1 /* Dead store elimination
2 Copyright (C) 2004, 2005 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to
18 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
19 Boston, MA 02110-1301, USA. */
23 #include "coretypes.h"
29 #include "basic-block.h"
31 #include "diagnostic.h"
32 #include "tree-flow.h"
33 #include "tree-pass.h"
34 #include "tree-dump.h"
38 /* This file implements dead store elimination.
40 A dead store is a store into a memory location which will later be
41 overwritten by another store without any intervening loads. In this
42 case the earlier store can be deleted.
44 In our SSA + virtual operand world we use immediate uses of virtual
45 operands to detect dead stores. If a store's virtual definition
46 is used precisely once by a later store to the same location which
47 post dominates the first store, then the first store is dead.
49 The single use of the store's virtual definition ensures that
50 there are no intervening aliased loads and the requirement that
51 the second load post dominate the first ensures that if the earlier
52 store executes, then the later stores will execute before the function
55 It may help to think of this as first moving the earlier store to
56 the point immediately before the later store. Again, the single
57 use of the virtual definition and the post-dominance relationship
58 ensure that such movement would be safe. Clearly if there are
59 back to back stores, then the second is redundant.
61 Reviewing section 10.7.2 in Morgan's "Building an Optimizing Compiler"
62 may also help in understanding this code since it discusses the
63 relationship between dead store and redundant load elimination. In
64 fact, they are the same transformation applied to different views of
68 struct dse_global_data
70 /* This is the global bitmap for store statements.
72 Each statement has a unique ID. When we encounter a store statement
73 that we want to record, set the bit corresponding to the statement's
74 unique ID in this bitmap. */
78 /* We allocate a bitmap-per-block for stores which are encountered
79 during the scan of that block. This allows us to restore the
80 global bitmap of stores when we finish processing a block. */
81 struct dse_block_local_data
86 static bool gate_dse (void);
87 static void tree_ssa_dse (void);
88 static void dse_initialize_block_local_data (struct dom_walk_data
*,
91 static void dse_optimize_stmt (struct dom_walk_data
*,
94 static void dse_record_phis (struct dom_walk_data
*, basic_block
);
95 static void dse_finalize_block (struct dom_walk_data
*, basic_block
);
96 static void record_voperand_set (bitmap
, bitmap
*, unsigned int);
98 static unsigned max_stmt_uid
; /* Maximal uid of a statement. Uids to phi
99 nodes are assigned using the versions of
100 ssa names they define. */
102 /* Returns uid of statement STMT. */
105 get_stmt_uid (tree stmt
)
107 if (TREE_CODE (stmt
) == PHI_NODE
)
108 return SSA_NAME_VERSION (PHI_RESULT (stmt
)) + max_stmt_uid
;
110 return stmt_ann (stmt
)->uid
;
113 /* Set bit UID in bitmaps GLOBAL and *LOCAL, creating *LOCAL as needed. */
116 record_voperand_set (bitmap global
, bitmap
*local
, unsigned int uid
)
118 /* Lazily allocate the bitmap. Note that we do not get a notification
119 when the block local data structures die, so we allocate the local
120 bitmap backed by the GC system. */
122 *local
= BITMAP_GGC_ALLOC ();
124 /* Set the bit in the local and global bitmaps. */
125 bitmap_set_bit (*local
, uid
);
126 bitmap_set_bit (global
, uid
);
129 /* Initialize block local data structures. */
132 dse_initialize_block_local_data (struct dom_walk_data
*walk_data
,
133 basic_block bb ATTRIBUTE_UNUSED
,
136 struct dse_block_local_data
*bd
137 = VEC_last (void_p
, walk_data
->block_data_stack
);
139 /* If we are given a recycled block local data structure, ensure any
140 bitmap associated with the block is cleared. */
144 bitmap_clear (bd
->stores
);
148 /* Attempt to eliminate dead stores in the statement referenced by BSI.
150 A dead store is a store into a memory location which will later be
151 overwritten by another store without any intervening loads. In this
152 case the earlier store can be deleted.
154 In our SSA + virtual operand world we use immediate uses of virtual
155 operands to detect dead stores. If a store's virtual definition
156 is used precisely once by a later store to the same location which
157 post dominates the first store, then the first store is dead. */
160 dse_optimize_stmt (struct dom_walk_data
*walk_data
,
161 basic_block bb ATTRIBUTE_UNUSED
,
162 block_stmt_iterator bsi
)
164 struct dse_block_local_data
*bd
165 = VEC_last (void_p
, walk_data
->block_data_stack
);
166 struct dse_global_data
*dse_gd
= walk_data
->global_data
;
167 tree stmt
= bsi_stmt (bsi
);
168 stmt_ann_t ann
= stmt_ann (stmt
);
170 /* If this statement has no virtual defs, then there is nothing
172 if (ZERO_SSA_OPERANDS (stmt
, (SSA_OP_VMAYDEF
|SSA_OP_VMUSTDEF
)))
175 /* We know we have virtual definitions. If this is a MODIFY_EXPR that's
176 not also a function call, then record it into our table. */
177 if (get_call_expr_in (stmt
))
180 if (ann
->has_volatile_ops
)
183 if (TREE_CODE (stmt
) == MODIFY_EXPR
)
185 use_operand_p first_use_p
= NULL_USE_OPERAND_P
;
186 use_operand_p use_p
= NULL
;
187 tree use
, use_stmt
, temp
;
188 tree defvar
= NULL_TREE
, usevar
= NULL_TREE
;
194 /* We want to verify that each virtual definition in STMT has
195 precisely one use and that all the virtual definitions are
196 used by the same single statement. When complete, we
197 want USE_STMT to refer to the one statement which uses
198 all of the virtual definitions from STMT. */
200 FOR_EACH_SSA_MUST_AND_MAY_DEF_OPERAND (var1
, var2
, stmt
, op_iter
)
202 defvar
= DEF_FROM_PTR (var1
);
203 usevar
= USE_FROM_PTR (var2
);
205 /* If this virtual def does not have precisely one use, then
206 we will not be able to eliminate STMT. */
207 if (num_imm_uses (defvar
) != 1)
213 /* Get the one and only immediate use of DEFVAR. */
214 single_imm_use (defvar
, &use_p
, &temp
);
215 gcc_assert (use_p
!= NULL_USE_OPERAND_P
);
217 use
= USE_FROM_PTR (use_p
);
219 /* If the immediate use of DEF_VAR is not the same as the
220 previously find immediate uses, then we will not be able
221 to eliminate STMT. */
222 if (use_stmt
== NULL
)
224 else if (temp
!= use_stmt
)
233 record_voperand_set (dse_gd
->stores
, &bd
->stores
, ann
->uid
);
237 /* Skip through any PHI nodes we have already seen if the PHI
238 represents the only use of this store.
240 Note this does not handle the case where the store has
241 multiple V_{MAY,MUST}_DEFs which all reach a set of PHI nodes in the
243 while (use_p
!= NULL_USE_OPERAND_P
244 && TREE_CODE (use_stmt
) == PHI_NODE
245 && bitmap_bit_p (dse_gd
->stores
, get_stmt_uid (use_stmt
)))
247 /* Skip past this PHI and loop again in case we had a PHI
249 if (single_imm_use (PHI_RESULT (use_stmt
), &use_p
, &use_stmt
))
250 use
= USE_FROM_PTR (use_p
);
253 /* If we have precisely one immediate use at this point, then we may
254 have found redundant store. */
255 if (use_p
!= NULL_USE_OPERAND_P
256 && bitmap_bit_p (dse_gd
->stores
, get_stmt_uid (use_stmt
))
257 && operand_equal_p (TREE_OPERAND (stmt
, 0),
258 TREE_OPERAND (use_stmt
, 0), 0))
263 /* Make sure we propagate the ABNORMAL bit setting. */
264 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (first_use_p
)))
265 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (usevar
) = 1;
266 /* Then we need to fix the operand of the consuming stmt. */
267 SET_USE (first_use_p
, usevar
);
269 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
271 fprintf (dump_file
, " Deleted dead store '");
272 print_generic_expr (dump_file
, bsi_stmt (bsi
), dump_flags
);
273 fprintf (dump_file
, "'\n");
276 /* Remove the dead store. */
279 /* The virtual defs for the dead statement will need to be
280 updated. Since these names are going to disappear,
281 FUD chains for uses downstream need to be updated. */
282 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_VIRTUAL_DEFS
)
283 mark_sym_for_renaming (SSA_NAME_VAR (def
));
285 /* And release any SSA_NAMEs set in this statement back to the
290 record_voperand_set (dse_gd
->stores
, &bd
->stores
, ann
->uid
);
294 /* Record that we have seen the PHIs at the start of BB which correspond
295 to virtual operands. */
297 dse_record_phis (struct dom_walk_data
*walk_data
, basic_block bb
)
299 struct dse_block_local_data
*bd
300 = VEC_last (void_p
, walk_data
->block_data_stack
);
301 struct dse_global_data
*dse_gd
= walk_data
->global_data
;
304 for (phi
= phi_nodes (bb
); phi
; phi
= PHI_CHAIN (phi
))
305 if (!is_gimple_reg (PHI_RESULT (phi
)))
306 record_voperand_set (dse_gd
->stores
,
312 dse_finalize_block (struct dom_walk_data
*walk_data
,
313 basic_block bb ATTRIBUTE_UNUSED
)
315 struct dse_block_local_data
*bd
316 = VEC_last (void_p
, walk_data
->block_data_stack
);
317 struct dse_global_data
*dse_gd
= walk_data
->global_data
;
318 bitmap stores
= dse_gd
->stores
;
322 /* Unwind the stores noted in this basic block. */
324 EXECUTE_IF_SET_IN_BITMAP (bd
->stores
, 0, i
, bi
)
326 bitmap_clear_bit (stores
, i
);
333 struct dom_walk_data walk_data
;
334 struct dse_global_data dse_gd
;
337 /* Create a UID for each statement in the function. Ordering of the
338 UIDs is not important for this pass. */
342 block_stmt_iterator bsi
;
344 for (bsi
= bsi_start (bb
); !bsi_end_p (bsi
); bsi_next (&bsi
))
345 stmt_ann (bsi_stmt (bsi
))->uid
= max_stmt_uid
++;
348 /* We might consider making this a property of each pass so that it
349 can be [re]computed on an as-needed basis. Particularly since
350 this pass could be seen as an extension of DCE which needs post
352 calculate_dominance_info (CDI_POST_DOMINATORS
);
354 /* Dead store elimination is fundamentally a walk of the post-dominator
355 tree and a backwards walk of statements within each block. */
356 walk_data
.walk_stmts_backward
= true;
357 walk_data
.dom_direction
= CDI_POST_DOMINATORS
;
358 walk_data
.initialize_block_local_data
= dse_initialize_block_local_data
;
359 walk_data
.before_dom_children_before_stmts
= NULL
;
360 walk_data
.before_dom_children_walk_stmts
= dse_optimize_stmt
;
361 walk_data
.before_dom_children_after_stmts
= dse_record_phis
;
362 walk_data
.after_dom_children_before_stmts
= NULL
;
363 walk_data
.after_dom_children_walk_stmts
= NULL
;
364 walk_data
.after_dom_children_after_stmts
= dse_finalize_block
;
365 walk_data
.interesting_blocks
= NULL
;
367 walk_data
.block_local_data_size
= sizeof (struct dse_block_local_data
);
369 /* This is the main hash table for the dead store elimination pass. */
370 dse_gd
.stores
= BITMAP_ALLOC (NULL
);
371 walk_data
.global_data
= &dse_gd
;
373 /* Initialize the dominator walker. */
374 init_walk_dominator_tree (&walk_data
);
376 /* Recursively walk the dominator tree. */
377 walk_dominator_tree (&walk_data
, EXIT_BLOCK_PTR
);
379 /* Finalize the dominator walker. */
380 fini_walk_dominator_tree (&walk_data
);
382 /* Release the main bitmap. */
383 BITMAP_FREE (dse_gd
.stores
);
385 /* For now, just wipe the post-dominator information. */
386 free_dominance_info (CDI_POST_DOMINATORS
);
392 return flag_tree_dse
!= 0;
395 struct tree_opt_pass pass_dse
= {
398 tree_ssa_dse
, /* execute */
401 0, /* static_pass_number */
402 TV_TREE_DSE
, /* tv_id */
405 | PROP_alias
, /* properties_required */
406 0, /* properties_provided */
407 0, /* properties_destroyed */
408 0, /* todo_flags_start */
412 | TODO_verify_ssa
, /* todo_flags_finish */