2018-05-21 Steven G. Kargl <kargl@gcc.gnu.org>
[official-gcc.git] / gcc / hsa-gen.c
blob74d5f07b3cb486d96d2dc567553ef33210e4c8aa
1 /* A pass for lowering gimple to HSAIL
2 Copyright (C) 2013-2018 Free Software Foundation, Inc.
3 Contributed by Martin Jambor <mjambor@suse.cz> and
4 Martin Liska <mliska@suse.cz>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "memmodel.h"
26 #include "tm.h"
27 #include "is-a.h"
28 #include "hash-table.h"
29 #include "vec.h"
30 #include "tree.h"
31 #include "tree-pass.h"
32 #include "function.h"
33 #include "basic-block.h"
34 #include "cfg.h"
35 #include "fold-const.h"
36 #include "gimple.h"
37 #include "gimple-iterator.h"
38 #include "bitmap.h"
39 #include "dumpfile.h"
40 #include "gimple-pretty-print.h"
41 #include "diagnostic-core.h"
42 #include "gimple-ssa.h"
43 #include "tree-phinodes.h"
44 #include "stringpool.h"
45 #include "tree-vrp.h"
46 #include "tree-ssanames.h"
47 #include "tree-dfa.h"
48 #include "ssa-iterators.h"
49 #include "cgraph.h"
50 #include "print-tree.h"
51 #include "symbol-summary.h"
52 #include "hsa-common.h"
53 #include "cfghooks.h"
54 #include "tree-cfg.h"
55 #include "cfgloop.h"
56 #include "cfganal.h"
57 #include "builtins.h"
58 #include "params.h"
59 #include "gomp-constants.h"
60 #include "internal-fn.h"
61 #include "builtins.h"
62 #include "stor-layout.h"
63 #include "stringpool.h"
64 #include "attribs.h"
66 /* Print a warning message and set that we have seen an error. */
68 #define HSA_SORRY_ATV(location, message, ...) \
69 do \
70 { \
71 hsa_fail_cfun (); \
72 if (warning_at (EXPR_LOCATION (hsa_cfun->m_decl), OPT_Whsa, \
73 HSA_SORRY_MSG)) \
74 inform (location, message, __VA_ARGS__); \
75 } \
76 while (false)
78 /* Same as previous, but highlight a location. */
80 #define HSA_SORRY_AT(location, message) \
81 do \
82 { \
83 hsa_fail_cfun (); \
84 if (warning_at (EXPR_LOCATION (hsa_cfun->m_decl), OPT_Whsa, \
85 HSA_SORRY_MSG)) \
86 inform (location, message); \
87 } \
88 while (false)
90 /* Default number of threads used by kernel dispatch. */
92 #define HSA_DEFAULT_NUM_THREADS 64
94 /* Following structures are defined in the final version
95 of HSA specification. */
97 /* HSA queue packet is shadow structure, originally provided by AMD. */
99 struct hsa_queue_packet
101 uint16_t header;
102 uint16_t setup;
103 uint16_t workgroup_size_x;
104 uint16_t workgroup_size_y;
105 uint16_t workgroup_size_z;
106 uint16_t reserved0;
107 uint32_t grid_size_x;
108 uint32_t grid_size_y;
109 uint32_t grid_size_z;
110 uint32_t private_segment_size;
111 uint32_t group_segment_size;
112 uint64_t kernel_object;
113 void *kernarg_address;
114 uint64_t reserved2;
115 uint64_t completion_signal;
118 /* HSA queue is shadow structure, originally provided by AMD. */
120 struct hsa_queue
122 int type;
123 uint32_t features;
124 void *base_address;
125 uint64_t doorbell_signal;
126 uint32_t size;
127 uint32_t reserved1;
128 uint64_t id;
131 static struct obstack hsa_obstack;
133 /* List of pointers to all instructions that come from an object allocator. */
134 static vec <hsa_insn_basic *> hsa_instructions;
136 /* List of pointers to all operands that come from an object allocator. */
137 static vec <hsa_op_base *> hsa_operands;
139 hsa_symbol::hsa_symbol ()
140 : m_decl (NULL_TREE), m_name (NULL), m_name_number (0),
141 m_directive_offset (0), m_type (BRIG_TYPE_NONE),
142 m_segment (BRIG_SEGMENT_NONE), m_linkage (BRIG_LINKAGE_NONE), m_dim (0),
143 m_cst_value (NULL), m_global_scope_p (false), m_seen_error (false),
144 m_allocation (BRIG_ALLOCATION_AUTOMATIC), m_emitted_to_brig (false)
149 hsa_symbol::hsa_symbol (BrigType16_t type, BrigSegment8_t segment,
150 BrigLinkage8_t linkage, bool global_scope_p,
151 BrigAllocation allocation, BrigAlignment8_t align)
152 : m_decl (NULL_TREE), m_name (NULL), m_name_number (0),
153 m_directive_offset (0), m_type (type), m_segment (segment),
154 m_linkage (linkage), m_dim (0), m_cst_value (NULL),
155 m_global_scope_p (global_scope_p), m_seen_error (false),
156 m_allocation (allocation), m_emitted_to_brig (false), m_align (align)
160 unsigned HOST_WIDE_INT
161 hsa_symbol::total_byte_size ()
163 unsigned HOST_WIDE_INT s
164 = hsa_type_bit_size (~BRIG_TYPE_ARRAY_MASK & m_type);
165 gcc_assert (s % BITS_PER_UNIT == 0);
166 s /= BITS_PER_UNIT;
168 if (m_dim)
169 s *= m_dim;
171 return s;
174 /* Forward declaration. */
176 static BrigType16_t
177 hsa_type_for_tree_type (const_tree type, unsigned HOST_WIDE_INT *dim_p,
178 bool min32int);
180 void
181 hsa_symbol::fillup_for_decl (tree decl)
183 m_decl = decl;
184 m_type = hsa_type_for_tree_type (TREE_TYPE (decl), &m_dim, false);
185 if (hsa_seen_error ())
187 m_seen_error = true;
188 return;
191 m_align = MAX (m_align, hsa_natural_alignment (m_type));
194 /* Constructor of class representing global HSA function/kernel information and
195 state. FNDECL is function declaration, KERNEL_P is true if the function
196 is going to become a HSA kernel. If the function has body, SSA_NAMES_COUNT
197 should be set to number of SSA names used in the function.
198 MODIFIED_CFG is set to true in case we modified control-flow graph
199 of the function. */
201 hsa_function_representation::hsa_function_representation
202 (tree fdecl, bool kernel_p, unsigned ssa_names_count, bool modified_cfg)
203 : m_name (NULL),
204 m_reg_count (0), m_input_args (vNULL),
205 m_output_arg (NULL), m_spill_symbols (vNULL), m_global_symbols (vNULL),
206 m_private_variables (vNULL), m_called_functions (vNULL),
207 m_called_internal_fns (vNULL), m_hbb_count (0),
208 m_in_ssa (true), m_kern_p (kernel_p), m_declaration_p (false),
209 m_decl (fdecl), m_internal_fn (NULL), m_shadow_reg (NULL),
210 m_kernel_dispatch_count (0), m_maximum_omp_data_size (0),
211 m_seen_error (false), m_temp_symbol_count (0), m_ssa_map (),
212 m_modified_cfg (modified_cfg)
214 int sym_init_len = (vec_safe_length (cfun->local_decls) / 2) + 1;
215 m_local_symbols = new hash_table <hsa_noop_symbol_hasher> (sym_init_len);
216 m_ssa_map.safe_grow_cleared (ssa_names_count);
219 /* Constructor of class representing HSA function information that
220 is derived for an internal function. */
221 hsa_function_representation::hsa_function_representation (hsa_internal_fn *fn)
222 : m_reg_count (0), m_input_args (vNULL),
223 m_output_arg (NULL), m_local_symbols (NULL),
224 m_spill_symbols (vNULL), m_global_symbols (vNULL),
225 m_private_variables (vNULL), m_called_functions (vNULL),
226 m_called_internal_fns (vNULL), m_hbb_count (0),
227 m_in_ssa (true), m_kern_p (false), m_declaration_p (true), m_decl (NULL),
228 m_internal_fn (fn), m_shadow_reg (NULL), m_kernel_dispatch_count (0),
229 m_maximum_omp_data_size (0), m_seen_error (false), m_temp_symbol_count (0),
230 m_ssa_map () {}
232 /* Destructor of class holding function/kernel-wide information and state. */
234 hsa_function_representation::~hsa_function_representation ()
236 /* Kernel names are deallocated at the end of BRIG output when deallocating
237 hsa_decl_kernel_mapping. */
238 if (!m_kern_p || m_seen_error)
239 free (m_name);
241 for (unsigned i = 0; i < m_input_args.length (); i++)
242 delete m_input_args[i];
243 m_input_args.release ();
245 delete m_output_arg;
246 delete m_local_symbols;
248 for (unsigned i = 0; i < m_spill_symbols.length (); i++)
249 delete m_spill_symbols[i];
250 m_spill_symbols.release ();
252 hsa_symbol *sym;
253 for (unsigned i = 0; i < m_global_symbols.iterate (i, &sym); i++)
254 if (sym->m_linkage != BRIG_ALLOCATION_PROGRAM)
255 delete sym;
256 m_global_symbols.release ();
258 for (unsigned i = 0; i < m_private_variables.length (); i++)
259 delete m_private_variables[i];
260 m_private_variables.release ();
261 m_called_functions.release ();
262 m_ssa_map.release ();
264 for (unsigned i = 0; i < m_called_internal_fns.length (); i++)
265 delete m_called_internal_fns[i];
268 hsa_op_reg *
269 hsa_function_representation::get_shadow_reg ()
271 /* If we compile a function with kernel dispatch and does not set
272 an optimization level, the function won't be inlined and
273 we return NULL. */
274 if (!m_kern_p)
275 return NULL;
277 if (m_shadow_reg)
278 return m_shadow_reg;
280 /* Append the shadow argument. */
281 hsa_symbol *shadow = new hsa_symbol (BRIG_TYPE_U64, BRIG_SEGMENT_KERNARG,
282 BRIG_LINKAGE_FUNCTION);
283 m_input_args.safe_push (shadow);
284 shadow->m_name = "hsa_runtime_shadow";
286 hsa_op_reg *r = new hsa_op_reg (BRIG_TYPE_U64);
287 hsa_op_address *addr = new hsa_op_address (shadow);
289 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_LD, BRIG_TYPE_U64, r, addr);
290 hsa_bb_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun))->append_insn (mem);
291 m_shadow_reg = r;
293 return r;
296 bool hsa_function_representation::has_shadow_reg_p ()
298 return m_shadow_reg != NULL;
301 void
302 hsa_function_representation::init_extra_bbs ()
304 hsa_init_new_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
305 hsa_init_new_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
308 void
309 hsa_function_representation::update_dominance ()
311 if (m_modified_cfg)
313 free_dominance_info (CDI_DOMINATORS);
314 calculate_dominance_info (CDI_DOMINATORS);
318 hsa_symbol *
319 hsa_function_representation::create_hsa_temporary (BrigType16_t type)
321 hsa_symbol *s = new hsa_symbol (type, BRIG_SEGMENT_PRIVATE,
322 BRIG_LINKAGE_FUNCTION);
323 s->m_name_number = m_temp_symbol_count++;
325 hsa_cfun->m_private_variables.safe_push (s);
326 return s;
329 BrigLinkage8_t
330 hsa_function_representation::get_linkage ()
332 if (m_internal_fn)
333 return BRIG_LINKAGE_PROGRAM;
335 return m_kern_p || TREE_PUBLIC (m_decl) ?
336 BRIG_LINKAGE_PROGRAM : BRIG_LINKAGE_MODULE;
339 /* Hash map of simple OMP builtins. */
340 static hash_map <nofree_string_hash, omp_simple_builtin> *omp_simple_builtins
341 = NULL;
343 /* Warning messages for OMP builtins. */
345 #define HSA_WARN_LOCK_ROUTINE "support for HSA does not implement OpenMP " \
346 "lock routines"
347 #define HSA_WARN_TIMING_ROUTINE "support for HSA does not implement OpenMP " \
348 "timing routines"
349 #define HSA_WARN_MEMORY_ROUTINE "OpenMP device memory library routines have " \
350 "undefined semantics within target regions, support for HSA ignores them"
351 #define HSA_WARN_AFFINITY "Support for HSA does not implement OpenMP " \
352 "affinity feateres"
354 /* Initialize hash map with simple OMP builtins. */
356 static void
357 hsa_init_simple_builtins ()
359 if (omp_simple_builtins != NULL)
360 return;
362 omp_simple_builtins
363 = new hash_map <nofree_string_hash, omp_simple_builtin> ();
365 omp_simple_builtin omp_builtins[] =
367 omp_simple_builtin ("omp_get_initial_device", NULL, false,
368 new hsa_op_immed (GOMP_DEVICE_HOST,
369 (BrigType16_t) BRIG_TYPE_S32)),
370 omp_simple_builtin ("omp_is_initial_device", NULL, false,
371 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
372 omp_simple_builtin ("omp_get_dynamic", NULL, false,
373 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
374 omp_simple_builtin ("omp_set_dynamic", NULL, false, NULL),
375 omp_simple_builtin ("omp_init_lock", HSA_WARN_LOCK_ROUTINE, true),
376 omp_simple_builtin ("omp_init_lock_with_hint", HSA_WARN_LOCK_ROUTINE,
377 true),
378 omp_simple_builtin ("omp_init_nest_lock_with_hint", HSA_WARN_LOCK_ROUTINE,
379 true),
380 omp_simple_builtin ("omp_destroy_lock", HSA_WARN_LOCK_ROUTINE, true),
381 omp_simple_builtin ("omp_set_lock", HSA_WARN_LOCK_ROUTINE, true),
382 omp_simple_builtin ("omp_unset_lock", HSA_WARN_LOCK_ROUTINE, true),
383 omp_simple_builtin ("omp_test_lock", HSA_WARN_LOCK_ROUTINE, true),
384 omp_simple_builtin ("omp_get_wtime", HSA_WARN_TIMING_ROUTINE, true),
385 omp_simple_builtin ("omp_get_wtick", HSA_WARN_TIMING_ROUTINE, true),
386 omp_simple_builtin ("omp_target_alloc", HSA_WARN_MEMORY_ROUTINE, false,
387 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_U64)),
388 omp_simple_builtin ("omp_target_free", HSA_WARN_MEMORY_ROUTINE, false),
389 omp_simple_builtin ("omp_target_is_present", HSA_WARN_MEMORY_ROUTINE,
390 false,
391 new hsa_op_immed (-1, (BrigType16_t) BRIG_TYPE_S32)),
392 omp_simple_builtin ("omp_target_memcpy", HSA_WARN_MEMORY_ROUTINE, false,
393 new hsa_op_immed (-1, (BrigType16_t) BRIG_TYPE_S32)),
394 omp_simple_builtin ("omp_target_memcpy_rect", HSA_WARN_MEMORY_ROUTINE,
395 false,
396 new hsa_op_immed (-1, (BrigType16_t) BRIG_TYPE_S32)),
397 omp_simple_builtin ("omp_target_associate_ptr", HSA_WARN_MEMORY_ROUTINE,
398 false,
399 new hsa_op_immed (-1, (BrigType16_t) BRIG_TYPE_S32)),
400 omp_simple_builtin ("omp_target_disassociate_ptr",
401 HSA_WARN_MEMORY_ROUTINE,
402 false,
403 new hsa_op_immed (-1, (BrigType16_t) BRIG_TYPE_S32)),
404 omp_simple_builtin ("omp_set_max_active_levels",
405 "Support for HSA only allows only one active level, "
406 "call to omp_set_max_active_levels will be ignored "
407 "in the generated HSAIL",
408 false, NULL),
409 omp_simple_builtin ("omp_get_max_active_levels", NULL, false,
410 new hsa_op_immed (1, (BrigType16_t) BRIG_TYPE_S32)),
411 omp_simple_builtin ("omp_in_final", NULL, false,
412 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
413 omp_simple_builtin ("omp_get_proc_bind", HSA_WARN_AFFINITY, false,
414 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
415 omp_simple_builtin ("omp_get_num_places", HSA_WARN_AFFINITY, false,
416 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
417 omp_simple_builtin ("omp_get_place_num_procs", HSA_WARN_AFFINITY, false,
418 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
419 omp_simple_builtin ("omp_get_place_proc_ids", HSA_WARN_AFFINITY, false,
420 NULL),
421 omp_simple_builtin ("omp_get_place_num", HSA_WARN_AFFINITY, false,
422 new hsa_op_immed (-1, (BrigType16_t) BRIG_TYPE_S32)),
423 omp_simple_builtin ("omp_get_partition_num_places", HSA_WARN_AFFINITY,
424 false,
425 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
426 omp_simple_builtin ("omp_get_partition_place_nums", HSA_WARN_AFFINITY,
427 false, NULL),
428 omp_simple_builtin ("omp_set_default_device",
429 "omp_set_default_device has undefined semantics "
430 "within target regions, support for HSA ignores it",
431 false, NULL),
432 omp_simple_builtin ("omp_get_default_device",
433 "omp_get_default_device has undefined semantics "
434 "within target regions, support for HSA ignores it",
435 false,
436 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
437 omp_simple_builtin ("omp_get_num_devices",
438 "omp_get_num_devices has undefined semantics "
439 "within target regions, support for HSA ignores it",
440 false,
441 new hsa_op_immed (0, (BrigType16_t) BRIG_TYPE_S32)),
442 omp_simple_builtin ("omp_get_num_procs", NULL, true, NULL),
443 omp_simple_builtin ("omp_get_cancellation", NULL, true, NULL),
444 omp_simple_builtin ("omp_set_nested", NULL, true, NULL),
445 omp_simple_builtin ("omp_get_nested", NULL, true, NULL),
446 omp_simple_builtin ("omp_set_schedule", NULL, true, NULL),
447 omp_simple_builtin ("omp_get_schedule", NULL, true, NULL),
448 omp_simple_builtin ("omp_get_thread_limit", NULL, true, NULL),
449 omp_simple_builtin ("omp_get_team_size", NULL, true, NULL),
450 omp_simple_builtin ("omp_get_ancestor_thread_num", NULL, true, NULL),
451 omp_simple_builtin ("omp_get_max_task_priority", NULL, true, NULL)
454 unsigned count = sizeof (omp_builtins) / sizeof (omp_simple_builtin);
456 for (unsigned i = 0; i < count; i++)
457 omp_simple_builtins->put (omp_builtins[i].m_name, omp_builtins[i]);
460 /* Allocate HSA structures that we need only while generating with this. */
462 static void
463 hsa_init_data_for_cfun ()
465 hsa_init_compilation_unit_data ();
466 gcc_obstack_init (&hsa_obstack);
469 /* Deinitialize HSA subsystem and free all allocated memory. */
471 static void
472 hsa_deinit_data_for_cfun (void)
474 basic_block bb;
476 FOR_ALL_BB_FN (bb, cfun)
477 if (bb->aux)
479 hsa_bb *hbb = hsa_bb_for_bb (bb);
480 hbb->~hsa_bb ();
481 bb->aux = NULL;
484 for (unsigned int i = 0; i < hsa_operands.length (); i++)
485 hsa_destroy_operand (hsa_operands[i]);
487 hsa_operands.release ();
489 for (unsigned i = 0; i < hsa_instructions.length (); i++)
490 hsa_destroy_insn (hsa_instructions[i]);
492 hsa_instructions.release ();
494 if (omp_simple_builtins != NULL)
496 delete omp_simple_builtins;
497 omp_simple_builtins = NULL;
500 obstack_free (&hsa_obstack, NULL);
501 delete hsa_cfun;
504 /* Return the type which holds addresses in the given SEGMENT. */
506 static BrigType16_t
507 hsa_get_segment_addr_type (BrigSegment8_t segment)
509 switch (segment)
511 case BRIG_SEGMENT_NONE:
512 gcc_unreachable ();
514 case BRIG_SEGMENT_FLAT:
515 case BRIG_SEGMENT_GLOBAL:
516 case BRIG_SEGMENT_READONLY:
517 case BRIG_SEGMENT_KERNARG:
518 return hsa_machine_large_p () ? BRIG_TYPE_U64 : BRIG_TYPE_U32;
520 case BRIG_SEGMENT_GROUP:
521 case BRIG_SEGMENT_PRIVATE:
522 case BRIG_SEGMENT_SPILL:
523 case BRIG_SEGMENT_ARG:
524 return BRIG_TYPE_U32;
526 gcc_unreachable ();
529 /* Return integer brig type according to provided SIZE in bytes. If SIGN
530 is set to true, return signed integer type. */
532 static BrigType16_t
533 get_integer_type_by_bytes (unsigned size, bool sign)
535 if (sign)
536 switch (size)
538 case 1:
539 return BRIG_TYPE_S8;
540 case 2:
541 return BRIG_TYPE_S16;
542 case 4:
543 return BRIG_TYPE_S32;
544 case 8:
545 return BRIG_TYPE_S64;
546 default:
547 break;
549 else
550 switch (size)
552 case 1:
553 return BRIG_TYPE_U8;
554 case 2:
555 return BRIG_TYPE_U16;
556 case 4:
557 return BRIG_TYPE_U32;
558 case 8:
559 return BRIG_TYPE_U64;
560 default:
561 break;
564 return 0;
567 /* If T points to an integral type smaller than 32 bits, change it to a 32bit
568 equivalent and return the result. Otherwise just return the result. */
570 static BrigType16_t
571 hsa_extend_inttype_to_32bit (BrigType16_t t)
573 if (t == BRIG_TYPE_U8 || t == BRIG_TYPE_U16)
574 return BRIG_TYPE_U32;
575 else if (t == BRIG_TYPE_S8 || t == BRIG_TYPE_S16)
576 return BRIG_TYPE_S32;
577 return t;
580 /* Return HSA type for tree TYPE, which has to fit into BrigType16_t. Pointers
581 are assumed to use flat addressing. If min32int is true, always expand
582 integer types to one that has at least 32 bits. */
584 static BrigType16_t
585 hsa_type_for_scalar_tree_type (const_tree type, bool min32int)
587 HOST_WIDE_INT bsize;
588 const_tree base;
589 BrigType16_t res = BRIG_TYPE_NONE;
591 gcc_checking_assert (TYPE_P (type));
592 gcc_checking_assert (!AGGREGATE_TYPE_P (type));
593 if (POINTER_TYPE_P (type))
594 return hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT);
596 if (TREE_CODE (type) == VECTOR_TYPE)
597 base = TREE_TYPE (type);
598 else if (TREE_CODE (type) == COMPLEX_TYPE)
600 base = TREE_TYPE (type);
601 min32int = true;
603 else
604 base = type;
606 if (!tree_fits_uhwi_p (TYPE_SIZE (base)))
608 HSA_SORRY_ATV (EXPR_LOCATION (type),
609 "support for HSA does not implement huge or "
610 "variable-sized type %qT", type);
611 return res;
614 bsize = tree_to_uhwi (TYPE_SIZE (base));
615 unsigned byte_size = bsize / BITS_PER_UNIT;
616 if (INTEGRAL_TYPE_P (base))
617 res = get_integer_type_by_bytes (byte_size, !TYPE_UNSIGNED (base));
618 else if (SCALAR_FLOAT_TYPE_P (base))
620 switch (bsize)
622 case 16:
623 res = BRIG_TYPE_F16;
624 break;
625 case 32:
626 res = BRIG_TYPE_F32;
627 break;
628 case 64:
629 res = BRIG_TYPE_F64;
630 break;
631 default:
632 break;
636 if (res == BRIG_TYPE_NONE)
638 HSA_SORRY_ATV (EXPR_LOCATION (type),
639 "support for HSA does not implement type %qT", type);
640 return res;
643 if (TREE_CODE (type) == VECTOR_TYPE)
645 HOST_WIDE_INT tsize = tree_to_uhwi (TYPE_SIZE (type));
647 if (bsize == tsize)
649 HSA_SORRY_ATV (EXPR_LOCATION (type),
650 "support for HSA does not implement a vector type "
651 "where a type and unit size are equal: %qT", type);
652 return res;
655 switch (tsize)
657 case 32:
658 res |= BRIG_TYPE_PACK_32;
659 break;
660 case 64:
661 res |= BRIG_TYPE_PACK_64;
662 break;
663 case 128:
664 res |= BRIG_TYPE_PACK_128;
665 break;
666 default:
667 HSA_SORRY_ATV (EXPR_LOCATION (type),
668 "support for HSA does not implement type %qT", type);
672 if (min32int)
673 /* Registers/immediate operands can only be 32bit or more except for
674 f16. */
675 res = hsa_extend_inttype_to_32bit (res);
677 if (TREE_CODE (type) == COMPLEX_TYPE)
679 unsigned bsize = 2 * hsa_type_bit_size (res);
680 res = hsa_bittype_for_bitsize (bsize);
683 return res;
686 /* Returns the BRIG type we need to load/store entities of TYPE. */
688 static BrigType16_t
689 mem_type_for_type (BrigType16_t type)
691 /* HSA has non-intuitive constraints on load/store types. If it's
692 a bit-type it _must_ be B128, if it's not a bit-type it must be
693 64bit max. So for loading entities of 128 bits (e.g. vectors)
694 we have to use B128, while for loading the rest we have to use the
695 input type (??? or maybe also flattened to a equally sized non-vector
696 unsigned type?). */
697 if ((type & BRIG_TYPE_PACK_MASK) == BRIG_TYPE_PACK_128)
698 return BRIG_TYPE_B128;
699 else if (hsa_btype_p (type) || hsa_type_packed_p (type))
701 unsigned bitsize = hsa_type_bit_size (type);
702 if (bitsize < 128)
703 return hsa_uint_for_bitsize (bitsize);
704 else
705 return hsa_bittype_for_bitsize (bitsize);
707 return type;
710 /* Return HSA type for tree TYPE. If it cannot fit into BrigType16_t, some
711 kind of array will be generated, setting DIM appropriately. Otherwise, it
712 will be set to zero. */
714 static BrigType16_t
715 hsa_type_for_tree_type (const_tree type, unsigned HOST_WIDE_INT *dim_p = NULL,
716 bool min32int = false)
718 gcc_checking_assert (TYPE_P (type));
719 if (!tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
721 HSA_SORRY_ATV (EXPR_LOCATION (type), "support for HSA does not "
722 "implement huge or variable-sized type %qT", type);
723 return BRIG_TYPE_NONE;
726 if (RECORD_OR_UNION_TYPE_P (type))
728 if (dim_p)
729 *dim_p = tree_to_uhwi (TYPE_SIZE_UNIT (type));
730 return BRIG_TYPE_U8 | BRIG_TYPE_ARRAY;
733 if (TREE_CODE (type) == ARRAY_TYPE)
735 /* We try to be nice and use the real base-type when this is an array of
736 scalars and only resort to an array of bytes if the type is more
737 complex. */
739 unsigned HOST_WIDE_INT dim = 1;
741 while (TREE_CODE (type) == ARRAY_TYPE)
743 tree domain = TYPE_DOMAIN (type);
744 if (!TYPE_MIN_VALUE (domain)
745 || !TYPE_MAX_VALUE (domain)
746 || !tree_fits_shwi_p (TYPE_MIN_VALUE (domain))
747 || !tree_fits_shwi_p (TYPE_MAX_VALUE (domain)))
749 HSA_SORRY_ATV (EXPR_LOCATION (type),
750 "support for HSA does not implement array "
751 "%qT with unknown bounds", type);
752 return BRIG_TYPE_NONE;
754 HOST_WIDE_INT min = tree_to_shwi (TYPE_MIN_VALUE (domain));
755 HOST_WIDE_INT max = tree_to_shwi (TYPE_MAX_VALUE (domain));
756 dim = dim * (unsigned HOST_WIDE_INT) (max - min + 1);
757 type = TREE_TYPE (type);
760 BrigType16_t res;
761 if (RECORD_OR_UNION_TYPE_P (type))
763 dim = dim * tree_to_uhwi (TYPE_SIZE_UNIT (type));
764 res = BRIG_TYPE_U8;
766 else
767 res = hsa_type_for_scalar_tree_type (type, false);
769 if (dim_p)
770 *dim_p = dim;
771 return res | BRIG_TYPE_ARRAY;
774 /* Scalar case: */
775 if (dim_p)
776 *dim_p = 0;
778 return hsa_type_for_scalar_tree_type (type, min32int);
781 /* Returns true if converting from STYPE into DTYPE needs the _CVT
782 opcode. If false a normal _MOV is enough. */
784 static bool
785 hsa_needs_cvt (BrigType16_t dtype, BrigType16_t stype)
787 if (hsa_btype_p (dtype))
788 return false;
790 /* float <-> int conversions are real converts. */
791 if (hsa_type_float_p (dtype) != hsa_type_float_p (stype))
792 return true;
793 /* When both types have different size, then we need CVT as well. */
794 if (hsa_type_bit_size (dtype) != hsa_type_bit_size (stype))
795 return true;
796 return false;
799 /* Return declaration name if it exists or create one from UID if it does not.
800 If DECL is a local variable, make UID part of its name. */
802 const char *
803 hsa_get_declaration_name (tree decl)
805 if (!DECL_NAME (decl))
807 char buf[64];
808 snprintf (buf, 64, "__hsa_anon_%u", DECL_UID (decl));
809 size_t len = strlen (buf);
810 char *copy = (char *) obstack_alloc (&hsa_obstack, len + 1);
811 memcpy (copy, buf, len + 1);
812 return copy;
815 tree name_tree;
816 if (TREE_CODE (decl) == FUNCTION_DECL
817 || (TREE_CODE (decl) == VAR_DECL && is_global_var (decl)))
818 name_tree = DECL_ASSEMBLER_NAME (decl);
819 else
820 name_tree = DECL_NAME (decl);
822 const char *name = IDENTIFIER_POINTER (name_tree);
823 /* User-defined assembly names have prepended asterisk symbol. */
824 if (name[0] == '*')
825 name++;
827 if ((TREE_CODE (decl) == VAR_DECL)
828 && decl_function_context (decl))
830 size_t len = strlen (name);
831 char *buf = (char *) alloca (len + 32);
832 snprintf (buf, len + 32, "%s_%u", name, DECL_UID (decl));
833 len = strlen (buf);
834 char *copy = (char *) obstack_alloc (&hsa_obstack, len + 1);
835 memcpy (copy, buf, len + 1);
836 return copy;
838 else
839 return name;
842 /* Lookup or create the associated hsa_symbol structure with a given VAR_DECL
843 or lookup the hsa_structure corresponding to a PARM_DECL. */
845 static hsa_symbol *
846 get_symbol_for_decl (tree decl)
848 hsa_symbol **slot;
849 hsa_symbol dummy (BRIG_TYPE_NONE, BRIG_SEGMENT_NONE, BRIG_LINKAGE_NONE);
851 gcc_assert (TREE_CODE (decl) == PARM_DECL
852 || TREE_CODE (decl) == RESULT_DECL
853 || TREE_CODE (decl) == VAR_DECL
854 || TREE_CODE (decl) == CONST_DECL);
856 dummy.m_decl = decl;
858 bool is_in_global_vars = ((TREE_CODE (decl) == VAR_DECL)
859 && !decl_function_context (decl));
861 if (is_in_global_vars)
862 slot = hsa_global_variable_symbols->find_slot (&dummy, INSERT);
863 else
864 slot = hsa_cfun->m_local_symbols->find_slot (&dummy, INSERT);
866 gcc_checking_assert (slot);
867 if (*slot)
869 hsa_symbol *sym = (*slot);
871 /* If the symbol is problematic, mark current function also as
872 problematic. */
873 if (sym->m_seen_error)
874 hsa_fail_cfun ();
876 /* PR hsa/70234: If a global variable was marked to be emitted,
877 but HSAIL generation of a function using the variable fails,
878 we should retry to emit the variable in context of a different
879 function.
881 Iterate elements whether a symbol is already in m_global_symbols
882 of not. */
883 if (is_in_global_vars && !sym->m_emitted_to_brig)
885 for (unsigned i = 0; i < hsa_cfun->m_global_symbols.length (); i++)
886 if (hsa_cfun->m_global_symbols[i] == sym)
887 return *slot;
888 hsa_cfun->m_global_symbols.safe_push (sym);
891 return *slot;
893 else
895 hsa_symbol *sym;
896 /* PARM_DECLs and RESULT_DECL should be already in m_local_symbols. */
897 gcc_assert (TREE_CODE (decl) == VAR_DECL
898 || TREE_CODE (decl) == CONST_DECL);
899 BrigAlignment8_t align = hsa_object_alignment (decl);
901 if (is_in_global_vars)
903 gcc_checking_assert (TREE_CODE (decl) != CONST_DECL);
904 sym = new hsa_symbol (BRIG_TYPE_NONE, BRIG_SEGMENT_GLOBAL,
905 BRIG_LINKAGE_PROGRAM, true,
906 BRIG_ALLOCATION_PROGRAM, align);
907 hsa_cfun->m_global_symbols.safe_push (sym);
908 sym->fillup_for_decl (decl);
909 if (sym->m_align > align)
911 sym->m_seen_error = true;
912 HSA_SORRY_ATV (EXPR_LOCATION (decl),
913 "HSA specification requires that %E is at least "
914 "naturally aligned", decl);
917 else
919 /* As generation of efficient memory copy instructions relies
920 on alignment greater or equal to 8 bytes,
921 we need to increase alignment of all aggregate types.. */
922 if (AGGREGATE_TYPE_P (TREE_TYPE (decl)))
923 align = MAX ((BrigAlignment8_t) BRIG_ALIGNMENT_8, align);
925 BrigAllocation allocation = BRIG_ALLOCATION_AUTOMATIC;
926 BrigSegment8_t segment;
927 if (TREE_CODE (decl) == CONST_DECL)
929 segment = BRIG_SEGMENT_READONLY;
930 allocation = BRIG_ALLOCATION_AGENT;
932 else if (lookup_attribute ("hsa_group_segment",
933 DECL_ATTRIBUTES (decl)))
934 segment = BRIG_SEGMENT_GROUP;
935 else if (TREE_STATIC (decl))
937 segment = BRIG_SEGMENT_GLOBAL;
938 allocation = BRIG_ALLOCATION_PROGRAM;
940 else if (lookup_attribute ("hsa_global_segment",
941 DECL_ATTRIBUTES (decl)))
942 segment = BRIG_SEGMENT_GLOBAL;
943 else
944 segment = BRIG_SEGMENT_PRIVATE;
946 sym = new hsa_symbol (BRIG_TYPE_NONE, segment, BRIG_LINKAGE_FUNCTION,
947 false, allocation, align);
948 sym->fillup_for_decl (decl);
949 hsa_cfun->m_private_variables.safe_push (sym);
952 sym->m_name = hsa_get_declaration_name (decl);
953 *slot = sym;
954 return sym;
958 /* For a given HSA function declaration, return a host
959 function declaration. */
961 tree
962 hsa_get_host_function (tree decl)
964 hsa_function_summary *s
965 = hsa_summaries->get (cgraph_node::get_create (decl));
966 gcc_assert (s->m_kind != HSA_NONE);
967 gcc_assert (s->m_gpu_implementation_p);
969 return s->m_bound_function ? s->m_bound_function->decl : NULL;
972 /* Return true if function DECL has a host equivalent function. */
974 static char *
975 get_brig_function_name (tree decl)
977 tree d = decl;
979 hsa_function_summary *s = hsa_summaries->get (cgraph_node::get_create (d));
980 if (s->m_kind != HSA_NONE
981 && s->m_gpu_implementation_p
982 && s->m_bound_function)
983 d = s->m_bound_function->decl;
985 /* IPA split can create a function that has no host equivalent. */
986 if (d == NULL)
987 d = decl;
989 char *name = xstrdup (hsa_get_declaration_name (d));
990 hsa_sanitize_name (name);
992 return name;
995 /* Create a spill symbol of type TYPE. */
997 hsa_symbol *
998 hsa_get_spill_symbol (BrigType16_t type)
1000 hsa_symbol *sym = new hsa_symbol (type, BRIG_SEGMENT_SPILL,
1001 BRIG_LINKAGE_FUNCTION);
1002 hsa_cfun->m_spill_symbols.safe_push (sym);
1003 return sym;
1006 /* Create a symbol for a read-only string constant. */
1007 hsa_symbol *
1008 hsa_get_string_cst_symbol (tree string_cst)
1010 gcc_checking_assert (TREE_CODE (string_cst) == STRING_CST);
1012 hsa_symbol **slot = hsa_cfun->m_string_constants_map.get (string_cst);
1013 if (slot)
1014 return *slot;
1016 hsa_op_immed *cst = new hsa_op_immed (string_cst);
1017 hsa_symbol *sym = new hsa_symbol (cst->m_type, BRIG_SEGMENT_GLOBAL,
1018 BRIG_LINKAGE_MODULE, true,
1019 BRIG_ALLOCATION_AGENT);
1020 sym->m_cst_value = cst;
1021 sym->m_dim = TREE_STRING_LENGTH (string_cst);
1022 sym->m_name_number = hsa_cfun->m_global_symbols.length ();
1024 hsa_cfun->m_global_symbols.safe_push (sym);
1025 hsa_cfun->m_string_constants_map.put (string_cst, sym);
1026 return sym;
1029 /* Make the type of a MOV instruction larger if mandated by HSAIL rules. */
1031 static void
1032 hsa_fixup_mov_insn_type (hsa_insn_basic *insn)
1034 insn->m_type = hsa_extend_inttype_to_32bit (insn->m_type);
1035 if (insn->m_type == BRIG_TYPE_B8 || insn->m_type == BRIG_TYPE_B16)
1036 insn->m_type = BRIG_TYPE_B32;
1039 /* Constructor of the ancestor of all operands. K is BRIG kind that identified
1040 what the operator is. */
1042 hsa_op_base::hsa_op_base (BrigKind16_t k)
1043 : m_next (NULL), m_brig_op_offset (0), m_kind (k)
1045 hsa_operands.safe_push (this);
1048 /* Constructor of ancestor of all operands which have a type. K is BRIG kind
1049 that identified what the operator is. T is the type of the operator. */
1051 hsa_op_with_type::hsa_op_with_type (BrigKind16_t k, BrigType16_t t)
1052 : hsa_op_base (k), m_type (t)
1056 hsa_op_with_type *
1057 hsa_op_with_type::get_in_type (BrigType16_t dtype, hsa_bb *hbb)
1059 if (m_type == dtype)
1060 return this;
1062 hsa_op_reg *dest;
1064 if (hsa_needs_cvt (dtype, m_type))
1066 dest = new hsa_op_reg (dtype);
1067 hbb->append_insn (new hsa_insn_cvt (dest, this));
1069 else if (is_a <hsa_op_reg *> (this))
1071 /* In the end, HSA registers do not really have types, only sizes, so if
1072 the sizes match, we can use the register directly. */
1073 gcc_checking_assert (hsa_type_bit_size (dtype)
1074 == hsa_type_bit_size (m_type));
1075 return this;
1077 else
1079 dest = new hsa_op_reg (m_type);
1081 hsa_insn_basic *mov = new hsa_insn_basic (2, BRIG_OPCODE_MOV,
1082 dest->m_type, dest, this);
1083 hsa_fixup_mov_insn_type (mov);
1084 hbb->append_insn (mov);
1085 /* We cannot simply for instance: 'mov_u32 $_3, 48 (s32)' because
1086 type of the operand must be same as type of the instruction. */
1087 dest->m_type = dtype;
1090 return dest;
1093 /* If this operand has integer type smaller than 32 bits, extend it to 32 bits,
1094 adding instructions to HBB if needed. */
1096 hsa_op_with_type *
1097 hsa_op_with_type::extend_int_to_32bit (hsa_bb *hbb)
1099 if (m_type == BRIG_TYPE_U8 || m_type == BRIG_TYPE_U16)
1100 return get_in_type (BRIG_TYPE_U32, hbb);
1101 else if (m_type == BRIG_TYPE_S8 || m_type == BRIG_TYPE_S16)
1102 return get_in_type (BRIG_TYPE_S32, hbb);
1103 else
1104 return this;
1107 /* Constructor of class representing HSA immediate values. TREE_VAL is the
1108 tree representation of the immediate value. If min32int is true,
1109 always expand integer types to one that has at least 32 bits. */
1111 hsa_op_immed::hsa_op_immed (tree tree_val, bool min32int)
1112 : hsa_op_with_type (BRIG_KIND_OPERAND_CONSTANT_BYTES,
1113 hsa_type_for_tree_type (TREE_TYPE (tree_val), NULL,
1114 min32int))
1116 if (hsa_seen_error ())
1117 return;
1119 gcc_checking_assert ((is_gimple_min_invariant (tree_val)
1120 && (!POINTER_TYPE_P (TREE_TYPE (tree_val))
1121 || TREE_CODE (tree_val) == INTEGER_CST))
1122 || TREE_CODE (tree_val) == CONSTRUCTOR);
1123 m_tree_value = tree_val;
1125 /* Verify that all elements of a constructor are constants. */
1126 if (TREE_CODE (m_tree_value) == CONSTRUCTOR)
1127 for (unsigned i = 0; i < CONSTRUCTOR_NELTS (m_tree_value); i++)
1129 tree v = CONSTRUCTOR_ELT (m_tree_value, i)->value;
1130 if (!CONSTANT_CLASS_P (v))
1132 HSA_SORRY_AT (EXPR_LOCATION (tree_val),
1133 "HSA ctor should have only constants");
1134 return;
1139 /* Constructor of class representing HSA immediate values. INTEGER_VALUE is the
1140 integer representation of the immediate value. TYPE is BRIG type. */
1142 hsa_op_immed::hsa_op_immed (HOST_WIDE_INT integer_value, BrigType16_t type)
1143 : hsa_op_with_type (BRIG_KIND_OPERAND_CONSTANT_BYTES, type),
1144 m_tree_value (NULL)
1146 gcc_assert (hsa_type_integer_p (type));
1147 m_int_value = integer_value;
1150 hsa_op_immed::hsa_op_immed ()
1151 : hsa_op_with_type (BRIG_KIND_NONE, BRIG_TYPE_NONE)
1155 /* New operator to allocate immediate operands from obstack. */
1157 void *
1158 hsa_op_immed::operator new (size_t size)
1160 return obstack_alloc (&hsa_obstack, size);
1163 /* Destructor. */
1165 hsa_op_immed::~hsa_op_immed ()
1169 /* Change type of the immediate value to T. */
1171 void
1172 hsa_op_immed::set_type (BrigType16_t t)
1174 m_type = t;
1177 /* Constructor of class representing HSA registers and pseudo-registers. T is
1178 the BRIG type of the new register. */
1180 hsa_op_reg::hsa_op_reg (BrigType16_t t)
1181 : hsa_op_with_type (BRIG_KIND_OPERAND_REGISTER, t), m_gimple_ssa (NULL_TREE),
1182 m_def_insn (NULL), m_spill_sym (NULL), m_order (hsa_cfun->m_reg_count++),
1183 m_lr_begin (0), m_lr_end (0), m_reg_class (0), m_hard_num (0)
1187 /* New operator to allocate a register from obstack. */
1189 void *
1190 hsa_op_reg::operator new (size_t size)
1192 return obstack_alloc (&hsa_obstack, size);
1195 /* Verify register operand. */
1197 void
1198 hsa_op_reg::verify_ssa ()
1200 /* Verify that each HSA register has a definition assigned.
1201 Exceptions are VAR_DECL and PARM_DECL that are a default
1202 definition. */
1203 gcc_checking_assert (m_def_insn
1204 || (m_gimple_ssa != NULL
1205 && (!SSA_NAME_VAR (m_gimple_ssa)
1206 || (TREE_CODE (SSA_NAME_VAR (m_gimple_ssa))
1207 != PARM_DECL))
1208 && SSA_NAME_IS_DEFAULT_DEF (m_gimple_ssa)));
1210 /* Verify that every use of the register is really present
1211 in an instruction. */
1212 for (unsigned i = 0; i < m_uses.length (); i++)
1214 hsa_insn_basic *use = m_uses[i];
1216 bool is_visited = false;
1217 for (unsigned j = 0; j < use->operand_count (); j++)
1219 hsa_op_base *u = use->get_op (j);
1220 hsa_op_address *addr; addr = dyn_cast <hsa_op_address *> (u);
1221 if (addr && addr->m_reg)
1222 u = addr->m_reg;
1224 if (u == this)
1226 bool r = !addr && use->op_output_p (j);
1228 if (r)
1230 error ("HSA SSA name defined by instruction that is supposed "
1231 "to be using it");
1232 debug_hsa_operand (this);
1233 debug_hsa_insn (use);
1234 internal_error ("HSA SSA verification failed");
1237 is_visited = true;
1241 if (!is_visited)
1243 error ("HSA SSA name not among operands of instruction that is "
1244 "supposed to use it");
1245 debug_hsa_operand (this);
1246 debug_hsa_insn (use);
1247 internal_error ("HSA SSA verification failed");
1252 hsa_op_address::hsa_op_address (hsa_symbol *sym, hsa_op_reg *r,
1253 HOST_WIDE_INT offset)
1254 : hsa_op_base (BRIG_KIND_OPERAND_ADDRESS), m_symbol (sym), m_reg (r),
1255 m_imm_offset (offset)
1259 hsa_op_address::hsa_op_address (hsa_symbol *sym, HOST_WIDE_INT offset)
1260 : hsa_op_base (BRIG_KIND_OPERAND_ADDRESS), m_symbol (sym), m_reg (NULL),
1261 m_imm_offset (offset)
1265 hsa_op_address::hsa_op_address (hsa_op_reg *r, HOST_WIDE_INT offset)
1266 : hsa_op_base (BRIG_KIND_OPERAND_ADDRESS), m_symbol (NULL), m_reg (r),
1267 m_imm_offset (offset)
1271 /* New operator to allocate address operands from obstack. */
1273 void *
1274 hsa_op_address::operator new (size_t size)
1276 return obstack_alloc (&hsa_obstack, size);
1279 /* Constructor of an operand referring to HSAIL code. */
1281 hsa_op_code_ref::hsa_op_code_ref () : hsa_op_base (BRIG_KIND_OPERAND_CODE_REF),
1282 m_directive_offset (0)
1286 /* Constructor of an operand representing a code list. Set it up so that it
1287 can contain ELEMENTS number of elements. */
1289 hsa_op_code_list::hsa_op_code_list (unsigned elements)
1290 : hsa_op_base (BRIG_KIND_OPERAND_CODE_LIST)
1292 m_offsets.create (1);
1293 m_offsets.safe_grow_cleared (elements);
1296 /* New operator to allocate code list operands from obstack. */
1298 void *
1299 hsa_op_code_list::operator new (size_t size)
1301 return obstack_alloc (&hsa_obstack, size);
1304 /* Constructor of an operand representing an operand list.
1305 Set it up so that it can contain ELEMENTS number of elements. */
1307 hsa_op_operand_list::hsa_op_operand_list (unsigned elements)
1308 : hsa_op_base (BRIG_KIND_OPERAND_OPERAND_LIST)
1310 m_offsets.create (elements);
1311 m_offsets.safe_grow (elements);
1314 /* New operator to allocate operand list operands from obstack. */
1316 void *
1317 hsa_op_operand_list::operator new (size_t size)
1319 return obstack_alloc (&hsa_obstack, size);
1322 hsa_op_operand_list::~hsa_op_operand_list ()
1324 m_offsets.release ();
1328 hsa_op_reg *
1329 hsa_function_representation::reg_for_gimple_ssa (tree ssa)
1331 hsa_op_reg *hreg;
1333 gcc_checking_assert (TREE_CODE (ssa) == SSA_NAME);
1334 if (m_ssa_map[SSA_NAME_VERSION (ssa)])
1335 return m_ssa_map[SSA_NAME_VERSION (ssa)];
1337 hreg = new hsa_op_reg (hsa_type_for_scalar_tree_type (TREE_TYPE (ssa),
1338 false));
1339 hreg->m_gimple_ssa = ssa;
1340 m_ssa_map[SSA_NAME_VERSION (ssa)] = hreg;
1342 return hreg;
1345 void
1346 hsa_op_reg::set_definition (hsa_insn_basic *insn)
1348 if (hsa_cfun->m_in_ssa)
1350 gcc_checking_assert (!m_def_insn);
1351 m_def_insn = insn;
1353 else
1354 m_def_insn = NULL;
1357 /* Constructor of the class which is the bases of all instructions and directly
1358 represents the most basic ones. NOPS is the number of operands that the
1359 operand vector will contain (and which will be cleared). OP is the opcode
1360 of the instruction. This constructor does not set type. */
1362 hsa_insn_basic::hsa_insn_basic (unsigned nops, int opc)
1363 : m_prev (NULL),
1364 m_next (NULL), m_bb (NULL), m_opcode (opc), m_number (0),
1365 m_type (BRIG_TYPE_NONE), m_brig_offset (0)
1367 if (nops > 0)
1368 m_operands.safe_grow_cleared (nops);
1370 hsa_instructions.safe_push (this);
1373 /* Make OP the operand number INDEX of operands of this instruction. If OP is a
1374 register or an address containing a register, then either set the definition
1375 of the register to this instruction if it an output operand or add this
1376 instruction to the uses if it is an input one. */
1378 void
1379 hsa_insn_basic::set_op (int index, hsa_op_base *op)
1381 /* Each address operand is always use. */
1382 hsa_op_address *addr = dyn_cast <hsa_op_address *> (op);
1383 if (addr && addr->m_reg)
1384 addr->m_reg->m_uses.safe_push (this);
1385 else
1387 hsa_op_reg *reg = dyn_cast <hsa_op_reg *> (op);
1388 if (reg)
1390 if (op_output_p (index))
1391 reg->set_definition (this);
1392 else
1393 reg->m_uses.safe_push (this);
1397 m_operands[index] = op;
1400 /* Get INDEX-th operand of the instruction. */
1402 hsa_op_base *
1403 hsa_insn_basic::get_op (int index)
1405 return m_operands[index];
1408 /* Get address of INDEX-th operand of the instruction. */
1410 hsa_op_base **
1411 hsa_insn_basic::get_op_addr (int index)
1413 return &m_operands[index];
1416 /* Get number of operands of the instruction. */
1417 unsigned int
1418 hsa_insn_basic::operand_count ()
1420 return m_operands.length ();
1423 /* Constructor of the class which is the bases of all instructions and directly
1424 represents the most basic ones. NOPS is the number of operands that the
1425 operand vector will contain (and which will be cleared). OPC is the opcode
1426 of the instruction, T is the type of the instruction. */
1428 hsa_insn_basic::hsa_insn_basic (unsigned nops, int opc, BrigType16_t t,
1429 hsa_op_base *arg0, hsa_op_base *arg1,
1430 hsa_op_base *arg2, hsa_op_base *arg3)
1431 : m_prev (NULL), m_next (NULL), m_bb (NULL), m_opcode (opc),m_number (0),
1432 m_type (t), m_brig_offset (0)
1434 if (nops > 0)
1435 m_operands.safe_grow_cleared (nops);
1437 if (arg0 != NULL)
1439 gcc_checking_assert (nops >= 1);
1440 set_op (0, arg0);
1443 if (arg1 != NULL)
1445 gcc_checking_assert (nops >= 2);
1446 set_op (1, arg1);
1449 if (arg2 != NULL)
1451 gcc_checking_assert (nops >= 3);
1452 set_op (2, arg2);
1455 if (arg3 != NULL)
1457 gcc_checking_assert (nops >= 4);
1458 set_op (3, arg3);
1461 hsa_instructions.safe_push (this);
1464 /* New operator to allocate basic instruction from obstack. */
1466 void *
1467 hsa_insn_basic::operator new (size_t size)
1469 return obstack_alloc (&hsa_obstack, size);
1472 /* Verify the instruction. */
1474 void
1475 hsa_insn_basic::verify ()
1477 hsa_op_address *addr;
1478 hsa_op_reg *reg;
1480 /* Iterate all register operands and verify that the instruction
1481 is set in uses of the register. */
1482 for (unsigned i = 0; i < operand_count (); i++)
1484 hsa_op_base *use = get_op (i);
1486 if ((addr = dyn_cast <hsa_op_address *> (use)) && addr->m_reg)
1488 gcc_assert (addr->m_reg->m_def_insn != this);
1489 use = addr->m_reg;
1492 if ((reg = dyn_cast <hsa_op_reg *> (use)) && !op_output_p (i))
1494 unsigned j;
1495 for (j = 0; j < reg->m_uses.length (); j++)
1497 if (reg->m_uses[j] == this)
1498 break;
1501 if (j == reg->m_uses.length ())
1503 error ("HSA instruction uses a register but is not among "
1504 "recorded register uses");
1505 debug_hsa_operand (reg);
1506 debug_hsa_insn (this);
1507 internal_error ("HSA instruction verification failed");
1513 /* Constructor of an instruction representing a PHI node. NOPS is the number
1514 of operands (equal to the number of predecessors). */
1516 hsa_insn_phi::hsa_insn_phi (unsigned nops, hsa_op_reg *dst)
1517 : hsa_insn_basic (nops, HSA_OPCODE_PHI), m_dest (dst)
1519 dst->set_definition (this);
1522 /* Constructor of class representing instructions for control flow and
1523 sychronization, */
1525 hsa_insn_br::hsa_insn_br (unsigned nops, int opc, BrigType16_t t,
1526 BrigWidth8_t width, hsa_op_base *arg0,
1527 hsa_op_base *arg1, hsa_op_base *arg2,
1528 hsa_op_base *arg3)
1529 : hsa_insn_basic (nops, opc, t, arg0, arg1, arg2, arg3),
1530 m_width (width)
1534 /* Constructor of class representing instruction for conditional jump, CTRL is
1535 the control register determining whether the jump will be carried out, the
1536 new instruction is automatically added to its uses list. */
1538 hsa_insn_cbr::hsa_insn_cbr (hsa_op_reg *ctrl)
1539 : hsa_insn_br (1, BRIG_OPCODE_CBR, BRIG_TYPE_B1, BRIG_WIDTH_1, ctrl)
1543 /* Constructor of class representing instruction for switch jump, CTRL is
1544 the index register. */
1546 hsa_insn_sbr::hsa_insn_sbr (hsa_op_reg *index, unsigned jump_count)
1547 : hsa_insn_basic (1, BRIG_OPCODE_SBR, BRIG_TYPE_B1, index),
1548 m_width (BRIG_WIDTH_1), m_jump_table (vNULL),
1549 m_label_code_list (new hsa_op_code_list (jump_count))
1553 /* Replace all occurrences of OLD_BB with NEW_BB in the statements
1554 jump table. */
1556 void
1557 hsa_insn_sbr::replace_all_labels (basic_block old_bb, basic_block new_bb)
1559 for (unsigned i = 0; i < m_jump_table.length (); i++)
1560 if (m_jump_table[i] == old_bb)
1561 m_jump_table[i] = new_bb;
1564 hsa_insn_sbr::~hsa_insn_sbr ()
1566 m_jump_table.release ();
1569 /* Constructor of comparison instruction. CMP is the comparison operation and T
1570 is the result type. */
1572 hsa_insn_cmp::hsa_insn_cmp (BrigCompareOperation8_t cmp, BrigType16_t t,
1573 hsa_op_base *arg0, hsa_op_base *arg1,
1574 hsa_op_base *arg2)
1575 : hsa_insn_basic (3 , BRIG_OPCODE_CMP, t, arg0, arg1, arg2), m_compare (cmp)
1579 /* Constructor of classes representing memory accesses. OPC is the opcode (must
1580 be BRIG_OPCODE_ST or BRIG_OPCODE_LD) and T is the type. The instruction
1581 operands are provided as ARG0 and ARG1. */
1583 hsa_insn_mem::hsa_insn_mem (int opc, BrigType16_t t, hsa_op_base *arg0,
1584 hsa_op_base *arg1)
1585 : hsa_insn_basic (2, opc, t, arg0, arg1),
1586 m_align (hsa_natural_alignment (t)), m_equiv_class (0)
1588 gcc_checking_assert (opc == BRIG_OPCODE_LD || opc == BRIG_OPCODE_ST);
1591 /* Constructor for descendants allowing different opcodes and number of
1592 operands, it passes its arguments directly to hsa_insn_basic
1593 constructor. The instruction operands are provided as ARG[0-3]. */
1596 hsa_insn_mem::hsa_insn_mem (unsigned nops, int opc, BrigType16_t t,
1597 hsa_op_base *arg0, hsa_op_base *arg1,
1598 hsa_op_base *arg2, hsa_op_base *arg3)
1599 : hsa_insn_basic (nops, opc, t, arg0, arg1, arg2, arg3),
1600 m_align (hsa_natural_alignment (t)), m_equiv_class (0)
1604 /* Constructor of class representing atomic instructions. OPC is the principal
1605 opcode, AOP is the specific atomic operation opcode. T is the type of the
1606 instruction. The instruction operands are provided as ARG[0-3]. */
1608 hsa_insn_atomic::hsa_insn_atomic (int nops, int opc,
1609 enum BrigAtomicOperation aop,
1610 BrigType16_t t, BrigMemoryOrder memorder,
1611 hsa_op_base *arg0,
1612 hsa_op_base *arg1, hsa_op_base *arg2,
1613 hsa_op_base *arg3)
1614 : hsa_insn_mem (nops, opc, t, arg0, arg1, arg2, arg3), m_atomicop (aop),
1615 m_memoryorder (memorder),
1616 m_memoryscope (BRIG_MEMORY_SCOPE_SYSTEM)
1618 gcc_checking_assert (opc == BRIG_OPCODE_ATOMICNORET ||
1619 opc == BRIG_OPCODE_ATOMIC ||
1620 opc == BRIG_OPCODE_SIGNAL ||
1621 opc == BRIG_OPCODE_SIGNALNORET);
1624 /* Constructor of class representing signal instructions. OPC is the prinicpal
1625 opcode, SOP is the specific signal operation opcode. T is the type of the
1626 instruction. The instruction operands are provided as ARG[0-3]. */
1628 hsa_insn_signal::hsa_insn_signal (int nops, int opc,
1629 enum BrigAtomicOperation sop,
1630 BrigType16_t t, BrigMemoryOrder memorder,
1631 hsa_op_base *arg0, hsa_op_base *arg1,
1632 hsa_op_base *arg2, hsa_op_base *arg3)
1633 : hsa_insn_basic (nops, opc, t, arg0, arg1, arg2, arg3),
1634 m_memory_order (memorder), m_signalop (sop)
1638 /* Constructor of class representing segment conversion instructions. OPC is
1639 the opcode which must be either BRIG_OPCODE_STOF or BRIG_OPCODE_FTOS. DEST
1640 and SRCT are destination and source types respectively, SEG is the segment
1641 we are converting to or from. The instruction operands are
1642 provided as ARG0 and ARG1. */
1644 hsa_insn_seg::hsa_insn_seg (int opc, BrigType16_t dest, BrigType16_t srct,
1645 BrigSegment8_t seg, hsa_op_base *arg0,
1646 hsa_op_base *arg1)
1647 : hsa_insn_basic (2, opc, dest, arg0, arg1), m_src_type (srct),
1648 m_segment (seg)
1650 gcc_checking_assert (opc == BRIG_OPCODE_STOF || opc == BRIG_OPCODE_FTOS);
1653 /* Constructor of class representing a call instruction. CALLEE is the tree
1654 representation of the function being called. */
1656 hsa_insn_call::hsa_insn_call (tree callee)
1657 : hsa_insn_basic (0, BRIG_OPCODE_CALL), m_called_function (callee),
1658 m_output_arg (NULL), m_args_code_list (NULL), m_result_code_list (NULL)
1662 hsa_insn_call::hsa_insn_call (hsa_internal_fn *fn)
1663 : hsa_insn_basic (0, BRIG_OPCODE_CALL), m_called_function (NULL),
1664 m_called_internal_fn (fn), m_output_arg (NULL), m_args_code_list (NULL),
1665 m_result_code_list (NULL)
1669 hsa_insn_call::~hsa_insn_call ()
1671 for (unsigned i = 0; i < m_input_args.length (); i++)
1672 delete m_input_args[i];
1674 delete m_output_arg;
1676 m_input_args.release ();
1677 m_input_arg_insns.release ();
1680 /* Constructor of class representing the argument block required to invoke
1681 a call in HSAIL. */
1682 hsa_insn_arg_block::hsa_insn_arg_block (BrigKind brig_kind,
1683 hsa_insn_call * call)
1684 : hsa_insn_basic (0, HSA_OPCODE_ARG_BLOCK), m_kind (brig_kind),
1685 m_call_insn (call)
1689 hsa_insn_comment::hsa_insn_comment (const char *s)
1690 : hsa_insn_basic (0, BRIG_KIND_DIRECTIVE_COMMENT)
1692 unsigned l = strlen (s);
1694 /* Append '// ' to the string. */
1695 char *buf = XNEWVEC (char, l + 4);
1696 sprintf (buf, "// %s", s);
1697 m_comment = buf;
1700 hsa_insn_comment::~hsa_insn_comment ()
1702 gcc_checking_assert (m_comment);
1703 free (m_comment);
1704 m_comment = NULL;
1707 /* Constructor of class representing the queue instruction in HSAIL. */
1709 hsa_insn_queue::hsa_insn_queue (int nops, int opcode, BrigSegment segment,
1710 BrigMemoryOrder memory_order,
1711 hsa_op_base *arg0, hsa_op_base *arg1,
1712 hsa_op_base *arg2, hsa_op_base *arg3)
1713 : hsa_insn_basic (nops, opcode, BRIG_TYPE_U64, arg0, arg1, arg2, arg3),
1714 m_segment (segment), m_memory_order (memory_order)
1718 /* Constructor of class representing the source type instruction in HSAIL. */
1720 hsa_insn_srctype::hsa_insn_srctype (int nops, BrigOpcode opcode,
1721 BrigType16_t destt, BrigType16_t srct,
1722 hsa_op_base *arg0, hsa_op_base *arg1,
1723 hsa_op_base *arg2 = NULL)
1724 : hsa_insn_basic (nops, opcode, destt, arg0, arg1, arg2),
1725 m_source_type (srct)
1728 /* Constructor of class representing the packed instruction in HSAIL. */
1730 hsa_insn_packed::hsa_insn_packed (int nops, BrigOpcode opcode,
1731 BrigType16_t destt, BrigType16_t srct,
1732 hsa_op_base *arg0, hsa_op_base *arg1,
1733 hsa_op_base *arg2)
1734 : hsa_insn_srctype (nops, opcode, destt, srct, arg0, arg1, arg2)
1736 m_operand_list = new hsa_op_operand_list (nops - 1);
1739 /* Constructor of class representing the convert instruction in HSAIL. */
1741 hsa_insn_cvt::hsa_insn_cvt (hsa_op_with_type *dest, hsa_op_with_type *src)
1742 : hsa_insn_basic (2, BRIG_OPCODE_CVT, dest->m_type, dest, src)
1746 /* Constructor of class representing the alloca in HSAIL. */
1748 hsa_insn_alloca::hsa_insn_alloca (hsa_op_with_type *dest,
1749 hsa_op_with_type *size, unsigned alignment)
1750 : hsa_insn_basic (2, BRIG_OPCODE_ALLOCA, dest->m_type, dest, size),
1751 m_align (BRIG_ALIGNMENT_8)
1753 gcc_assert (dest->m_type == BRIG_TYPE_U32);
1754 if (alignment)
1755 m_align = hsa_alignment_encoding (alignment);
1758 /* Append an instruction INSN into the basic block. */
1760 void
1761 hsa_bb::append_insn (hsa_insn_basic *insn)
1763 gcc_assert (insn->m_opcode != 0 || insn->operand_count () == 0);
1764 gcc_assert (!insn->m_bb);
1766 insn->m_bb = m_bb;
1767 insn->m_prev = m_last_insn;
1768 insn->m_next = NULL;
1769 if (m_last_insn)
1770 m_last_insn->m_next = insn;
1771 m_last_insn = insn;
1772 if (!m_first_insn)
1773 m_first_insn = insn;
1776 void
1777 hsa_bb::append_phi (hsa_insn_phi *hphi)
1779 hphi->m_bb = m_bb;
1781 hphi->m_prev = m_last_phi;
1782 hphi->m_next = NULL;
1783 if (m_last_phi)
1784 m_last_phi->m_next = hphi;
1785 m_last_phi = hphi;
1786 if (!m_first_phi)
1787 m_first_phi = hphi;
1790 /* Insert HSA instruction NEW_INSN immediately before an existing instruction
1791 OLD_INSN. */
1793 static void
1794 hsa_insert_insn_before (hsa_insn_basic *new_insn, hsa_insn_basic *old_insn)
1796 hsa_bb *hbb = hsa_bb_for_bb (old_insn->m_bb);
1798 if (hbb->m_first_insn == old_insn)
1799 hbb->m_first_insn = new_insn;
1800 new_insn->m_prev = old_insn->m_prev;
1801 new_insn->m_next = old_insn;
1802 if (old_insn->m_prev)
1803 old_insn->m_prev->m_next = new_insn;
1804 old_insn->m_prev = new_insn;
1807 /* Append HSA instruction NEW_INSN immediately after an existing instruction
1808 OLD_INSN. */
1810 static void
1811 hsa_append_insn_after (hsa_insn_basic *new_insn, hsa_insn_basic *old_insn)
1813 hsa_bb *hbb = hsa_bb_for_bb (old_insn->m_bb);
1815 if (hbb->m_last_insn == old_insn)
1816 hbb->m_last_insn = new_insn;
1817 new_insn->m_prev = old_insn;
1818 new_insn->m_next = old_insn->m_next;
1819 if (old_insn->m_next)
1820 old_insn->m_next->m_prev = new_insn;
1821 old_insn->m_next = new_insn;
1824 /* Return a register containing the calculated value of EXP which must be an
1825 expression consisting of PLUS_EXPRs, MULT_EXPRs, NOP_EXPRs, SSA_NAMEs and
1826 integer constants as returned by get_inner_reference.
1827 Newly generated HSA instructions will be appended to HBB.
1828 Perform all calculations in ADDRTYPE. */
1830 static hsa_op_with_type *
1831 gen_address_calculation (tree exp, hsa_bb *hbb, BrigType16_t addrtype)
1833 int opcode;
1835 if (TREE_CODE (exp) == NOP_EXPR)
1836 exp = TREE_OPERAND (exp, 0);
1838 switch (TREE_CODE (exp))
1840 case SSA_NAME:
1841 return hsa_cfun->reg_for_gimple_ssa (exp)->get_in_type (addrtype, hbb);
1843 case INTEGER_CST:
1845 hsa_op_immed *imm = new hsa_op_immed (exp);
1846 if (addrtype != imm->m_type)
1847 imm->m_type = addrtype;
1848 return imm;
1851 case PLUS_EXPR:
1852 opcode = BRIG_OPCODE_ADD;
1853 break;
1855 case MULT_EXPR:
1856 opcode = BRIG_OPCODE_MUL;
1857 break;
1859 default:
1860 gcc_unreachable ();
1863 hsa_op_reg *res = new hsa_op_reg (addrtype);
1864 hsa_insn_basic *insn = new hsa_insn_basic (3, opcode, addrtype);
1865 insn->set_op (0, res);
1867 hsa_op_with_type *op1 = gen_address_calculation (TREE_OPERAND (exp, 0), hbb,
1868 addrtype);
1869 hsa_op_with_type *op2 = gen_address_calculation (TREE_OPERAND (exp, 1), hbb,
1870 addrtype);
1871 insn->set_op (1, op1);
1872 insn->set_op (2, op2);
1874 hbb->append_insn (insn);
1875 return res;
1878 /* If R1 is NULL, just return R2, otherwise append an instruction adding them
1879 to HBB and return the register holding the result. */
1881 static hsa_op_reg *
1882 add_addr_regs_if_needed (hsa_op_reg *r1, hsa_op_reg *r2, hsa_bb *hbb)
1884 gcc_checking_assert (r2);
1885 if (!r1)
1886 return r2;
1888 hsa_op_reg *res = new hsa_op_reg (r1->m_type);
1889 gcc_assert (!hsa_needs_cvt (r1->m_type, r2->m_type));
1890 hsa_insn_basic *insn = new hsa_insn_basic (3, BRIG_OPCODE_ADD, res->m_type);
1891 insn->set_op (0, res);
1892 insn->set_op (1, r1);
1893 insn->set_op (2, r2);
1894 hbb->append_insn (insn);
1895 return res;
1898 /* Helper of gen_hsa_addr. Update *SYMBOL, *ADDRTYPE, *REG and *OFFSET to
1899 reflect BASE which is the first operand of a MEM_REF or a TARGET_MEM_REF. */
1901 static void
1902 process_mem_base (tree base, hsa_symbol **symbol, BrigType16_t *addrtype,
1903 hsa_op_reg **reg, offset_int *offset, hsa_bb *hbb)
1905 if (TREE_CODE (base) == SSA_NAME)
1907 gcc_assert (!*reg);
1908 hsa_op_with_type *ssa
1909 = hsa_cfun->reg_for_gimple_ssa (base)->get_in_type (*addrtype, hbb);
1910 *reg = dyn_cast <hsa_op_reg *> (ssa);
1912 else if (TREE_CODE (base) == ADDR_EXPR)
1914 tree decl = TREE_OPERAND (base, 0);
1916 if (!DECL_P (decl) || TREE_CODE (decl) == FUNCTION_DECL)
1918 HSA_SORRY_AT (EXPR_LOCATION (base),
1919 "support for HSA does not implement a memory reference "
1920 "to a non-declaration type");
1921 return;
1924 gcc_assert (!*symbol);
1926 *symbol = get_symbol_for_decl (decl);
1927 *addrtype = hsa_get_segment_addr_type ((*symbol)->m_segment);
1929 else if (TREE_CODE (base) == INTEGER_CST)
1930 *offset += wi::to_offset (base);
1931 else
1932 gcc_unreachable ();
1935 /* Forward declaration of a function. */
1937 static void
1938 gen_hsa_addr_insns (tree val, hsa_op_reg *dest, hsa_bb *hbb);
1940 /* Generate HSA address operand for a given tree memory reference REF. If
1941 instructions need to be created to calculate the address, they will be added
1942 to the end of HBB. If a caller provider OUTPUT_BITSIZE and OUTPUT_BITPOS,
1943 the function assumes that the caller will handle possible
1944 bit-field references. Otherwise if we reference a bit-field, sorry message
1945 is displayed. */
1947 static hsa_op_address *
1948 gen_hsa_addr (tree ref, hsa_bb *hbb, HOST_WIDE_INT *output_bitsize = NULL,
1949 HOST_WIDE_INT *output_bitpos = NULL)
1951 hsa_symbol *symbol = NULL;
1952 hsa_op_reg *reg = NULL;
1953 offset_int offset = 0;
1954 tree origref = ref;
1955 tree varoffset = NULL_TREE;
1956 BrigType16_t addrtype = hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT);
1957 HOST_WIDE_INT bitsize = 0, bitpos = 0;
1958 BrigType16_t flat_addrtype = hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT);
1960 if (TREE_CODE (ref) == STRING_CST)
1962 symbol = hsa_get_string_cst_symbol (ref);
1963 goto out;
1965 else if (TREE_CODE (ref) == BIT_FIELD_REF
1966 && (!multiple_p (bit_field_size (ref), BITS_PER_UNIT)
1967 || !multiple_p (bit_field_offset (ref), BITS_PER_UNIT)))
1969 HSA_SORRY_ATV (EXPR_LOCATION (origref),
1970 "support for HSA does not implement "
1971 "bit field references such as %E", ref);
1972 goto out;
1975 if (handled_component_p (ref))
1977 machine_mode mode;
1978 int unsignedp, volatilep, preversep;
1979 poly_int64 pbitsize, pbitpos;
1980 tree new_ref;
1982 new_ref = get_inner_reference (ref, &pbitsize, &pbitpos, &varoffset,
1983 &mode, &unsignedp, &preversep,
1984 &volatilep);
1985 /* When this isn't true, the switch below will report an
1986 appropriate error. */
1987 if (pbitsize.is_constant () && pbitpos.is_constant ())
1989 bitsize = pbitsize.to_constant ();
1990 bitpos = pbitpos.to_constant ();
1991 ref = new_ref;
1992 offset = bitpos;
1993 offset = wi::rshift (offset, LOG2_BITS_PER_UNIT, SIGNED);
1997 switch (TREE_CODE (ref))
1999 case ADDR_EXPR:
2001 addrtype = hsa_get_segment_addr_type (BRIG_SEGMENT_PRIVATE);
2002 symbol = hsa_cfun->create_hsa_temporary (flat_addrtype);
2003 hsa_op_reg *r = new hsa_op_reg (flat_addrtype);
2004 gen_hsa_addr_insns (ref, r, hbb);
2005 hbb->append_insn (new hsa_insn_mem (BRIG_OPCODE_ST, r->m_type,
2006 r, new hsa_op_address (symbol)));
2008 break;
2010 case SSA_NAME:
2012 addrtype = hsa_get_segment_addr_type (BRIG_SEGMENT_PRIVATE);
2013 hsa_op_with_type *r = hsa_cfun->reg_for_gimple_ssa (ref);
2014 if (r->m_type == BRIG_TYPE_B1)
2015 r = r->get_in_type (BRIG_TYPE_U32, hbb);
2016 symbol = hsa_cfun->create_hsa_temporary (r->m_type);
2018 hbb->append_insn (new hsa_insn_mem (BRIG_OPCODE_ST, r->m_type,
2019 r, new hsa_op_address (symbol)));
2021 break;
2023 case PARM_DECL:
2024 case VAR_DECL:
2025 case RESULT_DECL:
2026 case CONST_DECL:
2027 gcc_assert (!symbol);
2028 symbol = get_symbol_for_decl (ref);
2029 addrtype = hsa_get_segment_addr_type (symbol->m_segment);
2030 break;
2032 case MEM_REF:
2033 process_mem_base (TREE_OPERAND (ref, 0), &symbol, &addrtype, &reg,
2034 &offset, hbb);
2036 if (!integer_zerop (TREE_OPERAND (ref, 1)))
2037 offset += wi::to_offset (TREE_OPERAND (ref, 1));
2038 break;
2040 case TARGET_MEM_REF:
2041 process_mem_base (TMR_BASE (ref), &symbol, &addrtype, &reg, &offset, hbb);
2042 if (TMR_INDEX (ref))
2044 hsa_op_reg *disp1;
2045 hsa_op_base *idx = hsa_cfun->reg_for_gimple_ssa
2046 (TMR_INDEX (ref))->get_in_type (addrtype, hbb);
2047 if (TMR_STEP (ref) && !integer_onep (TMR_STEP (ref)))
2049 disp1 = new hsa_op_reg (addrtype);
2050 hsa_insn_basic *insn = new hsa_insn_basic (3, BRIG_OPCODE_MUL,
2051 addrtype);
2053 /* As step must respect addrtype, we overwrite the type
2054 of an immediate value. */
2055 hsa_op_immed *step = new hsa_op_immed (TMR_STEP (ref));
2056 step->m_type = addrtype;
2058 insn->set_op (0, disp1);
2059 insn->set_op (1, idx);
2060 insn->set_op (2, step);
2061 hbb->append_insn (insn);
2063 else
2064 disp1 = as_a <hsa_op_reg *> (idx);
2065 reg = add_addr_regs_if_needed (reg, disp1, hbb);
2067 if (TMR_INDEX2 (ref))
2069 if (TREE_CODE (TMR_INDEX2 (ref)) == SSA_NAME)
2071 hsa_op_base *disp2 = hsa_cfun->reg_for_gimple_ssa
2072 (TMR_INDEX2 (ref))->get_in_type (addrtype, hbb);
2073 reg = add_addr_regs_if_needed (reg, as_a <hsa_op_reg *> (disp2),
2074 hbb);
2076 else if (TREE_CODE (TMR_INDEX2 (ref)) == INTEGER_CST)
2077 offset += wi::to_offset (TMR_INDEX2 (ref));
2078 else
2079 gcc_unreachable ();
2081 offset += wi::to_offset (TMR_OFFSET (ref));
2082 break;
2083 case FUNCTION_DECL:
2084 HSA_SORRY_AT (EXPR_LOCATION (origref),
2085 "support for HSA does not implement function pointers");
2086 goto out;
2087 default:
2088 HSA_SORRY_ATV (EXPR_LOCATION (origref), "support for HSA does "
2089 "not implement memory access to %E", origref);
2090 goto out;
2093 if (varoffset)
2095 if (TREE_CODE (varoffset) == INTEGER_CST)
2096 offset += wi::to_offset (varoffset);
2097 else
2099 hsa_op_base *off_op = gen_address_calculation (varoffset, hbb,
2100 addrtype);
2101 reg = add_addr_regs_if_needed (reg, as_a <hsa_op_reg *> (off_op),
2102 hbb);
2106 gcc_checking_assert ((symbol
2107 && addrtype
2108 == hsa_get_segment_addr_type (symbol->m_segment))
2109 || (!symbol
2110 && addrtype
2111 == hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT)));
2112 out:
2113 HOST_WIDE_INT hwi_offset = offset.to_shwi ();
2115 /* Calculate remaining bitsize offset (if presented). */
2116 bitpos %= BITS_PER_UNIT;
2117 /* If bitsize is a power of two that is greater or equal to BITS_PER_UNIT, it
2118 is not a reason to think this is a bit-field access. */
2119 if (bitpos == 0
2120 && (bitsize >= BITS_PER_UNIT)
2121 && !(bitsize & (bitsize - 1)))
2122 bitsize = 0;
2124 if ((bitpos || bitsize) && (output_bitpos == NULL || output_bitsize == NULL))
2125 HSA_SORRY_ATV (EXPR_LOCATION (origref), "support for HSA does not "
2126 "implement unhandled bit field reference such as %E", ref);
2128 if (output_bitsize != NULL && output_bitpos != NULL)
2130 *output_bitsize = bitsize;
2131 *output_bitpos = bitpos;
2134 return new hsa_op_address (symbol, reg, hwi_offset);
2137 /* Generate HSA address operand for a given tree memory reference REF. If
2138 instructions need to be created to calculate the address, they will be added
2139 to the end of HBB. OUTPUT_ALIGN is alignment of the created address. */
2141 static hsa_op_address *
2142 gen_hsa_addr_with_align (tree ref, hsa_bb *hbb, BrigAlignment8_t *output_align)
2144 hsa_op_address *addr = gen_hsa_addr (ref, hbb);
2145 if (addr->m_reg || !addr->m_symbol)
2146 *output_align = hsa_object_alignment (ref);
2147 else
2149 /* If the address consists only of a symbol and an offset, we
2150 compute the alignment ourselves to take into account any alignment
2151 promotions we might have done for the HSA symbol representation. */
2152 unsigned align = hsa_byte_alignment (addr->m_symbol->m_align);
2153 unsigned misalign = addr->m_imm_offset & (align - 1);
2154 if (misalign)
2155 align = least_bit_hwi (misalign);
2156 *output_align = hsa_alignment_encoding (BITS_PER_UNIT * align);
2158 return addr;
2161 /* Generate HSA address for a function call argument of given TYPE.
2162 INDEX is used to generate corresponding name of the arguments.
2163 Special value -1 represents fact that result value is created. */
2165 static hsa_op_address *
2166 gen_hsa_addr_for_arg (tree tree_type, int index)
2168 hsa_symbol *sym = new hsa_symbol (BRIG_TYPE_NONE, BRIG_SEGMENT_ARG,
2169 BRIG_LINKAGE_ARG);
2170 sym->m_type = hsa_type_for_tree_type (tree_type, &sym->m_dim);
2172 if (index == -1) /* Function result. */
2173 sym->m_name = "res";
2174 else /* Function call arguments. */
2176 sym->m_name = NULL;
2177 sym->m_name_number = index;
2180 return new hsa_op_address (sym);
2183 /* Generate HSA instructions that process all necessary conversions
2184 of an ADDR to flat addressing and place the result into DEST.
2185 Instructions are appended to HBB. */
2187 static void
2188 convert_addr_to_flat_segment (hsa_op_address *addr, hsa_op_reg *dest,
2189 hsa_bb *hbb)
2191 hsa_insn_basic *insn = new hsa_insn_basic (2, BRIG_OPCODE_LDA);
2192 insn->set_op (1, addr);
2193 if (addr->m_symbol && addr->m_symbol->m_segment != BRIG_SEGMENT_GLOBAL)
2195 /* LDA produces segment-relative address, we need to convert
2196 it to the flat one. */
2197 hsa_op_reg *tmp;
2198 tmp = new hsa_op_reg (hsa_get_segment_addr_type
2199 (addr->m_symbol->m_segment));
2200 hsa_insn_seg *seg;
2201 seg = new hsa_insn_seg (BRIG_OPCODE_STOF,
2202 hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT),
2203 tmp->m_type, addr->m_symbol->m_segment, dest,
2204 tmp);
2206 insn->set_op (0, tmp);
2207 insn->m_type = tmp->m_type;
2208 hbb->append_insn (insn);
2209 hbb->append_insn (seg);
2211 else
2213 insn->set_op (0, dest);
2214 insn->m_type = hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT);
2215 hbb->append_insn (insn);
2219 /* Generate HSA instructions that calculate address of VAL including all
2220 necessary conversions to flat addressing and place the result into DEST.
2221 Instructions are appended to HBB. */
2223 static void
2224 gen_hsa_addr_insns (tree val, hsa_op_reg *dest, hsa_bb *hbb)
2226 /* Handle cases like tmp = NULL, where we just emit a move instruction
2227 to a register. */
2228 if (TREE_CODE (val) == INTEGER_CST)
2230 hsa_op_immed *c = new hsa_op_immed (val);
2231 hsa_insn_basic *insn = new hsa_insn_basic (2, BRIG_OPCODE_MOV,
2232 dest->m_type, dest, c);
2233 hbb->append_insn (insn);
2234 return;
2237 hsa_op_address *addr;
2239 gcc_assert (dest->m_type == hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT));
2240 if (TREE_CODE (val) == ADDR_EXPR)
2241 val = TREE_OPERAND (val, 0);
2242 addr = gen_hsa_addr (val, hbb);
2244 if (TREE_CODE (val) == CONST_DECL
2245 && is_gimple_reg_type (TREE_TYPE (val)))
2247 gcc_assert (addr->m_symbol
2248 && addr->m_symbol->m_segment == BRIG_SEGMENT_READONLY);
2249 /* CONST_DECLs are in readonly segment which however does not have
2250 addresses convertible to flat segments. So copy it to a private one
2251 and take address of that. */
2252 BrigType16_t csttype
2253 = mem_type_for_type (hsa_type_for_scalar_tree_type (TREE_TYPE (val),
2254 false));
2255 hsa_op_reg *r = new hsa_op_reg (csttype);
2256 hbb->append_insn (new hsa_insn_mem (BRIG_OPCODE_LD, csttype, r,
2257 new hsa_op_address (addr->m_symbol)));
2258 hsa_symbol *copysym = hsa_cfun->create_hsa_temporary (csttype);
2259 hbb->append_insn (new hsa_insn_mem (BRIG_OPCODE_ST, csttype, r,
2260 new hsa_op_address (copysym)));
2261 addr->m_symbol = copysym;
2263 else if (addr->m_symbol && addr->m_symbol->m_segment == BRIG_SEGMENT_READONLY)
2265 HSA_SORRY_ATV (EXPR_LOCATION (val), "support for HSA does "
2266 "not implement taking addresses of complex "
2267 "CONST_DECLs such as %E", val);
2268 return;
2272 convert_addr_to_flat_segment (addr, dest, hbb);
2275 /* Return an HSA register or HSA immediate value operand corresponding to
2276 gimple operand OP. */
2278 static hsa_op_with_type *
2279 hsa_reg_or_immed_for_gimple_op (tree op, hsa_bb *hbb)
2281 hsa_op_reg *tmp;
2283 if (TREE_CODE (op) == SSA_NAME)
2284 tmp = hsa_cfun->reg_for_gimple_ssa (op);
2285 else if (!POINTER_TYPE_P (TREE_TYPE (op)))
2286 return new hsa_op_immed (op);
2287 else
2289 tmp = new hsa_op_reg (hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT));
2290 gen_hsa_addr_insns (op, tmp, hbb);
2292 return tmp;
2295 /* Create a simple movement instruction with register destination DEST and
2296 register or immediate source SRC and append it to the end of HBB. */
2298 void
2299 hsa_build_append_simple_mov (hsa_op_reg *dest, hsa_op_base *src, hsa_bb *hbb)
2301 /* Moves of packed data between registers need to adhere to the same type
2302 rules like when dealing with memory. */
2303 BrigType16_t tp = mem_type_for_type (dest->m_type);
2304 hsa_insn_basic *insn = new hsa_insn_basic (2, BRIG_OPCODE_MOV, tp, dest, src);
2305 hsa_fixup_mov_insn_type (insn);
2306 unsigned dest_size = hsa_type_bit_size (dest->m_type);
2307 if (hsa_op_reg *sreg = dyn_cast <hsa_op_reg *> (src))
2308 gcc_assert (dest_size == hsa_type_bit_size (sreg->m_type));
2309 else
2311 unsigned imm_size
2312 = hsa_type_bit_size (as_a <hsa_op_immed *> (src)->m_type);
2313 gcc_assert ((dest_size == imm_size)
2314 /* Eventually < 32bit registers will be promoted to 32bit. */
2315 || (dest_size < 32 && imm_size == 32));
2317 hbb->append_insn (insn);
2320 /* Generate HSAIL instructions loading a bit field into register DEST.
2321 VALUE_REG is a register of a SSA name that is used in the bit field
2322 reference. To identify a bit field BITPOS is offset to the loaded memory
2323 and BITSIZE is number of bits of the bit field.
2324 Add instructions to HBB. */
2326 static void
2327 gen_hsa_insns_for_bitfield (hsa_op_reg *dest, hsa_op_reg *value_reg,
2328 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2329 hsa_bb *hbb)
2331 unsigned type_bitsize
2332 = hsa_type_bit_size (hsa_extend_inttype_to_32bit (dest->m_type));
2333 unsigned left_shift = type_bitsize - (bitsize + bitpos);
2334 unsigned right_shift = left_shift + bitpos;
2336 if (left_shift)
2338 hsa_op_reg *value_reg_2
2339 = new hsa_op_reg (hsa_extend_inttype_to_32bit (dest->m_type));
2340 hsa_op_immed *c = new hsa_op_immed (left_shift, BRIG_TYPE_U32);
2342 hsa_insn_basic *lshift
2343 = new hsa_insn_basic (3, BRIG_OPCODE_SHL, value_reg_2->m_type,
2344 value_reg_2, value_reg, c);
2346 hbb->append_insn (lshift);
2348 value_reg = value_reg_2;
2351 if (right_shift)
2353 hsa_op_reg *value_reg_2
2354 = new hsa_op_reg (hsa_extend_inttype_to_32bit (dest->m_type));
2355 hsa_op_immed *c = new hsa_op_immed (right_shift, BRIG_TYPE_U32);
2357 hsa_insn_basic *rshift
2358 = new hsa_insn_basic (3, BRIG_OPCODE_SHR, value_reg_2->m_type,
2359 value_reg_2, value_reg, c);
2361 hbb->append_insn (rshift);
2363 value_reg = value_reg_2;
2366 hsa_insn_basic *assignment
2367 = new hsa_insn_basic (2, BRIG_OPCODE_MOV, dest->m_type, NULL, value_reg);
2368 hsa_fixup_mov_insn_type (assignment);
2369 hbb->append_insn (assignment);
2370 assignment->set_output_in_type (dest, 0, hbb);
2374 /* Generate HSAIL instructions loading a bit field into register DEST. ADDR is
2375 prepared memory address which is used to load the bit field. To identify a
2376 bit field BITPOS is offset to the loaded memory and BITSIZE is number of
2377 bits of the bit field. Add instructions to HBB. Load must be performed in
2378 alignment ALIGN. */
2380 static void
2381 gen_hsa_insns_for_bitfield_load (hsa_op_reg *dest, hsa_op_address *addr,
2382 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2383 hsa_bb *hbb, BrigAlignment8_t align)
2385 hsa_op_reg *value_reg = new hsa_op_reg (dest->m_type);
2386 hsa_insn_mem *mem
2387 = new hsa_insn_mem (BRIG_OPCODE_LD,
2388 hsa_extend_inttype_to_32bit (dest->m_type),
2389 value_reg, addr);
2390 mem->set_align (align);
2391 hbb->append_insn (mem);
2392 gen_hsa_insns_for_bitfield (dest, value_reg, bitsize, bitpos, hbb);
2395 /* Return the alignment of base memory accesses we issue to perform bit-field
2396 memory access REF. */
2398 static BrigAlignment8_t
2399 hsa_bitmemref_alignment (tree ref)
2401 unsigned HOST_WIDE_INT bit_offset = 0;
2403 while (true)
2405 if (TREE_CODE (ref) == BIT_FIELD_REF)
2407 if (!tree_fits_uhwi_p (TREE_OPERAND (ref, 2)))
2408 return BRIG_ALIGNMENT_1;
2409 bit_offset += tree_to_uhwi (TREE_OPERAND (ref, 2));
2411 else if (TREE_CODE (ref) == COMPONENT_REF
2412 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
2413 bit_offset += int_bit_position (TREE_OPERAND (ref, 1));
2414 else
2415 break;
2416 ref = TREE_OPERAND (ref, 0);
2419 unsigned HOST_WIDE_INT bits = bit_offset % BITS_PER_UNIT;
2420 unsigned HOST_WIDE_INT byte_bits = bit_offset - bits;
2421 BrigAlignment8_t base = hsa_object_alignment (ref);
2422 if (byte_bits == 0)
2423 return base;
2424 return MIN (base, hsa_alignment_encoding (least_bit_hwi (byte_bits)));
2427 /* Generate HSAIL instructions loading something into register DEST. RHS is
2428 tree representation of the loaded data, which are loaded as type TYPE. Add
2429 instructions to HBB. */
2431 static void
2432 gen_hsa_insns_for_load (hsa_op_reg *dest, tree rhs, tree type, hsa_bb *hbb)
2434 /* The destination SSA name will give us the type. */
2435 if (TREE_CODE (rhs) == VIEW_CONVERT_EXPR)
2436 rhs = TREE_OPERAND (rhs, 0);
2438 if (TREE_CODE (rhs) == SSA_NAME)
2440 hsa_op_reg *src = hsa_cfun->reg_for_gimple_ssa (rhs);
2441 hsa_build_append_simple_mov (dest, src, hbb);
2443 else if (is_gimple_min_invariant (rhs)
2444 || TREE_CODE (rhs) == ADDR_EXPR)
2446 if (POINTER_TYPE_P (TREE_TYPE (rhs)))
2448 if (dest->m_type != hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT))
2450 HSA_SORRY_ATV (EXPR_LOCATION (rhs),
2451 "support for HSA does not implement conversion "
2452 "of %E to the requested non-pointer type.", rhs);
2453 return;
2456 gen_hsa_addr_insns (rhs, dest, hbb);
2458 else if (TREE_CODE (rhs) == COMPLEX_CST)
2460 hsa_op_immed *real_part = new hsa_op_immed (TREE_REALPART (rhs));
2461 hsa_op_immed *imag_part = new hsa_op_immed (TREE_IMAGPART (rhs));
2463 hsa_op_reg *real_part_reg
2464 = new hsa_op_reg (hsa_type_for_scalar_tree_type (TREE_TYPE (type),
2465 true));
2466 hsa_op_reg *imag_part_reg
2467 = new hsa_op_reg (hsa_type_for_scalar_tree_type (TREE_TYPE (type),
2468 true));
2470 hsa_build_append_simple_mov (real_part_reg, real_part, hbb);
2471 hsa_build_append_simple_mov (imag_part_reg, imag_part, hbb);
2473 BrigType16_t src_type = hsa_bittype_for_type (real_part_reg->m_type);
2475 hsa_insn_packed *insn
2476 = new hsa_insn_packed (3, BRIG_OPCODE_COMBINE, dest->m_type,
2477 src_type, dest, real_part_reg,
2478 imag_part_reg);
2479 hbb->append_insn (insn);
2481 else
2483 hsa_op_immed *imm = new hsa_op_immed (rhs);
2484 hsa_build_append_simple_mov (dest, imm, hbb);
2487 else if (TREE_CODE (rhs) == REALPART_EXPR || TREE_CODE (rhs) == IMAGPART_EXPR)
2489 tree pack_type = TREE_TYPE (TREE_OPERAND (rhs, 0));
2491 hsa_op_reg *packed_reg
2492 = new hsa_op_reg (hsa_type_for_scalar_tree_type (pack_type, true));
2494 tree complex_rhs = TREE_OPERAND (rhs, 0);
2495 gen_hsa_insns_for_load (packed_reg, complex_rhs, TREE_TYPE (complex_rhs),
2496 hbb);
2498 hsa_op_reg *real_reg
2499 = new hsa_op_reg (hsa_type_for_scalar_tree_type (type, true));
2501 hsa_op_reg *imag_reg
2502 = new hsa_op_reg (hsa_type_for_scalar_tree_type (type, true));
2504 BrigKind16_t brig_type = packed_reg->m_type;
2505 hsa_insn_packed *packed
2506 = new hsa_insn_packed (3, BRIG_OPCODE_EXPAND,
2507 hsa_bittype_for_type (real_reg->m_type),
2508 brig_type, real_reg, imag_reg, packed_reg);
2510 hbb->append_insn (packed);
2512 hsa_op_reg *source = TREE_CODE (rhs) == REALPART_EXPR ?
2513 real_reg : imag_reg;
2515 hsa_insn_basic *insn = new hsa_insn_basic (2, BRIG_OPCODE_MOV,
2516 dest->m_type, NULL, source);
2517 hsa_fixup_mov_insn_type (insn);
2518 hbb->append_insn (insn);
2519 insn->set_output_in_type (dest, 0, hbb);
2521 else if (TREE_CODE (rhs) == BIT_FIELD_REF
2522 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME)
2524 tree ssa_name = TREE_OPERAND (rhs, 0);
2525 HOST_WIDE_INT bitsize = tree_to_uhwi (TREE_OPERAND (rhs, 1));
2526 HOST_WIDE_INT bitpos = tree_to_uhwi (TREE_OPERAND (rhs, 2));
2528 hsa_op_reg *imm_value = hsa_cfun->reg_for_gimple_ssa (ssa_name);
2529 gen_hsa_insns_for_bitfield (dest, imm_value, bitsize, bitpos, hbb);
2531 else if (DECL_P (rhs) || TREE_CODE (rhs) == MEM_REF
2532 || TREE_CODE (rhs) == TARGET_MEM_REF
2533 || handled_component_p (rhs))
2535 HOST_WIDE_INT bitsize, bitpos;
2537 /* Load from memory. */
2538 hsa_op_address *addr;
2539 addr = gen_hsa_addr (rhs, hbb, &bitsize, &bitpos);
2541 /* Handle load of a bit field. */
2542 if (bitsize > 64)
2544 HSA_SORRY_AT (EXPR_LOCATION (rhs),
2545 "support for HSA does not implement load from a bit "
2546 "field bigger than 64 bits");
2547 return;
2550 if (bitsize || bitpos)
2551 gen_hsa_insns_for_bitfield_load (dest, addr, bitsize, bitpos, hbb,
2552 hsa_bitmemref_alignment (rhs));
2553 else
2555 BrigType16_t mtype;
2556 /* Not dest->m_type, that's possibly extended. */
2557 mtype = mem_type_for_type (hsa_type_for_scalar_tree_type (type,
2558 false));
2559 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_LD, mtype, dest,
2560 addr);
2561 mem->set_align (hsa_object_alignment (rhs));
2562 hbb->append_insn (mem);
2565 else
2566 HSA_SORRY_ATV (EXPR_LOCATION (rhs),
2567 "support for HSA does not implement loading "
2568 "of expression %E",
2569 rhs);
2572 /* Return number of bits necessary for representation of a bit field,
2573 starting at BITPOS with size of BITSIZE. */
2575 static unsigned
2576 get_bitfield_size (unsigned bitpos, unsigned bitsize)
2578 unsigned s = bitpos + bitsize;
2579 unsigned sizes[] = {8, 16, 32, 64};
2581 for (unsigned i = 0; i < 4; i++)
2582 if (s <= sizes[i])
2583 return sizes[i];
2585 gcc_unreachable ();
2586 return 0;
2589 /* Generate HSAIL instructions storing into memory. LHS is the destination of
2590 the store, SRC is the source operand. Add instructions to HBB. */
2592 static void
2593 gen_hsa_insns_for_store (tree lhs, hsa_op_base *src, hsa_bb *hbb)
2595 HOST_WIDE_INT bitsize = 0, bitpos = 0;
2596 BrigAlignment8_t req_align;
2597 BrigType16_t mtype;
2598 mtype = mem_type_for_type (hsa_type_for_scalar_tree_type (TREE_TYPE (lhs),
2599 false));
2600 hsa_op_address *addr;
2601 addr = gen_hsa_addr (lhs, hbb, &bitsize, &bitpos);
2603 /* Handle store to a bit field. */
2604 if (bitsize > 64)
2606 HSA_SORRY_AT (EXPR_LOCATION (lhs),
2607 "support for HSA does not implement store to a bit field "
2608 "bigger than 64 bits");
2609 return;
2612 unsigned type_bitsize = get_bitfield_size (bitpos, bitsize);
2614 /* HSAIL does not support MOV insn with 16-bits integers. */
2615 if (type_bitsize < 32)
2616 type_bitsize = 32;
2618 if (bitpos || (bitsize && type_bitsize != bitsize))
2620 unsigned HOST_WIDE_INT mask = 0;
2621 BrigType16_t mem_type
2622 = get_integer_type_by_bytes (type_bitsize / BITS_PER_UNIT,
2623 !TYPE_UNSIGNED (TREE_TYPE (lhs)));
2625 for (unsigned i = 0; i < type_bitsize; i++)
2626 if (i < bitpos || i >= bitpos + bitsize)
2627 mask |= ((unsigned HOST_WIDE_INT)1 << i);
2629 hsa_op_reg *value_reg = new hsa_op_reg (mem_type);
2631 req_align = hsa_bitmemref_alignment (lhs);
2632 /* Load value from memory. */
2633 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_LD, mem_type,
2634 value_reg, addr);
2635 mem->set_align (req_align);
2636 hbb->append_insn (mem);
2638 /* AND the loaded value with prepared mask. */
2639 hsa_op_reg *cleared_reg = new hsa_op_reg (mem_type);
2641 BrigType16_t t
2642 = get_integer_type_by_bytes (type_bitsize / BITS_PER_UNIT, false);
2643 hsa_op_immed *c = new hsa_op_immed (mask, t);
2645 hsa_insn_basic *clearing
2646 = new hsa_insn_basic (3, BRIG_OPCODE_AND, mem_type, cleared_reg,
2647 value_reg, c);
2648 hbb->append_insn (clearing);
2650 /* Shift to left a value that is going to be stored. */
2651 hsa_op_reg *new_value_reg = new hsa_op_reg (mem_type);
2653 hsa_insn_basic *basic = new hsa_insn_basic (2, BRIG_OPCODE_MOV, mem_type,
2654 new_value_reg, src);
2655 hsa_fixup_mov_insn_type (basic);
2656 hbb->append_insn (basic);
2658 if (bitpos)
2660 hsa_op_reg *shifted_value_reg = new hsa_op_reg (mem_type);
2661 c = new hsa_op_immed (bitpos, BRIG_TYPE_U32);
2663 hsa_insn_basic *basic
2664 = new hsa_insn_basic (3, BRIG_OPCODE_SHL, mem_type,
2665 shifted_value_reg, new_value_reg, c);
2666 hbb->append_insn (basic);
2668 new_value_reg = shifted_value_reg;
2671 /* OR the prepared value with prepared chunk loaded from memory. */
2672 hsa_op_reg *prepared_reg= new hsa_op_reg (mem_type);
2673 basic = new hsa_insn_basic (3, BRIG_OPCODE_OR, mem_type, prepared_reg,
2674 new_value_reg, cleared_reg);
2675 hbb->append_insn (basic);
2677 src = prepared_reg;
2678 mtype = mem_type;
2680 else
2681 req_align = hsa_object_alignment (lhs);
2683 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_ST, mtype, src, addr);
2684 mem->set_align (req_align);
2686 /* The HSAIL verifier has another constraint: if the source is an immediate
2687 then it must match the destination type. If it's a register the low bits
2688 will be used for sub-word stores. We're always allocating new operands so
2689 we can modify the above in place. */
2690 if (hsa_op_immed *imm = dyn_cast <hsa_op_immed *> (src))
2692 if (!hsa_type_packed_p (imm->m_type))
2693 imm->m_type = mem->m_type;
2694 else
2696 /* ...and all vector immediates apparently need to be vectors of
2697 unsigned bytes. */
2698 unsigned bs = hsa_type_bit_size (imm->m_type);
2699 gcc_assert (bs == hsa_type_bit_size (mem->m_type));
2700 switch (bs)
2702 case 32:
2703 imm->m_type = BRIG_TYPE_U8X4;
2704 break;
2705 case 64:
2706 imm->m_type = BRIG_TYPE_U8X8;
2707 break;
2708 case 128:
2709 imm->m_type = BRIG_TYPE_U8X16;
2710 break;
2711 default:
2712 gcc_unreachable ();
2717 hbb->append_insn (mem);
2720 /* Generate memory copy instructions that are going to be used
2721 for copying a SRC memory to TARGET memory,
2722 represented by pointer in a register. MIN_ALIGN is minimal alignment
2723 of provided HSA addresses. */
2725 static void
2726 gen_hsa_memory_copy (hsa_bb *hbb, hsa_op_address *target, hsa_op_address *src,
2727 unsigned size, BrigAlignment8_t min_align)
2729 hsa_op_address *addr;
2730 hsa_insn_mem *mem;
2732 unsigned offset = 0;
2733 unsigned min_byte_align = hsa_byte_alignment (min_align);
2735 while (size)
2737 unsigned s;
2738 if (size >= 8)
2739 s = 8;
2740 else if (size >= 4)
2741 s = 4;
2742 else if (size >= 2)
2743 s = 2;
2744 else
2745 s = 1;
2747 if (s > min_byte_align)
2748 s = min_byte_align;
2750 BrigType16_t t = get_integer_type_by_bytes (s, false);
2752 hsa_op_reg *tmp = new hsa_op_reg (t);
2753 addr = new hsa_op_address (src->m_symbol, src->m_reg,
2754 src->m_imm_offset + offset);
2755 mem = new hsa_insn_mem (BRIG_OPCODE_LD, t, tmp, addr);
2756 hbb->append_insn (mem);
2758 addr = new hsa_op_address (target->m_symbol, target->m_reg,
2759 target->m_imm_offset + offset);
2760 mem = new hsa_insn_mem (BRIG_OPCODE_ST, t, tmp, addr);
2761 hbb->append_insn (mem);
2762 offset += s;
2763 size -= s;
2767 /* Create a memset mask that is created by copying a CONSTANT byte value
2768 to an integer of BYTE_SIZE bytes. */
2770 static unsigned HOST_WIDE_INT
2771 build_memset_value (unsigned HOST_WIDE_INT constant, unsigned byte_size)
2773 if (constant == 0)
2774 return 0;
2776 HOST_WIDE_INT v = constant;
2778 for (unsigned i = 1; i < byte_size; i++)
2779 v |= constant << (8 * i);
2781 return v;
2784 /* Generate memory set instructions that are going to be used
2785 for setting a CONSTANT byte value to TARGET memory of SIZE bytes.
2786 MIN_ALIGN is minimal alignment of provided HSA addresses. */
2788 static void
2789 gen_hsa_memory_set (hsa_bb *hbb, hsa_op_address *target,
2790 unsigned HOST_WIDE_INT constant,
2791 unsigned size, BrigAlignment8_t min_align)
2793 hsa_op_address *addr;
2794 hsa_insn_mem *mem;
2796 unsigned offset = 0;
2797 unsigned min_byte_align = hsa_byte_alignment (min_align);
2799 while (size)
2801 unsigned s;
2802 if (size >= 8)
2803 s = 8;
2804 else if (size >= 4)
2805 s = 4;
2806 else if (size >= 2)
2807 s = 2;
2808 else
2809 s = 1;
2811 if (s > min_byte_align)
2812 s = min_byte_align;
2814 addr = new hsa_op_address (target->m_symbol, target->m_reg,
2815 target->m_imm_offset + offset);
2817 BrigType16_t t = get_integer_type_by_bytes (s, false);
2818 HOST_WIDE_INT c = build_memset_value (constant, s);
2820 mem = new hsa_insn_mem (BRIG_OPCODE_ST, t, new hsa_op_immed (c, t),
2821 addr);
2822 hbb->append_insn (mem);
2823 offset += s;
2824 size -= s;
2828 /* Generate HSAIL instructions for a single assignment
2829 of an empty constructor to an ADDR_LHS. Constructor is passed as a
2830 tree RHS and all instructions are appended to HBB. ALIGN is
2831 alignment of the address. */
2833 void
2834 gen_hsa_ctor_assignment (hsa_op_address *addr_lhs, tree rhs, hsa_bb *hbb,
2835 BrigAlignment8_t align)
2837 if (CONSTRUCTOR_NELTS (rhs))
2839 HSA_SORRY_AT (EXPR_LOCATION (rhs),
2840 "support for HSA does not implement load from constructor");
2841 return;
2844 unsigned size = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (rhs)));
2845 gen_hsa_memory_set (hbb, addr_lhs, 0, size, align);
2848 /* Generate HSA instructions for a single assignment of RHS to LHS.
2849 HBB is the basic block they will be appended to. */
2851 static void
2852 gen_hsa_insns_for_single_assignment (tree lhs, tree rhs, hsa_bb *hbb)
2854 if (TREE_CODE (lhs) == SSA_NAME)
2856 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
2857 if (hsa_seen_error ())
2858 return;
2860 gen_hsa_insns_for_load (dest, rhs, TREE_TYPE (lhs), hbb);
2862 else if (TREE_CODE (rhs) == SSA_NAME
2863 || (is_gimple_min_invariant (rhs) && TREE_CODE (rhs) != STRING_CST))
2865 /* Store to memory. */
2866 hsa_op_base *src = hsa_reg_or_immed_for_gimple_op (rhs, hbb);
2867 if (hsa_seen_error ())
2868 return;
2870 gen_hsa_insns_for_store (lhs, src, hbb);
2872 else
2874 BrigAlignment8_t lhs_align;
2875 hsa_op_address *addr_lhs = gen_hsa_addr_with_align (lhs, hbb,
2876 &lhs_align);
2878 if (TREE_CODE (rhs) == CONSTRUCTOR)
2879 gen_hsa_ctor_assignment (addr_lhs, rhs, hbb, lhs_align);
2880 else
2882 BrigAlignment8_t rhs_align;
2883 hsa_op_address *addr_rhs = gen_hsa_addr_with_align (rhs, hbb,
2884 &rhs_align);
2886 unsigned size = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (rhs)));
2887 gen_hsa_memory_copy (hbb, addr_lhs, addr_rhs, size,
2888 MIN (lhs_align, rhs_align));
2893 /* Prepend before INSN a load from spill symbol of SPILL_REG. Return the
2894 register into which we loaded. If this required another register to convert
2895 from a B1 type, return it in *PTMP2, otherwise store NULL into it. We
2896 assume we are out of SSA so the returned register does not have its
2897 definition set. */
2899 hsa_op_reg *
2900 hsa_spill_in (hsa_insn_basic *insn, hsa_op_reg *spill_reg, hsa_op_reg **ptmp2)
2902 hsa_symbol *spill_sym = spill_reg->m_spill_sym;
2903 hsa_op_reg *reg = new hsa_op_reg (spill_sym->m_type);
2904 hsa_op_address *addr = new hsa_op_address (spill_sym);
2906 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_LD, spill_sym->m_type,
2907 reg, addr);
2908 hsa_insert_insn_before (mem, insn);
2910 *ptmp2 = NULL;
2911 if (spill_reg->m_type == BRIG_TYPE_B1)
2913 hsa_insn_basic *cvtinsn;
2914 *ptmp2 = reg;
2915 reg = new hsa_op_reg (spill_reg->m_type);
2917 cvtinsn = new hsa_insn_cvt (reg, *ptmp2);
2918 hsa_insert_insn_before (cvtinsn, insn);
2920 return reg;
2923 /* Append after INSN a store to spill symbol of SPILL_REG. Return the register
2924 from which we stored. If this required another register to convert to a B1
2925 type, return it in *PTMP2, otherwise store NULL into it. We assume we are
2926 out of SSA so the returned register does not have its use updated. */
2928 hsa_op_reg *
2929 hsa_spill_out (hsa_insn_basic *insn, hsa_op_reg *spill_reg, hsa_op_reg **ptmp2)
2931 hsa_symbol *spill_sym = spill_reg->m_spill_sym;
2932 hsa_op_reg *reg = new hsa_op_reg (spill_sym->m_type);
2933 hsa_op_address *addr = new hsa_op_address (spill_sym);
2934 hsa_op_reg *returnreg;
2936 *ptmp2 = NULL;
2937 returnreg = reg;
2938 if (spill_reg->m_type == BRIG_TYPE_B1)
2940 hsa_insn_basic *cvtinsn;
2941 *ptmp2 = new hsa_op_reg (spill_sym->m_type);
2942 reg->m_type = spill_reg->m_type;
2944 cvtinsn = new hsa_insn_cvt (*ptmp2, returnreg);
2945 hsa_append_insn_after (cvtinsn, insn);
2946 insn = cvtinsn;
2947 reg = *ptmp2;
2950 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_ST, spill_sym->m_type, reg,
2951 addr);
2952 hsa_append_insn_after (mem, insn);
2953 return returnreg;
2956 /* Generate a comparison instruction that will compare LHS and RHS with
2957 comparison specified by CODE and put result into register DEST. DEST has to
2958 have its type set already but must not have its definition set yet.
2959 Generated instructions will be added to HBB. */
2961 static void
2962 gen_hsa_cmp_insn_from_gimple (enum tree_code code, tree lhs, tree rhs,
2963 hsa_op_reg *dest, hsa_bb *hbb)
2965 BrigCompareOperation8_t compare;
2967 switch (code)
2969 case LT_EXPR:
2970 compare = BRIG_COMPARE_LT;
2971 break;
2972 case LE_EXPR:
2973 compare = BRIG_COMPARE_LE;
2974 break;
2975 case GT_EXPR:
2976 compare = BRIG_COMPARE_GT;
2977 break;
2978 case GE_EXPR:
2979 compare = BRIG_COMPARE_GE;
2980 break;
2981 case EQ_EXPR:
2982 compare = BRIG_COMPARE_EQ;
2983 break;
2984 case NE_EXPR:
2985 compare = BRIG_COMPARE_NE;
2986 break;
2987 case UNORDERED_EXPR:
2988 compare = BRIG_COMPARE_NAN;
2989 break;
2990 case ORDERED_EXPR:
2991 compare = BRIG_COMPARE_NUM;
2992 break;
2993 case UNLT_EXPR:
2994 compare = BRIG_COMPARE_LTU;
2995 break;
2996 case UNLE_EXPR:
2997 compare = BRIG_COMPARE_LEU;
2998 break;
2999 case UNGT_EXPR:
3000 compare = BRIG_COMPARE_GTU;
3001 break;
3002 case UNGE_EXPR:
3003 compare = BRIG_COMPARE_GEU;
3004 break;
3005 case UNEQ_EXPR:
3006 compare = BRIG_COMPARE_EQU;
3007 break;
3008 case LTGT_EXPR:
3009 compare = BRIG_COMPARE_NEU;
3010 break;
3012 default:
3013 HSA_SORRY_ATV (EXPR_LOCATION (lhs),
3014 "support for HSA does not implement comparison tree "
3015 "code %s\n", get_tree_code_name (code));
3016 return;
3019 /* CMP instruction returns e.g. 0xffffffff (for a 32-bit with integer)
3020 as a result of comparison. */
3022 BrigType16_t dest_type = hsa_type_integer_p (dest->m_type)
3023 ? (BrigType16_t) BRIG_TYPE_B1 : dest->m_type;
3025 hsa_insn_cmp *cmp = new hsa_insn_cmp (compare, dest_type);
3026 hsa_op_with_type *op1 = hsa_reg_or_immed_for_gimple_op (lhs, hbb);
3027 cmp->set_op (1, op1->extend_int_to_32bit (hbb));
3028 hsa_op_with_type *op2 = hsa_reg_or_immed_for_gimple_op (rhs, hbb);
3029 cmp->set_op (2, op2->extend_int_to_32bit (hbb));
3031 hbb->append_insn (cmp);
3032 cmp->set_output_in_type (dest, 0, hbb);
3035 /* Generate an unary instruction with OPCODE and append it to a basic block
3036 HBB. The instruction uses DEST as a destination and OP1
3037 as a single operand. */
3039 static void
3040 gen_hsa_unary_operation (BrigOpcode opcode, hsa_op_reg *dest,
3041 hsa_op_with_type *op1, hsa_bb *hbb)
3043 gcc_checking_assert (dest);
3044 hsa_insn_basic *insn;
3046 if (opcode == BRIG_OPCODE_MOV && hsa_needs_cvt (dest->m_type, op1->m_type))
3048 insn = new hsa_insn_cvt (dest, op1);
3049 hbb->append_insn (insn);
3050 return;
3053 op1 = op1->extend_int_to_32bit (hbb);
3054 if (opcode == BRIG_OPCODE_FIRSTBIT || opcode == BRIG_OPCODE_LASTBIT)
3056 BrigType16_t srctype = hsa_type_integer_p (op1->m_type) ? op1->m_type
3057 : hsa_unsigned_type_for_type (op1->m_type);
3058 insn = new hsa_insn_srctype (2, opcode, BRIG_TYPE_U32, srctype, NULL,
3059 op1);
3061 else
3063 BrigType16_t optype = hsa_extend_inttype_to_32bit (dest->m_type);
3064 insn = new hsa_insn_basic (2, opcode, optype, NULL, op1);
3066 if (opcode == BRIG_OPCODE_MOV)
3067 hsa_fixup_mov_insn_type (insn);
3068 else if (opcode == BRIG_OPCODE_ABS || opcode == BRIG_OPCODE_NEG)
3070 /* ABS and NEG only exist in _s form :-/ */
3071 if (insn->m_type == BRIG_TYPE_U32)
3072 insn->m_type = BRIG_TYPE_S32;
3073 else if (insn->m_type == BRIG_TYPE_U64)
3074 insn->m_type = BRIG_TYPE_S64;
3078 hbb->append_insn (insn);
3079 insn->set_output_in_type (dest, 0, hbb);
3082 /* Generate a binary instruction with OPCODE and append it to a basic block
3083 HBB. The instruction uses DEST as a destination and operands OP1
3084 and OP2. */
3086 static void
3087 gen_hsa_binary_operation (int opcode, hsa_op_reg *dest,
3088 hsa_op_with_type *op1, hsa_op_with_type *op2,
3089 hsa_bb *hbb)
3091 gcc_checking_assert (dest);
3093 BrigType16_t optype = hsa_extend_inttype_to_32bit (dest->m_type);
3094 op1 = op1->extend_int_to_32bit (hbb);
3095 op2 = op2->extend_int_to_32bit (hbb);
3097 if ((opcode == BRIG_OPCODE_SHL || opcode == BRIG_OPCODE_SHR)
3098 && is_a <hsa_op_immed *> (op2))
3100 hsa_op_immed *i = dyn_cast <hsa_op_immed *> (op2);
3101 i->set_type (BRIG_TYPE_U32);
3103 if ((opcode == BRIG_OPCODE_OR
3104 || opcode == BRIG_OPCODE_XOR
3105 || opcode == BRIG_OPCODE_AND)
3106 && is_a <hsa_op_immed *> (op2))
3108 hsa_op_immed *i = dyn_cast <hsa_op_immed *> (op2);
3109 i->set_type (hsa_unsigned_type_for_type (i->m_type));
3112 hsa_insn_basic *insn = new hsa_insn_basic (3, opcode, optype, NULL,
3113 op1, op2);
3114 hbb->append_insn (insn);
3115 insn->set_output_in_type (dest, 0, hbb);
3118 /* Generate HSA instructions for a single assignment. HBB is the basic block
3119 they will be appended to. */
3121 static void
3122 gen_hsa_insns_for_operation_assignment (gimple *assign, hsa_bb *hbb)
3124 tree_code code = gimple_assign_rhs_code (assign);
3125 gimple_rhs_class rhs_class = get_gimple_rhs_class (gimple_expr_code (assign));
3127 tree lhs = gimple_assign_lhs (assign);
3128 tree rhs1 = gimple_assign_rhs1 (assign);
3129 tree rhs2 = gimple_assign_rhs2 (assign);
3130 tree rhs3 = gimple_assign_rhs3 (assign);
3132 BrigOpcode opcode;
3134 switch (code)
3136 CASE_CONVERT:
3137 case FLOAT_EXPR:
3138 /* The opcode is changed to BRIG_OPCODE_CVT if BRIG types
3139 needs a conversion. */
3140 opcode = BRIG_OPCODE_MOV;
3141 break;
3143 case PLUS_EXPR:
3144 case POINTER_PLUS_EXPR:
3145 opcode = BRIG_OPCODE_ADD;
3146 break;
3147 case MINUS_EXPR:
3148 opcode = BRIG_OPCODE_SUB;
3149 break;
3150 case MULT_EXPR:
3151 opcode = BRIG_OPCODE_MUL;
3152 break;
3153 case MULT_HIGHPART_EXPR:
3154 opcode = BRIG_OPCODE_MULHI;
3155 break;
3156 case RDIV_EXPR:
3157 case TRUNC_DIV_EXPR:
3158 case EXACT_DIV_EXPR:
3159 opcode = BRIG_OPCODE_DIV;
3160 break;
3161 case CEIL_DIV_EXPR:
3162 case FLOOR_DIV_EXPR:
3163 case ROUND_DIV_EXPR:
3164 HSA_SORRY_AT (gimple_location (assign),
3165 "support for HSA does not implement CEIL_DIV_EXPR, "
3166 "FLOOR_DIV_EXPR or ROUND_DIV_EXPR");
3167 return;
3168 case TRUNC_MOD_EXPR:
3169 opcode = BRIG_OPCODE_REM;
3170 break;
3171 case CEIL_MOD_EXPR:
3172 case FLOOR_MOD_EXPR:
3173 case ROUND_MOD_EXPR:
3174 HSA_SORRY_AT (gimple_location (assign),
3175 "support for HSA does not implement CEIL_MOD_EXPR, "
3176 "FLOOR_MOD_EXPR or ROUND_MOD_EXPR");
3177 return;
3178 case NEGATE_EXPR:
3179 opcode = BRIG_OPCODE_NEG;
3180 break;
3181 case MIN_EXPR:
3182 opcode = BRIG_OPCODE_MIN;
3183 break;
3184 case MAX_EXPR:
3185 opcode = BRIG_OPCODE_MAX;
3186 break;
3187 case ABS_EXPR:
3188 opcode = BRIG_OPCODE_ABS;
3189 break;
3190 case LSHIFT_EXPR:
3191 opcode = BRIG_OPCODE_SHL;
3192 break;
3193 case RSHIFT_EXPR:
3194 opcode = BRIG_OPCODE_SHR;
3195 break;
3196 case LROTATE_EXPR:
3197 case RROTATE_EXPR:
3199 hsa_insn_basic *insn = NULL;
3200 int code1 = code == LROTATE_EXPR ? BRIG_OPCODE_SHL : BRIG_OPCODE_SHR;
3201 int code2 = code != LROTATE_EXPR ? BRIG_OPCODE_SHL : BRIG_OPCODE_SHR;
3202 BrigType16_t btype = hsa_type_for_scalar_tree_type (TREE_TYPE (lhs),
3203 true);
3205 hsa_op_with_type *src = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
3206 hsa_op_reg *op1 = new hsa_op_reg (btype);
3207 hsa_op_reg *op2 = new hsa_op_reg (btype);
3208 hsa_op_with_type *shift1 = hsa_reg_or_immed_for_gimple_op (rhs2, hbb);
3210 tree type = TREE_TYPE (rhs2);
3211 unsigned HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (TYPE_SIZE (type));
3213 hsa_op_with_type *shift2 = NULL;
3214 if (TREE_CODE (rhs2) == INTEGER_CST)
3215 shift2 = new hsa_op_immed (bitsize - tree_to_uhwi (rhs2),
3216 BRIG_TYPE_U32);
3217 else if (TREE_CODE (rhs2) == SSA_NAME)
3219 hsa_op_reg *s = hsa_cfun->reg_for_gimple_ssa (rhs2);
3220 s = as_a <hsa_op_reg *> (s->extend_int_to_32bit (hbb));
3221 hsa_op_reg *d = new hsa_op_reg (s->m_type);
3222 hsa_op_immed *size_imm = new hsa_op_immed (bitsize, BRIG_TYPE_U32);
3224 insn = new hsa_insn_basic (3, BRIG_OPCODE_SUB, d->m_type,
3225 d, s, size_imm);
3226 hbb->append_insn (insn);
3228 shift2 = d;
3230 else
3231 gcc_unreachable ();
3233 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
3234 gen_hsa_binary_operation (code1, op1, src, shift1, hbb);
3235 gen_hsa_binary_operation (code2, op2, src, shift2, hbb);
3236 gen_hsa_binary_operation (BRIG_OPCODE_OR, dest, op1, op2, hbb);
3238 return;
3240 case BIT_IOR_EXPR:
3241 opcode = BRIG_OPCODE_OR;
3242 break;
3243 case BIT_XOR_EXPR:
3244 opcode = BRIG_OPCODE_XOR;
3245 break;
3246 case BIT_AND_EXPR:
3247 opcode = BRIG_OPCODE_AND;
3248 break;
3249 case BIT_NOT_EXPR:
3250 opcode = BRIG_OPCODE_NOT;
3251 break;
3252 case FIX_TRUNC_EXPR:
3254 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
3255 hsa_op_with_type *v = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
3257 if (hsa_needs_cvt (dest->m_type, v->m_type))
3259 hsa_op_reg *tmp = new hsa_op_reg (v->m_type);
3261 hsa_insn_basic *insn = new hsa_insn_basic (2, BRIG_OPCODE_TRUNC,
3262 tmp->m_type, tmp, v);
3263 hbb->append_insn (insn);
3265 hsa_insn_basic *cvtinsn = new hsa_insn_cvt (dest, tmp);
3266 hbb->append_insn (cvtinsn);
3268 else
3270 hsa_insn_basic *insn = new hsa_insn_basic (2, BRIG_OPCODE_TRUNC,
3271 dest->m_type, dest, v);
3272 hbb->append_insn (insn);
3275 return;
3277 opcode = BRIG_OPCODE_TRUNC;
3278 break;
3280 case LT_EXPR:
3281 case LE_EXPR:
3282 case GT_EXPR:
3283 case GE_EXPR:
3284 case EQ_EXPR:
3285 case NE_EXPR:
3286 case UNORDERED_EXPR:
3287 case ORDERED_EXPR:
3288 case UNLT_EXPR:
3289 case UNLE_EXPR:
3290 case UNGT_EXPR:
3291 case UNGE_EXPR:
3292 case UNEQ_EXPR:
3293 case LTGT_EXPR:
3295 hsa_op_reg *dest
3296 = hsa_cfun->reg_for_gimple_ssa (gimple_assign_lhs (assign));
3298 gen_hsa_cmp_insn_from_gimple (code, rhs1, rhs2, dest, hbb);
3299 return;
3301 case COND_EXPR:
3303 hsa_op_reg *dest
3304 = hsa_cfun->reg_for_gimple_ssa (gimple_assign_lhs (assign));
3305 hsa_op_with_type *ctrl = NULL;
3306 tree cond = rhs1;
3308 if (CONSTANT_CLASS_P (cond) || TREE_CODE (cond) == SSA_NAME)
3309 ctrl = hsa_reg_or_immed_for_gimple_op (cond, hbb);
3310 else
3312 hsa_op_reg *r = new hsa_op_reg (BRIG_TYPE_B1);
3314 gen_hsa_cmp_insn_from_gimple (TREE_CODE (cond),
3315 TREE_OPERAND (cond, 0),
3316 TREE_OPERAND (cond, 1),
3317 r, hbb);
3319 ctrl = r;
3322 hsa_op_with_type *op2 = hsa_reg_or_immed_for_gimple_op (rhs2, hbb);
3323 hsa_op_with_type *op3 = hsa_reg_or_immed_for_gimple_op (rhs3, hbb);
3324 op2 = op2->extend_int_to_32bit (hbb);
3325 op3 = op3->extend_int_to_32bit (hbb);
3327 BrigType16_t type = hsa_extend_inttype_to_32bit (dest->m_type);
3328 BrigType16_t utype = hsa_unsigned_type_for_type (type);
3329 if (is_a <hsa_op_immed *> (op2))
3330 op2->m_type = utype;
3331 if (is_a <hsa_op_immed *> (op3))
3332 op3->m_type = utype;
3334 hsa_insn_basic *insn
3335 = new hsa_insn_basic (4, BRIG_OPCODE_CMOV,
3336 hsa_bittype_for_type (type),
3337 NULL, ctrl, op2, op3);
3339 hbb->append_insn (insn);
3340 insn->set_output_in_type (dest, 0, hbb);
3341 return;
3343 case COMPLEX_EXPR:
3345 hsa_op_reg *dest
3346 = hsa_cfun->reg_for_gimple_ssa (gimple_assign_lhs (assign));
3347 hsa_op_with_type *rhs1_reg = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
3348 rhs1_reg = rhs1_reg->extend_int_to_32bit (hbb);
3349 hsa_op_with_type *rhs2_reg = hsa_reg_or_immed_for_gimple_op (rhs2, hbb);
3350 rhs2_reg = rhs2_reg->extend_int_to_32bit (hbb);
3352 if (hsa_seen_error ())
3353 return;
3355 BrigType16_t src_type = hsa_bittype_for_type (rhs1_reg->m_type);
3356 rhs1_reg = rhs1_reg->get_in_type (src_type, hbb);
3357 rhs2_reg = rhs2_reg->get_in_type (src_type, hbb);
3359 hsa_insn_packed *insn
3360 = new hsa_insn_packed (3, BRIG_OPCODE_COMBINE, dest->m_type, src_type,
3361 dest, rhs1_reg, rhs2_reg);
3362 hbb->append_insn (insn);
3364 return;
3366 default:
3367 /* Implement others as we come across them. */
3368 HSA_SORRY_ATV (gimple_location (assign),
3369 "support for HSA does not implement operation %s",
3370 get_tree_code_name (code));
3371 return;
3375 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
3376 hsa_op_with_type *op1 = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
3377 hsa_op_with_type *op2
3378 = rhs2 ? hsa_reg_or_immed_for_gimple_op (rhs2, hbb) : NULL;
3380 if (hsa_seen_error ())
3381 return;
3383 switch (rhs_class)
3385 case GIMPLE_TERNARY_RHS:
3387 hsa_op_with_type *op3 = hsa_reg_or_immed_for_gimple_op (rhs3, hbb);
3388 op3 = op3->extend_int_to_32bit (hbb);
3389 hsa_insn_basic *insn = new hsa_insn_basic (4, opcode, dest->m_type, dest,
3390 op1, op2, op3);
3391 hbb->append_insn (insn);
3393 return;
3395 case GIMPLE_BINARY_RHS:
3396 gen_hsa_binary_operation (opcode, dest, op1, op2, hbb);
3397 break;
3399 case GIMPLE_UNARY_RHS:
3400 gen_hsa_unary_operation (opcode, dest, op1, hbb);
3401 break;
3402 default:
3403 gcc_unreachable ();
3407 /* Generate HSA instructions for a given gimple condition statement COND.
3408 Instructions will be appended to HBB, which also needs to be the
3409 corresponding structure to the basic_block of COND. */
3411 static void
3412 gen_hsa_insns_for_cond_stmt (gimple *cond, hsa_bb *hbb)
3414 hsa_op_reg *ctrl = new hsa_op_reg (BRIG_TYPE_B1);
3415 hsa_insn_cbr *cbr;
3417 gen_hsa_cmp_insn_from_gimple (gimple_cond_code (cond),
3418 gimple_cond_lhs (cond),
3419 gimple_cond_rhs (cond),
3420 ctrl, hbb);
3422 cbr = new hsa_insn_cbr (ctrl);
3423 hbb->append_insn (cbr);
3426 /* Maximum number of elements in a jump table for an HSA SBR instruction. */
3428 #define HSA_MAXIMUM_SBR_LABELS 16
3430 /* Return lowest value of a switch S that is handled in a non-default
3431 label. */
3433 static tree
3434 get_switch_low (gswitch *s)
3436 unsigned labels = gimple_switch_num_labels (s);
3437 gcc_checking_assert (labels >= 1);
3439 return CASE_LOW (gimple_switch_label (s, 1));
3442 /* Return highest value of a switch S that is handled in a non-default
3443 label. */
3445 static tree
3446 get_switch_high (gswitch *s)
3448 unsigned labels = gimple_switch_num_labels (s);
3450 /* Compare last label to maximum number of labels. */
3451 tree label = gimple_switch_label (s, labels - 1);
3452 tree low = CASE_LOW (label);
3453 tree high = CASE_HIGH (label);
3455 return high != NULL_TREE ? high : low;
3458 static tree
3459 get_switch_size (gswitch *s)
3461 return int_const_binop (MINUS_EXPR, get_switch_high (s), get_switch_low (s));
3464 /* Generate HSA instructions for a given gimple switch.
3465 Instructions will be appended to HBB. */
3467 static void
3468 gen_hsa_insns_for_switch_stmt (gswitch *s, hsa_bb *hbb)
3470 gimple_stmt_iterator it = gsi_for_stmt (s);
3471 gsi_prev (&it);
3473 /* Create preambule that verifies that index - lowest_label >= 0. */
3474 edge e = split_block (hbb->m_bb, gsi_stmt (it));
3475 e->flags &= ~EDGE_FALLTHRU;
3476 e->flags |= EDGE_TRUE_VALUE;
3478 function *func = DECL_STRUCT_FUNCTION (current_function_decl);
3479 tree index_tree = gimple_switch_index (s);
3480 tree lowest = get_switch_low (s);
3481 tree highest = get_switch_high (s);
3483 hsa_op_reg *index = hsa_cfun->reg_for_gimple_ssa (index_tree);
3484 index = as_a <hsa_op_reg *> (index->extend_int_to_32bit (hbb));
3486 hsa_op_reg *cmp1_reg = new hsa_op_reg (BRIG_TYPE_B1);
3487 hsa_op_immed *cmp1_immed = new hsa_op_immed (lowest, true);
3488 hbb->append_insn (new hsa_insn_cmp (BRIG_COMPARE_GE, cmp1_reg->m_type,
3489 cmp1_reg, index, cmp1_immed));
3491 hsa_op_reg *cmp2_reg = new hsa_op_reg (BRIG_TYPE_B1);
3492 hsa_op_immed *cmp2_immed = new hsa_op_immed (highest, true);
3493 hbb->append_insn (new hsa_insn_cmp (BRIG_COMPARE_LE, cmp2_reg->m_type,
3494 cmp2_reg, index, cmp2_immed));
3496 hsa_op_reg *cmp_reg = new hsa_op_reg (BRIG_TYPE_B1);
3497 hbb->append_insn (new hsa_insn_basic (3, BRIG_OPCODE_AND, cmp_reg->m_type,
3498 cmp_reg, cmp1_reg, cmp2_reg));
3500 hbb->append_insn (new hsa_insn_cbr (cmp_reg));
3502 tree default_label = gimple_switch_default_label (s);
3503 basic_block default_label_bb = label_to_block_fn (func,
3504 CASE_LABEL (default_label));
3506 if (!gimple_seq_empty_p (phi_nodes (default_label_bb)))
3508 default_label_bb = split_edge (find_edge (e->dest, default_label_bb));
3509 hsa_init_new_bb (default_label_bb);
3512 make_edge (e->src, default_label_bb, EDGE_FALSE_VALUE);
3514 hsa_cfun->m_modified_cfg = true;
3516 /* Basic block with the SBR instruction. */
3517 hbb = hsa_init_new_bb (e->dest);
3519 hsa_op_reg *sub_index = new hsa_op_reg (index->m_type);
3520 hbb->append_insn (new hsa_insn_basic (3, BRIG_OPCODE_SUB, sub_index->m_type,
3521 sub_index, index,
3522 new hsa_op_immed (lowest, true)));
3524 hsa_op_base *tmp = sub_index->get_in_type (BRIG_TYPE_U64, hbb);
3525 sub_index = as_a <hsa_op_reg *> (tmp);
3526 unsigned labels = gimple_switch_num_labels (s);
3527 unsigned HOST_WIDE_INT size = tree_to_uhwi (get_switch_size (s));
3529 hsa_insn_sbr *sbr = new hsa_insn_sbr (sub_index, size + 1);
3531 /* Prepare array with default label destination. */
3532 for (unsigned HOST_WIDE_INT i = 0; i <= size; i++)
3533 sbr->m_jump_table.safe_push (default_label_bb);
3535 /* Iterate all labels and fill up the jump table. */
3536 for (unsigned i = 1; i < labels; i++)
3538 tree label = gimple_switch_label (s, i);
3539 basic_block bb = label_to_block_fn (func, CASE_LABEL (label));
3541 unsigned HOST_WIDE_INT sub_low
3542 = tree_to_uhwi (int_const_binop (MINUS_EXPR, CASE_LOW (label), lowest));
3544 unsigned HOST_WIDE_INT sub_high = sub_low;
3545 tree high = CASE_HIGH (label);
3546 if (high != NULL)
3547 sub_high = tree_to_uhwi (int_const_binop (MINUS_EXPR, high, lowest));
3549 for (unsigned HOST_WIDE_INT j = sub_low; j <= sub_high; j++)
3550 sbr->m_jump_table[j] = bb;
3553 hbb->append_insn (sbr);
3556 /* Verify that the function DECL can be handled by HSA. */
3558 static void
3559 verify_function_arguments (tree decl)
3561 tree type = TREE_TYPE (decl);
3562 if (DECL_STATIC_CHAIN (decl))
3564 HSA_SORRY_ATV (EXPR_LOCATION (decl),
3565 "HSA does not support nested functions: %qD", decl);
3566 return;
3568 else if (!TYPE_ARG_TYPES (type) || stdarg_p (type))
3570 HSA_SORRY_ATV (EXPR_LOCATION (decl),
3571 "HSA does not support functions with variadic arguments "
3572 "(or unknown return type): %qD", decl);
3573 return;
3577 /* Return BRIG type for FORMAL_ARG_TYPE. If the formal argument type is NULL,
3578 return ACTUAL_ARG_TYPE. */
3580 static BrigType16_t
3581 get_format_argument_type (tree formal_arg_type, BrigType16_t actual_arg_type)
3583 if (formal_arg_type == NULL)
3584 return actual_arg_type;
3586 BrigType16_t decl_type
3587 = hsa_type_for_scalar_tree_type (formal_arg_type, false);
3588 return mem_type_for_type (decl_type);
3591 /* Generate HSA instructions for a direct call instruction.
3592 Instructions will be appended to HBB, which also needs to be the
3593 corresponding structure to the basic_block of STMT.
3594 If ASSIGN_LHS is false, do not copy HSA function result argument into the
3595 corresponding HSA representation of the gimple statement LHS. */
3597 static void
3598 gen_hsa_insns_for_direct_call (gimple *stmt, hsa_bb *hbb,
3599 bool assign_lhs = true)
3601 tree decl = gimple_call_fndecl (stmt);
3602 verify_function_arguments (decl);
3603 if (hsa_seen_error ())
3604 return;
3606 hsa_insn_call *call_insn = new hsa_insn_call (decl);
3607 hsa_cfun->m_called_functions.safe_push (call_insn->m_called_function);
3609 /* Argument block start. */
3610 hsa_insn_arg_block *arg_start
3611 = new hsa_insn_arg_block (BRIG_KIND_DIRECTIVE_ARG_BLOCK_START, call_insn);
3612 hbb->append_insn (arg_start);
3614 tree parm_type_chain = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
3616 /* Preparation of arguments that will be passed to function. */
3617 const unsigned args = gimple_call_num_args (stmt);
3618 for (unsigned i = 0; i < args; ++i)
3620 tree parm = gimple_call_arg (stmt, (int)i);
3621 tree parm_decl_type = parm_type_chain != NULL_TREE
3622 ? TREE_VALUE (parm_type_chain) : NULL_TREE;
3623 hsa_op_address *addr;
3625 if (AGGREGATE_TYPE_P (TREE_TYPE (parm)))
3627 addr = gen_hsa_addr_for_arg (TREE_TYPE (parm), i);
3628 BrigAlignment8_t align;
3629 hsa_op_address *src = gen_hsa_addr_with_align (parm, hbb, &align);
3630 gen_hsa_memory_copy (hbb, addr, src,
3631 addr->m_symbol->total_byte_size (), align);
3633 else
3635 hsa_op_with_type *src = hsa_reg_or_immed_for_gimple_op (parm, hbb);
3637 if (parm_decl_type != NULL && AGGREGATE_TYPE_P (parm_decl_type))
3639 HSA_SORRY_AT (gimple_location (stmt),
3640 "support for HSA does not implement an aggregate "
3641 "formal argument in a function call, while actual "
3642 "argument is not an aggregate");
3643 return;
3646 BrigType16_t formal_arg_type
3647 = get_format_argument_type (parm_decl_type, src->m_type);
3648 if (hsa_seen_error ())
3649 return;
3651 if (src->m_type != formal_arg_type)
3652 src = src->get_in_type (formal_arg_type, hbb);
3654 addr
3655 = gen_hsa_addr_for_arg (parm_decl_type != NULL_TREE ?
3656 parm_decl_type: TREE_TYPE (parm), i);
3657 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_ST, formal_arg_type,
3658 src, addr);
3660 hbb->append_insn (mem);
3663 call_insn->m_input_args.safe_push (addr->m_symbol);
3664 if (parm_type_chain)
3665 parm_type_chain = TREE_CHAIN (parm_type_chain);
3668 call_insn->m_args_code_list = new hsa_op_code_list (args);
3669 hbb->append_insn (call_insn);
3671 tree result_type = TREE_TYPE (TREE_TYPE (decl));
3673 tree result = gimple_call_lhs (stmt);
3674 hsa_insn_mem *result_insn = NULL;
3675 if (!VOID_TYPE_P (result_type))
3677 hsa_op_address *addr = gen_hsa_addr_for_arg (result_type, -1);
3679 /* Even if result of a function call is unused, we have to emit
3680 declaration for the result. */
3681 if (result && assign_lhs)
3683 tree lhs_type = TREE_TYPE (result);
3685 if (hsa_seen_error ())
3686 return;
3688 if (AGGREGATE_TYPE_P (lhs_type))
3690 BrigAlignment8_t align;
3691 hsa_op_address *result_addr
3692 = gen_hsa_addr_with_align (result, hbb, &align);
3693 gen_hsa_memory_copy (hbb, result_addr, addr,
3694 addr->m_symbol->total_byte_size (), align);
3696 else
3698 BrigType16_t mtype
3699 = mem_type_for_type (hsa_type_for_scalar_tree_type (lhs_type,
3700 false));
3702 hsa_op_reg *dst = hsa_cfun->reg_for_gimple_ssa (result);
3703 result_insn = new hsa_insn_mem (BRIG_OPCODE_LD, mtype, dst, addr);
3704 hbb->append_insn (result_insn);
3708 call_insn->m_output_arg = addr->m_symbol;
3709 call_insn->m_result_code_list = new hsa_op_code_list (1);
3711 else
3713 if (result)
3715 HSA_SORRY_AT (gimple_location (stmt),
3716 "support for HSA does not implement an assignment of "
3717 "return value from a void function");
3718 return;
3721 call_insn->m_result_code_list = new hsa_op_code_list (0);
3724 /* Argument block end. */
3725 hsa_insn_arg_block *arg_end
3726 = new hsa_insn_arg_block (BRIG_KIND_DIRECTIVE_ARG_BLOCK_END, call_insn);
3727 hbb->append_insn (arg_end);
3730 /* Generate HSA instructions for a direct call of an internal fn.
3731 Instructions will be appended to HBB, which also needs to be the
3732 corresponding structure to the basic_block of STMT. */
3734 static void
3735 gen_hsa_insns_for_call_of_internal_fn (gimple *stmt, hsa_bb *hbb)
3737 tree lhs = gimple_call_lhs (stmt);
3738 if (!lhs)
3739 return;
3741 tree lhs_type = TREE_TYPE (lhs);
3742 tree rhs1 = gimple_call_arg (stmt, 0);
3743 tree rhs1_type = TREE_TYPE (rhs1);
3744 enum internal_fn fn = gimple_call_internal_fn (stmt);
3745 hsa_internal_fn *ifn
3746 = new hsa_internal_fn (fn, tree_to_uhwi (TYPE_SIZE (rhs1_type)));
3747 hsa_insn_call *call_insn = new hsa_insn_call (ifn);
3749 gcc_checking_assert (FLOAT_TYPE_P (rhs1_type));
3751 if (!hsa_emitted_internal_decls->find (call_insn->m_called_internal_fn))
3752 hsa_cfun->m_called_internal_fns.safe_push (call_insn->m_called_internal_fn);
3754 hsa_insn_arg_block *arg_start
3755 = new hsa_insn_arg_block (BRIG_KIND_DIRECTIVE_ARG_BLOCK_START, call_insn);
3756 hbb->append_insn (arg_start);
3758 unsigned num_args = gimple_call_num_args (stmt);
3760 /* Function arguments. */
3761 for (unsigned i = 0; i < num_args; i++)
3763 tree parm = gimple_call_arg (stmt, (int)i);
3764 hsa_op_with_type *src = hsa_reg_or_immed_for_gimple_op (parm, hbb);
3766 hsa_op_address *addr = gen_hsa_addr_for_arg (TREE_TYPE (parm), i);
3767 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_ST, src->m_type,
3768 src, addr);
3770 call_insn->m_input_args.safe_push (addr->m_symbol);
3771 hbb->append_insn (mem);
3774 call_insn->m_args_code_list = new hsa_op_code_list (num_args);
3775 hbb->append_insn (call_insn);
3777 /* Assign returned value. */
3778 hsa_op_address *addr = gen_hsa_addr_for_arg (lhs_type, -1);
3780 call_insn->m_output_arg = addr->m_symbol;
3781 call_insn->m_result_code_list = new hsa_op_code_list (1);
3783 /* Argument block end. */
3784 hsa_insn_arg_block *arg_end
3785 = new hsa_insn_arg_block (BRIG_KIND_DIRECTIVE_ARG_BLOCK_END, call_insn);
3786 hbb->append_insn (arg_end);
3789 /* Generate HSA instructions for a return value instruction.
3790 Instructions will be appended to HBB, which also needs to be the
3791 corresponding structure to the basic_block of STMT. */
3793 static void
3794 gen_hsa_insns_for_return (greturn *stmt, hsa_bb *hbb)
3796 tree retval = gimple_return_retval (stmt);
3797 if (retval)
3799 hsa_op_address *addr = new hsa_op_address (hsa_cfun->m_output_arg);
3801 if (AGGREGATE_TYPE_P (TREE_TYPE (retval)))
3803 BrigAlignment8_t align;
3804 hsa_op_address *retval_addr = gen_hsa_addr_with_align (retval, hbb,
3805 &align);
3806 gen_hsa_memory_copy (hbb, addr, retval_addr,
3807 hsa_cfun->m_output_arg->total_byte_size (),
3808 align);
3810 else
3812 BrigType16_t t = hsa_type_for_scalar_tree_type (TREE_TYPE (retval),
3813 false);
3814 BrigType16_t mtype = mem_type_for_type (t);
3816 /* Store of return value. */
3817 hsa_op_with_type *src = hsa_reg_or_immed_for_gimple_op (retval, hbb);
3818 src = src->get_in_type (mtype, hbb);
3819 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_ST, mtype, src,
3820 addr);
3821 hbb->append_insn (mem);
3825 /* HSAIL return instruction emission. */
3826 hsa_insn_basic *ret = new hsa_insn_basic (0, BRIG_OPCODE_RET);
3827 hbb->append_insn (ret);
3830 /* Set OP_INDEX-th operand of the instruction to DEST, as the DEST
3831 can have a different type, conversion instructions are possibly
3832 appended to HBB. */
3834 void
3835 hsa_insn_basic::set_output_in_type (hsa_op_reg *dest, unsigned op_index,
3836 hsa_bb *hbb)
3838 gcc_checking_assert (op_output_p (op_index));
3840 if (dest->m_type == m_type)
3842 set_op (op_index, dest);
3843 return;
3846 hsa_insn_basic *insn;
3847 hsa_op_reg *tmp;
3848 if (hsa_needs_cvt (dest->m_type, m_type))
3850 tmp = new hsa_op_reg (m_type);
3851 insn = new hsa_insn_cvt (dest, tmp);
3853 else if (hsa_type_bit_size (dest->m_type) == hsa_type_bit_size (m_type))
3855 /* When output, HSA registers do not really have types, only sizes, so if
3856 the sizes match, we can use the register directly. */
3857 set_op (op_index, dest);
3858 return;
3860 else
3862 tmp = new hsa_op_reg (m_type);
3863 insn = new hsa_insn_basic (2, BRIG_OPCODE_MOV, dest->m_type,
3864 dest, tmp->get_in_type (dest->m_type, hbb));
3865 hsa_fixup_mov_insn_type (insn);
3867 set_op (op_index, tmp);
3868 hbb->append_insn (insn);
3871 /* Generate instruction OPCODE to query a property of HSA grid along the
3872 given DIMENSION. Store result into DEST and append the instruction to
3873 HBB. */
3875 static void
3876 query_hsa_grid_dim (hsa_op_reg *dest, int opcode, hsa_op_immed *dimension,
3877 hsa_bb *hbb)
3879 hsa_insn_basic *insn = new hsa_insn_basic (2, opcode, BRIG_TYPE_U32, NULL,
3880 dimension);
3881 hbb->append_insn (insn);
3882 insn->set_output_in_type (dest, 0, hbb);
3885 /* Generate instruction OPCODE to query a property of HSA grid along the given
3886 dimension which is an immediate in first argument of STMT. Store result
3887 into the register corresponding to LHS of STMT and append the instruction to
3888 HBB. */
3890 static void
3891 query_hsa_grid_dim (gimple *stmt, int opcode, hsa_bb *hbb)
3893 tree lhs = gimple_call_lhs (dyn_cast <gcall *> (stmt));
3894 if (lhs == NULL_TREE)
3895 return;
3897 tree arg = gimple_call_arg (stmt, 0);
3898 unsigned HOST_WIDE_INT dim = 5;
3899 if (tree_fits_uhwi_p (arg))
3900 dim = tree_to_uhwi (arg);
3901 if (dim > 2)
3903 HSA_SORRY_AT (gimple_location (stmt),
3904 "HSA grid query dimension must be immediate constant 0, 1 "
3905 "or 2");
3906 return;
3909 hsa_op_immed *hdim = new hsa_op_immed (dim, (BrigKind16_t) BRIG_TYPE_U32);
3910 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
3911 query_hsa_grid_dim (dest, opcode, hdim, hbb);
3914 /* Generate instruction OPCODE to query a property of HSA grid that is
3915 independent of any dimension. Store result into the register corresponding
3916 to LHS of STMT and append the instruction to HBB. */
3918 static void
3919 query_hsa_grid_nodim (gimple *stmt, BrigOpcode16_t opcode, hsa_bb *hbb)
3921 tree lhs = gimple_call_lhs (dyn_cast <gcall *> (stmt));
3922 if (lhs == NULL_TREE)
3923 return;
3924 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
3925 BrigType16_t brig_type = hsa_unsigned_type_for_type (dest->m_type);
3926 hsa_insn_basic *insn = new hsa_insn_basic (1, opcode, brig_type, dest);
3927 hbb->append_insn (insn);
3930 /* Emit instructions that set hsa_num_threads according to provided VALUE.
3931 Instructions are appended to basic block HBB. */
3933 static void
3934 gen_set_num_threads (tree value, hsa_bb *hbb)
3936 hbb->append_insn (new hsa_insn_comment ("omp_set_num_threads"));
3937 hsa_op_with_type *src = hsa_reg_or_immed_for_gimple_op (value, hbb);
3939 src = src->get_in_type (hsa_num_threads->m_type, hbb);
3940 hsa_op_address *addr = new hsa_op_address (hsa_num_threads);
3942 hsa_insn_basic *basic
3943 = new hsa_insn_mem (BRIG_OPCODE_ST, hsa_num_threads->m_type, src, addr);
3944 hbb->append_insn (basic);
3947 /* Return byte offset of a FIELD_NAME in GOMP_hsa_kernel_dispatch which
3948 is defined in plugin-hsa.c. */
3950 static HOST_WIDE_INT
3951 get_hsa_kernel_dispatch_offset (const char *field_name)
3953 tree *hsa_kernel_dispatch_type = hsa_get_kernel_dispatch_type ();
3954 if (*hsa_kernel_dispatch_type == NULL)
3956 /* Collection of information needed for a dispatch of a kernel from a
3957 kernel. Keep in sync with libgomp's plugin-hsa.c. */
3959 *hsa_kernel_dispatch_type = make_node (RECORD_TYPE);
3960 tree id_f1 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3961 get_identifier ("queue"), ptr_type_node);
3962 DECL_CHAIN (id_f1) = NULL_TREE;
3963 tree id_f2 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3964 get_identifier ("omp_data_memory"),
3965 ptr_type_node);
3966 DECL_CHAIN (id_f2) = id_f1;
3967 tree id_f3 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3968 get_identifier ("kernarg_address"),
3969 ptr_type_node);
3970 DECL_CHAIN (id_f3) = id_f2;
3971 tree id_f4 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3972 get_identifier ("object"),
3973 uint64_type_node);
3974 DECL_CHAIN (id_f4) = id_f3;
3975 tree id_f5 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3976 get_identifier ("signal"),
3977 uint64_type_node);
3978 DECL_CHAIN (id_f5) = id_f4;
3979 tree id_f6 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3980 get_identifier ("private_segment_size"),
3981 uint32_type_node);
3982 DECL_CHAIN (id_f6) = id_f5;
3983 tree id_f7 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3984 get_identifier ("group_segment_size"),
3985 uint32_type_node);
3986 DECL_CHAIN (id_f7) = id_f6;
3987 tree id_f8 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3988 get_identifier ("kernel_dispatch_count"),
3989 uint64_type_node);
3990 DECL_CHAIN (id_f8) = id_f7;
3991 tree id_f9 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3992 get_identifier ("debug"),
3993 uint64_type_node);
3994 DECL_CHAIN (id_f9) = id_f8;
3995 tree id_f10 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
3996 get_identifier ("omp_level"),
3997 uint64_type_node);
3998 DECL_CHAIN (id_f10) = id_f9;
3999 tree id_f11 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
4000 get_identifier ("children_dispatches"),
4001 ptr_type_node);
4002 DECL_CHAIN (id_f11) = id_f10;
4003 tree id_f12 = build_decl (BUILTINS_LOCATION, FIELD_DECL,
4004 get_identifier ("omp_num_threads"),
4005 uint32_type_node);
4006 DECL_CHAIN (id_f12) = id_f11;
4009 finish_builtin_struct (*hsa_kernel_dispatch_type, "__hsa_kernel_dispatch",
4010 id_f12, NULL_TREE);
4011 TYPE_ARTIFICIAL (*hsa_kernel_dispatch_type) = 1;
4014 for (tree chain = TYPE_FIELDS (*hsa_kernel_dispatch_type);
4015 chain != NULL_TREE; chain = TREE_CHAIN (chain))
4016 if (id_equal (DECL_NAME (chain), field_name))
4017 return int_byte_position (chain);
4019 gcc_unreachable ();
4022 /* Return an HSA register that will contain number of threads for
4023 a future dispatched kernel. Instructions are added to HBB. */
4025 static hsa_op_reg *
4026 gen_num_threads_for_dispatch (hsa_bb *hbb)
4028 /* Step 1) Assign to number of threads:
4029 MIN (HSA_DEFAULT_NUM_THREADS, hsa_num_threads). */
4030 hsa_op_reg *threads = new hsa_op_reg (hsa_num_threads->m_type);
4031 hsa_op_address *addr = new hsa_op_address (hsa_num_threads);
4033 hbb->append_insn (new hsa_insn_mem (BRIG_OPCODE_LD, threads->m_type,
4034 threads, addr));
4036 hsa_op_immed *limit = new hsa_op_immed (HSA_DEFAULT_NUM_THREADS,
4037 BRIG_TYPE_U32);
4038 hsa_op_reg *r = new hsa_op_reg (BRIG_TYPE_B1);
4039 hsa_insn_cmp * cmp
4040 = new hsa_insn_cmp (BRIG_COMPARE_LT, r->m_type, r, threads, limit);
4041 hbb->append_insn (cmp);
4043 BrigType16_t btype = hsa_bittype_for_type (threads->m_type);
4044 hsa_op_reg *tmp = new hsa_op_reg (threads->m_type);
4046 hbb->append_insn (new hsa_insn_basic (4, BRIG_OPCODE_CMOV, btype, tmp, r,
4047 threads, limit));
4049 /* Step 2) If the number is equal to zero,
4050 return shadow->omp_num_threads. */
4051 hsa_op_reg *shadow_reg_ptr = hsa_cfun->get_shadow_reg ();
4053 hsa_op_reg *shadow_thread_count = new hsa_op_reg (BRIG_TYPE_U32);
4054 addr
4055 = new hsa_op_address (shadow_reg_ptr,
4056 get_hsa_kernel_dispatch_offset ("omp_num_threads"));
4057 hsa_insn_basic *basic
4058 = new hsa_insn_mem (BRIG_OPCODE_LD, shadow_thread_count->m_type,
4059 shadow_thread_count, addr);
4060 hbb->append_insn (basic);
4062 hsa_op_reg *tmp2 = new hsa_op_reg (threads->m_type);
4063 r = new hsa_op_reg (BRIG_TYPE_B1);
4064 hsa_op_immed *imm = new hsa_op_immed (0, shadow_thread_count->m_type);
4065 hbb->append_insn (new hsa_insn_cmp (BRIG_COMPARE_EQ, r->m_type, r, tmp, imm));
4066 hbb->append_insn (new hsa_insn_basic (4, BRIG_OPCODE_CMOV, btype, tmp2, r,
4067 shadow_thread_count, tmp));
4069 hsa_op_base *dest = tmp2->get_in_type (BRIG_TYPE_U16, hbb);
4071 return as_a <hsa_op_reg *> (dest);
4074 /* Build OPCODE query for all three hsa dimensions, multiply them and store the
4075 result into DEST. */
4077 static void
4078 multiply_grid_dim_characteristics (hsa_op_reg *dest, int opcode, hsa_bb *hbb)
4080 hsa_op_reg *dimx = new hsa_op_reg (BRIG_TYPE_U32);
4081 query_hsa_grid_dim (dimx, opcode,
4082 new hsa_op_immed (0, (BrigKind16_t) BRIG_TYPE_U32), hbb);
4083 hsa_op_reg *dimy = new hsa_op_reg (BRIG_TYPE_U32);
4084 query_hsa_grid_dim (dimy, opcode,
4085 new hsa_op_immed (1, (BrigKind16_t) BRIG_TYPE_U32), hbb);
4086 hsa_op_reg *dimz = new hsa_op_reg (BRIG_TYPE_U32);
4087 query_hsa_grid_dim (dimz, opcode,
4088 new hsa_op_immed (2, (BrigKind16_t) BRIG_TYPE_U32), hbb);
4089 hsa_op_reg *tmp = new hsa_op_reg (dest->m_type);
4090 gen_hsa_binary_operation (BRIG_OPCODE_MUL, tmp,
4091 dimx->get_in_type (dest->m_type, hbb),
4092 dimy->get_in_type (dest->m_type, hbb), hbb);
4093 gen_hsa_binary_operation (BRIG_OPCODE_MUL, dest, tmp,
4094 dimz->get_in_type (dest->m_type, hbb), hbb);
4097 /* Emit instructions that assign number of threads to lhs of gimple STMT.
4098 Instructions are appended to basic block HBB. */
4100 static void
4101 gen_get_num_threads (gimple *stmt, hsa_bb *hbb)
4103 if (gimple_call_lhs (stmt) == NULL_TREE)
4104 return;
4106 hbb->append_insn (new hsa_insn_comment ("omp_get_num_threads"));
4107 tree lhs = gimple_call_lhs (stmt);
4108 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4109 multiply_grid_dim_characteristics (dest, BRIG_OPCODE_CURRENTWORKGROUPSIZE,
4110 hbb);
4113 /* Emit instructions that assign number of teams to lhs of gimple STMT.
4114 Instructions are appended to basic block HBB. */
4116 static void
4117 gen_get_num_teams (gimple *stmt, hsa_bb *hbb)
4119 if (gimple_call_lhs (stmt) == NULL_TREE)
4120 return;
4122 hbb->append_insn (new hsa_insn_comment ("omp_get_num_teams"));
4123 tree lhs = gimple_call_lhs (stmt);
4124 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4125 multiply_grid_dim_characteristics (dest, BRIG_OPCODE_GRIDGROUPS, hbb);
4128 /* Emit instructions that assign a team number to lhs of gimple STMT.
4129 Instructions are appended to basic block HBB. */
4131 static void
4132 gen_get_team_num (gimple *stmt, hsa_bb *hbb)
4134 if (gimple_call_lhs (stmt) == NULL_TREE)
4135 return;
4137 hbb->append_insn (new hsa_insn_comment ("omp_get_team_num"));
4138 tree lhs = gimple_call_lhs (stmt);
4139 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4141 hsa_op_reg *gnum_x = new hsa_op_reg (BRIG_TYPE_U32);
4142 query_hsa_grid_dim (gnum_x, BRIG_OPCODE_GRIDGROUPS,
4143 new hsa_op_immed (0, (BrigKind16_t) BRIG_TYPE_U32), hbb);
4144 hsa_op_reg *gnum_y = new hsa_op_reg (BRIG_TYPE_U32);
4145 query_hsa_grid_dim (gnum_y, BRIG_OPCODE_GRIDGROUPS,
4146 new hsa_op_immed (1, (BrigKind16_t) BRIG_TYPE_U32), hbb);
4148 hsa_op_reg *gno_z = new hsa_op_reg (BRIG_TYPE_U32);
4149 query_hsa_grid_dim (gno_z, BRIG_OPCODE_WORKGROUPID,
4150 new hsa_op_immed (2, (BrigKind16_t) BRIG_TYPE_U32), hbb);
4152 hsa_op_reg *tmp1 = new hsa_op_reg (dest->m_type);
4153 gen_hsa_binary_operation (BRIG_OPCODE_MUL, tmp1,
4154 gnum_x->get_in_type (dest->m_type, hbb),
4155 gnum_y->get_in_type (dest->m_type, hbb), hbb);
4156 hsa_op_reg *tmp2 = new hsa_op_reg (dest->m_type);
4157 gen_hsa_binary_operation (BRIG_OPCODE_MUL, tmp2, tmp1,
4158 gno_z->get_in_type (dest->m_type, hbb), hbb);
4160 hsa_op_reg *gno_y = new hsa_op_reg (BRIG_TYPE_U32);
4161 query_hsa_grid_dim (gno_y, BRIG_OPCODE_WORKGROUPID,
4162 new hsa_op_immed (1, (BrigKind16_t) BRIG_TYPE_U32), hbb);
4163 hsa_op_reg *tmp3 = new hsa_op_reg (dest->m_type);
4164 gen_hsa_binary_operation (BRIG_OPCODE_MUL, tmp3,
4165 gnum_x->get_in_type (dest->m_type, hbb),
4166 gno_y->get_in_type (dest->m_type, hbb), hbb);
4167 hsa_op_reg *tmp4 = new hsa_op_reg (dest->m_type);
4168 gen_hsa_binary_operation (BRIG_OPCODE_ADD, tmp4, tmp3, tmp2, hbb);
4169 hsa_op_reg *gno_x = new hsa_op_reg (BRIG_TYPE_U32);
4170 query_hsa_grid_dim (gno_x, BRIG_OPCODE_WORKGROUPID,
4171 new hsa_op_immed (0, (BrigKind16_t) BRIG_TYPE_U32), hbb);
4172 gen_hsa_binary_operation (BRIG_OPCODE_ADD, dest, tmp4,
4173 gno_x->get_in_type (dest->m_type, hbb), hbb);
4176 /* Emit instructions that get levels-var ICV to lhs of gimple STMT.
4177 Instructions are appended to basic block HBB. */
4179 static void
4180 gen_get_level (gimple *stmt, hsa_bb *hbb)
4182 if (gimple_call_lhs (stmt) == NULL_TREE)
4183 return;
4185 hbb->append_insn (new hsa_insn_comment ("omp_get_level"));
4187 tree lhs = gimple_call_lhs (stmt);
4188 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4190 hsa_op_reg *shadow_reg_ptr = hsa_cfun->get_shadow_reg ();
4191 if (shadow_reg_ptr == NULL)
4193 HSA_SORRY_AT (gimple_location (stmt),
4194 "support for HSA does not implement omp_get_level called "
4195 "from a function not being inlined within a kernel");
4196 return;
4199 hsa_op_address *addr
4200 = new hsa_op_address (shadow_reg_ptr,
4201 get_hsa_kernel_dispatch_offset ("omp_level"));
4203 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_LD, BRIG_TYPE_U64,
4204 (hsa_op_base *) NULL, addr);
4205 hbb->append_insn (mem);
4206 mem->set_output_in_type (dest, 0, hbb);
4209 /* Emit instruction that implement omp_get_max_threads of gimple STMT. */
4211 static void
4212 gen_get_max_threads (gimple *stmt, hsa_bb *hbb)
4214 tree lhs = gimple_call_lhs (stmt);
4215 if (!lhs)
4216 return;
4218 hbb->append_insn (new hsa_insn_comment ("omp_get_max_threads"));
4220 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4221 hsa_op_with_type *num_theads_reg = gen_num_threads_for_dispatch (hbb)
4222 ->get_in_type (dest->m_type, hbb);
4223 hsa_build_append_simple_mov (dest, num_theads_reg, hbb);
4226 /* Emit instructions that implement alloca builtin gimple STMT.
4227 Instructions are appended to basic block HBB. */
4229 static void
4230 gen_hsa_alloca (gcall *call, hsa_bb *hbb)
4232 tree lhs = gimple_call_lhs (call);
4233 if (lhs == NULL_TREE)
4234 return;
4236 built_in_function fn = DECL_FUNCTION_CODE (gimple_call_fndecl (call));
4238 gcc_checking_assert (ALLOCA_FUNCTION_CODE_P (fn));
4240 unsigned bit_alignment = 0;
4242 if (fn != BUILT_IN_ALLOCA)
4244 tree alignment_tree = gimple_call_arg (call, 1);
4245 if (TREE_CODE (alignment_tree) != INTEGER_CST)
4247 HSA_SORRY_ATV (gimple_location (call),
4248 "support for HSA does not implement "
4249 "__builtin_alloca_with_align with a non-constant "
4250 "alignment: %E", alignment_tree);
4253 bit_alignment = tree_to_uhwi (alignment_tree);
4256 tree rhs1 = gimple_call_arg (call, 0);
4257 hsa_op_with_type *size = hsa_reg_or_immed_for_gimple_op (rhs1, hbb)
4258 ->get_in_type (BRIG_TYPE_U32, hbb);
4259 hsa_op_with_type *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4261 hsa_op_reg *tmp
4262 = new hsa_op_reg (hsa_get_segment_addr_type (BRIG_SEGMENT_PRIVATE));
4263 hsa_insn_alloca *a = new hsa_insn_alloca (tmp, size, bit_alignment);
4264 hbb->append_insn (a);
4266 hsa_insn_seg *seg
4267 = new hsa_insn_seg (BRIG_OPCODE_STOF,
4268 hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT),
4269 tmp->m_type, BRIG_SEGMENT_PRIVATE, dest, tmp);
4270 hbb->append_insn (seg);
4273 /* Emit instructions that implement clrsb builtin STMT:
4274 Returns the number of leading redundant sign bits in x, i.e. the number
4275 of bits following the most significant bit that are identical to it.
4276 There are no special cases for 0 or other values.
4277 Instructions are appended to basic block HBB. */
4279 static void
4280 gen_hsa_clrsb (gcall *call, hsa_bb *hbb)
4282 tree lhs = gimple_call_lhs (call);
4283 if (lhs == NULL_TREE)
4284 return;
4286 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4287 tree rhs1 = gimple_call_arg (call, 0);
4288 hsa_op_with_type *arg = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
4289 arg->extend_int_to_32bit (hbb);
4290 BrigType16_t bittype = hsa_bittype_for_type (arg->m_type);
4291 unsigned bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (rhs1)));
4293 /* FIRSTBIT instruction is defined just for 32 and 64-bits wide integers. */
4294 gcc_checking_assert (bitsize == 32 || bitsize == 64);
4296 /* Set true to MOST_SIG if the most significant bit is set to one. */
4297 hsa_op_immed *c = new hsa_op_immed (1ul << (bitsize - 1),
4298 hsa_uint_for_bitsize (bitsize));
4300 hsa_op_reg *and_reg = new hsa_op_reg (bittype);
4301 gen_hsa_binary_operation (BRIG_OPCODE_AND, and_reg, arg, c, hbb);
4303 hsa_op_reg *most_sign = new hsa_op_reg (BRIG_TYPE_B1);
4304 hsa_insn_cmp *cmp
4305 = new hsa_insn_cmp (BRIG_COMPARE_EQ, most_sign->m_type, most_sign,
4306 and_reg, c);
4307 hbb->append_insn (cmp);
4309 /* If the most significant bit is one, negate the input. Otherwise
4310 shift the input value to left by one bit. */
4311 hsa_op_reg *arg_neg = new hsa_op_reg (arg->m_type);
4312 gen_hsa_unary_operation (BRIG_OPCODE_NEG, arg_neg, arg, hbb);
4314 hsa_op_reg *shifted_arg = new hsa_op_reg (arg->m_type);
4315 gen_hsa_binary_operation (BRIG_OPCODE_SHL, shifted_arg, arg,
4316 new hsa_op_immed (1, BRIG_TYPE_U64), hbb);
4318 /* Assign the value that can be used for FIRSTBIT instruction according
4319 to the most significant bit. */
4320 hsa_op_reg *tmp = new hsa_op_reg (bittype);
4321 hsa_insn_basic *cmov
4322 = new hsa_insn_basic (4, BRIG_OPCODE_CMOV, bittype, tmp, most_sign,
4323 arg_neg, shifted_arg);
4324 hbb->append_insn (cmov);
4326 hsa_op_reg *leading_bits = new hsa_op_reg (BRIG_TYPE_S32);
4327 gen_hsa_unary_operation (BRIG_OPCODE_FIRSTBIT, leading_bits,
4328 tmp->get_in_type (hsa_uint_for_bitsize (bitsize),
4329 hbb), hbb);
4331 /* Set flag if the input value is equal to zero. */
4332 hsa_op_reg *is_zero = new hsa_op_reg (BRIG_TYPE_B1);
4333 cmp = new hsa_insn_cmp (BRIG_COMPARE_EQ, is_zero->m_type, is_zero, arg,
4334 new hsa_op_immed (0, arg->m_type));
4335 hbb->append_insn (cmp);
4337 /* Return the number of leading bits,
4338 or (bitsize - 1) if the input value is zero. */
4339 cmov = new hsa_insn_basic (4, BRIG_OPCODE_CMOV, BRIG_TYPE_B32, NULL, is_zero,
4340 new hsa_op_immed (bitsize - 1, BRIG_TYPE_U32),
4341 leading_bits->get_in_type (BRIG_TYPE_B32, hbb));
4342 hbb->append_insn (cmov);
4343 cmov->set_output_in_type (dest, 0, hbb);
4346 /* Emit instructions that implement ffs builtin STMT:
4347 Returns one plus the index of the least significant 1-bit of x,
4348 or if x is zero, returns zero.
4349 Instructions are appended to basic block HBB. */
4351 static void
4352 gen_hsa_ffs (gcall *call, hsa_bb *hbb)
4354 tree lhs = gimple_call_lhs (call);
4355 if (lhs == NULL_TREE)
4356 return;
4358 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4360 tree rhs1 = gimple_call_arg (call, 0);
4361 hsa_op_with_type *arg = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
4362 arg = arg->extend_int_to_32bit (hbb);
4364 hsa_op_reg *tmp = new hsa_op_reg (BRIG_TYPE_U32);
4365 hsa_insn_srctype *insn = new hsa_insn_srctype (2, BRIG_OPCODE_LASTBIT,
4366 tmp->m_type, arg->m_type,
4367 tmp, arg);
4368 hbb->append_insn (insn);
4370 hsa_insn_basic *addition
4371 = new hsa_insn_basic (3, BRIG_OPCODE_ADD, tmp->m_type, NULL, tmp,
4372 new hsa_op_immed (1, tmp->m_type));
4373 hbb->append_insn (addition);
4374 addition->set_output_in_type (dest, 0, hbb);
4377 static void
4378 gen_hsa_popcount_to_dest (hsa_op_reg *dest, hsa_op_with_type *arg, hsa_bb *hbb)
4380 gcc_checking_assert (hsa_type_integer_p (arg->m_type));
4382 if (hsa_type_bit_size (arg->m_type) < 32)
4383 arg = arg->get_in_type (BRIG_TYPE_B32, hbb);
4385 BrigType16_t srctype = hsa_bittype_for_type (arg->m_type);
4386 if (!hsa_btype_p (arg->m_type))
4387 arg = arg->get_in_type (srctype, hbb);
4389 hsa_insn_srctype *popcount
4390 = new hsa_insn_srctype (2, BRIG_OPCODE_POPCOUNT, BRIG_TYPE_U32,
4391 srctype, NULL, arg);
4392 hbb->append_insn (popcount);
4393 popcount->set_output_in_type (dest, 0, hbb);
4396 /* Emit instructions that implement parity builtin STMT:
4397 Returns the parity of x, i.e. the number of 1-bits in x modulo 2.
4398 Instructions are appended to basic block HBB. */
4400 static void
4401 gen_hsa_parity (gcall *call, hsa_bb *hbb)
4403 tree lhs = gimple_call_lhs (call);
4404 if (lhs == NULL_TREE)
4405 return;
4407 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4408 tree rhs1 = gimple_call_arg (call, 0);
4409 hsa_op_with_type *arg = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
4411 hsa_op_reg *popcount = new hsa_op_reg (BRIG_TYPE_U32);
4412 gen_hsa_popcount_to_dest (popcount, arg, hbb);
4414 hsa_insn_basic *insn
4415 = new hsa_insn_basic (3, BRIG_OPCODE_REM, popcount->m_type, NULL, popcount,
4416 new hsa_op_immed (2, popcount->m_type));
4417 hbb->append_insn (insn);
4418 insn->set_output_in_type (dest, 0, hbb);
4421 /* Emit instructions that implement popcount builtin STMT.
4422 Instructions are appended to basic block HBB. */
4424 static void
4425 gen_hsa_popcount (gcall *call, hsa_bb *hbb)
4427 tree lhs = gimple_call_lhs (call);
4428 if (lhs == NULL_TREE)
4429 return;
4431 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4432 tree rhs1 = gimple_call_arg (call, 0);
4433 hsa_op_with_type *arg = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
4435 gen_hsa_popcount_to_dest (dest, arg, hbb);
4438 /* Emit instructions that implement DIVMOD builtin STMT.
4439 Instructions are appended to basic block HBB. */
4441 static void
4442 gen_hsa_divmod (gcall *call, hsa_bb *hbb)
4444 tree lhs = gimple_call_lhs (call);
4445 if (lhs == NULL_TREE)
4446 return;
4448 tree rhs0 = gimple_call_arg (call, 0);
4449 tree rhs1 = gimple_call_arg (call, 1);
4451 hsa_op_with_type *arg0 = hsa_reg_or_immed_for_gimple_op (rhs0, hbb);
4452 arg0 = arg0->extend_int_to_32bit (hbb);
4453 hsa_op_with_type *arg1 = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
4454 arg1 = arg1->extend_int_to_32bit (hbb);
4456 hsa_op_reg *dest0 = new hsa_op_reg (arg0->m_type);
4457 hsa_op_reg *dest1 = new hsa_op_reg (arg1->m_type);
4459 hsa_insn_basic *insn = new hsa_insn_basic (3, BRIG_OPCODE_DIV, dest0->m_type,
4460 dest0, arg0, arg1);
4461 hbb->append_insn (insn);
4462 insn = new hsa_insn_basic (3, BRIG_OPCODE_REM, dest1->m_type, dest1, arg0,
4463 arg1);
4464 hbb->append_insn (insn);
4466 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4467 BrigType16_t dst_type = hsa_extend_inttype_to_32bit (dest->m_type);
4468 BrigType16_t src_type = hsa_bittype_for_type (dest0->m_type);
4470 insn = new hsa_insn_packed (3, BRIG_OPCODE_COMBINE, dst_type,
4471 src_type, NULL, dest0, dest1);
4472 hbb->append_insn (insn);
4473 insn->set_output_in_type (dest, 0, hbb);
4476 /* Emit instructions that implement FMA, FMS, FNMA or FNMS call STMT.
4477 Instructions are appended to basic block HBB. NEGATE1 is true for
4478 FNMA and FNMS. NEGATE3 is true for FMS and FNMS. */
4480 static void
4481 gen_hsa_fma (gcall *call, hsa_bb *hbb, bool negate1, bool negate3)
4483 tree lhs = gimple_call_lhs (call);
4484 if (lhs == NULL_TREE)
4485 return;
4487 tree rhs1 = gimple_call_arg (call, 0);
4488 tree rhs2 = gimple_call_arg (call, 1);
4489 tree rhs3 = gimple_call_arg (call, 2);
4491 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4492 hsa_op_with_type *op1 = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
4493 hsa_op_with_type *op2 = hsa_reg_or_immed_for_gimple_op (rhs2, hbb);
4494 hsa_op_with_type *op3 = hsa_reg_or_immed_for_gimple_op (rhs3, hbb);
4496 if (negate1)
4498 hsa_op_reg *tmp = new hsa_op_reg (dest->m_type);
4499 gen_hsa_unary_operation (BRIG_OPCODE_NEG, tmp, op1, hbb);
4500 op1 = tmp;
4503 /* There is a native HSA instruction for scalar FMAs but not for vector
4504 ones. */
4505 if (TREE_CODE (TREE_TYPE (lhs)) == VECTOR_TYPE)
4507 hsa_op_reg *tmp = new hsa_op_reg (dest->m_type);
4508 gen_hsa_binary_operation (BRIG_OPCODE_MUL, tmp, op1, op2, hbb);
4509 gen_hsa_binary_operation (negate3 ? BRIG_OPCODE_SUB : BRIG_OPCODE_ADD,
4510 dest, tmp, op3, hbb);
4512 else
4514 if (negate3)
4516 hsa_op_reg *tmp = new hsa_op_reg (dest->m_type);
4517 gen_hsa_unary_operation (BRIG_OPCODE_NEG, tmp, op3, hbb);
4518 op3 = tmp;
4520 hsa_insn_basic *insn = new hsa_insn_basic (4, BRIG_OPCODE_MAD,
4521 dest->m_type, dest,
4522 op1, op2, op3);
4523 hbb->append_insn (insn);
4527 /* Set VALUE to a shadow kernel debug argument and append a new instruction
4528 to HBB basic block. */
4530 static void
4531 set_debug_value (hsa_bb *hbb, hsa_op_with_type *value)
4533 hsa_op_reg *shadow_reg_ptr = hsa_cfun->get_shadow_reg ();
4534 if (shadow_reg_ptr == NULL)
4535 return;
4537 hsa_op_address *addr
4538 = new hsa_op_address (shadow_reg_ptr,
4539 get_hsa_kernel_dispatch_offset ("debug"));
4540 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_ST, BRIG_TYPE_U64, value,
4541 addr);
4542 hbb->append_insn (mem);
4545 void
4546 omp_simple_builtin::generate (gimple *stmt, hsa_bb *hbb)
4548 if (m_sorry)
4550 if (m_warning_message)
4551 HSA_SORRY_AT (gimple_location (stmt), m_warning_message);
4552 else
4553 HSA_SORRY_ATV (gimple_location (stmt),
4554 "Support for HSA does not implement calls to %s\n",
4555 m_name);
4557 else if (m_warning_message != NULL)
4558 warning_at (gimple_location (stmt), OPT_Whsa, m_warning_message);
4560 if (m_return_value != NULL)
4562 tree lhs = gimple_call_lhs (stmt);
4563 if (!lhs)
4564 return;
4566 hbb->append_insn (new hsa_insn_comment (m_name));
4568 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4569 hsa_op_with_type *op = m_return_value->get_in_type (dest->m_type, hbb);
4570 hsa_build_append_simple_mov (dest, op, hbb);
4574 /* If STMT is a call of a known library function, generate code to perform
4575 it and return true. */
4577 static bool
4578 gen_hsa_insns_for_known_library_call (gimple *stmt, hsa_bb *hbb)
4580 bool handled = false;
4581 const char *name = hsa_get_declaration_name (gimple_call_fndecl (stmt));
4583 char *copy = NULL;
4584 size_t len = strlen (name);
4585 if (len > 0 && name[len - 1] == '_')
4587 copy = XNEWVEC (char, len + 1);
4588 strcpy (copy, name);
4589 copy[len - 1] = '\0';
4590 name = copy;
4593 /* Handle omp_* routines. */
4594 if (strstr (name, "omp_") == name)
4596 hsa_init_simple_builtins ();
4597 omp_simple_builtin *builtin = omp_simple_builtins->get (name);
4598 if (builtin)
4600 builtin->generate (stmt, hbb);
4601 return true;
4604 handled = true;
4605 if (strcmp (name, "omp_set_num_threads") == 0)
4606 gen_set_num_threads (gimple_call_arg (stmt, 0), hbb);
4607 else if (strcmp (name, "omp_get_thread_num") == 0)
4609 hbb->append_insn (new hsa_insn_comment (name));
4610 query_hsa_grid_nodim (stmt, BRIG_OPCODE_WORKITEMFLATABSID, hbb);
4612 else if (strcmp (name, "omp_get_num_threads") == 0)
4614 hbb->append_insn (new hsa_insn_comment (name));
4615 gen_get_num_threads (stmt, hbb);
4617 else if (strcmp (name, "omp_get_num_teams") == 0)
4618 gen_get_num_teams (stmt, hbb);
4619 else if (strcmp (name, "omp_get_team_num") == 0)
4620 gen_get_team_num (stmt, hbb);
4621 else if (strcmp (name, "omp_get_level") == 0)
4622 gen_get_level (stmt, hbb);
4623 else if (strcmp (name, "omp_get_active_level") == 0)
4624 gen_get_level (stmt, hbb);
4625 else if (strcmp (name, "omp_in_parallel") == 0)
4626 gen_get_level (stmt, hbb);
4627 else if (strcmp (name, "omp_get_max_threads") == 0)
4628 gen_get_max_threads (stmt, hbb);
4629 else
4630 handled = false;
4632 if (handled)
4634 if (copy)
4635 free (copy);
4636 return true;
4640 if (strcmp (name, "__hsa_set_debug_value") == 0)
4642 handled = true;
4643 if (hsa_cfun->has_shadow_reg_p ())
4645 tree rhs1 = gimple_call_arg (stmt, 0);
4646 hsa_op_with_type *src = hsa_reg_or_immed_for_gimple_op (rhs1, hbb);
4648 src = src->get_in_type (BRIG_TYPE_U64, hbb);
4649 set_debug_value (hbb, src);
4653 if (copy)
4654 free (copy);
4655 return handled;
4658 /* Helper functions to create a single unary HSA operations out of calls to
4659 builtins. OPCODE is the HSA operation to be generated. STMT is a gimple
4660 call to a builtin. HBB is the HSA BB to which the instruction should be
4661 added. Note that nothing will be created if STMT does not have a LHS. */
4663 static void
4664 gen_hsa_unaryop_for_builtin (BrigOpcode opcode, gimple *stmt, hsa_bb *hbb)
4666 tree lhs = gimple_call_lhs (stmt);
4667 if (!lhs)
4668 return;
4669 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (lhs);
4670 hsa_op_with_type *op
4671 = hsa_reg_or_immed_for_gimple_op (gimple_call_arg (stmt, 0), hbb);
4672 gen_hsa_unary_operation (opcode, dest, op, hbb);
4675 /* Helper functions to create a call to standard library if LHS of the
4676 STMT is used. HBB is the HSA BB to which the instruction should be
4677 added. */
4679 static void
4680 gen_hsa_unaryop_builtin_call (gimple *stmt, hsa_bb *hbb)
4682 tree lhs = gimple_call_lhs (stmt);
4683 if (!lhs)
4684 return;
4686 if (gimple_call_internal_p (stmt))
4687 gen_hsa_insns_for_call_of_internal_fn (stmt, hbb);
4688 else
4689 gen_hsa_insns_for_direct_call (stmt, hbb);
4692 /* Helper functions to create a single unary HSA operations out of calls to
4693 builtins (if unsafe math optimizations are enable). Otherwise, create
4694 a call to standard library function.
4695 OPCODE is the HSA operation to be generated. STMT is a gimple
4696 call to a builtin. HBB is the HSA BB to which the instruction should be
4697 added. Note that nothing will be created if STMT does not have a LHS. */
4699 static void
4700 gen_hsa_unaryop_or_call_for_builtin (BrigOpcode opcode, gimple *stmt,
4701 hsa_bb *hbb)
4703 if (flag_unsafe_math_optimizations)
4704 gen_hsa_unaryop_for_builtin (opcode, stmt, hbb);
4705 else
4706 gen_hsa_unaryop_builtin_call (stmt, hbb);
4709 /* Generate HSA address corresponding to a value VAL (as opposed to a memory
4710 reference tree), for example an SSA_NAME or an ADDR_EXPR. HBB is the HSA BB
4711 to which the instruction should be added. */
4713 static hsa_op_address *
4714 get_address_from_value (tree val, hsa_bb *hbb)
4716 switch (TREE_CODE (val))
4718 case SSA_NAME:
4720 BrigType16_t addrtype = hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT);
4721 hsa_op_base *reg
4722 = hsa_cfun->reg_for_gimple_ssa (val)->get_in_type (addrtype, hbb);
4723 return new hsa_op_address (NULL, as_a <hsa_op_reg *> (reg), 0);
4725 case ADDR_EXPR:
4726 return gen_hsa_addr (TREE_OPERAND (val, 0), hbb);
4728 case INTEGER_CST:
4729 if (tree_fits_shwi_p (val))
4730 return new hsa_op_address (NULL, NULL, tree_to_shwi (val));
4731 /* fall-through */
4733 default:
4734 HSA_SORRY_ATV (EXPR_LOCATION (val),
4735 "support for HSA does not implement memory access to %E",
4736 val);
4737 return new hsa_op_address (NULL, NULL, 0);
4741 /* Expand assignment of a result of a string BUILTIN to DST.
4742 Size of the operation is N bytes, where instructions
4743 will be append to HBB. */
4745 static void
4746 expand_lhs_of_string_op (gimple *stmt,
4747 unsigned HOST_WIDE_INT n, hsa_bb *hbb,
4748 enum built_in_function builtin)
4750 /* If LHS is expected, we need to emit a PHI instruction. */
4751 tree lhs = gimple_call_lhs (stmt);
4752 if (!lhs)
4753 return;
4755 hsa_op_reg *lhs_reg = hsa_cfun->reg_for_gimple_ssa (lhs);
4757 hsa_op_with_type *dst_reg
4758 = hsa_reg_or_immed_for_gimple_op (gimple_call_arg (stmt, 0), hbb);
4759 hsa_op_with_type *tmp;
4761 switch (builtin)
4763 case BUILT_IN_MEMPCPY:
4765 tmp = new hsa_op_reg (dst_reg->m_type);
4766 hsa_insn_basic *add
4767 = new hsa_insn_basic (3, BRIG_OPCODE_ADD, tmp->m_type,
4768 tmp, dst_reg,
4769 new hsa_op_immed (n, dst_reg->m_type));
4770 hbb->append_insn (add);
4771 break;
4773 case BUILT_IN_MEMCPY:
4774 case BUILT_IN_MEMSET:
4775 tmp = dst_reg;
4776 break;
4777 default:
4778 gcc_unreachable ();
4781 hbb->append_insn (new hsa_insn_basic (2, BRIG_OPCODE_MOV, lhs_reg->m_type,
4782 lhs_reg, tmp));
4785 #define HSA_MEMORY_BUILTINS_LIMIT 128
4787 /* Expand a string builtin (from a gimple STMT) in a way that
4788 according to MISALIGNED_FLAG we process either direct emission
4789 (a bunch of memory load and store instructions), or we emit a function call
4790 of a library function (for instance 'memcpy'). Actually, a basic block
4791 for direct emission is just prepared, where caller is responsible
4792 for emission of corresponding instructions.
4793 All instruction are appended to HBB. */
4795 hsa_bb *
4796 expand_string_operation_builtin (gimple *stmt, hsa_bb *hbb,
4797 hsa_op_reg *misaligned_flag)
4799 edge e = split_block (hbb->m_bb, stmt);
4800 basic_block condition_bb = e->src;
4801 hbb->append_insn (new hsa_insn_cbr (misaligned_flag));
4803 /* Prepare the control flow. */
4804 edge condition_edge = EDGE_SUCC (condition_bb, 0);
4805 basic_block call_bb = split_edge (condition_edge);
4807 basic_block expanded_bb = split_edge (EDGE_SUCC (call_bb, 0));
4808 basic_block cont_bb = EDGE_SUCC (expanded_bb, 0)->dest;
4809 basic_block merge_bb = split_edge (EDGE_PRED (cont_bb, 0));
4811 condition_edge->flags &= ~EDGE_FALLTHRU;
4812 condition_edge->flags |= EDGE_TRUE_VALUE;
4813 make_edge (condition_bb, expanded_bb, EDGE_FALSE_VALUE);
4815 redirect_edge_succ (EDGE_SUCC (call_bb, 0), merge_bb);
4817 hsa_cfun->m_modified_cfg = true;
4819 hsa_init_new_bb (expanded_bb);
4821 /* Slow path: function call. */
4822 gen_hsa_insns_for_direct_call (stmt, hsa_init_new_bb (call_bb), false);
4824 return hsa_bb_for_bb (expanded_bb);
4827 /* Expand a memory copy BUILTIN (BUILT_IN_MEMCPY, BUILT_IN_MEMPCPY) from
4828 a gimple STMT and store all necessary instruction to HBB basic block. */
4830 static void
4831 expand_memory_copy (gimple *stmt, hsa_bb *hbb, enum built_in_function builtin)
4833 tree byte_size = gimple_call_arg (stmt, 2);
4835 if (!tree_fits_uhwi_p (byte_size))
4837 gen_hsa_insns_for_direct_call (stmt, hbb);
4838 return;
4841 unsigned HOST_WIDE_INT n = tree_to_uhwi (byte_size);
4843 if (n > HSA_MEMORY_BUILTINS_LIMIT)
4845 gen_hsa_insns_for_direct_call (stmt, hbb);
4846 return;
4849 tree dst = gimple_call_arg (stmt, 0);
4850 tree src = gimple_call_arg (stmt, 1);
4852 hsa_op_address *dst_addr = get_address_from_value (dst, hbb);
4853 hsa_op_address *src_addr = get_address_from_value (src, hbb);
4855 /* As gen_hsa_memory_copy relies on memory alignment
4856 greater or equal to 8 bytes, we need to verify the alignment. */
4857 BrigType16_t addrtype = hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT);
4858 hsa_op_reg *src_addr_reg = new hsa_op_reg (addrtype);
4859 hsa_op_reg *dst_addr_reg = new hsa_op_reg (addrtype);
4861 convert_addr_to_flat_segment (src_addr, src_addr_reg, hbb);
4862 convert_addr_to_flat_segment (dst_addr, dst_addr_reg, hbb);
4864 /* Process BIT OR for source and destination addresses. */
4865 hsa_op_reg *or_reg = new hsa_op_reg (addrtype);
4866 gen_hsa_binary_operation (BRIG_OPCODE_OR, or_reg, src_addr_reg,
4867 dst_addr_reg, hbb);
4869 /* Process BIT AND with 0x7 to identify the desired alignment
4870 of 8 bytes. */
4871 hsa_op_reg *masked = new hsa_op_reg (addrtype);
4873 gen_hsa_binary_operation (BRIG_OPCODE_AND, masked, or_reg,
4874 new hsa_op_immed (7, addrtype), hbb);
4876 hsa_op_reg *misaligned = new hsa_op_reg (BRIG_TYPE_B1);
4877 hbb->append_insn (new hsa_insn_cmp (BRIG_COMPARE_NE, misaligned->m_type,
4878 misaligned, masked,
4879 new hsa_op_immed (0, masked->m_type)));
4881 hsa_bb *native_impl_bb
4882 = expand_string_operation_builtin (stmt, hbb, misaligned);
4884 gen_hsa_memory_copy (native_impl_bb, dst_addr, src_addr, n, BRIG_ALIGNMENT_8);
4885 hsa_bb *merge_bb
4886 = hsa_init_new_bb (EDGE_SUCC (native_impl_bb->m_bb, 0)->dest);
4887 expand_lhs_of_string_op (stmt, n, merge_bb, builtin);
4891 /* Expand a memory set BUILTIN (BUILT_IN_MEMSET, BUILT_IN_BZERO) from
4892 a gimple STMT and store all necessary instruction to HBB basic block.
4893 The operation set N bytes with a CONSTANT value. */
4895 static void
4896 expand_memory_set (gimple *stmt, unsigned HOST_WIDE_INT n,
4897 unsigned HOST_WIDE_INT constant, hsa_bb *hbb,
4898 enum built_in_function builtin)
4900 tree dst = gimple_call_arg (stmt, 0);
4901 hsa_op_address *dst_addr = get_address_from_value (dst, hbb);
4903 /* As gen_hsa_memory_set relies on memory alignment
4904 greater or equal to 8 bytes, we need to verify the alignment. */
4905 BrigType16_t addrtype = hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT);
4906 hsa_op_reg *dst_addr_reg = new hsa_op_reg (addrtype);
4907 convert_addr_to_flat_segment (dst_addr, dst_addr_reg, hbb);
4909 /* Process BIT AND with 0x7 to identify the desired alignment
4910 of 8 bytes. */
4911 hsa_op_reg *masked = new hsa_op_reg (addrtype);
4913 gen_hsa_binary_operation (BRIG_OPCODE_AND, masked, dst_addr_reg,
4914 new hsa_op_immed (7, addrtype), hbb);
4916 hsa_op_reg *misaligned = new hsa_op_reg (BRIG_TYPE_B1);
4917 hbb->append_insn (new hsa_insn_cmp (BRIG_COMPARE_NE, misaligned->m_type,
4918 misaligned, masked,
4919 new hsa_op_immed (0, masked->m_type)));
4921 hsa_bb *native_impl_bb
4922 = expand_string_operation_builtin (stmt, hbb, misaligned);
4924 gen_hsa_memory_set (native_impl_bb, dst_addr, constant, n, BRIG_ALIGNMENT_8);
4925 hsa_bb *merge_bb
4926 = hsa_init_new_bb (EDGE_SUCC (native_impl_bb->m_bb, 0)->dest);
4927 expand_lhs_of_string_op (stmt, n, merge_bb, builtin);
4930 /* Store into MEMORDER the memory order specified by tree T, which must be an
4931 integer constant representing a C++ memory order. If it isn't, issue an HSA
4932 sorry message using LOC and return true, otherwise return false and store
4933 the name of the requested order to *MNAME. */
4935 static bool
4936 hsa_memorder_from_tree (tree t, BrigMemoryOrder *memorder, const char **mname,
4937 location_t loc)
4939 if (!tree_fits_uhwi_p (t))
4941 HSA_SORRY_ATV (loc, "support for HSA does not implement memory model %E",
4943 return true;
4946 unsigned HOST_WIDE_INT mm = tree_to_uhwi (t);
4947 switch (mm & MEMMODEL_BASE_MASK)
4949 case MEMMODEL_RELAXED:
4950 *memorder = BRIG_MEMORY_ORDER_RELAXED;
4951 *mname = "relaxed";
4952 break;
4953 case MEMMODEL_CONSUME:
4954 /* HSA does not have an equivalent, but we can use the slightly stronger
4955 ACQUIRE. */
4956 *memorder = BRIG_MEMORY_ORDER_SC_ACQUIRE;
4957 *mname = "consume";
4958 break;
4959 case MEMMODEL_ACQUIRE:
4960 *memorder = BRIG_MEMORY_ORDER_SC_ACQUIRE;
4961 *mname = "acquire";
4962 break;
4963 case MEMMODEL_RELEASE:
4964 *memorder = BRIG_MEMORY_ORDER_SC_RELEASE;
4965 *mname = "release";
4966 break;
4967 case MEMMODEL_ACQ_REL:
4968 *memorder = BRIG_MEMORY_ORDER_SC_ACQUIRE_RELEASE;
4969 *mname = "acq_rel";
4970 break;
4971 case MEMMODEL_SEQ_CST:
4972 /* Callers implementing a simple load or store need to remove the release
4973 or acquire part respectively. */
4974 *memorder = BRIG_MEMORY_ORDER_SC_ACQUIRE_RELEASE;
4975 *mname = "seq_cst";
4976 break;
4977 default:
4979 HSA_SORRY_AT (loc, "support for HSA does not implement the specified "
4980 "memory model");
4981 return true;
4984 return false;
4987 /* Helper function to create an HSA atomic operation instruction out of calls
4988 to atomic builtins. RET_ORIG is true if the built-in is the variant that
4989 return s the value before applying operation, and false if it should return
4990 the value after applying the operation (if it returns value at all). ACODE
4991 is the atomic operation code, STMT is a gimple call to a builtin. HBB is
4992 the HSA BB to which the instruction should be added. If SIGNAL is true, the
4993 created operation will work on HSA signals rather than atomic variables. */
4995 static void
4996 gen_hsa_atomic_for_builtin (bool ret_orig, enum BrigAtomicOperation acode,
4997 gimple *stmt, hsa_bb *hbb, bool signal)
4999 tree lhs = gimple_call_lhs (stmt);
5001 tree type = TREE_TYPE (gimple_call_arg (stmt, 1));
5002 BrigType16_t hsa_type = hsa_type_for_scalar_tree_type (type, false);
5003 BrigType16_t mtype = mem_type_for_type (hsa_type);
5004 BrigMemoryOrder memorder;
5005 const char *mmname;
5007 if (hsa_memorder_from_tree (gimple_call_arg (stmt, 2), &memorder, &mmname,
5008 gimple_location (stmt)))
5009 return;
5011 /* Certain atomic insns must have Bx memory types. */
5012 switch (acode)
5014 case BRIG_ATOMIC_LD:
5015 case BRIG_ATOMIC_ST:
5016 case BRIG_ATOMIC_AND:
5017 case BRIG_ATOMIC_OR:
5018 case BRIG_ATOMIC_XOR:
5019 case BRIG_ATOMIC_EXCH:
5020 mtype = hsa_bittype_for_type (mtype);
5021 break;
5022 default:
5023 break;
5026 hsa_op_reg *dest;
5027 int nops, opcode;
5028 if (lhs)
5030 if (ret_orig)
5031 dest = hsa_cfun->reg_for_gimple_ssa (lhs);
5032 else
5033 dest = new hsa_op_reg (hsa_type);
5034 opcode = signal ? BRIG_OPCODE_SIGNAL : BRIG_OPCODE_ATOMIC;
5035 nops = 3;
5037 else
5039 dest = NULL;
5040 opcode = signal ? BRIG_OPCODE_SIGNALNORET : BRIG_OPCODE_ATOMICNORET;
5041 nops = 2;
5044 if (acode == BRIG_ATOMIC_ST)
5046 if (memorder == BRIG_MEMORY_ORDER_SC_ACQUIRE_RELEASE)
5047 memorder = BRIG_MEMORY_ORDER_SC_RELEASE;
5049 if (memorder != BRIG_MEMORY_ORDER_RELAXED
5050 && memorder != BRIG_MEMORY_ORDER_SC_RELEASE
5051 && memorder != BRIG_MEMORY_ORDER_NONE)
5053 HSA_SORRY_ATV (gimple_location (stmt),
5054 "support for HSA does not implement memory model for "
5055 "ATOMIC_ST: %s", mmname);
5056 return;
5060 hsa_insn_basic *atominsn;
5061 hsa_op_base *tgt;
5062 if (signal)
5064 atominsn = new hsa_insn_signal (nops, opcode, acode, mtype, memorder);
5065 tgt = hsa_reg_or_immed_for_gimple_op (gimple_call_arg (stmt, 0), hbb);
5067 else
5069 atominsn = new hsa_insn_atomic (nops, opcode, acode, mtype, memorder);
5070 hsa_op_address *addr;
5071 addr = get_address_from_value (gimple_call_arg (stmt, 0), hbb);
5072 if (addr->m_symbol && addr->m_symbol->m_segment == BRIG_SEGMENT_PRIVATE)
5074 HSA_SORRY_AT (gimple_location (stmt),
5075 "HSA does not implement atomic operations in private "
5076 "segment");
5077 return;
5079 tgt = addr;
5082 hsa_op_with_type *op
5083 = hsa_reg_or_immed_for_gimple_op (gimple_call_arg (stmt, 1), hbb);
5084 if (lhs)
5086 atominsn->set_op (0, dest);
5087 atominsn->set_op (1, tgt);
5088 atominsn->set_op (2, op);
5090 else
5092 atominsn->set_op (0, tgt);
5093 atominsn->set_op (1, op);
5096 hbb->append_insn (atominsn);
5098 /* HSA does not natively support the variants that return the modified value,
5099 so re-do the operation again non-atomically if that is what was
5100 requested. */
5101 if (lhs && !ret_orig)
5103 int arith;
5104 switch (acode)
5106 case BRIG_ATOMIC_ADD:
5107 arith = BRIG_OPCODE_ADD;
5108 break;
5109 case BRIG_ATOMIC_AND:
5110 arith = BRIG_OPCODE_AND;
5111 break;
5112 case BRIG_ATOMIC_OR:
5113 arith = BRIG_OPCODE_OR;
5114 break;
5115 case BRIG_ATOMIC_SUB:
5116 arith = BRIG_OPCODE_SUB;
5117 break;
5118 case BRIG_ATOMIC_XOR:
5119 arith = BRIG_OPCODE_XOR;
5120 break;
5121 default:
5122 gcc_unreachable ();
5124 hsa_op_reg *real_dest = hsa_cfun->reg_for_gimple_ssa (lhs);
5125 gen_hsa_binary_operation (arith, real_dest, dest, op, hbb);
5129 /* Generate HSA instructions for an internal fn.
5130 Instructions will be appended to HBB, which also needs to be the
5131 corresponding structure to the basic_block of STMT. */
5133 static void
5134 gen_hsa_insn_for_internal_fn_call (gcall *stmt, hsa_bb *hbb)
5136 gcc_checking_assert (gimple_call_internal_fn (stmt));
5137 internal_fn fn = gimple_call_internal_fn (stmt);
5139 bool is_float_type_p = false;
5140 if (gimple_call_lhs (stmt) != NULL
5141 && TREE_TYPE (gimple_call_lhs (stmt)) == float_type_node)
5142 is_float_type_p = true;
5144 switch (fn)
5146 case IFN_CEIL:
5147 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_CEIL, stmt, hbb);
5148 break;
5150 case IFN_FLOOR:
5151 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_FLOOR, stmt, hbb);
5152 break;
5154 case IFN_RINT:
5155 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_RINT, stmt, hbb);
5156 break;
5158 case IFN_SQRT:
5159 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_SQRT, stmt, hbb);
5160 break;
5162 case IFN_RSQRT:
5163 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_NRSQRT, stmt, hbb);
5164 break;
5166 case IFN_TRUNC:
5167 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_TRUNC, stmt, hbb);
5168 break;
5170 case IFN_COS:
5172 if (is_float_type_p)
5173 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NCOS, stmt, hbb);
5174 else
5175 gen_hsa_unaryop_builtin_call (stmt, hbb);
5177 break;
5179 case IFN_EXP2:
5181 if (is_float_type_p)
5182 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NEXP2, stmt, hbb);
5183 else
5184 gen_hsa_unaryop_builtin_call (stmt, hbb);
5186 break;
5189 case IFN_LOG2:
5191 if (is_float_type_p)
5192 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NLOG2, stmt, hbb);
5193 else
5194 gen_hsa_unaryop_builtin_call (stmt, hbb);
5196 break;
5199 case IFN_SIN:
5201 if (is_float_type_p)
5202 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NSIN, stmt, hbb);
5203 else
5204 gen_hsa_unaryop_builtin_call (stmt, hbb);
5205 break;
5208 case IFN_CLRSB:
5209 gen_hsa_clrsb (stmt, hbb);
5210 break;
5212 case IFN_CLZ:
5213 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_FIRSTBIT, stmt, hbb);
5214 break;
5216 case IFN_CTZ:
5217 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_LASTBIT, stmt, hbb);
5218 break;
5220 case IFN_FFS:
5221 gen_hsa_ffs (stmt, hbb);
5222 break;
5224 case IFN_PARITY:
5225 gen_hsa_parity (stmt, hbb);
5226 break;
5228 case IFN_POPCOUNT:
5229 gen_hsa_popcount (stmt, hbb);
5230 break;
5232 case IFN_DIVMOD:
5233 gen_hsa_divmod (stmt, hbb);
5234 break;
5236 case IFN_ACOS:
5237 case IFN_ASIN:
5238 case IFN_ATAN:
5239 case IFN_EXP:
5240 case IFN_EXP10:
5241 case IFN_EXPM1:
5242 case IFN_LOG:
5243 case IFN_LOG10:
5244 case IFN_LOG1P:
5245 case IFN_LOGB:
5246 case IFN_SIGNIFICAND:
5247 case IFN_TAN:
5248 case IFN_NEARBYINT:
5249 case IFN_ROUND:
5250 case IFN_ATAN2:
5251 case IFN_COPYSIGN:
5252 case IFN_FMOD:
5253 case IFN_POW:
5254 case IFN_REMAINDER:
5255 case IFN_SCALB:
5256 case IFN_FMIN:
5257 case IFN_FMAX:
5258 gen_hsa_insns_for_call_of_internal_fn (stmt, hbb);
5259 break;
5261 case IFN_FMA:
5262 gen_hsa_fma (stmt, hbb, false, false);
5263 break;
5265 case IFN_FMS:
5266 gen_hsa_fma (stmt, hbb, false, true);
5267 break;
5269 case IFN_FNMA:
5270 gen_hsa_fma (stmt, hbb, true, false);
5271 break;
5273 case IFN_FNMS:
5274 gen_hsa_fma (stmt, hbb, true, true);
5275 break;
5277 default:
5278 HSA_SORRY_ATV (gimple_location (stmt),
5279 "support for HSA does not implement internal function: %s",
5280 internal_fn_name (fn));
5281 break;
5285 /* Generate HSA instructions for the given call statement STMT. Instructions
5286 will be appended to HBB. */
5288 static void
5289 gen_hsa_insns_for_call (gimple *stmt, hsa_bb *hbb)
5291 gcall *call = as_a <gcall *> (stmt);
5292 tree lhs = gimple_call_lhs (stmt);
5293 hsa_op_reg *dest;
5295 if (gimple_call_internal_p (stmt))
5297 gen_hsa_insn_for_internal_fn_call (call, hbb);
5298 return;
5301 if (!gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
5303 tree function_decl = gimple_call_fndecl (stmt);
5304 /* Prefetch pass can create type-mismatching prefetch builtin calls which
5305 fail the gimple_call_builtin_p test above. Handle them here. */
5306 if (DECL_BUILT_IN_CLASS (function_decl)
5307 && DECL_FUNCTION_CODE (function_decl) == BUILT_IN_PREFETCH)
5308 return;
5310 if (function_decl == NULL_TREE)
5312 HSA_SORRY_AT (gimple_location (stmt),
5313 "support for HSA does not implement indirect calls");
5314 return;
5317 if (hsa_callable_function_p (function_decl))
5318 gen_hsa_insns_for_direct_call (stmt, hbb);
5319 else if (!gen_hsa_insns_for_known_library_call (stmt, hbb))
5320 HSA_SORRY_AT (gimple_location (stmt),
5321 "HSA supports only calls of functions marked with pragma "
5322 "omp declare target");
5323 return;
5326 tree fndecl = gimple_call_fndecl (stmt);
5327 enum built_in_function builtin = DECL_FUNCTION_CODE (fndecl);
5328 switch (builtin)
5330 case BUILT_IN_FABS:
5331 case BUILT_IN_FABSF:
5332 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_ABS, stmt, hbb);
5333 break;
5335 case BUILT_IN_CEIL:
5336 case BUILT_IN_CEILF:
5337 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_CEIL, stmt, hbb);
5338 break;
5340 case BUILT_IN_FLOOR:
5341 case BUILT_IN_FLOORF:
5342 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_FLOOR, stmt, hbb);
5343 break;
5345 case BUILT_IN_RINT:
5346 case BUILT_IN_RINTF:
5347 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_RINT, stmt, hbb);
5348 break;
5350 case BUILT_IN_SQRT:
5351 case BUILT_IN_SQRTF:
5352 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_SQRT, stmt, hbb);
5353 break;
5355 case BUILT_IN_TRUNC:
5356 case BUILT_IN_TRUNCF:
5357 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_TRUNC, stmt, hbb);
5358 break;
5360 case BUILT_IN_COS:
5361 case BUILT_IN_SIN:
5362 case BUILT_IN_EXP2:
5363 case BUILT_IN_LOG2:
5364 /* HSAIL does not provide an instruction for double argument type. */
5365 gen_hsa_unaryop_builtin_call (stmt, hbb);
5366 break;
5368 case BUILT_IN_COSF:
5369 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NCOS, stmt, hbb);
5370 break;
5372 case BUILT_IN_EXP2F:
5373 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NEXP2, stmt, hbb);
5374 break;
5376 case BUILT_IN_LOG2F:
5377 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NLOG2, stmt, hbb);
5378 break;
5380 case BUILT_IN_SINF:
5381 gen_hsa_unaryop_or_call_for_builtin (BRIG_OPCODE_NSIN, stmt, hbb);
5382 break;
5384 case BUILT_IN_CLRSB:
5385 case BUILT_IN_CLRSBL:
5386 case BUILT_IN_CLRSBLL:
5387 gen_hsa_clrsb (call, hbb);
5388 break;
5390 case BUILT_IN_CLZ:
5391 case BUILT_IN_CLZL:
5392 case BUILT_IN_CLZLL:
5393 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_FIRSTBIT, stmt, hbb);
5394 break;
5396 case BUILT_IN_CTZ:
5397 case BUILT_IN_CTZL:
5398 case BUILT_IN_CTZLL:
5399 gen_hsa_unaryop_for_builtin (BRIG_OPCODE_LASTBIT, stmt, hbb);
5400 break;
5402 case BUILT_IN_FFS:
5403 case BUILT_IN_FFSL:
5404 case BUILT_IN_FFSLL:
5405 gen_hsa_ffs (call, hbb);
5406 break;
5408 case BUILT_IN_PARITY:
5409 case BUILT_IN_PARITYL:
5410 case BUILT_IN_PARITYLL:
5411 gen_hsa_parity (call, hbb);
5412 break;
5414 case BUILT_IN_POPCOUNT:
5415 case BUILT_IN_POPCOUNTL:
5416 case BUILT_IN_POPCOUNTLL:
5417 gen_hsa_popcount (call, hbb);
5418 break;
5420 case BUILT_IN_ATOMIC_LOAD_1:
5421 case BUILT_IN_ATOMIC_LOAD_2:
5422 case BUILT_IN_ATOMIC_LOAD_4:
5423 case BUILT_IN_ATOMIC_LOAD_8:
5424 case BUILT_IN_ATOMIC_LOAD_16:
5426 BrigType16_t mtype;
5427 hsa_op_base *src;
5428 src = get_address_from_value (gimple_call_arg (stmt, 0), hbb);
5430 BrigMemoryOrder memorder;
5431 const char *mmname;
5432 if (hsa_memorder_from_tree (gimple_call_arg (stmt, 1), &memorder,
5433 &mmname, gimple_location (stmt)))
5434 return;
5436 if (memorder == BRIG_MEMORY_ORDER_SC_ACQUIRE_RELEASE)
5437 memorder = BRIG_MEMORY_ORDER_SC_ACQUIRE;
5439 if (memorder != BRIG_MEMORY_ORDER_RELAXED
5440 && memorder != BRIG_MEMORY_ORDER_SC_ACQUIRE
5441 && memorder != BRIG_MEMORY_ORDER_NONE)
5443 HSA_SORRY_ATV (gimple_location (stmt),
5444 "support for HSA does not implement "
5445 "memory model for atomic loads: %s", mmname);
5446 return;
5449 if (lhs)
5451 BrigType16_t t = hsa_type_for_scalar_tree_type (TREE_TYPE (lhs),
5452 false);
5453 mtype = mem_type_for_type (t);
5454 mtype = hsa_bittype_for_type (mtype);
5455 dest = hsa_cfun->reg_for_gimple_ssa (lhs);
5457 else
5459 mtype = BRIG_TYPE_B64;
5460 dest = new hsa_op_reg (mtype);
5463 hsa_insn_basic *atominsn;
5464 atominsn = new hsa_insn_atomic (2, BRIG_OPCODE_ATOMIC, BRIG_ATOMIC_LD,
5465 mtype, memorder, dest, src);
5467 hbb->append_insn (atominsn);
5468 break;
5471 case BUILT_IN_ATOMIC_EXCHANGE_1:
5472 case BUILT_IN_ATOMIC_EXCHANGE_2:
5473 case BUILT_IN_ATOMIC_EXCHANGE_4:
5474 case BUILT_IN_ATOMIC_EXCHANGE_8:
5475 case BUILT_IN_ATOMIC_EXCHANGE_16:
5476 gen_hsa_atomic_for_builtin (true, BRIG_ATOMIC_EXCH, stmt, hbb, false);
5477 break;
5478 break;
5480 case BUILT_IN_ATOMIC_FETCH_ADD_1:
5481 case BUILT_IN_ATOMIC_FETCH_ADD_2:
5482 case BUILT_IN_ATOMIC_FETCH_ADD_4:
5483 case BUILT_IN_ATOMIC_FETCH_ADD_8:
5484 case BUILT_IN_ATOMIC_FETCH_ADD_16:
5485 gen_hsa_atomic_for_builtin (true, BRIG_ATOMIC_ADD, stmt, hbb, false);
5486 break;
5487 break;
5489 case BUILT_IN_ATOMIC_FETCH_SUB_1:
5490 case BUILT_IN_ATOMIC_FETCH_SUB_2:
5491 case BUILT_IN_ATOMIC_FETCH_SUB_4:
5492 case BUILT_IN_ATOMIC_FETCH_SUB_8:
5493 case BUILT_IN_ATOMIC_FETCH_SUB_16:
5494 gen_hsa_atomic_for_builtin (true, BRIG_ATOMIC_SUB, stmt, hbb, false);
5495 break;
5496 break;
5498 case BUILT_IN_ATOMIC_FETCH_AND_1:
5499 case BUILT_IN_ATOMIC_FETCH_AND_2:
5500 case BUILT_IN_ATOMIC_FETCH_AND_4:
5501 case BUILT_IN_ATOMIC_FETCH_AND_8:
5502 case BUILT_IN_ATOMIC_FETCH_AND_16:
5503 gen_hsa_atomic_for_builtin (true, BRIG_ATOMIC_AND, stmt, hbb, false);
5504 break;
5505 break;
5507 case BUILT_IN_ATOMIC_FETCH_XOR_1:
5508 case BUILT_IN_ATOMIC_FETCH_XOR_2:
5509 case BUILT_IN_ATOMIC_FETCH_XOR_4:
5510 case BUILT_IN_ATOMIC_FETCH_XOR_8:
5511 case BUILT_IN_ATOMIC_FETCH_XOR_16:
5512 gen_hsa_atomic_for_builtin (true, BRIG_ATOMIC_XOR, stmt, hbb, false);
5513 break;
5514 break;
5516 case BUILT_IN_ATOMIC_FETCH_OR_1:
5517 case BUILT_IN_ATOMIC_FETCH_OR_2:
5518 case BUILT_IN_ATOMIC_FETCH_OR_4:
5519 case BUILT_IN_ATOMIC_FETCH_OR_8:
5520 case BUILT_IN_ATOMIC_FETCH_OR_16:
5521 gen_hsa_atomic_for_builtin (true, BRIG_ATOMIC_OR, stmt, hbb, false);
5522 break;
5523 break;
5525 case BUILT_IN_ATOMIC_STORE_1:
5526 case BUILT_IN_ATOMIC_STORE_2:
5527 case BUILT_IN_ATOMIC_STORE_4:
5528 case BUILT_IN_ATOMIC_STORE_8:
5529 case BUILT_IN_ATOMIC_STORE_16:
5530 /* Since there cannot be any LHS, the first parameter is meaningless. */
5531 gen_hsa_atomic_for_builtin (true, BRIG_ATOMIC_ST, stmt, hbb, false);
5532 break;
5533 break;
5535 case BUILT_IN_ATOMIC_ADD_FETCH_1:
5536 case BUILT_IN_ATOMIC_ADD_FETCH_2:
5537 case BUILT_IN_ATOMIC_ADD_FETCH_4:
5538 case BUILT_IN_ATOMIC_ADD_FETCH_8:
5539 case BUILT_IN_ATOMIC_ADD_FETCH_16:
5540 gen_hsa_atomic_for_builtin (false, BRIG_ATOMIC_ADD, stmt, hbb, false);
5541 break;
5543 case BUILT_IN_ATOMIC_SUB_FETCH_1:
5544 case BUILT_IN_ATOMIC_SUB_FETCH_2:
5545 case BUILT_IN_ATOMIC_SUB_FETCH_4:
5546 case BUILT_IN_ATOMIC_SUB_FETCH_8:
5547 case BUILT_IN_ATOMIC_SUB_FETCH_16:
5548 gen_hsa_atomic_for_builtin (false, BRIG_ATOMIC_SUB, stmt, hbb, false);
5549 break;
5551 case BUILT_IN_ATOMIC_AND_FETCH_1:
5552 case BUILT_IN_ATOMIC_AND_FETCH_2:
5553 case BUILT_IN_ATOMIC_AND_FETCH_4:
5554 case BUILT_IN_ATOMIC_AND_FETCH_8:
5555 case BUILT_IN_ATOMIC_AND_FETCH_16:
5556 gen_hsa_atomic_for_builtin (false, BRIG_ATOMIC_AND, stmt, hbb, false);
5557 break;
5559 case BUILT_IN_ATOMIC_XOR_FETCH_1:
5560 case BUILT_IN_ATOMIC_XOR_FETCH_2:
5561 case BUILT_IN_ATOMIC_XOR_FETCH_4:
5562 case BUILT_IN_ATOMIC_XOR_FETCH_8:
5563 case BUILT_IN_ATOMIC_XOR_FETCH_16:
5564 gen_hsa_atomic_for_builtin (false, BRIG_ATOMIC_XOR, stmt, hbb, false);
5565 break;
5567 case BUILT_IN_ATOMIC_OR_FETCH_1:
5568 case BUILT_IN_ATOMIC_OR_FETCH_2:
5569 case BUILT_IN_ATOMIC_OR_FETCH_4:
5570 case BUILT_IN_ATOMIC_OR_FETCH_8:
5571 case BUILT_IN_ATOMIC_OR_FETCH_16:
5572 gen_hsa_atomic_for_builtin (false, BRIG_ATOMIC_OR, stmt, hbb, false);
5573 break;
5575 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1:
5576 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2:
5577 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4:
5578 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8:
5579 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16:
5581 tree type = TREE_TYPE (gimple_call_arg (stmt, 1));
5582 BrigType16_t atype
5583 = hsa_bittype_for_type (hsa_type_for_scalar_tree_type (type, false));
5584 BrigMemoryOrder memorder = BRIG_MEMORY_ORDER_SC_ACQUIRE_RELEASE;
5585 hsa_insn_basic *atominsn;
5586 hsa_op_base *tgt;
5587 atominsn = new hsa_insn_atomic (4, BRIG_OPCODE_ATOMIC,
5588 BRIG_ATOMIC_CAS, atype, memorder);
5589 tgt = get_address_from_value (gimple_call_arg (stmt, 0), hbb);
5591 if (lhs != NULL)
5592 dest = hsa_cfun->reg_for_gimple_ssa (lhs);
5593 else
5594 dest = new hsa_op_reg (atype);
5596 atominsn->set_op (0, dest);
5597 atominsn->set_op (1, tgt);
5599 hsa_op_with_type *op
5600 = hsa_reg_or_immed_for_gimple_op (gimple_call_arg (stmt, 1), hbb);
5601 atominsn->set_op (2, op);
5602 op = hsa_reg_or_immed_for_gimple_op (gimple_call_arg (stmt, 2), hbb);
5603 atominsn->set_op (3, op);
5605 hbb->append_insn (atominsn);
5606 break;
5609 case BUILT_IN_HSA_WORKGROUPID:
5610 query_hsa_grid_dim (stmt, BRIG_OPCODE_WORKGROUPID, hbb);
5611 break;
5612 case BUILT_IN_HSA_WORKITEMID:
5613 query_hsa_grid_dim (stmt, BRIG_OPCODE_WORKITEMID, hbb);
5614 break;
5615 case BUILT_IN_HSA_WORKITEMABSID:
5616 query_hsa_grid_dim (stmt, BRIG_OPCODE_WORKITEMABSID, hbb);
5617 break;
5618 case BUILT_IN_HSA_GRIDSIZE:
5619 query_hsa_grid_dim (stmt, BRIG_OPCODE_GRIDSIZE, hbb);
5620 break;
5621 case BUILT_IN_HSA_CURRENTWORKGROUPSIZE:
5622 query_hsa_grid_dim (stmt, BRIG_OPCODE_CURRENTWORKGROUPSIZE, hbb);
5623 break;
5625 case BUILT_IN_GOMP_BARRIER:
5626 hbb->append_insn (new hsa_insn_br (0, BRIG_OPCODE_BARRIER, BRIG_TYPE_NONE,
5627 BRIG_WIDTH_ALL));
5628 break;
5629 case BUILT_IN_GOMP_PARALLEL:
5630 HSA_SORRY_AT (gimple_location (stmt),
5631 "support for HSA does not implement non-gridified "
5632 "OpenMP parallel constructs.");
5633 break;
5635 case BUILT_IN_OMP_GET_THREAD_NUM:
5637 query_hsa_grid_nodim (stmt, BRIG_OPCODE_WORKITEMFLATABSID, hbb);
5638 break;
5641 case BUILT_IN_OMP_GET_NUM_THREADS:
5643 gen_get_num_threads (stmt, hbb);
5644 break;
5646 case BUILT_IN_GOMP_TEAMS:
5648 gen_set_num_threads (gimple_call_arg (stmt, 1), hbb);
5649 break;
5651 case BUILT_IN_OMP_GET_NUM_TEAMS:
5653 gen_get_num_teams (stmt, hbb);
5654 break;
5656 case BUILT_IN_OMP_GET_TEAM_NUM:
5658 gen_get_team_num (stmt, hbb);
5659 break;
5661 case BUILT_IN_MEMCPY:
5662 case BUILT_IN_MEMPCPY:
5664 expand_memory_copy (stmt, hbb, builtin);
5665 break;
5667 case BUILT_IN_MEMSET:
5669 tree c = gimple_call_arg (stmt, 1);
5671 if (TREE_CODE (c) != INTEGER_CST)
5673 gen_hsa_insns_for_direct_call (stmt, hbb);
5674 return;
5677 tree byte_size = gimple_call_arg (stmt, 2);
5679 if (!tree_fits_uhwi_p (byte_size))
5681 gen_hsa_insns_for_direct_call (stmt, hbb);
5682 return;
5685 unsigned HOST_WIDE_INT n = tree_to_uhwi (byte_size);
5687 if (n > HSA_MEMORY_BUILTINS_LIMIT)
5689 gen_hsa_insns_for_direct_call (stmt, hbb);
5690 return;
5693 unsigned HOST_WIDE_INT constant
5694 = tree_to_uhwi (fold_convert (unsigned_char_type_node, c));
5696 expand_memory_set (stmt, n, constant, hbb, builtin);
5698 break;
5700 case BUILT_IN_BZERO:
5702 tree byte_size = gimple_call_arg (stmt, 1);
5704 if (!tree_fits_uhwi_p (byte_size))
5706 gen_hsa_insns_for_direct_call (stmt, hbb);
5707 return;
5710 unsigned HOST_WIDE_INT n = tree_to_uhwi (byte_size);
5712 if (n > HSA_MEMORY_BUILTINS_LIMIT)
5714 gen_hsa_insns_for_direct_call (stmt, hbb);
5715 return;
5718 expand_memory_set (stmt, n, 0, hbb, builtin);
5720 break;
5722 CASE_BUILT_IN_ALLOCA:
5724 gen_hsa_alloca (call, hbb);
5725 break;
5727 case BUILT_IN_PREFETCH:
5728 break;
5729 default:
5731 tree name_tree = DECL_NAME (fndecl);
5732 const char *s = IDENTIFIER_POINTER (name_tree);
5733 size_t len = strlen (s);
5734 if (len > 4 && (strncmp (s, "__builtin_GOMP_", 15) == 0))
5735 HSA_SORRY_ATV (gimple_location (stmt),
5736 "support for HSA does not implement GOMP function %s",
5738 else
5739 gen_hsa_insns_for_direct_call (stmt, hbb);
5740 return;
5745 /* Generate HSA instructions for a given gimple statement. Instructions will be
5746 appended to HBB. */
5748 static void
5749 gen_hsa_insns_for_gimple_stmt (gimple *stmt, hsa_bb *hbb)
5751 switch (gimple_code (stmt))
5753 case GIMPLE_ASSIGN:
5754 if (gimple_clobber_p (stmt))
5755 break;
5757 if (gimple_assign_single_p (stmt))
5759 tree lhs = gimple_assign_lhs (stmt);
5760 tree rhs = gimple_assign_rhs1 (stmt);
5761 gen_hsa_insns_for_single_assignment (lhs, rhs, hbb);
5763 else
5764 gen_hsa_insns_for_operation_assignment (stmt, hbb);
5765 break;
5766 case GIMPLE_RETURN:
5767 gen_hsa_insns_for_return (as_a <greturn *> (stmt), hbb);
5768 break;
5769 case GIMPLE_COND:
5770 gen_hsa_insns_for_cond_stmt (stmt, hbb);
5771 break;
5772 case GIMPLE_CALL:
5773 gen_hsa_insns_for_call (stmt, hbb);
5774 break;
5775 case GIMPLE_DEBUG:
5776 /* ??? HSA supports some debug facilities. */
5777 break;
5778 case GIMPLE_LABEL:
5780 tree label = gimple_label_label (as_a <glabel *> (stmt));
5781 if (FORCED_LABEL (label))
5782 HSA_SORRY_AT (gimple_location (stmt),
5783 "support for HSA does not implement gimple label with "
5784 "address taken");
5786 break;
5788 case GIMPLE_NOP:
5790 hbb->append_insn (new hsa_insn_basic (0, BRIG_OPCODE_NOP));
5791 break;
5793 case GIMPLE_SWITCH:
5795 gen_hsa_insns_for_switch_stmt (as_a <gswitch *> (stmt), hbb);
5796 break;
5798 default:
5799 HSA_SORRY_ATV (gimple_location (stmt),
5800 "support for HSA does not implement gimple statement %s",
5801 gimple_code_name[(int) gimple_code (stmt)]);
5805 /* Generate a HSA PHI from a gimple PHI. */
5807 static void
5808 gen_hsa_phi_from_gimple_phi (gimple *phi_stmt, hsa_bb *hbb)
5810 hsa_insn_phi *hphi;
5811 unsigned count = gimple_phi_num_args (phi_stmt);
5813 hsa_op_reg *dest
5814 = hsa_cfun->reg_for_gimple_ssa (gimple_phi_result (phi_stmt));
5815 hphi = new hsa_insn_phi (count, dest);
5816 hphi->m_bb = hbb->m_bb;
5818 auto_vec <tree, 8> aexprs;
5819 auto_vec <hsa_op_reg *, 8> aregs;
5821 /* Calling split_edge when processing a PHI node messes up with the order of
5822 gimple phi node arguments (it moves the one associated with the edge to
5823 the end). We need to keep the order of edges and arguments of HSA phi
5824 node arguments consistent, so we do all required splitting as the first
5825 step, and in reverse order as to not be affected by the re-orderings. */
5826 for (unsigned j = count; j != 0; j--)
5828 unsigned i = j - 1;
5829 tree op = gimple_phi_arg_def (phi_stmt, i);
5830 if (TREE_CODE (op) != ADDR_EXPR)
5831 continue;
5833 edge e = gimple_phi_arg_edge (as_a <gphi *> (phi_stmt), i);
5834 hsa_bb *hbb_src = hsa_init_new_bb (split_edge (e));
5835 hsa_op_address *addr = gen_hsa_addr (TREE_OPERAND (op, 0),
5836 hbb_src);
5838 hsa_op_reg *dest
5839 = new hsa_op_reg (hsa_get_segment_addr_type (BRIG_SEGMENT_FLAT));
5840 hsa_insn_basic *insn
5841 = new hsa_insn_basic (2, BRIG_OPCODE_LDA, BRIG_TYPE_U64,
5842 dest, addr);
5843 hbb_src->append_insn (insn);
5844 aexprs.safe_push (op);
5845 aregs.safe_push (dest);
5848 tree lhs = gimple_phi_result (phi_stmt);
5849 for (unsigned i = 0; i < count; i++)
5851 tree op = gimple_phi_arg_def (phi_stmt, i);
5853 if (TREE_CODE (op) == SSA_NAME)
5855 hsa_op_reg *hreg = hsa_cfun->reg_for_gimple_ssa (op);
5856 hphi->set_op (i, hreg);
5858 else
5860 gcc_assert (is_gimple_min_invariant (op));
5861 tree t = TREE_TYPE (op);
5862 if (!POINTER_TYPE_P (t)
5863 || (TREE_CODE (op) == STRING_CST
5864 && TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE))
5865 hphi->set_op (i, new hsa_op_immed (op));
5866 else if (POINTER_TYPE_P (TREE_TYPE (lhs))
5867 && TREE_CODE (op) == INTEGER_CST)
5869 /* Handle assignment of NULL value to a pointer type. */
5870 hphi->set_op (i, new hsa_op_immed (op));
5872 else if (TREE_CODE (op) == ADDR_EXPR)
5874 hsa_op_reg *dest = NULL;
5875 for (unsigned a_idx = 0; a_idx < aexprs.length (); a_idx++)
5876 if (aexprs[a_idx] == op)
5878 dest = aregs[a_idx];
5879 break;
5881 gcc_assert (dest);
5882 hphi->set_op (i, dest);
5884 else
5886 HSA_SORRY_AT (gimple_location (phi_stmt),
5887 "support for HSA does not handle PHI nodes with "
5888 "constant address operands");
5889 return;
5894 hbb->append_phi (hphi);
5897 /* Constructor of class containing HSA-specific information about a basic
5898 block. CFG_BB is the CFG BB this HSA BB is associated with. IDX is the new
5899 index of this BB (so that the constructor does not attempt to use
5900 hsa_cfun during its construction). */
5902 hsa_bb::hsa_bb (basic_block cfg_bb, int idx)
5903 : m_bb (cfg_bb), m_first_insn (NULL), m_last_insn (NULL), m_first_phi (NULL),
5904 m_last_phi (NULL), m_index (idx)
5906 gcc_assert (!cfg_bb->aux);
5907 cfg_bb->aux = this;
5910 /* Constructor of class containing HSA-specific information about a basic
5911 block. CFG_BB is the CFG BB this HSA BB is associated with. */
5913 hsa_bb::hsa_bb (basic_block cfg_bb)
5914 : m_bb (cfg_bb), m_first_insn (NULL), m_last_insn (NULL), m_first_phi (NULL),
5915 m_last_phi (NULL), m_index (hsa_cfun->m_hbb_count++)
5917 gcc_assert (!cfg_bb->aux);
5918 cfg_bb->aux = this;
5921 /* Create and initialize and return a new hsa_bb structure for a given CFG
5922 basic block BB. */
5924 hsa_bb *
5925 hsa_init_new_bb (basic_block bb)
5927 void *m = obstack_alloc (&hsa_obstack, sizeof (hsa_bb));
5928 return new (m) hsa_bb (bb);
5931 /* Initialize OMP in an HSA basic block PROLOGUE. */
5933 static void
5934 init_prologue (void)
5936 if (!hsa_cfun->m_kern_p)
5937 return;
5939 hsa_bb *prologue = hsa_bb_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5941 /* Create a magic number that is going to be printed by libgomp. */
5942 unsigned index = hsa_get_number_decl_kernel_mappings ();
5944 /* Emit store to debug argument. */
5945 if (PARAM_VALUE (PARAM_HSA_GEN_DEBUG_STORES) > 0)
5946 set_debug_value (prologue, new hsa_op_immed (1000 + index, BRIG_TYPE_U64));
5949 /* Initialize hsa_num_threads to a default value. */
5951 static void
5952 init_hsa_num_threads (void)
5954 hsa_bb *prologue = hsa_bb_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5956 /* Save the default value to private variable hsa_num_threads. */
5957 hsa_insn_basic *basic
5958 = new hsa_insn_mem (BRIG_OPCODE_ST, hsa_num_threads->m_type,
5959 new hsa_op_immed (0, hsa_num_threads->m_type),
5960 new hsa_op_address (hsa_num_threads));
5961 prologue->append_insn (basic);
5964 /* Go over gimple representation and generate our internal HSA one. */
5966 static void
5967 gen_body_from_gimple ()
5969 basic_block bb;
5971 /* Verify CFG for complex edges we are unable to handle. */
5972 edge_iterator ei;
5973 edge e;
5975 FOR_EACH_BB_FN (bb, cfun)
5977 FOR_EACH_EDGE (e, ei, bb->succs)
5979 /* Verify all unsupported flags for edges that point
5980 to the same basic block. */
5981 if (e->flags & EDGE_EH)
5983 HSA_SORRY_AT (UNKNOWN_LOCATION,
5984 "support for HSA does not implement exception "
5985 "handling");
5986 return;
5991 FOR_EACH_BB_FN (bb, cfun)
5993 gimple_stmt_iterator gsi;
5994 hsa_bb *hbb = hsa_bb_for_bb (bb);
5995 if (hbb)
5996 continue;
5998 hbb = hsa_init_new_bb (bb);
6000 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6002 gen_hsa_insns_for_gimple_stmt (gsi_stmt (gsi), hbb);
6003 if (hsa_seen_error ())
6004 return;
6008 FOR_EACH_BB_FN (bb, cfun)
6010 gimple_stmt_iterator gsi;
6011 hsa_bb *hbb = hsa_bb_for_bb (bb);
6012 gcc_assert (hbb != NULL);
6014 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6015 if (!virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
6016 gen_hsa_phi_from_gimple_phi (gsi_stmt (gsi), hbb);
6019 if (dump_file && (dump_flags & TDF_DETAILS))
6021 fprintf (dump_file, "------- Generated SSA form -------\n");
6022 dump_hsa_cfun (dump_file);
6026 static void
6027 gen_function_decl_parameters (hsa_function_representation *f,
6028 tree decl)
6030 tree parm;
6031 unsigned i;
6033 for (parm = TYPE_ARG_TYPES (TREE_TYPE (decl)), i = 0;
6034 parm;
6035 parm = TREE_CHAIN (parm), i++)
6037 /* Result type if last in the tree list. */
6038 if (TREE_CHAIN (parm) == NULL)
6039 break;
6041 tree v = TREE_VALUE (parm);
6043 hsa_symbol *arg = new hsa_symbol (BRIG_TYPE_NONE, BRIG_SEGMENT_ARG,
6044 BRIG_LINKAGE_NONE);
6045 arg->m_type = hsa_type_for_tree_type (v, &arg->m_dim);
6046 arg->m_name_number = i;
6048 f->m_input_args.safe_push (arg);
6051 tree result_type = TREE_TYPE (TREE_TYPE (decl));
6052 if (!VOID_TYPE_P (result_type))
6054 f->m_output_arg = new hsa_symbol (BRIG_TYPE_NONE, BRIG_SEGMENT_ARG,
6055 BRIG_LINKAGE_NONE);
6056 f->m_output_arg->m_type
6057 = hsa_type_for_tree_type (result_type, &f->m_output_arg->m_dim);
6058 f->m_output_arg->m_name = "res";
6062 /* Generate the vector of parameters of the HSA representation of the current
6063 function. This also includes the output parameter representing the
6064 result. */
6066 static void
6067 gen_function_def_parameters ()
6069 tree parm;
6071 hsa_bb *prologue = hsa_bb_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
6073 for (parm = DECL_ARGUMENTS (cfun->decl); parm;
6074 parm = DECL_CHAIN (parm))
6076 struct hsa_symbol **slot;
6078 hsa_symbol *arg
6079 = new hsa_symbol (BRIG_TYPE_NONE, hsa_cfun->m_kern_p
6080 ? BRIG_SEGMENT_KERNARG : BRIG_SEGMENT_ARG,
6081 BRIG_LINKAGE_FUNCTION);
6082 arg->fillup_for_decl (parm);
6084 hsa_cfun->m_input_args.safe_push (arg);
6086 if (hsa_seen_error ())
6087 return;
6089 arg->m_name = hsa_get_declaration_name (parm);
6091 /* Copy all input arguments and create corresponding private symbols
6092 for them. */
6093 hsa_symbol *private_arg;
6094 hsa_op_address *parm_addr = new hsa_op_address (arg);
6096 if (TREE_ADDRESSABLE (parm)
6097 || (!is_gimple_reg (parm) && !TREE_READONLY (parm)))
6099 private_arg = hsa_cfun->create_hsa_temporary (arg->m_type);
6100 private_arg->fillup_for_decl (parm);
6102 BrigAlignment8_t align = MIN (arg->m_align, private_arg->m_align);
6104 hsa_op_address *private_arg_addr = new hsa_op_address (private_arg);
6105 gen_hsa_memory_copy (prologue, private_arg_addr, parm_addr,
6106 arg->total_byte_size (), align);
6108 else
6109 private_arg = arg;
6111 slot = hsa_cfun->m_local_symbols->find_slot (private_arg, INSERT);
6112 gcc_assert (!*slot);
6113 *slot = private_arg;
6115 if (is_gimple_reg (parm))
6117 tree ddef = ssa_default_def (cfun, parm);
6118 if (ddef && !has_zero_uses (ddef))
6120 BrigType16_t t = hsa_type_for_scalar_tree_type (TREE_TYPE (ddef),
6121 false);
6122 BrigType16_t mtype = mem_type_for_type (t);
6123 hsa_op_reg *dest = hsa_cfun->reg_for_gimple_ssa (ddef);
6124 hsa_insn_mem *mem = new hsa_insn_mem (BRIG_OPCODE_LD, mtype,
6125 dest, parm_addr);
6126 gcc_assert (!parm_addr->m_reg);
6127 prologue->append_insn (mem);
6132 if (!VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun->decl))))
6134 struct hsa_symbol **slot;
6136 hsa_cfun->m_output_arg = new hsa_symbol (BRIG_TYPE_NONE, BRIG_SEGMENT_ARG,
6137 BRIG_LINKAGE_FUNCTION);
6138 hsa_cfun->m_output_arg->fillup_for_decl (DECL_RESULT (cfun->decl));
6140 if (hsa_seen_error ())
6141 return;
6143 hsa_cfun->m_output_arg->m_name = "res";
6144 slot = hsa_cfun->m_local_symbols->find_slot (hsa_cfun->m_output_arg,
6145 INSERT);
6146 gcc_assert (!*slot);
6147 *slot = hsa_cfun->m_output_arg;
6151 /* Generate function representation that corresponds to
6152 a function declaration. */
6154 hsa_function_representation *
6155 hsa_generate_function_declaration (tree decl)
6157 hsa_function_representation *fun
6158 = new hsa_function_representation (decl, false, 0);
6160 fun->m_declaration_p = true;
6161 fun->m_name = get_brig_function_name (decl);
6162 gen_function_decl_parameters (fun, decl);
6164 return fun;
6168 /* Generate function representation that corresponds to
6169 an internal FN. */
6171 hsa_function_representation *
6172 hsa_generate_internal_fn_decl (hsa_internal_fn *fn)
6174 hsa_function_representation *fun = new hsa_function_representation (fn);
6176 fun->m_name = fn->name ();
6178 for (unsigned i = 0; i < fn->get_arity (); i++)
6180 hsa_symbol *arg
6181 = new hsa_symbol (fn->get_argument_type (i), BRIG_SEGMENT_ARG,
6182 BRIG_LINKAGE_NONE);
6183 arg->m_name_number = i;
6184 fun->m_input_args.safe_push (arg);
6187 fun->m_output_arg = new hsa_symbol (fn->get_argument_type (-1),
6188 BRIG_SEGMENT_ARG, BRIG_LINKAGE_NONE);
6189 fun->m_output_arg->m_name = "res";
6191 return fun;
6194 /* Return true if switch statement S can be transformed
6195 to a SBR instruction in HSAIL. */
6197 static bool
6198 transformable_switch_to_sbr_p (gswitch *s)
6200 /* Identify if a switch statement can be transformed to
6201 SBR instruction, like:
6203 sbr_u32 $s1 [@label1, @label2, @label3];
6206 tree size = get_switch_size (s);
6207 if (!tree_fits_uhwi_p (size))
6208 return false;
6210 if (tree_to_uhwi (size) > HSA_MAXIMUM_SBR_LABELS)
6211 return false;
6213 return true;
6216 /* Structure hold connection between PHI nodes and immediate
6217 values hold by there nodes. */
6219 struct phi_definition
6221 phi_definition (unsigned phi_i, unsigned label_i, tree imm):
6222 phi_index (phi_i), label_index (label_i), phi_value (imm)
6225 unsigned phi_index;
6226 unsigned label_index;
6227 tree phi_value;
6230 /* Sum slice of a vector V, starting from index START and ending
6231 at the index END - 1. */
6233 template <typename T>
6234 static
6235 T sum_slice (const auto_vec <T> &v, unsigned start, unsigned end,
6236 T zero)
6238 T s = zero;
6240 for (unsigned i = start; i < end; i++)
6241 s += v[i];
6243 return s;
6246 /* Function transforms GIMPLE SWITCH statements to a series of IF statements.
6247 Let's assume following example:
6250 switch (index)
6251 case C1:
6252 L1: hard_work_1 ();
6253 break;
6254 case C2..C3:
6255 L2: hard_work_2 ();
6256 break;
6257 default:
6258 LD: hard_work_3 ();
6259 break;
6261 The transformation encompasses following steps:
6262 1) all immediate values used by edges coming from the switch basic block
6263 are saved
6264 2) all these edges are removed
6265 3) the switch statement (in L0) is replaced by:
6266 if (index == C1)
6267 goto L1;
6268 else
6269 goto L1';
6271 4) newly created basic block Lx' is used for generation of
6272 a next condition
6273 5) else branch of the last condition goes to LD
6274 6) fix all immediate values in PHI nodes that were propagated though
6275 edges that were removed in step 2
6277 Note: if a case is made by a range C1..C2, then process
6278 following transformation:
6280 switch_cond_op1 = C1 <= index;
6281 switch_cond_op2 = index <= C2;
6282 switch_cond_and = switch_cond_op1 & switch_cond_op2;
6283 if (switch_cond_and != 0)
6284 goto Lx;
6285 else
6286 goto Ly;
6290 static bool
6291 convert_switch_statements (void)
6293 function *func = DECL_STRUCT_FUNCTION (current_function_decl);
6294 basic_block bb;
6296 bool modified_cfg = false;
6298 FOR_EACH_BB_FN (bb, func)
6300 gimple_stmt_iterator gsi = gsi_last_bb (bb);
6301 if (gsi_end_p (gsi))
6302 continue;
6304 gimple *stmt = gsi_stmt (gsi);
6306 if (gimple_code (stmt) == GIMPLE_SWITCH)
6308 gswitch *s = as_a <gswitch *> (stmt);
6310 /* If the switch can utilize SBR insn, skip the statement. */
6311 if (transformable_switch_to_sbr_p (s))
6312 continue;
6314 modified_cfg = true;
6316 unsigned labels = gimple_switch_num_labels (s);
6317 tree index = gimple_switch_index (s);
6318 tree index_type = TREE_TYPE (index);
6319 tree default_label = gimple_switch_default_label (s);
6320 basic_block default_label_bb
6321 = label_to_block_fn (func, CASE_LABEL (default_label));
6322 basic_block cur_bb = bb;
6324 auto_vec <edge> new_edges;
6325 auto_vec <phi_definition *> phi_todo_list;
6326 auto_vec <profile_count> edge_counts;
6327 auto_vec <profile_probability> edge_probabilities;
6329 /* Investigate all labels that and PHI nodes in these edges which
6330 should be fixed after we add new collection of edges. */
6331 for (unsigned i = 0; i < labels; i++)
6333 tree label = gimple_switch_label (s, i);
6334 basic_block label_bb = label_to_block_fn (func, CASE_LABEL (label));
6335 edge e = find_edge (bb, label_bb);
6336 edge_counts.safe_push (e->count ());
6337 edge_probabilities.safe_push (e->probability);
6338 gphi_iterator phi_gsi;
6340 /* Save PHI definitions that will be destroyed because of an edge
6341 is going to be removed. */
6342 unsigned phi_index = 0;
6343 for (phi_gsi = gsi_start_phis (e->dest);
6344 !gsi_end_p (phi_gsi); gsi_next (&phi_gsi))
6346 gphi *phi = phi_gsi.phi ();
6347 for (unsigned j = 0; j < gimple_phi_num_args (phi); j++)
6349 if (gimple_phi_arg_edge (phi, j) == e)
6351 tree imm = gimple_phi_arg_def (phi, j);
6352 phi_definition *p = new phi_definition (phi_index, i,
6353 imm);
6354 phi_todo_list.safe_push (p);
6355 break;
6358 phi_index++;
6362 /* Remove all edges for the current basic block. */
6363 for (int i = EDGE_COUNT (bb->succs) - 1; i >= 0; i--)
6365 edge e = EDGE_SUCC (bb, i);
6366 remove_edge (e);
6369 /* Iterate all non-default labels. */
6370 for (unsigned i = 1; i < labels; i++)
6372 tree label = gimple_switch_label (s, i);
6373 tree low = CASE_LOW (label);
6374 tree high = CASE_HIGH (label);
6376 if (!useless_type_conversion_p (TREE_TYPE (low), index_type))
6377 low = fold_convert (index_type, low);
6379 gimple_stmt_iterator cond_gsi = gsi_last_bb (cur_bb);
6380 gimple *c = NULL;
6381 if (high)
6383 tree tmp1 = make_temp_ssa_name (boolean_type_node, NULL,
6384 "switch_cond_op1");
6386 gimple *assign1 = gimple_build_assign (tmp1, LE_EXPR, low,
6387 index);
6389 tree tmp2 = make_temp_ssa_name (boolean_type_node, NULL,
6390 "switch_cond_op2");
6392 if (!useless_type_conversion_p (TREE_TYPE (high), index_type))
6393 high = fold_convert (index_type, high);
6394 gimple *assign2 = gimple_build_assign (tmp2, LE_EXPR, index,
6395 high);
6397 tree tmp3 = make_temp_ssa_name (boolean_type_node, NULL,
6398 "switch_cond_and");
6399 gimple *assign3 = gimple_build_assign (tmp3, BIT_AND_EXPR, tmp1,
6400 tmp2);
6402 gsi_insert_before (&cond_gsi, assign1, GSI_SAME_STMT);
6403 gsi_insert_before (&cond_gsi, assign2, GSI_SAME_STMT);
6404 gsi_insert_before (&cond_gsi, assign3, GSI_SAME_STMT);
6406 tree b = constant_boolean_node (false, boolean_type_node);
6407 c = gimple_build_cond (NE_EXPR, tmp3, b, NULL, NULL);
6409 else
6410 c = gimple_build_cond (EQ_EXPR, index, low, NULL, NULL);
6412 gimple_set_location (c, gimple_location (stmt));
6414 gsi_insert_before (&cond_gsi, c, GSI_SAME_STMT);
6416 basic_block label_bb
6417 = label_to_block_fn (func, CASE_LABEL (label));
6418 edge new_edge = make_edge (cur_bb, label_bb, EDGE_TRUE_VALUE);
6419 profile_probability prob_sum = sum_slice <profile_probability>
6420 (edge_probabilities, i, labels, profile_probability::never ())
6421 + edge_probabilities[0];
6423 if (prob_sum.initialized_p ())
6424 new_edge->probability = edge_probabilities[i] / prob_sum;
6426 new_edges.safe_push (new_edge);
6428 if (i < labels - 1)
6430 /* Prepare another basic block that will contain
6431 next condition. */
6432 basic_block next_bb = create_empty_bb (cur_bb);
6433 if (current_loops)
6435 add_bb_to_loop (next_bb, cur_bb->loop_father);
6436 loops_state_set (LOOPS_NEED_FIXUP);
6439 edge next_edge = make_edge (cur_bb, next_bb, EDGE_FALSE_VALUE);
6440 next_edge->probability = new_edge->probability.invert ();
6441 next_bb->count = next_edge->count ();
6442 cur_bb = next_bb;
6444 else /* Link last IF statement and default label
6445 of the switch. */
6447 edge e = make_edge (cur_bb, default_label_bb, EDGE_FALSE_VALUE);
6448 e->probability = new_edge->probability.invert ();
6449 new_edges.safe_insert (0, e);
6453 /* Restore original PHI immediate value. */
6454 for (unsigned i = 0; i < phi_todo_list.length (); i++)
6456 phi_definition *phi_def = phi_todo_list[i];
6457 edge new_edge = new_edges[phi_def->label_index];
6459 gphi_iterator it = gsi_start_phis (new_edge->dest);
6460 for (unsigned i = 0; i < phi_def->phi_index; i++)
6461 gsi_next (&it);
6463 gphi *phi = it.phi ();
6464 add_phi_arg (phi, phi_def->phi_value, new_edge, UNKNOWN_LOCATION);
6465 delete phi_def;
6468 /* Remove the original GIMPLE switch statement. */
6469 gsi_remove (&gsi, true);
6473 if (dump_file)
6474 dump_function_to_file (current_function_decl, dump_file, TDF_DETAILS);
6476 return modified_cfg;
6479 /* Expand builtins that can't be handled by HSA back-end. */
6481 static void
6482 expand_builtins ()
6484 function *func = DECL_STRUCT_FUNCTION (current_function_decl);
6485 basic_block bb;
6487 FOR_EACH_BB_FN (bb, func)
6489 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
6490 gsi_next (&gsi))
6492 gimple *stmt = gsi_stmt (gsi);
6494 if (gimple_code (stmt) != GIMPLE_CALL)
6495 continue;
6497 gcall *call = as_a <gcall *> (stmt);
6499 if (!gimple_call_builtin_p (call, BUILT_IN_NORMAL))
6500 continue;
6502 tree fndecl = gimple_call_fndecl (stmt);
6503 enum built_in_function fn = DECL_FUNCTION_CODE (fndecl);
6504 switch (fn)
6506 case BUILT_IN_CEXPF:
6507 case BUILT_IN_CEXPIF:
6508 case BUILT_IN_CEXPI:
6510 /* Similar to builtins.c (expand_builtin_cexpi), the builtin
6511 can be transformed to: cexp(I * z) = ccos(z) + I * csin(z). */
6512 tree lhs = gimple_call_lhs (stmt);
6513 tree rhs = gimple_call_arg (stmt, 0);
6514 tree rhs_type = TREE_TYPE (rhs);
6515 bool float_type_p = rhs_type == float_type_node;
6516 tree real_part = make_temp_ssa_name (rhs_type, NULL,
6517 "cexp_real_part");
6518 tree imag_part = make_temp_ssa_name (rhs_type, NULL,
6519 "cexp_imag_part");
6521 tree cos_fndecl
6522 = mathfn_built_in (rhs_type, fn == float_type_p
6523 ? BUILT_IN_COSF : BUILT_IN_COS);
6524 gcall *cos = gimple_build_call (cos_fndecl, 1, rhs);
6525 gimple_call_set_lhs (cos, real_part);
6526 gsi_insert_before (&gsi, cos, GSI_SAME_STMT);
6528 tree sin_fndecl
6529 = mathfn_built_in (rhs_type, fn == float_type_p
6530 ? BUILT_IN_SINF : BUILT_IN_SIN);
6531 gcall *sin = gimple_build_call (sin_fndecl, 1, rhs);
6532 gimple_call_set_lhs (sin, imag_part);
6533 gsi_insert_before (&gsi, sin, GSI_SAME_STMT);
6536 gassign *assign = gimple_build_assign (lhs, COMPLEX_EXPR,
6537 real_part, imag_part);
6538 gsi_insert_before (&gsi, assign, GSI_SAME_STMT);
6539 gsi_remove (&gsi, true);
6541 break;
6543 default:
6544 break;
6550 /* Emit HSA module variables that are global for the entire module. */
6552 static void
6553 emit_hsa_module_variables (void)
6555 hsa_num_threads = new hsa_symbol (BRIG_TYPE_U32, BRIG_SEGMENT_PRIVATE,
6556 BRIG_LINKAGE_MODULE, true);
6558 hsa_num_threads->m_name = "hsa_num_threads";
6560 hsa_brig_emit_omp_symbols ();
6563 /* Generate HSAIL representation of the current function and write into a
6564 special section of the output file. If KERNEL is set, the function will be
6565 considered an HSA kernel callable from the host, otherwise it will be
6566 compiled as an HSA function callable from other HSA code. */
6568 static void
6569 generate_hsa (bool kernel)
6571 hsa_init_data_for_cfun ();
6573 if (hsa_num_threads == NULL)
6574 emit_hsa_module_variables ();
6576 bool modified_cfg = convert_switch_statements ();
6577 /* Initialize hsa_cfun. */
6578 hsa_cfun = new hsa_function_representation (cfun->decl, kernel,
6579 SSANAMES (cfun)->length (),
6580 modified_cfg);
6581 hsa_cfun->init_extra_bbs ();
6583 if (flag_tm)
6585 HSA_SORRY_AT (UNKNOWN_LOCATION,
6586 "support for HSA does not implement transactional memory");
6587 goto fail;
6590 verify_function_arguments (cfun->decl);
6591 if (hsa_seen_error ())
6592 goto fail;
6594 hsa_cfun->m_name = get_brig_function_name (cfun->decl);
6596 gen_function_def_parameters ();
6597 if (hsa_seen_error ())
6598 goto fail;
6600 init_prologue ();
6602 gen_body_from_gimple ();
6603 if (hsa_seen_error ())
6604 goto fail;
6606 if (hsa_cfun->m_kernel_dispatch_count)
6607 init_hsa_num_threads ();
6609 if (hsa_cfun->m_kern_p)
6611 hsa_function_summary *s
6612 = hsa_summaries->get (cgraph_node::get (hsa_cfun->m_decl));
6613 hsa_add_kern_decl_mapping (current_function_decl, hsa_cfun->m_name,
6614 hsa_cfun->m_maximum_omp_data_size,
6615 s->m_gridified_kernel_p);
6618 if (flag_checking)
6620 for (unsigned i = 0; i < hsa_cfun->m_ssa_map.length (); i++)
6621 if (hsa_cfun->m_ssa_map[i])
6622 hsa_cfun->m_ssa_map[i]->verify_ssa ();
6624 basic_block bb;
6625 FOR_EACH_BB_FN (bb, cfun)
6627 hsa_bb *hbb = hsa_bb_for_bb (bb);
6629 for (hsa_insn_basic *insn = hbb->m_first_insn; insn;
6630 insn = insn->m_next)
6631 insn->verify ();
6635 hsa_regalloc ();
6636 hsa_brig_emit_function ();
6638 fail:
6639 hsa_deinit_data_for_cfun ();
6642 namespace {
6644 const pass_data pass_data_gen_hsail =
6646 GIMPLE_PASS,
6647 "hsagen", /* name */
6648 OPTGROUP_OMP, /* optinfo_flags */
6649 TV_NONE, /* tv_id */
6650 PROP_cfg | PROP_ssa, /* properties_required */
6651 0, /* properties_provided */
6652 0, /* properties_destroyed */
6653 0, /* todo_flags_start */
6654 0 /* todo_flags_finish */
6657 class pass_gen_hsail : public gimple_opt_pass
6659 public:
6660 pass_gen_hsail (gcc::context *ctxt)
6661 : gimple_opt_pass(pass_data_gen_hsail, ctxt)
6664 /* opt_pass methods: */
6665 bool gate (function *);
6666 unsigned int execute (function *);
6668 }; // class pass_gen_hsail
6670 /* Determine whether or not to run generation of HSAIL. */
6672 bool
6673 pass_gen_hsail::gate (function *f)
6675 return hsa_gen_requested_p ()
6676 && hsa_gpu_implementation_p (f->decl);
6679 unsigned int
6680 pass_gen_hsail::execute (function *)
6682 hsa_function_summary *s
6683 = hsa_summaries->get (cgraph_node::get_create (current_function_decl));
6685 expand_builtins ();
6686 generate_hsa (s->m_kind == HSA_KERNEL);
6687 TREE_ASM_WRITTEN (current_function_decl) = 1;
6688 return TODO_discard_function;
6691 } // anon namespace
6693 /* Create the instance of hsa gen pass. */
6695 gimple_opt_pass *
6696 make_pass_gen_hsail (gcc::context *ctxt)
6698 return new pass_gen_hsail (ctxt);