c++: Tweaks for -Wredundant-move [PR107363]
[official-gcc.git] / gcc / cfgloop.cc
blob57bf7b1855d4dd20fb3f42388124932d0ca2b48a
1 /* Natural loop discovery code for GNU compiler.
2 Copyright (C) 2000-2022 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "gimple-ssa.h"
29 #include "diagnostic-core.h"
30 #include "cfganal.h"
31 #include "cfgloop.h"
32 #include "gimple-iterator.h"
33 #include "dumpfile.h"
34 #include "tree-ssa.h"
35 #include "tree-pretty-print.h"
37 static void flow_loops_cfg_dump (FILE *);
39 /* Dump loop related CFG information. */
41 static void
42 flow_loops_cfg_dump (FILE *file)
44 basic_block bb;
46 if (!file)
47 return;
49 FOR_EACH_BB_FN (bb, cfun)
51 edge succ;
52 edge_iterator ei;
54 fprintf (file, ";; %d succs { ", bb->index);
55 FOR_EACH_EDGE (succ, ei, bb->succs)
56 fprintf (file, "%d ", succ->dest->index);
57 fprintf (file, "}\n");
61 /* Return nonzero if the nodes of LOOP are a subset of OUTER. */
63 bool
64 flow_loop_nested_p (const class loop *outer, const class loop *loop)
66 unsigned odepth = loop_depth (outer);
68 return (loop_depth (loop) > odepth
69 && (*loop->superloops)[odepth] == outer);
72 /* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
73 loops within LOOP. */
75 class loop *
76 superloop_at_depth (class loop *loop, unsigned depth)
78 unsigned ldepth = loop_depth (loop);
80 gcc_assert (depth <= ldepth);
82 if (depth == ldepth)
83 return loop;
85 return (*loop->superloops)[depth];
88 /* Returns the list of the latch edges of LOOP. */
90 static vec<edge>
91 get_loop_latch_edges (const class loop *loop)
93 edge_iterator ei;
94 edge e;
95 vec<edge> ret = vNULL;
97 FOR_EACH_EDGE (e, ei, loop->header->preds)
99 if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
100 ret.safe_push (e);
103 return ret;
106 /* Dump the loop information specified by LOOP to the stream FILE
107 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
109 void
110 flow_loop_dump (const class loop *loop, FILE *file,
111 void (*loop_dump_aux) (const class loop *, FILE *, int),
112 int verbose)
114 basic_block *bbs;
115 unsigned i;
116 vec<edge> latches;
117 edge e;
119 if (! loop || ! loop->header)
120 return;
122 fprintf (file, ";;\n;; Loop %d\n", loop->num);
124 fprintf (file, ";; header %d, ", loop->header->index);
125 if (loop->latch)
126 fprintf (file, "latch %d\n", loop->latch->index);
127 else
129 fprintf (file, "multiple latches:");
130 latches = get_loop_latch_edges (loop);
131 FOR_EACH_VEC_ELT (latches, i, e)
132 fprintf (file, " %d", e->src->index);
133 latches.release ();
134 fprintf (file, "\n");
137 fprintf (file, ";; depth %d, outer %ld\n",
138 loop_depth (loop), (long) (loop_outer (loop)
139 ? loop_outer (loop)->num : -1));
141 if (loop->latch)
143 bool read_profile_p;
144 gcov_type nit = expected_loop_iterations_unbounded (loop, &read_profile_p);
145 if (read_profile_p && !loop->any_estimate)
146 fprintf (file, ";; profile-based iteration count: %" PRIu64 "\n",
147 (uint64_t) nit);
150 fprintf (file, ";; nodes:");
151 bbs = get_loop_body (loop);
152 for (i = 0; i < loop->num_nodes; i++)
153 fprintf (file, " %d", bbs[i]->index);
154 free (bbs);
155 fprintf (file, "\n");
157 if (loop_dump_aux)
158 loop_dump_aux (loop, file, verbose);
161 /* Dump the loop information about loops to the stream FILE,
162 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
164 void
165 flow_loops_dump (FILE *file, void (*loop_dump_aux) (const class loop *, FILE *, int), int verbose)
167 if (!current_loops || ! file)
168 return;
170 fprintf (file, ";; %d loops found\n", number_of_loops (cfun));
172 for (auto loop : loops_list (cfun, LI_INCLUDE_ROOT))
174 flow_loop_dump (loop, file, loop_dump_aux, verbose);
177 if (verbose)
178 flow_loops_cfg_dump (file);
181 /* Free data allocated for LOOP. */
183 void
184 flow_loop_free (class loop *loop)
186 struct loop_exit *exit, *next;
188 vec_free (loop->superloops);
190 /* Break the list of the loop exit records. They will be freed when the
191 corresponding edge is rescanned or removed, and this avoids
192 accessing the (already released) head of the list stored in the
193 loop structure. */
194 for (exit = loop->exits->next; exit != loop->exits; exit = next)
196 next = exit->next;
197 exit->next = exit;
198 exit->prev = exit;
201 ggc_free (loop->exits);
202 ggc_free (loop);
205 /* Free all the memory allocated for LOOPS. */
207 void
208 flow_loops_free (struct loops *loops)
210 if (loops->larray)
212 unsigned i;
213 loop_p loop;
215 /* Free the loop descriptors. */
216 FOR_EACH_VEC_SAFE_ELT (loops->larray, i, loop)
218 if (!loop)
219 continue;
221 flow_loop_free (loop);
224 vec_free (loops->larray);
228 /* Find the nodes contained within the LOOP with header HEADER.
229 Return the number of nodes within the loop. */
232 flow_loop_nodes_find (basic_block header, class loop *loop)
234 vec<basic_block> stack = vNULL;
235 int num_nodes = 1;
236 edge latch;
237 edge_iterator latch_ei;
239 header->loop_father = loop;
241 FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)
243 if (latch->src->loop_father == loop
244 || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
245 continue;
247 num_nodes++;
248 stack.safe_push (latch->src);
249 latch->src->loop_father = loop;
251 while (!stack.is_empty ())
253 basic_block node;
254 edge e;
255 edge_iterator ei;
257 node = stack.pop ();
259 FOR_EACH_EDGE (e, ei, node->preds)
261 basic_block ancestor = e->src;
263 if (ancestor->loop_father != loop)
265 ancestor->loop_father = loop;
266 num_nodes++;
267 stack.safe_push (ancestor);
272 stack.release ();
274 return num_nodes;
277 /* Records the vector of superloops of the loop LOOP, whose immediate
278 superloop is FATHER. */
280 static void
281 establish_preds (class loop *loop, class loop *father)
283 loop_p ploop;
284 unsigned depth = loop_depth (father) + 1;
285 unsigned i;
287 loop->superloops = 0;
288 vec_alloc (loop->superloops, depth);
289 FOR_EACH_VEC_SAFE_ELT (father->superloops, i, ploop)
290 loop->superloops->quick_push (ploop);
291 loop->superloops->quick_push (father);
293 for (ploop = loop->inner; ploop; ploop = ploop->next)
294 establish_preds (ploop, loop);
297 /* Add LOOP to the loop hierarchy tree where FATHER is father of the
298 added loop. If LOOP has some children, take care of that their
299 pred field will be initialized correctly. If AFTER is non-null
300 then it's expected it's a pointer into FATHERs inner sibling
301 list and LOOP is added behind AFTER, otherwise it's added in front
302 of FATHERs siblings. */
304 void
305 flow_loop_tree_node_add (class loop *father, class loop *loop,
306 class loop *after)
308 if (after)
310 loop->next = after->next;
311 after->next = loop;
313 else
315 loop->next = father->inner;
316 father->inner = loop;
319 establish_preds (loop, father);
322 /* Remove LOOP from the loop hierarchy tree. */
324 void
325 flow_loop_tree_node_remove (class loop *loop)
327 class loop *prev, *father;
329 father = loop_outer (loop);
331 /* Remove loop from the list of sons. */
332 if (father->inner == loop)
333 father->inner = loop->next;
334 else
336 for (prev = father->inner; prev->next != loop; prev = prev->next)
337 continue;
338 prev->next = loop->next;
341 loop->superloops = NULL;
344 /* Allocates and returns new loop structure. */
346 class loop *
347 alloc_loop (void)
349 class loop *loop = ggc_cleared_alloc<class loop> ();
351 loop->exits = ggc_cleared_alloc<loop_exit> ();
352 loop->exits->next = loop->exits->prev = loop->exits;
353 loop->can_be_parallel = false;
354 loop->constraints = 0;
355 loop->nb_iterations_upper_bound = 0;
356 loop->nb_iterations_likely_upper_bound = 0;
357 loop->nb_iterations_estimate = 0;
358 return loop;
361 /* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops
362 (including the root of the loop tree). */
364 void
365 init_loops_structure (struct function *fn,
366 struct loops *loops, unsigned num_loops)
368 class loop *root;
370 memset (loops, 0, sizeof *loops);
371 vec_alloc (loops->larray, num_loops);
373 /* Dummy loop containing whole function. */
374 root = alloc_loop ();
375 root->num_nodes = n_basic_blocks_for_fn (fn);
376 root->latch = EXIT_BLOCK_PTR_FOR_FN (fn);
377 root->header = ENTRY_BLOCK_PTR_FOR_FN (fn);
378 ENTRY_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
379 EXIT_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
381 loops->larray->quick_push (root);
382 loops->tree_root = root;
385 /* Returns whether HEADER is a loop header. */
387 bool
388 bb_loop_header_p (basic_block header)
390 edge_iterator ei;
391 edge e;
393 /* If we have an abnormal predecessor, do not consider the
394 loop (not worth the problems). */
395 if (bb_has_abnormal_pred (header))
396 return false;
398 /* Look for back edges where a predecessor is dominated
399 by this block. A natural loop has a single entry
400 node (header) that dominates all the nodes in the
401 loop. It also has single back edge to the header
402 from a latch node. */
403 FOR_EACH_EDGE (e, ei, header->preds)
405 basic_block latch = e->src;
406 if (latch != ENTRY_BLOCK_PTR_FOR_FN (cfun)
407 && dominated_by_p (CDI_DOMINATORS, latch, header))
408 return true;
411 return false;
414 /* Find all the natural loops in the function and save in LOOPS structure and
415 recalculate loop_father information in basic block structures.
416 If LOOPS is non-NULL then the loop structures for already recorded loops
417 will be re-used and their number will not change. We assume that no
418 stale loops exist in LOOPS.
419 When LOOPS is NULL it is allocated and re-built from scratch.
420 Return the built LOOPS structure. */
422 struct loops *
423 flow_loops_find (struct loops *loops)
425 bool from_scratch = (loops == NULL);
426 int *rc_order;
427 int b;
428 unsigned i;
430 /* Ensure that the dominators are computed. */
431 calculate_dominance_info (CDI_DOMINATORS);
433 if (!loops)
435 loops = ggc_cleared_alloc<struct loops> ();
436 init_loops_structure (cfun, loops, 1);
439 /* Ensure that loop exits were released. */
440 gcc_assert (loops->exits == NULL);
442 /* Taking care of this degenerate case makes the rest of
443 this code simpler. */
444 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
445 return loops;
447 /* The root loop node contains all basic-blocks. */
448 loops->tree_root->num_nodes = n_basic_blocks_for_fn (cfun);
450 /* Compute depth first search order of the CFG so that outer
451 natural loops will be found before inner natural loops. */
452 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
453 pre_and_rev_post_order_compute (NULL, rc_order, false);
455 /* Gather all loop headers in reverse completion order and allocate
456 loop structures for loops that are not already present. */
457 auto_vec<loop_p> larray (loops->larray->length ());
458 for (b = 0; b < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; b++)
460 basic_block header = BASIC_BLOCK_FOR_FN (cfun, rc_order[b]);
461 if (bb_loop_header_p (header))
463 class loop *loop;
465 /* The current active loop tree has valid loop-fathers for
466 header blocks. */
467 if (!from_scratch
468 && header->loop_father->header == header)
470 loop = header->loop_father;
471 /* If we found an existing loop remove it from the
472 loop tree. It is going to be inserted again
473 below. */
474 flow_loop_tree_node_remove (loop);
476 else
478 /* Otherwise allocate a new loop structure for the loop. */
479 loop = alloc_loop ();
480 /* ??? We could re-use unused loop slots here. */
481 loop->num = loops->larray->length ();
482 vec_safe_push (loops->larray, loop);
483 loop->header = header;
485 if (!from_scratch
486 && dump_file && (dump_flags & TDF_DETAILS))
487 fprintf (dump_file, "flow_loops_find: discovered new "
488 "loop %d with header %d\n",
489 loop->num, header->index);
491 /* Reset latch, we recompute it below. */
492 loop->latch = NULL;
493 larray.safe_push (loop);
496 /* Make blocks part of the loop root node at start. */
497 header->loop_father = loops->tree_root;
500 free (rc_order);
502 /* Now iterate over the loops found, insert them into the loop tree
503 and assign basic-block ownership. */
504 for (i = 0; i < larray.length (); ++i)
506 class loop *loop = larray[i];
507 basic_block header = loop->header;
508 edge_iterator ei;
509 edge e;
511 flow_loop_tree_node_add (header->loop_father, loop);
512 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
514 /* Look for the latch for this header block, if it has just a
515 single one. */
516 FOR_EACH_EDGE (e, ei, header->preds)
518 basic_block latch = e->src;
520 if (flow_bb_inside_loop_p (loop, latch))
522 if (loop->latch != NULL)
524 /* More than one latch edge. */
525 loop->latch = NULL;
526 break;
528 loop->latch = latch;
533 return loops;
536 /* qsort helper for sort_sibling_loops. */
538 static int *sort_sibling_loops_cmp_rpo;
539 static int
540 sort_sibling_loops_cmp (const void *la_, const void *lb_)
542 const class loop *la = *(const class loop * const *)la_;
543 const class loop *lb = *(const class loop * const *)lb_;
544 return (sort_sibling_loops_cmp_rpo[la->header->index]
545 - sort_sibling_loops_cmp_rpo[lb->header->index]);
548 /* Sort sibling loops in RPO order. */
550 void
551 sort_sibling_loops (function *fn)
553 /* Match flow_loops_find in the order we sort sibling loops. */
554 sort_sibling_loops_cmp_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
555 int *rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
556 pre_and_rev_post_order_compute_fn (fn, NULL, rc_order, false);
557 for (int i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; ++i)
558 sort_sibling_loops_cmp_rpo[rc_order[i]] = i;
559 free (rc_order);
561 auto_vec<loop_p, 3> siblings;
562 for (auto loop : loops_list (fn, LI_INCLUDE_ROOT))
563 if (loop->inner && loop->inner->next)
565 loop_p sibling = loop->inner;
568 siblings.safe_push (sibling);
569 sibling = sibling->next;
571 while (sibling);
572 siblings.qsort (sort_sibling_loops_cmp);
573 loop_p *siblingp = &loop->inner;
574 for (unsigned i = 0; i < siblings.length (); ++i)
576 *siblingp = siblings[i];
577 siblingp = &(*siblingp)->next;
579 *siblingp = NULL;
580 siblings.truncate (0);
583 free (sort_sibling_loops_cmp_rpo);
584 sort_sibling_loops_cmp_rpo = NULL;
587 /* Ratio of frequencies of edges so that one of more latch edges is
588 considered to belong to inner loop with same header. */
589 #define HEAVY_EDGE_RATIO 8
591 /* Minimum number of samples for that we apply
592 find_subloop_latch_edge_by_profile heuristics. */
593 #define HEAVY_EDGE_MIN_SAMPLES 10
595 /* If the profile info is available, finds an edge in LATCHES that much more
596 frequent than the remaining edges. Returns such an edge, or NULL if we do
597 not find one.
599 We do not use guessed profile here, only the measured one. The guessed
600 profile is usually too flat and unreliable for this (and it is mostly based
601 on the loop structure of the program, so it does not make much sense to
602 derive the loop structure from it). */
604 static edge
605 find_subloop_latch_edge_by_profile (vec<edge> latches)
607 unsigned i;
608 edge e, me = NULL;
609 profile_count mcount = profile_count::zero (), tcount = profile_count::zero ();
611 FOR_EACH_VEC_ELT (latches, i, e)
613 if (e->count ()> mcount)
615 me = e;
616 mcount = e->count();
618 tcount += e->count();
621 if (!tcount.initialized_p () || !(tcount.ipa () > HEAVY_EDGE_MIN_SAMPLES)
622 || (tcount - mcount) * HEAVY_EDGE_RATIO > tcount)
623 return NULL;
625 if (dump_file)
626 fprintf (dump_file,
627 "Found latch edge %d -> %d using profile information.\n",
628 me->src->index, me->dest->index);
629 return me;
632 /* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
633 on the structure of induction variables. Returns this edge, or NULL if we
634 do not find any.
636 We are quite conservative, and look just for an obvious simple innermost
637 loop (which is the case where we would lose the most performance by not
638 disambiguating the loop). More precisely, we look for the following
639 situation: The source of the chosen latch edge dominates sources of all
640 the other latch edges. Additionally, the header does not contain a phi node
641 such that the argument from the chosen edge is equal to the argument from
642 another edge. */
644 static edge
645 find_subloop_latch_edge_by_ivs (class loop *loop ATTRIBUTE_UNUSED, vec<edge> latches)
647 edge e, latch = latches[0];
648 unsigned i;
649 gphi *phi;
650 gphi_iterator psi;
651 tree lop;
652 basic_block bb;
654 /* Find the candidate for the latch edge. */
655 for (i = 1; latches.iterate (i, &e); i++)
656 if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
657 latch = e;
659 /* Verify that it dominates all the latch edges. */
660 FOR_EACH_VEC_ELT (latches, i, e)
661 if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
662 return NULL;
664 /* Check for a phi node that would deny that this is a latch edge of
665 a subloop. */
666 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
668 phi = psi.phi ();
669 lop = PHI_ARG_DEF_FROM_EDGE (phi, latch);
671 /* Ignore the values that are not changed inside the subloop. */
672 if (TREE_CODE (lop) != SSA_NAME
673 || SSA_NAME_DEF_STMT (lop) == phi)
674 continue;
675 bb = gimple_bb (SSA_NAME_DEF_STMT (lop));
676 if (!bb || !flow_bb_inside_loop_p (loop, bb))
677 continue;
679 FOR_EACH_VEC_ELT (latches, i, e)
680 if (e != latch
681 && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop)
682 return NULL;
685 if (dump_file)
686 fprintf (dump_file,
687 "Found latch edge %d -> %d using iv structure.\n",
688 latch->src->index, latch->dest->index);
689 return latch;
692 /* If we can determine that one of the several latch edges of LOOP behaves
693 as a latch edge of a separate subloop, returns this edge. Otherwise
694 returns NULL. */
696 static edge
697 find_subloop_latch_edge (class loop *loop)
699 vec<edge> latches = get_loop_latch_edges (loop);
700 edge latch = NULL;
702 if (latches.length () > 1)
704 latch = find_subloop_latch_edge_by_profile (latches);
706 if (!latch
707 /* We consider ivs to guess the latch edge only in SSA. Perhaps we
708 should use cfghook for this, but it is hard to imagine it would
709 be useful elsewhere. */
710 && current_ir_type () == IR_GIMPLE)
711 latch = find_subloop_latch_edge_by_ivs (loop, latches);
714 latches.release ();
715 return latch;
718 /* Callback for make_forwarder_block. Returns true if the edge E is marked
719 in the set MFB_REIS_SET. */
721 static hash_set<edge> *mfb_reis_set;
722 static bool
723 mfb_redirect_edges_in_set (edge e)
725 return mfb_reis_set->contains (e);
728 /* Creates a subloop of LOOP with latch edge LATCH. */
730 static void
731 form_subloop (class loop *loop, edge latch)
733 edge_iterator ei;
734 edge e, new_entry;
735 class loop *new_loop;
737 mfb_reis_set = new hash_set<edge>;
738 FOR_EACH_EDGE (e, ei, loop->header->preds)
740 if (e != latch)
741 mfb_reis_set->add (e);
743 new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
744 NULL);
745 delete mfb_reis_set;
747 loop->header = new_entry->src;
749 /* Find the blocks and subloops that belong to the new loop, and add it to
750 the appropriate place in the loop tree. */
751 new_loop = alloc_loop ();
752 new_loop->header = new_entry->dest;
753 new_loop->latch = latch->src;
754 add_loop (new_loop, loop);
757 /* Make all the latch edges of LOOP to go to a single forwarder block --
758 a new latch of LOOP. */
760 static void
761 merge_latch_edges (class loop *loop)
763 vec<edge> latches = get_loop_latch_edges (loop);
764 edge latch, e;
765 unsigned i;
767 gcc_assert (latches.length () > 0);
769 if (latches.length () == 1)
770 loop->latch = latches[0]->src;
771 else
773 if (dump_file)
774 fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
776 mfb_reis_set = new hash_set<edge>;
777 FOR_EACH_VEC_ELT (latches, i, e)
778 mfb_reis_set->add (e);
779 latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
780 NULL);
781 delete mfb_reis_set;
783 loop->header = latch->dest;
784 loop->latch = latch->src;
787 latches.release ();
790 /* LOOP may have several latch edges. Transform it into (possibly several)
791 loops with single latch edge. */
793 static void
794 disambiguate_multiple_latches (class loop *loop)
796 edge e;
798 /* We eliminate the multiple latches by splitting the header to the forwarder
799 block F and the rest R, and redirecting the edges. There are two cases:
801 1) If there is a latch edge E that corresponds to a subloop (we guess
802 that based on profile -- if it is taken much more often than the
803 remaining edges; and on trees, using the information about induction
804 variables of the loops), we redirect E to R, all the remaining edges to
805 F, then rescan the loops and try again for the outer loop.
806 2) If there is no such edge, we redirect all latch edges to F, and the
807 entry edges to R, thus making F the single latch of the loop. */
809 if (dump_file)
810 fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
811 loop->num);
813 /* During latch merging, we may need to redirect the entry edges to a new
814 block. This would cause problems if the entry edge was the one from the
815 entry block. To avoid having to handle this case specially, split
816 such entry edge. */
817 e = find_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), loop->header);
818 if (e)
819 split_edge (e);
821 while (1)
823 e = find_subloop_latch_edge (loop);
824 if (!e)
825 break;
827 form_subloop (loop, e);
830 merge_latch_edges (loop);
833 /* Split loops with multiple latch edges. */
835 void
836 disambiguate_loops_with_multiple_latches (void)
838 for (auto loop : loops_list (cfun, 0))
840 if (!loop->latch)
841 disambiguate_multiple_latches (loop);
845 /* Return nonzero if basic block BB belongs to LOOP. */
846 bool
847 flow_bb_inside_loop_p (const class loop *loop, const_basic_block bb)
849 class loop *source_loop;
851 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
852 || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
853 return 0;
855 source_loop = bb->loop_father;
856 return loop == source_loop || flow_loop_nested_p (loop, source_loop);
859 /* Enumeration predicate for get_loop_body_with_size. */
860 static bool
861 glb_enum_p (const_basic_block bb, const void *glb_loop)
863 const class loop *const loop = (const class loop *) glb_loop;
864 return (bb != loop->header
865 && dominated_by_p (CDI_DOMINATORS, bb, loop->header));
868 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
869 order against direction of edges from latch. Specially, if
870 header != latch, latch is the 1-st block. LOOP cannot be the fake
871 loop tree root, and its size must be at most MAX_SIZE. The blocks
872 in the LOOP body are stored to BODY, and the size of the LOOP is
873 returned. */
875 unsigned
876 get_loop_body_with_size (const class loop *loop, basic_block *body,
877 unsigned max_size)
879 return dfs_enumerate_from (loop->header, 1, glb_enum_p,
880 body, max_size, loop);
883 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
884 order against direction of edges from latch. Specially, if
885 header != latch, latch is the 1-st block. */
887 basic_block *
888 get_loop_body (const class loop *loop)
890 basic_block *body, bb;
891 unsigned tv = 0;
893 gcc_assert (loop->num_nodes);
895 body = XNEWVEC (basic_block, loop->num_nodes);
897 if (loop->latch == EXIT_BLOCK_PTR_FOR_FN (cfun))
899 /* There may be blocks unreachable from EXIT_BLOCK, hence we need to
900 special-case the fake loop that contains the whole function. */
901 gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks_for_fn (cfun));
902 body[tv++] = loop->header;
903 body[tv++] = EXIT_BLOCK_PTR_FOR_FN (cfun);
904 FOR_EACH_BB_FN (bb, cfun)
905 body[tv++] = bb;
907 else
908 tv = get_loop_body_with_size (loop, body, loop->num_nodes);
910 gcc_assert (tv == loop->num_nodes);
911 return body;
914 /* Fills dominance descendants inside LOOP of the basic block BB into
915 array TOVISIT from index *TV. */
917 static void
918 fill_sons_in_loop (const class loop *loop, basic_block bb,
919 basic_block *tovisit, int *tv)
921 basic_block son, postpone = NULL;
923 tovisit[(*tv)++] = bb;
924 for (son = first_dom_son (CDI_DOMINATORS, bb);
925 son;
926 son = next_dom_son (CDI_DOMINATORS, son))
928 if (!flow_bb_inside_loop_p (loop, son))
929 continue;
931 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
933 postpone = son;
934 continue;
936 fill_sons_in_loop (loop, son, tovisit, tv);
939 if (postpone)
940 fill_sons_in_loop (loop, postpone, tovisit, tv);
943 /* Gets body of a LOOP (that must be different from the outermost loop)
944 sorted by dominance relation. Additionally, if a basic block s dominates
945 the latch, then only blocks dominated by s are be after it. */
947 basic_block *
948 get_loop_body_in_dom_order (const class loop *loop)
950 basic_block *tovisit;
951 int tv;
953 gcc_assert (loop->num_nodes);
955 tovisit = XNEWVEC (basic_block, loop->num_nodes);
957 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
959 tv = 0;
960 fill_sons_in_loop (loop, loop->header, tovisit, &tv);
962 gcc_assert (tv == (int) loop->num_nodes);
964 return tovisit;
967 /* Gets body of a LOOP sorted via provided BB_COMPARATOR. */
969 basic_block *
970 get_loop_body_in_custom_order (const class loop *loop,
971 int (*bb_comparator) (const void *, const void *))
973 basic_block *bbs = get_loop_body (loop);
975 qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator);
977 return bbs;
980 /* Same as above, but use gcc_sort_r instead of qsort. */
982 basic_block *
983 get_loop_body_in_custom_order (const class loop *loop, void *data,
984 int (*bb_comparator) (const void *, const void *, void *))
986 basic_block *bbs = get_loop_body (loop);
988 gcc_sort_r (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator, data);
990 return bbs;
993 /* Get body of a LOOP in breadth first sort order. */
995 basic_block *
996 get_loop_body_in_bfs_order (const class loop *loop)
998 basic_block *blocks;
999 basic_block bb;
1000 unsigned int i = 1;
1001 unsigned int vc = 0;
1003 gcc_assert (loop->num_nodes);
1004 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1006 blocks = XNEWVEC (basic_block, loop->num_nodes);
1007 auto_bitmap visited;
1008 blocks[0] = loop->header;
1009 bitmap_set_bit (visited, loop->header->index);
1010 while (i < loop->num_nodes)
1012 edge e;
1013 edge_iterator ei;
1014 gcc_assert (i > vc);
1015 bb = blocks[vc++];
1017 FOR_EACH_EDGE (e, ei, bb->succs)
1019 if (flow_bb_inside_loop_p (loop, e->dest))
1021 /* This bb is now visited. */
1022 if (bitmap_set_bit (visited, e->dest->index))
1023 blocks[i++] = e->dest;
1028 return blocks;
1031 /* Hash function for struct loop_exit. */
1033 hashval_t
1034 loop_exit_hasher::hash (loop_exit *exit)
1036 return htab_hash_pointer (exit->e);
1039 /* Equality function for struct loop_exit. Compares with edge. */
1041 bool
1042 loop_exit_hasher::equal (loop_exit *exit, edge e)
1044 return exit->e == e;
1047 /* Frees the list of loop exit descriptions EX. */
1049 void
1050 loop_exit_hasher::remove (loop_exit *exit)
1052 loop_exit *next;
1053 for (; exit; exit = next)
1055 next = exit->next_e;
1057 exit->next->prev = exit->prev;
1058 exit->prev->next = exit->next;
1060 ggc_free (exit);
1064 /* Returns the list of records for E as an exit of a loop. */
1066 static struct loop_exit *
1067 get_exit_descriptions (edge e)
1069 return current_loops->exits->find_with_hash (e, htab_hash_pointer (e));
1072 /* Updates the lists of loop exits in that E appears.
1073 If REMOVED is true, E is being removed, and we
1074 just remove it from the lists of exits.
1075 If NEW_EDGE is true and E is not a loop exit, we
1076 do not try to remove it from loop exit lists. */
1078 void
1079 rescan_loop_exit (edge e, bool new_edge, bool removed)
1081 struct loop_exit *exits = NULL, *exit;
1082 class loop *aloop, *cloop;
1084 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1085 return;
1087 if (!removed
1088 && e->src->loop_father != NULL
1089 && e->dest->loop_father != NULL
1090 && !flow_bb_inside_loop_p (e->src->loop_father, e->dest))
1092 cloop = find_common_loop (e->src->loop_father, e->dest->loop_father);
1093 for (aloop = e->src->loop_father;
1094 aloop != cloop;
1095 aloop = loop_outer (aloop))
1097 exit = ggc_alloc<loop_exit> ();
1098 exit->e = e;
1100 exit->next = aloop->exits->next;
1101 exit->prev = aloop->exits;
1102 exit->next->prev = exit;
1103 exit->prev->next = exit;
1105 exit->next_e = exits;
1106 exits = exit;
1110 if (!exits && new_edge)
1111 return;
1113 loop_exit **slot
1114 = current_loops->exits->find_slot_with_hash (e, htab_hash_pointer (e),
1115 exits ? INSERT : NO_INSERT);
1116 if (!slot)
1117 return;
1119 if (exits)
1121 if (*slot)
1122 loop_exit_hasher::remove (*slot);
1123 *slot = exits;
1125 else
1126 current_loops->exits->clear_slot (slot);
1129 /* For each loop, record list of exit edges, and start maintaining these
1130 lists. */
1132 void
1133 record_loop_exits (void)
1135 basic_block bb;
1136 edge_iterator ei;
1137 edge e;
1139 if (!current_loops)
1140 return;
1142 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1143 return;
1144 loops_state_set (LOOPS_HAVE_RECORDED_EXITS);
1146 gcc_assert (current_loops->exits == NULL);
1147 current_loops->exits
1148 = hash_table<loop_exit_hasher>::create_ggc (2 * number_of_loops (cfun));
1150 FOR_EACH_BB_FN (bb, cfun)
1152 FOR_EACH_EDGE (e, ei, bb->succs)
1154 rescan_loop_exit (e, true, false);
1159 /* Dumps information about the exit in *SLOT to FILE.
1160 Callback for htab_traverse. */
1163 dump_recorded_exit (loop_exit **slot, FILE *file)
1165 struct loop_exit *exit = *slot;
1166 unsigned n = 0;
1167 edge e = exit->e;
1169 for (; exit != NULL; exit = exit->next_e)
1170 n++;
1172 fprintf (file, "Edge %d->%d exits %u loops\n",
1173 e->src->index, e->dest->index, n);
1175 return 1;
1178 /* Dumps the recorded exits of loops to FILE. */
1180 extern void dump_recorded_exits (FILE *);
1181 void
1182 dump_recorded_exits (FILE *file)
1184 if (!current_loops->exits)
1185 return;
1186 current_loops->exits->traverse<FILE *, dump_recorded_exit> (file);
1189 /* Releases lists of loop exits. */
1191 void
1192 release_recorded_exits (function *fn)
1194 gcc_assert (loops_state_satisfies_p (fn, LOOPS_HAVE_RECORDED_EXITS));
1195 loops_for_fn (fn)->exits->empty ();
1196 loops_for_fn (fn)->exits = NULL;
1197 loops_state_clear (fn, LOOPS_HAVE_RECORDED_EXITS);
1200 /* Returns the list of the exit edges of a LOOP. */
1202 auto_vec<edge>
1203 get_loop_exit_edges (const class loop *loop, basic_block *body)
1205 auto_vec<edge> edges;
1206 edge e;
1207 unsigned i;
1208 edge_iterator ei;
1209 struct loop_exit *exit;
1211 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1213 /* If we maintain the lists of exits, use them. Otherwise we must
1214 scan the body of the loop. */
1215 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1217 for (exit = loop->exits->next; exit->e; exit = exit->next)
1218 edges.safe_push (exit->e);
1220 else
1222 bool body_from_caller = true;
1223 if (!body)
1225 body = get_loop_body (loop);
1226 body_from_caller = false;
1228 for (i = 0; i < loop->num_nodes; i++)
1229 FOR_EACH_EDGE (e, ei, body[i]->succs)
1231 if (!flow_bb_inside_loop_p (loop, e->dest))
1232 edges.safe_push (e);
1234 if (!body_from_caller)
1235 free (body);
1238 return edges;
1241 /* Counts the number of conditional branches inside LOOP. */
1243 unsigned
1244 num_loop_branches (const class loop *loop)
1246 unsigned i, n;
1247 basic_block * body;
1249 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1251 body = get_loop_body (loop);
1252 n = 0;
1253 for (i = 0; i < loop->num_nodes; i++)
1254 if (EDGE_COUNT (body[i]->succs) >= 2)
1255 n++;
1256 free (body);
1258 return n;
1261 /* Adds basic block BB to LOOP. */
1262 void
1263 add_bb_to_loop (basic_block bb, class loop *loop)
1265 unsigned i;
1266 loop_p ploop;
1267 edge_iterator ei;
1268 edge e;
1270 gcc_assert (bb->loop_father == NULL);
1271 bb->loop_father = loop;
1272 loop->num_nodes++;
1273 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1274 ploop->num_nodes++;
1276 FOR_EACH_EDGE (e, ei, bb->succs)
1278 rescan_loop_exit (e, true, false);
1280 FOR_EACH_EDGE (e, ei, bb->preds)
1282 rescan_loop_exit (e, true, false);
1286 /* Remove basic block BB from loops. */
1287 void
1288 remove_bb_from_loops (basic_block bb)
1290 unsigned i;
1291 class loop *loop = bb->loop_father;
1292 loop_p ploop;
1293 edge_iterator ei;
1294 edge e;
1296 gcc_assert (loop != NULL);
1297 loop->num_nodes--;
1298 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1299 ploop->num_nodes--;
1300 bb->loop_father = NULL;
1302 FOR_EACH_EDGE (e, ei, bb->succs)
1304 rescan_loop_exit (e, false, true);
1306 FOR_EACH_EDGE (e, ei, bb->preds)
1308 rescan_loop_exit (e, false, true);
1312 /* Finds nearest common ancestor in loop tree for given loops. */
1313 class loop *
1314 find_common_loop (class loop *loop_s, class loop *loop_d)
1316 unsigned sdepth, ddepth;
1318 if (!loop_s) return loop_d;
1319 if (!loop_d) return loop_s;
1321 sdepth = loop_depth (loop_s);
1322 ddepth = loop_depth (loop_d);
1324 if (sdepth < ddepth)
1325 loop_d = (*loop_d->superloops)[sdepth];
1326 else if (sdepth > ddepth)
1327 loop_s = (*loop_s->superloops)[ddepth];
1329 while (loop_s != loop_d)
1331 loop_s = loop_outer (loop_s);
1332 loop_d = loop_outer (loop_d);
1334 return loop_s;
1337 /* Removes LOOP from structures and frees its data. */
1339 void
1340 delete_loop (class loop *loop)
1342 /* Remove the loop from structure. */
1343 flow_loop_tree_node_remove (loop);
1345 /* Remove loop from loops array. */
1346 (*current_loops->larray)[loop->num] = NULL;
1348 /* Free loop data. */
1349 flow_loop_free (loop);
1352 /* Cancels the LOOP; it must be innermost one. */
1354 static void
1355 cancel_loop (class loop *loop)
1357 basic_block *bbs;
1358 unsigned i;
1359 class loop *outer = loop_outer (loop);
1361 gcc_assert (!loop->inner);
1363 /* Move blocks up one level (they should be removed as soon as possible). */
1364 bbs = get_loop_body (loop);
1365 for (i = 0; i < loop->num_nodes; i++)
1366 bbs[i]->loop_father = outer;
1368 free (bbs);
1369 delete_loop (loop);
1372 /* Cancels LOOP and all its subloops. */
1373 void
1374 cancel_loop_tree (class loop *loop)
1376 while (loop->inner)
1377 cancel_loop_tree (loop->inner);
1378 cancel_loop (loop);
1381 /* Disable warnings about missing quoting in GCC diagnostics for
1382 the verification errors. Their format strings don't follow GCC
1383 diagnostic conventions and the calls are ultimately followed by
1384 a deliberate ICE triggered by a failed assertion. */
1385 #if __GNUC__ >= 10
1386 # pragma GCC diagnostic push
1387 # pragma GCC diagnostic ignored "-Wformat-diag"
1388 #endif
1390 /* Checks that information about loops is correct
1391 -- sizes of loops are all right
1392 -- results of get_loop_body really belong to the loop
1393 -- loop header have just single entry edge and single latch edge
1394 -- loop latches have only single successor that is header of their loop
1395 -- irreducible loops are correctly marked
1396 -- the cached loop depth and loop father of each bb is correct
1398 DEBUG_FUNCTION void
1399 verify_loop_structure (void)
1401 unsigned *sizes, i, j;
1402 basic_block bb, *bbs;
1403 int err = 0;
1404 edge e;
1405 unsigned num = number_of_loops (cfun);
1406 struct loop_exit *exit, *mexit;
1407 bool dom_available = dom_info_available_p (CDI_DOMINATORS);
1409 if (loops_state_satisfies_p (LOOPS_NEED_FIXUP))
1411 error ("loop verification on loop tree that needs fixup");
1412 err = 1;
1415 /* We need up-to-date dominators, compute or verify them. */
1416 if (!dom_available)
1417 calculate_dominance_info (CDI_DOMINATORS);
1418 else
1419 verify_dominators (CDI_DOMINATORS);
1421 /* Check the loop tree root. */
1422 if (current_loops->tree_root->header != ENTRY_BLOCK_PTR_FOR_FN (cfun)
1423 || current_loops->tree_root->latch != EXIT_BLOCK_PTR_FOR_FN (cfun)
1424 || (current_loops->tree_root->num_nodes
1425 != (unsigned) n_basic_blocks_for_fn (cfun)))
1427 error ("corrupt loop tree root");
1428 err = 1;
1431 /* Check the headers. */
1432 FOR_EACH_BB_FN (bb, cfun)
1433 if (bb_loop_header_p (bb))
1435 if (bb->loop_father->header == NULL)
1437 error ("loop with header %d marked for removal", bb->index);
1438 err = 1;
1440 else if (bb->loop_father->header != bb)
1442 error ("loop with header %d not in loop tree", bb->index);
1443 err = 1;
1446 else if (bb->loop_father->header == bb)
1448 error ("non-loop with header %d not marked for removal", bb->index);
1449 err = 1;
1452 /* Check the recorded loop father and sizes of loops. */
1453 auto_sbitmap visited (last_basic_block_for_fn (cfun));
1454 bitmap_clear (visited);
1455 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
1456 for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
1458 unsigned n;
1460 if (loop->header == NULL)
1462 error ("removed loop %d in loop tree", loop->num);
1463 err = 1;
1464 continue;
1467 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
1468 if (loop->num_nodes != n)
1470 error ("size of loop %d should be %d, not %d",
1471 loop->num, n, loop->num_nodes);
1472 err = 1;
1475 for (j = 0; j < n; j++)
1477 bb = bbs[j];
1479 if (!flow_bb_inside_loop_p (loop, bb))
1481 error ("bb %d does not belong to loop %d",
1482 bb->index, loop->num);
1483 err = 1;
1486 /* Ignore this block if it is in an inner loop. */
1487 if (bitmap_bit_p (visited, bb->index))
1488 continue;
1489 bitmap_set_bit (visited, bb->index);
1491 if (bb->loop_father != loop)
1493 error ("bb %d has father loop %d, should be loop %d",
1494 bb->index, bb->loop_father->num, loop->num);
1495 err = 1;
1499 free (bbs);
1501 /* Check headers and latches. */
1502 for (auto loop : loops_list (cfun, 0))
1504 i = loop->num;
1505 if (loop->header == NULL)
1506 continue;
1507 if (!bb_loop_header_p (loop->header))
1509 error ("loop %d%'s header is not a loop header", i);
1510 err = 1;
1512 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
1513 && EDGE_COUNT (loop->header->preds) != 2)
1515 error ("loop %d%'s header does not have exactly 2 entries", i);
1516 err = 1;
1518 if (loop->latch)
1520 if (!find_edge (loop->latch, loop->header))
1522 error ("loop %d%'s latch does not have an edge to its header", i);
1523 err = 1;
1525 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, loop->header))
1527 error ("loop %d%'s latch is not dominated by its header", i);
1528 err = 1;
1531 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1533 if (!single_succ_p (loop->latch))
1535 error ("loop %d%'s latch does not have exactly 1 successor", i);
1536 err = 1;
1538 if (single_succ (loop->latch) != loop->header)
1540 error ("loop %d%'s latch does not have header as successor", i);
1541 err = 1;
1543 if (loop->latch->loop_father != loop)
1545 error ("loop %d%'s latch does not belong directly to it", i);
1546 err = 1;
1549 if (loop->header->loop_father != loop)
1551 error ("loop %d%'s header does not belong directly to it", i);
1552 err = 1;
1554 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1556 edge_iterator ei;
1557 FOR_EACH_EDGE (e, ei, loop->header->preds)
1558 if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header)
1559 && e->flags & EDGE_IRREDUCIBLE_LOOP)
1561 error ("loop %d%'s latch is marked as part of irreducible"
1562 " region", i);
1563 err = 1;
1567 /* Check cached number of iterations for released SSA names. */
1568 tree ref;
1569 if (loop->nb_iterations
1570 && (ref = walk_tree (&loop->nb_iterations,
1571 find_released_ssa_name, NULL, NULL)))
1573 error ("loop %d%'s number of iterations %qE references the"
1574 " released SSA name %qE", i, loop->nb_iterations, ref);
1575 err = 1;
1579 /* Check irreducible loops. */
1580 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1582 auto_edge_flag saved_edge_irr (cfun);
1583 auto_bb_flag saved_bb_irr (cfun);
1584 /* Save old info. */
1585 FOR_EACH_BB_FN (bb, cfun)
1587 edge_iterator ei;
1588 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1589 bb->flags |= saved_bb_irr;
1590 FOR_EACH_EDGE (e, ei, bb->succs)
1591 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1592 e->flags |= saved_edge_irr;
1595 /* Recount it. */
1596 mark_irreducible_loops ();
1598 /* Compare. */
1599 FOR_EACH_BB_FN (bb, cfun)
1601 edge_iterator ei;
1603 if ((bb->flags & BB_IRREDUCIBLE_LOOP)
1604 && !(bb->flags & saved_bb_irr))
1606 error ("basic block %d should be marked irreducible", bb->index);
1607 err = 1;
1609 else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
1610 && (bb->flags & saved_bb_irr))
1612 error ("basic block %d should not be marked irreducible", bb->index);
1613 err = 1;
1615 bb->flags &= ~saved_bb_irr;
1616 FOR_EACH_EDGE (e, ei, bb->succs)
1618 if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
1619 && !(e->flags & saved_edge_irr))
1621 error ("edge from %d to %d should be marked irreducible",
1622 e->src->index, e->dest->index);
1623 err = 1;
1625 else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
1626 && (e->flags & saved_edge_irr))
1628 error ("edge from %d to %d should not be marked irreducible",
1629 e->src->index, e->dest->index);
1630 err = 1;
1632 e->flags &= ~saved_edge_irr;
1637 /* Check the recorded loop exits. */
1638 for (auto loop : loops_list (cfun, 0))
1640 if (!loop->exits || loop->exits->e != NULL)
1642 error ("corrupted head of the exits list of loop %d",
1643 loop->num);
1644 err = 1;
1646 else
1648 /* Check that the list forms a cycle, and all elements except
1649 for the head are nonnull. */
1650 for (mexit = loop->exits, exit = mexit->next, i = 0;
1651 exit->e && exit != mexit;
1652 exit = exit->next)
1654 if (i++ & 1)
1655 mexit = mexit->next;
1658 if (exit != loop->exits)
1660 error ("corrupted exits list of loop %d", loop->num);
1661 err = 1;
1665 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1667 if (loop->exits->next != loop->exits)
1669 error ("nonempty exits list of loop %d, but exits are not recorded",
1670 loop->num);
1671 err = 1;
1676 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1678 unsigned n_exits = 0, eloops;
1680 sizes = XCNEWVEC (unsigned, num);
1681 memset (sizes, 0, sizeof (unsigned) * num);
1682 FOR_EACH_BB_FN (bb, cfun)
1684 edge_iterator ei;
1685 if (bb->loop_father == current_loops->tree_root)
1686 continue;
1687 FOR_EACH_EDGE (e, ei, bb->succs)
1689 if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
1690 continue;
1692 n_exits++;
1693 exit = get_exit_descriptions (e);
1694 if (!exit)
1696 error ("exit %d->%d not recorded",
1697 e->src->index, e->dest->index);
1698 err = 1;
1700 eloops = 0;
1701 for (; exit; exit = exit->next_e)
1702 eloops++;
1704 for (class loop *loop = bb->loop_father;
1705 loop != e->dest->loop_father
1706 /* When a loop exit is also an entry edge which
1707 can happen when avoiding CFG manipulations
1708 then the last loop exited is the outer loop
1709 of the loop entered. */
1710 && loop != loop_outer (e->dest->loop_father);
1711 loop = loop_outer (loop))
1713 eloops--;
1714 sizes[loop->num]++;
1717 if (eloops != 0)
1719 error ("wrong list of exited loops for edge %d->%d",
1720 e->src->index, e->dest->index);
1721 err = 1;
1726 if (n_exits != current_loops->exits->elements ())
1728 error ("too many loop exits recorded");
1729 err = 1;
1732 for (auto loop : loops_list (cfun, 0))
1734 eloops = 0;
1735 for (exit = loop->exits->next; exit->e; exit = exit->next)
1736 eloops++;
1737 if (eloops != sizes[loop->num])
1739 error ("%d exits recorded for loop %d (having %d exits)",
1740 eloops, loop->num, sizes[loop->num]);
1741 err = 1;
1745 free (sizes);
1748 gcc_assert (!err);
1750 if (!dom_available)
1751 free_dominance_info (CDI_DOMINATORS);
1754 #if __GNUC__ >= 10
1755 # pragma GCC diagnostic pop
1756 #endif
1758 /* Returns latch edge of LOOP. */
1759 edge
1760 loop_latch_edge (const class loop *loop)
1762 return find_edge (loop->latch, loop->header);
1765 /* Returns preheader edge of LOOP. */
1766 edge
1767 loop_preheader_edge (const class loop *loop)
1769 edge e;
1770 edge_iterator ei;
1772 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
1773 && ! loops_state_satisfies_p (LOOPS_MAY_HAVE_MULTIPLE_LATCHES));
1775 FOR_EACH_EDGE (e, ei, loop->header->preds)
1776 if (e->src != loop->latch)
1777 break;
1779 if (! e)
1781 gcc_assert (! loop_outer (loop));
1782 return single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
1785 return e;
1788 /* Returns true if E is an exit of LOOP. */
1790 bool
1791 loop_exit_edge_p (const class loop *loop, const_edge e)
1793 return (flow_bb_inside_loop_p (loop, e->src)
1794 && !flow_bb_inside_loop_p (loop, e->dest));
1797 /* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit
1798 or more than one exit. If loops do not have the exits recorded, NULL
1799 is returned always. */
1801 edge
1802 single_exit (const class loop *loop)
1804 struct loop_exit *exit = loop->exits->next;
1806 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1807 return NULL;
1809 if (exit->e && exit->next == loop->exits)
1810 return exit->e;
1811 else
1812 return NULL;
1815 /* Returns true when BB has an incoming edge exiting LOOP. */
1817 bool
1818 loop_exits_to_bb_p (class loop *loop, basic_block bb)
1820 edge e;
1821 edge_iterator ei;
1823 FOR_EACH_EDGE (e, ei, bb->preds)
1824 if (loop_exit_edge_p (loop, e))
1825 return true;
1827 return false;
1830 /* Returns true when BB has an outgoing edge exiting LOOP. */
1832 bool
1833 loop_exits_from_bb_p (class loop *loop, basic_block bb)
1835 edge e;
1836 edge_iterator ei;
1838 FOR_EACH_EDGE (e, ei, bb->succs)
1839 if (loop_exit_edge_p (loop, e))
1840 return true;
1842 return false;
1845 /* Return location corresponding to the loop control condition if possible. */
1847 dump_user_location_t
1848 get_loop_location (class loop *loop)
1850 rtx_insn *insn = NULL;
1851 class niter_desc *desc = NULL;
1852 edge exit;
1854 /* For a for or while loop, we would like to return the location
1855 of the for or while statement, if possible. To do this, look
1856 for the branch guarding the loop back-edge. */
1858 /* If this is a simple loop with an in_edge, then the loop control
1859 branch is typically at the end of its source. */
1860 desc = get_simple_loop_desc (loop);
1861 if (desc->in_edge)
1863 FOR_BB_INSNS_REVERSE (desc->in_edge->src, insn)
1865 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1866 return insn;
1869 /* If loop has a single exit, then the loop control branch
1870 must be at the end of its source. */
1871 if ((exit = single_exit (loop)))
1873 FOR_BB_INSNS_REVERSE (exit->src, insn)
1875 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1876 return insn;
1879 /* Next check the latch, to see if it is non-empty. */
1880 FOR_BB_INSNS_REVERSE (loop->latch, insn)
1882 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1883 return insn;
1885 /* Finally, if none of the above identifies the loop control branch,
1886 return the first location in the loop header. */
1887 FOR_BB_INSNS (loop->header, insn)
1889 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1890 return insn;
1892 /* If all else fails, simply return the current function location. */
1893 return dump_user_location_t::from_function_decl (current_function_decl);
1896 /* Records that every statement in LOOP is executed I_BOUND times.
1897 REALISTIC is true if I_BOUND is expected to be close to the real number
1898 of iterations. UPPER is true if we are sure the loop iterates at most
1899 I_BOUND times. */
1901 void
1902 record_niter_bound (class loop *loop, const widest_int &i_bound,
1903 bool realistic, bool upper)
1905 /* Update the bounds only when there is no previous estimation, or when the
1906 current estimation is smaller. */
1907 if (upper
1908 && (!loop->any_upper_bound
1909 || wi::ltu_p (i_bound, loop->nb_iterations_upper_bound)))
1911 loop->any_upper_bound = true;
1912 loop->nb_iterations_upper_bound = i_bound;
1913 if (!loop->any_likely_upper_bound)
1915 loop->any_likely_upper_bound = true;
1916 loop->nb_iterations_likely_upper_bound = i_bound;
1919 if (realistic
1920 && (!loop->any_estimate
1921 || wi::ltu_p (i_bound, loop->nb_iterations_estimate)))
1923 loop->any_estimate = true;
1924 loop->nb_iterations_estimate = i_bound;
1926 if (!realistic
1927 && (!loop->any_likely_upper_bound
1928 || wi::ltu_p (i_bound, loop->nb_iterations_likely_upper_bound)))
1930 loop->any_likely_upper_bound = true;
1931 loop->nb_iterations_likely_upper_bound = i_bound;
1934 /* If an upper bound is smaller than the realistic estimate of the
1935 number of iterations, use the upper bound instead. */
1936 if (loop->any_upper_bound
1937 && loop->any_estimate
1938 && wi::ltu_p (loop->nb_iterations_upper_bound,
1939 loop->nb_iterations_estimate))
1940 loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
1941 if (loop->any_upper_bound
1942 && loop->any_likely_upper_bound
1943 && wi::ltu_p (loop->nb_iterations_upper_bound,
1944 loop->nb_iterations_likely_upper_bound))
1945 loop->nb_iterations_likely_upper_bound = loop->nb_iterations_upper_bound;
1948 /* Similar to get_estimated_loop_iterations, but returns the estimate only
1949 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1950 on the number of iterations of LOOP could not be derived, returns -1. */
1952 HOST_WIDE_INT
1953 get_estimated_loop_iterations_int (class loop *loop)
1955 widest_int nit;
1956 HOST_WIDE_INT hwi_nit;
1958 if (!get_estimated_loop_iterations (loop, &nit))
1959 return -1;
1961 if (!wi::fits_shwi_p (nit))
1962 return -1;
1963 hwi_nit = nit.to_shwi ();
1965 return hwi_nit < 0 ? -1 : hwi_nit;
1968 /* Returns an upper bound on the number of executions of statements
1969 in the LOOP. For statements before the loop exit, this exceeds
1970 the number of execution of the latch by one. */
1972 HOST_WIDE_INT
1973 max_stmt_executions_int (class loop *loop)
1975 HOST_WIDE_INT nit = get_max_loop_iterations_int (loop);
1976 HOST_WIDE_INT snit;
1978 if (nit == -1)
1979 return -1;
1981 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
1983 /* If the computation overflows, return -1. */
1984 return snit < 0 ? -1 : snit;
1987 /* Returns an likely upper bound on the number of executions of statements
1988 in the LOOP. For statements before the loop exit, this exceeds
1989 the number of execution of the latch by one. */
1991 HOST_WIDE_INT
1992 likely_max_stmt_executions_int (class loop *loop)
1994 HOST_WIDE_INT nit = get_likely_max_loop_iterations_int (loop);
1995 HOST_WIDE_INT snit;
1997 if (nit == -1)
1998 return -1;
2000 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
2002 /* If the computation overflows, return -1. */
2003 return snit < 0 ? -1 : snit;
2006 /* Sets NIT to the estimated number of executions of the latch of the
2007 LOOP. If we have no reliable estimate, the function returns false, otherwise
2008 returns true. */
2010 bool
2011 get_estimated_loop_iterations (class loop *loop, widest_int *nit)
2013 /* Even if the bound is not recorded, possibly we can derrive one from
2014 profile. */
2015 if (!loop->any_estimate)
2017 if (loop->header->count.reliable_p ())
2019 *nit = gcov_type_to_wide_int
2020 (expected_loop_iterations_unbounded (loop) + 1);
2021 return true;
2023 return false;
2026 *nit = loop->nb_iterations_estimate;
2027 return true;
2030 /* Sets NIT to an upper bound for the maximum number of executions of the
2031 latch of the LOOP. If we have no reliable estimate, the function returns
2032 false, otherwise returns true. */
2034 bool
2035 get_max_loop_iterations (const class loop *loop, widest_int *nit)
2037 if (!loop->any_upper_bound)
2038 return false;
2040 *nit = loop->nb_iterations_upper_bound;
2041 return true;
2044 /* Similar to get_max_loop_iterations, but returns the estimate only
2045 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
2046 on the number of iterations of LOOP could not be derived, returns -1. */
2048 HOST_WIDE_INT
2049 get_max_loop_iterations_int (const class loop *loop)
2051 widest_int nit;
2052 HOST_WIDE_INT hwi_nit;
2054 if (!get_max_loop_iterations (loop, &nit))
2055 return -1;
2057 if (!wi::fits_shwi_p (nit))
2058 return -1;
2059 hwi_nit = nit.to_shwi ();
2061 return hwi_nit < 0 ? -1 : hwi_nit;
2064 /* Sets NIT to an upper bound for the maximum number of executions of the
2065 latch of the LOOP. If we have no reliable estimate, the function returns
2066 false, otherwise returns true. */
2068 bool
2069 get_likely_max_loop_iterations (class loop *loop, widest_int *nit)
2071 if (!loop->any_likely_upper_bound)
2072 return false;
2074 *nit = loop->nb_iterations_likely_upper_bound;
2075 return true;
2078 /* Similar to get_max_loop_iterations, but returns the estimate only
2079 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
2080 on the number of iterations of LOOP could not be derived, returns -1. */
2082 HOST_WIDE_INT
2083 get_likely_max_loop_iterations_int (class loop *loop)
2085 widest_int nit;
2086 HOST_WIDE_INT hwi_nit;
2088 if (!get_likely_max_loop_iterations (loop, &nit))
2089 return -1;
2091 if (!wi::fits_shwi_p (nit))
2092 return -1;
2093 hwi_nit = nit.to_shwi ();
2095 return hwi_nit < 0 ? -1 : hwi_nit;
2098 /* Returns the loop depth of the loop BB belongs to. */
2101 bb_loop_depth (const_basic_block bb)
2103 return bb->loop_father ? loop_depth (bb->loop_father) : 0;
2106 /* Marks LOOP for removal and sets LOOPS_NEED_FIXUP. */
2108 void
2109 mark_loop_for_removal (loop_p loop)
2111 if (loop->header == NULL)
2112 return;
2113 loop->former_header = loop->header;
2114 loop->header = NULL;
2115 loop->latch = NULL;
2116 loops_state_set (LOOPS_NEED_FIXUP);
2119 /* Starting from loop tree ROOT, walk loop tree as the visiting
2120 order specified by FLAGS. The supported visiting orders
2121 are:
2122 - LI_ONLY_INNERMOST
2123 - LI_FROM_INNERMOST
2124 - Preorder (if neither of above is specified) */
2126 void
2127 loops_list::walk_loop_tree (class loop *root, unsigned flags)
2129 bool only_innermost_p = flags & LI_ONLY_INNERMOST;
2130 bool from_innermost_p = flags & LI_FROM_INNERMOST;
2131 bool preorder_p = !(only_innermost_p || from_innermost_p);
2133 /* Early handle root without any inner loops, make later
2134 processing simpler, that is all loops processed in the
2135 following while loop are impossible to be root. */
2136 if (!root->inner)
2138 if (flags & LI_INCLUDE_ROOT)
2139 this->to_visit.quick_push (root->num);
2140 return;
2142 else if (preorder_p && flags & LI_INCLUDE_ROOT)
2143 this->to_visit.quick_push (root->num);
2145 class loop *aloop;
2146 for (aloop = root->inner;
2147 aloop->inner != NULL;
2148 aloop = aloop->inner)
2150 if (preorder_p)
2151 this->to_visit.quick_push (aloop->num);
2152 continue;
2155 while (1)
2157 gcc_assert (aloop != root);
2158 if (from_innermost_p || aloop->inner == NULL)
2159 this->to_visit.quick_push (aloop->num);
2161 if (aloop->next)
2163 for (aloop = aloop->next;
2164 aloop->inner != NULL;
2165 aloop = aloop->inner)
2167 if (preorder_p)
2168 this->to_visit.quick_push (aloop->num);
2169 continue;
2172 else if (loop_outer (aloop) == root)
2173 break;
2174 else
2175 aloop = loop_outer (aloop);
2178 /* When visiting from innermost, we need to consider root here
2179 since the previous while loop doesn't handle it. */
2180 if (from_innermost_p && flags & LI_INCLUDE_ROOT)
2181 this->to_visit.quick_push (root->num);