580 register parameters. */
2581 if (partial != 0 && all->reg_parm_stack_space == 0)
2583 /* Part of this argument is passed in registers and part
2584 is passed on the stack. Ask the prologue code to extend
2585 the stack part so that we can recreate the full value.
2587 PRETEND_BYTES is the size of the registers we need to store.
2588 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2589 stack space that the prologue should allocate.
2591 Internally, gcc assumes that the argument pointer is aligned
2592 to STACK_BOUNDARY bits. This is used both for alignment
2593 optimizations (see init_emit) and to locate arguments that are
2594 aligned to more than PARM_BOUNDARY bits. We must preserve this
2595 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2596 a stack boundary. */
2598 /* We assume at most one partial arg, and it must be the first
2599 argument on the stack. */
2600 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2602 pretend_bytes = partial;
2603 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2605 /* We want to align relative to the actual stack pointer, so
2606 don't include this in the stack size until later. */
2607 all->extra_pretend_bytes = all->pretend_args_size;
2611 locate_and_pad_parm (data->arg.mode, data->arg.type, in_regs,
2612 all->reg_parm_stack_space,
2613 entry_parm ? data->partial : 0, current_function_decl,
2614 &all->stack_args_size, &data->locate);
2616 /* Update parm_stack_boundary if this parameter is passed in the
2617 stack. */
2618 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2619 crtl->parm_stack_boundary = data->locate.boundary;
2621 /* Adjust offsets to include the pretend args. */
2622 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2623 data->locate.slot_offset.constant += pretend_bytes;
2624 data->locate.offset.constant += pretend_bytes;
2626 data->entry_parm = entry_parm;
2629 /* A subroutine of assign_parms. If there is actually space on the stack
2630 for this parm, count it in stack_args_size and return true. */
2632 static bool
2633 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2634 struct assign_parm_data_one *data)
2636 /* Trivially true if we've no incoming register. */
2637 if (data->entry_parm == NULL)
2639 /* Also true if we're partially in registers and partially not,
2640 since we've arranged to drop the entire argument on the stack. */
2641 else if (data->partial != 0)
2643 /* Also true if the target says that it's passed in both registers
2644 and on the stack. */
2645 else if (GET_CODE (data->entry_parm) == PARALLEL
2646 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2648 /* Also true if the target says that there's stack allocated for
2649 all register parameters. */
2650 else if (all->reg_parm_stack_space > 0)
2652 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2653 else
2654 return false;
2656 all->stack_args_size.constant += data->locate.size.constant;
2657 if (data->locate.size.var)
2658 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2660 return true;
2663 /* A subroutine of assign_parms. Given that this parameter is allocated
2664 stack space by the ABI, find it. */
2666 static void
2667 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2669 rtx offset_rtx, stack_parm;
2670 unsigned int align, boundary;
2672 /* If we're passing this arg using a reg, make its stack home the
2673 aligned stack slot. */
2674 if (data->entry_parm)
2675 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2676 else
2677 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2679 stack_parm = crtl->args.internal_arg_pointer;
2680 if (offset_rtx != const0_rtx)
2681 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2682 stack_parm = gen_rtx_MEM (data->arg.mode, stack_parm);
2684 if (!data->arg.pass_by_reference)
2686 set_mem_attributes (stack_parm, parm, 1);
2687 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2688 while promoted mode's size is needed. */
2689 if (data->arg.mode != BLKmode
2690 && data->arg.mode != DECL_MODE (parm))
2692 set_mem_size (stack_parm, GET_MODE_SIZE (data->arg.mode));
2693 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2695 poly_int64 offset = subreg_lowpart_offset (DECL_MODE (parm),
2696 data->arg.mode);
2697 if (maybe_ne (offset, 0))
2698 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2703 boundary = data->locate.boundary;
2704 align = BITS_PER_UNIT;
2706 /* If we're padding upward, we know that the alignment of the slot
2707 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2708 intentionally forcing upward padding. Otherwise we have to come
2709 up with a guess at the alignment based on OFFSET_RTX. */
2710 poly_int64 offset;
2711 if (data->locate.where_pad == PAD_NONE || data->entry_parm)
2712 align = boundary;
2713 else if (data->locate.where_pad == PAD_UPWARD)
2715 align = boundary;
2716 /* If the argument offset is actually more aligned than the nominal
2717 stack slot boundary, take advantage of that excess alignment.
2718 Don't make any assumptions if STACK_POINTER_OFFSET is in use. */
2719 if (poly_int_rtx_p (offset_rtx, &offset)
2720 && known_eq (STACK_POINTER_OFFSET, 0))
2722 unsigned int offset_align = known_alignment (offset) * BITS_PER_UNIT;
2723 if (offset_align == 0 || offset_align > STACK_BOUNDARY)
2724 offset_align = STACK_BOUNDARY;
2725 align = MAX (align, offset_align);
2728 else if (poly_int_rtx_p (offset_rtx, &offset))
2730 align = least_bit_hwi (boundary);
2731 unsigned int offset_align = known_alignment (offset) * BITS_PER_UNIT;
2732 if (offset_align != 0)
2733 align = MIN (align, offset_align);
2735 set_mem_align (stack_parm, align);
2737 if (data->entry_parm)
2738 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2740 data->stack_parm = stack_parm;
2743 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2744 always valid and contiguous. */
2746 static void
2747 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2749 rtx entry_parm = data->entry_parm;
2750 rtx stack_parm = data->stack_parm;
2752 /* If this parm was passed part in regs and part in memory, pretend it
2753 arrived entirely in memory by pushing the register-part onto the stack.
2754 In the special case of a DImode or DFmode that is split, we could put
2755 it together in a pseudoreg directly, but for now that's not worth
2756 bothering with. */
2757 if (data->partial != 0)
2759 /* Handle calls that pass values in multiple non-contiguous
2760 locations. The Irix 6 ABI has examples of this. */
2761 if (GET_CODE (entry_parm) == PARALLEL)
2762 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2763 data->arg.type, int_size_in_bytes (data->arg.type));
2764 else
2766 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2767 move_block_from_reg (REGNO (entry_parm),
2768 validize_mem (copy_rtx (stack_parm)),
2769 data->partial / UNITS_PER_WORD);
2772 entry_parm = stack_parm;
2775 /* If we didn't decide this parm came in a register, by default it came
2776 on the stack. */
2777 else if (entry_parm == NULL)
2778 entry_parm = stack_parm;
2780 /* When an argument is passed in multiple locations, we can't make use
2781 of this information, but we can save some copying if the whole argument
2782 is passed in a single register. */
2783 else if (GET_CODE (entry_parm) == PARALLEL
2784 && data->nominal_mode != BLKmode
2785 && data->passed_mode != BLKmode)
2787 size_t i, len = XVECLEN (entry_parm, 0);
2789 for (i = 0; i < len; i++)
2790 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2791 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2792 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2793 == data->passed_mode)
2794 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2796 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2797 break;
2801 data->entry_parm = entry_parm;
2804 /* A subroutine of assign_parms. Reconstitute any values which were
2805 passed in multiple registers and would fit in a single register. */
2807 static void
2808 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2810 rtx entry_parm = data->entry_parm;
2812 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2813 This can be done with register operations rather than on the
2814 stack, even if we will store the reconstituted parameter on the
2815 stack later. */
2816 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2818 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2819 emit_group_store (parmreg, entry_parm, data->arg.type,
2820 GET_MODE_SIZE (GET_MODE (entry_parm)));
2821 entry_parm = parmreg;
2824 data->entry_parm = entry_parm;
2827 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2828 always valid and properly aligned. */
2830 static void
2831 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2833 rtx stack_parm = data->stack_parm;
2835 /* If we can't trust the parm stack slot to be aligned enough for its
2836 ultimate type, don't use that slot after entry. We'll make another
2837 stack slot, if we need one. */
2838 if (stack_parm
2839 && ((GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm)
2840 && ((optab_handler (movmisalign_optab, data->nominal_mode)
2841 != CODE_FOR_nothing)
2842 || targetm.slow_unaligned_access (data->nominal_mode,
2843 MEM_ALIGN (stack_parm))))
2844 || (data->nominal_type
2845 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2846 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2847 stack_parm = NULL;
2849 /* If parm was passed in memory, and we need to convert it on entry,
2850 don't store it back in that same slot. */
2851 else if (data->entry_parm == stack_parm
2852 && data->nominal_mode != BLKmode
2853 && data->nominal_mode != data->passed_mode)
2854 stack_parm = NULL;
2856 /* If stack protection is in effect for this function, don't leave any
2857 pointers in their passed stack slots. */
2858 else if (crtl->stack_protect_guard
2859 && (flag_stack_protect == SPCT_FLAG_ALL
2860 || data->arg.pass_by_reference
2861 || POINTER_TYPE_P (data->nominal_type)))
2862 stack_parm = NULL;
2864 data->stack_parm = stack_parm;
2867 /* A subroutine of assign_parms. Return true if the current parameter
2868 should be stored as a BLKmode in the current frame. */
2870 static bool
2871 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2873 if (data->nominal_mode == BLKmode)
2874 return true;
2875 if (GET_MODE (data->entry_parm) == BLKmode)
2876 return true;
2878 #ifdef BLOCK_REG_PADDING
2879 /* Only assign_parm_setup_block knows how to deal with register arguments
2880 that are padded at the least significant end. */
2881 if (REG_P (data->entry_parm)
2882 && known_lt (GET_MODE_SIZE (data->arg.mode), UNITS_PER_WORD)
2883 && (BLOCK_REG_PADDING (data->passed_mode, data->arg.type, 1)
2884 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
2885 return true;
2886 #endif
2888 return false;
2891 /* A subroutine of assign_parms. Arrange for the parameter to be
2892 present and valid in DATA->STACK_RTL. */
2894 static void
2895 assign_parm_setup_block (struct assign_parm_data_all *all,
2896 tree parm, struct assign_parm_data_one *data)
2898 rtx entry_parm = data->entry_parm;
2899 rtx stack_parm = data->stack_parm;
2900 rtx target_reg = NULL_RTX;
2901 bool in_conversion_seq = false;
2902 HOST_WIDE_INT size;
2903 HOST_WIDE_INT size_stored;
2905 if (GET_CODE (entry_parm) == PARALLEL)
2906 entry_parm = emit_group_move_into_temps (entry_parm);
2908 /* If we want the parameter in a pseudo, don't use a stack slot. */
2909 if (is_gimple_reg (parm) && use_register_for_decl (parm))
2911 tree def = ssa_default_def (cfun, parm);
2912 gcc_assert (def);
2913 machine_mode mode = promote_ssa_mode (def, NULL);
2914 rtx reg = gen_reg_rtx (mode);
2915 if (GET_CODE (reg) != CONCAT)
2916 stack_parm = reg;
2917 else
2919 target_reg = reg;
2920 /* Avoid allocating a stack slot, if there isn't one
2921 preallocated by the ABI. It might seem like we should
2922 always prefer a pseudo, but converting between
2923 floating-point and integer modes goes through the stack
2924 on various machines, so it's better to use the reserved
2925 stack slot than to risk wasting it and allocating more
2926 for the conversion. */
2927 if (stack_parm == NULL_RTX)
2929 int save = generating_concat_p;
2930 generating_concat_p = 0;
2931 stack_parm = gen_reg_rtx (mode);
2932 generating_concat_p = save;
2935 data->stack_parm = NULL;
2938 size = int_size_in_bytes (data->arg.type);
2939 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2940 if (stack_parm == 0)
2942 HOST_WIDE_INT parm_align
2943 = (STRICT_ALIGNMENT
2944 ? MAX (DECL_ALIGN (parm), BITS_PER_WORD) : DECL_ALIGN (parm));
2946 SET_DECL_ALIGN (parm, parm_align);
2947 if (DECL_ALIGN (parm) > MAX_SUPPORTED_STACK_ALIGNMENT)
2949 rtx allocsize = gen_int_mode (size_stored, Pmode);
2950 get_dynamic_stack_size (&allocsize, 0, DECL_ALIGN (parm), NULL);
2951 stack_parm = assign_stack_local (BLKmode, UINTVAL (allocsize),
2952 MAX_SUPPORTED_STACK_ALIGNMENT);
2953 rtx addr = align_dynamic_address (XEXP (stack_parm, 0),
2954 DECL_ALIGN (parm));
2955 mark_reg_pointer (addr, DECL_ALIGN (parm));
2956 stack_parm = gen_rtx_MEM (GET_MODE (stack_parm), addr);
2957 MEM_NOTRAP_P (stack_parm) = 1;
2959 else
2960 stack_parm = assign_stack_local (BLKmode, size_stored,
2961 DECL_ALIGN (parm));
2962 if (known_eq (GET_MODE_SIZE (GET_MODE (entry_parm)), size))
2963 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2964 set_mem_attributes (stack_parm, parm, 1);
2967 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2968 calls that pass values in multiple non-contiguous locations. */
2969 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2971 rtx mem;
2973 /* Note that we will be storing an integral number of words.
2974 So we have to be careful to ensure that we allocate an
2975 integral number of words. We do this above when we call
2976 assign_stack_local if space was not allocated in the argument
2977 list. If it was, this will not work if PARM_BOUNDARY is not
2978 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2979 if it becomes a problem. Exception is when BLKmode arrives
2980 with arguments not conforming to word_mode. */
2982 if (data->stack_parm == 0)
2984 else if (GET_CODE (entry_parm) == PARALLEL)
2986 else
2987 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2989 mem = validize_mem (copy_rtx (stack_parm));
2991 /* Handle values in multiple non-contiguous locations. */
2992 if (GET_CODE (entry_parm) == PARALLEL && !MEM_P (mem))
2993 emit_group_store (mem, entry_parm, data->arg.type, size);
2994 else if (GET_CODE (entry_parm) == PARALLEL)
2996 push_to_sequence2 (all->first_conversion_insn,
2997 all->last_conversion_insn);
2998 emit_group_store (mem, entry_parm, data->arg.type, size);
2999 all->first_conversion_insn = get_insns ();
3000 all->last_conversion_insn = get_last_insn ();
3001 end_sequence ();
3002 in_conversion_seq = true;
3005 else if (size == 0)
3008 /* If SIZE is that of a mode no bigger than a word, just use
3009 that mode's store operation. */
3010 else if (size <= UNITS_PER_WORD)
3012 unsigned int bits = size * BITS_PER_UNIT;
3013 machine_mode mode = int_mode_for_size (bits, 0).else_blk ();
3015 if (mode != BLKmode
3016 #ifdef BLOCK_REG_PADDING
3017 && (size == UNITS_PER_WORD
3018 || (BLOCK_REG_PADDING (mode, data->arg.type, 1)
3019 != (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
3020 #endif
3023 rtx reg;
3025 /* We are really truncating a word_mode value containing
3026 SIZE bytes into a value of mode MODE. If such an
3027 operation requires no actual instructions, we can refer
3028 to the value directly in mode MODE, otherwise we must
3029 start with the register in word_mode and explicitly
3030 convert it. */
3031 if (mode == word_mode
3032 || TRULY_NOOP_TRUNCATION_MODES_P (mode, word_mode))
3033 reg = gen_rtx_REG (mode, REGNO (entry_parm));
3034 else
3036 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3037 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
3040 /* We use adjust_address to get a new MEM with the mode
3041 changed. adjust_address is better than change_address
3042 for this purpose because adjust_address does not lose
3043 the MEM_EXPR associated with the MEM.
3045 If the MEM_EXPR is lost, then optimizations like DSE
3046 assume the MEM escapes and thus is not subject to DSE. */
3047 emit_move_insn (adjust_address (mem, mode, 0), reg);
3050 #ifdef BLOCK_REG_PADDING
3051 /* Storing the register in memory as a full word, as
3052 move_block_from_reg below would do, and then using the
3053 MEM in a smaller mode, has the effect of shifting right
3054 if BYTES_BIG_ENDIAN. If we're bypassing memory, the
3055 shifting must be explicit. */
3056 else if (!MEM_P (mem))
3058 rtx x;
3060 /* If the assert below fails, we should have taken the
3061 mode != BLKmode path above, unless we have downward
3062 padding of smaller-than-word arguments on a machine
3063 with little-endian bytes, which would likely require
3064 additional changes to work correctly. */
3065 gcc_checking_assert (BYTES_BIG_ENDIAN
3066 && (BLOCK_REG_PADDING (mode,
3067 data->arg.type, 1)
3068 == PAD_UPWARD));
3070 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3072 x = gen_rtx_REG (word_mode, REGNO (entry_parm));
3073 x = expand_shift (RSHIFT_EXPR, word_mode, x, by,
3074 NULL_RTX, 1);
3075 x = force_reg (word_mode, x);
3076 x = gen_lowpart_SUBREG (GET_MODE (mem), x);
3078 emit_move_insn (mem, x);
3080 #endif
3082 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
3083 machine must be aligned to the left before storing
3084 to memory. Note that the previous test doesn't
3085 handle all cases (e.g. SIZE == 3). */
3086 else if (size != UNITS_PER_WORD
3087 #ifdef BLOCK_REG_PADDING
3088 && (BLOCK_REG_PADDING (mode, data->arg.type, 1)
3089 == PAD_DOWNWARD)
3090 #else
3091 && BYTES_BIG_ENDIAN
3092 #endif
3095 rtx tem, x;
3096 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3097 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3099 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
3100 tem = change_address (mem, word_mode, 0);
3101 emit_move_insn (tem, x);
3103 else
3104 move_block_from_reg (REGNO (entry_parm), mem,
3105 size_stored / UNITS_PER_WORD);
3107 else if (!MEM_P (mem))
3109 gcc_checking_assert (size > UNITS_PER_WORD);
3110 #ifdef BLOCK_REG_PADDING
3111 gcc_checking_assert (BLOCK_REG_PADDING (GET_MODE (mem),
3112 data->arg.type, 0)
3113 == PAD_UPWARD);
3114 #endif
3115 emit_move_insn (mem, entry_parm);
3117 else
3118 move_block_from_reg (REGNO (entry_parm), mem,
3119 size_stored / UNITS_PER_WORD);
3121 else if (data->stack_parm == 0 && !TYPE_EMPTY_P (data->arg.type))
3123 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3124 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
3125 BLOCK_OP_NORMAL);
3126 all->first_conversion_insn = get_insns ();
3127 all->last_conversion_insn = get_last_insn ();
3128 end_sequence ();
3129 in_conversion_seq = true;
3132 if (target_reg)
3134 if (!in_conversion_seq)
3135 emit_move_insn (target_reg, stack_parm);
3136 else
3138 push_to_sequence2 (all->first_conversion_insn,
3139 all->last_conversion_insn);
3140 emit_move_insn (target_reg, stack_parm);
3141 all->first_conversion_insn = get_insns ();
3142 all->last_conversion_insn = get_last_insn ();
3143 end_sequence ();
3145 stack_parm = target_reg;
3148 data->stack_parm = stack_parm;
3149 set_parm_rtl (parm, stack_parm);
3152 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
3153 parameter. Get it there. Perform all ABI specified conversions. */
3155 static void
3156 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
3157 struct assign_parm_data_one *data)
3159 rtx parmreg, validated_mem;
3160 rtx equiv_stack_parm;
3161 machine_mode promoted_nominal_mode;
3162 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
3163 bool did_conversion = false;
3164 bool need_conversion, moved;
3165 enum insn_code icode;
3166 rtx rtl;
3168 /* Store the parm in a pseudoregister during the function, but we may
3169 need to do it in a wider mode. Using 2 here makes the result
3170 consistent with promote_decl_mode and thus expand_expr_real_1. */
3171 promoted_nominal_mode
3172 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
3173 TREE_TYPE (current_function_decl), 2);
3175 parmreg = gen_reg_rtx (promoted_nominal_mode);
3176 if (!DECL_ARTIFICIAL (parm))
3177 mark_user_reg (parmreg);
3179 /* If this was an item that we received a pointer to,
3180 set rtl appropriately. */
3181 if (data->arg.pass_by_reference)
3183 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->arg.type)), parmreg);
3184 set_mem_attributes (rtl, parm, 1);
3186 else
3187 rtl = parmreg;
3189 assign_parm_remove_parallels (data);
3191 /* Copy the value into the register, thus bridging between
3192 assign_parm_find_data_types and expand_expr_real_1. */
3194 equiv_stack_parm = data->stack_parm;
3195 validated_mem = validize_mem (copy_rtx (data->entry_parm));
3197 need_conversion = (data->nominal_mode != data->passed_mode
3198 || promoted_nominal_mode != data->arg.mode);
3199 moved = false;
3201 if (need_conversion
3202 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
3203 && data->nominal_mode == data->passed_mode
3204 && data->nominal_mode == GET_MODE (data->entry_parm))
3206 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3207 mode, by the caller. We now have to convert it to
3208 NOMINAL_MODE, if different. However, PARMREG may be in
3209 a different mode than NOMINAL_MODE if it is being stored
3210 promoted.
3212 If ENTRY_PARM is a hard register, it might be in a register
3213 not valid for operating in its mode (e.g., an odd-numbered
3214 register for a DFmode). In that case, moves are the only
3215 thing valid, so we can't do a convert from there. This
3216 occurs when the calling sequence allow such misaligned
3217 usages.
3219 In addition, the conversion may involve a call, which could
3220 clobber parameters which haven't been copied to pseudo
3221 registers yet.
3223 First, we try to emit an insn which performs the necessary
3224 conversion. We verify that this insn does not clobber any
3225 hard registers. */
3227 rtx op0, op1;
3229 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3230 unsignedp);
3232 op0 = parmreg;
3233 op1 = validated_mem;
3234 if (icode != CODE_FOR_nothing
3235 && insn_operand_matches (icode, 0, op0)
3236 && insn_operand_matches (icode, 1, op1))
3238 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3239 rtx_insn *insn, *insns;
3240 rtx t = op1;
3241 HARD_REG_SET hardregs;
3243 start_sequence ();
3244 /* If op1 is a hard register that is likely spilled, first
3245 force it into a pseudo, otherwise combiner might extend
3246 its lifetime too much. */
3247 if (GET_CODE (t) == SUBREG)
3248 t = SUBREG_REG (t);
3249 if (REG_P (t)
3250 && HARD_REGISTER_P (t)
3251 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3252 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3254 t = gen_reg_rtx (GET_MODE (op1));
3255 emit_move_insn (t, op1);
3257 else
3258 t = op1;
3259 rtx_insn *pat = gen_extend_insn (op0, t, promoted_nominal_mode,
3260 data->passed_mode, unsignedp);
3261 emit_insn (pat);
3262 insns = get_insns ();
3264 moved = true;
3265 CLEAR_HARD_REG_SET (hardregs);
3266 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3268 if (INSN_P (insn))
3269 note_stores (insn, record_hard_reg_sets, &hardregs);
3270 if (!hard_reg_set_empty_p (hardregs))
3271 moved = false;
3274 end_sequence ();
3276 if (moved)
3278 emit_insn (insns);
3279 if (equiv_stack_parm != NULL_RTX)
3280 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3281 equiv_stack_parm);
3286 if (moved)
3287 /* Nothing to do. */
3289 else if (need_conversion)
3291 /* We did not have an insn to convert directly, or the sequence
3292 generated appeared unsafe. We must first copy the parm to a
3293 pseudo reg, and save the conversion until after all
3294 parameters have been moved. */
3296 int save_tree_used;
3297 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3299 emit_move_insn (tempreg, validated_mem);
3301 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3302 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3304 if (partial_subreg_p (tempreg)
3305 && GET_MODE (tempreg) == data->nominal_mode
3306 && REG_P (SUBREG_REG (tempreg))
3307 && data->nominal_mode == data->passed_mode
3308 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm))
3310 /* The argument is already sign/zero extended, so note it
3311 into the subreg. */
3312 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3313 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3316 /* TREE_USED gets set erroneously during expand_assignment. */
3317 save_tree_used = TREE_USED (parm);
3318 SET_DECL_RTL (parm, rtl);
3319 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3320 SET_DECL_RTL (parm, NULL_RTX);
3321 TREE_USED (parm) = save_tree_used;
3322 all->first_conversion_insn = get_insns ();
3323 all->last_conversion_insn = get_last_insn ();
3324 end_sequence ();
3326 did_conversion = true;
3328 else if (MEM_P (data->entry_parm)
3329 && GET_MODE_ALIGNMENT (promoted_nominal_mode)
3330 > MEM_ALIGN (data->entry_parm)
3331 && (((icode = optab_handler (movmisalign_optab,
3332 promoted_nominal_mode))
3333 != CODE_FOR_nothing)
3334 || targetm.slow_unaligned_access (promoted_nominal_mode,
3335 MEM_ALIGN (data->entry_parm))))
3337 if (icode != CODE_FOR_nothing)
3338 emit_insn (GEN_FCN (icode) (parmreg, validated_mem));
3339 else
3340 rtl = parmreg = extract_bit_field (validated_mem,
3341 GET_MODE_BITSIZE (promoted_nominal_mode), 0,
3342 unsignedp, parmreg,
3343 promoted_nominal_mode, VOIDmode, false, NULL);
3345 else
3346 emit_move_insn (parmreg, validated_mem);
3348 /* If we were passed a pointer but the actual value can live in a register,
3349 retrieve it and use it directly. Note that we cannot use nominal_mode,
3350 because it will have been set to Pmode above, we must use the actual mode
3351 of the parameter instead. */
3352 if (data->arg.pass_by_reference && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3354 /* Use a stack slot for debugging purposes if possible. */
3355 if (use_register_for_decl (parm))
3357 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3358 mark_user_reg (parmreg);
3360 else
3362 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3363 TYPE_MODE (TREE_TYPE (parm)),
3364 TYPE_ALIGN (TREE_TYPE (parm)));
3365 parmreg
3366 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3367 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3368 align);
3369 set_mem_attributes (parmreg, parm, 1);
3372 /* We need to preserve an address based on VIRTUAL_STACK_VARS_REGNUM for
3373 the debug info in case it is not legitimate. */
3374 if (GET_MODE (parmreg) != GET_MODE (rtl))
3376 rtx tempreg = gen_reg_rtx (GET_MODE (rtl));
3377 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3379 push_to_sequence2 (all->first_conversion_insn,
3380 all->last_conversion_insn);
3381 emit_move_insn (tempreg, rtl);
3382 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3383 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg,
3384 tempreg);
3385 all->first_conversion_insn = get_insns ();
3386 all->last_conversion_insn = get_last_insn ();
3387 end_sequence ();
3389 did_conversion = true;
3391 else
3392 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg, rtl);
3394 rtl = parmreg;
3396 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3397 now the parm. */
3398 data->stack_parm = NULL;
3401 set_parm_rtl (parm, rtl);
3403 /* Mark the register as eliminable if we did no conversion and it was
3404 copied from memory at a fixed offset, and the arg pointer was not
3405 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3406 offset formed an invalid address, such memory-equivalences as we
3407 make here would screw up life analysis for it. */
3408 if (data->nominal_mode == data->passed_mode
3409 && !did_conversion
3410 && data->stack_parm != 0
3411 && MEM_P (data->stack_parm)
3412 && data->locate.offset.var == 0
3413 && reg_mentioned_p (virtual_incoming_args_rtx,
3414 XEXP (data->stack_parm, 0)))
3416 rtx_insn *linsn = get_last_insn ();
3417 rtx_insn *sinsn;
3418 rtx set;
3420 /* Mark complex types separately. */
3421 if (GET_CODE (parmreg) == CONCAT)
3423 scalar_mode submode = GET_MODE_INNER (GET_MODE (parmreg));
3424 int regnor = REGNO (XEXP (parmreg, 0));
3425 int regnoi = REGNO (XEXP (parmreg, 1));
3426 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3427 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3428 GET_MODE_SIZE (submode));
3430 /* Scan backwards for the set of the real and
3431 imaginary parts. */
3432 for (sinsn = linsn; sinsn != 0;
3433 sinsn = prev_nonnote_insn (sinsn))
3435 set = single_set (sinsn);
3436 if (set == 0)
3437 continue;
3439 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3440 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3441 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3442 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3445 else
3446 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3449 /* For pointer data type, suggest pointer register. */
3450 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3451 mark_reg_pointer (parmreg,
3452 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3455 /* A subroutine of assign_parms. Allocate stack space to hold the current
3456 parameter. Get it there. Perform all ABI specified conversions. */
3458 static void
3459 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3460 struct assign_parm_data_one *data)
3462 /* Value must be stored in the stack slot STACK_PARM during function
3463 execution. */
3464 bool to_conversion = false;
3466 assign_parm_remove_parallels (data);
3468 if (data->arg.mode != data->nominal_mode)
3470 /* Conversion is required. */
3471 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3473 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3475 /* Some ABIs require scalar floating point modes to be passed
3476 in a wider scalar integer mode. We need to explicitly
3477 truncate to an integer mode of the correct precision before
3478 using a SUBREG to reinterpret as a floating point value. */
3479 if (SCALAR_FLOAT_MODE_P (data->nominal_mode)
3480 && SCALAR_INT_MODE_P (data->arg.mode)
3481 && known_lt (GET_MODE_SIZE (data->nominal_mode),
3482 GET_MODE_SIZE (data->arg.mode)))
3483 tempreg = convert_wider_int_to_float (data->nominal_mode,
3484 data->arg.mode, tempreg);
3486 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3487 to_conversion = true;
3489 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3490 TYPE_UNSIGNED (TREE_TYPE (parm)));
3492 if (data->stack_parm)
3494 poly_int64 offset
3495 = subreg_lowpart_offset (data->nominal_mode,
3496 GET_MODE (data->stack_parm));
3497 /* ??? This may need a big-endian conversion on sparc64. */
3498 data->stack_parm
3499 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3500 if (maybe_ne (offset, 0) && MEM_OFFSET_KNOWN_P (data->stack_parm))
3501 set_mem_offset (data->stack_parm,
3502 MEM_OFFSET (data->stack_parm) + offset);
3506 if (data->entry_parm != data->stack_parm)
3508 rtx src, dest;
3510 if (data->stack_parm == 0)
3512 int align = STACK_SLOT_ALIGNMENT (data->arg.type,
3513 GET_MODE (data->entry_parm),
3514 TYPE_ALIGN (data->arg.type));
3515 if (align < (int)GET_MODE_ALIGNMENT (GET_MODE (data->entry_parm))
3516 && ((optab_handler (movmisalign_optab,
3517 GET_MODE (data->entry_parm))
3518 != CODE_FOR_nothing)
3519 || targetm.slow_unaligned_access (GET_MODE (data->entry_parm),
3520 align)))
3521 align = GET_MODE_ALIGNMENT (GET_MODE (data->entry_parm));
3522 data->stack_parm
3523 = assign_stack_local (GET_MODE (data->entry_parm),
3524 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3525 align);
3526 align = MEM_ALIGN (data->stack_parm);
3527 set_mem_attributes (data->stack_parm, parm, 1);
3528 set_mem_align (data->stack_parm, align);
3531 dest = validize_mem (copy_rtx (data->stack_parm));
3532 src = validize_mem (copy_rtx (data->entry_parm));
3534 if (TYPE_EMPTY_P (data->arg.type))
3535 /* Empty types don't really need to be copied. */;
3536 else if (MEM_P (src))
3538 /* Use a block move to handle potentially misaligned entry_parm. */
3539 if (!to_conversion)
3540 push_to_sequence2 (all->first_conversion_insn,
3541 all->last_conversion_insn);
3542 to_conversion = true;
3544 emit_block_move (dest, src,
3545 GEN_INT (int_size_in_bytes (data->arg.type)),
3546 BLOCK_OP_NORMAL);
3548 else
3550 if (!REG_P (src))
3551 src = force_reg (GET_MODE (src), src);
3552 emit_move_insn (dest, src);
3556 if (to_conversion)
3558 all->first_conversion_insn = get_insns ();
3559 all->last_conversion_insn = get_last_insn ();
3560 end_sequence ();
3563 set_parm_rtl (parm, data->stack_parm);
3566 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3567 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3569 static void
3570 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3571 vec<tree> fnargs)
3573 tree parm;
3574 tree orig_fnargs = all->orig_fnargs;
3575 unsigned i = 0;
3577 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3579 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3580 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3582 rtx tmp, real, imag;
3583 scalar_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3585 real = DECL_RTL (fnargs[i]);
3586 imag = DECL_RTL (fnargs[i + 1]);
3587 if (inner != GET_MODE (real))
3589 real = gen_lowpart_SUBREG (inner, real);
3590 imag = gen_lowpart_SUBREG (inner, imag);
3593 if (TREE_ADDRESSABLE (parm))
3595 rtx rmem, imem;
3596 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3597 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3598 DECL_MODE (parm),
3599 TYPE_ALIGN (TREE_TYPE (parm)));
3601 /* split_complex_arg put the real and imag parts in
3602 pseudos. Move them to memory. */
3603 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3604 set_mem_attributes (tmp, parm, 1);
3605 rmem = adjust_address_nv (tmp, inner, 0);
3606 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3607 push_to_sequence2 (all->first_conversion_insn,
3608 all->last_conversion_insn);
3609 emit_move_insn (rmem, real);
3610 emit_move_insn (imem, imag);
3611 all->first_conversion_insn = get_insns ();
3612 all->last_conversion_insn = get_last_insn ();
3613 end_sequence ();
3615 else
3616 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3617 set_parm_rtl (parm, tmp);
3619 real = DECL_INCOMING_RTL (fnargs[i]);
3620 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3621 if (inner != GET_MODE (real))
3623 real = gen_lowpart_SUBREG (inner, real);
3624 imag = gen_lowpart_SUBREG (inner, imag);
3626 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3627 set_decl_incoming_rtl (parm, tmp, false);
3628 i++;
3633 /* Assign RTL expressions to the function's parameters. This may involve
3634 copying them into registers and using those registers as the DECL_RTL. */
3636 static void
3637 assign_parms (tree fndecl)
3639 struct assign_parm_data_all all;
3640 tree parm;
3641 vec<tree> fnargs;
3642 unsigned i;
3644 crtl->args.internal_arg_pointer
3645 = targetm.calls.internal_arg_pointer ();
3647 assign_parms_initialize_all (&all);
3648 fnargs = assign_parms_augmented_arg_list (&all);
3650 if (TYPE_NO_NAMED_ARGS_STDARG_P (TREE_TYPE (fndecl)))
3652 struct assign_parm_data_one data = {};
3653 assign_parms_setup_varargs (&all, &data, false);
3656 FOR_EACH_VEC_ELT (fnargs, i, parm)
3658 struct assign_parm_data_one data;
3660 /* Extract the type of PARM; adjust it according to ABI. */
3661 assign_parm_find_data_types (&all, parm, &data);
3663 /* Early out for errors and void parameters. */
3664 if (data.passed_mode == VOIDmode)
3666 SET_DECL_RTL (parm, const0_rtx);
3667 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3668 continue;
3671 /* Estimate stack alignment from parameter alignment. */
3672 if (SUPPORTS_STACK_ALIGNMENT)
3674 unsigned int align
3675 = targetm.calls.function_arg_boundary (data.arg.mode,
3676 data.arg.type);
3677 align = MINIMUM_ALIGNMENT (data.arg.type, data.arg.mode, align);
3678 if (TYPE_ALIGN (data.nominal_type) > align)
3679 align = MINIMUM_ALIGNMENT (data.nominal_type,
3680 TYPE_MODE (data.nominal_type),
3681 TYPE_ALIGN (data.nominal_type));
3682 if (crtl->stack_alignment_estimated < align)
3684 gcc_assert (!crtl->stack_realign_processed);
3685 crtl->stack_alignment_estimated = align;
3689 /* Find out where the parameter arrives in this function. */
3690 assign_parm_find_entry_rtl (&all, &data);
3692 /* Find out where stack space for this parameter might be. */
3693 if (assign_parm_is_stack_parm (&all, &data))
3695 assign_parm_find_stack_rtl (parm, &data);
3696 assign_parm_adjust_entry_rtl (&data);
3697 /* For arguments that occupy no space in the parameter
3698 passing area, have non-zero size and have address taken,
3699 force creation of a stack slot so that they have distinct
3700 address from other parameters. */
3701 if (TYPE_EMPTY_P (data.arg.type)
3702 && TREE_ADDRESSABLE (parm)
3703 && data.entry_parm == data.stack_parm
3704 && MEM_P (data.entry_parm)
3705 && int_size_in_bytes (data.arg.type))
3706 data.stack_parm = NULL_RTX;
3708 /* Record permanently how this parm was passed. */
3709 if (data.arg.pass_by_reference)
3711 rtx incoming_rtl
3712 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.arg.type)),
3713 data.entry_parm);
3714 set_decl_incoming_rtl (parm, incoming_rtl, true);
3716 else
3717 set_decl_incoming_rtl (parm, data.entry_parm, false);
3719 assign_parm_adjust_stack_rtl (&data);
3721 if (assign_parm_setup_block_p (&data))
3722 assign_parm_setup_block (&all, parm, &data);
3723 else if (data.arg.pass_by_reference || use_register_for_decl (parm))
3724 assign_parm_setup_reg (&all, parm, &data);
3725 else
3726 assign_parm_setup_stack (&all, parm, &data);
3728 if (cfun->stdarg && !DECL_CHAIN (parm))
3729 assign_parms_setup_varargs (&all, &data, false);
3731 /* Update info on where next arg arrives in registers. */
3732 targetm.calls.function_arg_advance (all.args_so_far, data.arg);
3735 if (targetm.calls.split_complex_arg)
3736 assign_parms_unsplit_complex (&all, fnargs);
3738 fnargs.release ();
3740 /* Output all parameter conversion instructions (possibly including calls)
3741 now that all parameters have been copied out of hard registers. */
3742 emit_insn (all.first_conversion_insn);
3744 /* Estimate reload stack alignment from scalar return mode. */
3745 if (SUPPORTS_STACK_ALIGNMENT)
3747 if (DECL_RESULT (fndecl))
3749 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3750 machine_mode mode = TYPE_MODE (type);
3752 if (mode != BLKmode
3753 && mode != VOIDmode
3754 && !AGGREGATE_TYPE_P (type))
3756 unsigned int align = GET_MODE_ALIGNMENT (mode);
3757 if (crtl->stack_alignment_estimated < align)
3759 gcc_assert (!crtl->stack_realign_processed);
3760 crtl->stack_alignment_estimated = align;
3766 /* If we are receiving a struct value address as the first argument, set up
3767 the RTL for the function result. As this might require code to convert
3768 the transmitted address to Pmode, we do this here to ensure that possible
3769 preliminary conversions of the address have been emitted already. */
3770 if (all.function_result_decl)
3772 tree result = DECL_RESULT (current_function_decl);
3773 rtx addr = DECL_RTL (all.function_result_decl);
3774 rtx x;
3776 if (DECL_BY_REFERENCE (result))
3778 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3779 x = addr;
3781 else
3783 SET_DECL_VALUE_EXPR (result,
3784 build1 (INDIRECT_REF, TREE_TYPE (result),
3785 all.function_result_decl));
3786 addr = convert_memory_address (Pmode, addr);
3787 x = gen_rtx_MEM (DECL_MODE (result), addr);
3788 set_mem_attributes (x, result, 1);
3791 DECL_HAS_VALUE_EXPR_P (result) = 1;
3793 set_parm_rtl (result, x);
3796 /* We have aligned all the args, so add space for the pretend args. */
3797 crtl->args.pretend_args_size = all.pretend_args_size;
3798 all.stack_args_size.constant += all.extra_pretend_bytes;
3799 crtl->args.size = all.stack_args_size.constant;
3801 /* Adjust function incoming argument size for alignment and
3802 minimum length. */
3804 crtl->args.size = upper_bound (crtl->args.size, all.reg_parm_stack_space);
3805 crtl->args.size = aligned_upper_bound (crtl->args.size,
3806 PARM_BOUNDARY / BITS_PER_UNIT);
3808 if (ARGS_GROW_DOWNWARD)
3810 crtl->args.arg_offset_rtx
3811 = (all.stack_args_size.var == 0
3812 ? gen_int_mode (-all.stack_args_size.constant, Pmode)
3813 : expand_expr (size_diffop (all.stack_args_size.var,
3814 size_int (-all.stack_args_size.constant)),
3815 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3817 else
3818 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3820 /* See how many bytes, if any, of its args a function should try to pop
3821 on return. */
3823 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3824 TREE_TYPE (fndecl),
3825 crtl->args.size);
3827 /* For stdarg.h function, save info about
3828 regs and stack space used by the named args. */
3830 crtl->args.info = all.args_so_far_v;
3832 /* Set the rtx used for the function return value. Put this in its
3833 own variable so any optimizers that need this information don't have
3834 to include tree.h. Do this here so it gets done when an inlined
3835 function gets output. */
3837 crtl->return_rtx
3838 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3839 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3841 /* If scalar return value was computed in a pseudo-reg, or was a named
3842 return value that got dumped to the stack, copy that to the hard
3843 return register. */
3844 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3846 tree decl_result = DECL_RESULT (fndecl);
3847 rtx decl_rtl = DECL_RTL (decl_result);
3849 if (REG_P (decl_rtl)
3850 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3851 : DECL_REGISTER (decl_result))
3853 rtx real_decl_rtl;
3855 /* Unless the psABI says not to. */
3856 if (TYPE_EMPTY_P (TREE_TYPE (decl_result)))
3857 real_decl_rtl = NULL_RTX;
3858 else
3860 real_decl_rtl
3861 = targetm.calls.function_value (TREE_TYPE (decl_result),
3862 fndecl, true);
3863 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3865 /* The delay slot scheduler assumes that crtl->return_rtx
3866 holds the hard register containing the return value, not a
3867 temporary pseudo. */
3868 crtl->return_rtx = real_decl_rtl;
3873 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3874 For all seen types, gimplify their sizes. */
3876 static tree
3877 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3879 tree t = *tp;
3881 *walk_subtrees = 0;
3882 if (TYPE_P (t))
3884 if (POINTER_TYPE_P (t))
3885 *walk_subtrees = 1;
3886 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3887 && !TYPE_SIZES_GIMPLIFIED (t))
3889 gimplify_type_sizes (t, (gimple_seq *) data);
3890 *walk_subtrees = 1;
3894 return NULL;
3897 /* Gimplify the parameter list for current_function_decl. This involves
3898 evaluating SAVE_EXPRs of variable sized parameters and generating code
3899 to implement callee-copies reference parameters. Returns a sequence of
3900 statements to add to the beginning of the function. */
3902 gimple_seq
3903 gimplify_parameters (gimple_seq *cleanup)
3905 struct assign_parm_data_all all;
3906 tree parm;
3907 gimple_seq stmts = NULL;
3908 vec<tree> fnargs;
3909 unsigned i;
3911 assign_parms_initialize_all (&all);
3912 fnargs = assign_parms_augmented_arg_list (&all);
3914 FOR_EACH_VEC_ELT (fnargs, i, parm)
3916 struct assign_parm_data_one data;
3918 /* Extract the type of PARM; adjust it according to ABI. */
3919 assign_parm_find_data_types (&all, parm, &data);
3921 /* Early out for errors and void parameters. */
3922 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3923 continue;
3925 /* Update info on where next arg arrives in registers. */
3926 targetm.calls.function_arg_advance (all.args_so_far, data.arg);
3928 /* ??? Once upon a time variable_size stuffed parameter list
3929 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3930 turned out to be less than manageable in the gimple world.
3931 Now we have to hunt them down ourselves. */
3932 walk_tree_without_duplicates (&data.arg.type,
3933 gimplify_parm_type, &stmts);
3935 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3937 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3938 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3941 if (data.arg.pass_by_reference)
3943 tree type = TREE_TYPE (data.arg.type);
3944 function_arg_info orig_arg (type, data.arg.named);
3945 if (reference_callee_copied (&all.args_so_far_v, orig_arg))
3947 tree local, t;
3949 /* For constant-sized objects, this is trivial; for
3950 variable-sized objects, we have to play games. */
3951 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3952 && !(flag_stack_check == GENERIC_STACK_CHECK
3953 && compare_tree_int (DECL_SIZE_UNIT (parm),
3954 STACK_CHECK_MAX_VAR_SIZE) > 0))
3956 local = create_tmp_var (type, get_name (parm));
3957 DECL_IGNORED_P (local) = 0;
3958 /* If PARM was addressable, move that flag over
3959 to the local copy, as its address will be taken,
3960 not the PARMs. Keep the parms address taken
3961 as we'll query that flag during gimplification. */
3962 if (TREE_ADDRESSABLE (parm))
3963 TREE_ADDRESSABLE (local) = 1;
3964 if (DECL_NOT_GIMPLE_REG_P (parm))
3965 DECL_NOT_GIMPLE_REG_P (local) = 1;
3967 if (!is_gimple_reg (local)
3968 && flag_stack_reuse != SR_NONE)
3970 tree clobber = build_clobber (type);
3971 gimple *clobber_stmt;
3972 clobber_stmt = gimple_build_assign (local, clobber);
3973 gimple_seq_add_stmt (cleanup, clobber_stmt);
3976 else
3978 tree ptr_type, addr;
3980 ptr_type = build_pointer_type (type);
3981 addr = create_tmp_reg (ptr_type, get_name (parm));
3982 DECL_IGNORED_P (addr) = 0;
3983 local = build_fold_indirect_ref (addr);
3985 t = build_alloca_call_expr (DECL_SIZE_UNIT (parm),
3986 DECL_ALIGN (parm),
3987 max_int_size_in_bytes (type));
3988 /* The call has been built for a variable-sized object. */
3989 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3990 t = fold_convert (ptr_type, t);
3991 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3992 gimplify_and_add (t, &stmts);
3995 gimplify_assign (local, parm, &stmts);
3997 SET_DECL_VALUE_EXPR (parm, local);
3998 DECL_HAS_VALUE_EXPR_P (parm) = 1;
4003 fnargs.release ();
4005 return stmts;
4008 /* Compute the size and offset from the start of the stacked arguments for a
4009 parm passed in mode PASSED_MODE and with type TYPE.
4011 INITIAL_OFFSET_PTR points to the current offset into the stacked
4012 arguments.
4014 The starting offset and size for this parm are returned in
4015 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
4016 nonzero, the offset is that of stack slot, which is returned in
4017 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
4018 padding required from the initial offset ptr to the stack slot.
4020 IN_REGS is nonzero if the argument will be passed in registers. It will
4021 never be set if REG_PARM_STACK_SPACE is not defined.
4023 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
4024 for arguments which are passed in registers.
4026 FNDECL is the function in which the argument was defined.
4028 There are two types of rounding that are done. The first, controlled by
4029 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
4030 argument list to be aligned to the specific boundary (in bits). This
4031 rounding affects the initial and starting offsets, but not the argument
4032 size.
4034 The second, controlled by TARGET_FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4035 optionally rounds the size of the parm to PARM_BOUNDARY. The
4036 initial offset is not affected by this rounding, while the size always
4037 is and the starting offset may be. */
4039 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
4040 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
4041 callers pass in the total size of args so far as
4042 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
4044 void
4045 locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs,
4046 int reg_parm_stack_space, int partial,
4047 tree fndecl ATTRIBUTE_UNUSED,
4048 struct args_size *initial_offset_ptr,
4049 struct locate_and_pad_arg_data *locate)
4051 tree sizetree;
4052 pad_direction where_pad;
4053 unsigned int boundary, round_boundary;
4054 int part_size_in_regs;
4056 /* If we have found a stack parm before we reach the end of the
4057 area reserved for registers, skip that area. */
4058 if (! in_regs)
4060 if (reg_parm_stack_space > 0)
4062 if (initial_offset_ptr->var
4063 || !ordered_p (initial_offset_ptr->constant,
4064 reg_parm_stack_space))
4066 initial_offset_ptr->var
4067 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
4068 ssize_int (reg_parm_stack_space));
4069 initial_offset_ptr->constant = 0;
4071 else
4072 initial_offset_ptr->constant
4073 = ordered_max (initial_offset_ptr->constant,
4074 reg_parm_stack_space);
4078 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
4080 sizetree = (type
4081 ? arg_size_in_bytes (type)
4082 : size_int (GET_MODE_SIZE (passed_mode)));
4083 where_pad = targetm.calls.function_arg_padding (passed_mode, type);
4084 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
4085 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
4086 type);
4087 locate->where_pad = where_pad;
4089 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
4090 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
4091 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
4093 locate->boundary = boundary;
4095 if (SUPPORTS_STACK_ALIGNMENT)
4097 /* stack_alignment_estimated can't change after stack has been
4098 realigned. */
4099 if (crtl->stack_alignment_estimated < boundary)
4101 if (!crtl->stack_realign_processed)
4102 crtl->stack_alignment_estimated = boundary;
4103 else
4105 /* If stack is realigned and stack alignment value
4106 hasn't been finalized, it is OK not to increase
4107 stack_alignment_estimated. The bigger alignment
4108 requirement is recorded in stack_alignment_needed
4109 below. */
4110 gcc_assert (!crtl->stack_realign_finalized
4111 && crtl->stack_realign_needed);
4116 if (ARGS_GROW_DOWNWARD)
4118 locate->slot_offset.constant = -initial_offset_ptr->constant;
4119 if (initial_offset_ptr->var)
4120 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
4121 initial_offset_ptr->var);
4124 tree s2 = sizetree;
4125 if (where_pad != PAD_NONE
4126 && (!tree_fits_uhwi_p (sizetree)
4127 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4128 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
4129 SUB_PARM_SIZE (locate->slot_offset, s2);
4132 locate->slot_offset.constant += part_size_in_regs;
4134 if (!in_regs || reg_parm_stack_space > 0)
4135 pad_to_arg_alignment (&locate->slot_offset, boundary,
4136 &locate->alignment_pad);
4138 locate->size.constant = (-initial_offset_ptr->constant
4139 - locate->slot_offset.constant);
4140 if (initial_offset_ptr->var)
4141 locate->size.var = size_binop (MINUS_EXPR,
4142 size_binop (MINUS_EXPR,
4143 ssize_int (0),
4144 initial_offset_ptr->var),
4145 locate->slot_offset.var);
4147 /* Pad_below needs the pre-rounded size to know how much to pad
4148 below. */
4149 locate->offset = locate->slot_offset;
4150 if (where_pad == PAD_DOWNWARD)
4151 pad_below (&locate->offset, passed_mode, sizetree);
4154 else
4156 if (!in_regs || reg_parm_stack_space > 0)
4157 pad_to_arg_alignment (initial_offset_ptr, boundary,
4158 &locate->alignment_pad);
4159 locate->slot_offset = *initial_offset_ptr;
4161 #ifdef PUSH_ROUNDING
4162 if (passed_mode != BLKmode)
4163 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
4164 #endif
4166 /* Pad_below needs the pre-rounded size to know how much to pad below
4167 so this must be done before rounding up. */
4168 locate->offset = locate->slot_offset;
4169 if (where_pad == PAD_DOWNWARD)
4170 pad_below (&locate->offset, passed_mode, sizetree);
4172 if (where_pad != PAD_NONE
4173 && (!tree_fits_uhwi_p (sizetree)
4174 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4175 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
4177 ADD_PARM_SIZE (locate->size, sizetree);
4179 locate->size.constant -= part_size_in_regs;
4182 locate->offset.constant
4183 += targetm.calls.function_arg_offset (passed_mode, type);
4186 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4187 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4189 static void
4190 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
4191 struct args_size *alignment_pad)
4193 tree save_var = NULL_TREE;
4194 poly_int64 save_constant = 0;
4195 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4196 poly_int64 sp_offset = STACK_POINTER_OFFSET;
4198 #ifdef SPARC_STACK_BOUNDARY_HACK
4199 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
4200 the real alignment of %sp. However, when it does this, the
4201 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
4202 if (SPARC_STACK_BOUNDARY_HACK)
4203 sp_offset = 0;
4204 #endif
4206 if (boundary > PARM_BOUNDARY)
4208 save_var = offset_ptr->var;
4209 save_constant = offset_ptr->constant;
4212 alignment_pad->var = NULL_TREE;
4213 alignment_pad->constant = 0;
4215 if (boundary > BITS_PER_UNIT)
4217 int misalign;
4218 if (offset_ptr->var
4219 || !known_misalignment (offset_ptr->constant + sp_offset,
4220 boundary_in_bytes, &misalign))
4222 tree sp_offset_tree = ssize_int (sp_offset);
4223 tree offset = size_binop (PLUS_EXPR,
4224 ARGS_SIZE_TREE (*offset_ptr),
4225 sp_offset_tree);
4226 tree rounded;
4227 if (ARGS_GROW_DOWNWARD)
4228 rounded = round_down (offset, boundary / BITS_PER_UNIT);
4229 else
4230 rounded = round_up (offset, boundary / BITS_PER_UNIT);
4232 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
4233 /* ARGS_SIZE_TREE includes constant term. */
4234 offset_ptr->constant = 0;
4235 if (boundary > PARM_BOUNDARY)
4236 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
4237 save_var);
4239 else
4241 if (ARGS_GROW_DOWNWARD)
4242 offset_ptr->constant -= misalign;
4243 else
4244 offset_ptr->constant += -misalign & (boundary_in_bytes - 1);
4246 if (boundary > PARM_BOUNDARY)
4247 alignment_pad->constant = offset_ptr->constant - save_constant;
4252 static void
4253 pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree)
4255 unsigned int align = PARM_BOUNDARY / BITS_PER_UNIT;
4256 int misalign;
4257 if (passed_mode != BLKmode
4258 && known_misalignment (GET_MODE_SIZE (passed_mode), align, &misalign))
4259 offset_ptr->constant += -misalign & (align - 1);
4260 else
4262 if (TREE_CODE (sizetree) != INTEGER_CST
4263 || (TREE_INT_CST_LOW (sizetree) & (align - 1)) != 0)
4265 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4266 tree s2 = round_up (sizetree, align);
4267 /* Add it in. */
4268 ADD_PARM_SIZE (*offset_ptr, s2);
4269 SUB_PARM_SIZE (*offset_ptr, sizetree);
4275 /* True if register REGNO was alive at a place where `setjmp' was
4276 called and was set more than once or is an argument. Such regs may
4277 be clobbered by `longjmp'. */
4279 static bool
4280 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
4282 /* There appear to be cases where some local vars never reach the
4283 backend but have bogus regnos. */
4284 if (regno >= max_reg_num ())
4285 return false;
4287 return ((REG_N_SETS (regno) > 1
4288 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4289 regno))
4290 && REGNO_REG_SET_P (setjmp_crosses, regno));
4293 /* Walk the tree of blocks describing the binding levels within a
4294 function and warn about variables the might be killed by setjmp or
4295 vfork. This is done after calling flow_analysis before register
4296 allocation since that will clobber the pseudo-regs to hard
4297 regs. */
4299 static void
4300 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4302 tree decl, sub;
4304 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4306 if (VAR_P (decl)
4307 && DECL_RTL_SET_P (decl)
4308 && REG_P (DECL_RTL (decl))
4309 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4310 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4311 " %<longjmp%> or %<vfork%>", decl);
4314 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4315 setjmp_vars_warning (setjmp_crosses, sub);
4318 /* Do the appropriate part of setjmp_vars_warning
4319 but for arguments instead of local variables. */
4321 static void
4322 setjmp_args_warning (bitmap setjmp_crosses)
4324 tree decl;
4325 for (decl = DECL_ARGUMENTS (current_function_decl);
4326 decl; decl = DECL_CHAIN (decl))
4327 if (DECL_RTL (decl) != 0
4328 && REG_P (DECL_RTL (decl))
4329 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4330 warning (OPT_Wclobbered,
4331 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4332 decl);
4335 /* Generate warning messages for variables live across setjmp. */
4337 void
4338 generate_setjmp_warnings (void)
4340 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4342 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4343 || bitmap_empty_p (setjmp_crosses))
4344 return;
4346 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4347 setjmp_args_warning (setjmp_crosses);
4351 /* Reverse the order of elements in the fragment chain T of blocks,
4352 and return the new head of the chain (old last element).
4353 In addition to that clear BLOCK_SAME_RANGE flags when needed
4354 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4355 its super fragment origin. */
4357 static tree
4358 block_fragments_nreverse (tree t)
4360 tree prev = 0, block, next, prev_super = 0;
4361 tree super = BLOCK_SUPERCONTEXT (t);
4362 if (BLOCK_FRAGMENT_ORIGIN (super))
4363 super = BLOCK_FRAGMENT_ORIGIN (super);
4364 for (block = t; block; block = next)
4366 next = BLOCK_FRAGMENT_CHAIN (block);
4367 BLOCK_FRAGMENT_CHAIN (block) = prev;
4368 if ((prev && !BLOCK_SAME_RANGE (prev))
4369 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4370 != prev_super))
4371 BLOCK_SAME_RANGE (block) = 0;
4372 prev_super = BLOCK_SUPERCONTEXT (block);
4373 BLOCK_SUPERCONTEXT (block) = super;
4374 prev = block;
4376 t = BLOCK_FRAGMENT_ORIGIN (t);
4377 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4378 != prev_super)
4379 BLOCK_SAME_RANGE (t) = 0;
4380 BLOCK_SUPERCONTEXT (t) = super;
4381 return prev;
4384 /* Reverse the order of elements in the chain T of blocks,
4385 and return the new head of the chain (old last element).
4386 Also do the same on subblocks and reverse the order of elements
4387 in BLOCK_FRAGMENT_CHAIN as well. */
4389 static tree
4390 blocks_nreverse_all (tree t)
4392 tree prev = 0, block, next;
4393 for (block = t; block; block = next)
4395 next = BLOCK_CHAIN (block);
4396 BLOCK_CHAIN (block) = prev;
4397 if (BLOCK_FRAGMENT_CHAIN (block)
4398 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4400 BLOCK_FRAGMENT_CHAIN (block)
4401 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4402 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4403 BLOCK_SAME_RANGE (block) = 0;
4405 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4406 prev = block;
4408 return prev;
4412 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4413 and create duplicate blocks. */
4414 /* ??? Need an option to either create block fragments or to create
4415 abstract origin duplicates of a source block. It really depends
4416 on what optimization has been performed. */
4418 void
4419 reorder_blocks (void)
4421 tree block = DECL_INITIAL (current_function_decl);
4423 if (block == NULL_TREE)
4424 return;
4426 auto_vec<tree, 10> block_stack;
4428 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4429 clear_block_marks (block);
4431 /* Prune the old trees away, so that they don't get in the way. */
4432 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4433 BLOCK_CHAIN (block) = NULL_TREE;
4435 /* Recreate the block tree from the note nesting. */
4436 reorder_blocks_1 (get_insns (), block, &block_stack);
4437 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4440 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4442 void
4443 clear_block_marks (tree block)
4445 while (block)
4447 TREE_ASM_WRITTEN (block) = 0;
4448 clear_block_marks (BLOCK_SUBBLOCKS (block));
4449 block = BLOCK_CHAIN (block);
4453 static void
4454 reorder_blocks_1 (rtx_insn *insns, tree current_block,
4455 vec<tree> *p_block_stack)
4457 rtx_insn *insn;
4458 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4460 for (insn = insns; insn; insn = NEXT_INSN (insn))
4462 if (NOTE_P (insn))
4464 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4466 tree block = NOTE_BLOCK (insn);
4467 tree origin;
4469 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4470 origin = block;
4472 if (prev_end)
4473 BLOCK_SAME_RANGE (prev_end) = 0;
4474 prev_end = NULL_TREE;
4476 /* If we have seen this block before, that means it now
4477 spans multiple address regions. Create a new fragment. */
4478 if (TREE_ASM_WRITTEN (block))
4480 tree new_block = copy_node (block);
4482 BLOCK_SAME_RANGE (new_block) = 0;
4483 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4484 BLOCK_FRAGMENT_CHAIN (new_block)
4485 = BLOCK_FRAGMENT_CHAIN (origin);
4486 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4488 NOTE_BLOCK (insn) = new_block;
4489 block = new_block;
4492 if (prev_beg == current_block && prev_beg)
4493 BLOCK_SAME_RANGE (block) = 1;
4495 prev_beg = origin;
4497 BLOCK_SUBBLOCKS (block) = 0;
4498 TREE_ASM_WRITTEN (block) = 1;
4499 /* When there's only one block for the entire function,
4500 current_block == block and we mustn't do this, it
4501 will cause infinite recursion. */
4502 if (block != current_block)
4504 tree super;
4505 if (block != origin)
4506 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4507 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4508 (origin))
4509 == current_block);
4510 if (p_block_stack->is_empty ())
4511 super = current_block;
4512 else
4514 super = p_block_stack->last ();
4515 gcc_assert (super == current_block
4516 || BLOCK_FRAGMENT_ORIGIN (super)
4517 == current_block);
4519 BLOCK_SUPERCONTEXT (block) = super;
4520 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4521 BLOCK_SUBBLOCKS (current_block) = block;
4522 current_block = origin;
4524 p_block_stack->safe_push (block);
4526 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4528 NOTE_BLOCK (insn) = p_block_stack->pop ();
4529 current_block = BLOCK_SUPERCONTEXT (current_block);
4530 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4531 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4532 prev_beg = NULL_TREE;
4533 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4534 ? NOTE_BLOCK (insn) : NULL_TREE;
4537 else
4539 prev_beg = NULL_TREE;
4540 if (prev_end)
4541 BLOCK_SAME_RANGE (prev_end) = 0;
4542 prev_end = NULL_TREE;
4547 /* Reverse the order of elements in the chain T of blocks,
4548 and return the new head of the chain (old last element). */
4550 tree
4551 blocks_nreverse (tree t)
4553 tree prev = 0, block, next;
4554 for (block = t; block; block = next)
4556 next = BLOCK_CHAIN (block);
4557 BLOCK_CHAIN (block) = prev;
4558 prev = block;
4560 return prev;
4563 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4564 by modifying the last node in chain 1 to point to chain 2. */
4566 tree
4567 block_chainon (tree op1, tree op2)
4569 tree t1;
4571 if (!op1)
4572 return op2;
4573 if (!op2)
4574 return op1;
4576 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4577 continue;
4578 BLOCK_CHAIN (t1) = op2;
4580 #ifdef ENABLE_TREE_CHECKING
4582 tree t2;
4583 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4584 gcc_assert (t2 != t1);
4586 #endif
4588 return op1;
4591 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4592 non-NULL, list them all into VECTOR, in a depth-first preorder
4593 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4594 blocks. */
4596 static int
4597 all_blocks (tree block, tree *vector)
4599 int n_blocks = 0;
4601 while (block)
4603 TREE_ASM_WRITTEN (block) = 0;
4605 /* Record this block. */
4606 if (vector)
4607 vector[n_blocks] = block;
4609 ++n_blocks;
4611 /* Record the subblocks, and their subblocks... */
4612 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4613 vector ? vector + n_blocks : 0);
4614 block = BLOCK_CHAIN (block);
4617 return n_blocks;
4620 /* Return a vector containing all the blocks rooted at BLOCK. The
4621 number of elements in the vector is stored in N_BLOCKS_P. The
4622 vector is dynamically allocated; it is the caller's responsibility
4623 to call `free' on the pointer returned. */
4625 static tree *
4626 get_block_vector (tree block, int *n_blocks_p)
4628 tree *block_vector;
4630 *n_blocks_p = all_blocks (block, NULL);
4631 block_vector = XNEWVEC (tree, *n_blocks_p);
4632 all_blocks (block, block_vector);
4634 return block_vector;
4637 static GTY(()) int next_block_index = 2;
4639 /* Set BLOCK_NUMBER for all the blocks in FN. */
4641 void
4642 number_blocks (tree fn)
4644 int i;
4645 int n_blocks;
4646 tree *block_vector;
4648 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4650 /* The top-level BLOCK isn't numbered at all. */
4651 for (i = 1; i < n_blocks; ++i)
4652 /* We number the blocks from two. */
4653 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4655 free (block_vector);
4657 return;
4660 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4662 DEBUG_FUNCTION tree
4663 debug_find_var_in_block_tree (tree var, tree block)
4665 tree t;
4667 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4668 if (t == var)
4669 return block;
4671 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4673 tree ret = debug_find_var_in_block_tree (var, t);
4674 if (ret)
4675 return ret;
4678 return NULL_TREE;
4681 /* Keep track of whether we're in a dummy function context. If we are,
4682 we don't want to invoke the set_current_function hook, because we'll
4683 get into trouble if the hook calls target_reinit () recursively or
4684 when the initial initialization is not yet complete. */
4686 static bool in_dummy_function;
4688 /* Invoke the target hook when setting cfun. Update the optimization options
4689 if the function uses different options than the default. */
4691 static void
4692 invoke_set_current_function_hook (tree fndecl)
4694 if (!in_dummy_function)
4696 tree opts = ((fndecl)
4697 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4698 : optimization_default_node);
4700 if (!opts)
4701 opts = optimization_default_node;
4703 /* Change optimization options if needed. */
4704 if (optimization_current_node != opts)
4706 optimization_current_node = opts;
4707 cl_optimization_restore (&global_options, &global_options_set,
4708 TREE_OPTIMIZATION (opts));
4711 targetm.set_current_function (fndecl);
4712 this_fn_optabs = this_target_optabs;
4714 /* Initialize global alignment variables after op. */
4715 parse_alignment_opts ();
4717 if (opts != optimization_default_node)
4719 init_tree_optimization_optabs (opts);
4720 if (TREE_OPTIMIZATION_OPTABS (opts))
4721 this_fn_optabs = (struct target_optabs *)
4722 TREE_OPTIMIZATION_OPTABS (opts);
4727 /* cfun should never be set directly; use this function. */
4729 void
4730 set_cfun (struct function *new_cfun, bool force)
4732 if (cfun != new_cfun || force)
4734 cfun = new_cfun;
4735 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4736 redirect_edge_var_map_empty ();
4740 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4742 static vec<function *> cfun_stack;
4744 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4745 current_function_decl accordingly. */
4747 void
4748 push_cfun (struct function *new_cfun)
4750 gcc_assert ((!cfun && !current_function_decl)
4751 || (cfun && current_function_decl == cfun->decl));
4752 cfun_stack.safe_push (cfun);
4753 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4754 set_cfun (new_cfun);
4757 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4759 void
4760 pop_cfun (void)
4762 struct function *new_cfun = cfun_stack.pop ();
4763 /* When in_dummy_function, we do have a cfun but current_function_decl is
4764 NULL. We also allow pushing NULL cfun and subsequently changing
4765 current_function_decl to something else and have both restored by
4766 pop_cfun. */
4767 gcc_checking_assert (in_dummy_function
4768 || !cfun
4769 || current_function_decl == cfun->decl);
4770 set_cfun (new_cfun);
4771 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4774 /* Return value of funcdef and increase it. */
4776 get_next_funcdef_no (void)
4778 return funcdef_no++;
4781 /* Return value of funcdef. */
4783 get_last_funcdef_no (void)
4785 return funcdef_no;
4788 /* Allocate and initialize the stack usage info data structure for the
4789 current function. */
4790 static void
4791 allocate_stack_usage_info (void)
4793 gcc_assert (!cfun->su);
4794 cfun->su = ggc_cleared_alloc<stack_usage> ();
4795 cfun->su->static_stack_size = -1;
4798 /* Allocate a function structure for FNDECL and set its contents
4799 to the defaults. Set cfun to the newly-allocated object.
4800 Some of the helper functions invoked during initialization assume
4801 that cfun has already been set. Therefore, assign the new object
4802 directly into cfun and invoke the back end hook explicitly at the
4803 very end, rather than initializing a temporary and calling set_cfun
4804 on it.
4806 ABSTRACT_P is true if this is a function that will never be seen by
4807 the middle-end. Such functions are front-end concepts (like C++
4808 function templates) that do not correspond directly to functions
4809 placed in object files. */
4811 void
4812 allocate_struct_function (tree fndecl, bool abstract_p)
4814 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4816 cfun = ggc_cleared_alloc<function> ();
4818 init_eh_for_function ();
4820 if (init_machine_status)
4821 cfun->machine = (*init_machine_status) ();
4823 #ifdef OVERRIDE_ABI_FORMAT
4824 OVERRIDE_ABI_FORMAT (fndecl);
4825 #endif
4827 if (fndecl != NULL_TREE)
4829 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4830 cfun->decl = fndecl;
4831 current_function_funcdef_no = get_next_funcdef_no ();
4834 invoke_set_current_function_hook (fndecl);
4836 if (fndecl != NULL_TREE)
4838 tree result = DECL_RESULT (fndecl);
4840 if (!abstract_p)
4842 /* Now that we have activated any function-specific attributes
4843 that might affect layout, particularly vector modes, relayout
4844 each of the parameters and the result. */
4845 relayout_decl (result);
4846 for (tree parm = DECL_ARGUMENTS (fndecl); parm;
4847 parm = DECL_CHAIN (parm))
4848 relayout_decl (parm);
4850 /* Similarly relayout the function decl. */
4851 targetm.target_option.relayout_function (fndecl);
4854 if (!abstract_p && aggregate_value_p (result, fndecl))
4856 #ifdef PCC_STATIC_STRUCT_RETURN
4857 cfun->returns_pcc_struct = 1;
4858 #endif
4859 cfun->returns_struct = 1;
4862 cfun->stdarg = stdarg_p (fntype);
4864 /* Assume all registers in stdarg functions need to be saved. */
4865 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4866 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4868 /* ??? This could be set on a per-function basis by the front-end
4869 but is this worth the hassle? */
4870 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4871 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4873 if (!profile_flag && !flag_instrument_function_entry_exit)
4874 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1;
4876 if (flag_callgraph_info)
4877 allocate_stack_usage_info ();
4880 /* Don't enable begin stmt markers if var-tracking at assignments is
4881 disabled. The markers make little sense without the variable
4882 binding annotations among them. */
4883 cfun->debug_nonbind_markers = lang_hooks.emits_begin_stmt
4884 && MAY_HAVE_DEBUG_MARKER_STMTS;
4887 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4888 instead of just setting it. */
4890 void
4891 push_struct_function (tree fndecl)
4893 /* When in_dummy_function we might be in the middle of a pop_cfun and
4894 current_function_decl and cfun may not match. */
4895 gcc_assert (in_dummy_function
4896 || (!cfun && !current_function_decl)
4897 || (cfun && current_function_decl == cfun->decl));
4898 cfun_stack.safe_push (cfun);
4899 current_function_decl = fndecl;
4900 allocate_struct_function (fndecl, false);
4903 /* Reset crtl and other non-struct-function variables to defaults as
4904 appropriate for emitting rtl at the start of a function. */
4906 static void
4907 prepare_function_start (void)
4909 gcc_assert (!get_last_insn ());
4911 if (in_dummy_function)
4912 crtl->abi = &default_function_abi;
4913 else
4914 crtl->abi = &fndecl_abi (cfun->decl).base_abi ();
4916 init_temp_slots ();
4917 init_emit ();
4918 init_varasm_status ();
4919 init_expr ();
4920 default_rtl_profile ();
4922 if (flag_stack_usage_info && !flag_callgraph_info)
4923 allocate_stack_usage_info ();
4925 cse_not_expected = ! optimize;
4927 /* Caller save not needed yet. */
4928 caller_save_needed = 0;
4930 /* We haven't done register allocation yet. */
4931 reg_renumber = 0;
4933 /* Indicate that we have not instantiated virtual registers yet. */
4934 virtuals_instantiated = 0;
4936 /* Indicate that we want CONCATs now. */
4937 generating_concat_p = 1;
4939 /* Indicate we have no need of a frame pointer yet. */
4940 frame_pointer_needed = 0;
4943 void
4944 push_dummy_function (bool with_decl)
4946 tree fn_decl, fn_type, fn_result_decl;
4948 gcc_assert (!in_dummy_function);
4949 in_dummy_function = true;
4951 if (with_decl)
4953 fn_type = build_function_type_list (void_type_node, NULL_TREE);
4954 fn_decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
4955 fn_type);
4956 fn_result_decl = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
4957 NULL_TREE, void_type_node);
4958 DECL_RESULT (fn_decl) = fn_result_decl;
4959 DECL_ARTIFICIAL (fn_decl) = 1;
4960 tree fn_name = get_identifier (" ");
4961 SET_DECL_ASSEMBLER_NAME (fn_decl, fn_name);
4963 else
4964 fn_decl = NULL_TREE;
4966 push_struct_function (fn_decl);
4969 /* Initialize the rtl expansion mechanism so that we can do simple things
4970 like generate sequences. This is used to provide a context during global
4971 initialization of some passes. You must call expand_dummy_function_end
4972 to exit this context. */
4974 void
4975 init_dummy_function_start (void)
4977 push_dummy_function (false);
4978 prepare_function_start ();
4981 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4982 and initialize static variables for generating RTL for the statements
4983 of the function. */
4985 void
4986 init_function_start (tree subr)
4988 /* Initialize backend, if needed. */
4989 initialize_rtl ();
4991 prepare_function_start ();
4992 decide_function_section (subr);
4994 /* Warn if this value is an aggregate type,
4995 regardless of which calling convention we are using for it. */
4996 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4997 warning (OPT_Waggregate_return, "function returns an aggregate");
5000 /* Expand code to verify the stack_protect_guard. This is invoked at
5001 the end of a function to be protected. */
5003 void
5004 stack_protect_epilogue (void)
5006 tree guard_decl = crtl->stack_protect_guard_decl;
5007 rtx_code_label *label = gen_label_rtx ();
5008 rtx x, y;
5009 rtx_insn *seq = NULL;
5011 x = expand_normal (crtl->stack_protect_guard);
5013 if (targetm.have_stack_protect_combined_test () && guard_decl)
5015 gcc_assert (DECL_P (guard_decl));
5016 y = DECL_RTL (guard_decl);
5017 /* Allow the target to compute address of Y and compare it with X without
5018 leaking Y into a register. This combined address + compare pattern
5019 allows the target to prevent spilling of any intermediate results by
5020 splitting it after register allocator. */
5021 seq = targetm.gen_stack_protect_combined_test (x, y, label);
5023 else
5025 if (guard_decl)
5026 y = expand_normal (guard_decl);
5027 else
5028 y = const0_rtx;
5030 /* Allow the target to compare Y with X without leaking either into
5031 a register. */
5032 if (targetm.have_stack_protect_test ())
5033 seq = targetm.gen_stack_protect_test (x, y, label);
5036 if (seq)
5037 emit_insn (seq);
5038 else
5039 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
5041 /* The noreturn predictor has been moved to the tree level. The rtl-level
5042 predictors estimate this branch about 20%, which isn't enough to get
5043 things moved out of line. Since this is the only extant case of adding
5044 a noreturn function at the rtl level, it doesn't seem worth doing ought
5045 except adding the prediction by hand. */
5046 rtx_insn *tmp = get_last_insn ();
5047 if (JUMP_P (tmp))
5048 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
5050 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
5051 free_temp_slots ();
5052 emit_label (label);
5055 /* Start the RTL for a new function, and set variables used for
5056 emitting RTL.
5057 SUBR is the FUNCTION_DECL node.
5058 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
5059 the function's parameters, which must be run at any return statement. */
5061 void
5062 expand_function_start (tree subr)
5064 /* Make sure volatile mem refs aren't considered
5065 valid operands of arithmetic insns. */
5066 init_recog_no_volatile ();
5068 crtl->profile
5069 = (profile_flag
5070 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
5072 crtl->limit_stack
5073 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
5075 /* Make the label for return statements to jump to. Do not special
5076 case machines with special return instructions -- they will be
5077 handled later during jump, ifcvt, or epilogue creation. */
5078 return_label = gen_label_rtx ();
5080 /* Initialize rtx used to return the value. */
5081 /* Do this before assign_parms so that we copy the struct value address
5082 before any library calls that assign parms might generate. */
5084 /* Decide whether to return the value in memory or in a register. */
5085 tree res = DECL_RESULT (subr);
5086 if (aggregate_value_p (res, subr))
5088 /* Returning something that won't go in a register. */
5089 rtx value_address = 0;
5091 #ifdef PCC_STATIC_STRUCT_RETURN
5092 if (cfun->returns_pcc_struct)
5094 int size = int_size_in_bytes (TREE_TYPE (res));
5095 value_address = assemble_static_space (size);
5097 else
5098 #endif
5100 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
5101 /* Expect to be passed the address of a place to store the value.
5102 If it is passed as an argument, assign_parms will take care of
5103 it. */
5104 if (sv)
5106 value_address = gen_reg_rtx (Pmode);
5107 emit_move_insn (value_address, sv);
5110 if (value_address)
5112 rtx x = value_address;
5113 if (!DECL_BY_REFERENCE (res))
5115 x = gen_rtx_MEM (DECL_MODE (res), x);
5116 set_mem_attributes (x, res, 1);
5118 set_parm_rtl (res, x);
5121 else if (DECL_MODE (res) == VOIDmode)
5122 /* If return mode is void, this decl rtl should not be used. */
5123 set_parm_rtl (res, NULL_RTX);
5124 else
5126 /* Compute the return values into a pseudo reg, which we will copy
5127 into the true return register after the cleanups are done. */
5128 tree return_type = TREE_TYPE (res);
5130 /* If we may coalesce this result, make sure it has the expected mode
5131 in case it was promoted. But we need not bother about BLKmode. */
5132 machine_mode promoted_mode
5133 = flag_tree_coalesce_vars && is_gimple_reg (res)
5134 ? promote_ssa_mode (ssa_default_def (cfun, res), NULL)
5135 : BLKmode;
5137 if (promoted_mode != BLKmode)
5138 set_parm_rtl (res, gen_reg_rtx (promoted_mode));
5139 else if (TYPE_MODE (return_type) != BLKmode
5140 && targetm.calls.return_in_msb (return_type))
5141 /* expand_function_end will insert the appropriate padding in
5142 this case. Use the return value's natural (unpadded) mode
5143 within the function proper. */
5144 set_parm_rtl (res, gen_reg_rtx (TYPE_MODE (return_type)));
5145 else
5147 /* In order to figure out what mode to use for the pseudo, we
5148 figure out what the mode of the eventual return register will
5149 actually be, and use that. */
5150 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
5152 /* Structures that are returned in registers are not
5153 aggregate_value_p, so we may see a PARALLEL or a REG. */
5154 if (REG_P (hard_reg))
5155 set_parm_rtl (res, gen_reg_rtx (GET_MODE (hard_reg)));
5156 else
5158 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
5159 set_parm_rtl (res, gen_group_rtx (hard_reg));
5163 /* Set DECL_REGISTER flag so that expand_function_end will copy the
5164 result to the real return register(s). */
5165 DECL_REGISTER (res) = 1;
5168 /* Initialize rtx for parameters and local variables.
5169 In some cases this requires emitting insns. */
5170 assign_parms (subr);
5172 /* If function gets a static chain arg, store it. */
5173 if (cfun->static_chain_decl)
5175 tree parm = cfun->static_chain_decl;
5176 rtx local, chain;
5177 rtx_insn *insn;
5178 int unsignedp;
5180 local = gen_reg_rtx (promote_decl_mode (parm, &unsignedp));
5181 chain = targetm.calls.static_chain (current_function_decl, true);
5183 set_decl_incoming_rtl (parm, chain, false);
5184 set_parm_rtl (parm, local);
5185 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5187 if (GET_MODE (local) != GET_MODE (chain))
5189 convert_move (local, chain, unsignedp);
5190 insn = get_last_insn ();
5192 else
5193 insn = emit_move_insn (local, chain);
5195 /* Mark the register as eliminable, similar to parameters. */
5196 if (MEM_P (chain)
5197 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
5198 set_dst_reg_note (insn, REG_EQUIV, chain, local);
5200 /* If we aren't optimizing, save the static chain onto the stack. */
5201 if (!optimize)
5203 tree saved_static_chain_decl
5204 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
5205 DECL_NAME (parm), TREE_TYPE (parm));
5206 rtx saved_static_chain_rtx
5207 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5208 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
5209 emit_move_insn (saved_static_chain_rtx, chain);
5210 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
5211 DECL_HAS_VALUE_EXPR_P (parm) = 1;
5215 /* The following was moved from init_function_start.
5216 The move was supposed to make sdb output more accurate. */
5217 /* Indicate the beginning of the function body,
5218 as opposed to parm setup. */
5219 emit_note (NOTE_INSN_FUNCTION_BEG);
5221 gcc_assert (NOTE_P (get_last_insn ()));
5223 parm_birth_insn = get_last_insn ();
5225 /* If the function receives a non-local goto, then store the
5226 bits we need to restore the frame pointer. */
5227 if (cfun->nonlocal_goto_save_area)
5229 tree t_save;
5230 rtx r_save;
5232 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
5233 gcc_assert (DECL_RTL_SET_P (var));
5235 t_save = build4 (ARRAY_REF,
5236 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
5237 cfun->nonlocal_goto_save_area,
5238 integer_zero_node, NULL_TREE, NULL_TREE);
5239 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
5240 gcc_assert (GET_MODE (r_save) == Pmode);
5242 emit_move_insn (r_save, hard_frame_pointer_rtx);
5243 update_nonlocal_goto_save_area ();
5246 if (crtl->profile)
5248 #ifdef PROFILE_HOOK
5249 PROFILE_HOOK (current_function_funcdef_no);
5250 #endif
5253 /* If we are doing generic stack checking, the probe should go here. */
5254 if (flag_stack_check == GENERIC_STACK_CHECK)
5255 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
5258 void
5259 pop_dummy_function (void)
5261 pop_cfun ();
5262 in_dummy_function = false;
5265 /* Undo the effects of init_dummy_function_start. */
5266 void
5267 expand_dummy_function_end (void)
5269 gcc_assert (in_dummy_function);
5271 /* End any sequences that failed to be closed due to syntax errors. */
5272 while (in_sequence_p ())
5273 end_sequence ();
5275 /* Outside function body, can't compute type's actual size
5276 until next function's body starts. */
5278 free_after_parsing (cfun);
5279 free_after_compilation (cfun);
5280 pop_dummy_function ();
5283 /* Helper for diddle_return_value. */
5285 void
5286 diddle_return_value_1 (void (*doit) (rtx, void *), void *arg, rtx outgoing)
5288 if (! outgoing)
5289 return;
5291 if (REG_P (outgoing))
5292 (*doit) (outgoing, arg);
5293 else if (GET_CODE (outgoing) == PARALLEL)
5295 int i;
5297 for (i = 0; i < XVECLEN (outgoing, 0); i++)
5299 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
5301 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5302 (*doit) (x, arg);
5307 /* Call DOIT for each hard register used as a return value from
5308 the current function. */
5310 void
5311 diddle_return_value (void (*doit) (rtx, void *), void *arg)
5313 diddle_return_value_1 (doit, arg, crtl->return_rtx);
5316 static void
5317 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5319 emit_clobber (reg);
5322 void
5323 clobber_return_register (void)
5325 diddle_return_value (do_clobber_return_reg, NULL);
5327 /* In case we do use pseudo to return value, clobber it too. */
5328 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5330 tree decl_result = DECL_RESULT (current_function_decl);
5331 rtx decl_rtl = DECL_RTL (decl_result);
5332 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
5334 do_clobber_return_reg (decl_rtl, NULL);
5339 static void
5340 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5342 emit_use (reg);
5345 static void
5346 use_return_register (void)
5348 diddle_return_value (do_use_return_reg, NULL);
5351 /* Generate RTL for the end of the current function. */
5353 void
5354 expand_function_end (void)
5356 /* If arg_pointer_save_area was referenced only from a nested
5357 function, we will not have initialized it yet. Do that now. */
5358 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5359 get_arg_pointer_save_area ();
5361 /* If we are doing generic stack checking and this function makes calls,
5362 do a stack probe at the start of the function to ensure we have enough
5363 space for another stack frame. */
5364 if (flag_stack_check == GENERIC_STACK_CHECK)
5366 rtx_insn *insn, *seq;
5368 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5369 if (CALL_P (insn))
5371 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5372 start_sequence ();
5373 if (STACK_CHECK_MOVING_SP)
5374 anti_adjust_stack_and_probe (max_frame_size, true);
5375 else
5376 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5377 seq = get_insns ();
5378 end_sequence ();
5379 set_insn_locations (seq, prologue_location);
5380 emit_insn_before (seq, stack_check_probe_note);
5381 break;
5385 /* End any sequences that failed to be closed due to syntax errors. */
5386 while (in_sequence_p ())
5387 end_sequence ();
5389 clear_pending_stack_adjust ();
5390 do_pending_stack_adjust ();
5392 /* Output a linenumber for the end of the function.
5393 SDB depended on this. */
5394 set_curr_insn_location (input_location);
5396 /* Before the return label (if any), clobber the return
5397 registers so that they are not propagated live to the rest of
5398 the function. This can only happen with functions that drop
5399 through; if there had been a return statement, there would
5400 have either been a return rtx, or a jump to the return label.
5402 We delay actual code generation after the current_function_value_rtx
5403 is computed. */
5404 rtx_insn *clobber_after = get_last_insn ();
5406 /* Output the label for the actual return from the function. */
5407 emit_label (return_label);
5409 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5411 /* Let except.cc know where it should emit the call to unregister
5412 the function context for sjlj exceptions. */
5413 if (flag_exceptions)
5414 sjlj_emit_function_exit_after (get_last_insn ());
5417 /* If this is an implementation of throw, do what's necessary to
5418 communicate between __builtin_eh_return and the epilogue. */
5419 expand_eh_return ();
5421 /* If stack protection is enabled for this function, check the guard. */
5422 if (crtl->stack_protect_guard
5423 && targetm.stack_protect_runtime_enabled_p ()
5424 && naked_return_label == NULL_RTX)
5425 stack_protect_epilogue ();
5427 /* If scalar return value was computed in a pseudo-reg, or was a named
5428 return value that got dumped to the stack, copy that to the hard
5429 return register. */
5430 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5432 tree decl_result = DECL_RESULT (current_function_decl);
5433 rtx decl_rtl = DECL_RTL (decl_result);
5435 if ((REG_P (decl_rtl)
5436 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5437 : DECL_REGISTER (decl_result))
5438 /* Unless the psABI says not to. */
5439 && !TYPE_EMPTY_P (TREE_TYPE (decl_result)))
5441 rtx real_decl_rtl = crtl->return_rtx;
5442 complex_mode cmode;
5444 /* This should be set in assign_parms. */
5445 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5447 /* If this is a BLKmode structure being returned in registers,
5448 then use the mode computed in expand_return. Note that if
5449 decl_rtl is memory, then its mode may have been changed,
5450 but that crtl->return_rtx has not. */
5451 if (GET_MODE (real_decl_rtl) == BLKmode)
5452 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5454 /* If a non-BLKmode return value should be padded at the least
5455 significant end of the register, shift it left by the appropriate
5456 amount. BLKmode results are handled using the group load/store
5457 machinery. */
5458 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5459 && REG_P (real_decl_rtl)
5460 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5462 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5463 REGNO (real_decl_rtl)),
5464 decl_rtl);
5465 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5467 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5469 /* If expand_function_start has created a PARALLEL for decl_rtl,
5470 move the result to the real return registers. Otherwise, do
5471 a group load from decl_rtl for a named return. */
5472 if (GET_CODE (decl_rtl) == PARALLEL)
5473 emit_group_move (real_decl_rtl, decl_rtl);
5474 else
5475 emit_group_load (real_decl_rtl, decl_rtl,
5476 TREE_TYPE (decl_result),
5477 int_size_in_bytes (TREE_TYPE (decl_result)));
5479 /* In the case of complex integer modes smaller than a word, we'll
5480 need to generate some non-trivial bitfield insertions. Do that
5481 on a pseudo and not the hard register. */
5482 else if (GET_CODE (decl_rtl) == CONCAT
5483 && is_complex_int_mode (GET_MODE (decl_rtl), &cmode)
5484 && GET_MODE_BITSIZE (cmode) <= BITS_PER_WORD)
5486 int old_generating_concat_p;
5487 rtx tmp;
5489 old_generating_concat_p = generating_concat_p;
5490 generating_concat_p = 0;
5491 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5492 generating_concat_p = old_generating_concat_p;
5494 emit_move_insn (tmp, decl_rtl);
5495 emit_move_insn (real_decl_rtl, tmp);
5497 /* If a named return value dumped decl_return to memory, then
5498 we may need to re-do the PROMOTE_MODE signed/unsigned
5499 extension. */
5500 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5502 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5503 promote_function_mode (TREE_TYPE (decl_result),
5504 GET_MODE (decl_rtl), &unsignedp,
5505 TREE_TYPE (current_function_decl), 1);
5507 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5509 else
5510 emit_move_insn (real_decl_rtl, decl_rtl);
5514 /* If returning a structure, arrange to return the address of the value
5515 in a place where debuggers expect to find it.
5517 If returning a structure PCC style,
5518 the caller also depends on this value.
5519 And cfun->returns_pcc_struct is not necessarily set. */
5520 if ((cfun->returns_struct || cfun->returns_pcc_struct)
5521 && !targetm.calls.omit_struct_return_reg)
5523 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5524 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5525 rtx outgoing;
5527 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5528 type = TREE_TYPE (type);
5529 else
5530 value_address = XEXP (value_address, 0);
5532 outgoing = targetm.calls.function_value (build_pointer_type (type),
5533 current_function_decl, true);
5535 /* Mark this as a function return value so integrate will delete the
5536 assignment and USE below when inlining this function. */
5537 REG_FUNCTION_VALUE_P (outgoing) = 1;
5539 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5540 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (outgoing));
5541 value_address = convert_memory_address (mode, value_address);
5543 emit_move_insn (outgoing, value_address);
5545 /* Show return register used to hold result (in this case the address
5546 of the result. */
5547 crtl->return_rtx = outgoing;
5550 /* Emit the actual code to clobber return register. Don't emit
5551 it if clobber_after is a barrier, then the previous basic block
5552 certainly doesn't fall thru into the exit block. */
5553 if (!BARRIER_P (clobber_after))
5555 start_sequence ();
5556 clobber_return_register ();
5557 rtx_insn *seq = get_insns ();
5558 end_sequence ();
5560 emit_insn_after (seq, clobber_after);
5563 /* Output the label for the naked return from the function. */
5564 if (naked_return_label)
5565 emit_label (naked_return_label);
5567 /* @@@ This is a kludge. We want to ensure that instructions that
5568 may trap are not moved into the epilogue by scheduling, because
5569 we don't always emit unwind information for the epilogue. */
5570 if (cfun->can_throw_non_call_exceptions
5571 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5572 emit_insn (gen_blockage ());
5574 /* If stack protection is enabled for this function, check the guard. */
5575 if (crtl->stack_protect_guard
5576 && targetm.stack_protect_runtime_enabled_p ()
5577 && naked_return_label)
5578 stack_protect_epilogue ();
5580 /* If we had calls to alloca, and this machine needs
5581 an accurate stack pointer to exit the function,
5582 insert some code to save and restore the stack pointer. */
5583 if (! EXIT_IGNORE_STACK
5584 && cfun->calls_alloca)
5586 rtx tem = 0;
5588 start_sequence ();
5589 emit_stack_save (SAVE_FUNCTION, &tem);
5590 rtx_insn *seq = get_insns ();
5591 end_sequence ();
5592 emit_insn_before (seq, parm_birth_insn);
5594 emit_stack_restore (SAVE_FUNCTION, tem);
5597 /* ??? This should no longer be necessary since stupid is no longer with
5598 us, but there are some parts of the compiler (eg reload_combine, and
5599 sh mach_dep_reorg) that still try and compute their own lifetime info
5600 instead of using the general framework. */
5601 use_return_register ();
5605 get_arg_pointer_save_area (void)
5607 rtx ret = arg_pointer_save_area;
5609 if (! ret)
5611 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5612 arg_pointer_save_area = ret;
5615 if (! crtl->arg_pointer_save_area_init)
5617 /* Save the arg pointer at the beginning of the function. The
5618 generated stack slot may not be a valid memory address, so we
5619 have to check it and fix it if necessary. */
5620 start_sequence ();
5621 emit_move_insn (validize_mem (copy_rtx (ret)),
5622 crtl->args.internal_arg_pointer);
5623 rtx_insn *seq = get_insns ();
5624 end_sequence ();
5626 push_topmost_sequence ();
5627 emit_insn_after (seq, entry_of_function ());
5628 pop_topmost_sequence ();
5630 crtl->arg_pointer_save_area_init = true;
5633 return ret;
5637 /* If debugging dumps are requested, dump information about how the
5638 target handled -fstack-check=clash for the prologue.
5640 PROBES describes what if any probes were emitted.
5642 RESIDUALS indicates if the prologue had any residual allocation
5643 (i.e. total allocation was not a multiple of PROBE_INTERVAL). */
5645 void
5646 dump_stack_clash_frame_info (enum stack_clash_probes probes, bool residuals)
5648 if (!dump_file)
5649 return;
5651 switch (probes)
5653 case NO_PROBE_NO_FRAME:
5654 fprintf (dump_file,
5655 "Stack clash no probe no stack adjustment in prologue.\n");
5656 break;
5657 case NO_PROBE_SMALL_FRAME:
5658 fprintf (dump_file,
5659 "Stack clash no probe small stack adjustment in prologue.\n");
5660 break;
5661 case PROBE_INLINE:
5662 fprintf (dump_file, "Stack clash inline probes in prologue.\n");
5663 break;
5664 case PROBE_LOOP:
5665 fprintf (dump_file, "Stack clash probe loop in prologue.\n");
5666 break;
5669 if (residuals)
5670 fprintf (dump_file, "Stack clash residual allocation in prologue.\n");
5671 else
5672 fprintf (dump_file, "Stack clash no residual allocation in prologue.\n");
5674 if (frame_pointer_needed)
5675 fprintf (dump_file, "Stack clash frame pointer needed.\n");
5676 else
5677 fprintf (dump_file, "Stack clash no frame pointer needed.\n");
5679 if (TREE_THIS_VOLATILE (cfun->decl))
5680 fprintf (dump_file,
5681 "Stack clash noreturn prologue, assuming no implicit"
5682 " probes in caller.\n");
5683 else
5684 fprintf (dump_file,
5685 "Stack clash not noreturn prologue.\n");
5688 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5689 for the first time. */
5691 static void
5692 record_insns (rtx_insn *insns, rtx end, hash_table<insn_cache_hasher> **hashp)
5694 rtx_insn *tmp;
5695 hash_table<insn_cache_hasher> *hash = *hashp;
5697 if (hash == NULL)
5698 *hashp = hash = hash_table<insn_cache_hasher>::create_ggc (17);
5700 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5702 rtx *slot = hash->find_slot (tmp, INSERT);
5703 gcc_assert (*slot == NULL);
5704 *slot = tmp;
5708 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5709 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5710 insn, then record COPY as well. */
5712 void
5713 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5715 hash_table<insn_cache_hasher> *hash;
5716 rtx *slot;
5718 hash = epilogue_insn_hash;
5719 if (!hash || !hash->find (insn))
5721 hash = prologue_insn_hash;
5722 if (!hash || !hash->find (insn))
5723 return;
5726 slot = hash->find_slot (copy, INSERT);
5727 gcc_assert (*slot == NULL);
5728 *slot = copy;
5731 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5732 we can be running after reorg, SEQUENCE rtl is possible. */
5734 static bool
5735 contains (const rtx_insn *insn, hash_table<insn_cache_hasher> *hash)
5737 if (hash == NULL)
5738 return false;
5740 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5742 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
5743 int i;
5744 for (i = seq->len () - 1; i >= 0; i--)
5745 if (hash->find (seq->element (i)))
5746 return true;
5747 return false;
5750 return hash->find (const_cast<rtx_insn *> (insn)) != NULL;
5754 prologue_contains (const rtx_insn *insn)
5756 return contains (insn, prologue_insn_hash);
5760 epilogue_contains (const rtx_insn *insn)
5762 return contains (insn, epilogue_insn_hash);
5766 prologue_epilogue_contains (const rtx_insn *insn)
5768 if (contains (insn, prologue_insn_hash))
5769 return 1;
5770 if (contains (insn, epilogue_insn_hash))
5771 return 1;
5772 return 0;
5775 void
5776 record_prologue_seq (rtx_insn *seq)
5778 record_insns (seq, NULL, &prologue_insn_hash);
5781 void
5782 record_epilogue_seq (rtx_insn *seq)
5784 record_insns (seq, NULL, &epilogue_insn_hash);
5787 /* Set JUMP_LABEL for a return insn. */
5789 void
5790 set_return_jump_label (rtx_insn *returnjump)
5792 rtx pat = PATTERN (returnjump);
5793 if (GET_CODE (pat) == PARALLEL)
5794 pat = XVECEXP (pat, 0, 0);
5795 if (ANY_RETURN_P (pat))
5796 JUMP_LABEL (returnjump) = pat;
5797 else
5798 JUMP_LABEL (returnjump) = ret_rtx;
5801 /* Return a sequence to be used as the split prologue for the current
5802 function, or NULL. */
5804 static rtx_insn *
5805 make_split_prologue_seq (void)
5807 if (!flag_split_stack
5808 || lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl)))
5809 return NULL;
5811 start_sequence ();
5812 emit_insn (targetm.gen_split_stack_prologue ());
5813 rtx_insn *seq = get_insns ();
5814 end_sequence ();
5816 record_insns (seq, NULL, &prologue_insn_hash);
5817 set_insn_locations (seq, prologue_location);
5819 return seq;
5822 /* Return a sequence to be used as the prologue for the current function,
5823 or NULL. */
5825 static rtx_insn *
5826 make_prologue_seq (void)
5828 if (!targetm.have_prologue ())
5829 return NULL;
5831 start_sequence ();
5832 rtx_insn *seq = targetm.gen_prologue ();
5833 emit_insn (seq);
5835 /* Insert an explicit USE for the frame pointer
5836 if the profiling is on and the frame pointer is required. */
5837 if (crtl->profile && frame_pointer_needed)
5838 emit_use (hard_frame_pointer_rtx);
5840 /* Retain a map of the prologue insns. */
5841 record_insns (seq, NULL, &prologue_insn_hash);
5842 emit_note (NOTE_INSN_PROLOGUE_END);
5844 /* Ensure that instructions are not moved into the prologue when
5845 profiling is on. The call to the profiling routine can be
5846 emitted within the live range of a call-clobbered register. */
5847 if (!targetm.profile_before_prologue () && crtl->profile)
5848 emit_insn (gen_blockage ());
5850 seq = get_insns ();
5851 end_sequence ();
5852 set_insn_locations (seq, prologue_location);
5854 return seq;
5857 /* Emit a sequence of insns to zero the call-used registers before RET
5858 according to ZERO_REGS_TYPE. */
5860 static void
5861 gen_call_used_regs_seq (rtx_insn *ret, unsigned int zero_regs_type)
5863 bool only_gpr = true;
5864 bool only_used = true;
5865 bool only_arg = true;
5867 /* No need to zero call-used-regs in main (). */
5868 if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
5869 return;
5871 /* No need to zero call-used-regs if __builtin_eh_return is called
5872 since it isn't a normal function return. */
5873 if (crtl->calls_eh_return)
5874 return;
5876 /* If only_gpr is true, only zero call-used registers that are
5877 general-purpose registers; if only_used is true, only zero
5878 call-used registers that are used in the current function;
5879 if only_arg is true, only zero call-used registers that pass
5880 parameters defined by the flatform's calling conversion. */
5882 using namespace zero_regs_flags;
5884 only_gpr = zero_regs_type & ONLY_GPR;
5885 only_used = zero_regs_type & ONLY_USED;
5886 only_arg = zero_regs_type & ONLY_ARG;
5888 /* For each of the hard registers, we should zero it if:
5889 1. it is a call-used register;
5890 and 2. it is not a fixed register;
5891 and 3. it is not live at the return of the routine;
5892 and 4. it is general registor if only_gpr is true;
5893 and 5. it is used in the routine if only_used is true;
5894 and 6. it is a register that passes parameter if only_arg is true. */
5896 /* First, prepare the data flow information. */
5897 basic_block bb = BLOCK_FOR_INSN (ret);
5898 auto_bitmap live_out;
5899 bitmap_copy (live_out, df_get_live_out (bb));
5900 df_simulate_initialize_backwards (bb, live_out);
5901 df_simulate_one_insn_backwards (bb, ret, live_out);
5903 HARD_REG_SET selected_hardregs;
5904 HARD_REG_SET all_call_used_regs;
5905 CLEAR_HARD_REG_SET (selected_hardregs);
5906 CLEAR_HARD_REG_SET (all_call_used_regs);
5907 for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5909 if (!crtl->abi->clobbers_full_reg_p (regno))
5910 continue;
5911 if (fixed_regs[regno])
5912 continue;
5913 if (REGNO_REG_SET_P (live_out, regno))
5914 continue;
5915 #ifdef LEAF_REG_REMAP
5916 if (crtl->uses_only_leaf_regs && LEAF_REG_REMAP (regno) < 0)
5917 continue;
5918 #endif
5919 /* This is a call used register that is dead at return. */
5920 SET_HARD_REG_BIT (all_call_used_regs, regno);
5922 if (only_gpr
5923 && !TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], regno))
5924 continue;
5925 if (only_used && !df_regs_ever_live_p (regno))
5926 continue;
5927 if (only_arg && !FUNCTION_ARG_REGNO_P (regno))
5928 continue;
5930 /* Now this is a register that we might want to zero. */
5931 SET_HARD_REG_BIT (selected_hardregs, regno);
5934 if (hard_reg_set_empty_p (selected_hardregs))
5935 return;
5937 /* Now that we have a hard register set that needs to be zeroed, pass it to
5938 target to generate zeroing sequence. */
5939 HARD_REG_SET zeroed_hardregs;
5940 start_sequence ();
5941 zeroed_hardregs = targetm.calls.zero_call_used_regs (selected_hardregs);
5943 /* For most targets, the returned set of registers is a subset of
5944 selected_hardregs, however, for some of the targets (for example MIPS),
5945 clearing some registers that are in selected_hardregs requires clearing
5946 other call used registers that are not in the selected_hardregs, under
5947 such situation, the returned set of registers must be a subset of
5948 all call used registers. */
5949 gcc_assert (hard_reg_set_subset_p (zeroed_hardregs, all_call_used_regs));
5951 rtx_insn *seq = get_insns ();
5952 end_sequence ();
5953 if (seq)
5955 /* Emit the memory blockage and register clobber asm volatile before
5956 the whole sequence. */
5957 start_sequence ();
5958 expand_asm_reg_clobber_mem_blockage (zeroed_hardregs);
5959 rtx_insn *seq_barrier = get_insns ();
5960 end_sequence ();
5962 emit_insn_before (seq_barrier, ret);
5963 emit_insn_before (seq, ret);
5965 /* Update the data flow information. */
5966 crtl->must_be_zero_on_return |= zeroed_hardregs;
5967 df_update_exit_block_uses ();
5972 /* Return a sequence to be used as the epilogue for the current function,
5973 or NULL. */
5975 static rtx_insn *
5976 make_epilogue_seq (void)
5978 if (!targetm.have_epilogue ())
5979 return NULL;
5981 start_sequence ();
5982 emit_note (NOTE_INSN_EPILOGUE_BEG);
5983 rtx_insn *seq = targetm.gen_epilogue ();
5984 if (seq)
5985 emit_jump_insn (seq);
5987 /* Retain a map of the epilogue insns. */
5988 record_insns (seq, NULL, &epilogue_insn_hash);
5989 set_insn_locations (seq, epilogue_location);
5991 seq = get_insns ();
5992 rtx_insn *returnjump = get_last_insn ();
5993 end_sequence ();
5995 if (JUMP_P (returnjump))
5996 set_return_jump_label (returnjump);
5998 return seq;
6002 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
6003 this into place with notes indicating where the prologue ends and where
6004 the epilogue begins. Update the basic block information when possible.
6006 Notes on epilogue placement:
6007 There are several kinds of edges to the exit block:
6008 * a single fallthru edge from LAST_BB
6009 * possibly, edges from blocks containing sibcalls
6010 * possibly, fake edges from infinite loops
6012 The epilogue is always emitted on the fallthru edge from the last basic
6013 block in the function, LAST_BB, into the exit block.
6015 If LAST_BB is empty except for a label, it is the target of every
6016 other basic block in the function that ends in a return. If a
6017 target has a return or simple_return pattern (possibly with
6018 conditional variants), these basic blocks can be changed so that a
6019 return insn is emitted into them, and their target is adjusted to
6020 the real exit block.
6022 Notes on shrink wrapping: We implement a fairly conservative
6023 version of shrink-wrapping rather than the textbook one. We only
6024 generate a single prologue and a single epilogue. This is
6025 sufficient to catch a number of interesting cases involving early
6026 exits.
6028 First, we identify the blocks that require the prologue to occur before
6029 them. These are the ones that modify a call-saved register, or reference
6030 any of the stack or frame pointer registers. To simplify things, we then
6031 mark everything reachable from these blocks as also requiring a prologue.
6032 This takes care of loops automatically, and avoids the need to examine
6033 whether MEMs reference the frame, since it is sufficient to check for
6034 occurrences of the stack or frame pointer.
6036 We then compute the set of blocks for which the need for a prologue
6037 is anticipatable (borrowing terminology from the shrink-wrapping
6038 description in Muchnick's book). These are the blocks which either
6039 require a prologue themselves, or those that have only successors
6040 where the prologue is anticipatable. The prologue needs to be
6041 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
6042 is not. For the moment, we ensure that only one such edge exists.
6044 The epilogue is placed as described above, but we make a
6045 distinction between inserting return and simple_return patterns
6046 when modifying other blocks that end in a return. Blocks that end
6047 in a sibcall omit the sibcall_epilogue if the block is not in
6048 ANTIC. */
6050 void
6051 thread_prologue_and_epilogue_insns (void)
6053 df_analyze ();
6055 /* Can't deal with multiple successors of the entry block at the
6056 moment. Function should always have at least one entry
6057 point. */
6058 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
6060 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
6061 edge orig_entry_edge = entry_edge;
6063 rtx_insn *split_prologue_seq = make_split_prologue_seq ();
6064 rtx_insn *prologue_seq = make_prologue_seq ();
6065 rtx_insn *epilogue_seq = make_epilogue_seq ();
6067 /* Try to perform a kind of shrink-wrapping, making sure the
6068 prologue/epilogue is emitted only around those parts of the
6069 function that require it. */
6070 try_shrink_wrapping (&entry_edge, prologue_seq);
6072 /* If the target can handle splitting the prologue/epilogue into separate
6073 components, try to shrink-wrap these components separately. */
6074 try_shrink_wrapping_separate (entry_edge->dest);
6076 /* If that did anything for any component we now need the generate the
6077 "main" prologue again. Because some targets require some of these
6078 to be called in a specific order (i386 requires the split prologue
6079 to be first, for example), we create all three sequences again here.
6080 If this does not work for some target, that target should not enable
6081 separate shrink-wrapping. */
6082 if (crtl->shrink_wrapped_separate)
6084 split_prologue_seq = make_split_prologue_seq ();
6085 prologue_seq = make_prologue_seq ();
6086 epilogue_seq = make_epilogue_seq ();
6089 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
6091 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6092 this marker for the splits of EH_RETURN patterns, and nothing else
6093 uses the flag in the meantime. */
6094 epilogue_completed = 1;
6096 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6097 some targets, these get split to a special version of the epilogue
6098 code. In order to be able to properly annotate these with unwind
6099 info, try to split them now. If we get a valid split, drop an
6100 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6101 edge e;
6102 edge_iterator ei;
6103 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6105 rtx_insn *prev, *last, *trial;
6107 if (e->flags & EDGE_FALLTHRU)
6108 continue;
6109 last = BB_END (e->src);
6110 if (!eh_returnjump_p (last))
6111 continue;
6113 prev = PREV_INSN (last);
6114 trial = try_split (PATTERN (last), last, 1);
6115 if (trial == last)
6116 continue;
6118 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6119 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6122 edge exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6124 if (exit_fallthru_edge)
6126 if (epilogue_seq)
6128 insert_insn_on_edge (epilogue_seq, exit_fallthru_edge);
6129 commit_edge_insertions ();
6131 /* The epilogue insns we inserted may cause the exit edge to no longer
6132 be fallthru. */
6133 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6135 if (((e->flags & EDGE_FALLTHRU) != 0)
6136 && returnjump_p (BB_END (e->src)))
6137 e->flags &= ~EDGE_FALLTHRU;
6140 else if (next_active_insn (BB_END (exit_fallthru_edge->src)))
6142 /* We have a fall-through edge to the exit block, the source is not
6143 at the end of the function, and there will be an assembler epilogue
6144 at the end of the function.
6145 We can't use force_nonfallthru here, because that would try to
6146 use return. Inserting a jump 'by hand' is extremely messy, so
6147 we take advantage of cfg_layout_finalize using
6148 fixup_fallthru_exit_predecessor. */
6149 cfg_layout_initialize (0);
6150 basic_block cur_bb;
6151 FOR_EACH_BB_FN (cur_bb, cfun)
6152 if (cur_bb->index >= NUM_FIXED_BLOCKS
6153 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6154 cur_bb->aux = cur_bb->next_bb;
6155 cfg_layout_finalize ();
6159 /* Insert the prologue. */
6161 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
6163 if (split_prologue_seq || prologue_seq)
6165 rtx_insn *split_prologue_insn = split_prologue_seq;
6166 if (split_prologue_seq)
6168 while (split_prologue_insn && !NONDEBUG_INSN_P (split_prologue_insn))
6169 split_prologue_insn = NEXT_INSN (split_prologue_insn);
6170 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6173 rtx_insn *prologue_insn = prologue_seq;
6174 if (prologue_seq)
6176 while (prologue_insn && !NONDEBUG_INSN_P (prologue_insn))
6177 prologue_insn = NEXT_INSN (prologue_insn);
6178 insert_insn_on_edge (prologue_seq, entry_edge);
6181 commit_edge_insertions ();
6183 /* Look for basic blocks within the prologue insns. */
6184 if (split_prologue_insn
6185 && BLOCK_FOR_INSN (split_prologue_insn) == NULL)
6186 split_prologue_insn = NULL;
6187 if (prologue_insn
6188 && BLOCK_FOR_INSN (prologue_insn) == NULL)
6189 prologue_insn = NULL;
6190 if (split_prologue_insn || prologue_insn)
6192 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
6193 bitmap_clear (blocks);
6194 if (split_prologue_insn)
6195 bitmap_set_bit (blocks,
6196 BLOCK_FOR_INSN (split_prologue_insn)->index);
6197 if (prologue_insn)
6198 bitmap_set_bit (blocks, BLOCK_FOR_INSN (prologue_insn)->index);
6199 find_many_sub_basic_blocks (blocks);
6203 default_rtl_profile ();
6205 /* Emit sibling epilogues before any sibling call sites. */
6206 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6207 (e = ei_safe_edge (ei));
6208 ei_next (&ei))
6210 /* Skip those already handled, the ones that run without prologue. */
6211 if (e->flags & EDGE_IGNORE)
6213 e->flags &= ~EDGE_IGNORE;
6214 continue;
6217 rtx_insn *insn = BB_END (e->src);
6219 if (!(CALL_P (insn) && SIBLING_CALL_P (insn)))
6220 continue;
6222 if (rtx_insn *ep_seq = targetm.gen_sibcall_epilogue ())
6224 start_sequence ();
6225 emit_note (NOTE_INSN_EPILOGUE_BEG);
6226 emit_insn (ep_seq);
6227 rtx_insn *seq = get_insns ();
6228 end_sequence ();
6230 /* Retain a map of the epilogue insns. Used in life analysis to
6231 avoid getting rid of sibcall epilogue insns. Do this before we
6232 actually emit the sequence. */
6233 record_insns (seq, NULL, &epilogue_insn_hash);
6234 set_insn_locations (seq, epilogue_location);
6236 emit_insn_before (seq, insn);
6240 if (epilogue_seq)
6242 rtx_insn *insn, *next;
6244 /* Similarly, move any line notes that appear after the epilogue.
6245 There is no need, however, to be quite so anal about the existence
6246 of such a note. Also possibly move
6247 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6248 info generation. */
6249 for (insn = epilogue_seq; insn; insn = next)
6251 next = NEXT_INSN (insn);
6252 if (NOTE_P (insn)
6253 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6254 reorder_insns (insn, insn, PREV_INSN (epilogue_seq));
6258 /* Threading the prologue and epilogue changes the artificial refs in the
6259 entry and exit blocks, and may invalidate DF info for tail calls. */
6260 if (optimize)
6261 df_update_entry_exit_and_calls ();
6262 else
6264 df_update_entry_block_defs ();
6265 df_update_exit_block_uses ();
6269 /* Reposition the prologue-end and epilogue-begin notes after
6270 instruction scheduling. */
6272 void
6273 reposition_prologue_and_epilogue_notes (void)
6275 if (!targetm.have_prologue ()
6276 && !targetm.have_epilogue ()
6277 && !targetm.have_sibcall_epilogue ())
6278 return;
6280 /* Since the hash table is created on demand, the fact that it is
6281 non-null is a signal that it is non-empty. */
6282 if (prologue_insn_hash != NULL)
6284 size_t len = prologue_insn_hash->elements ();
6285 rtx_insn *insn, *last = NULL, *note = NULL;
6287 /* Scan from the beginning until we reach the last prologue insn. */
6288 /* ??? While we do have the CFG intact, there are two problems:
6289 (1) The prologue can contain loops (typically probing the stack),
6290 which means that the end of the prologue isn't in the first bb.
6291 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6292 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6294 if (NOTE_P (insn))
6296 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6297 note = insn;
6299 else if (contains (insn, prologue_insn_hash))
6301 last = insn;
6302 if (--len == 0)
6303 break;
6307 if (last)
6309 if (note == NULL)
6311 /* Scan forward looking for the PROLOGUE_END note. It should
6312 be right at the beginning of the block, possibly with other
6313 insn notes that got moved there. */
6314 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6316 if (NOTE_P (note)
6317 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6318 break;
6322 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6323 if (LABEL_P (last))
6324 last = NEXT_INSN (last);
6325 reorder_insns (note, note, last);
6329 if (epilogue_insn_hash != NULL)
6331 edge_iterator ei;
6332 edge e;
6334 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6336 rtx_insn *insn, *first = NULL, *note = NULL;
6337 basic_block bb = e->src;
6339 /* Scan from the beginning until we reach the first epilogue insn. */
6340 FOR_BB_INSNS (bb, insn)
6342 if (NOTE_P (insn))
6344 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6346 note = insn;
6347 if (first != NULL)
6348 break;
6351 else if (first == NULL && contains (insn, epilogue_insn_hash))
6353 first = insn;
6354 if (note != NULL)
6355 break;
6359 if (note)
6361 /* If the function has a single basic block, and no real
6362 epilogue insns (e.g. sibcall with no cleanup), the
6363 epilogue note can get scheduled before the prologue
6364 note. If we have frame related prologue insns, having
6365 them scanned during the epilogue will result in a crash.
6366 In this case re-order the epilogue note to just before
6367 the last insn in the block. */
6368 if (first == NULL)
6369 first = BB_END (bb);
6371 if (PREV_INSN (first) != note)
6372 reorder_insns (note, note, PREV_INSN (first));
6378 /* Returns the name of function declared by FNDECL. */
6379 const char *
6380 fndecl_name (tree fndecl)
6382 if (fndecl == NULL)
6383 return "(nofn)";
6384 return lang_hooks.decl_printable_name (fndecl, 1);
6387 /* Returns the name of function FN. */
6388 const char *
6389 function_name (struct function *fn)
6391 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6392 return fndecl_name (fndecl);
6395 /* Returns the name of the current function. */
6396 const char *
6397 current_function_name (void)
6399 return function_name (cfun);
6403 static unsigned int
6404 rest_of_handle_check_leaf_regs (void)
6406 #ifdef LEAF_REGISTERS
6407 crtl->uses_only_leaf_regs
6408 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6409 #endif
6410 return 0;
6413 /* Insert a TYPE into the used types hash table of CFUN. */
6415 static void
6416 used_types_insert_helper (tree type, struct function *func)
6418 if (type != NULL && func != NULL)
6420 if (func->used_types_hash == NULL)
6421 func->used_types_hash = hash_set<tree>::create_ggc (37);
6423 func->used_types_hash->add (type);
6427 /* Given a type, insert it into the used hash table in cfun. */
6428 void
6429 used_types_insert (tree t)
6431 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6432 if (TYPE_NAME (t))
6433 break;
6434 else
6435 t = TREE_TYPE (t);
6436 if (TREE_CODE (t) == ERROR_MARK)
6437 return;
6438 if (TYPE_NAME (t) == NULL_TREE
6439 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6440 t = TYPE_MAIN_VARIANT (t);
6441 if (debug_info_level > DINFO_LEVEL_NONE)
6443 if (cfun)
6444 used_types_insert_helper (t, cfun);
6445 else
6447 /* So this might be a type referenced by a global variable.
6448 Record that type so that we can later decide to emit its
6449 debug information. */
6450 vec_safe_push (types_used_by_cur_var_decl, t);
6455 /* Helper to Hash a struct types_used_by_vars_entry. */
6457 static hashval_t
6458 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6460 gcc_assert (entry && entry->var_decl && entry->type);
6462 return iterative_hash_object (entry->type,
6463 iterative_hash_object (entry->var_decl, 0));
6466 /* Hash function of the types_used_by_vars_entry hash table. */
6468 hashval_t
6469 used_type_hasher::hash (types_used_by_vars_entry *entry)
6471 return hash_types_used_by_vars_entry (entry);
6474 /*Equality function of the types_used_by_vars_entry hash table. */
6476 bool
6477 used_type_hasher::equal (types_used_by_vars_entry *e1,
6478 types_used_by_vars_entry *e2)
6480 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6483 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6485 void
6486 types_used_by_var_decl_insert (tree type, tree var_decl)
6488 if (type != NULL && var_decl != NULL)
6490 types_used_by_vars_entry **slot;
6491 struct types_used_by_vars_entry e;
6492 e.var_decl = var_decl;
6493 e.type = type;
6494 if (types_used_by_vars_hash == NULL)
6495 types_used_by_vars_hash
6496 = hash_table<used_type_hasher>::create_ggc (37);
6498 slot = types_used_by_vars_hash->find_slot (&e, INSERT);
6499 if (*slot == NULL)
6501 struct types_used_by_vars_entry *entry;
6502 entry = ggc_alloc<types_used_by_vars_entry> ();
6503 entry->type = type;
6504 entry->var_decl = var_decl;
6505 *slot = entry;
6510 namespace {
6512 const pass_data pass_data_leaf_regs =
6514 RTL_PASS, /* type */
6515 "*leaf_regs", /* name */
6516 OPTGROUP_NONE, /* optinfo_flags */
6517 TV_NONE, /* tv_id */
6518 0, /* properties_required */
6519 0, /* properties_provided */
6520 0, /* properties_destroyed */
6521 0, /* todo_flags_start */
6522 0, /* todo_flags_finish */
6525 class pass_leaf_regs : public rtl_opt_pass
6527 public:
6528 pass_leaf_regs (gcc::context *ctxt)
6529 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6532 /* opt_pass methods: */
6533 unsigned int execute (function *) final override
6535 return rest_of_handle_check_leaf_regs ();
6538 }; // class pass_leaf_regs
6540 } // anon namespace
6542 rtl_opt_pass *
6543 make_pass_leaf_regs (gcc::context *ctxt)
6545 return new pass_leaf_regs (ctxt);
6548 static unsigned int
6549 rest_of_handle_thread_prologue_and_epilogue (void)
6551 /* prepare_shrink_wrap is sensitive to the block structure of the control
6552 flow graph, so clean it up first. */
6553 if (optimize)
6554 cleanup_cfg (0);
6556 /* On some machines, the prologue and epilogue code, or parts thereof,
6557 can be represented as RTL. Doing so lets us schedule insns between
6558 it and the rest of the code and also allows delayed branch
6559 scheduling to operate in the epilogue. */
6560 thread_prologue_and_epilogue_insns ();
6562 /* Some non-cold blocks may now be only reachable from cold blocks.
6563 Fix that up. */
6564 fixup_partitions ();
6566 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6567 see PR57320. */
6568 cleanup_cfg (optimize ? CLEANUP_EXPENSIVE : 0);
6570 /* The stack usage info is finalized during prologue expansion. */
6571 if (flag_stack_usage_info || flag_callgraph_info)
6572 output_stack_usage ();
6574 return 0;
6577 /* Record a final call to CALLEE at LOCATION. */
6579 void
6580 record_final_call (tree callee, location_t location)
6582 struct callinfo_callee datum = { location, callee };
6583 vec_safe_push (cfun->su->callees, datum);
6586 /* Record a dynamic allocation made for DECL_OR_EXP. */
6588 void
6589 record_dynamic_alloc (tree decl_or_exp)
6591 struct callinfo_dalloc datum;
6593 if (DECL_P (decl_or_exp))
6595 datum.location = DECL_SOURCE_LOCATION (decl_or_exp);
6596 const char *name = lang_hooks.decl_printable_name (decl_or_exp, 2);
6597 const char *dot = strrchr (name, '.');
6598 if (dot)
6599 name = dot + 1;
6600 datum.name = ggc_strdup (name);
6602 else
6604 datum.location = EXPR_LOCATION (decl_or_exp);
6605 datum.name = NULL;
6608 vec_safe_push (cfun->su->dallocs, datum);
6611 namespace {
6613 const pass_data pass_data_thread_prologue_and_epilogue =
6615 RTL_PASS, /* type */
6616 "pro_and_epilogue", /* name */
6617 OPTGROUP_NONE, /* optinfo_flags */
6618 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6619 0, /* properties_required */
6620 0, /* properties_provided */
6621 0, /* properties_destroyed */
6622 0, /* todo_flags_start */
6623 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6626 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6628 public:
6629 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6630 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6633 /* opt_pass methods: */
6634 unsigned int execute (function *) final override
6636 return rest_of_handle_thread_prologue_and_epilogue ();
6639 }; // class pass_thread_prologue_and_epilogue
6641 } // anon namespace
6643 rtl_opt_pass *
6644 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6646 return new pass_thread_prologue_and_epilogue (ctxt);
6649 namespace {
6651 const pass_data pass_data_zero_call_used_regs =
6653 RTL_PASS, /* type */
6654 "zero_call_used_regs", /* name */
6655 OPTGROUP_NONE, /* optinfo_flags */
6656 TV_NONE, /* tv_id */
6657 0, /* properties_required */
6658 0, /* properties_provided */
6659 0, /* properties_destroyed */
6660 0, /* todo_flags_start */
6661 0, /* todo_flags_finish */
6664 class pass_zero_call_used_regs: public rtl_opt_pass
6666 public:
6667 pass_zero_call_used_regs (gcc::context *ctxt)
6668 : rtl_opt_pass (pass_data_zero_call_used_regs, ctxt)
6671 /* opt_pass methods: */
6672 unsigned int execute (function *) final override;
6674 }; // class pass_zero_call_used_regs
6676 unsigned int
6677 pass_zero_call_used_regs::execute (function *fun)
6679 using namespace zero_regs_flags;
6680 unsigned int zero_regs_type = UNSET;
6682 tree attr_zero_regs = lookup_attribute ("zero_call_used_regs",
6683 DECL_ATTRIBUTES (fun->decl));
6685 /* Get the type of zero_call_used_regs from function attribute.
6686 We have filtered out invalid attribute values already at this point. */
6687 if (attr_zero_regs)
6689 /* The TREE_VALUE of an attribute is a TREE_LIST whose TREE_VALUE
6690 is the attribute argument's value. */
6691 attr_zero_regs = TREE_VALUE (attr_zero_regs);
6692 gcc_assert (TREE_CODE (attr_zero_regs) == TREE_LIST);
6693 attr_zero_regs = TREE_VALUE (attr_zero_regs);
6694 gcc_assert (TREE_CODE (attr_zero_regs) == STRING_CST);
6696 for (unsigned int i = 0; zero_call_used_regs_opts[i].name != NULL; ++i)
6697 if (strcmp (TREE_STRING_POINTER (attr_zero_regs),
6698 zero_call_used_regs_opts[i].name) == 0)
6700 zero_regs_type = zero_call_used_regs_opts[i].flag;
6701 break;
6705 if (!zero_regs_type)
6706 zero_regs_type = flag_zero_call_used_regs;
6708 /* No need to zero call-used-regs when no user request is present. */
6709 if (!(zero_regs_type & ENABLED))
6710 return 0;
6712 edge_iterator ei;
6713 edge e;
6715 /* This pass needs data flow information. */
6716 df_analyze ();
6718 /* Iterate over the function's return instructions and insert any
6719 register zeroing required by the -fzero-call-used-regs command-line
6720 option or the "zero_call_used_regs" function attribute. */
6721 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6723 rtx_insn *insn = BB_END (e->src);
6724 if (JUMP_P (insn) && ANY_RETURN_P (JUMP_LABEL (insn)))
6725 gen_call_used_regs_seq (insn, zero_regs_type);
6728 return 0;
6731 } // anon namespace
6733 rtl_opt_pass *
6734 make_pass_zero_call_used_regs (gcc::context *ctxt)
6736 return new pass_zero_call_used_regs (ctxt);
6739 /* If CONSTRAINT is a matching constraint, then return its number.
6740 Otherwise, return -1. */
6742 static int
6743 matching_constraint_num (const char *constraint)
6745 if (*constraint == '%')
6746 constraint++;
6748 if (IN_RANGE (*constraint, '0', '9'))
6749 return strtoul (constraint, NULL, 10);
6751 return -1;
6754 /* This mini-pass fixes fall-out from SSA in asm statements that have
6755 in-out constraints. Say you start with
6757 orig = inout;
6758 asm ("": "+mr" (inout));
6759 use (orig);
6761 which is transformed very early to use explicit output and match operands:
6763 orig = inout;
6764 asm ("": "=mr" (inout) : "0" (inout));
6765 use (orig);
6767 Or, after SSA and copyprop,
6769 asm ("": "=mr" (inout_2) : "0" (inout_1));
6770 use (inout_1);
6772 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6773 they represent two separate values, so they will get different pseudo
6774 registers during expansion. Then, since the two operands need to match
6775 per the constraints, but use different pseudo registers, reload can
6776 only register a reload for these operands. But reloads can only be
6777 satisfied by hardregs, not by memory, so we need a register for this
6778 reload, just because we are presented with non-matching operands.
6779 So, even though we allow memory for this operand, no memory can be
6780 used for it, just because the two operands don't match. This can
6781 cause reload failures on register-starved targets.
6783 So it's a symptom of reload not being able to use memory for reloads
6784 or, alternatively it's also a symptom of both operands not coming into
6785 reload as matching (in which case the pseudo could go to memory just
6786 fine, as the alternative allows it, and no reload would be necessary).
6787 We fix the latter problem here, by transforming
6789 asm ("": "=mr" (inout_2) : "0" (inout_1));
6791 back to
6793 inout_2 = inout_1;
6794 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6796 static void
6797 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6799 int i;
6800 bool changed = false;
6801 rtx op = SET_SRC (p_sets[0]);
6802 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6803 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6804 bool *output_matched = XALLOCAVEC (bool, noutputs);
6806 memset (output_matched, 0, noutputs * sizeof (bool));
6807 for (i = 0; i < ninputs; i++)
6809 rtx input, output;
6810 rtx_insn *insns;
6811 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6812 int match, j;
6814 match = matching_constraint_num (constraint);
6815 if (match < 0)
6816 continue;
6818 gcc_assert (match < noutputs);
6819 output = SET_DEST (p_sets[match]);
6820 input = RTVEC_ELT (inputs, i);
6821 /* Only do the transformation for pseudos. */
6822 if (! REG_P (output)
6823 || rtx_equal_p (output, input)
6824 || !(REG_P (input) || SUBREG_P (input)
6825 || MEM_P (input) || CONSTANT_P (input))
6826 || !general_operand (input, GET_MODE (output)))
6827 continue;
6829 /* We can't do anything if the output is also used as input,
6830 as we're going to overwrite it. */
6831 for (j = 0; j < ninputs; j++)
6832 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6833 break;
6834 if (j != ninputs)
6835 continue;
6837 /* Avoid changing the same input several times. For
6838 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6839 only change it once (to out1), rather than changing it
6840 first to out1 and afterwards to out2. */
6841 if (i > 0)
6843 for (j = 0; j < noutputs; j++)
6844 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6845 break;
6846 if (j != noutputs)
6847 continue;
6849 output_matched[match] = true;
6851 start_sequence ();
6852 emit_move_insn (output, copy_rtx (input));
6853 insns = get_insns ();
6854 end_sequence ();
6855 emit_insn_before (insns, insn);
6857 constraint = ASM_OPERANDS_OUTPUT_CONSTRAINT(SET_SRC(p_sets[match]));
6858 bool early_clobber_p = strchr (constraint, '&') != NULL;
6860 /* Now replace all mentions of the input with output. We can't
6861 just replace the occurrence in inputs[i], as the register might
6862 also be used in some other input (or even in an address of an
6863 output), which would mean possibly increasing the number of
6864 inputs by one (namely 'output' in addition), which might pose
6865 a too complicated problem for reload to solve. E.g. this situation:
6867 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6869 Here 'input' is used in two occurrences as input (once for the
6870 input operand, once for the address in the second output operand).
6871 If we would replace only the occurrence of the input operand (to
6872 make the matching) we would be left with this:
6874 output = input
6875 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6877 Now we suddenly have two different input values (containing the same
6878 value, but different pseudos) where we formerly had only one.
6879 With more complicated asms this might lead to reload failures
6880 which wouldn't have happen without this pass. So, iterate over
6881 all operands and replace all occurrences of the register used.
6883 However, if one or more of the 'input' uses have a non-matching
6884 constraint and the matched output operand is an early clobber
6885 operand, then do not replace the input operand, since by definition
6886 it conflicts with the output operand and cannot share the same
6887 register. See PR89313 for details. */
6889 for (j = 0; j < noutputs; j++)
6890 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6891 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6892 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6893 input, output);
6894 for (j = 0; j < ninputs; j++)
6895 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6897 if (!early_clobber_p
6898 || match == matching_constraint_num
6899 (ASM_OPERANDS_INPUT_CONSTRAINT (op, j)))
6900 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6901 input, output);
6904 changed = true;
6907 if (changed)
6908 df_insn_rescan (insn);
6911 /* Add the decl D to the local_decls list of FUN. */
6913 void
6914 add_local_decl (struct function *fun, tree d)
6916 gcc_assert (VAR_P (d));
6917 vec_safe_push (fun->local_decls, d);
6920 namespace {
6922 const pass_data pass_data_match_asm_constraints =
6924 RTL_PASS, /* type */
6925 "asmcons", /* name */
6926 OPTGROUP_NONE, /* optinfo_flags */
6927 TV_NONE, /* tv_id */
6928 0, /* properties_required */
6929 0, /* properties_provided */
6930 0, /* properties_destroyed */
6931 0, /* todo_flags_start */
6932 0, /* todo_flags_finish */
6935 class pass_match_asm_constraints : public rtl_opt_pass
6937 public:
6938 pass_match_asm_constraints (gcc::context *ctxt)
6939 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6942 /* opt_pass methods: */
6943 unsigned int execute (function *) final override;
6945 }; // class pass_match_asm_constraints
6947 unsigned
6948 pass_match_asm_constraints::execute (function *fun)
6950 basic_block bb;
6951 rtx_insn *insn;
6952 rtx pat, *p_sets;
6953 int noutputs;
6955 if (!crtl->has_asm_statement)
6956 return 0;
6958 df_set_flags (DF_DEFER_INSN_RESCAN);
6959 FOR_EACH_BB_FN (bb, fun)
6961 FOR_BB_INSNS (bb, insn)
6963 if (!INSN_P (insn))
6964 continue;
6966 pat = PATTERN (insn);
6967 if (GET_CODE (pat) == PARALLEL)
6968 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6969 else if (GET_CODE (pat) == SET)
6970 p_sets = &PATTERN (insn), noutputs = 1;
6971 else
6972 continue;
6974 if (GET_CODE (*p_sets) == SET
6975 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6976 match_asm_constraints_1 (insn, p_sets, noutputs);
6980 return TODO_df_finish;
6983 } // anon namespace
6985 rtl_opt_pass *
6986 make_pass_match_asm_constraints (gcc::context *ctxt)
6988 return new pass_match_asm_constraints (ctxt);
6992 #include "gt-function.h"