1 /* Deal with interfaces.
2 Copyright (C) 2000-2022 Free Software Foundation, Inc.
3 Contributed by Andy Vaught
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* Deal with interfaces. An explicit interface is represented as a
23 singly linked list of formal argument structures attached to the
24 relevant symbols. For an implicit interface, the arguments don't
25 point to symbols. Explicit interfaces point to namespaces that
26 contain the symbols within that interface.
28 Implicit interfaces are linked together in a singly linked list
29 along the next_if member of symbol nodes. Since a particular
30 symbol can only have a single explicit interface, the symbol cannot
31 be part of multiple lists and a single next-member suffices.
33 This is not the case for general classes, though. An operator
34 definition is independent of just about all other uses and has it's
38 Nameless interfaces create symbols with explicit interfaces within
39 the current namespace. They are otherwise unlinked.
42 The generic name points to a linked list of symbols. Each symbol
43 has an explicit interface. Each explicit interface has its own
44 namespace containing the arguments. Module procedures are symbols in
45 which the interface is added later when the module procedure is parsed.
48 User-defined operators are stored in a their own set of symtrees
49 separate from regular symbols. The symtrees point to gfc_user_op
50 structures which in turn head up a list of relevant interfaces.
52 Extended intrinsics and assignment:
53 The head of these interface lists are stored in the containing namespace.
56 An implicit interface is represented as a singly linked list of
57 formal argument list structures that don't point to any symbol
58 nodes -- they just contain types.
61 When a subprogram is defined, the program unit's name points to an
62 interface as usual, but the link to the namespace is NULL and the
63 formal argument list points to symbols within the same namespace as
64 the program unit name. */
68 #include "coretypes.h"
74 /* The current_interface structure holds information about the
75 interface currently being parsed. This structure is saved and
76 restored during recursive interfaces. */
78 gfc_interface_info current_interface
;
81 /* Free a singly linked list of gfc_interface structures. */
84 gfc_free_interface (gfc_interface
*intr
)
88 for (; intr
; intr
= next
)
96 /* Change the operators unary plus and minus into binary plus and
97 minus respectively, leaving the rest unchanged. */
99 static gfc_intrinsic_op
100 fold_unary_intrinsic (gfc_intrinsic_op op
)
104 case INTRINSIC_UPLUS
:
107 case INTRINSIC_UMINUS
:
108 op
= INTRINSIC_MINUS
;
118 /* Return the operator depending on the DTIO moded string. Note that
119 these are not operators in the normal sense and so have been placed
120 beyond GFC_INTRINSIC_END in gfortran.h:enum gfc_intrinsic_op. */
122 static gfc_intrinsic_op
125 if (strcmp (mode
, "formatted") == 0)
126 return INTRINSIC_FORMATTED
;
127 if (strcmp (mode
, "unformatted") == 0)
128 return INTRINSIC_UNFORMATTED
;
129 return INTRINSIC_NONE
;
133 /* Match a generic specification. Depending on which type of
134 interface is found, the 'name' or 'op' pointers may be set.
135 This subroutine doesn't return MATCH_NO. */
138 gfc_match_generic_spec (interface_type
*type
,
140 gfc_intrinsic_op
*op
)
142 char buffer
[GFC_MAX_SYMBOL_LEN
+ 1];
146 if (gfc_match (" assignment ( = )") == MATCH_YES
)
148 *type
= INTERFACE_INTRINSIC_OP
;
149 *op
= INTRINSIC_ASSIGN
;
153 if (gfc_match (" operator ( %o )", &i
) == MATCH_YES
)
155 *type
= INTERFACE_INTRINSIC_OP
;
156 *op
= fold_unary_intrinsic (i
);
160 *op
= INTRINSIC_NONE
;
161 if (gfc_match (" operator ( ") == MATCH_YES
)
163 m
= gfc_match_defined_op_name (buffer
, 1);
169 m
= gfc_match_char (')');
175 strcpy (name
, buffer
);
176 *type
= INTERFACE_USER_OP
;
180 if (gfc_match (" read ( %n )", buffer
) == MATCH_YES
)
182 *op
= dtio_op (buffer
);
183 if (*op
== INTRINSIC_FORMATTED
)
185 strcpy (name
, gfc_code2string (dtio_procs
, DTIO_RF
));
186 *type
= INTERFACE_DTIO
;
188 if (*op
== INTRINSIC_UNFORMATTED
)
190 strcpy (name
, gfc_code2string (dtio_procs
, DTIO_RUF
));
191 *type
= INTERFACE_DTIO
;
193 if (*op
!= INTRINSIC_NONE
)
197 if (gfc_match (" write ( %n )", buffer
) == MATCH_YES
)
199 *op
= dtio_op (buffer
);
200 if (*op
== INTRINSIC_FORMATTED
)
202 strcpy (name
, gfc_code2string (dtio_procs
, DTIO_WF
));
203 *type
= INTERFACE_DTIO
;
205 if (*op
== INTRINSIC_UNFORMATTED
)
207 strcpy (name
, gfc_code2string (dtio_procs
, DTIO_WUF
));
208 *type
= INTERFACE_DTIO
;
210 if (*op
!= INTRINSIC_NONE
)
214 if (gfc_match_name (buffer
) == MATCH_YES
)
216 strcpy (name
, buffer
);
217 *type
= INTERFACE_GENERIC
;
221 *type
= INTERFACE_NAMELESS
;
225 gfc_error ("Syntax error in generic specification at %C");
230 /* Match one of the five F95 forms of an interface statement. The
231 matcher for the abstract interface follows. */
234 gfc_match_interface (void)
236 char name
[GFC_MAX_SYMBOL_LEN
+ 1];
242 m
= gfc_match_space ();
244 if (gfc_match_generic_spec (&type
, name
, &op
) == MATCH_ERROR
)
247 /* If we're not looking at the end of the statement now, or if this
248 is not a nameless interface but we did not see a space, punt. */
249 if (gfc_match_eos () != MATCH_YES
250 || (type
!= INTERFACE_NAMELESS
&& m
!= MATCH_YES
))
252 gfc_error ("Syntax error: Trailing garbage in INTERFACE statement "
257 current_interface
.type
= type
;
262 case INTERFACE_GENERIC
:
263 if (gfc_get_symbol (name
, NULL
, &sym
))
266 if (!sym
->attr
.generic
267 && !gfc_add_generic (&sym
->attr
, sym
->name
, NULL
))
272 gfc_error ("Dummy procedure %qs at %C cannot have a "
273 "generic interface", sym
->name
);
277 current_interface
.sym
= gfc_new_block
= sym
;
280 case INTERFACE_USER_OP
:
281 current_interface
.uop
= gfc_get_uop (name
);
284 case INTERFACE_INTRINSIC_OP
:
285 current_interface
.op
= op
;
288 case INTERFACE_NAMELESS
:
289 case INTERFACE_ABSTRACT
:
298 /* Match a F2003 abstract interface. */
301 gfc_match_abstract_interface (void)
305 if (!gfc_notify_std (GFC_STD_F2003
, "ABSTRACT INTERFACE at %C"))
308 m
= gfc_match_eos ();
312 gfc_error ("Syntax error in ABSTRACT INTERFACE statement at %C");
316 current_interface
.type
= INTERFACE_ABSTRACT
;
322 /* Match the different sort of generic-specs that can be present after
323 the END INTERFACE itself. */
326 gfc_match_end_interface (void)
328 char name
[GFC_MAX_SYMBOL_LEN
+ 1];
333 m
= gfc_match_space ();
335 if (gfc_match_generic_spec (&type
, name
, &op
) == MATCH_ERROR
)
338 /* If we're not looking at the end of the statement now, or if this
339 is not a nameless interface but we did not see a space, punt. */
340 if (gfc_match_eos () != MATCH_YES
341 || (type
!= INTERFACE_NAMELESS
&& m
!= MATCH_YES
))
343 gfc_error ("Syntax error: Trailing garbage in END INTERFACE "
350 switch (current_interface
.type
)
352 case INTERFACE_NAMELESS
:
353 case INTERFACE_ABSTRACT
:
354 if (type
!= INTERFACE_NAMELESS
)
356 gfc_error ("Expected a nameless interface at %C");
362 case INTERFACE_INTRINSIC_OP
:
363 if (type
!= current_interface
.type
|| op
!= current_interface
.op
)
366 if (current_interface
.op
== INTRINSIC_ASSIGN
)
369 gfc_error ("Expected %<END INTERFACE ASSIGNMENT (=)%> at %C");
374 s1
= gfc_op2string (current_interface
.op
);
375 s2
= gfc_op2string (op
);
377 /* The following if-statements are used to enforce C1202
379 if ((strcmp(s1
, "==") == 0 && strcmp (s2
, ".eq.") == 0)
380 || (strcmp(s1
, ".eq.") == 0 && strcmp (s2
, "==") == 0))
382 if ((strcmp(s1
, "/=") == 0 && strcmp (s2
, ".ne.") == 0)
383 || (strcmp(s1
, ".ne.") == 0 && strcmp (s2
, "/=") == 0))
385 if ((strcmp(s1
, "<=") == 0 && strcmp (s2
, ".le.") == 0)
386 || (strcmp(s1
, ".le.") == 0 && strcmp (s2
, "<=") == 0))
388 if ((strcmp(s1
, "<") == 0 && strcmp (s2
, ".lt.") == 0)
389 || (strcmp(s1
, ".lt.") == 0 && strcmp (s2
, "<") == 0))
391 if ((strcmp(s1
, ">=") == 0 && strcmp (s2
, ".ge.") == 0)
392 || (strcmp(s1
, ".ge.") == 0 && strcmp (s2
, ">=") == 0))
394 if ((strcmp(s1
, ">") == 0 && strcmp (s2
, ".gt.") == 0)
395 || (strcmp(s1
, ".gt.") == 0 && strcmp (s2
, ">") == 0))
399 if (strcmp(s2
, "none") == 0)
400 gfc_error ("Expecting %<END INTERFACE OPERATOR (%s)%> "
403 gfc_error ("Expecting %<END INTERFACE OPERATOR (%s)%> at %C, "
404 "but got %qs", s1
, s2
);
411 case INTERFACE_USER_OP
:
412 /* Comparing the symbol node names is OK because only use-associated
413 symbols can be renamed. */
414 if (type
!= current_interface
.type
415 || strcmp (current_interface
.uop
->name
, name
) != 0)
417 gfc_error ("Expecting %<END INTERFACE OPERATOR (.%s.)%> at %C",
418 current_interface
.uop
->name
);
425 case INTERFACE_GENERIC
:
426 if (type
!= current_interface
.type
427 || strcmp (current_interface
.sym
->name
, name
) != 0)
429 gfc_error ("Expecting %<END INTERFACE %s%> at %C",
430 current_interface
.sym
->name
);
441 /* Return whether the component was defined anonymously. */
444 is_anonymous_component (gfc_component
*cmp
)
446 /* Only UNION and MAP components are anonymous. In the case of a MAP,
447 the derived type symbol is FL_STRUCT and the component name looks like mM*.
448 This is the only case in which the second character of a component name is
450 return cmp
->ts
.type
== BT_UNION
451 || (cmp
->ts
.type
== BT_DERIVED
452 && cmp
->ts
.u
.derived
->attr
.flavor
== FL_STRUCT
453 && cmp
->name
[0] && cmp
->name
[1] && ISUPPER (cmp
->name
[1]));
457 /* Return whether the derived type was defined anonymously. */
460 is_anonymous_dt (gfc_symbol
*derived
)
462 /* UNION and MAP types are always anonymous. Otherwise, only nested STRUCTURE
463 types can be anonymous. For anonymous MAP/STRUCTURE, we have FL_STRUCT
464 and the type name looks like XX*. This is the only case in which the
465 second character of a type name is uppercase. */
466 return derived
->attr
.flavor
== FL_UNION
467 || (derived
->attr
.flavor
== FL_STRUCT
468 && derived
->name
[0] && derived
->name
[1] && ISUPPER (derived
->name
[1]));
472 /* Compare components according to 4.4.2 of the Fortran standard. */
475 compare_components (gfc_component
*cmp1
, gfc_component
*cmp2
,
476 gfc_symbol
*derived1
, gfc_symbol
*derived2
)
478 /* Compare names, but not for anonymous components such as UNION or MAP. */
479 if (!is_anonymous_component (cmp1
) && !is_anonymous_component (cmp2
)
480 && strcmp (cmp1
->name
, cmp2
->name
) != 0)
483 if (cmp1
->attr
.access
!= cmp2
->attr
.access
)
486 if (cmp1
->attr
.pointer
!= cmp2
->attr
.pointer
)
489 if (cmp1
->attr
.dimension
!= cmp2
->attr
.dimension
)
492 if (cmp1
->attr
.allocatable
!= cmp2
->attr
.allocatable
)
495 if (cmp1
->attr
.dimension
&& gfc_compare_array_spec (cmp1
->as
, cmp2
->as
) == 0)
498 if (cmp1
->ts
.type
== BT_CHARACTER
&& cmp2
->ts
.type
== BT_CHARACTER
)
500 gfc_charlen
*l1
= cmp1
->ts
.u
.cl
;
501 gfc_charlen
*l2
= cmp2
->ts
.u
.cl
;
502 if (l1
&& l2
&& l1
->length
&& l2
->length
503 && l1
->length
->expr_type
== EXPR_CONSTANT
504 && l2
->length
->expr_type
== EXPR_CONSTANT
505 && gfc_dep_compare_expr (l1
->length
, l2
->length
) != 0)
509 /* Make sure that link lists do not put this function into an
510 endless recursive loop! */
511 if (!(cmp1
->ts
.type
== BT_DERIVED
&& derived1
== cmp1
->ts
.u
.derived
)
512 && !(cmp2
->ts
.type
== BT_DERIVED
&& derived2
== cmp2
->ts
.u
.derived
)
513 && !gfc_compare_types (&cmp1
->ts
, &cmp2
->ts
))
516 else if ( (cmp1
->ts
.type
== BT_DERIVED
&& derived1
== cmp1
->ts
.u
.derived
)
517 && !(cmp2
->ts
.type
== BT_DERIVED
&& derived2
== cmp2
->ts
.u
.derived
))
520 else if (!(cmp1
->ts
.type
== BT_DERIVED
&& derived1
== cmp1
->ts
.u
.derived
)
521 && (cmp2
->ts
.type
== BT_DERIVED
&& derived2
== cmp2
->ts
.u
.derived
))
528 /* Compare two union types by comparing the components of their maps.
529 Because unions and maps are anonymous their types get special internal
530 names; therefore the usual derived type comparison will fail on them.
532 Returns nonzero if equal, as with gfc_compare_derived_types. Also as with
533 gfc_compare_derived_types, 'equal' is closer to meaning 'duplicate
534 definitions' than 'equivalent structure'. */
537 compare_union_types (gfc_symbol
*un1
, gfc_symbol
*un2
)
539 gfc_component
*map1
, *map2
, *cmp1
, *cmp2
;
540 gfc_symbol
*map1_t
, *map2_t
;
542 if (un1
->attr
.flavor
!= FL_UNION
|| un2
->attr
.flavor
!= FL_UNION
)
545 if (un1
->attr
.zero_comp
!= un2
->attr
.zero_comp
)
548 if (un1
->attr
.zero_comp
)
551 map1
= un1
->components
;
552 map2
= un2
->components
;
554 /* In terms of 'equality' here we are worried about types which are
555 declared the same in two places, not types that represent equivalent
556 structures. (This is common because of FORTRAN's weird scoping rules.)
557 Though two unions with their maps in different orders could be equivalent,
558 we will say they are not equal for the purposes of this test; therefore
559 we compare the maps sequentially. */
562 map1_t
= map1
->ts
.u
.derived
;
563 map2_t
= map2
->ts
.u
.derived
;
565 cmp1
= map1_t
->components
;
566 cmp2
= map2_t
->components
;
568 /* Protect against null components. */
569 if (map1_t
->attr
.zero_comp
!= map2_t
->attr
.zero_comp
)
572 if (map1_t
->attr
.zero_comp
)
577 /* No two fields will ever point to the same map type unless they are
578 the same component, because one map field is created with its type
579 declaration. Therefore don't worry about recursion here. */
580 /* TODO: worry about recursion into parent types of the unions? */
581 if (!compare_components (cmp1
, cmp2
, map1_t
, map2_t
))
587 if (cmp1
== NULL
&& cmp2
== NULL
)
589 if (cmp1
== NULL
|| cmp2
== NULL
)
596 if (map1
== NULL
&& map2
== NULL
)
598 if (map1
== NULL
|| map2
== NULL
)
607 /* Compare two derived types using the criteria in 4.4.2 of the standard,
608 recursing through gfc_compare_types for the components. */
611 gfc_compare_derived_types (gfc_symbol
*derived1
, gfc_symbol
*derived2
)
613 gfc_component
*cmp1
, *cmp2
;
615 if (derived1
== derived2
)
618 if (!derived1
|| !derived2
)
619 gfc_internal_error ("gfc_compare_derived_types: invalid derived type");
621 if (derived1
->attr
.unlimited_polymorphic
622 && derived2
->attr
.unlimited_polymorphic
)
625 if (derived1
->attr
.unlimited_polymorphic
626 != derived2
->attr
.unlimited_polymorphic
)
629 /* Compare UNION types specially. */
630 if (derived1
->attr
.flavor
== FL_UNION
|| derived2
->attr
.flavor
== FL_UNION
)
631 return compare_union_types (derived1
, derived2
);
633 /* Special case for comparing derived types across namespaces. If the
634 true names and module names are the same and the module name is
635 nonnull, then they are equal. */
636 if (strcmp (derived1
->name
, derived2
->name
) == 0
637 && derived1
->module
!= NULL
&& derived2
->module
!= NULL
638 && strcmp (derived1
->module
, derived2
->module
) == 0)
641 /* Compare type via the rules of the standard. Both types must have the
642 SEQUENCE or BIND(C) attribute to be equal. We also compare types
643 recursively if they are class descriptors types or virtual tables types.
644 STRUCTUREs are special because they can be anonymous; therefore two
645 structures with different names may be equal. */
647 /* Compare names, but not for anonymous types such as UNION or MAP. */
648 if (!is_anonymous_dt (derived1
) && !is_anonymous_dt (derived2
)
649 && strcmp (derived1
->name
, derived2
->name
) != 0)
652 if (derived1
->component_access
== ACCESS_PRIVATE
653 || derived2
->component_access
== ACCESS_PRIVATE
)
656 if (!(derived1
->attr
.sequence
&& derived2
->attr
.sequence
)
657 && !(derived1
->attr
.is_bind_c
&& derived2
->attr
.is_bind_c
)
658 && !(derived1
->attr
.is_class
&& derived2
->attr
.is_class
)
659 && !(derived1
->attr
.vtype
&& derived2
->attr
.vtype
)
660 && !(derived1
->attr
.pdt_type
&& derived2
->attr
.pdt_type
))
663 /* Protect against null components. */
664 if (derived1
->attr
.zero_comp
!= derived2
->attr
.zero_comp
)
667 if (derived1
->attr
.zero_comp
)
670 cmp1
= derived1
->components
;
671 cmp2
= derived2
->components
;
673 /* Since subtypes of SEQUENCE types must be SEQUENCE types as well, a
674 simple test can speed things up. Otherwise, lots of things have to
678 if (!compare_components (cmp1
, cmp2
, derived1
, derived2
))
684 if (cmp1
== NULL
&& cmp2
== NULL
)
686 if (cmp1
== NULL
|| cmp2
== NULL
)
694 /* Compare two typespecs, recursively if necessary. */
697 gfc_compare_types (gfc_typespec
*ts1
, gfc_typespec
*ts2
)
699 /* See if one of the typespecs is a BT_VOID, which is what is being used
700 to allow the funcs like c_f_pointer to accept any pointer type.
701 TODO: Possibly should narrow this to just the one typespec coming in
702 that is for the formal arg, but oh well. */
703 if (ts1
->type
== BT_VOID
|| ts2
->type
== BT_VOID
)
706 /* Special case for our C interop types. FIXME: There should be a
707 better way of doing this. When ISO C binding is cleared up,
708 this can probably be removed. See PR 57048. */
710 if (((ts1
->type
== BT_INTEGER
&& ts2
->type
== BT_DERIVED
)
711 || (ts1
->type
== BT_DERIVED
&& ts2
->type
== BT_INTEGER
))
712 && ts1
->u
.derived
&& ts2
->u
.derived
713 && ts1
->u
.derived
== ts2
->u
.derived
)
716 /* The _data component is not always present, therefore check for its
717 presence before assuming, that its derived->attr is available.
718 When the _data component is not present, then nevertheless the
719 unlimited_polymorphic flag may be set in the derived type's attr. */
720 if (ts1
->type
== BT_CLASS
&& ts1
->u
.derived
->components
721 && ((ts1
->u
.derived
->attr
.is_class
722 && ts1
->u
.derived
->components
->ts
.u
.derived
->attr
723 .unlimited_polymorphic
)
724 || ts1
->u
.derived
->attr
.unlimited_polymorphic
))
728 if (ts2
->type
== BT_CLASS
&& ts1
->type
== BT_DERIVED
729 && ts2
->u
.derived
->components
730 && ((ts2
->u
.derived
->attr
.is_class
731 && ts2
->u
.derived
->components
->ts
.u
.derived
->attr
732 .unlimited_polymorphic
)
733 || ts2
->u
.derived
->attr
.unlimited_polymorphic
)
734 && (ts1
->u
.derived
->attr
.sequence
|| ts1
->u
.derived
->attr
.is_bind_c
))
737 if (ts1
->type
!= ts2
->type
738 && ((ts1
->type
!= BT_DERIVED
&& ts1
->type
!= BT_CLASS
)
739 || (ts2
->type
!= BT_DERIVED
&& ts2
->type
!= BT_CLASS
)))
742 if (ts1
->type
== BT_UNION
)
743 return compare_union_types (ts1
->u
.derived
, ts2
->u
.derived
);
745 if (ts1
->type
!= BT_DERIVED
&& ts1
->type
!= BT_CLASS
)
746 return (ts1
->kind
== ts2
->kind
);
748 /* Compare derived types. */
749 return gfc_type_compatible (ts1
, ts2
);
754 compare_type (gfc_symbol
*s1
, gfc_symbol
*s2
)
756 if (s2
->attr
.ext_attr
& (1 << EXT_ATTR_NO_ARG_CHECK
))
759 return gfc_compare_types (&s1
->ts
, &s2
->ts
) || s2
->ts
.type
== BT_ASSUMED
;
764 compare_type_characteristics (gfc_symbol
*s1
, gfc_symbol
*s2
)
766 /* TYPE and CLASS of the same declared type are type compatible,
767 but have different characteristics. */
768 if ((s1
->ts
.type
== BT_CLASS
&& s2
->ts
.type
== BT_DERIVED
)
769 || (s1
->ts
.type
== BT_DERIVED
&& s2
->ts
.type
== BT_CLASS
))
772 return compare_type (s1
, s2
);
777 compare_rank (gfc_symbol
*s1
, gfc_symbol
*s2
)
779 gfc_array_spec
*as1
, *as2
;
782 if (s2
->attr
.ext_attr
& (1 << EXT_ATTR_NO_ARG_CHECK
))
785 as1
= (s1
->ts
.type
== BT_CLASS
786 && !s1
->ts
.u
.derived
->attr
.unlimited_polymorphic
)
787 ? CLASS_DATA (s1
)->as
: s1
->as
;
788 as2
= (s2
->ts
.type
== BT_CLASS
789 && !s2
->ts
.u
.derived
->attr
.unlimited_polymorphic
)
790 ? CLASS_DATA (s2
)->as
: s2
->as
;
792 r1
= as1
? as1
->rank
: 0;
793 r2
= as2
? as2
->rank
: 0;
795 if (r1
!= r2
&& (!as2
|| as2
->type
!= AS_ASSUMED_RANK
))
796 return false; /* Ranks differ. */
802 /* Given two symbols that are formal arguments, compare their ranks
803 and types. Returns true if they have the same rank and type,
807 compare_type_rank (gfc_symbol
*s1
, gfc_symbol
*s2
)
809 return compare_type (s1
, s2
) && compare_rank (s1
, s2
);
813 /* Given two symbols that are formal arguments, compare their types
814 and rank and their formal interfaces if they are both dummy
815 procedures. Returns true if the same, false if different. */
818 compare_type_rank_if (gfc_symbol
*s1
, gfc_symbol
*s2
)
820 if (s1
== NULL
|| s2
== NULL
)
826 if (s1
->attr
.flavor
!= FL_PROCEDURE
&& s2
->attr
.flavor
!= FL_PROCEDURE
)
827 return compare_type_rank (s1
, s2
);
829 if (s1
->attr
.flavor
!= FL_PROCEDURE
|| s2
->attr
.flavor
!= FL_PROCEDURE
)
832 /* At this point, both symbols are procedures. It can happen that
833 external procedures are compared, where one is identified by usage
834 to be a function or subroutine but the other is not. Check TKR
835 nonetheless for these cases. */
836 if (s1
->attr
.function
== 0 && s1
->attr
.subroutine
== 0)
837 return s1
->attr
.external
? compare_type_rank (s1
, s2
) : false;
839 if (s2
->attr
.function
== 0 && s2
->attr
.subroutine
== 0)
840 return s2
->attr
.external
? compare_type_rank (s1
, s2
) : false;
842 /* Now the type of procedure has been identified. */
843 if (s1
->attr
.function
!= s2
->attr
.function
844 || s1
->attr
.subroutine
!= s2
->attr
.subroutine
)
847 if (s1
->attr
.function
&& !compare_type_rank (s1
, s2
))
850 /* Originally, gfortran recursed here to check the interfaces of passed
851 procedures. This is explicitly not required by the standard. */
856 /* Given a formal argument list and a keyword name, search the list
857 for that keyword. Returns the correct symbol node if found, NULL
861 find_keyword_arg (const char *name
, gfc_formal_arglist
*f
)
863 for (; f
; f
= f
->next
)
864 if (strcmp (f
->sym
->name
, name
) == 0)
871 /******** Interface checking subroutines **********/
874 /* Given an operator interface and the operator, make sure that all
875 interfaces for that operator are legal. */
878 gfc_check_operator_interface (gfc_symbol
*sym
, gfc_intrinsic_op op
,
881 gfc_formal_arglist
*formal
;
884 int args
, r1
, r2
, k1
, k2
;
889 t1
= t2
= BT_UNKNOWN
;
890 i1
= i2
= INTENT_UNKNOWN
;
894 for (formal
= gfc_sym_get_dummy_args (sym
); formal
; formal
= formal
->next
)
896 gfc_symbol
*fsym
= formal
->sym
;
899 gfc_error ("Alternate return cannot appear in operator "
900 "interface at %L", &sym
->declared_at
);
906 i1
= fsym
->attr
.intent
;
907 r1
= (fsym
->as
!= NULL
) ? fsym
->as
->rank
: 0;
913 i2
= fsym
->attr
.intent
;
914 r2
= (fsym
->as
!= NULL
) ? fsym
->as
->rank
: 0;
920 /* Only +, - and .not. can be unary operators.
921 .not. cannot be a binary operator. */
922 if (args
== 0 || args
> 2 || (args
== 1 && op
!= INTRINSIC_PLUS
923 && op
!= INTRINSIC_MINUS
924 && op
!= INTRINSIC_NOT
)
925 || (args
== 2 && op
== INTRINSIC_NOT
))
927 if (op
== INTRINSIC_ASSIGN
)
928 gfc_error ("Assignment operator interface at %L must have "
929 "two arguments", &sym
->declared_at
);
931 gfc_error ("Operator interface at %L has the wrong number of arguments",
936 /* Check that intrinsics are mapped to functions, except
937 INTRINSIC_ASSIGN which should map to a subroutine. */
938 if (op
== INTRINSIC_ASSIGN
)
940 gfc_formal_arglist
*dummy_args
;
942 if (!sym
->attr
.subroutine
)
944 gfc_error ("Assignment operator interface at %L must be "
945 "a SUBROUTINE", &sym
->declared_at
);
949 /* Allowed are (per F2003, 12.3.2.1.2 Defined assignments):
950 - First argument an array with different rank than second,
951 - First argument is a scalar and second an array,
952 - Types and kinds do not conform, or
953 - First argument is of derived type. */
954 dummy_args
= gfc_sym_get_dummy_args (sym
);
955 if (dummy_args
->sym
->ts
.type
!= BT_DERIVED
956 && dummy_args
->sym
->ts
.type
!= BT_CLASS
957 && (r2
== 0 || r1
== r2
)
958 && (dummy_args
->sym
->ts
.type
== dummy_args
->next
->sym
->ts
.type
959 || (gfc_numeric_ts (&dummy_args
->sym
->ts
)
960 && gfc_numeric_ts (&dummy_args
->next
->sym
->ts
))))
962 gfc_error ("Assignment operator interface at %L must not redefine "
963 "an INTRINSIC type assignment", &sym
->declared_at
);
969 if (!sym
->attr
.function
)
971 gfc_error ("Intrinsic operator interface at %L must be a FUNCTION",
977 /* Check intents on operator interfaces. */
978 if (op
== INTRINSIC_ASSIGN
)
980 if (i1
!= INTENT_OUT
&& i1
!= INTENT_INOUT
)
982 gfc_error ("First argument of defined assignment at %L must be "
983 "INTENT(OUT) or INTENT(INOUT)", &sym
->declared_at
);
989 gfc_error ("Second argument of defined assignment at %L must be "
990 "INTENT(IN)", &sym
->declared_at
);
998 gfc_error ("First argument of operator interface at %L must be "
999 "INTENT(IN)", &sym
->declared_at
);
1003 if (args
== 2 && i2
!= INTENT_IN
)
1005 gfc_error ("Second argument of operator interface at %L must be "
1006 "INTENT(IN)", &sym
->declared_at
);
1011 /* From now on, all we have to do is check that the operator definition
1012 doesn't conflict with an intrinsic operator. The rules for this
1013 game are defined in 7.1.2 and 7.1.3 of both F95 and F2003 standards,
1014 as well as 12.3.2.1.1 of Fortran 2003:
1016 "If the operator is an intrinsic-operator (R310), the number of
1017 function arguments shall be consistent with the intrinsic uses of
1018 that operator, and the types, kind type parameters, or ranks of the
1019 dummy arguments shall differ from those required for the intrinsic
1020 operation (7.1.2)." */
1022 #define IS_NUMERIC_TYPE(t) \
1023 ((t) == BT_INTEGER || (t) == BT_REAL || (t) == BT_COMPLEX)
1025 /* Unary ops are easy, do them first. */
1026 if (op
== INTRINSIC_NOT
)
1028 if (t1
== BT_LOGICAL
)
1034 if (args
== 1 && (op
== INTRINSIC_PLUS
|| op
== INTRINSIC_MINUS
))
1036 if (IS_NUMERIC_TYPE (t1
))
1042 /* Character intrinsic operators have same character kind, thus
1043 operator definitions with operands of different character kinds
1045 if (t1
== BT_CHARACTER
&& t2
== BT_CHARACTER
&& k1
!= k2
)
1048 /* Intrinsic operators always perform on arguments of same rank,
1049 so different ranks is also always safe. (rank == 0) is an exception
1050 to that, because all intrinsic operators are elemental. */
1051 if (r1
!= r2
&& r1
!= 0 && r2
!= 0)
1057 case INTRINSIC_EQ_OS
:
1059 case INTRINSIC_NE_OS
:
1060 if (t1
== BT_CHARACTER
&& t2
== BT_CHARACTER
)
1064 case INTRINSIC_PLUS
:
1065 case INTRINSIC_MINUS
:
1066 case INTRINSIC_TIMES
:
1067 case INTRINSIC_DIVIDE
:
1068 case INTRINSIC_POWER
:
1069 if (IS_NUMERIC_TYPE (t1
) && IS_NUMERIC_TYPE (t2
))
1074 case INTRINSIC_GT_OS
:
1076 case INTRINSIC_GE_OS
:
1078 case INTRINSIC_LT_OS
:
1080 case INTRINSIC_LE_OS
:
1081 if (t1
== BT_CHARACTER
&& t2
== BT_CHARACTER
)
1083 if ((t1
== BT_INTEGER
|| t1
== BT_REAL
)
1084 && (t2
== BT_INTEGER
|| t2
== BT_REAL
))
1088 case INTRINSIC_CONCAT
:
1089 if (t1
== BT_CHARACTER
&& t2
== BT_CHARACTER
)
1096 case INTRINSIC_NEQV
:
1097 if (t1
== BT_LOGICAL
&& t2
== BT_LOGICAL
)
1107 #undef IS_NUMERIC_TYPE
1110 gfc_error ("Operator interface at %L conflicts with intrinsic interface",
1116 /* Given a pair of formal argument lists, we see if the two lists can
1117 be distinguished by counting the number of nonoptional arguments of
1118 a given type/rank in f1 and seeing if there are less then that
1119 number of those arguments in f2 (including optional arguments).
1120 Since this test is asymmetric, it has to be called twice to make it
1121 symmetric. Returns nonzero if the argument lists are incompatible
1122 by this test. This subroutine implements rule 1 of section F03:16.2.3.
1123 'p1' and 'p2' are the PASS arguments of both procedures (if applicable). */
1126 count_types_test (gfc_formal_arglist
*f1
, gfc_formal_arglist
*f2
,
1127 const char *p1
, const char *p2
)
1129 int ac1
, ac2
, i
, j
, k
, n1
;
1130 gfc_formal_arglist
*f
;
1143 for (f
= f1
; f
; f
= f
->next
)
1146 /* Build an array of integers that gives the same integer to
1147 arguments of the same type/rank. */
1148 arg
= XCNEWVEC (arginfo
, n1
);
1151 for (i
= 0; i
< n1
; i
++, f
= f
->next
)
1154 arg
[i
].sym
= f
->sym
;
1159 for (i
= 0; i
< n1
; i
++)
1161 if (arg
[i
].flag
!= -1)
1164 if (arg
[i
].sym
&& (arg
[i
].sym
->attr
.optional
1165 || (p1
&& strcmp (arg
[i
].sym
->name
, p1
) == 0)))
1166 continue; /* Skip OPTIONAL and PASS arguments. */
1170 /* Find other non-optional, non-pass arguments of the same type/rank. */
1171 for (j
= i
+ 1; j
< n1
; j
++)
1172 if ((arg
[j
].sym
== NULL
1173 || !(arg
[j
].sym
->attr
.optional
1174 || (p1
&& strcmp (arg
[j
].sym
->name
, p1
) == 0)))
1175 && (compare_type_rank_if (arg
[i
].sym
, arg
[j
].sym
)
1176 || compare_type_rank_if (arg
[j
].sym
, arg
[i
].sym
)))
1182 /* Now loop over each distinct type found in f1. */
1186 for (i
= 0; i
< n1
; i
++)
1188 if (arg
[i
].flag
!= k
)
1192 for (j
= i
+ 1; j
< n1
; j
++)
1193 if (arg
[j
].flag
== k
)
1196 /* Count the number of non-pass arguments in f2 with that type,
1197 including those that are optional. */
1200 for (f
= f2
; f
; f
= f
->next
)
1201 if ((!p2
|| strcmp (f
->sym
->name
, p2
) != 0)
1202 && (compare_type_rank_if (arg
[i
].sym
, f
->sym
)
1203 || compare_type_rank_if (f
->sym
, arg
[i
].sym
)))
1221 /* Returns true if two dummy arguments are distinguishable due to their POINTER
1222 and ALLOCATABLE attributes according to F2018 section 15.4.3.4.5 (3).
1223 The function is asymmetric wrt to the arguments s1 and s2 and should always
1224 be called twice (with flipped arguments in the second call). */
1227 compare_ptr_alloc(gfc_symbol
*s1
, gfc_symbol
*s2
)
1229 /* Is s1 allocatable? */
1230 const bool a1
= s1
->ts
.type
== BT_CLASS
?
1231 CLASS_DATA(s1
)->attr
.allocatable
: s1
->attr
.allocatable
;
1232 /* Is s2 a pointer? */
1233 const bool p2
= s2
->ts
.type
== BT_CLASS
?
1234 CLASS_DATA(s2
)->attr
.class_pointer
: s2
->attr
.pointer
;
1235 return a1
&& p2
&& (s2
->attr
.intent
!= INTENT_IN
);
1239 /* Perform the correspondence test in rule (3) of F08:C1215.
1240 Returns zero if no argument is found that satisfies this rule,
1241 nonzero otherwise. 'p1' and 'p2' are the PASS arguments of both procedures
1244 This test is also not symmetric in f1 and f2 and must be called
1245 twice. This test finds problems caused by sorting the actual
1246 argument list with keywords. For example:
1250 INTEGER :: A ; REAL :: B
1254 INTEGER :: A ; REAL :: B
1258 At this point, 'CALL FOO(A=1, B=1.0)' is ambiguous. */
1261 generic_correspondence (gfc_formal_arglist
*f1
, gfc_formal_arglist
*f2
,
1262 const char *p1
, const char *p2
)
1264 gfc_formal_arglist
*f2_save
, *g
;
1271 if (!f1
->sym
|| f1
->sym
->attr
.optional
)
1274 if (p1
&& strcmp (f1
->sym
->name
, p1
) == 0)
1276 if (f2
&& p2
&& strcmp (f2
->sym
->name
, p2
) == 0)
1279 if (f2
!= NULL
&& (compare_type_rank (f1
->sym
, f2
->sym
)
1280 || compare_type_rank (f2
->sym
, f1
->sym
))
1281 && !((gfc_option
.allow_std
& GFC_STD_F2008
)
1282 && (compare_ptr_alloc(f1
->sym
, f2
->sym
)
1283 || compare_ptr_alloc(f2
->sym
, f1
->sym
))))
1286 /* Now search for a disambiguating keyword argument starting at
1287 the current non-match. */
1288 for (g
= f1
; g
; g
= g
->next
)
1290 if (g
->sym
->attr
.optional
|| (p1
&& strcmp (g
->sym
->name
, p1
) == 0))
1293 sym
= find_keyword_arg (g
->sym
->name
, f2_save
);
1294 if (sym
== NULL
|| !compare_type_rank (g
->sym
, sym
)
1295 || ((gfc_option
.allow_std
& GFC_STD_F2008
)
1296 && (compare_ptr_alloc(sym
, g
->sym
)
1297 || compare_ptr_alloc(g
->sym
, sym
))))
1313 symbol_rank (gfc_symbol
*sym
)
1315 gfc_array_spec
*as
= NULL
;
1317 if (sym
->ts
.type
== BT_CLASS
&& CLASS_DATA (sym
))
1318 as
= CLASS_DATA (sym
)->as
;
1322 return as
? as
->rank
: 0;
1326 /* Check if the characteristics of two dummy arguments match,
1330 gfc_check_dummy_characteristics (gfc_symbol
*s1
, gfc_symbol
*s2
,
1331 bool type_must_agree
, char *errmsg
,
1334 if (s1
== NULL
|| s2
== NULL
)
1335 return s1
== s2
? true : false;
1337 /* Check type and rank. */
1338 if (type_must_agree
)
1340 if (!compare_type_characteristics (s1
, s2
)
1341 || !compare_type_characteristics (s2
, s1
))
1343 snprintf (errmsg
, err_len
, "Type mismatch in argument '%s' (%s/%s)",
1344 s1
->name
, gfc_dummy_typename (&s1
->ts
),
1345 gfc_dummy_typename (&s2
->ts
));
1348 if (!compare_rank (s1
, s2
))
1350 snprintf (errmsg
, err_len
, "Rank mismatch in argument '%s' (%i/%i)",
1351 s1
->name
, symbol_rank (s1
), symbol_rank (s2
));
1357 if (s1
->attr
.intent
!= s2
->attr
.intent
&& !s1
->attr
.artificial
1358 && !s2
->attr
.artificial
)
1360 snprintf (errmsg
, err_len
, "INTENT mismatch in argument '%s'",
1365 /* Check OPTIONAL attribute. */
1366 if (s1
->attr
.optional
!= s2
->attr
.optional
)
1368 snprintf (errmsg
, err_len
, "OPTIONAL mismatch in argument '%s'",
1373 /* Check ALLOCATABLE attribute. */
1374 if (s1
->attr
.allocatable
!= s2
->attr
.allocatable
)
1376 snprintf (errmsg
, err_len
, "ALLOCATABLE mismatch in argument '%s'",
1381 /* Check POINTER attribute. */
1382 if (s1
->attr
.pointer
!= s2
->attr
.pointer
)
1384 snprintf (errmsg
, err_len
, "POINTER mismatch in argument '%s'",
1389 /* Check TARGET attribute. */
1390 if (s1
->attr
.target
!= s2
->attr
.target
)
1392 snprintf (errmsg
, err_len
, "TARGET mismatch in argument '%s'",
1397 /* Check ASYNCHRONOUS attribute. */
1398 if (s1
->attr
.asynchronous
!= s2
->attr
.asynchronous
)
1400 snprintf (errmsg
, err_len
, "ASYNCHRONOUS mismatch in argument '%s'",
1405 /* Check CONTIGUOUS attribute. */
1406 if (s1
->attr
.contiguous
!= s2
->attr
.contiguous
)
1408 snprintf (errmsg
, err_len
, "CONTIGUOUS mismatch in argument '%s'",
1413 /* Check VALUE attribute. */
1414 if (s1
->attr
.value
!= s2
->attr
.value
)
1416 snprintf (errmsg
, err_len
, "VALUE mismatch in argument '%s'",
1421 /* Check VOLATILE attribute. */
1422 if (s1
->attr
.volatile_
!= s2
->attr
.volatile_
)
1424 snprintf (errmsg
, err_len
, "VOLATILE mismatch in argument '%s'",
1429 /* Check interface of dummy procedures. */
1430 if (s1
->attr
.flavor
== FL_PROCEDURE
)
1433 if (!gfc_compare_interfaces (s1
, s2
, s2
->name
, 0, 1, err
, sizeof(err
),
1436 snprintf (errmsg
, err_len
, "Interface mismatch in dummy procedure "
1437 "'%s': %s", s1
->name
, err
);
1442 /* Check string length. */
1443 if (s1
->ts
.type
== BT_CHARACTER
1444 && s1
->ts
.u
.cl
&& s1
->ts
.u
.cl
->length
1445 && s2
->ts
.u
.cl
&& s2
->ts
.u
.cl
->length
)
1447 int compval
= gfc_dep_compare_expr (s1
->ts
.u
.cl
->length
,
1448 s2
->ts
.u
.cl
->length
);
1454 snprintf (errmsg
, err_len
, "Character length mismatch "
1455 "in argument '%s'", s1
->name
);
1459 /* FIXME: Implement a warning for this case.
1460 gfc_warning (0, "Possible character length mismatch in argument %qs",
1468 gfc_internal_error ("check_dummy_characteristics: Unexpected result "
1469 "%i of gfc_dep_compare_expr", compval
);
1474 /* Check array shape. */
1475 if (s1
->as
&& s2
->as
)
1478 gfc_expr
*shape1
, *shape2
;
1480 /* Sometimes the ambiguity between deferred shape and assumed shape
1481 does not get resolved in module procedures, where the only explicit
1482 declaration of the dummy is in the interface. */
1483 if (s1
->ns
->proc_name
&& s1
->ns
->proc_name
->attr
.module_procedure
1484 && s1
->as
->type
== AS_ASSUMED_SHAPE
1485 && s2
->as
->type
== AS_DEFERRED
)
1487 s2
->as
->type
= AS_ASSUMED_SHAPE
;
1488 for (i
= 0; i
< s2
->as
->rank
; i
++)
1489 if (s1
->as
->lower
[i
] != NULL
)
1490 s2
->as
->lower
[i
] = gfc_copy_expr (s1
->as
->lower
[i
]);
1493 if (s1
->as
->type
!= s2
->as
->type
)
1495 snprintf (errmsg
, err_len
, "Shape mismatch in argument '%s'",
1500 if (s1
->as
->corank
!= s2
->as
->corank
)
1502 snprintf (errmsg
, err_len
, "Corank mismatch in argument '%s' (%i/%i)",
1503 s1
->name
, s1
->as
->corank
, s2
->as
->corank
);
1507 if (s1
->as
->type
== AS_EXPLICIT
)
1508 for (i
= 0; i
< s1
->as
->rank
+ MAX (0, s1
->as
->corank
-1); i
++)
1510 shape1
= gfc_subtract (gfc_copy_expr (s1
->as
->upper
[i
]),
1511 gfc_copy_expr (s1
->as
->lower
[i
]));
1512 shape2
= gfc_subtract (gfc_copy_expr (s2
->as
->upper
[i
]),
1513 gfc_copy_expr (s2
->as
->lower
[i
]));
1514 compval
= gfc_dep_compare_expr (shape1
, shape2
);
1515 gfc_free_expr (shape1
);
1516 gfc_free_expr (shape2
);
1522 if (i
< s1
->as
->rank
)
1523 snprintf (errmsg
, err_len
, "Shape mismatch in dimension %i of"
1524 " argument '%s'", i
+ 1, s1
->name
);
1526 snprintf (errmsg
, err_len
, "Shape mismatch in codimension %i "
1527 "of argument '%s'", i
- s1
->as
->rank
+ 1, s1
->name
);
1531 /* FIXME: Implement a warning for this case.
1532 gfc_warning (0, "Possible shape mismatch in argument %qs",
1540 gfc_internal_error ("check_dummy_characteristics: Unexpected "
1541 "result %i of gfc_dep_compare_expr",
1552 /* Check if the characteristics of two function results match,
1556 gfc_check_result_characteristics (gfc_symbol
*s1
, gfc_symbol
*s2
,
1557 char *errmsg
, int err_len
)
1559 gfc_symbol
*r1
, *r2
;
1561 if (s1
->ts
.interface
&& s1
->ts
.interface
->result
)
1562 r1
= s1
->ts
.interface
->result
;
1564 r1
= s1
->result
? s1
->result
: s1
;
1566 if (s2
->ts
.interface
&& s2
->ts
.interface
->result
)
1567 r2
= s2
->ts
.interface
->result
;
1569 r2
= s2
->result
? s2
->result
: s2
;
1571 if (r1
->ts
.type
== BT_UNKNOWN
)
1574 /* Check type and rank. */
1575 if (!compare_type_characteristics (r1
, r2
))
1577 snprintf (errmsg
, err_len
, "Type mismatch in function result (%s/%s)",
1578 gfc_typename (&r1
->ts
), gfc_typename (&r2
->ts
));
1581 if (!compare_rank (r1
, r2
))
1583 snprintf (errmsg
, err_len
, "Rank mismatch in function result (%i/%i)",
1584 symbol_rank (r1
), symbol_rank (r2
));
1588 /* Check ALLOCATABLE attribute. */
1589 if (r1
->attr
.allocatable
!= r2
->attr
.allocatable
)
1591 snprintf (errmsg
, err_len
, "ALLOCATABLE attribute mismatch in "
1596 /* Check POINTER attribute. */
1597 if (r1
->attr
.pointer
!= r2
->attr
.pointer
)
1599 snprintf (errmsg
, err_len
, "POINTER attribute mismatch in "
1604 /* Check CONTIGUOUS attribute. */
1605 if (r1
->attr
.contiguous
!= r2
->attr
.contiguous
)
1607 snprintf (errmsg
, err_len
, "CONTIGUOUS attribute mismatch in "
1612 /* Check PROCEDURE POINTER attribute. */
1613 if (r1
!= s1
&& r1
->attr
.proc_pointer
!= r2
->attr
.proc_pointer
)
1615 snprintf (errmsg
, err_len
, "PROCEDURE POINTER mismatch in "
1620 /* Check string length. */
1621 if (r1
->ts
.type
== BT_CHARACTER
&& r1
->ts
.u
.cl
&& r2
->ts
.u
.cl
)
1623 if (r1
->ts
.deferred
!= r2
->ts
.deferred
)
1625 snprintf (errmsg
, err_len
, "Character length mismatch "
1626 "in function result");
1630 if (r1
->ts
.u
.cl
->length
&& r2
->ts
.u
.cl
->length
)
1632 int compval
= gfc_dep_compare_expr (r1
->ts
.u
.cl
->length
,
1633 r2
->ts
.u
.cl
->length
);
1639 snprintf (errmsg
, err_len
, "Character length mismatch "
1640 "in function result");
1644 /* FIXME: Implement a warning for this case.
1645 snprintf (errmsg, err_len, "Possible character length mismatch "
1646 "in function result");*/
1653 gfc_internal_error ("check_result_characteristics (1): Unexpected "
1654 "result %i of gfc_dep_compare_expr", compval
);
1660 /* Check array shape. */
1661 if (!r1
->attr
.allocatable
&& !r1
->attr
.pointer
&& r1
->as
&& r2
->as
)
1664 gfc_expr
*shape1
, *shape2
;
1666 if (r1
->as
->type
!= r2
->as
->type
)
1668 snprintf (errmsg
, err_len
, "Shape mismatch in function result");
1672 if (r1
->as
->type
== AS_EXPLICIT
)
1673 for (i
= 0; i
< r1
->as
->rank
+ r1
->as
->corank
; i
++)
1675 shape1
= gfc_subtract (gfc_copy_expr (r1
->as
->upper
[i
]),
1676 gfc_copy_expr (r1
->as
->lower
[i
]));
1677 shape2
= gfc_subtract (gfc_copy_expr (r2
->as
->upper
[i
]),
1678 gfc_copy_expr (r2
->as
->lower
[i
]));
1679 compval
= gfc_dep_compare_expr (shape1
, shape2
);
1680 gfc_free_expr (shape1
);
1681 gfc_free_expr (shape2
);
1687 snprintf (errmsg
, err_len
, "Shape mismatch in dimension %i of "
1688 "function result", i
+ 1);
1692 /* FIXME: Implement a warning for this case.
1693 gfc_warning (0, "Possible shape mismatch in return value");*/
1700 gfc_internal_error ("check_result_characteristics (2): "
1701 "Unexpected result %i of "
1702 "gfc_dep_compare_expr", compval
);
1712 /* 'Compare' two formal interfaces associated with a pair of symbols.
1713 We return true if there exists an actual argument list that
1714 would be ambiguous between the two interfaces, zero otherwise.
1715 'strict_flag' specifies whether all the characteristics are
1716 required to match, which is not the case for ambiguity checks.
1717 'p1' and 'p2' are the PASS arguments of both procedures (if applicable). */
1720 gfc_compare_interfaces (gfc_symbol
*s1
, gfc_symbol
*s2
, const char *name2
,
1721 int generic_flag
, int strict_flag
,
1722 char *errmsg
, int err_len
,
1723 const char *p1
, const char *p2
,
1724 bool *bad_result_characteristics
)
1726 gfc_formal_arglist
*f1
, *f2
;
1728 gcc_assert (name2
!= NULL
);
1730 if (bad_result_characteristics
)
1731 *bad_result_characteristics
= false;
1733 if (s1
->attr
.function
&& (s2
->attr
.subroutine
1734 || (!s2
->attr
.function
&& s2
->ts
.type
== BT_UNKNOWN
1735 && gfc_get_default_type (name2
, s2
->ns
)->type
== BT_UNKNOWN
)))
1738 snprintf (errmsg
, err_len
, "'%s' is not a function", name2
);
1742 if (s1
->attr
.subroutine
&& s2
->attr
.function
)
1745 snprintf (errmsg
, err_len
, "'%s' is not a subroutine", name2
);
1749 /* Do strict checks on all characteristics
1750 (for dummy procedures and procedure pointer assignments). */
1751 if (!generic_flag
&& strict_flag
)
1753 if (s1
->attr
.function
&& s2
->attr
.function
)
1755 /* If both are functions, check result characteristics. */
1756 if (!gfc_check_result_characteristics (s1
, s2
, errmsg
, err_len
)
1757 || !gfc_check_result_characteristics (s2
, s1
, errmsg
, err_len
))
1759 if (bad_result_characteristics
)
1760 *bad_result_characteristics
= true;
1765 if (s1
->attr
.pure
&& !s2
->attr
.pure
)
1767 snprintf (errmsg
, err_len
, "Mismatch in PURE attribute");
1770 if (s1
->attr
.elemental
&& !s2
->attr
.elemental
)
1772 snprintf (errmsg
, err_len
, "Mismatch in ELEMENTAL attribute");
1777 if (s1
->attr
.if_source
== IFSRC_UNKNOWN
1778 || s2
->attr
.if_source
== IFSRC_UNKNOWN
)
1781 f1
= gfc_sym_get_dummy_args (s1
);
1782 f2
= gfc_sym_get_dummy_args (s2
);
1784 /* Special case: No arguments. */
1785 if (f1
== NULL
&& f2
== NULL
)
1790 if (count_types_test (f1
, f2
, p1
, p2
)
1791 || count_types_test (f2
, f1
, p2
, p1
))
1794 /* Special case: alternate returns. If both f1->sym and f2->sym are
1795 NULL, then the leading formal arguments are alternate returns.
1796 The previous conditional should catch argument lists with
1797 different number of argument. */
1798 if (f1
&& f1
->sym
== NULL
&& f2
&& f2
->sym
== NULL
)
1801 if (generic_correspondence (f1
, f2
, p1
, p2
)
1802 || generic_correspondence (f2
, f1
, p2
, p1
))
1806 /* Perform the abbreviated correspondence test for operators (the
1807 arguments cannot be optional and are always ordered correctly).
1808 This is also done when comparing interfaces for dummy procedures and in
1809 procedure pointer assignments. */
1811 for (; f1
|| f2
; f1
= f1
->next
, f2
= f2
->next
)
1813 /* Check existence. */
1814 if (f1
== NULL
|| f2
== NULL
)
1817 snprintf (errmsg
, err_len
, "'%s' has the wrong number of "
1818 "arguments", name2
);
1824 /* Check all characteristics. */
1825 if (!gfc_check_dummy_characteristics (f1
->sym
, f2
->sym
, true,
1831 /* Operators: Only check type and rank of arguments. */
1832 if (!compare_type (f2
->sym
, f1
->sym
))
1835 snprintf (errmsg
, err_len
, "Type mismatch in argument '%s' "
1836 "(%s/%s)", f1
->sym
->name
,
1837 gfc_typename (&f1
->sym
->ts
),
1838 gfc_typename (&f2
->sym
->ts
));
1841 if (!compare_rank (f2
->sym
, f1
->sym
))
1844 snprintf (errmsg
, err_len
, "Rank mismatch in argument "
1845 "'%s' (%i/%i)", f1
->sym
->name
,
1846 symbol_rank (f1
->sym
), symbol_rank (f2
->sym
));
1849 if ((gfc_option
.allow_std
& GFC_STD_F2008
)
1850 && (compare_ptr_alloc(f1
->sym
, f2
->sym
)
1851 || compare_ptr_alloc(f2
->sym
, f1
->sym
)))
1854 snprintf (errmsg
, err_len
, "Mismatching POINTER/ALLOCATABLE "
1855 "attribute in argument '%s' ", f1
->sym
->name
);
1865 /* Given a pointer to an interface pointer, remove duplicate
1866 interfaces and make sure that all symbols are either functions
1867 or subroutines, and all of the same kind. Returns true if
1868 something goes wrong. */
1871 check_interface0 (gfc_interface
*p
, const char *interface_name
)
1873 gfc_interface
*psave
, *q
, *qlast
;
1876 for (; p
; p
= p
->next
)
1878 /* Make sure all symbols in the interface have been defined as
1879 functions or subroutines. */
1880 if (((!p
->sym
->attr
.function
&& !p
->sym
->attr
.subroutine
)
1881 || !p
->sym
->attr
.if_source
)
1882 && !gfc_fl_struct (p
->sym
->attr
.flavor
))
1885 = gfc_lookup_function_fuzzy (p
->sym
->name
, p
->sym
->ns
->sym_root
);
1887 if (p
->sym
->attr
.external
)
1889 gfc_error ("Procedure %qs in %s at %L has no explicit interface"
1890 "; did you mean %qs?",
1891 p
->sym
->name
, interface_name
, &p
->sym
->declared_at
,
1894 gfc_error ("Procedure %qs in %s at %L has no explicit interface",
1895 p
->sym
->name
, interface_name
, &p
->sym
->declared_at
);
1898 gfc_error ("Procedure %qs in %s at %L is neither function nor "
1899 "subroutine; did you mean %qs?", p
->sym
->name
,
1900 interface_name
, &p
->sym
->declared_at
, guessed
);
1902 gfc_error ("Procedure %qs in %s at %L is neither function nor "
1903 "subroutine", p
->sym
->name
, interface_name
,
1904 &p
->sym
->declared_at
);
1908 /* Verify that procedures are either all SUBROUTINEs or all FUNCTIONs. */
1909 if ((psave
->sym
->attr
.function
&& !p
->sym
->attr
.function
1910 && !gfc_fl_struct (p
->sym
->attr
.flavor
))
1911 || (psave
->sym
->attr
.subroutine
&& !p
->sym
->attr
.subroutine
))
1913 if (!gfc_fl_struct (p
->sym
->attr
.flavor
))
1914 gfc_error ("In %s at %L procedures must be either all SUBROUTINEs"
1915 " or all FUNCTIONs", interface_name
,
1916 &p
->sym
->declared_at
);
1917 else if (p
->sym
->attr
.flavor
== FL_DERIVED
)
1918 gfc_error ("In %s at %L procedures must be all FUNCTIONs as the "
1919 "generic name is also the name of a derived type",
1920 interface_name
, &p
->sym
->declared_at
);
1924 /* F2003, C1207. F2008, C1207. */
1925 if (p
->sym
->attr
.proc
== PROC_INTERNAL
1926 && !gfc_notify_std (GFC_STD_F2008
, "Internal procedure "
1927 "%qs in %s at %L", p
->sym
->name
,
1928 interface_name
, &p
->sym
->declared_at
))
1933 /* Remove duplicate interfaces in this interface list. */
1934 for (; p
; p
= p
->next
)
1938 for (q
= p
->next
; q
;)
1940 if (p
->sym
!= q
->sym
)
1947 /* Duplicate interface. */
1948 qlast
->next
= q
->next
;
1959 /* Check lists of interfaces to make sure that no two interfaces are
1960 ambiguous. Duplicate interfaces (from the same symbol) are OK here. */
1963 check_interface1 (gfc_interface
*p
, gfc_interface
*q0
,
1964 int generic_flag
, const char *interface_name
,
1968 for (; p
; p
= p
->next
)
1969 for (q
= q0
; q
; q
= q
->next
)
1971 if (p
->sym
== q
->sym
)
1972 continue; /* Duplicates OK here. */
1974 if (p
->sym
->name
== q
->sym
->name
&& p
->sym
->module
== q
->sym
->module
)
1977 if (!gfc_fl_struct (p
->sym
->attr
.flavor
)
1978 && !gfc_fl_struct (q
->sym
->attr
.flavor
)
1979 && gfc_compare_interfaces (p
->sym
, q
->sym
, q
->sym
->name
,
1980 generic_flag
, 0, NULL
, 0, NULL
, NULL
))
1983 gfc_error ("Ambiguous interfaces in %s for %qs at %L "
1984 "and %qs at %L", interface_name
,
1985 q
->sym
->name
, &q
->sym
->declared_at
,
1986 p
->sym
->name
, &p
->sym
->declared_at
);
1987 else if (!p
->sym
->attr
.use_assoc
&& q
->sym
->attr
.use_assoc
)
1988 gfc_warning (0, "Ambiguous interfaces in %s for %qs at %L "
1989 "and %qs at %L", interface_name
,
1990 q
->sym
->name
, &q
->sym
->declared_at
,
1991 p
->sym
->name
, &p
->sym
->declared_at
);
1993 gfc_warning (0, "Although not referenced, %qs has ambiguous "
1994 "interfaces at %L", interface_name
, &p
->where
);
2002 /* Check the generic and operator interfaces of symbols to make sure
2003 that none of the interfaces conflict. The check has to be done
2004 after all of the symbols are actually loaded. */
2007 check_sym_interfaces (gfc_symbol
*sym
)
2009 /* Provide sufficient space to hold "generic interface 'symbol.symbol'". */
2010 char interface_name
[2*GFC_MAX_SYMBOL_LEN
+2 + sizeof("generic interface ''")];
2013 if (sym
->ns
!= gfc_current_ns
)
2016 if (sym
->generic
!= NULL
)
2018 size_t len
= strlen (sym
->name
) + sizeof("generic interface ''");
2019 gcc_assert (len
< sizeof (interface_name
));
2020 sprintf (interface_name
, "generic interface '%s'", sym
->name
);
2021 if (check_interface0 (sym
->generic
, interface_name
))
2024 for (p
= sym
->generic
; p
; p
= p
->next
)
2026 if (p
->sym
->attr
.mod_proc
2027 && !p
->sym
->attr
.module_procedure
2028 && (p
->sym
->attr
.if_source
!= IFSRC_DECL
2029 || p
->sym
->attr
.procedure
))
2031 gfc_error ("%qs at %L is not a module procedure",
2032 p
->sym
->name
, &p
->where
);
2037 /* Originally, this test was applied to host interfaces too;
2038 this is incorrect since host associated symbols, from any
2039 source, cannot be ambiguous with local symbols. */
2040 check_interface1 (sym
->generic
, sym
->generic
, 1, interface_name
,
2041 sym
->attr
.referenced
|| !sym
->attr
.use_assoc
);
2047 check_uop_interfaces (gfc_user_op
*uop
)
2049 char interface_name
[GFC_MAX_SYMBOL_LEN
+ sizeof("operator interface ''")];
2053 sprintf (interface_name
, "operator interface '%s'", uop
->name
);
2054 if (check_interface0 (uop
->op
, interface_name
))
2057 for (ns
= gfc_current_ns
; ns
; ns
= ns
->parent
)
2059 uop2
= gfc_find_uop (uop
->name
, ns
);
2063 check_interface1 (uop
->op
, uop2
->op
, 0,
2064 interface_name
, true);
2068 /* Given an intrinsic op, return an equivalent op if one exists,
2069 or INTRINSIC_NONE otherwise. */
2072 gfc_equivalent_op (gfc_intrinsic_op op
)
2077 return INTRINSIC_EQ_OS
;
2079 case INTRINSIC_EQ_OS
:
2080 return INTRINSIC_EQ
;
2083 return INTRINSIC_NE_OS
;
2085 case INTRINSIC_NE_OS
:
2086 return INTRINSIC_NE
;
2089 return INTRINSIC_GT_OS
;
2091 case INTRINSIC_GT_OS
:
2092 return INTRINSIC_GT
;
2095 return INTRINSIC_GE_OS
;
2097 case INTRINSIC_GE_OS
:
2098 return INTRINSIC_GE
;
2101 return INTRINSIC_LT_OS
;
2103 case INTRINSIC_LT_OS
:
2104 return INTRINSIC_LT
;
2107 return INTRINSIC_LE_OS
;
2109 case INTRINSIC_LE_OS
:
2110 return INTRINSIC_LE
;
2113 return INTRINSIC_NONE
;
2117 /* For the namespace, check generic, user operator and intrinsic
2118 operator interfaces for consistency and to remove duplicate
2119 interfaces. We traverse the whole namespace, counting on the fact
2120 that most symbols will not have generic or operator interfaces. */
2123 gfc_check_interfaces (gfc_namespace
*ns
)
2125 gfc_namespace
*old_ns
, *ns2
;
2126 char interface_name
[GFC_MAX_SYMBOL_LEN
+ sizeof("intrinsic '' operator")];
2129 old_ns
= gfc_current_ns
;
2130 gfc_current_ns
= ns
;
2132 gfc_traverse_ns (ns
, check_sym_interfaces
);
2134 gfc_traverse_user_op (ns
, check_uop_interfaces
);
2136 for (i
= GFC_INTRINSIC_BEGIN
; i
!= GFC_INTRINSIC_END
; i
++)
2138 if (i
== INTRINSIC_USER
)
2141 if (i
== INTRINSIC_ASSIGN
)
2142 strcpy (interface_name
, "intrinsic assignment operator");
2144 sprintf (interface_name
, "intrinsic '%s' operator",
2145 gfc_op2string ((gfc_intrinsic_op
) i
));
2147 if (check_interface0 (ns
->op
[i
], interface_name
))
2151 gfc_check_operator_interface (ns
->op
[i
]->sym
, (gfc_intrinsic_op
) i
,
2154 for (ns2
= ns
; ns2
; ns2
= ns2
->parent
)
2156 gfc_intrinsic_op other_op
;
2158 if (check_interface1 (ns
->op
[i
], ns2
->op
[i
], 0,
2159 interface_name
, true))
2162 /* i should be gfc_intrinsic_op, but has to be int with this cast
2163 here for stupid C++ compatibility rules. */
2164 other_op
= gfc_equivalent_op ((gfc_intrinsic_op
) i
);
2165 if (other_op
!= INTRINSIC_NONE
2166 && check_interface1 (ns
->op
[i
], ns2
->op
[other_op
],
2167 0, interface_name
, true))
2173 gfc_current_ns
= old_ns
;
2177 /* Given a symbol of a formal argument list and an expression, if the
2178 formal argument is allocatable, check that the actual argument is
2179 allocatable. Returns true if compatible, zero if not compatible. */
2182 compare_allocatable (gfc_symbol
*formal
, gfc_expr
*actual
)
2184 if (formal
->attr
.allocatable
2185 || (formal
->ts
.type
== BT_CLASS
&& CLASS_DATA (formal
)->attr
.allocatable
))
2187 symbol_attribute attr
= gfc_expr_attr (actual
);
2188 if (actual
->ts
.type
== BT_CLASS
&& !attr
.class_ok
)
2190 else if (!attr
.allocatable
)
2198 /* Given a symbol of a formal argument list and an expression, if the
2199 formal argument is a pointer, see if the actual argument is a
2200 pointer. Returns nonzero if compatible, zero if not compatible. */
2203 compare_pointer (gfc_symbol
*formal
, gfc_expr
*actual
)
2205 symbol_attribute attr
;
2207 if (formal
->attr
.pointer
2208 || (formal
->ts
.type
== BT_CLASS
&& CLASS_DATA (formal
)
2209 && CLASS_DATA (formal
)->attr
.class_pointer
))
2211 attr
= gfc_expr_attr (actual
);
2213 /* Fortran 2008 allows non-pointer actual arguments. */
2214 if (!attr
.pointer
&& attr
.target
&& formal
->attr
.intent
== INTENT_IN
)
2225 /* Emit clear error messages for rank mismatch. */
2228 argument_rank_mismatch (const char *name
, locus
*where
,
2229 int rank1
, int rank2
, locus
*where_formal
)
2232 /* TS 29113, C407b. */
2233 if (where_formal
== NULL
)
2236 gfc_error ("The assumed-rank array at %L requires that the dummy "
2237 "argument %qs has assumed-rank", where
, name
);
2238 else if (rank1
== 0)
2239 gfc_error_opt (0, "Rank mismatch in argument %qs "
2240 "at %L (scalar and rank-%d)", name
, where
, rank2
);
2241 else if (rank2
== 0)
2242 gfc_error_opt (0, "Rank mismatch in argument %qs "
2243 "at %L (rank-%d and scalar)", name
, where
, rank1
);
2245 gfc_error_opt (0, "Rank mismatch in argument %qs "
2246 "at %L (rank-%d and rank-%d)", name
, where
, rank1
,
2252 /* This is an assumed rank-actual passed to a function without
2253 an explicit interface, which is already diagnosed in
2254 gfc_procedure_use. */
2257 gfc_error_opt (0, "Rank mismatch between actual argument at %L "
2258 "and actual argument at %L (scalar and rank-%d)",
2259 where
, where_formal
, rank2
);
2260 else if (rank2
== 0)
2261 gfc_error_opt (0, "Rank mismatch between actual argument at %L "
2262 "and actual argument at %L (rank-%d and scalar)",
2263 where
, where_formal
, rank1
);
2265 gfc_error_opt (0, "Rank mismatch between actual argument at %L "
2266 "and actual argument at %L (rank-%d and rank-%d)", where
,
2267 where_formal
, rank1
, rank2
);
2272 /* Under certain conditions, a scalar actual argument can be passed
2273 to an array dummy argument - see F2018, 15.5.2.4, paragraph 14.
2274 This function returns true for these conditions so that an error
2275 or warning for this can be suppressed later. Always return false
2276 for expressions with rank > 0. */
2279 maybe_dummy_array_arg (gfc_expr
*e
)
2283 bool array_pointer
= false;
2284 bool assumed_shape
= false;
2285 bool scalar_ref
= true;
2290 if (e
->ts
.type
== BT_CHARACTER
&& e
->ts
.kind
== 1)
2293 /* If this comes from a constructor, it has been an array element
2296 if (e
->expr_type
== EXPR_CONSTANT
)
2297 return e
->from_constructor
;
2299 if (e
->expr_type
!= EXPR_VARIABLE
)
2302 s
= e
->symtree
->n
.sym
;
2304 if (s
->attr
.dimension
)
2307 array_pointer
= s
->attr
.pointer
;
2310 if (s
->as
&& s
->as
->type
== AS_ASSUMED_SHAPE
)
2311 assumed_shape
= true;
2313 for (ref
=e
->ref
; ref
; ref
=ref
->next
)
2315 if (ref
->type
== REF_COMPONENT
)
2317 symbol_attribute
*attr
;
2318 attr
= &ref
->u
.c
.component
->attr
;
2319 if (attr
->dimension
)
2321 array_pointer
= attr
->pointer
;
2322 assumed_shape
= false;
2330 return !(scalar_ref
|| array_pointer
|| assumed_shape
);
2333 /* Given a symbol of a formal argument list and an expression, see if
2334 the two are compatible as arguments. Returns true if
2335 compatible, false if not compatible. */
2338 compare_parameter (gfc_symbol
*formal
, gfc_expr
*actual
,
2339 int ranks_must_agree
, int is_elemental
, locus
*where
)
2342 bool rank_check
, is_pointer
;
2345 bool codimension
= false;
2347 /* If the formal arg has type BT_VOID, it's to one of the iso_c_binding
2348 procs c_f_pointer or c_f_procpointer, and we need to accept most
2349 pointers the user could give us. This should allow that. */
2350 if (formal
->ts
.type
== BT_VOID
)
2353 if (formal
->ts
.type
== BT_DERIVED
2354 && formal
->ts
.u
.derived
&& formal
->ts
.u
.derived
->ts
.is_iso_c
2355 && actual
->ts
.type
== BT_DERIVED
2356 && actual
->ts
.u
.derived
&& actual
->ts
.u
.derived
->ts
.is_iso_c
)
2359 if (formal
->ts
.type
== BT_CLASS
&& actual
->ts
.type
== BT_DERIVED
)
2360 /* Make sure the vtab symbol is present when
2361 the module variables are generated. */
2362 gfc_find_derived_vtab (actual
->ts
.u
.derived
);
2364 if (actual
->ts
.type
== BT_PROCEDURE
)
2366 gfc_symbol
*act_sym
= actual
->symtree
->n
.sym
;
2368 if (formal
->attr
.flavor
!= FL_PROCEDURE
)
2371 gfc_error ("Invalid procedure argument at %L", &actual
->where
);
2375 if (!gfc_compare_interfaces (formal
, act_sym
, act_sym
->name
, 0, 1, err
,
2376 sizeof(err
), NULL
, NULL
))
2379 gfc_error_opt (0, "Interface mismatch in dummy procedure %qs at %L:"
2380 " %s", formal
->name
, &actual
->where
, err
);
2384 if (formal
->attr
.function
&& !act_sym
->attr
.function
)
2386 gfc_add_function (&act_sym
->attr
, act_sym
->name
,
2387 &act_sym
->declared_at
);
2388 if (act_sym
->ts
.type
== BT_UNKNOWN
2389 && !gfc_set_default_type (act_sym
, 1, act_sym
->ns
))
2392 else if (formal
->attr
.subroutine
&& !act_sym
->attr
.subroutine
)
2393 gfc_add_subroutine (&act_sym
->attr
, act_sym
->name
,
2394 &act_sym
->declared_at
);
2399 ppc
= gfc_get_proc_ptr_comp (actual
);
2400 if (ppc
&& ppc
->ts
.interface
)
2402 if (!gfc_compare_interfaces (formal
, ppc
->ts
.interface
, ppc
->name
, 0, 1,
2403 err
, sizeof(err
), NULL
, NULL
))
2406 gfc_error_opt (0, "Interface mismatch in dummy procedure %qs at %L:"
2407 " %s", formal
->name
, &actual
->where
, err
);
2413 if (formal
->attr
.pointer
&& formal
->attr
.contiguous
2414 && !gfc_is_simply_contiguous (actual
, true, false))
2417 gfc_error ("Actual argument to contiguous pointer dummy %qs at %L "
2418 "must be simply contiguous", formal
->name
, &actual
->where
);
2422 symbol_attribute actual_attr
= gfc_expr_attr (actual
);
2423 if (actual
->ts
.type
== BT_CLASS
&& !actual_attr
.class_ok
)
2426 if ((actual
->expr_type
!= EXPR_NULL
|| actual
->ts
.type
!= BT_UNKNOWN
)
2427 && actual
->ts
.type
!= BT_HOLLERITH
2428 && formal
->ts
.type
!= BT_ASSUMED
2429 && !(formal
->attr
.ext_attr
& (1 << EXT_ATTR_NO_ARG_CHECK
))
2430 && !gfc_compare_types (&formal
->ts
, &actual
->ts
)
2431 && !(formal
->ts
.type
== BT_DERIVED
&& actual
->ts
.type
== BT_CLASS
2432 && gfc_compare_derived_types (formal
->ts
.u
.derived
,
2433 CLASS_DATA (actual
)->ts
.u
.derived
)))
2437 if (formal
->attr
.artificial
)
2439 if (!flag_allow_argument_mismatch
|| !formal
->error
)
2440 gfc_error_opt (0, "Type mismatch between actual argument at %L "
2441 "and actual argument at %L (%s/%s).",
2443 &formal
->declared_at
,
2444 gfc_typename (actual
),
2445 gfc_dummy_typename (&formal
->ts
));
2450 gfc_error_opt (0, "Type mismatch in argument %qs at %L; passed %s "
2451 "to %s", formal
->name
, where
, gfc_typename (actual
),
2452 gfc_dummy_typename (&formal
->ts
));
2457 if (actual
->ts
.type
== BT_ASSUMED
&& formal
->ts
.type
!= BT_ASSUMED
)
2460 gfc_error ("Assumed-type actual argument at %L requires that dummy "
2461 "argument %qs is of assumed type", &actual
->where
,
2466 /* TS29113 C407c; F2018 C711. */
2467 if (actual
->ts
.type
== BT_ASSUMED
2468 && symbol_rank (formal
) == -1
2469 && actual
->rank
!= -1
2470 && !(actual
->symtree
->n
.sym
->as
2471 && actual
->symtree
->n
.sym
->as
->type
== AS_ASSUMED_SHAPE
))
2474 gfc_error ("Assumed-type actual argument at %L corresponding to "
2475 "assumed-rank dummy argument %qs must be "
2476 "assumed-shape or assumed-rank",
2477 &actual
->where
, formal
->name
);
2481 /* F2008, 12.5.2.5; IR F08/0073. */
2482 if (formal
->ts
.type
== BT_CLASS
&& formal
->attr
.class_ok
2483 && actual
->expr_type
!= EXPR_NULL
2484 && ((CLASS_DATA (formal
)->attr
.class_pointer
2485 && formal
->attr
.intent
!= INTENT_IN
)
2486 || CLASS_DATA (formal
)->attr
.allocatable
))
2488 if (actual
->ts
.type
!= BT_CLASS
)
2491 gfc_error ("Actual argument to %qs at %L must be polymorphic",
2492 formal
->name
, &actual
->where
);
2496 if ((!UNLIMITED_POLY (formal
) || !UNLIMITED_POLY(actual
))
2497 && !gfc_compare_derived_types (CLASS_DATA (actual
)->ts
.u
.derived
,
2498 CLASS_DATA (formal
)->ts
.u
.derived
))
2501 gfc_error ("Actual argument to %qs at %L must have the same "
2502 "declared type", formal
->name
, &actual
->where
);
2507 /* F08: 12.5.2.5 Allocatable and pointer dummy variables. However, this
2508 is necessary also for F03, so retain error for both.
2509 NOTE: Other type/kind errors pre-empt this error. Since they are F03
2510 compatible, no attempt has been made to channel to this one. */
2511 if (UNLIMITED_POLY (formal
) && !UNLIMITED_POLY (actual
)
2512 && (CLASS_DATA (formal
)->attr
.allocatable
2513 ||CLASS_DATA (formal
)->attr
.class_pointer
))
2516 gfc_error ("Actual argument to %qs at %L must be unlimited "
2517 "polymorphic since the formal argument is a "
2518 "pointer or allocatable unlimited polymorphic "
2519 "entity [F2008: 12.5.2.5]", formal
->name
,
2524 if (formal
->ts
.type
== BT_CLASS
&& formal
->attr
.class_ok
)
2525 codimension
= CLASS_DATA (formal
)->attr
.codimension
;
2527 codimension
= formal
->attr
.codimension
;
2529 if (codimension
&& !gfc_is_coarray (actual
))
2532 gfc_error ("Actual argument to %qs at %L must be a coarray",
2533 formal
->name
, &actual
->where
);
2537 if (codimension
&& formal
->attr
.allocatable
)
2539 gfc_ref
*last
= NULL
;
2541 for (ref
= actual
->ref
; ref
; ref
= ref
->next
)
2542 if (ref
->type
== REF_COMPONENT
)
2545 /* F2008, 12.5.2.6. */
2546 if ((last
&& last
->u
.c
.component
->as
->corank
!= formal
->as
->corank
)
2548 && actual
->symtree
->n
.sym
->as
->corank
!= formal
->as
->corank
))
2551 gfc_error ("Corank mismatch in argument %qs at %L (%d and %d)",
2552 formal
->name
, &actual
->where
, formal
->as
->corank
,
2553 last
? last
->u
.c
.component
->as
->corank
2554 : actual
->symtree
->n
.sym
->as
->corank
);
2561 /* F2008, 12.5.2.8 + Corrig 2 (IR F08/0048). */
2562 /* F2018, 12.5.2.8. */
2563 if (formal
->attr
.dimension
2564 && (formal
->attr
.contiguous
|| formal
->as
->type
!= AS_ASSUMED_SHAPE
)
2565 && actual_attr
.dimension
2566 && !gfc_is_simply_contiguous (actual
, true, true))
2569 gfc_error ("Actual argument to %qs at %L must be simply "
2570 "contiguous or an element of such an array",
2571 formal
->name
, &actual
->where
);
2575 /* F2008, C1303 and C1304. */
2576 if (formal
->attr
.intent
!= INTENT_INOUT
2577 && (((formal
->ts
.type
== BT_DERIVED
|| formal
->ts
.type
== BT_CLASS
)
2578 && formal
->ts
.u
.derived
->from_intmod
== INTMOD_ISO_FORTRAN_ENV
2579 && formal
->ts
.u
.derived
->intmod_sym_id
== ISOFORTRAN_LOCK_TYPE
)
2580 || formal
->attr
.lock_comp
))
2584 gfc_error ("Actual argument to non-INTENT(INOUT) dummy %qs at %L, "
2585 "which is LOCK_TYPE or has a LOCK_TYPE component",
2586 formal
->name
, &actual
->where
);
2590 /* TS18508, C702/C703. */
2591 if (formal
->attr
.intent
!= INTENT_INOUT
2592 && (((formal
->ts
.type
== BT_DERIVED
|| formal
->ts
.type
== BT_CLASS
)
2593 && formal
->ts
.u
.derived
->from_intmod
== INTMOD_ISO_FORTRAN_ENV
2594 && formal
->ts
.u
.derived
->intmod_sym_id
== ISOFORTRAN_EVENT_TYPE
)
2595 || formal
->attr
.event_comp
))
2599 gfc_error ("Actual argument to non-INTENT(INOUT) dummy %qs at %L, "
2600 "which is EVENT_TYPE or has a EVENT_TYPE component",
2601 formal
->name
, &actual
->where
);
2606 /* F2008, C1239/C1240. */
2607 if (actual
->expr_type
== EXPR_VARIABLE
2608 && (actual
->symtree
->n
.sym
->attr
.asynchronous
2609 || actual
->symtree
->n
.sym
->attr
.volatile_
)
2610 && (formal
->attr
.asynchronous
|| formal
->attr
.volatile_
)
2611 && actual
->rank
&& formal
->as
2612 && !gfc_is_simply_contiguous (actual
, true, false)
2613 && ((formal
->as
->type
!= AS_ASSUMED_SHAPE
2614 && formal
->as
->type
!= AS_ASSUMED_RANK
&& !formal
->attr
.pointer
)
2615 || formal
->attr
.contiguous
))
2618 gfc_error ("Dummy argument %qs has to be a pointer, assumed-shape or "
2619 "assumed-rank array without CONTIGUOUS attribute - as actual"
2620 " argument at %L is not simply contiguous and both are "
2621 "ASYNCHRONOUS or VOLATILE", formal
->name
, &actual
->where
);
2625 if (formal
->attr
.allocatable
&& !codimension
2626 && actual_attr
.codimension
)
2628 if (formal
->attr
.intent
== INTENT_OUT
)
2631 gfc_error ("Passing coarray at %L to allocatable, noncoarray, "
2632 "INTENT(OUT) dummy argument %qs", &actual
->where
,
2636 else if (warn_surprising
&& where
&& formal
->attr
.intent
!= INTENT_IN
)
2637 gfc_warning (OPT_Wsurprising
,
2638 "Passing coarray at %L to allocatable, noncoarray dummy "
2639 "argument %qs, which is invalid if the allocation status"
2640 " is modified", &actual
->where
, formal
->name
);
2643 /* If the rank is the same or the formal argument has assumed-rank. */
2644 if (symbol_rank (formal
) == actual
->rank
|| symbol_rank (formal
) == -1)
2647 rank_check
= where
!= NULL
&& !is_elemental
&& formal
->as
2648 && (formal
->as
->type
== AS_ASSUMED_SHAPE
2649 || formal
->as
->type
== AS_DEFERRED
)
2650 && actual
->expr_type
!= EXPR_NULL
;
2652 /* Skip rank checks for NO_ARG_CHECK. */
2653 if (formal
->attr
.ext_attr
& (1 << EXT_ATTR_NO_ARG_CHECK
))
2656 /* Scalar & coindexed, see: F2008, Section 12.5.2.4. */
2657 if (rank_check
|| ranks_must_agree
2658 || (formal
->attr
.pointer
&& actual
->expr_type
!= EXPR_NULL
)
2659 || (actual
->rank
!= 0 && !(is_elemental
|| formal
->attr
.dimension
))
2660 || (actual
->rank
== 0
2661 && ((formal
->ts
.type
== BT_CLASS
2662 && CLASS_DATA (formal
)->as
->type
== AS_ASSUMED_SHAPE
)
2663 || (formal
->ts
.type
!= BT_CLASS
2664 && formal
->as
->type
== AS_ASSUMED_SHAPE
))
2665 && actual
->expr_type
!= EXPR_NULL
)
2666 || (actual
->rank
== 0 && formal
->attr
.dimension
2667 && gfc_is_coindexed (actual
))
2668 /* Assumed-rank actual argument; F2018 C838. */
2669 || actual
->rank
== -1)
2672 && (!formal
->attr
.artificial
|| (!formal
->maybe_array
2673 && !maybe_dummy_array_arg (actual
))))
2675 locus
*where_formal
;
2676 if (formal
->attr
.artificial
)
2677 where_formal
= &formal
->declared_at
;
2679 where_formal
= NULL
;
2681 argument_rank_mismatch (formal
->name
, &actual
->where
,
2682 symbol_rank (formal
), actual
->rank
,
2687 else if (actual
->rank
!= 0 && (is_elemental
|| formal
->attr
.dimension
))
2690 /* At this point, we are considering a scalar passed to an array. This
2691 is valid (cf. F95 12.4.1.1, F2003 12.4.1.2, and F2008 12.5.2.4),
2692 - if the actual argument is (a substring of) an element of a
2693 non-assumed-shape/non-pointer/non-polymorphic array; or
2694 - (F2003) if the actual argument is of type character of default/c_char
2697 is_pointer
= actual
->expr_type
== EXPR_VARIABLE
2698 ? actual
->symtree
->n
.sym
->attr
.pointer
: false;
2700 for (ref
= actual
->ref
; ref
; ref
= ref
->next
)
2702 if (ref
->type
== REF_COMPONENT
)
2703 is_pointer
= ref
->u
.c
.component
->attr
.pointer
;
2704 else if (ref
->type
== REF_ARRAY
&& ref
->u
.ar
.type
== AR_ELEMENT
2705 && ref
->u
.ar
.dimen
> 0
2707 || (ref
->next
->type
== REF_SUBSTRING
&& !ref
->next
->next
)))
2711 if (actual
->ts
.type
== BT_CLASS
&& actual
->expr_type
!= EXPR_NULL
)
2714 gfc_error ("Polymorphic scalar passed to array dummy argument %qs "
2715 "at %L", formal
->name
, &actual
->where
);
2719 if (actual
->expr_type
!= EXPR_NULL
&& ref
&& actual
->ts
.type
!= BT_CHARACTER
2720 && (is_pointer
|| ref
->u
.ar
.as
->type
== AS_ASSUMED_SHAPE
))
2724 if (formal
->attr
.artificial
)
2725 gfc_error ("Element of assumed-shape or pointer array "
2726 "as actual argument at %L cannot correspond to "
2727 "actual argument at %L",
2728 &actual
->where
, &formal
->declared_at
);
2730 gfc_error ("Element of assumed-shape or pointer "
2731 "array passed to array dummy argument %qs at %L",
2732 formal
->name
, &actual
->where
);
2737 if (actual
->ts
.type
== BT_CHARACTER
&& actual
->expr_type
!= EXPR_NULL
2738 && (!ref
|| is_pointer
|| ref
->u
.ar
.as
->type
== AS_ASSUMED_SHAPE
))
2740 if (formal
->ts
.kind
!= 1 && (gfc_option
.allow_std
& GFC_STD_GNU
) == 0)
2743 gfc_error ("Extension: Scalar non-default-kind, non-C_CHAR-kind "
2744 "CHARACTER actual argument with array dummy argument "
2745 "%qs at %L", formal
->name
, &actual
->where
);
2749 if (where
&& (gfc_option
.allow_std
& GFC_STD_F2003
) == 0)
2751 gfc_error ("Fortran 2003: Scalar CHARACTER actual argument with "
2752 "array dummy argument %qs at %L",
2753 formal
->name
, &actual
->where
);
2757 return ((gfc_option
.allow_std
& GFC_STD_F2003
) != 0);
2760 if (ref
== NULL
&& actual
->expr_type
!= EXPR_NULL
)
2763 && (!formal
->attr
.artificial
|| (!formal
->maybe_array
2764 && !maybe_dummy_array_arg (actual
))))
2766 locus
*where_formal
;
2767 if (formal
->attr
.artificial
)
2768 where_formal
= &formal
->declared_at
;
2770 where_formal
= NULL
;
2772 argument_rank_mismatch (formal
->name
, &actual
->where
,
2773 symbol_rank (formal
), actual
->rank
,
2783 /* Returns the storage size of a symbol (formal argument) or
2784 zero if it cannot be determined. */
2786 static unsigned long
2787 get_sym_storage_size (gfc_symbol
*sym
)
2790 unsigned long strlen
, elements
;
2792 if (sym
->ts
.type
== BT_CHARACTER
)
2794 if (sym
->ts
.u
.cl
&& sym
->ts
.u
.cl
->length
2795 && sym
->ts
.u
.cl
->length
->expr_type
== EXPR_CONSTANT
)
2796 strlen
= mpz_get_ui (sym
->ts
.u
.cl
->length
->value
.integer
);
2803 if (symbol_rank (sym
) == 0)
2807 if (sym
->as
->type
!= AS_EXPLICIT
)
2809 for (i
= 0; i
< sym
->as
->rank
; i
++)
2811 if (sym
->as
->upper
[i
]->expr_type
!= EXPR_CONSTANT
2812 || sym
->as
->lower
[i
]->expr_type
!= EXPR_CONSTANT
)
2815 elements
*= mpz_get_si (sym
->as
->upper
[i
]->value
.integer
)
2816 - mpz_get_si (sym
->as
->lower
[i
]->value
.integer
) + 1L;
2819 return strlen
*elements
;
2823 /* Returns the storage size of an expression (actual argument) or
2824 zero if it cannot be determined. For an array element, it returns
2825 the remaining size as the element sequence consists of all storage
2826 units of the actual argument up to the end of the array. */
2828 static unsigned long
2829 get_expr_storage_size (gfc_expr
*e
)
2832 long int strlen
, elements
;
2833 long int substrlen
= 0;
2834 bool is_str_storage
= false;
2840 if (e
->ts
.type
== BT_CHARACTER
)
2842 if (e
->ts
.u
.cl
&& e
->ts
.u
.cl
->length
2843 && e
->ts
.u
.cl
->length
->expr_type
== EXPR_CONSTANT
)
2844 strlen
= mpz_get_si (e
->ts
.u
.cl
->length
->value
.integer
);
2845 else if (e
->expr_type
== EXPR_CONSTANT
2846 && (e
->ts
.u
.cl
== NULL
|| e
->ts
.u
.cl
->length
== NULL
))
2847 strlen
= e
->value
.character
.length
;
2852 strlen
= 1; /* Length per element. */
2854 if (e
->rank
== 0 && !e
->ref
)
2862 for (i
= 0; i
< e
->rank
; i
++)
2863 elements
*= mpz_get_si (e
->shape
[i
]);
2864 return elements
*strlen
;
2867 for (ref
= e
->ref
; ref
; ref
= ref
->next
)
2869 if (ref
->type
== REF_SUBSTRING
&& ref
->u
.ss
.start
2870 && ref
->u
.ss
.start
->expr_type
== EXPR_CONSTANT
)
2874 /* The string length is the substring length.
2875 Set now to full string length. */
2876 if (!ref
->u
.ss
.length
|| !ref
->u
.ss
.length
->length
2877 || ref
->u
.ss
.length
->length
->expr_type
!= EXPR_CONSTANT
)
2880 strlen
= mpz_get_ui (ref
->u
.ss
.length
->length
->value
.integer
);
2882 substrlen
= strlen
- mpz_get_ui (ref
->u
.ss
.start
->value
.integer
) + 1;
2886 if (ref
->type
== REF_ARRAY
&& ref
->u
.ar
.type
== AR_SECTION
)
2887 for (i
= 0; i
< ref
->u
.ar
.dimen
; i
++)
2889 long int start
, end
, stride
;
2892 if (ref
->u
.ar
.stride
[i
])
2894 if (ref
->u
.ar
.stride
[i
]->expr_type
== EXPR_CONSTANT
)
2895 stride
= mpz_get_si (ref
->u
.ar
.stride
[i
]->value
.integer
);
2900 if (ref
->u
.ar
.start
[i
])
2902 if (ref
->u
.ar
.start
[i
]->expr_type
== EXPR_CONSTANT
)
2903 start
= mpz_get_si (ref
->u
.ar
.start
[i
]->value
.integer
);
2907 else if (ref
->u
.ar
.as
->lower
[i
]
2908 && ref
->u
.ar
.as
->lower
[i
]->expr_type
== EXPR_CONSTANT
)
2909 start
= mpz_get_si (ref
->u
.ar
.as
->lower
[i
]->value
.integer
);
2913 if (ref
->u
.ar
.end
[i
])
2915 if (ref
->u
.ar
.end
[i
]->expr_type
== EXPR_CONSTANT
)
2916 end
= mpz_get_si (ref
->u
.ar
.end
[i
]->value
.integer
);
2920 else if (ref
->u
.ar
.as
->upper
[i
]
2921 && ref
->u
.ar
.as
->upper
[i
]->expr_type
== EXPR_CONSTANT
)
2922 end
= mpz_get_si (ref
->u
.ar
.as
->upper
[i
]->value
.integer
);
2926 elements
*= (end
- start
)/stride
+ 1L;
2928 else if (ref
->type
== REF_ARRAY
&& ref
->u
.ar
.type
== AR_FULL
)
2929 for (i
= 0; i
< ref
->u
.ar
.as
->rank
; i
++)
2931 if (ref
->u
.ar
.as
->lower
[i
] && ref
->u
.ar
.as
->upper
[i
]
2932 && ref
->u
.ar
.as
->lower
[i
]->expr_type
== EXPR_CONSTANT
2933 && ref
->u
.ar
.as
->lower
[i
]->ts
.type
== BT_INTEGER
2934 && ref
->u
.ar
.as
->upper
[i
]->expr_type
== EXPR_CONSTANT
2935 && ref
->u
.ar
.as
->upper
[i
]->ts
.type
== BT_INTEGER
)
2936 elements
*= mpz_get_si (ref
->u
.ar
.as
->upper
[i
]->value
.integer
)
2937 - mpz_get_si (ref
->u
.ar
.as
->lower
[i
]->value
.integer
)
2942 else if (ref
->type
== REF_ARRAY
&& ref
->u
.ar
.type
== AR_ELEMENT
2943 && e
->expr_type
== EXPR_VARIABLE
)
2945 if (ref
->u
.ar
.as
->type
== AS_ASSUMED_SHAPE
2946 || e
->symtree
->n
.sym
->attr
.pointer
)
2952 /* Determine the number of remaining elements in the element
2953 sequence for array element designators. */
2954 is_str_storage
= true;
2955 for (i
= ref
->u
.ar
.dimen
- 1; i
>= 0; i
--)
2957 if (ref
->u
.ar
.start
[i
] == NULL
2958 || ref
->u
.ar
.start
[i
]->expr_type
!= EXPR_CONSTANT
2959 || ref
->u
.ar
.as
->upper
[i
] == NULL
2960 || ref
->u
.ar
.as
->lower
[i
] == NULL
2961 || ref
->u
.ar
.as
->upper
[i
]->expr_type
!= EXPR_CONSTANT
2962 || ref
->u
.ar
.as
->lower
[i
]->expr_type
!= EXPR_CONSTANT
)
2967 * (mpz_get_si (ref
->u
.ar
.as
->upper
[i
]->value
.integer
)
2968 - mpz_get_si (ref
->u
.ar
.as
->lower
[i
]->value
.integer
)
2970 - (mpz_get_si (ref
->u
.ar
.start
[i
]->value
.integer
)
2971 - mpz_get_si (ref
->u
.ar
.as
->lower
[i
]->value
.integer
));
2974 else if (ref
->type
== REF_COMPONENT
&& ref
->u
.c
.component
->attr
.function
2975 && ref
->u
.c
.component
->attr
.proc_pointer
2976 && ref
->u
.c
.component
->attr
.dimension
)
2978 /* Array-valued procedure-pointer components. */
2979 gfc_array_spec
*as
= ref
->u
.c
.component
->as
;
2980 for (i
= 0; i
< as
->rank
; i
++)
2982 if (!as
->upper
[i
] || !as
->lower
[i
]
2983 || as
->upper
[i
]->expr_type
!= EXPR_CONSTANT
2984 || as
->lower
[i
]->expr_type
!= EXPR_CONSTANT
)
2988 * (mpz_get_si (as
->upper
[i
]->value
.integer
)
2989 - mpz_get_si (as
->lower
[i
]->value
.integer
) + 1L);
2995 return (is_str_storage
) ? substrlen
+ (elements
-1)*strlen
2998 return elements
*strlen
;
3002 /* Given an expression, check whether it is an array section
3003 which has a vector subscript. */
3006 gfc_has_vector_subscript (gfc_expr
*e
)
3011 if (e
== NULL
|| e
->rank
== 0 || e
->expr_type
!= EXPR_VARIABLE
)
3014 for (ref
= e
->ref
; ref
; ref
= ref
->next
)
3015 if (ref
->type
== REF_ARRAY
&& ref
->u
.ar
.type
== AR_SECTION
)
3016 for (i
= 0; i
< ref
->u
.ar
.dimen
; i
++)
3017 if (ref
->u
.ar
.dimen_type
[i
] == DIMEN_VECTOR
)
3025 is_procptr_result (gfc_expr
*expr
)
3027 gfc_component
*c
= gfc_get_proc_ptr_comp (expr
);
3029 return (c
->ts
.interface
&& (c
->ts
.interface
->attr
.proc_pointer
== 1));
3031 return ((expr
->symtree
->n
.sym
->result
!= expr
->symtree
->n
.sym
)
3032 && (expr
->symtree
->n
.sym
->result
->attr
.proc_pointer
== 1));
3036 /* Recursively append candidate argument ARG to CANDIDATES. Store the
3037 number of total candidates in CANDIDATES_LEN. */
3040 lookup_arg_fuzzy_find_candidates (gfc_formal_arglist
*arg
,
3042 size_t &candidates_len
)
3044 for (gfc_formal_arglist
*p
= arg
; p
&& p
->sym
; p
= p
->next
)
3045 vec_push (candidates
, candidates_len
, p
->sym
->name
);
3049 /* Lookup argument ARG fuzzily, taking names in ARGUMENTS into account. */
3052 lookup_arg_fuzzy (const char *arg
, gfc_formal_arglist
*arguments
)
3054 char **candidates
= NULL
;
3055 size_t candidates_len
= 0;
3056 lookup_arg_fuzzy_find_candidates (arguments
, candidates
, candidates_len
);
3057 return gfc_closest_fuzzy_match (arg
, candidates
);
3061 static gfc_dummy_arg
*
3062 get_nonintrinsic_dummy_arg (gfc_formal_arglist
*formal
)
3064 gfc_dummy_arg
* const dummy_arg
= gfc_get_dummy_arg ();
3066 dummy_arg
->intrinsicness
= GFC_NON_INTRINSIC_DUMMY_ARG
;
3067 dummy_arg
->u
.non_intrinsic
= formal
;
3073 /* Given formal and actual argument lists, see if they are compatible.
3074 If they are compatible, the actual argument list is sorted to
3075 correspond with the formal list, and elements for missing optional
3076 arguments are inserted. If WHERE pointer is nonnull, then we issue
3077 errors when things don't match instead of just returning the status
3081 gfc_compare_actual_formal (gfc_actual_arglist
**ap
, gfc_formal_arglist
*formal
,
3082 int ranks_must_agree
, int is_elemental
,
3083 bool in_statement_function
, locus
*where
)
3085 gfc_actual_arglist
**new_arg
, *a
, *actual
;
3086 gfc_formal_arglist
*f
;
3088 unsigned long actual_size
, formal_size
;
3089 bool full_array
= false;
3090 gfc_array_ref
*actual_arr_ref
;
3091 gfc_array_spec
*fas
, *aas
;
3092 bool pointer_dummy
, pointer_arg
, allocatable_arg
;
3098 if (actual
== NULL
&& formal
== NULL
)
3102 for (f
= formal
; f
; f
= f
->next
)
3105 new_arg
= XALLOCAVEC (gfc_actual_arglist
*, n
);
3107 for (i
= 0; i
< n
; i
++)
3114 for (a
= actual
; a
; a
= a
->next
, f
= f
->next
)
3116 if (a
->name
!= NULL
&& in_statement_function
)
3118 gfc_error ("Keyword argument %qs at %L is invalid in "
3119 "a statement function", a
->name
, &a
->expr
->where
);
3123 /* Look for keywords but ignore g77 extensions like %VAL. */
3124 if (a
->name
!= NULL
&& a
->name
[0] != '%')
3127 for (f
= formal
; f
; f
= f
->next
, i
++)
3131 if (strcmp (f
->sym
->name
, a
->name
) == 0)
3139 const char *guessed
= lookup_arg_fuzzy (a
->name
, formal
);
3141 gfc_error ("Keyword argument %qs at %L is not in "
3142 "the procedure; did you mean %qs?",
3143 a
->name
, &a
->expr
->where
, guessed
);
3145 gfc_error ("Keyword argument %qs at %L is not in "
3146 "the procedure", a
->name
, &a
->expr
->where
);
3151 if (new_arg
[i
] != NULL
)
3154 gfc_error ("Keyword argument %qs at %L is already associated "
3155 "with another actual argument", a
->name
,
3164 gfc_error ("More actual than formal arguments in procedure "
3165 "call at %L", where
);
3169 if (f
->sym
== NULL
&& a
->expr
== NULL
)
3174 /* These errors have to be issued, otherwise an ICE can occur.
3177 gfc_error_now ("Missing alternate return specifier in subroutine "
3178 "call at %L", where
);
3182 a
->associated_dummy
= get_nonintrinsic_dummy_arg (f
);
3184 if (a
->expr
== NULL
)
3186 if (f
->sym
->attr
.optional
)
3191 gfc_error_now ("Unexpected alternate return specifier in "
3192 "subroutine call at %L", where
);
3197 /* Make sure that intrinsic vtables exist for calls to unlimited
3198 polymorphic formal arguments. */
3199 if (UNLIMITED_POLY (f
->sym
)
3200 && a
->expr
->ts
.type
!= BT_DERIVED
3201 && a
->expr
->ts
.type
!= BT_CLASS
3202 && a
->expr
->ts
.type
!= BT_ASSUMED
)
3203 gfc_find_vtab (&a
->expr
->ts
);
3205 if (a
->expr
->expr_type
== EXPR_NULL
3206 && ((f
->sym
->ts
.type
!= BT_CLASS
&& !f
->sym
->attr
.pointer
3207 && (f
->sym
->attr
.allocatable
|| !f
->sym
->attr
.optional
3208 || (gfc_option
.allow_std
& GFC_STD_F2008
) == 0))
3209 || (f
->sym
->ts
.type
== BT_CLASS
3210 && !CLASS_DATA (f
->sym
)->attr
.class_pointer
3211 && (CLASS_DATA (f
->sym
)->attr
.allocatable
3212 || !f
->sym
->attr
.optional
3213 || (gfc_option
.allow_std
& GFC_STD_F2008
) == 0))))
3216 && (!f
->sym
->attr
.optional
3217 || (f
->sym
->ts
.type
!= BT_CLASS
&& f
->sym
->attr
.allocatable
)
3218 || (f
->sym
->ts
.type
== BT_CLASS
3219 && CLASS_DATA (f
->sym
)->attr
.allocatable
)))
3220 gfc_error ("Unexpected NULL() intrinsic at %L to dummy %qs",
3221 where
, f
->sym
->name
);
3223 gfc_error ("Fortran 2008: Null pointer at %L to non-pointer "
3224 "dummy %qs", where
, f
->sym
->name
);
3229 if (!compare_parameter (f
->sym
, a
->expr
, ranks_must_agree
,
3230 is_elemental
, where
))
3236 /* TS 29113, 6.3p2; F2018 15.5.2.4. */
3237 if (f
->sym
->ts
.type
== BT_ASSUMED
3238 && (a
->expr
->ts
.type
== BT_DERIVED
3239 || (a
->expr
->ts
.type
== BT_CLASS
&& CLASS_DATA (a
->expr
))))
3241 gfc_symbol
*derived
= (a
->expr
->ts
.type
== BT_DERIVED
3242 ? a
->expr
->ts
.u
.derived
3243 : CLASS_DATA (a
->expr
)->ts
.u
.derived
);
3244 gfc_namespace
*f2k_derived
= derived
->f2k_derived
;
3245 if (derived
->attr
.pdt_type
3247 && (f2k_derived
->finalizers
|| f2k_derived
->tb_sym_root
)))
3249 gfc_error ("Actual argument at %L to assumed-type dummy "
3250 "has type parameters or is of "
3251 "derived type with type-bound or FINAL procedures",
3258 /* Special case for character arguments. For allocatable, pointer
3259 and assumed-shape dummies, the string length needs to match
3261 if (a
->expr
->ts
.type
== BT_CHARACTER
3262 && a
->expr
->ts
.u
.cl
&& a
->expr
->ts
.u
.cl
->length
3263 && a
->expr
->ts
.u
.cl
->length
->expr_type
== EXPR_CONSTANT
3264 && f
->sym
->ts
.type
== BT_CHARACTER
&& f
->sym
->ts
.u
.cl
3265 && f
->sym
->ts
.u
.cl
->length
3266 && f
->sym
->ts
.u
.cl
->length
->expr_type
== EXPR_CONSTANT
3267 && (f
->sym
->attr
.pointer
|| f
->sym
->attr
.allocatable
3268 || (f
->sym
->as
&& f
->sym
->as
->type
== AS_ASSUMED_SHAPE
))
3269 && (mpz_cmp (a
->expr
->ts
.u
.cl
->length
->value
.integer
,
3270 f
->sym
->ts
.u
.cl
->length
->value
.integer
) != 0))
3272 if (where
&& (f
->sym
->attr
.pointer
|| f
->sym
->attr
.allocatable
))
3273 gfc_warning (0, "Character length mismatch (%ld/%ld) between actual "
3274 "argument and pointer or allocatable dummy argument "
3276 mpz_get_si (a
->expr
->ts
.u
.cl
->length
->value
.integer
),
3277 mpz_get_si (f
->sym
->ts
.u
.cl
->length
->value
.integer
),
3278 f
->sym
->name
, &a
->expr
->where
);
3280 gfc_warning (0, "Character length mismatch (%ld/%ld) between actual "
3281 "argument and assumed-shape dummy argument %qs "
3283 mpz_get_si (a
->expr
->ts
.u
.cl
->length
->value
.integer
),
3284 mpz_get_si (f
->sym
->ts
.u
.cl
->length
->value
.integer
),
3285 f
->sym
->name
, &a
->expr
->where
);
3290 if ((f
->sym
->attr
.pointer
|| f
->sym
->attr
.allocatable
)
3291 && f
->sym
->ts
.deferred
!= a
->expr
->ts
.deferred
3292 && a
->expr
->ts
.type
== BT_CHARACTER
)
3295 gfc_error ("Actual argument at %L to allocatable or "
3296 "pointer dummy argument %qs must have a deferred "
3297 "length type parameter if and only if the dummy has one",
3298 &a
->expr
->where
, f
->sym
->name
);
3303 if (f
->sym
->ts
.type
== BT_CLASS
)
3304 goto skip_size_check
;
3306 actual_size
= get_expr_storage_size (a
->expr
);
3307 formal_size
= get_sym_storage_size (f
->sym
);
3308 if (actual_size
!= 0 && actual_size
< formal_size
3309 && a
->expr
->ts
.type
!= BT_PROCEDURE
3310 && f
->sym
->attr
.flavor
!= FL_PROCEDURE
)
3312 if (a
->expr
->ts
.type
== BT_CHARACTER
&& !f
->sym
->as
&& where
)
3314 gfc_warning (0, "Character length of actual argument shorter "
3315 "than of dummy argument %qs (%lu/%lu) at %L",
3316 f
->sym
->name
, actual_size
, formal_size
,
3318 goto skip_size_check
;
3322 /* Emit a warning for -std=legacy and an error otherwise. */
3323 if (gfc_option
.warn_std
== 0)
3324 gfc_warning (0, "Actual argument contains too few "
3325 "elements for dummy argument %qs (%lu/%lu) "
3326 "at %L", f
->sym
->name
, actual_size
,
3327 formal_size
, &a
->expr
->where
);
3329 gfc_error_now ("Actual argument contains too few "
3330 "elements for dummy argument %qs (%lu/%lu) "
3331 "at %L", f
->sym
->name
, actual_size
,
3332 formal_size
, &a
->expr
->where
);
3340 /* Satisfy F03:12.4.1.3 by ensuring that a procedure pointer actual
3341 argument is provided for a procedure pointer formal argument. */
3342 if (f
->sym
->attr
.proc_pointer
3343 && !((a
->expr
->expr_type
== EXPR_VARIABLE
3344 && (a
->expr
->symtree
->n
.sym
->attr
.proc_pointer
3345 || gfc_is_proc_ptr_comp (a
->expr
)))
3346 || (a
->expr
->expr_type
== EXPR_FUNCTION
3347 && is_procptr_result (a
->expr
))))
3350 gfc_error ("Expected a procedure pointer for argument %qs at %L",
3351 f
->sym
->name
, &a
->expr
->where
);
3356 /* Satisfy F03:12.4.1.3 by ensuring that a procedure actual argument is
3357 provided for a procedure formal argument. */
3358 if (f
->sym
->attr
.flavor
== FL_PROCEDURE
3359 && !((a
->expr
->expr_type
== EXPR_VARIABLE
3360 && (a
->expr
->symtree
->n
.sym
->attr
.flavor
== FL_PROCEDURE
3361 || a
->expr
->symtree
->n
.sym
->attr
.proc_pointer
3362 || gfc_is_proc_ptr_comp (a
->expr
)))
3363 || (a
->expr
->expr_type
== EXPR_FUNCTION
3364 && is_procptr_result (a
->expr
))))
3367 gfc_error ("Expected a procedure for argument %qs at %L",
3368 f
->sym
->name
, &a
->expr
->where
);
3373 /* Class array variables and expressions store array info in a
3374 different place from non-class objects; consolidate the logic
3375 to access it here instead of repeating it below. Note that
3376 pointer_arg and allocatable_arg are not fully general and are
3377 only used in a specific situation below with an assumed-rank
3379 if (f
->sym
->ts
.type
== BT_CLASS
&& CLASS_DATA (f
->sym
))
3381 gfc_component
*classdata
= CLASS_DATA (f
->sym
);
3382 fas
= classdata
->as
;
3383 pointer_dummy
= classdata
->attr
.class_pointer
;
3388 pointer_dummy
= f
->sym
->attr
.pointer
;
3391 if (a
->expr
->expr_type
!= EXPR_VARIABLE
)
3394 pointer_arg
= false;
3395 allocatable_arg
= false;
3397 else if (a
->expr
->ts
.type
== BT_CLASS
3398 && a
->expr
->symtree
->n
.sym
3399 && CLASS_DATA (a
->expr
->symtree
->n
.sym
))
3401 gfc_component
*classdata
= CLASS_DATA (a
->expr
->symtree
->n
.sym
);
3402 aas
= classdata
->as
;
3403 pointer_arg
= classdata
->attr
.class_pointer
;
3404 allocatable_arg
= classdata
->attr
.allocatable
;
3408 aas
= a
->expr
->symtree
->n
.sym
->as
;
3409 pointer_arg
= a
->expr
->symtree
->n
.sym
->attr
.pointer
;
3410 allocatable_arg
= a
->expr
->symtree
->n
.sym
->attr
.allocatable
;
3413 /* F2018:9.5.2(2) permits assumed-size whole array expressions as
3414 actual arguments only if the shape is not required; thus it
3415 cannot be passed to an assumed-shape array dummy.
3416 F2018:15.5.2.(2) permits passing a nonpointer actual to an
3417 intent(in) pointer dummy argument and this is accepted by
3418 the compare_pointer check below, but this also requires shape
3420 There's more discussion of this in PR94110. */
3422 && (fas
->type
== AS_ASSUMED_SHAPE
3423 || fas
->type
== AS_DEFERRED
3424 || (fas
->type
== AS_ASSUMED_RANK
&& pointer_dummy
))
3426 && aas
->type
== AS_ASSUMED_SIZE
3427 && (a
->expr
->ref
== NULL
3428 || (a
->expr
->ref
->type
== REF_ARRAY
3429 && a
->expr
->ref
->u
.ar
.type
== AR_FULL
)))
3432 gfc_error ("Actual argument for %qs cannot be an assumed-size"
3433 " array at %L", f
->sym
->name
, where
);
3438 /* Diagnose F2018 C839 (TS29113 C535c). Here the problem is
3439 passing an assumed-size array to an INTENT(OUT) assumed-rank
3440 dummy when it doesn't have the size information needed to run
3441 initializers and finalizers. */
3442 if (f
->sym
->attr
.intent
== INTENT_OUT
3444 && fas
->type
== AS_ASSUMED_RANK
3446 && ((aas
->type
== AS_ASSUMED_SIZE
3447 && (a
->expr
->ref
== NULL
3448 || (a
->expr
->ref
->type
== REF_ARRAY
3449 && a
->expr
->ref
->u
.ar
.type
== AR_FULL
)))
3450 || (aas
->type
== AS_ASSUMED_RANK
3452 && !allocatable_arg
))
3453 && (a
->expr
->ts
.type
== BT_CLASS
3454 || (a
->expr
->ts
.type
== BT_DERIVED
3455 && (gfc_is_finalizable (a
->expr
->ts
.u
.derived
, NULL
)
3456 || gfc_has_ultimate_allocatable (a
->expr
)
3457 || gfc_has_default_initializer
3458 (a
->expr
->ts
.u
.derived
)))))
3461 gfc_error ("Actual argument to assumed-rank INTENT(OUT) "
3462 "dummy %qs at %L cannot be of unknown size",
3463 f
->sym
->name
, where
);
3468 if (a
->expr
->expr_type
!= EXPR_NULL
3469 && compare_pointer (f
->sym
, a
->expr
) == 0)
3472 gfc_error ("Actual argument for %qs must be a pointer at %L",
3473 f
->sym
->name
, &a
->expr
->where
);
3478 if (a
->expr
->expr_type
!= EXPR_NULL
3479 && (gfc_option
.allow_std
& GFC_STD_F2008
) == 0
3480 && compare_pointer (f
->sym
, a
->expr
) == 2)
3483 gfc_error ("Fortran 2008: Non-pointer actual argument at %L to "
3484 "pointer dummy %qs", &a
->expr
->where
,f
->sym
->name
);
3490 /* Fortran 2008, C1242. */
3491 if (f
->sym
->attr
.pointer
&& gfc_is_coindexed (a
->expr
))
3494 gfc_error ("Coindexed actual argument at %L to pointer "
3496 &a
->expr
->where
, f
->sym
->name
);
3501 /* Fortran 2008, 12.5.2.5 (no constraint). */
3502 if (a
->expr
->expr_type
== EXPR_VARIABLE
3503 && f
->sym
->attr
.intent
!= INTENT_IN
3504 && f
->sym
->attr
.allocatable
3505 && gfc_is_coindexed (a
->expr
))
3508 gfc_error ("Coindexed actual argument at %L to allocatable "
3509 "dummy %qs requires INTENT(IN)",
3510 &a
->expr
->where
, f
->sym
->name
);
3515 /* Fortran 2008, C1237. */
3516 if (a
->expr
->expr_type
== EXPR_VARIABLE
3517 && (f
->sym
->attr
.asynchronous
|| f
->sym
->attr
.volatile_
)
3518 && gfc_is_coindexed (a
->expr
)
3519 && (a
->expr
->symtree
->n
.sym
->attr
.volatile_
3520 || a
->expr
->symtree
->n
.sym
->attr
.asynchronous
))
3523 gfc_error ("Coindexed ASYNCHRONOUS or VOLATILE actual argument at "
3524 "%L requires that dummy %qs has neither "
3525 "ASYNCHRONOUS nor VOLATILE", &a
->expr
->where
,
3531 /* Fortran 2008, 12.5.2.4 (no constraint). */
3532 if (a
->expr
->expr_type
== EXPR_VARIABLE
3533 && f
->sym
->attr
.intent
!= INTENT_IN
&& !f
->sym
->attr
.value
3534 && gfc_is_coindexed (a
->expr
)
3535 && gfc_has_ultimate_allocatable (a
->expr
))
3538 gfc_error ("Coindexed actual argument at %L with allocatable "
3539 "ultimate component to dummy %qs requires either VALUE "
3540 "or INTENT(IN)", &a
->expr
->where
, f
->sym
->name
);
3545 if (f
->sym
->ts
.type
== BT_CLASS
3546 && CLASS_DATA (f
->sym
)->attr
.allocatable
3547 && gfc_is_class_array_ref (a
->expr
, &full_array
)
3551 gfc_error ("Actual CLASS array argument for %qs must be a full "
3552 "array at %L", f
->sym
->name
, &a
->expr
->where
);
3558 if (a
->expr
->expr_type
!= EXPR_NULL
3559 && !compare_allocatable (f
->sym
, a
->expr
))
3562 gfc_error ("Actual argument for %qs must be ALLOCATABLE at %L",
3563 f
->sym
->name
, &a
->expr
->where
);
3568 /* Check intent = OUT/INOUT for definable actual argument. */
3569 if (!in_statement_function
3570 && (f
->sym
->attr
.intent
== INTENT_OUT
3571 || f
->sym
->attr
.intent
== INTENT_INOUT
))
3573 const char* context
= (where
3574 ? _("actual argument to INTENT = OUT/INOUT")
3577 if (((f
->sym
->ts
.type
== BT_CLASS
&& f
->sym
->attr
.class_ok
3578 && CLASS_DATA (f
->sym
)->attr
.class_pointer
)
3579 || (f
->sym
->ts
.type
!= BT_CLASS
&& f
->sym
->attr
.pointer
))
3580 && !gfc_check_vardef_context (a
->expr
, true, false, false, context
))
3585 if (!gfc_check_vardef_context (a
->expr
, false, false, false, context
))
3592 if ((f
->sym
->attr
.intent
== INTENT_OUT
3593 || f
->sym
->attr
.intent
== INTENT_INOUT
3594 || f
->sym
->attr
.volatile_
3595 || f
->sym
->attr
.asynchronous
)
3596 && gfc_has_vector_subscript (a
->expr
))
3599 gfc_error ("Array-section actual argument with vector "
3600 "subscripts at %L is incompatible with INTENT(OUT), "
3601 "INTENT(INOUT), VOLATILE or ASYNCHRONOUS attribute "
3602 "of the dummy argument %qs",
3603 &a
->expr
->where
, f
->sym
->name
);
3608 /* C1232 (R1221) For an actual argument which is an array section or
3609 an assumed-shape array, the dummy argument shall be an assumed-
3610 shape array, if the dummy argument has the VOLATILE attribute. */
3612 if (f
->sym
->attr
.volatile_
3613 && a
->expr
->expr_type
== EXPR_VARIABLE
3614 && a
->expr
->symtree
->n
.sym
->as
3615 && a
->expr
->symtree
->n
.sym
->as
->type
== AS_ASSUMED_SHAPE
3616 && !(fas
&& fas
->type
== AS_ASSUMED_SHAPE
))
3619 gfc_error ("Assumed-shape actual argument at %L is "
3620 "incompatible with the non-assumed-shape "
3621 "dummy argument %qs due to VOLATILE attribute",
3622 &a
->expr
->where
,f
->sym
->name
);
3627 /* Find the last array_ref. */
3628 actual_arr_ref
= NULL
;
3630 actual_arr_ref
= gfc_find_array_ref (a
->expr
, true);
3632 if (f
->sym
->attr
.volatile_
3633 && actual_arr_ref
&& actual_arr_ref
->type
== AR_SECTION
3634 && !(fas
&& fas
->type
== AS_ASSUMED_SHAPE
))
3637 gfc_error ("Array-section actual argument at %L is "
3638 "incompatible with the non-assumed-shape "
3639 "dummy argument %qs due to VOLATILE attribute",
3640 &a
->expr
->where
, f
->sym
->name
);
3645 /* C1233 (R1221) For an actual argument which is a pointer array, the
3646 dummy argument shall be an assumed-shape or pointer array, if the
3647 dummy argument has the VOLATILE attribute. */
3649 if (f
->sym
->attr
.volatile_
3650 && a
->expr
->expr_type
== EXPR_VARIABLE
3651 && a
->expr
->symtree
->n
.sym
->attr
.pointer
3652 && a
->expr
->symtree
->n
.sym
->as
3654 && (fas
->type
== AS_ASSUMED_SHAPE
3655 || f
->sym
->attr
.pointer
)))
3658 gfc_error ("Pointer-array actual argument at %L requires "
3659 "an assumed-shape or pointer-array dummy "
3660 "argument %qs due to VOLATILE attribute",
3661 &a
->expr
->where
,f
->sym
->name
);
3673 /* Give up now if we saw any bad argument. */
3677 /* Make sure missing actual arguments are optional. */
3679 for (f
= formal
; f
; f
= f
->next
, i
++)
3681 if (new_arg
[i
] != NULL
)
3686 gfc_error ("Missing alternate return spec in subroutine call "
3690 /* For CLASS, the optional attribute might be set at either location. */
3691 if (((f
->sym
->ts
.type
!= BT_CLASS
|| !CLASS_DATA (f
->sym
)->attr
.optional
)
3692 && !f
->sym
->attr
.optional
)
3693 || (in_statement_function
3694 && (f
->sym
->attr
.optional
3695 || (f
->sym
->ts
.type
== BT_CLASS
3696 && CLASS_DATA (f
->sym
)->attr
.optional
))))
3699 gfc_error ("Missing actual argument for argument %qs at %L",
3700 f
->sym
->name
, where
);
3705 /* We should have handled the cases where the formal arglist is null
3709 /* The argument lists are compatible. We now relink a new actual
3710 argument list with null arguments in the right places. The head
3711 of the list remains the head. */
3712 for (f
= formal
, i
= 0; f
; f
= f
->next
, i
++)
3713 if (new_arg
[i
] == NULL
)
3715 new_arg
[i
] = gfc_get_actual_arglist ();
3716 new_arg
[i
]->associated_dummy
= get_nonintrinsic_dummy_arg (f
);
3721 std::swap (*new_arg
[0], *actual
);
3722 std::swap (new_arg
[0], new_arg
[na
]);
3725 for (i
= 0; i
< n
- 1; i
++)
3726 new_arg
[i
]->next
= new_arg
[i
+ 1];
3728 new_arg
[i
]->next
= NULL
;
3730 if (*ap
== NULL
&& n
> 0)
3739 gfc_formal_arglist
*f
;
3740 gfc_actual_arglist
*a
;
3744 /* qsort comparison function for argument pairs, with the following
3746 - p->a->expr == NULL
3747 - p->a->expr->expr_type != EXPR_VARIABLE
3748 - by gfc_symbol pointer value (larger first). */
3751 pair_cmp (const void *p1
, const void *p2
)
3753 const gfc_actual_arglist
*a1
, *a2
;
3755 /* *p1 and *p2 are elements of the to-be-sorted array. */
3756 a1
= ((const argpair
*) p1
)->a
;
3757 a2
= ((const argpair
*) p2
)->a
;
3766 if (a1
->expr
->expr_type
!= EXPR_VARIABLE
)
3768 if (a2
->expr
->expr_type
!= EXPR_VARIABLE
)
3772 if (a2
->expr
->expr_type
!= EXPR_VARIABLE
)
3774 if (a1
->expr
->symtree
->n
.sym
> a2
->expr
->symtree
->n
.sym
)
3776 return a1
->expr
->symtree
->n
.sym
< a2
->expr
->symtree
->n
.sym
;
3780 /* Given two expressions from some actual arguments, test whether they
3781 refer to the same expression. The analysis is conservative.
3782 Returning false will produce no warning. */
3785 compare_actual_expr (gfc_expr
*e1
, gfc_expr
*e2
)
3787 const gfc_ref
*r1
, *r2
;
3790 || e1
->expr_type
!= EXPR_VARIABLE
3791 || e2
->expr_type
!= EXPR_VARIABLE
3792 || e1
->symtree
->n
.sym
!= e2
->symtree
->n
.sym
)
3795 /* TODO: improve comparison, see expr.cc:show_ref(). */
3796 for (r1
= e1
->ref
, r2
= e2
->ref
; r1
&& r2
; r1
= r1
->next
, r2
= r2
->next
)
3798 if (r1
->type
!= r2
->type
)
3803 if (r1
->u
.ar
.type
!= r2
->u
.ar
.type
)
3805 /* TODO: At the moment, consider only full arrays;
3806 we could do better. */
3807 if (r1
->u
.ar
.type
!= AR_FULL
|| r2
->u
.ar
.type
!= AR_FULL
)
3812 if (r1
->u
.c
.component
!= r2
->u
.c
.component
)
3820 if (e1
->symtree
->n
.sym
->ts
.type
== BT_COMPLEX
3821 && e1
->ts
.type
== BT_REAL
&& e2
->ts
.type
== BT_REAL
3822 && r1
->u
.i
!= r2
->u
.i
)
3827 gfc_internal_error ("compare_actual_expr(): Bad component code");
3836 /* Given formal and actual argument lists that correspond to one
3837 another, check that identical actual arguments aren't not
3838 associated with some incompatible INTENTs. */
3841 check_some_aliasing (gfc_formal_arglist
*f
, gfc_actual_arglist
*a
)
3843 sym_intent f1_intent
, f2_intent
;
3844 gfc_formal_arglist
*f1
;
3845 gfc_actual_arglist
*a1
;
3851 for (f1
= f
, a1
= a
;; f1
= f1
->next
, a1
= a1
->next
)
3853 if (f1
== NULL
&& a1
== NULL
)
3855 if (f1
== NULL
|| a1
== NULL
)
3856 gfc_internal_error ("check_some_aliasing(): List mismatch");
3861 p
= XALLOCAVEC (argpair
, n
);
3863 for (i
= 0, f1
= f
, a1
= a
; i
< n
; i
++, f1
= f1
->next
, a1
= a1
->next
)
3869 qsort (p
, n
, sizeof (argpair
), pair_cmp
);
3871 for (i
= 0; i
< n
; i
++)
3874 || p
[i
].a
->expr
->expr_type
!= EXPR_VARIABLE
3875 || p
[i
].a
->expr
->ts
.type
== BT_PROCEDURE
)
3877 f1_intent
= p
[i
].f
->sym
->attr
.intent
;
3878 for (j
= i
+ 1; j
< n
; j
++)
3880 /* Expected order after the sort. */
3881 if (!p
[j
].a
->expr
|| p
[j
].a
->expr
->expr_type
!= EXPR_VARIABLE
)
3882 gfc_internal_error ("check_some_aliasing(): corrupted data");
3884 /* Are the expression the same? */
3885 if (!compare_actual_expr (p
[i
].a
->expr
, p
[j
].a
->expr
))
3887 f2_intent
= p
[j
].f
->sym
->attr
.intent
;
3888 if ((f1_intent
== INTENT_IN
&& f2_intent
== INTENT_OUT
)
3889 || (f1_intent
== INTENT_OUT
&& f2_intent
== INTENT_IN
)
3890 || (f1_intent
== INTENT_OUT
&& f2_intent
== INTENT_OUT
))
3892 gfc_warning (0, "Same actual argument associated with INTENT(%s) "
3893 "argument %qs and INTENT(%s) argument %qs at %L",
3894 gfc_intent_string (f1_intent
), p
[i
].f
->sym
->name
,
3895 gfc_intent_string (f2_intent
), p
[j
].f
->sym
->name
,
3896 &p
[i
].a
->expr
->where
);
3906 /* Given formal and actual argument lists that correspond to one
3907 another, check that they are compatible in the sense that intents
3908 are not mismatched. */
3911 check_intents (gfc_formal_arglist
*f
, gfc_actual_arglist
*a
)
3913 sym_intent f_intent
;
3915 for (;; f
= f
->next
, a
= a
->next
)
3919 if (f
== NULL
&& a
== NULL
)
3921 if (f
== NULL
|| a
== NULL
)
3922 gfc_internal_error ("check_intents(): List mismatch");
3924 if (a
->expr
&& a
->expr
->expr_type
== EXPR_FUNCTION
3925 && a
->expr
->value
.function
.isym
3926 && a
->expr
->value
.function
.isym
->id
== GFC_ISYM_CAF_GET
)
3927 expr
= a
->expr
->value
.function
.actual
->expr
;
3931 if (expr
== NULL
|| expr
->expr_type
!= EXPR_VARIABLE
)
3934 f_intent
= f
->sym
->attr
.intent
;
3936 if (gfc_pure (NULL
) && gfc_impure_variable (expr
->symtree
->n
.sym
))
3938 if ((f
->sym
->ts
.type
== BT_CLASS
&& f
->sym
->attr
.class_ok
3939 && CLASS_DATA (f
->sym
)->attr
.class_pointer
)
3940 || (f
->sym
->ts
.type
!= BT_CLASS
&& f
->sym
->attr
.pointer
))
3942 gfc_error ("Procedure argument at %L is local to a PURE "
3943 "procedure and has the POINTER attribute",
3949 /* Fortran 2008, C1283. */
3950 if (gfc_pure (NULL
) && gfc_is_coindexed (expr
))
3952 if (f_intent
== INTENT_INOUT
|| f_intent
== INTENT_OUT
)
3954 gfc_error ("Coindexed actual argument at %L in PURE procedure "
3955 "is passed to an INTENT(%s) argument",
3956 &expr
->where
, gfc_intent_string (f_intent
));
3960 if ((f
->sym
->ts
.type
== BT_CLASS
&& f
->sym
->attr
.class_ok
3961 && CLASS_DATA (f
->sym
)->attr
.class_pointer
)
3962 || (f
->sym
->ts
.type
!= BT_CLASS
&& f
->sym
->attr
.pointer
))
3964 gfc_error ("Coindexed actual argument at %L in PURE procedure "
3965 "is passed to a POINTER dummy argument",
3971 /* F2008, Section 12.5.2.4. */
3972 if (expr
->ts
.type
== BT_CLASS
&& f
->sym
->ts
.type
== BT_CLASS
3973 && gfc_is_coindexed (expr
))
3975 gfc_error ("Coindexed polymorphic actual argument at %L is passed "
3976 "polymorphic dummy argument %qs",
3977 &expr
->where
, f
->sym
->name
);
3986 /* Check how a procedure is used against its interface. If all goes
3987 well, the actual argument list will also end up being properly
3991 gfc_procedure_use (gfc_symbol
*sym
, gfc_actual_arglist
**ap
, locus
*where
)
3993 gfc_actual_arglist
*a
;
3994 gfc_formal_arglist
*dummy_args
;
3995 bool implicit
= false;
3997 /* Warn about calls with an implicit interface. Special case
3998 for calling a ISO_C_BINDING because c_loc and c_funloc
3999 are pseudo-unknown. Additionally, warn about procedures not
4000 explicitly declared at all if requested. */
4001 if (sym
->attr
.if_source
== IFSRC_UNKNOWN
&& !sym
->attr
.is_iso_c
)
4003 bool has_implicit_none_export
= false;
4005 if (sym
->attr
.proc
== PROC_UNKNOWN
)
4006 for (gfc_namespace
*ns
= sym
->ns
; ns
; ns
= ns
->parent
)
4007 if (ns
->has_implicit_none_export
)
4009 has_implicit_none_export
= true;
4012 if (has_implicit_none_export
)
4015 = gfc_lookup_function_fuzzy (sym
->name
, sym
->ns
->sym_root
);
4017 gfc_error ("Procedure %qs called at %L is not explicitly declared"
4018 "; did you mean %qs?",
4019 sym
->name
, where
, guessed
);
4021 gfc_error ("Procedure %qs called at %L is not explicitly declared",
4025 if (warn_implicit_interface
)
4026 gfc_warning (OPT_Wimplicit_interface
,
4027 "Procedure %qs called with an implicit interface at %L",
4029 else if (warn_implicit_procedure
&& sym
->attr
.proc
== PROC_UNKNOWN
)
4030 gfc_warning (OPT_Wimplicit_procedure
,
4031 "Procedure %qs called at %L is not explicitly declared",
4033 gfc_find_proc_namespace (sym
->ns
)->implicit_interface_calls
= 1;
4036 if (sym
->attr
.if_source
== IFSRC_UNKNOWN
)
4038 if (sym
->attr
.pointer
)
4040 gfc_error ("The pointer object %qs at %L must have an explicit "
4041 "function interface or be declared as array",
4046 if (sym
->attr
.allocatable
&& !sym
->attr
.external
)
4048 gfc_error ("The allocatable object %qs at %L must have an explicit "
4049 "function interface or be declared as array",
4054 if (sym
->attr
.allocatable
)
4056 gfc_error ("Allocatable function %qs at %L must have an explicit "
4057 "function interface", sym
->name
, where
);
4061 for (a
= *ap
; a
; a
= a
->next
)
4063 if (a
->expr
&& a
->expr
->error
)
4066 /* F2018, 15.4.2.2 Explicit interface is required for a
4067 polymorphic dummy argument, so there is no way to
4068 legally have a class appear in an argument with an
4069 implicit interface. */
4071 if (implicit
&& a
->expr
&& a
->expr
->ts
.type
== BT_CLASS
)
4073 gfc_error ("Explicit interface required for polymorphic "
4074 "argument at %L",&a
->expr
->where
);
4079 /* Skip g77 keyword extensions like %VAL, %REF, %LOC. */
4080 if (a
->name
!= NULL
&& a
->name
[0] != '%')
4082 gfc_error ("Keyword argument requires explicit interface "
4083 "for procedure %qs at %L", sym
->name
, &a
->expr
->where
);
4087 /* TS 29113, 6.2. */
4088 if (a
->expr
&& a
->expr
->ts
.type
== BT_ASSUMED
4089 && sym
->intmod_sym_id
!= ISOCBINDING_LOC
)
4091 gfc_error ("Assumed-type argument %s at %L requires an explicit "
4092 "interface", a
->expr
->symtree
->n
.sym
->name
,
4098 /* F2008, C1303 and C1304. */
4100 && (a
->expr
->ts
.type
== BT_DERIVED
|| a
->expr
->ts
.type
== BT_CLASS
)
4101 && a
->expr
->ts
.u
.derived
4102 && ((a
->expr
->ts
.u
.derived
->from_intmod
== INTMOD_ISO_FORTRAN_ENV
4103 && a
->expr
->ts
.u
.derived
->intmod_sym_id
== ISOFORTRAN_LOCK_TYPE
)
4104 || gfc_expr_attr (a
->expr
).lock_comp
))
4106 gfc_error ("Actual argument of LOCK_TYPE or with LOCK_TYPE "
4107 "component at %L requires an explicit interface for "
4108 "procedure %qs", &a
->expr
->where
, sym
->name
);
4114 && (a
->expr
->ts
.type
== BT_DERIVED
|| a
->expr
->ts
.type
== BT_CLASS
)
4115 && a
->expr
->ts
.u
.derived
4116 && ((a
->expr
->ts
.u
.derived
->from_intmod
== INTMOD_ISO_FORTRAN_ENV
4117 && a
->expr
->ts
.u
.derived
->intmod_sym_id
4118 == ISOFORTRAN_EVENT_TYPE
)
4119 || gfc_expr_attr (a
->expr
).event_comp
))
4121 gfc_error ("Actual argument of EVENT_TYPE or with EVENT_TYPE "
4122 "component at %L requires an explicit interface for "
4123 "procedure %qs", &a
->expr
->where
, sym
->name
);
4128 if (a
->expr
&& a
->expr
->expr_type
== EXPR_NULL
4129 && a
->expr
->ts
.type
== BT_UNKNOWN
)
4131 gfc_error ("MOLD argument to NULL required at %L",
4137 /* TS 29113, C407b. */
4138 if (a
->expr
&& a
->expr
->expr_type
== EXPR_VARIABLE
4139 && symbol_rank (a
->expr
->symtree
->n
.sym
) == -1)
4141 gfc_error ("Assumed-rank argument requires an explicit interface "
4142 "at %L", &a
->expr
->where
);
4151 dummy_args
= gfc_sym_get_dummy_args (sym
);
4153 /* For a statement function, check that types and type parameters of actual
4154 arguments and dummy arguments match. */
4155 if (!gfc_compare_actual_formal (ap
, dummy_args
, 0, sym
->attr
.elemental
,
4156 sym
->attr
.proc
== PROC_ST_FUNCTION
, where
))
4159 if (!check_intents (dummy_args
, *ap
))
4163 check_some_aliasing (dummy_args
, *ap
);
4169 /* Check how a procedure pointer component is used against its interface.
4170 If all goes well, the actual argument list will also end up being properly
4171 sorted. Completely analogous to gfc_procedure_use. */
4174 gfc_ppc_use (gfc_component
*comp
, gfc_actual_arglist
**ap
, locus
*where
)
4176 /* Warn about calls with an implicit interface. Special case
4177 for calling a ISO_C_BINDING because c_loc and c_funloc
4178 are pseudo-unknown. */
4179 if (warn_implicit_interface
4180 && comp
->attr
.if_source
== IFSRC_UNKNOWN
4181 && !comp
->attr
.is_iso_c
)
4182 gfc_warning (OPT_Wimplicit_interface
,
4183 "Procedure pointer component %qs called with an implicit "
4184 "interface at %L", comp
->name
, where
);
4186 if (comp
->attr
.if_source
== IFSRC_UNKNOWN
)
4188 gfc_actual_arglist
*a
;
4189 for (a
= *ap
; a
; a
= a
->next
)
4191 /* Skip g77 keyword extensions like %VAL, %REF, %LOC. */
4192 if (a
->name
!= NULL
&& a
->name
[0] != '%')
4194 gfc_error ("Keyword argument requires explicit interface "
4195 "for procedure pointer component %qs at %L",
4196 comp
->name
, &a
->expr
->where
);
4204 if (!gfc_compare_actual_formal (ap
, comp
->ts
.interface
->formal
, 0,
4205 comp
->attr
.elemental
, false, where
))
4208 check_intents (comp
->ts
.interface
->formal
, *ap
);
4210 check_some_aliasing (comp
->ts
.interface
->formal
, *ap
);
4214 /* Try if an actual argument list matches the formal list of a symbol,
4215 respecting the symbol's attributes like ELEMENTAL. This is used for
4216 GENERIC resolution. */
4219 gfc_arglist_matches_symbol (gfc_actual_arglist
** args
, gfc_symbol
* sym
)
4221 gfc_formal_arglist
*dummy_args
;
4224 if (sym
->attr
.flavor
!= FL_PROCEDURE
)
4227 dummy_args
= gfc_sym_get_dummy_args (sym
);
4229 r
= !sym
->attr
.elemental
;
4230 if (gfc_compare_actual_formal (args
, dummy_args
, r
, !r
, false, NULL
))
4232 check_intents (dummy_args
, *args
);
4234 check_some_aliasing (dummy_args
, *args
);
4242 /* Given an interface pointer and an actual argument list, search for
4243 a formal argument list that matches the actual. If found, returns
4244 a pointer to the symbol of the correct interface. Returns NULL if
4248 gfc_search_interface (gfc_interface
*intr
, int sub_flag
,
4249 gfc_actual_arglist
**ap
)
4251 gfc_symbol
*elem_sym
= NULL
;
4252 gfc_symbol
*null_sym
= NULL
;
4253 locus null_expr_loc
;
4254 gfc_actual_arglist
*a
;
4255 bool has_null_arg
= false;
4257 for (a
= *ap
; a
; a
= a
->next
)
4258 if (a
->expr
&& a
->expr
->expr_type
== EXPR_NULL
4259 && a
->expr
->ts
.type
== BT_UNKNOWN
)
4261 has_null_arg
= true;
4262 null_expr_loc
= a
->expr
->where
;
4266 for (; intr
; intr
= intr
->next
)
4268 if (gfc_fl_struct (intr
->sym
->attr
.flavor
))
4270 if (sub_flag
&& intr
->sym
->attr
.function
)
4272 if (!sub_flag
&& intr
->sym
->attr
.subroutine
)
4275 if (gfc_arglist_matches_symbol (ap
, intr
->sym
))
4277 if (has_null_arg
&& null_sym
)
4279 gfc_error ("MOLD= required in NULL() argument at %L: Ambiguity "
4280 "between specific functions %s and %s",
4281 &null_expr_loc
, null_sym
->name
, intr
->sym
->name
);
4284 else if (has_null_arg
)
4286 null_sym
= intr
->sym
;
4290 /* Satisfy 12.4.4.1 such that an elemental match has lower
4291 weight than a non-elemental match. */
4292 if (intr
->sym
->attr
.elemental
)
4294 elem_sym
= intr
->sym
;
4304 return elem_sym
? elem_sym
: NULL
;
4308 /* Do a brute force recursive search for a symbol. */
4310 static gfc_symtree
*
4311 find_symtree0 (gfc_symtree
*root
, gfc_symbol
*sym
)
4315 if (root
->n
.sym
== sym
)
4320 st
= find_symtree0 (root
->left
, sym
);
4321 if (root
->right
&& ! st
)
4322 st
= find_symtree0 (root
->right
, sym
);
4327 /* Find a symtree for a symbol. */
4330 gfc_find_sym_in_symtree (gfc_symbol
*sym
)
4335 /* First try to find it by name. */
4336 gfc_find_sym_tree (sym
->name
, gfc_current_ns
, 1, &st
);
4337 if (st
&& st
->n
.sym
== sym
)
4340 /* If it's been renamed, resort to a brute-force search. */
4341 /* TODO: avoid having to do this search. If the symbol doesn't exist
4342 in the symtree for the current namespace, it should probably be added. */
4343 for (ns
= gfc_current_ns
; ns
; ns
= ns
->parent
)
4345 st
= find_symtree0 (ns
->sym_root
, sym
);
4349 gfc_internal_error ("Unable to find symbol %qs", sym
->name
);
4354 /* See if the arglist to an operator-call contains a derived-type argument
4355 with a matching type-bound operator. If so, return the matching specific
4356 procedure defined as operator-target as well as the base-object to use
4357 (which is the found derived-type argument with operator). The generic
4358 name, if any, is transmitted to the final expression via 'gname'. */
4360 static gfc_typebound_proc
*
4361 matching_typebound_op (gfc_expr
** tb_base
,
4362 gfc_actual_arglist
* args
,
4363 gfc_intrinsic_op op
, const char* uop
,
4364 const char ** gname
)
4366 gfc_actual_arglist
* base
;
4368 for (base
= args
; base
; base
= base
->next
)
4369 if (base
->expr
->ts
.type
== BT_DERIVED
|| base
->expr
->ts
.type
== BT_CLASS
)
4371 gfc_typebound_proc
* tb
;
4372 gfc_symbol
* derived
;
4375 while (base
->expr
->expr_type
== EXPR_OP
4376 && base
->expr
->value
.op
.op
== INTRINSIC_PARENTHESES
)
4377 base
->expr
= base
->expr
->value
.op
.op1
;
4379 if (base
->expr
->ts
.type
== BT_CLASS
)
4381 if (!base
->expr
->ts
.u
.derived
|| CLASS_DATA (base
->expr
) == NULL
4382 || !gfc_expr_attr (base
->expr
).class_ok
)
4384 derived
= CLASS_DATA (base
->expr
)->ts
.u
.derived
;
4387 derived
= base
->expr
->ts
.u
.derived
;
4389 if (op
== INTRINSIC_USER
)
4391 gfc_symtree
* tb_uop
;
4394 tb_uop
= gfc_find_typebound_user_op (derived
, &result
, uop
,
4403 tb
= gfc_find_typebound_intrinsic_op (derived
, &result
, op
,
4406 /* This means we hit a PRIVATE operator which is use-associated and
4407 should thus not be seen. */
4411 /* Look through the super-type hierarchy for a matching specific
4413 for (; tb
; tb
= tb
->overridden
)
4417 gcc_assert (tb
->is_generic
);
4418 for (g
= tb
->u
.generic
; g
; g
= g
->next
)
4421 gfc_actual_arglist
* argcopy
;
4424 gcc_assert (g
->specific
);
4425 if (g
->specific
->error
)
4428 target
= g
->specific
->u
.specific
->n
.sym
;
4430 /* Check if this arglist matches the formal. */
4431 argcopy
= gfc_copy_actual_arglist (args
);
4432 matches
= gfc_arglist_matches_symbol (&argcopy
, target
);
4433 gfc_free_actual_arglist (argcopy
);
4435 /* Return if we found a match. */
4438 *tb_base
= base
->expr
;
4439 *gname
= g
->specific_st
->name
;
4450 /* For the 'actual arglist' of an operator call and a specific typebound
4451 procedure that has been found the target of a type-bound operator, build the
4452 appropriate EXPR_COMPCALL and resolve it. We take this indirection over
4453 type-bound procedures rather than resolving type-bound operators 'directly'
4454 so that we can reuse the existing logic. */
4457 build_compcall_for_operator (gfc_expr
* e
, gfc_actual_arglist
* actual
,
4458 gfc_expr
* base
, gfc_typebound_proc
* target
,
4461 e
->expr_type
= EXPR_COMPCALL
;
4462 e
->value
.compcall
.tbp
= target
;
4463 e
->value
.compcall
.name
= gname
? gname
: "$op";
4464 e
->value
.compcall
.actual
= actual
;
4465 e
->value
.compcall
.base_object
= base
;
4466 e
->value
.compcall
.ignore_pass
= 1;
4467 e
->value
.compcall
.assign
= 0;
4468 if (e
->ts
.type
== BT_UNKNOWN
4469 && target
->function
)
4471 if (target
->is_generic
)
4472 e
->ts
= target
->u
.generic
->specific
->u
.specific
->n
.sym
->ts
;
4474 e
->ts
= target
->u
.specific
->n
.sym
->ts
;
4479 /* This subroutine is called when an expression is being resolved.
4480 The expression node in question is either a user defined operator
4481 or an intrinsic operator with arguments that aren't compatible
4482 with the operator. This subroutine builds an actual argument list
4483 corresponding to the operands, then searches for a compatible
4484 interface. If one is found, the expression node is replaced with
4485 the appropriate function call. We use the 'match' enum to specify
4486 whether a replacement has been made or not, or if an error occurred. */
4489 gfc_extend_expr (gfc_expr
*e
)
4491 gfc_actual_arglist
*actual
;
4497 gfc_typebound_proc
* tbo
;
4502 actual
= gfc_get_actual_arglist ();
4503 actual
->expr
= e
->value
.op
.op1
;
4507 if (e
->value
.op
.op2
!= NULL
)
4509 actual
->next
= gfc_get_actual_arglist ();
4510 actual
->next
->expr
= e
->value
.op
.op2
;
4513 i
= fold_unary_intrinsic (e
->value
.op
.op
);
4515 /* See if we find a matching type-bound operator. */
4516 if (i
== INTRINSIC_USER
)
4517 tbo
= matching_typebound_op (&tb_base
, actual
,
4518 i
, e
->value
.op
.uop
->name
, &gname
);
4522 #define CHECK_OS_COMPARISON(comp) \
4523 case INTRINSIC_##comp: \
4524 case INTRINSIC_##comp##_OS: \
4525 tbo = matching_typebound_op (&tb_base, actual, \
4526 INTRINSIC_##comp, NULL, &gname); \
4528 tbo = matching_typebound_op (&tb_base, actual, \
4529 INTRINSIC_##comp##_OS, NULL, &gname); \
4531 CHECK_OS_COMPARISON(EQ
)
4532 CHECK_OS_COMPARISON(NE
)
4533 CHECK_OS_COMPARISON(GT
)
4534 CHECK_OS_COMPARISON(GE
)
4535 CHECK_OS_COMPARISON(LT
)
4536 CHECK_OS_COMPARISON(LE
)
4537 #undef CHECK_OS_COMPARISON
4540 tbo
= matching_typebound_op (&tb_base
, actual
, i
, NULL
, &gname
);
4544 /* If there is a matching typebound-operator, replace the expression with
4545 a call to it and succeed. */
4548 gcc_assert (tb_base
);
4549 build_compcall_for_operator (e
, actual
, tb_base
, tbo
, gname
);
4551 if (!gfc_resolve_expr (e
))
4557 if (i
== INTRINSIC_USER
)
4559 for (ns
= gfc_current_ns
; ns
; ns
= ns
->parent
)
4561 uop
= gfc_find_uop (e
->value
.op
.uop
->name
, ns
);
4565 sym
= gfc_search_interface (uop
->op
, 0, &actual
);
4572 for (ns
= gfc_current_ns
; ns
; ns
= ns
->parent
)
4574 /* Due to the distinction between '==' and '.eq.' and friends, one has
4575 to check if either is defined. */
4578 #define CHECK_OS_COMPARISON(comp) \
4579 case INTRINSIC_##comp: \
4580 case INTRINSIC_##comp##_OS: \
4581 sym = gfc_search_interface (ns->op[INTRINSIC_##comp], 0, &actual); \
4583 sym = gfc_search_interface (ns->op[INTRINSIC_##comp##_OS], 0, &actual); \
4585 CHECK_OS_COMPARISON(EQ
)
4586 CHECK_OS_COMPARISON(NE
)
4587 CHECK_OS_COMPARISON(GT
)
4588 CHECK_OS_COMPARISON(GE
)
4589 CHECK_OS_COMPARISON(LT
)
4590 CHECK_OS_COMPARISON(LE
)
4591 #undef CHECK_OS_COMPARISON
4594 sym
= gfc_search_interface (ns
->op
[i
], 0, &actual
);
4602 /* TODO: Do an ambiguity-check and error if multiple matching interfaces are
4603 found rather than just taking the first one and not checking further. */
4607 /* Don't use gfc_free_actual_arglist(). */
4608 free (actual
->next
);
4613 /* Change the expression node to a function call. */
4614 e
->expr_type
= EXPR_FUNCTION
;
4615 e
->symtree
= gfc_find_sym_in_symtree (sym
);
4616 e
->value
.function
.actual
= actual
;
4617 e
->value
.function
.esym
= NULL
;
4618 e
->value
.function
.isym
= NULL
;
4619 e
->value
.function
.name
= NULL
;
4620 e
->user_operator
= 1;
4622 if (!gfc_resolve_expr (e
))
4629 /* Tries to replace an assignment code node with a subroutine call to the
4630 subroutine associated with the assignment operator. Return true if the node
4631 was replaced. On false, no error is generated. */
4634 gfc_extend_assign (gfc_code
*c
, gfc_namespace
*ns
)
4636 gfc_actual_arglist
*actual
;
4637 gfc_expr
*lhs
, *rhs
, *tb_base
;
4638 gfc_symbol
*sym
= NULL
;
4639 const char *gname
= NULL
;
4640 gfc_typebound_proc
* tbo
;
4645 /* Don't allow an intrinsic assignment with a BOZ rhs to be replaced. */
4646 if (c
->op
== EXEC_ASSIGN
4647 && c
->expr1
->expr_type
== EXPR_VARIABLE
4648 && c
->expr2
->expr_type
== EXPR_CONSTANT
&& c
->expr2
->ts
.type
== BT_BOZ
)
4651 /* Don't allow an intrinsic assignment to be replaced. */
4652 if (lhs
->ts
.type
!= BT_DERIVED
&& lhs
->ts
.type
!= BT_CLASS
4653 && (rhs
->rank
== 0 || rhs
->rank
== lhs
->rank
)
4654 && (lhs
->ts
.type
== rhs
->ts
.type
4655 || (gfc_numeric_ts (&lhs
->ts
) && gfc_numeric_ts (&rhs
->ts
))))
4658 actual
= gfc_get_actual_arglist ();
4661 actual
->next
= gfc_get_actual_arglist ();
4662 actual
->next
->expr
= rhs
;
4664 /* TODO: Ambiguity-check, see above for gfc_extend_expr. */
4666 /* See if we find a matching type-bound assignment. */
4667 tbo
= matching_typebound_op (&tb_base
, actual
, INTRINSIC_ASSIGN
,
4672 /* Success: Replace the expression with a type-bound call. */
4673 gcc_assert (tb_base
);
4674 c
->expr1
= gfc_get_expr ();
4675 build_compcall_for_operator (c
->expr1
, actual
, tb_base
, tbo
, gname
);
4676 c
->expr1
->value
.compcall
.assign
= 1;
4677 c
->expr1
->where
= c
->loc
;
4679 c
->op
= EXEC_COMPCALL
;
4683 /* See if we find an 'ordinary' (non-typebound) assignment procedure. */
4684 for (; ns
; ns
= ns
->parent
)
4686 sym
= gfc_search_interface (ns
->op
[INTRINSIC_ASSIGN
], 1, &actual
);
4693 /* Success: Replace the assignment with the call. */
4694 c
->op
= EXEC_ASSIGN_CALL
;
4695 c
->symtree
= gfc_find_sym_in_symtree (sym
);
4698 c
->ext
.actual
= actual
;
4702 /* Failure: No assignment procedure found. */
4703 free (actual
->next
);
4709 /* Make sure that the interface just parsed is not already present in
4710 the given interface list. Ambiguity isn't checked yet since module
4711 procedures can be present without interfaces. */
4714 gfc_check_new_interface (gfc_interface
*base
, gfc_symbol
*new_sym
, locus loc
)
4718 for (ip
= base
; ip
; ip
= ip
->next
)
4720 if (ip
->sym
== new_sym
)
4722 gfc_error ("Entity %qs at %L is already present in the interface",
4723 new_sym
->name
, &loc
);
4732 /* Add a symbol to the current interface. */
4735 gfc_add_interface (gfc_symbol
*new_sym
)
4737 gfc_interface
**head
, *intr
;
4741 switch (current_interface
.type
)
4743 case INTERFACE_NAMELESS
:
4744 case INTERFACE_ABSTRACT
:
4747 case INTERFACE_INTRINSIC_OP
:
4748 for (ns
= current_interface
.ns
; ns
; ns
= ns
->parent
)
4749 switch (current_interface
.op
)
4752 case INTRINSIC_EQ_OS
:
4753 if (!gfc_check_new_interface (ns
->op
[INTRINSIC_EQ
], new_sym
,
4755 || !gfc_check_new_interface (ns
->op
[INTRINSIC_EQ_OS
],
4756 new_sym
, gfc_current_locus
))
4761 case INTRINSIC_NE_OS
:
4762 if (!gfc_check_new_interface (ns
->op
[INTRINSIC_NE
], new_sym
,
4764 || !gfc_check_new_interface (ns
->op
[INTRINSIC_NE_OS
],
4765 new_sym
, gfc_current_locus
))
4770 case INTRINSIC_GT_OS
:
4771 if (!gfc_check_new_interface (ns
->op
[INTRINSIC_GT
],
4772 new_sym
, gfc_current_locus
)
4773 || !gfc_check_new_interface (ns
->op
[INTRINSIC_GT_OS
],
4774 new_sym
, gfc_current_locus
))
4779 case INTRINSIC_GE_OS
:
4780 if (!gfc_check_new_interface (ns
->op
[INTRINSIC_GE
],
4781 new_sym
, gfc_current_locus
)
4782 || !gfc_check_new_interface (ns
->op
[INTRINSIC_GE_OS
],
4783 new_sym
, gfc_current_locus
))
4788 case INTRINSIC_LT_OS
:
4789 if (!gfc_check_new_interface (ns
->op
[INTRINSIC_LT
],
4790 new_sym
, gfc_current_locus
)
4791 || !gfc_check_new_interface (ns
->op
[INTRINSIC_LT_OS
],
4792 new_sym
, gfc_current_locus
))
4797 case INTRINSIC_LE_OS
:
4798 if (!gfc_check_new_interface (ns
->op
[INTRINSIC_LE
],
4799 new_sym
, gfc_current_locus
)
4800 || !gfc_check_new_interface (ns
->op
[INTRINSIC_LE_OS
],
4801 new_sym
, gfc_current_locus
))
4806 if (!gfc_check_new_interface (ns
->op
[current_interface
.op
],
4807 new_sym
, gfc_current_locus
))
4811 head
= ¤t_interface
.ns
->op
[current_interface
.op
];
4814 case INTERFACE_GENERIC
:
4815 case INTERFACE_DTIO
:
4816 for (ns
= current_interface
.ns
; ns
; ns
= ns
->parent
)
4818 gfc_find_symbol (current_interface
.sym
->name
, ns
, 0, &sym
);
4822 if (!gfc_check_new_interface (sym
->generic
,
4823 new_sym
, gfc_current_locus
))
4827 head
= ¤t_interface
.sym
->generic
;
4830 case INTERFACE_USER_OP
:
4831 if (!gfc_check_new_interface (current_interface
.uop
->op
,
4832 new_sym
, gfc_current_locus
))
4835 head
= ¤t_interface
.uop
->op
;
4839 gfc_internal_error ("gfc_add_interface(): Bad interface type");
4842 intr
= gfc_get_interface ();
4843 intr
->sym
= new_sym
;
4844 intr
->where
= gfc_current_locus
;
4854 gfc_current_interface_head (void)
4856 switch (current_interface
.type
)
4858 case INTERFACE_INTRINSIC_OP
:
4859 return current_interface
.ns
->op
[current_interface
.op
];
4861 case INTERFACE_GENERIC
:
4862 case INTERFACE_DTIO
:
4863 return current_interface
.sym
->generic
;
4865 case INTERFACE_USER_OP
:
4866 return current_interface
.uop
->op
;
4875 gfc_set_current_interface_head (gfc_interface
*i
)
4877 switch (current_interface
.type
)
4879 case INTERFACE_INTRINSIC_OP
:
4880 current_interface
.ns
->op
[current_interface
.op
] = i
;
4883 case INTERFACE_GENERIC
:
4884 case INTERFACE_DTIO
:
4885 current_interface
.sym
->generic
= i
;
4888 case INTERFACE_USER_OP
:
4889 current_interface
.uop
->op
= i
;
4898 /* Gets rid of a formal argument list. We do not free symbols.
4899 Symbols are freed when a namespace is freed. */
4902 gfc_free_formal_arglist (gfc_formal_arglist
*p
)
4904 gfc_formal_arglist
*q
;
4914 /* Check that it is ok for the type-bound procedure 'proc' to override the
4915 procedure 'old', cf. F08:4.5.7.3. */
4918 gfc_check_typebound_override (gfc_symtree
* proc
, gfc_symtree
* old
)
4921 gfc_symbol
*proc_target
, *old_target
;
4922 unsigned proc_pass_arg
, old_pass_arg
, argpos
;
4923 gfc_formal_arglist
*proc_formal
, *old_formal
;
4927 /* This procedure should only be called for non-GENERIC proc. */
4928 gcc_assert (!proc
->n
.tb
->is_generic
);
4930 /* If the overwritten procedure is GENERIC, this is an error. */
4931 if (old
->n
.tb
->is_generic
)
4933 gfc_error ("Cannot overwrite GENERIC %qs at %L",
4934 old
->name
, &proc
->n
.tb
->where
);
4938 where
= proc
->n
.tb
->where
;
4939 proc_target
= proc
->n
.tb
->u
.specific
->n
.sym
;
4940 old_target
= old
->n
.tb
->u
.specific
->n
.sym
;
4942 /* Check that overridden binding is not NON_OVERRIDABLE. */
4943 if (old
->n
.tb
->non_overridable
)
4945 gfc_error ("%qs at %L overrides a procedure binding declared"
4946 " NON_OVERRIDABLE", proc
->name
, &where
);
4950 /* It's an error to override a non-DEFERRED procedure with a DEFERRED one. */
4951 if (!old
->n
.tb
->deferred
&& proc
->n
.tb
->deferred
)
4953 gfc_error ("%qs at %L must not be DEFERRED as it overrides a"
4954 " non-DEFERRED binding", proc
->name
, &where
);
4958 /* If the overridden binding is PURE, the overriding must be, too. */
4959 if (old_target
->attr
.pure
&& !proc_target
->attr
.pure
)
4961 gfc_error ("%qs at %L overrides a PURE procedure and must also be PURE",
4962 proc
->name
, &where
);
4966 /* If the overridden binding is ELEMENTAL, the overriding must be, too. If it
4967 is not, the overriding must not be either. */
4968 if (old_target
->attr
.elemental
&& !proc_target
->attr
.elemental
)
4970 gfc_error ("%qs at %L overrides an ELEMENTAL procedure and must also be"
4971 " ELEMENTAL", proc
->name
, &where
);
4974 if (!old_target
->attr
.elemental
&& proc_target
->attr
.elemental
)
4976 gfc_error ("%qs at %L overrides a non-ELEMENTAL procedure and must not"
4977 " be ELEMENTAL, either", proc
->name
, &where
);
4981 /* If the overridden binding is a SUBROUTINE, the overriding must also be a
4983 if (old_target
->attr
.subroutine
&& !proc_target
->attr
.subroutine
)
4985 gfc_error ("%qs at %L overrides a SUBROUTINE and must also be a"
4986 " SUBROUTINE", proc
->name
, &where
);
4990 /* If the overridden binding is a FUNCTION, the overriding must also be a
4991 FUNCTION and have the same characteristics. */
4992 if (old_target
->attr
.function
)
4994 if (!proc_target
->attr
.function
)
4996 gfc_error ("%qs at %L overrides a FUNCTION and must also be a"
4997 " FUNCTION", proc
->name
, &where
);
5001 if (!gfc_check_result_characteristics (proc_target
, old_target
,
5004 gfc_error ("Result mismatch for the overriding procedure "
5005 "%qs at %L: %s", proc
->name
, &where
, err
);
5010 /* If the overridden binding is PUBLIC, the overriding one must not be
5012 if (old
->n
.tb
->access
== ACCESS_PUBLIC
5013 && proc
->n
.tb
->access
== ACCESS_PRIVATE
)
5015 gfc_error ("%qs at %L overrides a PUBLIC procedure and must not be"
5016 " PRIVATE", proc
->name
, &where
);
5020 /* Compare the formal argument lists of both procedures. This is also abused
5021 to find the position of the passed-object dummy arguments of both
5022 bindings as at least the overridden one might not yet be resolved and we
5023 need those positions in the check below. */
5024 proc_pass_arg
= old_pass_arg
= 0;
5025 if (!proc
->n
.tb
->nopass
&& !proc
->n
.tb
->pass_arg
)
5027 if (!old
->n
.tb
->nopass
&& !old
->n
.tb
->pass_arg
)
5030 proc_formal
= gfc_sym_get_dummy_args (proc_target
);
5031 old_formal
= gfc_sym_get_dummy_args (old_target
);
5032 for ( ; proc_formal
&& old_formal
;
5033 proc_formal
= proc_formal
->next
, old_formal
= old_formal
->next
)
5035 if (proc
->n
.tb
->pass_arg
5036 && !strcmp (proc
->n
.tb
->pass_arg
, proc_formal
->sym
->name
))
5037 proc_pass_arg
= argpos
;
5038 if (old
->n
.tb
->pass_arg
5039 && !strcmp (old
->n
.tb
->pass_arg
, old_formal
->sym
->name
))
5040 old_pass_arg
= argpos
;
5042 /* Check that the names correspond. */
5043 if (strcmp (proc_formal
->sym
->name
, old_formal
->sym
->name
))
5045 gfc_error ("Dummy argument %qs of %qs at %L should be named %qs as"
5046 " to match the corresponding argument of the overridden"
5047 " procedure", proc_formal
->sym
->name
, proc
->name
, &where
,
5048 old_formal
->sym
->name
);
5052 check_type
= proc_pass_arg
!= argpos
&& old_pass_arg
!= argpos
;
5053 if (!gfc_check_dummy_characteristics (proc_formal
->sym
, old_formal
->sym
,
5054 check_type
, err
, sizeof(err
)))
5056 gfc_error_opt (0, "Argument mismatch for the overriding procedure "
5057 "%qs at %L: %s", proc
->name
, &where
, err
);
5063 if (proc_formal
|| old_formal
)
5065 gfc_error ("%qs at %L must have the same number of formal arguments as"
5066 " the overridden procedure", proc
->name
, &where
);
5070 /* If the overridden binding is NOPASS, the overriding one must also be
5072 if (old
->n
.tb
->nopass
&& !proc
->n
.tb
->nopass
)
5074 gfc_error ("%qs at %L overrides a NOPASS binding and must also be"
5075 " NOPASS", proc
->name
, &where
);
5079 /* If the overridden binding is PASS(x), the overriding one must also be
5080 PASS and the passed-object dummy arguments must correspond. */
5081 if (!old
->n
.tb
->nopass
)
5083 if (proc
->n
.tb
->nopass
)
5085 gfc_error ("%qs at %L overrides a binding with PASS and must also be"
5086 " PASS", proc
->name
, &where
);
5090 if (proc_pass_arg
!= old_pass_arg
)
5092 gfc_error ("Passed-object dummy argument of %qs at %L must be at"
5093 " the same position as the passed-object dummy argument of"
5094 " the overridden procedure", proc
->name
, &where
);
5103 /* The following three functions check that the formal arguments
5104 of user defined derived type IO procedures are compliant with
5105 the requirements of the standard, see F03:9.5.3.7.2 (F08:9.6.4.8.3). */
5108 check_dtio_arg_TKR_intent (gfc_symbol
*fsym
, bool typebound
, bt type
,
5109 int kind
, int rank
, sym_intent intent
)
5111 if (fsym
->ts
.type
!= type
)
5113 gfc_error ("DTIO dummy argument at %L must be of type %s",
5114 &fsym
->declared_at
, gfc_basic_typename (type
));
5118 if (fsym
->ts
.type
!= BT_CLASS
&& fsym
->ts
.type
!= BT_DERIVED
5119 && fsym
->ts
.kind
!= kind
)
5120 gfc_error ("DTIO dummy argument at %L must be of KIND = %d",
5121 &fsym
->declared_at
, kind
);
5125 && (((type
== BT_CLASS
) && CLASS_DATA (fsym
)->attr
.dimension
)
5126 || ((type
!= BT_CLASS
) && fsym
->attr
.dimension
)))
5127 gfc_error ("DTIO dummy argument at %L must be a scalar",
5128 &fsym
->declared_at
);
5130 && (fsym
->as
== NULL
|| fsym
->as
->type
!= AS_ASSUMED_SHAPE
))
5131 gfc_error ("DTIO dummy argument at %L must be an "
5132 "ASSUMED SHAPE ARRAY", &fsym
->declared_at
);
5134 if (type
== BT_CHARACTER
&& fsym
->ts
.u
.cl
->length
!= NULL
)
5135 gfc_error ("DTIO character argument at %L must have assumed length",
5136 &fsym
->declared_at
);
5138 if (fsym
->attr
.intent
!= intent
)
5139 gfc_error ("DTIO dummy argument at %L must have INTENT %s",
5140 &fsym
->declared_at
, gfc_code2string (intents
, (int)intent
));
5146 check_dtio_interface1 (gfc_symbol
*derived
, gfc_symtree
*tb_io_st
,
5147 bool typebound
, bool formatted
, int code
)
5149 gfc_symbol
*dtio_sub
, *generic_proc
, *fsym
;
5150 gfc_typebound_proc
*tb_io_proc
, *specific_proc
;
5151 gfc_interface
*intr
;
5152 gfc_formal_arglist
*formal
;
5155 bool read
= ((dtio_codes
)code
== DTIO_RF
)
5156 || ((dtio_codes
)code
== DTIO_RUF
);
5164 /* Typebound DTIO binding. */
5165 tb_io_proc
= tb_io_st
->n
.tb
;
5166 if (tb_io_proc
== NULL
)
5169 gcc_assert (tb_io_proc
->is_generic
);
5171 specific_proc
= tb_io_proc
->u
.generic
->specific
;
5172 if (specific_proc
== NULL
|| specific_proc
->is_generic
)
5175 dtio_sub
= specific_proc
->u
.specific
->n
.sym
;
5179 generic_proc
= tb_io_st
->n
.sym
;
5180 if (generic_proc
== NULL
|| generic_proc
->generic
== NULL
)
5183 for (intr
= tb_io_st
->n
.sym
->generic
; intr
; intr
= intr
->next
)
5185 if (intr
->sym
&& intr
->sym
->formal
&& intr
->sym
->formal
->sym
5186 && ((intr
->sym
->formal
->sym
->ts
.type
== BT_CLASS
5187 && CLASS_DATA (intr
->sym
->formal
->sym
)->ts
.u
.derived
5189 || (intr
->sym
->formal
->sym
->ts
.type
== BT_DERIVED
5190 && intr
->sym
->formal
->sym
->ts
.u
.derived
== derived
)))
5192 dtio_sub
= intr
->sym
;
5195 else if (intr
->sym
&& intr
->sym
->formal
&& !intr
->sym
->formal
->sym
)
5197 gfc_error ("Alternate return at %L is not permitted in a DTIO "
5198 "procedure", &intr
->sym
->declared_at
);
5203 if (dtio_sub
== NULL
)
5207 gcc_assert (dtio_sub
);
5208 if (!dtio_sub
->attr
.subroutine
)
5209 gfc_error ("DTIO procedure %qs at %L must be a subroutine",
5210 dtio_sub
->name
, &dtio_sub
->declared_at
);
5212 if (!dtio_sub
->resolve_symbol_called
)
5213 gfc_resolve_formal_arglist (dtio_sub
);
5216 for (formal
= dtio_sub
->formal
; formal
; formal
= formal
->next
)
5219 if (arg_num
< (formatted
? 6 : 4))
5221 gfc_error ("Too few dummy arguments in DTIO procedure %qs at %L",
5222 dtio_sub
->name
, &dtio_sub
->declared_at
);
5226 if (arg_num
> (formatted
? 6 : 4))
5228 gfc_error ("Too many dummy arguments in DTIO procedure %qs at %L",
5229 dtio_sub
->name
, &dtio_sub
->declared_at
);
5233 /* Now go through the formal arglist. */
5235 for (formal
= dtio_sub
->formal
; formal
; formal
= formal
->next
, arg_num
++)
5237 if (!formatted
&& arg_num
== 3)
5243 gfc_error ("Alternate return at %L is not permitted in a DTIO "
5244 "procedure", &dtio_sub
->declared_at
);
5251 type
= derived
->attr
.sequence
|| derived
->attr
.is_bind_c
?
5252 BT_DERIVED
: BT_CLASS
;
5254 intent
= read
? INTENT_INOUT
: INTENT_IN
;
5255 check_dtio_arg_TKR_intent (fsym
, typebound
, type
, kind
,
5261 kind
= gfc_default_integer_kind
;
5263 check_dtio_arg_TKR_intent (fsym
, typebound
, type
, kind
,
5266 case(3): /* IOTYPE */
5267 type
= BT_CHARACTER
;
5268 kind
= gfc_default_character_kind
;
5270 check_dtio_arg_TKR_intent (fsym
, typebound
, type
, kind
,
5273 case(4): /* VLIST */
5275 kind
= gfc_default_integer_kind
;
5277 check_dtio_arg_TKR_intent (fsym
, typebound
, type
, kind
,
5280 case(5): /* IOSTAT */
5282 kind
= gfc_default_integer_kind
;
5283 intent
= INTENT_OUT
;
5284 check_dtio_arg_TKR_intent (fsym
, typebound
, type
, kind
,
5287 case(6): /* IOMSG */
5288 type
= BT_CHARACTER
;
5289 kind
= gfc_default_character_kind
;
5290 intent
= INTENT_INOUT
;
5291 check_dtio_arg_TKR_intent (fsym
, typebound
, type
, kind
,
5298 derived
->attr
.has_dtio_procs
= 1;
5303 gfc_check_dtio_interfaces (gfc_symbol
*derived
)
5305 gfc_symtree
*tb_io_st
;
5310 if (derived
->attr
.is_class
== 1 || derived
->attr
.vtype
== 1)
5313 /* Check typebound DTIO bindings. */
5314 for (code
= 0; code
< 4; code
++)
5316 formatted
= ((dtio_codes
)code
== DTIO_RF
)
5317 || ((dtio_codes
)code
== DTIO_WF
);
5319 tb_io_st
= gfc_find_typebound_proc (derived
, &t
,
5320 gfc_code2string (dtio_procs
, code
),
5321 true, &derived
->declared_at
);
5322 if (tb_io_st
!= NULL
)
5323 check_dtio_interface1 (derived
, tb_io_st
, true, formatted
, code
);
5326 /* Check generic DTIO interfaces. */
5327 for (code
= 0; code
< 4; code
++)
5329 formatted
= ((dtio_codes
)code
== DTIO_RF
)
5330 || ((dtio_codes
)code
== DTIO_WF
);
5332 tb_io_st
= gfc_find_symtree (derived
->ns
->sym_root
,
5333 gfc_code2string (dtio_procs
, code
));
5334 if (tb_io_st
!= NULL
)
5335 check_dtio_interface1 (derived
, tb_io_st
, false, formatted
, code
);
5341 gfc_find_typebound_dtio_proc (gfc_symbol
*derived
, bool write
, bool formatted
)
5343 gfc_symtree
*tb_io_st
= NULL
;
5346 if (!derived
|| !derived
->resolve_symbol_called
5347 || derived
->attr
.flavor
!= FL_DERIVED
)
5350 /* Try to find a typebound DTIO binding. */
5351 if (formatted
== true)
5354 tb_io_st
= gfc_find_typebound_proc (derived
, &t
,
5355 gfc_code2string (dtio_procs
,
5358 &derived
->declared_at
);
5360 tb_io_st
= gfc_find_typebound_proc (derived
, &t
,
5361 gfc_code2string (dtio_procs
,
5364 &derived
->declared_at
);
5369 tb_io_st
= gfc_find_typebound_proc (derived
, &t
,
5370 gfc_code2string (dtio_procs
,
5373 &derived
->declared_at
);
5375 tb_io_st
= gfc_find_typebound_proc (derived
, &t
,
5376 gfc_code2string (dtio_procs
,
5379 &derived
->declared_at
);
5386 gfc_find_specific_dtio_proc (gfc_symbol
*derived
, bool write
, bool formatted
)
5388 gfc_symtree
*tb_io_st
= NULL
;
5389 gfc_symbol
*dtio_sub
= NULL
;
5390 gfc_symbol
*extended
;
5391 gfc_typebound_proc
*tb_io_proc
, *specific_proc
;
5393 tb_io_st
= gfc_find_typebound_dtio_proc (derived
, write
, formatted
);
5395 if (tb_io_st
!= NULL
)
5397 const char *genname
;
5400 tb_io_proc
= tb_io_st
->n
.tb
;
5401 gcc_assert (tb_io_proc
!= NULL
);
5402 gcc_assert (tb_io_proc
->is_generic
);
5403 gcc_assert (tb_io_proc
->u
.generic
->next
== NULL
);
5405 specific_proc
= tb_io_proc
->u
.generic
->specific
;
5406 gcc_assert (!specific_proc
->is_generic
);
5408 /* Go back and make sure that we have the right specific procedure.
5409 Here we most likely have a procedure from the parent type, which
5410 can be overridden in extensions. */
5411 genname
= tb_io_proc
->u
.generic
->specific_st
->name
;
5412 st
= gfc_find_typebound_proc (derived
, NULL
, genname
,
5413 true, &tb_io_proc
->where
);
5415 dtio_sub
= st
->n
.tb
->u
.specific
->n
.sym
;
5417 dtio_sub
= specific_proc
->u
.specific
->n
.sym
;
5422 /* If there is not a typebound binding, look for a generic
5424 for (extended
= derived
; extended
;
5425 extended
= gfc_get_derived_super_type (extended
))
5427 if (extended
== NULL
|| extended
->ns
== NULL
5428 || extended
->attr
.flavor
== FL_UNKNOWN
)
5431 if (formatted
== true)
5434 tb_io_st
= gfc_find_symtree (extended
->ns
->sym_root
,
5435 gfc_code2string (dtio_procs
,
5438 tb_io_st
= gfc_find_symtree (extended
->ns
->sym_root
,
5439 gfc_code2string (dtio_procs
,
5445 tb_io_st
= gfc_find_symtree (extended
->ns
->sym_root
,
5446 gfc_code2string (dtio_procs
,
5449 tb_io_st
= gfc_find_symtree (extended
->ns
->sym_root
,
5450 gfc_code2string (dtio_procs
,
5454 if (tb_io_st
!= NULL
5456 && tb_io_st
->n
.sym
->generic
)
5458 for (gfc_interface
*intr
= tb_io_st
->n
.sym
->generic
;
5459 intr
&& intr
->sym
; intr
= intr
->next
)
5461 if (intr
->sym
->formal
)
5463 gfc_symbol
*fsym
= intr
->sym
->formal
->sym
;
5464 if ((fsym
->ts
.type
== BT_CLASS
5465 && CLASS_DATA (fsym
)->ts
.u
.derived
== extended
)
5466 || (fsym
->ts
.type
== BT_DERIVED
5467 && fsym
->ts
.u
.derived
== extended
))
5469 dtio_sub
= intr
->sym
;
5479 && dtio_sub
->formal
->sym
->ts
.type
== BT_CLASS
5480 && derived
!= CLASS_DATA (dtio_sub
->formal
->sym
)->ts
.u
.derived
)
5481 gfc_find_derived_vtab (derived
);
5486 /* Helper function - if we do not find an interface for a procedure,
5487 construct it from the actual arglist. Luckily, this can only
5488 happen for call by reference, so the information we actually need
5489 to provide (and which would be impossible to guess from the call
5490 itself) is not actually needed. */
5493 gfc_get_formal_from_actual_arglist (gfc_symbol
*sym
,
5494 gfc_actual_arglist
*actual_args
)
5496 gfc_actual_arglist
*a
;
5497 gfc_formal_arglist
**f
;
5499 char name
[GFC_MAX_SYMBOL_LEN
+ 1];
5503 for (a
= actual_args
; a
!= NULL
; a
= a
->next
)
5505 (*f
) = gfc_get_formal_arglist ();
5508 snprintf (name
, GFC_MAX_SYMBOL_LEN
, "_formal_%d", var_num
++);
5509 gfc_get_symbol (name
, gfc_current_ns
, &s
);
5510 if (a
->expr
->ts
.type
== BT_PROCEDURE
)
5512 s
->attr
.flavor
= FL_PROCEDURE
;
5516 s
->ts
= a
->expr
->ts
;
5518 if (s
->ts
.type
== BT_CHARACTER
)
5519 s
->ts
.u
.cl
= gfc_get_charlen ();
5523 s
->ts
.is_c_interop
= 0;
5524 s
->attr
.flavor
= FL_VARIABLE
;
5525 if (a
->expr
->rank
> 0)
5527 s
->attr
.dimension
= 1;
5528 s
->as
= gfc_get_array_spec ();
5530 s
->as
->lower
[0] = gfc_get_int_expr (gfc_index_integer_kind
,
5531 &a
->expr
->where
, 1);
5532 s
->as
->upper
[0] = NULL
;
5533 s
->as
->type
= AS_ASSUMED_SIZE
;
5536 s
->maybe_array
= maybe_dummy_array_arg (a
->expr
);
5539 s
->attr
.artificial
= 1;
5540 s
->declared_at
= a
->expr
->where
;
5541 s
->attr
.intent
= INTENT_UNKNOWN
;
5544 else /* If a->expr is NULL, this is an alternate rerturn. */
5553 gfc_dummy_arg_get_name (gfc_dummy_arg
& dummy_arg
)
5555 switch (dummy_arg
.intrinsicness
)
5557 case GFC_INTRINSIC_DUMMY_ARG
:
5558 return dummy_arg
.u
.intrinsic
->name
;
5560 case GFC_NON_INTRINSIC_DUMMY_ARG
:
5561 return dummy_arg
.u
.non_intrinsic
->sym
->name
;
5569 const gfc_typespec
&
5570 gfc_dummy_arg_get_typespec (gfc_dummy_arg
& dummy_arg
)
5572 switch (dummy_arg
.intrinsicness
)
5574 case GFC_INTRINSIC_DUMMY_ARG
:
5575 return dummy_arg
.u
.intrinsic
->ts
;
5577 case GFC_NON_INTRINSIC_DUMMY_ARG
:
5578 return dummy_arg
.u
.non_intrinsic
->sym
->ts
;
5587 gfc_dummy_arg_is_optional (gfc_dummy_arg
& dummy_arg
)
5589 switch (dummy_arg
.intrinsicness
)
5591 case GFC_INTRINSIC_DUMMY_ARG
:
5592 return dummy_arg
.u
.intrinsic
->optional
;
5594 case GFC_NON_INTRINSIC_DUMMY_ARG
:
5595 return dummy_arg
.u
.non_intrinsic
->sym
->attr
.optional
;