2013-08-30 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / ipa-inline-analysis.c
blob806b219c2288ce6ba28c192c2f08ef591b945391
1 /* Inlining decision heuristics.
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
3 Contributed by Jan Hubicka
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Analysis used by the inliner and other passes limiting code size growth.
23 We estimate for each function
24 - function body size
25 - average function execution time
26 - inlining size benefit (that is how much of function body size
27 and its call sequence is expected to disappear by inlining)
28 - inlining time benefit
29 - function frame size
30 For each call
31 - call statement size and time
33 inlinie_summary datastructures store above information locally (i.e.
34 parameters of the function itself) and globally (i.e. parameters of
35 the function created by applying all the inline decisions already
36 present in the callgraph).
38 We provide accestor to the inline_summary datastructure and
39 basic logic updating the parameters when inlining is performed.
41 The summaries are context sensitive. Context means
42 1) partial assignment of known constant values of operands
43 2) whether function is inlined into the call or not.
44 It is easy to add more variants. To represent function size and time
45 that depends on context (i.e. it is known to be optimized away when
46 context is known either by inlining or from IP-CP and clonning),
47 we use predicates. Predicates are logical formulas in
48 conjunctive-disjunctive form consisting of clauses. Clauses are bitmaps
49 specifying what conditions must be true. Conditions are simple test
50 of the form described above.
52 In order to make predicate (possibly) true, all of its clauses must
53 be (possibly) true. To make clause (possibly) true, one of conditions
54 it mentions must be (possibly) true. There are fixed bounds on
55 number of clauses and conditions and all the manipulation functions
56 are conservative in positive direction. I.e. we may lose precision
57 by thinking that predicate may be true even when it is not.
59 estimate_edge_size and estimate_edge_growth can be used to query
60 function size/time in the given context. inline_merge_summary merges
61 properties of caller and callee after inlining.
63 Finally pass_inline_parameters is exported. This is used to drive
64 computation of function parameters used by the early inliner. IPA
65 inlined performs analysis via its analyze_function method. */
67 #include "config.h"
68 #include "system.h"
69 #include "coretypes.h"
70 #include "tm.h"
71 #include "tree.h"
72 #include "tree-inline.h"
73 #include "langhooks.h"
74 #include "flags.h"
75 #include "cgraph.h"
76 #include "diagnostic.h"
77 #include "gimple-pretty-print.h"
78 #include "params.h"
79 #include "tree-pass.h"
80 #include "coverage.h"
81 #include "ggc.h"
82 #include "tree-flow.h"
83 #include "ipa-prop.h"
84 #include "lto-streamer.h"
85 #include "data-streamer.h"
86 #include "tree-streamer.h"
87 #include "ipa-inline.h"
88 #include "alloc-pool.h"
89 #include "cfgloop.h"
90 #include "cfgloop.h"
91 #include "tree-scalar-evolution.h"
93 /* Estimate runtime of function can easilly run into huge numbers with many
94 nested loops. Be sure we can compute time * INLINE_SIZE_SCALE * 2 in an
95 integer. For anything larger we use gcov_type. */
96 #define MAX_TIME 500000
98 /* Number of bits in integer, but we really want to be stable across different
99 hosts. */
100 #define NUM_CONDITIONS 32
102 enum predicate_conditions
104 predicate_false_condition = 0,
105 predicate_not_inlined_condition = 1,
106 predicate_first_dynamic_condition = 2
109 /* Special condition code we use to represent test that operand is compile time
110 constant. */
111 #define IS_NOT_CONSTANT ERROR_MARK
112 /* Special condition code we use to represent test that operand is not changed
113 across invocation of the function. When operand IS_NOT_CONSTANT it is always
114 CHANGED, however i.e. loop invariants can be NOT_CHANGED given percentage
115 of executions even when they are not compile time constants. */
116 #define CHANGED IDENTIFIER_NODE
118 /* Holders of ipa cgraph hooks: */
119 static struct cgraph_node_hook_list *function_insertion_hook_holder;
120 static struct cgraph_node_hook_list *node_removal_hook_holder;
121 static struct cgraph_2node_hook_list *node_duplication_hook_holder;
122 static struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
123 static struct cgraph_edge_hook_list *edge_removal_hook_holder;
124 static void inline_node_removal_hook (struct cgraph_node *, void *);
125 static void inline_node_duplication_hook (struct cgraph_node *,
126 struct cgraph_node *, void *);
127 static void inline_edge_removal_hook (struct cgraph_edge *, void *);
128 static void inline_edge_duplication_hook (struct cgraph_edge *,
129 struct cgraph_edge *, void *);
131 /* VECtor holding inline summaries.
132 In GGC memory because conditions might point to constant trees. */
133 vec<inline_summary_t, va_gc> *inline_summary_vec;
134 vec<inline_edge_summary_t> inline_edge_summary_vec;
136 /* Cached node/edge growths. */
137 vec<int> node_growth_cache;
138 vec<edge_growth_cache_entry> edge_growth_cache;
140 /* Edge predicates goes here. */
141 static alloc_pool edge_predicate_pool;
143 /* Return true predicate (tautology).
144 We represent it by empty list of clauses. */
146 static inline struct predicate
147 true_predicate (void)
149 struct predicate p;
150 p.clause[0] = 0;
151 return p;
155 /* Return predicate testing single condition number COND. */
157 static inline struct predicate
158 single_cond_predicate (int cond)
160 struct predicate p;
161 p.clause[0] = 1 << cond;
162 p.clause[1] = 0;
163 return p;
167 /* Return false predicate. First clause require false condition. */
169 static inline struct predicate
170 false_predicate (void)
172 return single_cond_predicate (predicate_false_condition);
176 /* Return true if P is (false). */
178 static inline bool
179 true_predicate_p (struct predicate *p)
181 return !p->clause[0];
185 /* Return true if P is (false). */
187 static inline bool
188 false_predicate_p (struct predicate *p)
190 if (p->clause[0] == (1 << predicate_false_condition))
192 gcc_checking_assert (!p->clause[1]
193 && p->clause[0] == 1 << predicate_false_condition);
194 return true;
196 return false;
200 /* Return predicate that is set true when function is not inlined. */
202 static inline struct predicate
203 not_inlined_predicate (void)
205 return single_cond_predicate (predicate_not_inlined_condition);
208 /* Simple description of whether a memory load or a condition refers to a load
209 from an aggregate and if so, how and where from in the aggregate.
210 Individual fields have the same meaning like fields with the same name in
211 struct condition. */
213 struct agg_position_info
215 HOST_WIDE_INT offset;
216 bool agg_contents;
217 bool by_ref;
220 /* Add condition to condition list CONDS. AGGPOS describes whether the used
221 oprand is loaded from an aggregate and where in the aggregate it is. It can
222 be NULL, which means this not a load from an aggregate. */
224 static struct predicate
225 add_condition (struct inline_summary *summary, int operand_num,
226 struct agg_position_info *aggpos,
227 enum tree_code code, tree val)
229 int i;
230 struct condition *c;
231 struct condition new_cond;
232 HOST_WIDE_INT offset;
233 bool agg_contents, by_ref;
235 if (aggpos)
237 offset = aggpos->offset;
238 agg_contents = aggpos->agg_contents;
239 by_ref = aggpos->by_ref;
241 else
243 offset = 0;
244 agg_contents = false;
245 by_ref = false;
248 gcc_checking_assert (operand_num >= 0);
249 for (i = 0; vec_safe_iterate (summary->conds, i, &c); i++)
251 if (c->operand_num == operand_num
252 && c->code == code
253 && c->val == val
254 && c->agg_contents == agg_contents
255 && (!agg_contents || (c->offset == offset && c->by_ref == by_ref)))
256 return single_cond_predicate (i + predicate_first_dynamic_condition);
258 /* Too many conditions. Give up and return constant true. */
259 if (i == NUM_CONDITIONS - predicate_first_dynamic_condition)
260 return true_predicate ();
262 new_cond.operand_num = operand_num;
263 new_cond.code = code;
264 new_cond.val = val;
265 new_cond.agg_contents = agg_contents;
266 new_cond.by_ref = by_ref;
267 new_cond.offset = offset;
268 vec_safe_push (summary->conds, new_cond);
269 return single_cond_predicate (i + predicate_first_dynamic_condition);
273 /* Add clause CLAUSE into the predicate P. */
275 static inline void
276 add_clause (conditions conditions, struct predicate *p, clause_t clause)
278 int i;
279 int i2;
280 int insert_here = -1;
281 int c1, c2;
283 /* True clause. */
284 if (!clause)
285 return;
287 /* False clause makes the whole predicate false. Kill the other variants. */
288 if (clause == (1 << predicate_false_condition))
290 p->clause[0] = (1 << predicate_false_condition);
291 p->clause[1] = 0;
292 return;
294 if (false_predicate_p (p))
295 return;
297 /* No one should be sily enough to add false into nontrivial clauses. */
298 gcc_checking_assert (!(clause & (1 << predicate_false_condition)));
300 /* Look where to insert the clause. At the same time prune out
301 clauses of P that are implied by the new clause and thus
302 redundant. */
303 for (i = 0, i2 = 0; i <= MAX_CLAUSES; i++)
305 p->clause[i2] = p->clause[i];
307 if (!p->clause[i])
308 break;
310 /* If p->clause[i] implies clause, there is nothing to add. */
311 if ((p->clause[i] & clause) == p->clause[i])
313 /* We had nothing to add, none of clauses should've become
314 redundant. */
315 gcc_checking_assert (i == i2);
316 return;
319 if (p->clause[i] < clause && insert_here < 0)
320 insert_here = i2;
322 /* If clause implies p->clause[i], then p->clause[i] becomes redundant.
323 Otherwise the p->clause[i] has to stay. */
324 if ((p->clause[i] & clause) != clause)
325 i2++;
328 /* Look for clauses that are obviously true. I.e.
329 op0 == 5 || op0 != 5. */
330 for (c1 = predicate_first_dynamic_condition; c1 < NUM_CONDITIONS; c1++)
332 condition *cc1;
333 if (!(clause & (1 << c1)))
334 continue;
335 cc1 = &(*conditions)[c1 - predicate_first_dynamic_condition];
336 /* We have no way to represent !CHANGED and !IS_NOT_CONSTANT
337 and thus there is no point for looking for them. */
338 if (cc1->code == CHANGED || cc1->code == IS_NOT_CONSTANT)
339 continue;
340 for (c2 = c1 + 1; c2 < NUM_CONDITIONS; c2++)
341 if (clause & (1 << c2))
343 condition *cc1 =
344 &(*conditions)[c1 - predicate_first_dynamic_condition];
345 condition *cc2 =
346 &(*conditions)[c2 - predicate_first_dynamic_condition];
347 if (cc1->operand_num == cc2->operand_num
348 && cc1->val == cc2->val
349 && cc2->code != IS_NOT_CONSTANT
350 && cc2->code != CHANGED
351 && cc1->code == invert_tree_comparison
352 (cc2->code,
353 HONOR_NANS (TYPE_MODE (TREE_TYPE (cc1->val)))))
354 return;
359 /* We run out of variants. Be conservative in positive direction. */
360 if (i2 == MAX_CLAUSES)
361 return;
362 /* Keep clauses in decreasing order. This makes equivalence testing easy. */
363 p->clause[i2 + 1] = 0;
364 if (insert_here >= 0)
365 for (; i2 > insert_here; i2--)
366 p->clause[i2] = p->clause[i2 - 1];
367 else
368 insert_here = i2;
369 p->clause[insert_here] = clause;
373 /* Return P & P2. */
375 static struct predicate
376 and_predicates (conditions conditions,
377 struct predicate *p, struct predicate *p2)
379 struct predicate out = *p;
380 int i;
382 /* Avoid busy work. */
383 if (false_predicate_p (p2) || true_predicate_p (p))
384 return *p2;
385 if (false_predicate_p (p) || true_predicate_p (p2))
386 return *p;
388 /* See how far predicates match. */
389 for (i = 0; p->clause[i] && p->clause[i] == p2->clause[i]; i++)
391 gcc_checking_assert (i < MAX_CLAUSES);
394 /* Combine the predicates rest. */
395 for (; p2->clause[i]; i++)
397 gcc_checking_assert (i < MAX_CLAUSES);
398 add_clause (conditions, &out, p2->clause[i]);
400 return out;
404 /* Return true if predicates are obviously equal. */
406 static inline bool
407 predicates_equal_p (struct predicate *p, struct predicate *p2)
409 int i;
410 for (i = 0; p->clause[i]; i++)
412 gcc_checking_assert (i < MAX_CLAUSES);
413 gcc_checking_assert (p->clause[i] > p->clause[i + 1]);
414 gcc_checking_assert (!p2->clause[i]
415 || p2->clause[i] > p2->clause[i + 1]);
416 if (p->clause[i] != p2->clause[i])
417 return false;
419 return !p2->clause[i];
423 /* Return P | P2. */
425 static struct predicate
426 or_predicates (conditions conditions,
427 struct predicate *p, struct predicate *p2)
429 struct predicate out = true_predicate ();
430 int i, j;
432 /* Avoid busy work. */
433 if (false_predicate_p (p2) || true_predicate_p (p))
434 return *p;
435 if (false_predicate_p (p) || true_predicate_p (p2))
436 return *p2;
437 if (predicates_equal_p (p, p2))
438 return *p;
440 /* OK, combine the predicates. */
441 for (i = 0; p->clause[i]; i++)
442 for (j = 0; p2->clause[j]; j++)
444 gcc_checking_assert (i < MAX_CLAUSES && j < MAX_CLAUSES);
445 add_clause (conditions, &out, p->clause[i] | p2->clause[j]);
447 return out;
451 /* Having partial truth assignment in POSSIBLE_TRUTHS, return false
452 if predicate P is known to be false. */
454 static bool
455 evaluate_predicate (struct predicate *p, clause_t possible_truths)
457 int i;
459 /* True remains true. */
460 if (true_predicate_p (p))
461 return true;
463 gcc_assert (!(possible_truths & (1 << predicate_false_condition)));
465 /* See if we can find clause we can disprove. */
466 for (i = 0; p->clause[i]; i++)
468 gcc_checking_assert (i < MAX_CLAUSES);
469 if (!(p->clause[i] & possible_truths))
470 return false;
472 return true;
475 /* Return the probability in range 0...REG_BR_PROB_BASE that the predicated
476 instruction will be recomputed per invocation of the inlined call. */
478 static int
479 predicate_probability (conditions conds,
480 struct predicate *p, clause_t possible_truths,
481 vec<inline_param_summary_t> inline_param_summary)
483 int i;
484 int combined_prob = REG_BR_PROB_BASE;
486 /* True remains true. */
487 if (true_predicate_p (p))
488 return REG_BR_PROB_BASE;
490 if (false_predicate_p (p))
491 return 0;
493 gcc_assert (!(possible_truths & (1 << predicate_false_condition)));
495 /* See if we can find clause we can disprove. */
496 for (i = 0; p->clause[i]; i++)
498 gcc_checking_assert (i < MAX_CLAUSES);
499 if (!(p->clause[i] & possible_truths))
500 return 0;
501 else
503 int this_prob = 0;
504 int i2;
505 if (!inline_param_summary.exists ())
506 return REG_BR_PROB_BASE;
507 for (i2 = 0; i2 < NUM_CONDITIONS; i2++)
508 if ((p->clause[i] & possible_truths) & (1 << i2))
510 if (i2 >= predicate_first_dynamic_condition)
512 condition *c =
513 &(*conds)[i2 - predicate_first_dynamic_condition];
514 if (c->code == CHANGED
515 && (c->operand_num <
516 (int) inline_param_summary.length ()))
518 int iprob =
519 inline_param_summary[c->operand_num].change_prob;
520 this_prob = MAX (this_prob, iprob);
522 else
523 this_prob = REG_BR_PROB_BASE;
525 else
526 this_prob = REG_BR_PROB_BASE;
528 combined_prob = MIN (this_prob, combined_prob);
529 if (!combined_prob)
530 return 0;
533 return combined_prob;
537 /* Dump conditional COND. */
539 static void
540 dump_condition (FILE *f, conditions conditions, int cond)
542 condition *c;
543 if (cond == predicate_false_condition)
544 fprintf (f, "false");
545 else if (cond == predicate_not_inlined_condition)
546 fprintf (f, "not inlined");
547 else
549 c = &(*conditions)[cond - predicate_first_dynamic_condition];
550 fprintf (f, "op%i", c->operand_num);
551 if (c->agg_contents)
552 fprintf (f, "[%soffset: " HOST_WIDE_INT_PRINT_DEC "]",
553 c->by_ref ? "ref " : "", c->offset);
554 if (c->code == IS_NOT_CONSTANT)
556 fprintf (f, " not constant");
557 return;
559 if (c->code == CHANGED)
561 fprintf (f, " changed");
562 return;
564 fprintf (f, " %s ", op_symbol_code (c->code));
565 print_generic_expr (f, c->val, 1);
570 /* Dump clause CLAUSE. */
572 static void
573 dump_clause (FILE *f, conditions conds, clause_t clause)
575 int i;
576 bool found = false;
577 fprintf (f, "(");
578 if (!clause)
579 fprintf (f, "true");
580 for (i = 0; i < NUM_CONDITIONS; i++)
581 if (clause & (1 << i))
583 if (found)
584 fprintf (f, " || ");
585 found = true;
586 dump_condition (f, conds, i);
588 fprintf (f, ")");
592 /* Dump predicate PREDICATE. */
594 static void
595 dump_predicate (FILE *f, conditions conds, struct predicate *pred)
597 int i;
598 if (true_predicate_p (pred))
599 dump_clause (f, conds, 0);
600 else
601 for (i = 0; pred->clause[i]; i++)
603 if (i)
604 fprintf (f, " && ");
605 dump_clause (f, conds, pred->clause[i]);
607 fprintf (f, "\n");
611 /* Dump inline hints. */
612 void
613 dump_inline_hints (FILE *f, inline_hints hints)
615 if (!hints)
616 return;
617 fprintf (f, "inline hints:");
618 if (hints & INLINE_HINT_indirect_call)
620 hints &= ~INLINE_HINT_indirect_call;
621 fprintf (f, " indirect_call");
623 if (hints & INLINE_HINT_loop_iterations)
625 hints &= ~INLINE_HINT_loop_iterations;
626 fprintf (f, " loop_iterations");
628 if (hints & INLINE_HINT_loop_stride)
630 hints &= ~INLINE_HINT_loop_stride;
631 fprintf (f, " loop_stride");
633 if (hints & INLINE_HINT_same_scc)
635 hints &= ~INLINE_HINT_same_scc;
636 fprintf (f, " same_scc");
638 if (hints & INLINE_HINT_in_scc)
640 hints &= ~INLINE_HINT_in_scc;
641 fprintf (f, " in_scc");
643 if (hints & INLINE_HINT_cross_module)
645 hints &= ~INLINE_HINT_cross_module;
646 fprintf (f, " cross_module");
648 if (hints & INLINE_HINT_declared_inline)
650 hints &= ~INLINE_HINT_declared_inline;
651 fprintf (f, " declared_inline");
653 if (hints & INLINE_HINT_array_index)
655 hints &= ~INLINE_HINT_array_index;
656 fprintf (f, " array_index");
658 gcc_assert (!hints);
662 /* Record SIZE and TIME under condition PRED into the inline summary. */
664 static void
665 account_size_time (struct inline_summary *summary, int size, int time,
666 struct predicate *pred)
668 size_time_entry *e;
669 bool found = false;
670 int i;
672 if (false_predicate_p (pred))
673 return;
675 /* We need to create initial empty unconitional clause, but otherwie
676 we don't need to account empty times and sizes. */
677 if (!size && !time && summary->entry)
678 return;
680 /* Watch overflow that might result from insane profiles. */
681 if (time > MAX_TIME * INLINE_TIME_SCALE)
682 time = MAX_TIME * INLINE_TIME_SCALE;
683 gcc_assert (time >= 0);
685 for (i = 0; vec_safe_iterate (summary->entry, i, &e); i++)
686 if (predicates_equal_p (&e->predicate, pred))
688 found = true;
689 break;
691 if (i == 256)
693 i = 0;
694 found = true;
695 e = &(*summary->entry)[0];
696 gcc_assert (!e->predicate.clause[0]);
697 if (dump_file && (dump_flags & TDF_DETAILS))
698 fprintf (dump_file,
699 "\t\tReached limit on number of entries, "
700 "ignoring the predicate.");
702 if (dump_file && (dump_flags & TDF_DETAILS) && (time || size))
704 fprintf (dump_file,
705 "\t\tAccounting size:%3.2f, time:%3.2f on %spredicate:",
706 ((double) size) / INLINE_SIZE_SCALE,
707 ((double) time) / INLINE_TIME_SCALE, found ? "" : "new ");
708 dump_predicate (dump_file, summary->conds, pred);
710 if (!found)
712 struct size_time_entry new_entry;
713 new_entry.size = size;
714 new_entry.time = time;
715 new_entry.predicate = *pred;
716 vec_safe_push (summary->entry, new_entry);
718 else
720 e->size += size;
721 e->time += time;
722 if (e->time > MAX_TIME * INLINE_TIME_SCALE)
723 e->time = MAX_TIME * INLINE_TIME_SCALE;
727 /* Set predicate for edge E. */
729 static void
730 edge_set_predicate (struct cgraph_edge *e, struct predicate *predicate)
732 struct inline_edge_summary *es = inline_edge_summary (e);
733 if (predicate && !true_predicate_p (predicate))
735 if (!es->predicate)
736 es->predicate = (struct predicate *) pool_alloc (edge_predicate_pool);
737 *es->predicate = *predicate;
739 else
741 if (es->predicate)
742 pool_free (edge_predicate_pool, es->predicate);
743 es->predicate = NULL;
747 /* Set predicate for hint *P. */
749 static void
750 set_hint_predicate (struct predicate **p, struct predicate new_predicate)
752 if (false_predicate_p (&new_predicate) || true_predicate_p (&new_predicate))
754 if (*p)
755 pool_free (edge_predicate_pool, *p);
756 *p = NULL;
758 else
760 if (!*p)
761 *p = (struct predicate *) pool_alloc (edge_predicate_pool);
762 **p = new_predicate;
767 /* KNOWN_VALS is partial mapping of parameters of NODE to constant values.
768 KNOWN_AGGS is a vector of aggreggate jump functions for each parameter.
769 Return clause of possible truths. When INLINE_P is true, assume that we are
770 inlining.
772 ERROR_MARK means compile time invariant. */
774 static clause_t
775 evaluate_conditions_for_known_args (struct cgraph_node *node,
776 bool inline_p,
777 vec<tree> known_vals,
778 vec<ipa_agg_jump_function_p>
779 known_aggs)
781 clause_t clause = inline_p ? 0 : 1 << predicate_not_inlined_condition;
782 struct inline_summary *info = inline_summary (node);
783 int i;
784 struct condition *c;
786 for (i = 0; vec_safe_iterate (info->conds, i, &c); i++)
788 tree val;
789 tree res;
791 /* We allow call stmt to have fewer arguments than the callee function
792 (especially for K&R style programs). So bound check here (we assume
793 known_aggs vector, if non-NULL, has the same length as
794 known_vals). */
795 gcc_checking_assert (!known_aggs.exists ()
796 || (known_vals.length () == known_aggs.length ()));
797 if (c->operand_num >= (int) known_vals.length ())
799 clause |= 1 << (i + predicate_first_dynamic_condition);
800 continue;
803 if (c->agg_contents)
805 struct ipa_agg_jump_function *agg;
807 if (c->code == CHANGED
808 && !c->by_ref
809 && (known_vals[c->operand_num] == error_mark_node))
810 continue;
812 if (known_aggs.exists ())
814 agg = known_aggs[c->operand_num];
815 val = ipa_find_agg_cst_for_param (agg, c->offset, c->by_ref);
817 else
818 val = NULL_TREE;
820 else
822 val = known_vals[c->operand_num];
823 if (val == error_mark_node && c->code != CHANGED)
824 val = NULL_TREE;
827 if (!val)
829 clause |= 1 << (i + predicate_first_dynamic_condition);
830 continue;
832 if (c->code == IS_NOT_CONSTANT || c->code == CHANGED)
833 continue;
834 res = fold_binary_to_constant (c->code, boolean_type_node, val, c->val);
835 if (res && integer_zerop (res))
836 continue;
837 clause |= 1 << (i + predicate_first_dynamic_condition);
839 return clause;
843 /* Work out what conditions might be true at invocation of E. */
845 static void
846 evaluate_properties_for_edge (struct cgraph_edge *e, bool inline_p,
847 clause_t *clause_ptr,
848 vec<tree> *known_vals_ptr,
849 vec<tree> *known_binfos_ptr,
850 vec<ipa_agg_jump_function_p> *known_aggs_ptr)
852 struct cgraph_node *callee =
853 cgraph_function_or_thunk_node (e->callee, NULL);
854 struct inline_summary *info = inline_summary (callee);
855 vec<tree> known_vals = vNULL;
856 vec<ipa_agg_jump_function_p> known_aggs = vNULL;
858 if (clause_ptr)
859 *clause_ptr = inline_p ? 0 : 1 << predicate_not_inlined_condition;
860 if (known_vals_ptr)
861 known_vals_ptr->create (0);
862 if (known_binfos_ptr)
863 known_binfos_ptr->create (0);
865 if (ipa_node_params_vector.exists ()
866 && !e->call_stmt_cannot_inline_p
867 && ((clause_ptr && info->conds) || known_vals_ptr || known_binfos_ptr))
869 struct ipa_node_params *parms_info;
870 struct ipa_edge_args *args = IPA_EDGE_REF (e);
871 struct inline_edge_summary *es = inline_edge_summary (e);
872 int i, count = ipa_get_cs_argument_count (args);
874 if (e->caller->global.inlined_to)
875 parms_info = IPA_NODE_REF (e->caller->global.inlined_to);
876 else
877 parms_info = IPA_NODE_REF (e->caller);
879 if (count && (info->conds || known_vals_ptr))
880 known_vals.safe_grow_cleared (count);
881 if (count && (info->conds || known_aggs_ptr))
882 known_aggs.safe_grow_cleared (count);
883 if (count && known_binfos_ptr)
884 known_binfos_ptr->safe_grow_cleared (count);
886 for (i = 0; i < count; i++)
888 struct ipa_jump_func *jf = ipa_get_ith_jump_func (args, i);
889 tree cst = ipa_value_from_jfunc (parms_info, jf);
890 if (cst)
892 if (known_vals.exists () && TREE_CODE (cst) != TREE_BINFO)
893 known_vals[i] = cst;
894 else if (known_binfos_ptr != NULL
895 && TREE_CODE (cst) == TREE_BINFO)
896 (*known_binfos_ptr)[i] = cst;
898 else if (inline_p && !es->param[i].change_prob)
899 known_vals[i] = error_mark_node;
900 /* TODO: When IPA-CP starts propagating and merging aggregate jump
901 functions, use its knowledge of the caller too, just like the
902 scalar case above. */
903 known_aggs[i] = &jf->agg;
907 if (clause_ptr)
908 *clause_ptr = evaluate_conditions_for_known_args (callee, inline_p,
909 known_vals, known_aggs);
911 if (known_vals_ptr)
912 *known_vals_ptr = known_vals;
913 else
914 known_vals.release ();
916 if (known_aggs_ptr)
917 *known_aggs_ptr = known_aggs;
918 else
919 known_aggs.release ();
923 /* Allocate the inline summary vector or resize it to cover all cgraph nodes. */
925 static void
926 inline_summary_alloc (void)
928 if (!node_removal_hook_holder)
929 node_removal_hook_holder =
930 cgraph_add_node_removal_hook (&inline_node_removal_hook, NULL);
931 if (!edge_removal_hook_holder)
932 edge_removal_hook_holder =
933 cgraph_add_edge_removal_hook (&inline_edge_removal_hook, NULL);
934 if (!node_duplication_hook_holder)
935 node_duplication_hook_holder =
936 cgraph_add_node_duplication_hook (&inline_node_duplication_hook, NULL);
937 if (!edge_duplication_hook_holder)
938 edge_duplication_hook_holder =
939 cgraph_add_edge_duplication_hook (&inline_edge_duplication_hook, NULL);
941 if (vec_safe_length (inline_summary_vec) <= (unsigned) cgraph_max_uid)
942 vec_safe_grow_cleared (inline_summary_vec, cgraph_max_uid + 1);
943 if (inline_edge_summary_vec.length () <= (unsigned) cgraph_edge_max_uid)
944 inline_edge_summary_vec.safe_grow_cleared (cgraph_edge_max_uid + 1);
945 if (!edge_predicate_pool)
946 edge_predicate_pool = create_alloc_pool ("edge predicates",
947 sizeof (struct predicate), 10);
950 /* We are called multiple time for given function; clear
951 data from previous run so they are not cumulated. */
953 static void
954 reset_inline_edge_summary (struct cgraph_edge *e)
956 if (e->uid < (int) inline_edge_summary_vec.length ())
958 struct inline_edge_summary *es = inline_edge_summary (e);
960 es->call_stmt_size = es->call_stmt_time = 0;
961 if (es->predicate)
962 pool_free (edge_predicate_pool, es->predicate);
963 es->predicate = NULL;
964 es->param.release ();
968 /* We are called multiple time for given function; clear
969 data from previous run so they are not cumulated. */
971 static void
972 reset_inline_summary (struct cgraph_node *node)
974 struct inline_summary *info = inline_summary (node);
975 struct cgraph_edge *e;
977 info->self_size = info->self_time = 0;
978 info->estimated_stack_size = 0;
979 info->estimated_self_stack_size = 0;
980 info->stack_frame_offset = 0;
981 info->size = 0;
982 info->time = 0;
983 info->growth = 0;
984 info->scc_no = 0;
985 if (info->loop_iterations)
987 pool_free (edge_predicate_pool, info->loop_iterations);
988 info->loop_iterations = NULL;
990 if (info->loop_stride)
992 pool_free (edge_predicate_pool, info->loop_stride);
993 info->loop_stride = NULL;
995 if (info->array_index)
997 pool_free (edge_predicate_pool, info->array_index);
998 info->array_index = NULL;
1000 vec_free (info->conds);
1001 vec_free (info->entry);
1002 for (e = node->callees; e; e = e->next_callee)
1003 reset_inline_edge_summary (e);
1004 for (e = node->indirect_calls; e; e = e->next_callee)
1005 reset_inline_edge_summary (e);
1008 /* Hook that is called by cgraph.c when a node is removed. */
1010 static void
1011 inline_node_removal_hook (struct cgraph_node *node,
1012 void *data ATTRIBUTE_UNUSED)
1014 struct inline_summary *info;
1015 if (vec_safe_length (inline_summary_vec) <= (unsigned) node->uid)
1016 return;
1017 info = inline_summary (node);
1018 reset_inline_summary (node);
1019 memset (info, 0, sizeof (inline_summary_t));
1022 /* Remap predicate P of former function to be predicate of duplicated functoin.
1023 POSSIBLE_TRUTHS is clause of possible truths in the duplicated node,
1024 INFO is inline summary of the duplicated node. */
1026 static struct predicate
1027 remap_predicate_after_duplication (struct predicate *p,
1028 clause_t possible_truths,
1029 struct inline_summary *info)
1031 struct predicate new_predicate = true_predicate ();
1032 int j;
1033 for (j = 0; p->clause[j]; j++)
1034 if (!(possible_truths & p->clause[j]))
1036 new_predicate = false_predicate ();
1037 break;
1039 else
1040 add_clause (info->conds, &new_predicate,
1041 possible_truths & p->clause[j]);
1042 return new_predicate;
1045 /* Same as remap_predicate_after_duplication but handle hint predicate *P.
1046 Additionally care about allocating new memory slot for updated predicate
1047 and set it to NULL when it becomes true or false (and thus uninteresting).
1050 static void
1051 remap_hint_predicate_after_duplication (struct predicate **p,
1052 clause_t possible_truths,
1053 struct inline_summary *info)
1055 struct predicate new_predicate;
1057 if (!*p)
1058 return;
1060 new_predicate = remap_predicate_after_duplication (*p,
1061 possible_truths, info);
1062 /* We do not want to free previous predicate; it is used by node origin. */
1063 *p = NULL;
1064 set_hint_predicate (p, new_predicate);
1068 /* Hook that is called by cgraph.c when a node is duplicated. */
1070 static void
1071 inline_node_duplication_hook (struct cgraph_node *src,
1072 struct cgraph_node *dst,
1073 ATTRIBUTE_UNUSED void *data)
1075 struct inline_summary *info;
1076 inline_summary_alloc ();
1077 info = inline_summary (dst);
1078 memcpy (info, inline_summary (src), sizeof (struct inline_summary));
1079 /* TODO: as an optimization, we may avoid copying conditions
1080 that are known to be false or true. */
1081 info->conds = vec_safe_copy (info->conds);
1083 /* When there are any replacements in the function body, see if we can figure
1084 out that something was optimized out. */
1085 if (ipa_node_params_vector.exists () && dst->clone.tree_map)
1087 vec<size_time_entry, va_gc> *entry = info->entry;
1088 /* Use SRC parm info since it may not be copied yet. */
1089 struct ipa_node_params *parms_info = IPA_NODE_REF (src);
1090 vec<tree> known_vals = vNULL;
1091 int count = ipa_get_param_count (parms_info);
1092 int i, j;
1093 clause_t possible_truths;
1094 struct predicate true_pred = true_predicate ();
1095 size_time_entry *e;
1096 int optimized_out_size = 0;
1097 bool inlined_to_p = false;
1098 struct cgraph_edge *edge;
1100 info->entry = 0;
1101 known_vals.safe_grow_cleared (count);
1102 for (i = 0; i < count; i++)
1104 struct ipa_replace_map *r;
1106 for (j = 0; vec_safe_iterate (dst->clone.tree_map, j, &r); j++)
1108 if (((!r->old_tree && r->parm_num == i)
1109 || (r->old_tree && r->old_tree == ipa_get_param (parms_info, i)))
1110 && r->replace_p && !r->ref_p)
1112 known_vals[i] = r->new_tree;
1113 break;
1117 possible_truths = evaluate_conditions_for_known_args (dst, false,
1118 known_vals,
1119 vNULL);
1120 known_vals.release ();
1122 account_size_time (info, 0, 0, &true_pred);
1124 /* Remap size_time vectors.
1125 Simplify the predicate by prunning out alternatives that are known
1126 to be false.
1127 TODO: as on optimization, we can also eliminate conditions known
1128 to be true. */
1129 for (i = 0; vec_safe_iterate (entry, i, &e); i++)
1131 struct predicate new_predicate;
1132 new_predicate = remap_predicate_after_duplication (&e->predicate,
1133 possible_truths,
1134 info);
1135 if (false_predicate_p (&new_predicate))
1136 optimized_out_size += e->size;
1137 else
1138 account_size_time (info, e->size, e->time, &new_predicate);
1141 /* Remap edge predicates with the same simplification as above.
1142 Also copy constantness arrays. */
1143 for (edge = dst->callees; edge; edge = edge->next_callee)
1145 struct predicate new_predicate;
1146 struct inline_edge_summary *es = inline_edge_summary (edge);
1148 if (!edge->inline_failed)
1149 inlined_to_p = true;
1150 if (!es->predicate)
1151 continue;
1152 new_predicate = remap_predicate_after_duplication (es->predicate,
1153 possible_truths,
1154 info);
1155 if (false_predicate_p (&new_predicate)
1156 && !false_predicate_p (es->predicate))
1158 optimized_out_size += es->call_stmt_size * INLINE_SIZE_SCALE;
1159 edge->frequency = 0;
1161 edge_set_predicate (edge, &new_predicate);
1164 /* Remap indirect edge predicates with the same simplificaiton as above.
1165 Also copy constantness arrays. */
1166 for (edge = dst->indirect_calls; edge; edge = edge->next_callee)
1168 struct predicate new_predicate;
1169 struct inline_edge_summary *es = inline_edge_summary (edge);
1171 gcc_checking_assert (edge->inline_failed);
1172 if (!es->predicate)
1173 continue;
1174 new_predicate = remap_predicate_after_duplication (es->predicate,
1175 possible_truths,
1176 info);
1177 if (false_predicate_p (&new_predicate)
1178 && !false_predicate_p (es->predicate))
1180 optimized_out_size += es->call_stmt_size * INLINE_SIZE_SCALE;
1181 edge->frequency = 0;
1183 edge_set_predicate (edge, &new_predicate);
1185 remap_hint_predicate_after_duplication (&info->loop_iterations,
1186 possible_truths, info);
1187 remap_hint_predicate_after_duplication (&info->loop_stride,
1188 possible_truths, info);
1189 remap_hint_predicate_after_duplication (&info->array_index,
1190 possible_truths, info);
1192 /* If inliner or someone after inliner will ever start producing
1193 non-trivial clones, we will get trouble with lack of information
1194 about updating self sizes, because size vectors already contains
1195 sizes of the calees. */
1196 gcc_assert (!inlined_to_p || !optimized_out_size);
1198 else
1200 info->entry = vec_safe_copy (info->entry);
1201 if (info->loop_iterations)
1203 predicate p = *info->loop_iterations;
1204 info->loop_iterations = NULL;
1205 set_hint_predicate (&info->loop_iterations, p);
1207 if (info->loop_stride)
1209 predicate p = *info->loop_stride;
1210 info->loop_stride = NULL;
1211 set_hint_predicate (&info->loop_stride, p);
1213 if (info->array_index)
1215 predicate p = *info->array_index;
1216 info->array_index = NULL;
1217 set_hint_predicate (&info->array_index, p);
1220 inline_update_overall_summary (dst);
1224 /* Hook that is called by cgraph.c when a node is duplicated. */
1226 static void
1227 inline_edge_duplication_hook (struct cgraph_edge *src,
1228 struct cgraph_edge *dst,
1229 ATTRIBUTE_UNUSED void *data)
1231 struct inline_edge_summary *info;
1232 struct inline_edge_summary *srcinfo;
1233 inline_summary_alloc ();
1234 info = inline_edge_summary (dst);
1235 srcinfo = inline_edge_summary (src);
1236 memcpy (info, srcinfo, sizeof (struct inline_edge_summary));
1237 info->predicate = NULL;
1238 edge_set_predicate (dst, srcinfo->predicate);
1239 info->param = srcinfo->param.copy ();
1243 /* Keep edge cache consistent across edge removal. */
1245 static void
1246 inline_edge_removal_hook (struct cgraph_edge *edge,
1247 void *data ATTRIBUTE_UNUSED)
1249 if (edge_growth_cache.exists ())
1250 reset_edge_growth_cache (edge);
1251 reset_inline_edge_summary (edge);
1255 /* Initialize growth caches. */
1257 void
1258 initialize_growth_caches (void)
1260 if (cgraph_edge_max_uid)
1261 edge_growth_cache.safe_grow_cleared (cgraph_edge_max_uid);
1262 if (cgraph_max_uid)
1263 node_growth_cache.safe_grow_cleared (cgraph_max_uid);
1267 /* Free growth caches. */
1269 void
1270 free_growth_caches (void)
1272 edge_growth_cache.release ();
1273 node_growth_cache.release ();
1277 /* Dump edge summaries associated to NODE and recursively to all clones.
1278 Indent by INDENT. */
1280 static void
1281 dump_inline_edge_summary (FILE *f, int indent, struct cgraph_node *node,
1282 struct inline_summary *info)
1284 struct cgraph_edge *edge;
1285 for (edge = node->callees; edge; edge = edge->next_callee)
1287 struct inline_edge_summary *es = inline_edge_summary (edge);
1288 struct cgraph_node *callee =
1289 cgraph_function_or_thunk_node (edge->callee, NULL);
1290 int i;
1292 fprintf (f,
1293 "%*s%s/%i %s\n%*s loop depth:%2i freq:%4i size:%2i"
1294 " time: %2i callee size:%2i stack:%2i",
1295 indent, "", cgraph_node_name (callee), callee->symbol.order,
1296 !edge->inline_failed
1297 ? "inlined" : cgraph_inline_failed_string (edge-> inline_failed),
1298 indent, "", es->loop_depth, edge->frequency,
1299 es->call_stmt_size, es->call_stmt_time,
1300 (int) inline_summary (callee)->size / INLINE_SIZE_SCALE,
1301 (int) inline_summary (callee)->estimated_stack_size);
1303 if (es->predicate)
1305 fprintf (f, " predicate: ");
1306 dump_predicate (f, info->conds, es->predicate);
1308 else
1309 fprintf (f, "\n");
1310 if (es->param.exists ())
1311 for (i = 0; i < (int) es->param.length (); i++)
1313 int prob = es->param[i].change_prob;
1315 if (!prob)
1316 fprintf (f, "%*s op%i is compile time invariant\n",
1317 indent + 2, "", i);
1318 else if (prob != REG_BR_PROB_BASE)
1319 fprintf (f, "%*s op%i change %f%% of time\n", indent + 2, "", i,
1320 prob * 100.0 / REG_BR_PROB_BASE);
1322 if (!edge->inline_failed)
1324 fprintf (f, "%*sStack frame offset %i, callee self size %i,"
1325 " callee size %i\n",
1326 indent + 2, "",
1327 (int) inline_summary (callee)->stack_frame_offset,
1328 (int) inline_summary (callee)->estimated_self_stack_size,
1329 (int) inline_summary (callee)->estimated_stack_size);
1330 dump_inline_edge_summary (f, indent + 2, callee, info);
1333 for (edge = node->indirect_calls; edge; edge = edge->next_callee)
1335 struct inline_edge_summary *es = inline_edge_summary (edge);
1336 fprintf (f, "%*sindirect call loop depth:%2i freq:%4i size:%2i"
1337 " time: %2i",
1338 indent, "",
1339 es->loop_depth,
1340 edge->frequency, es->call_stmt_size, es->call_stmt_time);
1341 if (es->predicate)
1343 fprintf (f, "predicate: ");
1344 dump_predicate (f, info->conds, es->predicate);
1346 else
1347 fprintf (f, "\n");
1352 void
1353 dump_inline_summary (FILE *f, struct cgraph_node *node)
1355 if (node->symbol.definition)
1357 struct inline_summary *s = inline_summary (node);
1358 size_time_entry *e;
1359 int i;
1360 fprintf (f, "Inline summary for %s/%i", cgraph_node_name (node),
1361 node->symbol.order);
1362 if (DECL_DISREGARD_INLINE_LIMITS (node->symbol.decl))
1363 fprintf (f, " always_inline");
1364 if (s->inlinable)
1365 fprintf (f, " inlinable");
1366 fprintf (f, "\n self time: %i\n", s->self_time);
1367 fprintf (f, " global time: %i\n", s->time);
1368 fprintf (f, " self size: %i\n", s->self_size);
1369 fprintf (f, " global size: %i\n", s->size);
1370 fprintf (f, " self stack: %i\n",
1371 (int) s->estimated_self_stack_size);
1372 fprintf (f, " global stack: %i\n", (int) s->estimated_stack_size);
1373 if (s->growth)
1374 fprintf (f, " estimated growth:%i\n", (int) s->growth);
1375 if (s->scc_no)
1376 fprintf (f, " In SCC: %i\n", (int) s->scc_no);
1377 for (i = 0; vec_safe_iterate (s->entry, i, &e); i++)
1379 fprintf (f, " size:%f, time:%f, predicate:",
1380 (double) e->size / INLINE_SIZE_SCALE,
1381 (double) e->time / INLINE_TIME_SCALE);
1382 dump_predicate (f, s->conds, &e->predicate);
1384 if (s->loop_iterations)
1386 fprintf (f, " loop iterations:");
1387 dump_predicate (f, s->conds, s->loop_iterations);
1389 if (s->loop_stride)
1391 fprintf (f, " loop stride:");
1392 dump_predicate (f, s->conds, s->loop_stride);
1394 if (s->array_index)
1396 fprintf (f, " array index:");
1397 dump_predicate (f, s->conds, s->array_index);
1399 fprintf (f, " calls:\n");
1400 dump_inline_edge_summary (f, 4, node, s);
1401 fprintf (f, "\n");
1405 DEBUG_FUNCTION void
1406 debug_inline_summary (struct cgraph_node *node)
1408 dump_inline_summary (stderr, node);
1411 void
1412 dump_inline_summaries (FILE *f)
1414 struct cgraph_node *node;
1416 FOR_EACH_DEFINED_FUNCTION (node)
1417 if (!node->global.inlined_to)
1418 dump_inline_summary (f, node);
1421 /* Give initial reasons why inlining would fail on EDGE. This gets either
1422 nullified or usually overwritten by more precise reasons later. */
1424 void
1425 initialize_inline_failed (struct cgraph_edge *e)
1427 struct cgraph_node *callee = e->callee;
1429 if (e->indirect_unknown_callee)
1430 e->inline_failed = CIF_INDIRECT_UNKNOWN_CALL;
1431 else if (!callee->symbol.definition)
1432 e->inline_failed = CIF_BODY_NOT_AVAILABLE;
1433 else if (callee->local.redefined_extern_inline)
1434 e->inline_failed = CIF_REDEFINED_EXTERN_INLINE;
1435 else if (e->call_stmt_cannot_inline_p)
1436 e->inline_failed = CIF_MISMATCHED_ARGUMENTS;
1437 else
1438 e->inline_failed = CIF_FUNCTION_NOT_CONSIDERED;
1441 /* Callback of walk_aliased_vdefs. Flags that it has been invoked to the
1442 boolean variable pointed to by DATA. */
1444 static bool
1445 mark_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
1446 void *data)
1448 bool *b = (bool *) data;
1449 *b = true;
1450 return true;
1453 /* If OP refers to value of function parameter, return the corresponding
1454 parameter. */
1456 static tree
1457 unmodified_parm_1 (gimple stmt, tree op)
1459 /* SSA_NAME referring to parm default def? */
1460 if (TREE_CODE (op) == SSA_NAME
1461 && SSA_NAME_IS_DEFAULT_DEF (op)
1462 && TREE_CODE (SSA_NAME_VAR (op)) == PARM_DECL)
1463 return SSA_NAME_VAR (op);
1464 /* Non-SSA parm reference? */
1465 if (TREE_CODE (op) == PARM_DECL)
1467 bool modified = false;
1469 ao_ref refd;
1470 ao_ref_init (&refd, op);
1471 walk_aliased_vdefs (&refd, gimple_vuse (stmt), mark_modified, &modified,
1472 NULL);
1473 if (!modified)
1474 return op;
1476 return NULL_TREE;
1479 /* If OP refers to value of function parameter, return the corresponding
1480 parameter. Also traverse chains of SSA register assignments. */
1482 static tree
1483 unmodified_parm (gimple stmt, tree op)
1485 tree res = unmodified_parm_1 (stmt, op);
1486 if (res)
1487 return res;
1489 if (TREE_CODE (op) == SSA_NAME
1490 && !SSA_NAME_IS_DEFAULT_DEF (op)
1491 && gimple_assign_single_p (SSA_NAME_DEF_STMT (op)))
1492 return unmodified_parm (SSA_NAME_DEF_STMT (op),
1493 gimple_assign_rhs1 (SSA_NAME_DEF_STMT (op)));
1494 return NULL_TREE;
1497 /* If OP refers to a value of a function parameter or value loaded from an
1498 aggregate passed to a parameter (either by value or reference), return TRUE
1499 and store the number of the parameter to *INDEX_P and information whether
1500 and how it has been loaded from an aggregate into *AGGPOS. INFO describes
1501 the function parameters, STMT is the statement in which OP is used or
1502 loaded. */
1504 static bool
1505 unmodified_parm_or_parm_agg_item (struct ipa_node_params *info,
1506 gimple stmt, tree op, int *index_p,
1507 struct agg_position_info *aggpos)
1509 tree res = unmodified_parm_1 (stmt, op);
1511 gcc_checking_assert (aggpos);
1512 if (res)
1514 *index_p = ipa_get_param_decl_index (info, res);
1515 if (*index_p < 0)
1516 return false;
1517 aggpos->agg_contents = false;
1518 aggpos->by_ref = false;
1519 return true;
1522 if (TREE_CODE (op) == SSA_NAME)
1524 if (SSA_NAME_IS_DEFAULT_DEF (op)
1525 || !gimple_assign_single_p (SSA_NAME_DEF_STMT (op)))
1526 return false;
1527 stmt = SSA_NAME_DEF_STMT (op);
1528 op = gimple_assign_rhs1 (stmt);
1529 if (!REFERENCE_CLASS_P (op))
1530 return unmodified_parm_or_parm_agg_item (info, stmt, op, index_p,
1531 aggpos);
1534 aggpos->agg_contents = true;
1535 return ipa_load_from_parm_agg (info, stmt, op, index_p, &aggpos->offset,
1536 &aggpos->by_ref);
1539 /* See if statement might disappear after inlining.
1540 0 - means not eliminated
1541 1 - half of statements goes away
1542 2 - for sure it is eliminated.
1543 We are not terribly sophisticated, basically looking for simple abstraction
1544 penalty wrappers. */
1546 static int
1547 eliminated_by_inlining_prob (gimple stmt)
1549 enum gimple_code code = gimple_code (stmt);
1550 enum tree_code rhs_code;
1552 if (!optimize)
1553 return 0;
1555 switch (code)
1557 case GIMPLE_RETURN:
1558 return 2;
1559 case GIMPLE_ASSIGN:
1560 if (gimple_num_ops (stmt) != 2)
1561 return 0;
1563 rhs_code = gimple_assign_rhs_code (stmt);
1565 /* Casts of parameters, loads from parameters passed by reference
1566 and stores to return value or parameters are often free after
1567 inlining dua to SRA and further combining.
1568 Assume that half of statements goes away. */
1569 if (rhs_code == CONVERT_EXPR
1570 || rhs_code == NOP_EXPR
1571 || rhs_code == VIEW_CONVERT_EXPR
1572 || rhs_code == ADDR_EXPR
1573 || gimple_assign_rhs_class (stmt) == GIMPLE_SINGLE_RHS)
1575 tree rhs = gimple_assign_rhs1 (stmt);
1576 tree lhs = gimple_assign_lhs (stmt);
1577 tree inner_rhs = get_base_address (rhs);
1578 tree inner_lhs = get_base_address (lhs);
1579 bool rhs_free = false;
1580 bool lhs_free = false;
1582 if (!inner_rhs)
1583 inner_rhs = rhs;
1584 if (!inner_lhs)
1585 inner_lhs = lhs;
1587 /* Reads of parameter are expected to be free. */
1588 if (unmodified_parm (stmt, inner_rhs))
1589 rhs_free = true;
1590 /* Match expressions of form &this->field. Those will most likely
1591 combine with something upstream after inlining. */
1592 else if (TREE_CODE (inner_rhs) == ADDR_EXPR)
1594 tree op = get_base_address (TREE_OPERAND (inner_rhs, 0));
1595 if (TREE_CODE (op) == PARM_DECL)
1596 rhs_free = true;
1597 else if (TREE_CODE (op) == MEM_REF
1598 && unmodified_parm (stmt, TREE_OPERAND (op, 0)))
1599 rhs_free = true;
1602 /* When parameter is not SSA register because its address is taken
1603 and it is just copied into one, the statement will be completely
1604 free after inlining (we will copy propagate backward). */
1605 if (rhs_free && is_gimple_reg (lhs))
1606 return 2;
1608 /* Reads of parameters passed by reference
1609 expected to be free (i.e. optimized out after inlining). */
1610 if (TREE_CODE (inner_rhs) == MEM_REF
1611 && unmodified_parm (stmt, TREE_OPERAND (inner_rhs, 0)))
1612 rhs_free = true;
1614 /* Copying parameter passed by reference into gimple register is
1615 probably also going to copy propagate, but we can't be quite
1616 sure. */
1617 if (rhs_free && is_gimple_reg (lhs))
1618 lhs_free = true;
1620 /* Writes to parameters, parameters passed by value and return value
1621 (either dirrectly or passed via invisible reference) are free.
1623 TODO: We ought to handle testcase like
1624 struct a {int a,b;};
1625 struct a
1626 retrurnsturct (void)
1628 struct a a ={1,2};
1629 return a;
1632 This translate into:
1634 retrurnsturct ()
1636 int a$b;
1637 int a$a;
1638 struct a a;
1639 struct a D.2739;
1641 <bb 2>:
1642 D.2739.a = 1;
1643 D.2739.b = 2;
1644 return D.2739;
1647 For that we either need to copy ipa-split logic detecting writes
1648 to return value. */
1649 if (TREE_CODE (inner_lhs) == PARM_DECL
1650 || TREE_CODE (inner_lhs) == RESULT_DECL
1651 || (TREE_CODE (inner_lhs) == MEM_REF
1652 && (unmodified_parm (stmt, TREE_OPERAND (inner_lhs, 0))
1653 || (TREE_CODE (TREE_OPERAND (inner_lhs, 0)) == SSA_NAME
1654 && SSA_NAME_VAR (TREE_OPERAND (inner_lhs, 0))
1655 && TREE_CODE (SSA_NAME_VAR (TREE_OPERAND
1656 (inner_lhs,
1657 0))) == RESULT_DECL))))
1658 lhs_free = true;
1659 if (lhs_free
1660 && (is_gimple_reg (rhs) || is_gimple_min_invariant (rhs)))
1661 rhs_free = true;
1662 if (lhs_free && rhs_free)
1663 return 1;
1665 return 0;
1666 default:
1667 return 0;
1672 /* If BB ends by a conditional we can turn into predicates, attach corresponding
1673 predicates to the CFG edges. */
1675 static void
1676 set_cond_stmt_execution_predicate (struct ipa_node_params *info,
1677 struct inline_summary *summary,
1678 basic_block bb)
1680 gimple last;
1681 tree op;
1682 int index;
1683 struct agg_position_info aggpos;
1684 enum tree_code code, inverted_code;
1685 edge e;
1686 edge_iterator ei;
1687 gimple set_stmt;
1688 tree op2;
1690 last = last_stmt (bb);
1691 if (!last || gimple_code (last) != GIMPLE_COND)
1692 return;
1693 if (!is_gimple_ip_invariant (gimple_cond_rhs (last)))
1694 return;
1695 op = gimple_cond_lhs (last);
1696 /* TODO: handle conditionals like
1697 var = op0 < 4;
1698 if (var != 0). */
1699 if (unmodified_parm_or_parm_agg_item (info, last, op, &index, &aggpos))
1701 code = gimple_cond_code (last);
1702 inverted_code
1703 = invert_tree_comparison (code,
1704 HONOR_NANS (TYPE_MODE (TREE_TYPE (op))));
1706 FOR_EACH_EDGE (e, ei, bb->succs)
1708 struct predicate p = add_condition (summary, index, &aggpos,
1709 e->flags & EDGE_TRUE_VALUE
1710 ? code : inverted_code,
1711 gimple_cond_rhs (last));
1712 e->aux = pool_alloc (edge_predicate_pool);
1713 *(struct predicate *) e->aux = p;
1717 if (TREE_CODE (op) != SSA_NAME)
1718 return;
1719 /* Special case
1720 if (builtin_constant_p (op))
1721 constant_code
1722 else
1723 nonconstant_code.
1724 Here we can predicate nonconstant_code. We can't
1725 really handle constant_code since we have no predicate
1726 for this and also the constant code is not known to be
1727 optimized away when inliner doen't see operand is constant.
1728 Other optimizers might think otherwise. */
1729 if (gimple_cond_code (last) != NE_EXPR
1730 || !integer_zerop (gimple_cond_rhs (last)))
1731 return;
1732 set_stmt = SSA_NAME_DEF_STMT (op);
1733 if (!gimple_call_builtin_p (set_stmt, BUILT_IN_CONSTANT_P)
1734 || gimple_call_num_args (set_stmt) != 1)
1735 return;
1736 op2 = gimple_call_arg (set_stmt, 0);
1737 if (!unmodified_parm_or_parm_agg_item
1738 (info, set_stmt, op2, &index, &aggpos))
1739 return;
1740 FOR_EACH_EDGE (e, ei, bb->succs) if (e->flags & EDGE_FALSE_VALUE)
1742 struct predicate p = add_condition (summary, index, &aggpos,
1743 IS_NOT_CONSTANT, NULL_TREE);
1744 e->aux = pool_alloc (edge_predicate_pool);
1745 *(struct predicate *) e->aux = p;
1750 /* If BB ends by a switch we can turn into predicates, attach corresponding
1751 predicates to the CFG edges. */
1753 static void
1754 set_switch_stmt_execution_predicate (struct ipa_node_params *info,
1755 struct inline_summary *summary,
1756 basic_block bb)
1758 gimple last;
1759 tree op;
1760 int index;
1761 struct agg_position_info aggpos;
1762 edge e;
1763 edge_iterator ei;
1764 size_t n;
1765 size_t case_idx;
1767 last = last_stmt (bb);
1768 if (!last || gimple_code (last) != GIMPLE_SWITCH)
1769 return;
1770 op = gimple_switch_index (last);
1771 if (!unmodified_parm_or_parm_agg_item (info, last, op, &index, &aggpos))
1772 return;
1774 FOR_EACH_EDGE (e, ei, bb->succs)
1776 e->aux = pool_alloc (edge_predicate_pool);
1777 *(struct predicate *) e->aux = false_predicate ();
1779 n = gimple_switch_num_labels (last);
1780 for (case_idx = 0; case_idx < n; ++case_idx)
1782 tree cl = gimple_switch_label (last, case_idx);
1783 tree min, max;
1784 struct predicate p;
1786 e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
1787 min = CASE_LOW (cl);
1788 max = CASE_HIGH (cl);
1790 /* For default we might want to construct predicate that none
1791 of cases is met, but it is bit hard to do not having negations
1792 of conditionals handy. */
1793 if (!min && !max)
1794 p = true_predicate ();
1795 else if (!max)
1796 p = add_condition (summary, index, &aggpos, EQ_EXPR, min);
1797 else
1799 struct predicate p1, p2;
1800 p1 = add_condition (summary, index, &aggpos, GE_EXPR, min);
1801 p2 = add_condition (summary, index, &aggpos, LE_EXPR, max);
1802 p = and_predicates (summary->conds, &p1, &p2);
1804 *(struct predicate *) e->aux
1805 = or_predicates (summary->conds, &p, (struct predicate *) e->aux);
1810 /* For each BB in NODE attach to its AUX pointer predicate under
1811 which it is executable. */
1813 static void
1814 compute_bb_predicates (struct cgraph_node *node,
1815 struct ipa_node_params *parms_info,
1816 struct inline_summary *summary)
1818 struct function *my_function = DECL_STRUCT_FUNCTION (node->symbol.decl);
1819 bool done = false;
1820 basic_block bb;
1822 FOR_EACH_BB_FN (bb, my_function)
1824 set_cond_stmt_execution_predicate (parms_info, summary, bb);
1825 set_switch_stmt_execution_predicate (parms_info, summary, bb);
1828 /* Entry block is always executable. */
1829 ENTRY_BLOCK_PTR_FOR_FUNCTION (my_function)->aux
1830 = pool_alloc (edge_predicate_pool);
1831 *(struct predicate *) ENTRY_BLOCK_PTR_FOR_FUNCTION (my_function)->aux
1832 = true_predicate ();
1834 /* A simple dataflow propagation of predicates forward in the CFG.
1835 TODO: work in reverse postorder. */
1836 while (!done)
1838 done = true;
1839 FOR_EACH_BB_FN (bb, my_function)
1841 struct predicate p = false_predicate ();
1842 edge e;
1843 edge_iterator ei;
1844 FOR_EACH_EDGE (e, ei, bb->preds)
1846 if (e->src->aux)
1848 struct predicate this_bb_predicate
1849 = *(struct predicate *) e->src->aux;
1850 if (e->aux)
1851 this_bb_predicate
1852 = and_predicates (summary->conds, &this_bb_predicate,
1853 (struct predicate *) e->aux);
1854 p = or_predicates (summary->conds, &p, &this_bb_predicate);
1855 if (true_predicate_p (&p))
1856 break;
1859 if (false_predicate_p (&p))
1860 gcc_assert (!bb->aux);
1861 else
1863 if (!bb->aux)
1865 done = false;
1866 bb->aux = pool_alloc (edge_predicate_pool);
1867 *((struct predicate *) bb->aux) = p;
1869 else if (!predicates_equal_p (&p, (struct predicate *) bb->aux))
1871 done = false;
1872 *((struct predicate *) bb->aux) = p;
1880 /* We keep info about constantness of SSA names. */
1882 typedef struct predicate predicate_t;
1883 /* Return predicate specifying when the STMT might have result that is not
1884 a compile time constant. */
1886 static struct predicate
1887 will_be_nonconstant_expr_predicate (struct ipa_node_params *info,
1888 struct inline_summary *summary,
1889 tree expr,
1890 vec<predicate_t> nonconstant_names)
1892 tree parm;
1893 int index;
1895 while (UNARY_CLASS_P (expr))
1896 expr = TREE_OPERAND (expr, 0);
1898 parm = unmodified_parm (NULL, expr);
1899 if (parm && (index = ipa_get_param_decl_index (info, parm)) >= 0)
1900 return add_condition (summary, index, NULL, CHANGED, NULL_TREE);
1901 if (is_gimple_min_invariant (expr))
1902 return false_predicate ();
1903 if (TREE_CODE (expr) == SSA_NAME)
1904 return nonconstant_names[SSA_NAME_VERSION (expr)];
1905 if (BINARY_CLASS_P (expr) || COMPARISON_CLASS_P (expr))
1907 struct predicate p1 = will_be_nonconstant_expr_predicate
1908 (info, summary, TREE_OPERAND (expr, 0),
1909 nonconstant_names);
1910 struct predicate p2;
1911 if (true_predicate_p (&p1))
1912 return p1;
1913 p2 = will_be_nonconstant_expr_predicate (info, summary,
1914 TREE_OPERAND (expr, 1),
1915 nonconstant_names);
1916 return or_predicates (summary->conds, &p1, &p2);
1918 else if (TREE_CODE (expr) == COND_EXPR)
1920 struct predicate p1 = will_be_nonconstant_expr_predicate
1921 (info, summary, TREE_OPERAND (expr, 0),
1922 nonconstant_names);
1923 struct predicate p2;
1924 if (true_predicate_p (&p1))
1925 return p1;
1926 p2 = will_be_nonconstant_expr_predicate (info, summary,
1927 TREE_OPERAND (expr, 1),
1928 nonconstant_names);
1929 if (true_predicate_p (&p2))
1930 return p2;
1931 p1 = or_predicates (summary->conds, &p1, &p2);
1932 p2 = will_be_nonconstant_expr_predicate (info, summary,
1933 TREE_OPERAND (expr, 2),
1934 nonconstant_names);
1935 return or_predicates (summary->conds, &p1, &p2);
1937 else
1939 debug_tree (expr);
1940 gcc_unreachable ();
1942 return false_predicate ();
1946 /* Return predicate specifying when the STMT might have result that is not
1947 a compile time constant. */
1949 static struct predicate
1950 will_be_nonconstant_predicate (struct ipa_node_params *info,
1951 struct inline_summary *summary,
1952 gimple stmt,
1953 vec<predicate_t> nonconstant_names)
1955 struct predicate p = true_predicate ();
1956 ssa_op_iter iter;
1957 tree use;
1958 struct predicate op_non_const;
1959 bool is_load;
1960 int base_index;
1961 struct agg_position_info aggpos;
1963 /* What statments might be optimized away
1964 when their arguments are constant
1965 TODO: also trivial builtins.
1966 builtin_constant_p is already handled later. */
1967 if (gimple_code (stmt) != GIMPLE_ASSIGN
1968 && gimple_code (stmt) != GIMPLE_COND
1969 && gimple_code (stmt) != GIMPLE_SWITCH)
1970 return p;
1972 /* Stores will stay anyway. */
1973 if (gimple_store_p (stmt))
1974 return p;
1976 is_load = gimple_assign_load_p (stmt);
1978 /* Loads can be optimized when the value is known. */
1979 if (is_load)
1981 tree op;
1982 gcc_assert (gimple_assign_single_p (stmt));
1983 op = gimple_assign_rhs1 (stmt);
1984 if (!unmodified_parm_or_parm_agg_item (info, stmt, op, &base_index,
1985 &aggpos))
1986 return p;
1988 else
1989 base_index = -1;
1991 /* See if we understand all operands before we start
1992 adding conditionals. */
1993 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
1995 tree parm = unmodified_parm (stmt, use);
1996 /* For arguments we can build a condition. */
1997 if (parm && ipa_get_param_decl_index (info, parm) >= 0)
1998 continue;
1999 if (TREE_CODE (use) != SSA_NAME)
2000 return p;
2001 /* If we know when operand is constant,
2002 we still can say something useful. */
2003 if (!true_predicate_p (&nonconstant_names[SSA_NAME_VERSION (use)]))
2004 continue;
2005 return p;
2008 if (is_load)
2009 op_non_const =
2010 add_condition (summary, base_index, &aggpos, CHANGED, NULL);
2011 else
2012 op_non_const = false_predicate ();
2013 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
2015 tree parm = unmodified_parm (stmt, use);
2016 int index;
2018 if (parm && (index = ipa_get_param_decl_index (info, parm)) >= 0)
2020 if (index != base_index)
2021 p = add_condition (summary, index, NULL, CHANGED, NULL_TREE);
2022 else
2023 continue;
2025 else
2026 p = nonconstant_names[SSA_NAME_VERSION (use)];
2027 op_non_const = or_predicates (summary->conds, &p, &op_non_const);
2029 if (gimple_code (stmt) == GIMPLE_ASSIGN
2030 && TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
2031 nonconstant_names[SSA_NAME_VERSION (gimple_assign_lhs (stmt))]
2032 = op_non_const;
2033 return op_non_const;
2036 struct record_modified_bb_info
2038 bitmap bb_set;
2039 gimple stmt;
2042 /* Callback of walk_aliased_vdefs. Records basic blocks where the value may be
2043 set except for info->stmt. */
2045 static bool
2046 record_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef, void *data)
2048 struct record_modified_bb_info *info =
2049 (struct record_modified_bb_info *) data;
2050 if (SSA_NAME_DEF_STMT (vdef) == info->stmt)
2051 return false;
2052 bitmap_set_bit (info->bb_set,
2053 SSA_NAME_IS_DEFAULT_DEF (vdef)
2054 ? ENTRY_BLOCK_PTR->index
2055 : gimple_bb (SSA_NAME_DEF_STMT (vdef))->index);
2056 return false;
2059 /* Return probability (based on REG_BR_PROB_BASE) that I-th parameter of STMT
2060 will change since last invocation of STMT.
2062 Value 0 is reserved for compile time invariants.
2063 For common parameters it is REG_BR_PROB_BASE. For loop invariants it
2064 ought to be REG_BR_PROB_BASE / estimated_iters. */
2066 static int
2067 param_change_prob (gimple stmt, int i)
2069 tree op = gimple_call_arg (stmt, i);
2070 basic_block bb = gimple_bb (stmt);
2071 tree base;
2073 /* Global invariants neve change. */
2074 if (is_gimple_min_invariant (op))
2075 return 0;
2076 /* We would have to do non-trivial analysis to really work out what
2077 is the probability of value to change (i.e. when init statement
2078 is in a sibling loop of the call).
2080 We do an conservative estimate: when call is executed N times more often
2081 than the statement defining value, we take the frequency 1/N. */
2082 if (TREE_CODE (op) == SSA_NAME)
2084 int init_freq;
2086 if (!bb->frequency)
2087 return REG_BR_PROB_BASE;
2089 if (SSA_NAME_IS_DEFAULT_DEF (op))
2090 init_freq = ENTRY_BLOCK_PTR->frequency;
2091 else
2092 init_freq = gimple_bb (SSA_NAME_DEF_STMT (op))->frequency;
2094 if (!init_freq)
2095 init_freq = 1;
2096 if (init_freq < bb->frequency)
2097 return MAX (GCOV_COMPUTE_SCALE (init_freq, bb->frequency), 1);
2098 else
2099 return REG_BR_PROB_BASE;
2102 base = get_base_address (op);
2103 if (base)
2105 ao_ref refd;
2106 int max;
2107 struct record_modified_bb_info info;
2108 bitmap_iterator bi;
2109 unsigned index;
2110 tree init = ctor_for_folding (base);
2112 if (init != error_mark_node)
2113 return 0;
2114 if (!bb->frequency)
2115 return REG_BR_PROB_BASE;
2116 ao_ref_init (&refd, op);
2117 info.stmt = stmt;
2118 info.bb_set = BITMAP_ALLOC (NULL);
2119 walk_aliased_vdefs (&refd, gimple_vuse (stmt), record_modified, &info,
2120 NULL);
2121 if (bitmap_bit_p (info.bb_set, bb->index))
2123 BITMAP_FREE (info.bb_set);
2124 return REG_BR_PROB_BASE;
2127 /* Assume that every memory is initialized at entry.
2128 TODO: Can we easilly determine if value is always defined
2129 and thus we may skip entry block? */
2130 if (ENTRY_BLOCK_PTR->frequency)
2131 max = ENTRY_BLOCK_PTR->frequency;
2132 else
2133 max = 1;
2135 EXECUTE_IF_SET_IN_BITMAP (info.bb_set, 0, index, bi)
2136 max = MIN (max, BASIC_BLOCK (index)->frequency);
2138 BITMAP_FREE (info.bb_set);
2139 if (max < bb->frequency)
2140 return MAX (GCOV_COMPUTE_SCALE (max, bb->frequency), 1);
2141 else
2142 return REG_BR_PROB_BASE;
2144 return REG_BR_PROB_BASE;
2147 /* Find whether a basic block BB is the final block of a (half) diamond CFG
2148 sub-graph and if the predicate the condition depends on is known. If so,
2149 return true and store the pointer the predicate in *P. */
2151 static bool
2152 phi_result_unknown_predicate (struct ipa_node_params *info,
2153 struct inline_summary *summary, basic_block bb,
2154 struct predicate *p,
2155 vec<predicate_t> nonconstant_names)
2157 edge e;
2158 edge_iterator ei;
2159 basic_block first_bb = NULL;
2160 gimple stmt;
2162 if (single_pred_p (bb))
2164 *p = false_predicate ();
2165 return true;
2168 FOR_EACH_EDGE (e, ei, bb->preds)
2170 if (single_succ_p (e->src))
2172 if (!single_pred_p (e->src))
2173 return false;
2174 if (!first_bb)
2175 first_bb = single_pred (e->src);
2176 else if (single_pred (e->src) != first_bb)
2177 return false;
2179 else
2181 if (!first_bb)
2182 first_bb = e->src;
2183 else if (e->src != first_bb)
2184 return false;
2188 if (!first_bb)
2189 return false;
2191 stmt = last_stmt (first_bb);
2192 if (!stmt
2193 || gimple_code (stmt) != GIMPLE_COND
2194 || !is_gimple_ip_invariant (gimple_cond_rhs (stmt)))
2195 return false;
2197 *p = will_be_nonconstant_expr_predicate (info, summary,
2198 gimple_cond_lhs (stmt),
2199 nonconstant_names);
2200 if (true_predicate_p (p))
2201 return false;
2202 else
2203 return true;
2206 /* Given a PHI statement in a function described by inline properties SUMMARY
2207 and *P being the predicate describing whether the selected PHI argument is
2208 known, store a predicate for the result of the PHI statement into
2209 NONCONSTANT_NAMES, if possible. */
2211 static void
2212 predicate_for_phi_result (struct inline_summary *summary, gimple phi,
2213 struct predicate *p,
2214 vec<predicate_t> nonconstant_names)
2216 unsigned i;
2218 for (i = 0; i < gimple_phi_num_args (phi); i++)
2220 tree arg = gimple_phi_arg (phi, i)->def;
2221 if (!is_gimple_min_invariant (arg))
2223 gcc_assert (TREE_CODE (arg) == SSA_NAME);
2224 *p = or_predicates (summary->conds, p,
2225 &nonconstant_names[SSA_NAME_VERSION (arg)]);
2226 if (true_predicate_p (p))
2227 return;
2231 if (dump_file && (dump_flags & TDF_DETAILS))
2233 fprintf (dump_file, "\t\tphi predicate: ");
2234 dump_predicate (dump_file, summary->conds, p);
2236 nonconstant_names[SSA_NAME_VERSION (gimple_phi_result (phi))] = *p;
2239 /* Return predicate specifying when array index in access OP becomes non-constant. */
2241 static struct predicate
2242 array_index_predicate (struct inline_summary *info,
2243 vec< predicate_t> nonconstant_names, tree op)
2245 struct predicate p = false_predicate ();
2246 while (handled_component_p (op))
2248 if (TREE_CODE (op) == ARRAY_REF || TREE_CODE (op) == ARRAY_RANGE_REF)
2250 if (TREE_CODE (TREE_OPERAND (op, 1)) == SSA_NAME)
2251 p = or_predicates (info->conds, &p,
2252 &nonconstant_names[SSA_NAME_VERSION
2253 (TREE_OPERAND (op, 1))]);
2255 op = TREE_OPERAND (op, 0);
2257 return p;
2260 /* Compute function body size parameters for NODE.
2261 When EARLY is true, we compute only simple summaries without
2262 non-trivial predicates to drive the early inliner. */
2264 static void
2265 estimate_function_body_sizes (struct cgraph_node *node, bool early)
2267 gcov_type time = 0;
2268 /* Estimate static overhead for function prologue/epilogue and alignment. */
2269 int size = 2;
2270 /* Benefits are scaled by probability of elimination that is in range
2271 <0,2>. */
2272 basic_block bb;
2273 gimple_stmt_iterator bsi;
2274 struct function *my_function = DECL_STRUCT_FUNCTION (node->symbol.decl);
2275 int freq;
2276 struct inline_summary *info = inline_summary (node);
2277 struct predicate bb_predicate;
2278 struct ipa_node_params *parms_info = NULL;
2279 vec<predicate_t> nonconstant_names = vNULL;
2280 int nblocks, n;
2281 int *order;
2282 predicate array_index = true_predicate ();
2284 info->conds = NULL;
2285 info->entry = NULL;
2287 if (optimize && !early)
2289 calculate_dominance_info (CDI_DOMINATORS);
2290 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
2292 if (ipa_node_params_vector.exists ())
2294 parms_info = IPA_NODE_REF (node);
2295 nonconstant_names.safe_grow_cleared
2296 (SSANAMES (my_function)->length ());
2300 if (dump_file)
2301 fprintf (dump_file, "\nAnalyzing function body size: %s\n",
2302 cgraph_node_name (node));
2304 /* When we run into maximal number of entries, we assign everything to the
2305 constant truth case. Be sure to have it in list. */
2306 bb_predicate = true_predicate ();
2307 account_size_time (info, 0, 0, &bb_predicate);
2309 bb_predicate = not_inlined_predicate ();
2310 account_size_time (info, 2 * INLINE_SIZE_SCALE, 0, &bb_predicate);
2312 gcc_assert (my_function && my_function->cfg);
2313 if (parms_info)
2314 compute_bb_predicates (node, parms_info, info);
2315 gcc_assert (cfun == my_function);
2316 order = XNEWVEC (int, n_basic_blocks);
2317 nblocks = pre_and_rev_post_order_compute (NULL, order, false);
2318 for (n = 0; n < nblocks; n++)
2320 bb = BASIC_BLOCK (order[n]);
2321 freq = compute_call_stmt_bb_frequency (node->symbol.decl, bb);
2323 /* TODO: Obviously predicates can be propagated down across CFG. */
2324 if (parms_info)
2326 if (bb->aux)
2327 bb_predicate = *(struct predicate *) bb->aux;
2328 else
2329 bb_predicate = false_predicate ();
2331 else
2332 bb_predicate = true_predicate ();
2334 if (dump_file && (dump_flags & TDF_DETAILS))
2336 fprintf (dump_file, "\n BB %i predicate:", bb->index);
2337 dump_predicate (dump_file, info->conds, &bb_predicate);
2340 if (parms_info && nonconstant_names.exists ())
2342 struct predicate phi_predicate;
2343 bool first_phi = true;
2345 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2347 if (first_phi
2348 && !phi_result_unknown_predicate (parms_info, info, bb,
2349 &phi_predicate,
2350 nonconstant_names))
2351 break;
2352 first_phi = false;
2353 if (dump_file && (dump_flags & TDF_DETAILS))
2355 fprintf (dump_file, " ");
2356 print_gimple_stmt (dump_file, gsi_stmt (bsi), 0, 0);
2358 predicate_for_phi_result (info, gsi_stmt (bsi), &phi_predicate,
2359 nonconstant_names);
2363 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
2365 gimple stmt = gsi_stmt (bsi);
2366 int this_size = estimate_num_insns (stmt, &eni_size_weights);
2367 int this_time = estimate_num_insns (stmt, &eni_time_weights);
2368 int prob;
2369 struct predicate will_be_nonconstant;
2371 if (dump_file && (dump_flags & TDF_DETAILS))
2373 fprintf (dump_file, " ");
2374 print_gimple_stmt (dump_file, stmt, 0, 0);
2375 fprintf (dump_file, "\t\tfreq:%3.2f size:%3i time:%3i\n",
2376 ((double) freq) / CGRAPH_FREQ_BASE, this_size,
2377 this_time);
2380 if (gimple_assign_load_p (stmt) && nonconstant_names.exists ())
2382 struct predicate this_array_index;
2383 this_array_index =
2384 array_index_predicate (info, nonconstant_names,
2385 gimple_assign_rhs1 (stmt));
2386 if (!false_predicate_p (&this_array_index))
2387 array_index =
2388 and_predicates (info->conds, &array_index,
2389 &this_array_index);
2391 if (gimple_store_p (stmt) && nonconstant_names.exists ())
2393 struct predicate this_array_index;
2394 this_array_index =
2395 array_index_predicate (info, nonconstant_names,
2396 gimple_get_lhs (stmt));
2397 if (!false_predicate_p (&this_array_index))
2398 array_index =
2399 and_predicates (info->conds, &array_index,
2400 &this_array_index);
2404 if (is_gimple_call (stmt))
2406 struct cgraph_edge *edge = cgraph_edge (node, stmt);
2407 struct inline_edge_summary *es = inline_edge_summary (edge);
2409 /* Special case: results of BUILT_IN_CONSTANT_P will be always
2410 resolved as constant. We however don't want to optimize
2411 out the cgraph edges. */
2412 if (nonconstant_names.exists ()
2413 && gimple_call_builtin_p (stmt, BUILT_IN_CONSTANT_P)
2414 && gimple_call_lhs (stmt)
2415 && TREE_CODE (gimple_call_lhs (stmt)) == SSA_NAME)
2417 struct predicate false_p = false_predicate ();
2418 nonconstant_names[SSA_NAME_VERSION (gimple_call_lhs (stmt))]
2419 = false_p;
2421 if (ipa_node_params_vector.exists ())
2423 int count = gimple_call_num_args (stmt);
2424 int i;
2426 if (count)
2427 es->param.safe_grow_cleared (count);
2428 for (i = 0; i < count; i++)
2430 int prob = param_change_prob (stmt, i);
2431 gcc_assert (prob >= 0 && prob <= REG_BR_PROB_BASE);
2432 es->param[i].change_prob = prob;
2436 es->call_stmt_size = this_size;
2437 es->call_stmt_time = this_time;
2438 es->loop_depth = bb_loop_depth (bb);
2439 edge_set_predicate (edge, &bb_predicate);
2442 /* TODO: When conditional jump or swithc is known to be constant, but
2443 we did not translate it into the predicates, we really can account
2444 just maximum of the possible paths. */
2445 if (parms_info)
2446 will_be_nonconstant
2447 = will_be_nonconstant_predicate (parms_info, info,
2448 stmt, nonconstant_names);
2449 if (this_time || this_size)
2451 struct predicate p;
2453 this_time *= freq;
2455 prob = eliminated_by_inlining_prob (stmt);
2456 if (prob == 1 && dump_file && (dump_flags & TDF_DETAILS))
2457 fprintf (dump_file,
2458 "\t\t50%% will be eliminated by inlining\n");
2459 if (prob == 2 && dump_file && (dump_flags & TDF_DETAILS))
2460 fprintf (dump_file, "\t\tWill be eliminated by inlining\n");
2462 if (parms_info)
2463 p = and_predicates (info->conds, &bb_predicate,
2464 &will_be_nonconstant);
2465 else
2466 p = true_predicate ();
2468 if (!false_predicate_p (&p))
2470 time += this_time;
2471 size += this_size;
2472 if (time > MAX_TIME * INLINE_TIME_SCALE)
2473 time = MAX_TIME * INLINE_TIME_SCALE;
2476 /* We account everything but the calls. Calls have their own
2477 size/time info attached to cgraph edges. This is necessary
2478 in order to make the cost disappear after inlining. */
2479 if (!is_gimple_call (stmt))
2481 if (prob)
2483 struct predicate ip = not_inlined_predicate ();
2484 ip = and_predicates (info->conds, &ip, &p);
2485 account_size_time (info, this_size * prob,
2486 this_time * prob, &ip);
2488 if (prob != 2)
2489 account_size_time (info, this_size * (2 - prob),
2490 this_time * (2 - prob), &p);
2493 gcc_assert (time >= 0);
2494 gcc_assert (size >= 0);
2498 set_hint_predicate (&inline_summary (node)->array_index, array_index);
2499 time = (time + CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE;
2500 if (time > MAX_TIME)
2501 time = MAX_TIME;
2502 free (order);
2504 if (!early && nonconstant_names.exists ())
2506 struct loop *loop;
2507 loop_iterator li;
2508 predicate loop_iterations = true_predicate ();
2509 predicate loop_stride = true_predicate ();
2511 if (dump_file && (dump_flags & TDF_DETAILS))
2512 flow_loops_dump (dump_file, NULL, 0);
2513 scev_initialize ();
2514 FOR_EACH_LOOP (li, loop, 0)
2516 vec<edge> exits;
2517 edge ex;
2518 unsigned int j, i;
2519 struct tree_niter_desc niter_desc;
2520 basic_block *body = get_loop_body (loop);
2521 bb_predicate = *(struct predicate *) loop->header->aux;
2523 exits = get_loop_exit_edges (loop);
2524 FOR_EACH_VEC_ELT (exits, j, ex)
2525 if (number_of_iterations_exit (loop, ex, &niter_desc, false)
2526 && !is_gimple_min_invariant (niter_desc.niter))
2528 predicate will_be_nonconstant
2529 = will_be_nonconstant_expr_predicate (parms_info, info,
2530 niter_desc.niter,
2531 nonconstant_names);
2532 if (!true_predicate_p (&will_be_nonconstant))
2533 will_be_nonconstant = and_predicates (info->conds,
2534 &bb_predicate,
2535 &will_be_nonconstant);
2536 if (!true_predicate_p (&will_be_nonconstant)
2537 && !false_predicate_p (&will_be_nonconstant))
2538 /* This is slightly inprecise. We may want to represent each
2539 loop with independent predicate. */
2540 loop_iterations =
2541 and_predicates (info->conds, &loop_iterations,
2542 &will_be_nonconstant);
2544 exits.release ();
2546 for (i = 0; i < loop->num_nodes; i++)
2548 gimple_stmt_iterator gsi;
2549 bb_predicate = *(struct predicate *) body[i]->aux;
2550 for (gsi = gsi_start_bb (body[i]); !gsi_end_p (gsi);
2551 gsi_next (&gsi))
2553 gimple stmt = gsi_stmt (gsi);
2554 affine_iv iv;
2555 ssa_op_iter iter;
2556 tree use;
2558 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
2560 predicate will_be_nonconstant;
2562 if (!simple_iv
2563 (loop, loop_containing_stmt (stmt), use, &iv, true)
2564 || is_gimple_min_invariant (iv.step))
2565 continue;
2566 will_be_nonconstant
2567 = will_be_nonconstant_expr_predicate (parms_info, info,
2568 iv.step,
2569 nonconstant_names);
2570 if (!true_predicate_p (&will_be_nonconstant))
2571 will_be_nonconstant
2572 = and_predicates (info->conds,
2573 &bb_predicate,
2574 &will_be_nonconstant);
2575 if (!true_predicate_p (&will_be_nonconstant)
2576 && !false_predicate_p (&will_be_nonconstant))
2577 /* This is slightly inprecise. We may want to represent
2578 each loop with independent predicate. */
2579 loop_stride =
2580 and_predicates (info->conds, &loop_stride,
2581 &will_be_nonconstant);
2585 free (body);
2587 set_hint_predicate (&inline_summary (node)->loop_iterations,
2588 loop_iterations);
2589 set_hint_predicate (&inline_summary (node)->loop_stride, loop_stride);
2590 scev_finalize ();
2592 FOR_ALL_BB_FN (bb, my_function)
2594 edge e;
2595 edge_iterator ei;
2597 if (bb->aux)
2598 pool_free (edge_predicate_pool, bb->aux);
2599 bb->aux = NULL;
2600 FOR_EACH_EDGE (e, ei, bb->succs)
2602 if (e->aux)
2603 pool_free (edge_predicate_pool, e->aux);
2604 e->aux = NULL;
2607 inline_summary (node)->self_time = time;
2608 inline_summary (node)->self_size = size;
2609 nonconstant_names.release ();
2610 if (optimize && !early)
2612 loop_optimizer_finalize ();
2613 free_dominance_info (CDI_DOMINATORS);
2615 if (dump_file)
2617 fprintf (dump_file, "\n");
2618 dump_inline_summary (dump_file, node);
2623 /* Compute parameters of functions used by inliner.
2624 EARLY is true when we compute parameters for the early inliner */
2626 void
2627 compute_inline_parameters (struct cgraph_node *node, bool early)
2629 HOST_WIDE_INT self_stack_size;
2630 struct cgraph_edge *e;
2631 struct inline_summary *info;
2633 gcc_assert (!node->global.inlined_to);
2635 inline_summary_alloc ();
2637 info = inline_summary (node);
2638 reset_inline_summary (node);
2640 /* FIXME: Thunks are inlinable, but tree-inline don't know how to do that.
2641 Once this happen, we will need to more curefully predict call
2642 statement size. */
2643 if (node->thunk.thunk_p)
2645 struct inline_edge_summary *es = inline_edge_summary (node->callees);
2646 struct predicate t = true_predicate ();
2648 info->inlinable = 0;
2649 node->callees->call_stmt_cannot_inline_p = true;
2650 node->local.can_change_signature = false;
2651 es->call_stmt_time = 1;
2652 es->call_stmt_size = 1;
2653 account_size_time (info, 0, 0, &t);
2654 return;
2657 /* Even is_gimple_min_invariant rely on current_function_decl. */
2658 push_cfun (DECL_STRUCT_FUNCTION (node->symbol.decl));
2660 /* Estimate the stack size for the function if we're optimizing. */
2661 self_stack_size = optimize ? estimated_stack_frame_size (node) : 0;
2662 info->estimated_self_stack_size = self_stack_size;
2663 info->estimated_stack_size = self_stack_size;
2664 info->stack_frame_offset = 0;
2666 /* Can this function be inlined at all? */
2667 info->inlinable = tree_inlinable_function_p (node->symbol.decl);
2669 /* Type attributes can use parameter indices to describe them. */
2670 if (TYPE_ATTRIBUTES (TREE_TYPE (node->symbol.decl)))
2671 node->local.can_change_signature = false;
2672 else
2674 /* Otherwise, inlinable functions always can change signature. */
2675 if (info->inlinable)
2676 node->local.can_change_signature = true;
2677 else
2679 /* Functions calling builtin_apply can not change signature. */
2680 for (e = node->callees; e; e = e->next_callee)
2682 tree cdecl = e->callee->symbol.decl;
2683 if (DECL_BUILT_IN (cdecl)
2684 && DECL_BUILT_IN_CLASS (cdecl) == BUILT_IN_NORMAL
2685 && (DECL_FUNCTION_CODE (cdecl) == BUILT_IN_APPLY_ARGS
2686 || DECL_FUNCTION_CODE (cdecl) == BUILT_IN_VA_START))
2687 break;
2689 node->local.can_change_signature = !e;
2692 estimate_function_body_sizes (node, early);
2694 /* Inlining characteristics are maintained by the cgraph_mark_inline. */
2695 info->time = info->self_time;
2696 info->size = info->self_size;
2697 info->stack_frame_offset = 0;
2698 info->estimated_stack_size = info->estimated_self_stack_size;
2699 #ifdef ENABLE_CHECKING
2700 inline_update_overall_summary (node);
2701 gcc_assert (info->time == info->self_time && info->size == info->self_size);
2702 #endif
2704 pop_cfun ();
2708 /* Compute parameters of functions used by inliner using
2709 current_function_decl. */
2711 static unsigned int
2712 compute_inline_parameters_for_current (void)
2714 compute_inline_parameters (cgraph_get_node (current_function_decl), true);
2715 return 0;
2718 namespace {
2720 const pass_data pass_data_inline_parameters =
2722 GIMPLE_PASS, /* type */
2723 "inline_param", /* name */
2724 OPTGROUP_INLINE, /* optinfo_flags */
2725 false, /* has_gate */
2726 true, /* has_execute */
2727 TV_INLINE_PARAMETERS, /* tv_id */
2728 0, /* properties_required */
2729 0, /* properties_provided */
2730 0, /* properties_destroyed */
2731 0, /* todo_flags_start */
2732 0, /* todo_flags_finish */
2735 class pass_inline_parameters : public gimple_opt_pass
2737 public:
2738 pass_inline_parameters(gcc::context *ctxt)
2739 : gimple_opt_pass(pass_data_inline_parameters, ctxt)
2742 /* opt_pass methods: */
2743 opt_pass * clone () { return new pass_inline_parameters (ctxt_); }
2744 unsigned int execute () {
2745 return compute_inline_parameters_for_current ();
2748 }; // class pass_inline_parameters
2750 } // anon namespace
2752 gimple_opt_pass *
2753 make_pass_inline_parameters (gcc::context *ctxt)
2755 return new pass_inline_parameters (ctxt);
2759 /* Estimate benefit devirtualizing indirect edge IE, provided KNOWN_VALS and
2760 KNOWN_BINFOS. */
2762 static bool
2763 estimate_edge_devirt_benefit (struct cgraph_edge *ie,
2764 int *size, int *time,
2765 vec<tree> known_vals,
2766 vec<tree> known_binfos,
2767 vec<ipa_agg_jump_function_p> known_aggs)
2769 tree target;
2770 struct cgraph_node *callee;
2771 struct inline_summary *isummary;
2773 if (!known_vals.exists () && !known_binfos.exists ())
2774 return false;
2775 if (!flag_indirect_inlining)
2776 return false;
2778 target = ipa_get_indirect_edge_target (ie, known_vals, known_binfos,
2779 known_aggs);
2780 if (!target)
2781 return false;
2783 /* Account for difference in cost between indirect and direct calls. */
2784 *size -= (eni_size_weights.indirect_call_cost - eni_size_weights.call_cost);
2785 *time -= (eni_time_weights.indirect_call_cost - eni_time_weights.call_cost);
2786 gcc_checking_assert (*time >= 0);
2787 gcc_checking_assert (*size >= 0);
2789 callee = cgraph_get_node (target);
2790 if (!callee || !callee->symbol.definition)
2791 return false;
2792 isummary = inline_summary (callee);
2793 return isummary->inlinable;
2796 /* Increase SIZE and TIME for size and time needed to handle edge E. */
2798 static inline void
2799 estimate_edge_size_and_time (struct cgraph_edge *e, int *size, int *time,
2800 int prob,
2801 vec<tree> known_vals,
2802 vec<tree> known_binfos,
2803 vec<ipa_agg_jump_function_p> known_aggs,
2804 inline_hints *hints)
2806 struct inline_edge_summary *es = inline_edge_summary (e);
2807 int call_size = es->call_stmt_size;
2808 int call_time = es->call_stmt_time;
2809 if (!e->callee
2810 && estimate_edge_devirt_benefit (e, &call_size, &call_time,
2811 known_vals, known_binfos, known_aggs)
2812 && hints && cgraph_maybe_hot_edge_p (e))
2813 *hints |= INLINE_HINT_indirect_call;
2814 *size += call_size * INLINE_SIZE_SCALE;
2815 *time += apply_probability ((gcov_type) call_time, prob)
2816 * e->frequency * (INLINE_TIME_SCALE / CGRAPH_FREQ_BASE);
2817 if (*time > MAX_TIME * INLINE_TIME_SCALE)
2818 *time = MAX_TIME * INLINE_TIME_SCALE;
2823 /* Increase SIZE and TIME for size and time needed to handle all calls in NODE.
2824 POSSIBLE_TRUTHS, KNOWN_VALS and KNOWN_BINFOS describe context of the call
2825 site. */
2827 static void
2828 estimate_calls_size_and_time (struct cgraph_node *node, int *size, int *time,
2829 inline_hints *hints,
2830 clause_t possible_truths,
2831 vec<tree> known_vals,
2832 vec<tree> known_binfos,
2833 vec<ipa_agg_jump_function_p> known_aggs)
2835 struct cgraph_edge *e;
2836 for (e = node->callees; e; e = e->next_callee)
2838 struct inline_edge_summary *es = inline_edge_summary (e);
2839 if (!es->predicate
2840 || evaluate_predicate (es->predicate, possible_truths))
2842 if (e->inline_failed)
2844 /* Predicates of calls shall not use NOT_CHANGED codes,
2845 sowe do not need to compute probabilities. */
2846 estimate_edge_size_and_time (e, size, time, REG_BR_PROB_BASE,
2847 known_vals, known_binfos,
2848 known_aggs, hints);
2850 else
2851 estimate_calls_size_and_time (e->callee, size, time, hints,
2852 possible_truths,
2853 known_vals, known_binfos,
2854 known_aggs);
2857 for (e = node->indirect_calls; e; e = e->next_callee)
2859 struct inline_edge_summary *es = inline_edge_summary (e);
2860 if (!es->predicate
2861 || evaluate_predicate (es->predicate, possible_truths))
2862 estimate_edge_size_and_time (e, size, time, REG_BR_PROB_BASE,
2863 known_vals, known_binfos, known_aggs,
2864 hints);
2869 /* Estimate size and time needed to execute NODE assuming
2870 POSSIBLE_TRUTHS clause, and KNOWN_VALS and KNOWN_BINFOS information
2871 about NODE's arguments. */
2873 static void
2874 estimate_node_size_and_time (struct cgraph_node *node,
2875 clause_t possible_truths,
2876 vec<tree> known_vals,
2877 vec<tree> known_binfos,
2878 vec<ipa_agg_jump_function_p> known_aggs,
2879 int *ret_size, int *ret_time,
2880 inline_hints *ret_hints,
2881 vec<inline_param_summary_t>
2882 inline_param_summary)
2884 struct inline_summary *info = inline_summary (node);
2885 size_time_entry *e;
2886 int size = 0;
2887 int time = 0;
2888 inline_hints hints = 0;
2889 int i;
2891 if (dump_file && (dump_flags & TDF_DETAILS))
2893 bool found = false;
2894 fprintf (dump_file, " Estimating body: %s/%i\n"
2895 " Known to be false: ", cgraph_node_name (node),
2896 node->symbol.order);
2898 for (i = predicate_not_inlined_condition;
2899 i < (predicate_first_dynamic_condition
2900 + (int) vec_safe_length (info->conds)); i++)
2901 if (!(possible_truths & (1 << i)))
2903 if (found)
2904 fprintf (dump_file, ", ");
2905 found = true;
2906 dump_condition (dump_file, info->conds, i);
2910 for (i = 0; vec_safe_iterate (info->entry, i, &e); i++)
2911 if (evaluate_predicate (&e->predicate, possible_truths))
2913 size += e->size;
2914 gcc_checking_assert (e->time >= 0);
2915 gcc_checking_assert (time >= 0);
2916 if (!inline_param_summary.exists ())
2917 time += e->time;
2918 else
2920 int prob = predicate_probability (info->conds,
2921 &e->predicate,
2922 possible_truths,
2923 inline_param_summary);
2924 gcc_checking_assert (prob >= 0);
2925 gcc_checking_assert (prob <= REG_BR_PROB_BASE);
2926 time += apply_probability ((gcov_type) e->time, prob);
2928 if (time > MAX_TIME * INLINE_TIME_SCALE)
2929 time = MAX_TIME * INLINE_TIME_SCALE;
2930 gcc_checking_assert (time >= 0);
2933 gcc_checking_assert (size >= 0);
2934 gcc_checking_assert (time >= 0);
2936 if (info->loop_iterations
2937 && !evaluate_predicate (info->loop_iterations, possible_truths))
2938 hints |= INLINE_HINT_loop_iterations;
2939 if (info->loop_stride
2940 && !evaluate_predicate (info->loop_stride, possible_truths))
2941 hints |= INLINE_HINT_loop_stride;
2942 if (info->array_index
2943 && !evaluate_predicate (info->array_index, possible_truths))
2944 hints |= INLINE_HINT_array_index;
2945 if (info->scc_no)
2946 hints |= INLINE_HINT_in_scc;
2947 if (DECL_DECLARED_INLINE_P (node->symbol.decl))
2948 hints |= INLINE_HINT_declared_inline;
2950 estimate_calls_size_and_time (node, &size, &time, &hints, possible_truths,
2951 known_vals, known_binfos, known_aggs);
2952 gcc_checking_assert (size >= 0);
2953 gcc_checking_assert (time >= 0);
2954 time = RDIV (time, INLINE_TIME_SCALE);
2955 size = RDIV (size, INLINE_SIZE_SCALE);
2957 if (dump_file && (dump_flags & TDF_DETAILS))
2958 fprintf (dump_file, "\n size:%i time:%i\n", (int) size, (int) time);
2959 if (ret_time)
2960 *ret_time = time;
2961 if (ret_size)
2962 *ret_size = size;
2963 if (ret_hints)
2964 *ret_hints = hints;
2965 return;
2969 /* Estimate size and time needed to execute callee of EDGE assuming that
2970 parameters known to be constant at caller of EDGE are propagated.
2971 KNOWN_VALS and KNOWN_BINFOS are vectors of assumed known constant values
2972 and types for parameters. */
2974 void
2975 estimate_ipcp_clone_size_and_time (struct cgraph_node *node,
2976 vec<tree> known_vals,
2977 vec<tree> known_binfos,
2978 vec<ipa_agg_jump_function_p> known_aggs,
2979 int *ret_size, int *ret_time,
2980 inline_hints *hints)
2982 clause_t clause;
2984 clause = evaluate_conditions_for_known_args (node, false, known_vals,
2985 known_aggs);
2986 estimate_node_size_and_time (node, clause, known_vals, known_binfos,
2987 known_aggs, ret_size, ret_time, hints, vNULL);
2990 /* Translate all conditions from callee representation into caller
2991 representation and symbolically evaluate predicate P into new predicate.
2993 INFO is inline_summary of function we are adding predicate into, CALLEE_INFO
2994 is summary of function predicate P is from. OPERAND_MAP is array giving
2995 callee formal IDs the caller formal IDs. POSSSIBLE_TRUTHS is clausule of all
2996 callee conditions that may be true in caller context. TOPLEV_PREDICATE is
2997 predicate under which callee is executed. OFFSET_MAP is an array of of
2998 offsets that need to be added to conditions, negative offset means that
2999 conditions relying on values passed by reference have to be discarded
3000 because they might not be preserved (and should be considered offset zero
3001 for other purposes). */
3003 static struct predicate
3004 remap_predicate (struct inline_summary *info,
3005 struct inline_summary *callee_info,
3006 struct predicate *p,
3007 vec<int> operand_map,
3008 vec<int> offset_map,
3009 clause_t possible_truths, struct predicate *toplev_predicate)
3011 int i;
3012 struct predicate out = true_predicate ();
3014 /* True predicate is easy. */
3015 if (true_predicate_p (p))
3016 return *toplev_predicate;
3017 for (i = 0; p->clause[i]; i++)
3019 clause_t clause = p->clause[i];
3020 int cond;
3021 struct predicate clause_predicate = false_predicate ();
3023 gcc_assert (i < MAX_CLAUSES);
3025 for (cond = 0; cond < NUM_CONDITIONS; cond++)
3026 /* Do we have condition we can't disprove? */
3027 if (clause & possible_truths & (1 << cond))
3029 struct predicate cond_predicate;
3030 /* Work out if the condition can translate to predicate in the
3031 inlined function. */
3032 if (cond >= predicate_first_dynamic_condition)
3034 struct condition *c;
3036 c = &(*callee_info->conds)[cond
3038 predicate_first_dynamic_condition];
3039 /* See if we can remap condition operand to caller's operand.
3040 Otherwise give up. */
3041 if (!operand_map.exists ()
3042 || (int) operand_map.length () <= c->operand_num
3043 || operand_map[c->operand_num] == -1
3044 /* TODO: For non-aggregate conditions, adding an offset is
3045 basically an arithmetic jump function processing which
3046 we should support in future. */
3047 || ((!c->agg_contents || !c->by_ref)
3048 && offset_map[c->operand_num] > 0)
3049 || (c->agg_contents && c->by_ref
3050 && offset_map[c->operand_num] < 0))
3051 cond_predicate = true_predicate ();
3052 else
3054 struct agg_position_info ap;
3055 HOST_WIDE_INT offset_delta = offset_map[c->operand_num];
3056 if (offset_delta < 0)
3058 gcc_checking_assert (!c->agg_contents || !c->by_ref);
3059 offset_delta = 0;
3061 gcc_assert (!c->agg_contents
3062 || c->by_ref || offset_delta == 0);
3063 ap.offset = c->offset + offset_delta;
3064 ap.agg_contents = c->agg_contents;
3065 ap.by_ref = c->by_ref;
3066 cond_predicate = add_condition (info,
3067 operand_map[c->operand_num],
3068 &ap, c->code, c->val);
3071 /* Fixed conditions remains same, construct single
3072 condition predicate. */
3073 else
3075 cond_predicate.clause[0] = 1 << cond;
3076 cond_predicate.clause[1] = 0;
3078 clause_predicate = or_predicates (info->conds, &clause_predicate,
3079 &cond_predicate);
3081 out = and_predicates (info->conds, &out, &clause_predicate);
3083 return and_predicates (info->conds, &out, toplev_predicate);
3087 /* Update summary information of inline clones after inlining.
3088 Compute peak stack usage. */
3090 static void
3091 inline_update_callee_summaries (struct cgraph_node *node, int depth)
3093 struct cgraph_edge *e;
3094 struct inline_summary *callee_info = inline_summary (node);
3095 struct inline_summary *caller_info = inline_summary (node->callers->caller);
3096 HOST_WIDE_INT peak;
3098 callee_info->stack_frame_offset
3099 = caller_info->stack_frame_offset
3100 + caller_info->estimated_self_stack_size;
3101 peak = callee_info->stack_frame_offset
3102 + callee_info->estimated_self_stack_size;
3103 if (inline_summary (node->global.inlined_to)->estimated_stack_size < peak)
3104 inline_summary (node->global.inlined_to)->estimated_stack_size = peak;
3105 cgraph_propagate_frequency (node);
3106 for (e = node->callees; e; e = e->next_callee)
3108 if (!e->inline_failed)
3109 inline_update_callee_summaries (e->callee, depth);
3110 inline_edge_summary (e)->loop_depth += depth;
3112 for (e = node->indirect_calls; e; e = e->next_callee)
3113 inline_edge_summary (e)->loop_depth += depth;
3116 /* Update change_prob of EDGE after INLINED_EDGE has been inlined.
3117 When functoin A is inlined in B and A calls C with parameter that
3118 changes with probability PROB1 and C is known to be passthroug
3119 of argument if B that change with probability PROB2, the probability
3120 of change is now PROB1*PROB2. */
3122 static void
3123 remap_edge_change_prob (struct cgraph_edge *inlined_edge,
3124 struct cgraph_edge *edge)
3126 if (ipa_node_params_vector.exists ())
3128 int i;
3129 struct ipa_edge_args *args = IPA_EDGE_REF (edge);
3130 struct inline_edge_summary *es = inline_edge_summary (edge);
3131 struct inline_edge_summary *inlined_es
3132 = inline_edge_summary (inlined_edge);
3134 for (i = 0; i < ipa_get_cs_argument_count (args); i++)
3136 struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, i);
3137 if (jfunc->type == IPA_JF_PASS_THROUGH
3138 && (ipa_get_jf_pass_through_formal_id (jfunc)
3139 < (int) inlined_es->param.length ()))
3141 int jf_formal_id = ipa_get_jf_pass_through_formal_id (jfunc);
3142 int prob1 = es->param[i].change_prob;
3143 int prob2 = inlined_es->param[jf_formal_id].change_prob;
3144 int prob = combine_probabilities (prob1, prob2);
3146 if (prob1 && prob2 && !prob)
3147 prob = 1;
3149 es->param[i].change_prob = prob;
3155 /* Update edge summaries of NODE after INLINED_EDGE has been inlined.
3157 Remap predicates of callees of NODE. Rest of arguments match
3158 remap_predicate.
3160 Also update change probabilities. */
3162 static void
3163 remap_edge_summaries (struct cgraph_edge *inlined_edge,
3164 struct cgraph_node *node,
3165 struct inline_summary *info,
3166 struct inline_summary *callee_info,
3167 vec<int> operand_map,
3168 vec<int> offset_map,
3169 clause_t possible_truths,
3170 struct predicate *toplev_predicate)
3172 struct cgraph_edge *e;
3173 for (e = node->callees; e; e = e->next_callee)
3175 struct inline_edge_summary *es = inline_edge_summary (e);
3176 struct predicate p;
3178 if (e->inline_failed)
3180 remap_edge_change_prob (inlined_edge, e);
3182 if (es->predicate)
3184 p = remap_predicate (info, callee_info,
3185 es->predicate, operand_map, offset_map,
3186 possible_truths, toplev_predicate);
3187 edge_set_predicate (e, &p);
3188 /* TODO: We should remove the edge for code that will be
3189 optimized out, but we need to keep verifiers and tree-inline
3190 happy. Make it cold for now. */
3191 if (false_predicate_p (&p))
3193 e->count = 0;
3194 e->frequency = 0;
3197 else
3198 edge_set_predicate (e, toplev_predicate);
3200 else
3201 remap_edge_summaries (inlined_edge, e->callee, info, callee_info,
3202 operand_map, offset_map, possible_truths,
3203 toplev_predicate);
3205 for (e = node->indirect_calls; e; e = e->next_callee)
3207 struct inline_edge_summary *es = inline_edge_summary (e);
3208 struct predicate p;
3210 remap_edge_change_prob (inlined_edge, e);
3211 if (es->predicate)
3213 p = remap_predicate (info, callee_info,
3214 es->predicate, operand_map, offset_map,
3215 possible_truths, toplev_predicate);
3216 edge_set_predicate (e, &p);
3217 /* TODO: We should remove the edge for code that will be optimized
3218 out, but we need to keep verifiers and tree-inline happy.
3219 Make it cold for now. */
3220 if (false_predicate_p (&p))
3222 e->count = 0;
3223 e->frequency = 0;
3226 else
3227 edge_set_predicate (e, toplev_predicate);
3231 /* Same as remap_predicate, but set result into hint *HINT. */
3233 static void
3234 remap_hint_predicate (struct inline_summary *info,
3235 struct inline_summary *callee_info,
3236 struct predicate **hint,
3237 vec<int> operand_map,
3238 vec<int> offset_map,
3239 clause_t possible_truths,
3240 struct predicate *toplev_predicate)
3242 predicate p;
3244 if (!*hint)
3245 return;
3246 p = remap_predicate (info, callee_info,
3247 *hint,
3248 operand_map, offset_map,
3249 possible_truths, toplev_predicate);
3250 if (!false_predicate_p (&p) && !true_predicate_p (&p))
3252 if (!*hint)
3253 set_hint_predicate (hint, p);
3254 else
3255 **hint = and_predicates (info->conds, *hint, &p);
3259 /* We inlined EDGE. Update summary of the function we inlined into. */
3261 void
3262 inline_merge_summary (struct cgraph_edge *edge)
3264 struct inline_summary *callee_info = inline_summary (edge->callee);
3265 struct cgraph_node *to = (edge->caller->global.inlined_to
3266 ? edge->caller->global.inlined_to : edge->caller);
3267 struct inline_summary *info = inline_summary (to);
3268 clause_t clause = 0; /* not_inline is known to be false. */
3269 size_time_entry *e;
3270 vec<int> operand_map = vNULL;
3271 vec<int> offset_map = vNULL;
3272 int i;
3273 struct predicate toplev_predicate;
3274 struct predicate true_p = true_predicate ();
3275 struct inline_edge_summary *es = inline_edge_summary (edge);
3277 if (es->predicate)
3278 toplev_predicate = *es->predicate;
3279 else
3280 toplev_predicate = true_predicate ();
3282 if (ipa_node_params_vector.exists () && callee_info->conds)
3284 struct ipa_edge_args *args = IPA_EDGE_REF (edge);
3285 int count = ipa_get_cs_argument_count (args);
3286 int i;
3288 evaluate_properties_for_edge (edge, true, &clause, NULL, NULL, NULL);
3289 if (count)
3291 operand_map.safe_grow_cleared (count);
3292 offset_map.safe_grow_cleared (count);
3294 for (i = 0; i < count; i++)
3296 struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, i);
3297 int map = -1;
3299 /* TODO: handle non-NOPs when merging. */
3300 if (jfunc->type == IPA_JF_PASS_THROUGH)
3302 if (ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
3303 map = ipa_get_jf_pass_through_formal_id (jfunc);
3304 if (!ipa_get_jf_pass_through_agg_preserved (jfunc))
3305 offset_map[i] = -1;
3307 else if (jfunc->type == IPA_JF_ANCESTOR)
3309 HOST_WIDE_INT offset = ipa_get_jf_ancestor_offset (jfunc);
3310 if (offset >= 0 && offset < INT_MAX)
3312 map = ipa_get_jf_ancestor_formal_id (jfunc);
3313 if (!ipa_get_jf_ancestor_agg_preserved (jfunc))
3314 offset = -1;
3315 offset_map[i] = offset;
3318 operand_map[i] = map;
3319 gcc_assert (map < ipa_get_param_count (IPA_NODE_REF (to)));
3322 for (i = 0; vec_safe_iterate (callee_info->entry, i, &e); i++)
3324 struct predicate p = remap_predicate (info, callee_info,
3325 &e->predicate, operand_map,
3326 offset_map, clause,
3327 &toplev_predicate);
3328 if (!false_predicate_p (&p))
3330 gcov_type add_time = ((gcov_type) e->time * edge->frequency
3331 + CGRAPH_FREQ_BASE / 2) / CGRAPH_FREQ_BASE;
3332 int prob = predicate_probability (callee_info->conds,
3333 &e->predicate,
3334 clause, es->param);
3335 add_time = apply_probability ((gcov_type) add_time, prob);
3336 if (add_time > MAX_TIME * INLINE_TIME_SCALE)
3337 add_time = MAX_TIME * INLINE_TIME_SCALE;
3338 if (prob != REG_BR_PROB_BASE
3339 && dump_file && (dump_flags & TDF_DETAILS))
3341 fprintf (dump_file, "\t\tScaling time by probability:%f\n",
3342 (double) prob / REG_BR_PROB_BASE);
3344 account_size_time (info, e->size, add_time, &p);
3347 remap_edge_summaries (edge, edge->callee, info, callee_info, operand_map,
3348 offset_map, clause, &toplev_predicate);
3349 remap_hint_predicate (info, callee_info,
3350 &callee_info->loop_iterations,
3351 operand_map, offset_map, clause, &toplev_predicate);
3352 remap_hint_predicate (info, callee_info,
3353 &callee_info->loop_stride,
3354 operand_map, offset_map, clause, &toplev_predicate);
3355 remap_hint_predicate (info, callee_info,
3356 &callee_info->array_index,
3357 operand_map, offset_map, clause, &toplev_predicate);
3359 inline_update_callee_summaries (edge->callee,
3360 inline_edge_summary (edge)->loop_depth);
3362 /* We do not maintain predicates of inlined edges, free it. */
3363 edge_set_predicate (edge, &true_p);
3364 /* Similarly remove param summaries. */
3365 es->param.release ();
3366 operand_map.release ();
3367 offset_map.release ();
3370 /* For performance reasons inline_merge_summary is not updating overall size
3371 and time. Recompute it. */
3373 void
3374 inline_update_overall_summary (struct cgraph_node *node)
3376 struct inline_summary *info = inline_summary (node);
3377 size_time_entry *e;
3378 int i;
3380 info->size = 0;
3381 info->time = 0;
3382 for (i = 0; vec_safe_iterate (info->entry, i, &e); i++)
3384 info->size += e->size, info->time += e->time;
3385 if (info->time > MAX_TIME * INLINE_TIME_SCALE)
3386 info->time = MAX_TIME * INLINE_TIME_SCALE;
3388 estimate_calls_size_and_time (node, &info->size, &info->time, NULL,
3389 ~(clause_t) (1 << predicate_false_condition),
3390 vNULL, vNULL, vNULL);
3391 info->time = (info->time + INLINE_TIME_SCALE / 2) / INLINE_TIME_SCALE;
3392 info->size = (info->size + INLINE_SIZE_SCALE / 2) / INLINE_SIZE_SCALE;
3395 /* Return hints derrived from EDGE. */
3397 simple_edge_hints (struct cgraph_edge *edge)
3399 int hints = 0;
3400 struct cgraph_node *to = (edge->caller->global.inlined_to
3401 ? edge->caller->global.inlined_to : edge->caller);
3402 if (inline_summary (to)->scc_no
3403 && inline_summary (to)->scc_no == inline_summary (edge->callee)->scc_no
3404 && !cgraph_edge_recursive_p (edge))
3405 hints |= INLINE_HINT_same_scc;
3407 if (to->symbol.lto_file_data && edge->callee->symbol.lto_file_data
3408 && to->symbol.lto_file_data != edge->callee->symbol.lto_file_data)
3409 hints |= INLINE_HINT_cross_module;
3411 return hints;
3414 /* Estimate the time cost for the caller when inlining EDGE.
3415 Only to be called via estimate_edge_time, that handles the
3416 caching mechanism.
3418 When caching, also update the cache entry. Compute both time and
3419 size, since we always need both metrics eventually. */
3422 do_estimate_edge_time (struct cgraph_edge *edge)
3424 int time;
3425 int size;
3426 inline_hints hints;
3427 struct cgraph_node *callee;
3428 clause_t clause;
3429 vec<tree> known_vals;
3430 vec<tree> known_binfos;
3431 vec<ipa_agg_jump_function_p> known_aggs;
3432 struct inline_edge_summary *es = inline_edge_summary (edge);
3434 callee = cgraph_function_or_thunk_node (edge->callee, NULL);
3436 gcc_checking_assert (edge->inline_failed);
3437 evaluate_properties_for_edge (edge, true,
3438 &clause, &known_vals, &known_binfos,
3439 &known_aggs);
3440 estimate_node_size_and_time (callee, clause, known_vals, known_binfos,
3441 known_aggs, &size, &time, &hints, es->param);
3442 known_vals.release ();
3443 known_binfos.release ();
3444 known_aggs.release ();
3445 gcc_checking_assert (size >= 0);
3446 gcc_checking_assert (time >= 0);
3448 /* When caching, update the cache entry. */
3449 if (edge_growth_cache.exists ())
3451 if ((int) edge_growth_cache.length () <= edge->uid)
3452 edge_growth_cache.safe_grow_cleared (cgraph_edge_max_uid);
3453 edge_growth_cache[edge->uid].time = time + (time >= 0);
3455 edge_growth_cache[edge->uid].size = size + (size >= 0);
3456 hints |= simple_edge_hints (edge);
3457 edge_growth_cache[edge->uid].hints = hints + 1;
3459 return time;
3463 /* Return estimated callee growth after inlining EDGE.
3464 Only to be called via estimate_edge_size. */
3467 do_estimate_edge_size (struct cgraph_edge *edge)
3469 int size;
3470 struct cgraph_node *callee;
3471 clause_t clause;
3472 vec<tree> known_vals;
3473 vec<tree> known_binfos;
3474 vec<ipa_agg_jump_function_p> known_aggs;
3476 /* When we do caching, use do_estimate_edge_time to populate the entry. */
3478 if (edge_growth_cache.exists ())
3480 do_estimate_edge_time (edge);
3481 size = edge_growth_cache[edge->uid].size;
3482 gcc_checking_assert (size);
3483 return size - (size > 0);
3486 callee = cgraph_function_or_thunk_node (edge->callee, NULL);
3488 /* Early inliner runs without caching, go ahead and do the dirty work. */
3489 gcc_checking_assert (edge->inline_failed);
3490 evaluate_properties_for_edge (edge, true,
3491 &clause, &known_vals, &known_binfos,
3492 &known_aggs);
3493 estimate_node_size_and_time (callee, clause, known_vals, known_binfos,
3494 known_aggs, &size, NULL, NULL, vNULL);
3495 known_vals.release ();
3496 known_binfos.release ();
3497 known_aggs.release ();
3498 return size;
3502 /* Estimate the growth of the caller when inlining EDGE.
3503 Only to be called via estimate_edge_size. */
3505 inline_hints
3506 do_estimate_edge_hints (struct cgraph_edge *edge)
3508 inline_hints hints;
3509 struct cgraph_node *callee;
3510 clause_t clause;
3511 vec<tree> known_vals;
3512 vec<tree> known_binfos;
3513 vec<ipa_agg_jump_function_p> known_aggs;
3515 /* When we do caching, use do_estimate_edge_time to populate the entry. */
3517 if (edge_growth_cache.exists ())
3519 do_estimate_edge_time (edge);
3520 hints = edge_growth_cache[edge->uid].hints;
3521 gcc_checking_assert (hints);
3522 return hints - 1;
3525 callee = cgraph_function_or_thunk_node (edge->callee, NULL);
3527 /* Early inliner runs without caching, go ahead and do the dirty work. */
3528 gcc_checking_assert (edge->inline_failed);
3529 evaluate_properties_for_edge (edge, true,
3530 &clause, &known_vals, &known_binfos,
3531 &known_aggs);
3532 estimate_node_size_and_time (callee, clause, known_vals, known_binfos,
3533 known_aggs, NULL, NULL, &hints, vNULL);
3534 known_vals.release ();
3535 known_binfos.release ();
3536 known_aggs.release ();
3537 hints |= simple_edge_hints (edge);
3538 return hints;
3542 /* Estimate self time of the function NODE after inlining EDGE. */
3545 estimate_time_after_inlining (struct cgraph_node *node,
3546 struct cgraph_edge *edge)
3548 struct inline_edge_summary *es = inline_edge_summary (edge);
3549 if (!es->predicate || !false_predicate_p (es->predicate))
3551 gcov_type time =
3552 inline_summary (node)->time + estimate_edge_time (edge);
3553 if (time < 0)
3554 time = 0;
3555 if (time > MAX_TIME)
3556 time = MAX_TIME;
3557 return time;
3559 return inline_summary (node)->time;
3563 /* Estimate the size of NODE after inlining EDGE which should be an
3564 edge to either NODE or a call inlined into NODE. */
3567 estimate_size_after_inlining (struct cgraph_node *node,
3568 struct cgraph_edge *edge)
3570 struct inline_edge_summary *es = inline_edge_summary (edge);
3571 if (!es->predicate || !false_predicate_p (es->predicate))
3573 int size = inline_summary (node)->size + estimate_edge_growth (edge);
3574 gcc_assert (size >= 0);
3575 return size;
3577 return inline_summary (node)->size;
3581 struct growth_data
3583 bool self_recursive;
3584 int growth;
3588 /* Worker for do_estimate_growth. Collect growth for all callers. */
3590 static bool
3591 do_estimate_growth_1 (struct cgraph_node *node, void *data)
3593 struct cgraph_edge *e;
3594 struct growth_data *d = (struct growth_data *) data;
3596 for (e = node->callers; e; e = e->next_caller)
3598 gcc_checking_assert (e->inline_failed);
3600 if (e->caller == node
3601 || (e->caller->global.inlined_to
3602 && e->caller->global.inlined_to == node))
3603 d->self_recursive = true;
3604 d->growth += estimate_edge_growth (e);
3606 return false;
3610 /* Estimate the growth caused by inlining NODE into all callees. */
3613 do_estimate_growth (struct cgraph_node *node)
3615 struct growth_data d = { 0, false };
3616 struct inline_summary *info = inline_summary (node);
3618 cgraph_for_node_and_aliases (node, do_estimate_growth_1, &d, true);
3620 /* For self recursive functions the growth estimation really should be
3621 infinity. We don't want to return very large values because the growth
3622 plays various roles in badness computation fractions. Be sure to not
3623 return zero or negative growths. */
3624 if (d.self_recursive)
3625 d.growth = d.growth < info->size ? info->size : d.growth;
3626 else if (DECL_EXTERNAL (node->symbol.decl))
3628 else
3630 if (cgraph_will_be_removed_from_program_if_no_direct_calls (node))
3631 d.growth -= info->size;
3632 /* COMDAT functions are very often not shared across multiple units
3633 since they come from various template instantiations.
3634 Take this into account. */
3635 else if (DECL_COMDAT (node->symbol.decl)
3636 && cgraph_can_remove_if_no_direct_calls_p (node))
3637 d.growth -= (info->size
3638 * (100 - PARAM_VALUE (PARAM_COMDAT_SHARING_PROBABILITY))
3639 + 50) / 100;
3642 if (node_growth_cache.exists ())
3644 if ((int) node_growth_cache.length () <= node->uid)
3645 node_growth_cache.safe_grow_cleared (cgraph_max_uid);
3646 node_growth_cache[node->uid] = d.growth + (d.growth >= 0);
3648 return d.growth;
3652 /* This function performs intraprocedural analysis in NODE that is required to
3653 inline indirect calls. */
3655 static void
3656 inline_indirect_intraprocedural_analysis (struct cgraph_node *node)
3658 ipa_analyze_node (node);
3659 if (dump_file && (dump_flags & TDF_DETAILS))
3661 ipa_print_node_params (dump_file, node);
3662 ipa_print_node_jump_functions (dump_file, node);
3667 /* Note function body size. */
3669 static void
3670 inline_analyze_function (struct cgraph_node *node)
3672 push_cfun (DECL_STRUCT_FUNCTION (node->symbol.decl));
3674 if (dump_file)
3675 fprintf (dump_file, "\nAnalyzing function: %s/%u\n",
3676 cgraph_node_name (node), node->symbol.order);
3677 if (optimize && !node->thunk.thunk_p)
3678 inline_indirect_intraprocedural_analysis (node);
3679 compute_inline_parameters (node, false);
3681 pop_cfun ();
3685 /* Called when new function is inserted to callgraph late. */
3687 static void
3688 add_new_function (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
3690 inline_analyze_function (node);
3694 /* Note function body size. */
3696 void
3697 inline_generate_summary (void)
3699 struct cgraph_node *node;
3701 function_insertion_hook_holder =
3702 cgraph_add_function_insertion_hook (&add_new_function, NULL);
3704 ipa_register_cgraph_hooks ();
3705 inline_free_summary ();
3707 FOR_EACH_DEFINED_FUNCTION (node)
3708 if (!node->symbol.alias)
3709 inline_analyze_function (node);
3713 /* Read predicate from IB. */
3715 static struct predicate
3716 read_predicate (struct lto_input_block *ib)
3718 struct predicate out;
3719 clause_t clause;
3720 int k = 0;
3724 gcc_assert (k <= MAX_CLAUSES);
3725 clause = out.clause[k++] = streamer_read_uhwi (ib);
3727 while (clause);
3729 /* Zero-initialize the remaining clauses in OUT. */
3730 while (k <= MAX_CLAUSES)
3731 out.clause[k++] = 0;
3733 return out;
3737 /* Write inline summary for edge E to OB. */
3739 static void
3740 read_inline_edge_summary (struct lto_input_block *ib, struct cgraph_edge *e)
3742 struct inline_edge_summary *es = inline_edge_summary (e);
3743 struct predicate p;
3744 int length, i;
3746 es->call_stmt_size = streamer_read_uhwi (ib);
3747 es->call_stmt_time = streamer_read_uhwi (ib);
3748 es->loop_depth = streamer_read_uhwi (ib);
3749 p = read_predicate (ib);
3750 edge_set_predicate (e, &p);
3751 length = streamer_read_uhwi (ib);
3752 if (length)
3754 es->param.safe_grow_cleared (length);
3755 for (i = 0; i < length; i++)
3756 es->param[i].change_prob = streamer_read_uhwi (ib);
3761 /* Stream in inline summaries from the section. */
3763 static void
3764 inline_read_section (struct lto_file_decl_data *file_data, const char *data,
3765 size_t len)
3767 const struct lto_function_header *header =
3768 (const struct lto_function_header *) data;
3769 const int cfg_offset = sizeof (struct lto_function_header);
3770 const int main_offset = cfg_offset + header->cfg_size;
3771 const int string_offset = main_offset + header->main_size;
3772 struct data_in *data_in;
3773 struct lto_input_block ib;
3774 unsigned int i, count2, j;
3775 unsigned int f_count;
3777 LTO_INIT_INPUT_BLOCK (ib, (const char *) data + main_offset, 0,
3778 header->main_size);
3780 data_in =
3781 lto_data_in_create (file_data, (const char *) data + string_offset,
3782 header->string_size, vNULL);
3783 f_count = streamer_read_uhwi (&ib);
3784 for (i = 0; i < f_count; i++)
3786 unsigned int index;
3787 struct cgraph_node *node;
3788 struct inline_summary *info;
3789 lto_symtab_encoder_t encoder;
3790 struct bitpack_d bp;
3791 struct cgraph_edge *e;
3792 predicate p;
3794 index = streamer_read_uhwi (&ib);
3795 encoder = file_data->symtab_node_encoder;
3796 node = cgraph (lto_symtab_encoder_deref (encoder, index));
3797 info = inline_summary (node);
3799 info->estimated_stack_size
3800 = info->estimated_self_stack_size = streamer_read_uhwi (&ib);
3801 info->size = info->self_size = streamer_read_uhwi (&ib);
3802 info->time = info->self_time = streamer_read_uhwi (&ib);
3804 bp = streamer_read_bitpack (&ib);
3805 info->inlinable = bp_unpack_value (&bp, 1);
3807 count2 = streamer_read_uhwi (&ib);
3808 gcc_assert (!info->conds);
3809 for (j = 0; j < count2; j++)
3811 struct condition c;
3812 c.operand_num = streamer_read_uhwi (&ib);
3813 c.code = (enum tree_code) streamer_read_uhwi (&ib);
3814 c.val = stream_read_tree (&ib, data_in);
3815 bp = streamer_read_bitpack (&ib);
3816 c.agg_contents = bp_unpack_value (&bp, 1);
3817 c.by_ref = bp_unpack_value (&bp, 1);
3818 if (c.agg_contents)
3819 c.offset = streamer_read_uhwi (&ib);
3820 vec_safe_push (info->conds, c);
3822 count2 = streamer_read_uhwi (&ib);
3823 gcc_assert (!info->entry);
3824 for (j = 0; j < count2; j++)
3826 struct size_time_entry e;
3828 e.size = streamer_read_uhwi (&ib);
3829 e.time = streamer_read_uhwi (&ib);
3830 e.predicate = read_predicate (&ib);
3832 vec_safe_push (info->entry, e);
3835 p = read_predicate (&ib);
3836 set_hint_predicate (&info->loop_iterations, p);
3837 p = read_predicate (&ib);
3838 set_hint_predicate (&info->loop_stride, p);
3839 p = read_predicate (&ib);
3840 set_hint_predicate (&info->array_index, p);
3841 for (e = node->callees; e; e = e->next_callee)
3842 read_inline_edge_summary (&ib, e);
3843 for (e = node->indirect_calls; e; e = e->next_callee)
3844 read_inline_edge_summary (&ib, e);
3847 lto_free_section_data (file_data, LTO_section_inline_summary, NULL, data,
3848 len);
3849 lto_data_in_delete (data_in);
3853 /* Read inline summary. Jump functions are shared among ipa-cp
3854 and inliner, so when ipa-cp is active, we don't need to write them
3855 twice. */
3857 void
3858 inline_read_summary (void)
3860 struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
3861 struct lto_file_decl_data *file_data;
3862 unsigned int j = 0;
3864 inline_summary_alloc ();
3866 while ((file_data = file_data_vec[j++]))
3868 size_t len;
3869 const char *data = lto_get_section_data (file_data,
3870 LTO_section_inline_summary,
3871 NULL, &len);
3872 if (data)
3873 inline_read_section (file_data, data, len);
3874 else
3875 /* Fatal error here. We do not want to support compiling ltrans units
3876 with different version of compiler or different flags than the WPA
3877 unit, so this should never happen. */
3878 fatal_error ("ipa inline summary is missing in input file");
3880 if (optimize)
3882 ipa_register_cgraph_hooks ();
3883 if (!flag_ipa_cp)
3884 ipa_prop_read_jump_functions ();
3886 function_insertion_hook_holder =
3887 cgraph_add_function_insertion_hook (&add_new_function, NULL);
3891 /* Write predicate P to OB. */
3893 static void
3894 write_predicate (struct output_block *ob, struct predicate *p)
3896 int j;
3897 if (p)
3898 for (j = 0; p->clause[j]; j++)
3900 gcc_assert (j < MAX_CLAUSES);
3901 streamer_write_uhwi (ob, p->clause[j]);
3903 streamer_write_uhwi (ob, 0);
3907 /* Write inline summary for edge E to OB. */
3909 static void
3910 write_inline_edge_summary (struct output_block *ob, struct cgraph_edge *e)
3912 struct inline_edge_summary *es = inline_edge_summary (e);
3913 int i;
3915 streamer_write_uhwi (ob, es->call_stmt_size);
3916 streamer_write_uhwi (ob, es->call_stmt_time);
3917 streamer_write_uhwi (ob, es->loop_depth);
3918 write_predicate (ob, es->predicate);
3919 streamer_write_uhwi (ob, es->param.length ());
3920 for (i = 0; i < (int) es->param.length (); i++)
3921 streamer_write_uhwi (ob, es->param[i].change_prob);
3925 /* Write inline summary for node in SET.
3926 Jump functions are shared among ipa-cp and inliner, so when ipa-cp is
3927 active, we don't need to write them twice. */
3929 void
3930 inline_write_summary (void)
3932 struct cgraph_node *node;
3933 struct output_block *ob = create_output_block (LTO_section_inline_summary);
3934 lto_symtab_encoder_t encoder = ob->decl_state->symtab_node_encoder;
3935 unsigned int count = 0;
3936 int i;
3938 for (i = 0; i < lto_symtab_encoder_size (encoder); i++)
3940 symtab_node snode = lto_symtab_encoder_deref (encoder, i);
3941 cgraph_node *cnode = dyn_cast <cgraph_node> (snode);
3942 if (cnode && cnode->symbol.definition && !cnode->symbol.alias)
3943 count++;
3945 streamer_write_uhwi (ob, count);
3947 for (i = 0; i < lto_symtab_encoder_size (encoder); i++)
3949 symtab_node snode = lto_symtab_encoder_deref (encoder, i);
3950 cgraph_node *cnode = dyn_cast <cgraph_node> (snode);
3951 if (cnode && (node = cnode)->symbol.definition && !node->symbol.alias)
3953 struct inline_summary *info = inline_summary (node);
3954 struct bitpack_d bp;
3955 struct cgraph_edge *edge;
3956 int i;
3957 size_time_entry *e;
3958 struct condition *c;
3960 streamer_write_uhwi (ob,
3961 lto_symtab_encoder_encode (encoder,
3962 (symtab_node)
3963 node));
3964 streamer_write_hwi (ob, info->estimated_self_stack_size);
3965 streamer_write_hwi (ob, info->self_size);
3966 streamer_write_hwi (ob, info->self_time);
3967 bp = bitpack_create (ob->main_stream);
3968 bp_pack_value (&bp, info->inlinable, 1);
3969 streamer_write_bitpack (&bp);
3970 streamer_write_uhwi (ob, vec_safe_length (info->conds));
3971 for (i = 0; vec_safe_iterate (info->conds, i, &c); i++)
3973 streamer_write_uhwi (ob, c->operand_num);
3974 streamer_write_uhwi (ob, c->code);
3975 stream_write_tree (ob, c->val, true);
3976 bp = bitpack_create (ob->main_stream);
3977 bp_pack_value (&bp, c->agg_contents, 1);
3978 bp_pack_value (&bp, c->by_ref, 1);
3979 streamer_write_bitpack (&bp);
3980 if (c->agg_contents)
3981 streamer_write_uhwi (ob, c->offset);
3983 streamer_write_uhwi (ob, vec_safe_length (info->entry));
3984 for (i = 0; vec_safe_iterate (info->entry, i, &e); i++)
3986 streamer_write_uhwi (ob, e->size);
3987 streamer_write_uhwi (ob, e->time);
3988 write_predicate (ob, &e->predicate);
3990 write_predicate (ob, info->loop_iterations);
3991 write_predicate (ob, info->loop_stride);
3992 write_predicate (ob, info->array_index);
3993 for (edge = node->callees; edge; edge = edge->next_callee)
3994 write_inline_edge_summary (ob, edge);
3995 for (edge = node->indirect_calls; edge; edge = edge->next_callee)
3996 write_inline_edge_summary (ob, edge);
3999 streamer_write_char_stream (ob->main_stream, 0);
4000 produce_asm (ob, NULL);
4001 destroy_output_block (ob);
4003 if (optimize && !flag_ipa_cp)
4004 ipa_prop_write_jump_functions ();
4008 /* Release inline summary. */
4010 void
4011 inline_free_summary (void)
4013 struct cgraph_node *node;
4014 if (!inline_edge_summary_vec.exists ())
4015 return;
4016 FOR_EACH_DEFINED_FUNCTION (node)
4017 reset_inline_summary (node);
4018 if (function_insertion_hook_holder)
4019 cgraph_remove_function_insertion_hook (function_insertion_hook_holder);
4020 function_insertion_hook_holder = NULL;
4021 if (node_removal_hook_holder)
4022 cgraph_remove_node_removal_hook (node_removal_hook_holder);
4023 node_removal_hook_holder = NULL;
4024 if (edge_removal_hook_holder)
4025 cgraph_remove_edge_removal_hook (edge_removal_hook_holder);
4026 edge_removal_hook_holder = NULL;
4027 if (node_duplication_hook_holder)
4028 cgraph_remove_node_duplication_hook (node_duplication_hook_holder);
4029 node_duplication_hook_holder = NULL;
4030 if (edge_duplication_hook_holder)
4031 cgraph_remove_edge_duplication_hook (edge_duplication_hook_holder);
4032 edge_duplication_hook_holder = NULL;
4033 vec_free (inline_summary_vec);
4034 inline_edge_summary_vec.release ();
4035 if (edge_predicate_pool)
4036 free_alloc_pool (edge_predicate_pool);
4037 edge_predicate_pool = 0;