* tree-ssa-phiopt.c (conditional_replacement): Construct proper SSA
[official-gcc.git] / gcc / reload1.c
blob236afcef86a4e125a6398b737779266659ed095c
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "regs.h"
38 #include "basic-block.h"
39 #include "reload.h"
40 #include "recog.h"
41 #include "output.h"
42 #include "real.h"
43 #include "toplev.h"
44 #include "except.h"
45 #include "tree.h"
47 /* This file contains the reload pass of the compiler, which is
48 run after register allocation has been done. It checks that
49 each insn is valid (operands required to be in registers really
50 are in registers of the proper class) and fixes up invalid ones
51 by copying values temporarily into registers for the insns
52 that need them.
54 The results of register allocation are described by the vector
55 reg_renumber; the insns still contain pseudo regs, but reg_renumber
56 can be used to find which hard reg, if any, a pseudo reg is in.
58 The technique we always use is to free up a few hard regs that are
59 called ``reload regs'', and for each place where a pseudo reg
60 must be in a hard reg, copy it temporarily into one of the reload regs.
62 Reload regs are allocated locally for every instruction that needs
63 reloads. When there are pseudos which are allocated to a register that
64 has been chosen as a reload reg, such pseudos must be ``spilled''.
65 This means that they go to other hard regs, or to stack slots if no other
66 available hard regs can be found. Spilling can invalidate more
67 insns, requiring additional need for reloads, so we must keep checking
68 until the process stabilizes.
70 For machines with different classes of registers, we must keep track
71 of the register class needed for each reload, and make sure that
72 we allocate enough reload registers of each class.
74 The file reload.c contains the code that checks one insn for
75 validity and reports the reloads that it needs. This file
76 is in charge of scanning the entire rtl code, accumulating the
77 reload needs, spilling, assigning reload registers to use for
78 fixing up each insn, and generating the new insns to copy values
79 into the reload registers. */
81 /* During reload_as_needed, element N contains a REG rtx for the hard reg
82 into which reg N has been reloaded (perhaps for a previous insn). */
83 static rtx *reg_last_reload_reg;
85 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
86 for an output reload that stores into reg N. */
87 static char *reg_has_output_reload;
89 /* Indicates which hard regs are reload-registers for an output reload
90 in the current insn. */
91 static HARD_REG_SET reg_is_output_reload;
93 /* Element N is the constant value to which pseudo reg N is equivalent,
94 or zero if pseudo reg N is not equivalent to a constant.
95 find_reloads looks at this in order to replace pseudo reg N
96 with the constant it stands for. */
97 rtx *reg_equiv_constant;
99 /* Element N is a memory location to which pseudo reg N is equivalent,
100 prior to any register elimination (such as frame pointer to stack
101 pointer). Depending on whether or not it is a valid address, this value
102 is transferred to either reg_equiv_address or reg_equiv_mem. */
103 rtx *reg_equiv_memory_loc;
105 /* We allocate reg_equiv_memory_loc inside a varray so that the garbage
106 collector can keep track of what is inside. */
107 varray_type reg_equiv_memory_loc_varray;
109 /* Element N is the address of stack slot to which pseudo reg N is equivalent.
110 This is used when the address is not valid as a memory address
111 (because its displacement is too big for the machine.) */
112 rtx *reg_equiv_address;
114 /* Element N is the memory slot to which pseudo reg N is equivalent,
115 or zero if pseudo reg N is not equivalent to a memory slot. */
116 rtx *reg_equiv_mem;
118 /* Widest width in which each pseudo reg is referred to (via subreg). */
119 static unsigned int *reg_max_ref_width;
121 /* Element N is the list of insns that initialized reg N from its equivalent
122 constant or memory slot. */
123 rtx *reg_equiv_init;
124 int reg_equiv_init_size;
126 /* Vector to remember old contents of reg_renumber before spilling. */
127 static short *reg_old_renumber;
129 /* During reload_as_needed, element N contains the last pseudo regno reloaded
130 into hard register N. If that pseudo reg occupied more than one register,
131 reg_reloaded_contents points to that pseudo for each spill register in
132 use; all of these must remain set for an inheritance to occur. */
133 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
135 /* During reload_as_needed, element N contains the insn for which
136 hard register N was last used. Its contents are significant only
137 when reg_reloaded_valid is set for this register. */
138 static rtx reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
140 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
141 static HARD_REG_SET reg_reloaded_valid;
142 /* Indicate if the register was dead at the end of the reload.
143 This is only valid if reg_reloaded_contents is set and valid. */
144 static HARD_REG_SET reg_reloaded_dead;
146 /* Indicate whether the register's current value is one that is not
147 safe to retain across a call, even for registers that are normally
148 call-saved. */
149 static HARD_REG_SET reg_reloaded_call_part_clobbered;
151 /* Number of spill-regs so far; number of valid elements of spill_regs. */
152 static int n_spills;
154 /* In parallel with spill_regs, contains REG rtx's for those regs.
155 Holds the last rtx used for any given reg, or 0 if it has never
156 been used for spilling yet. This rtx is reused, provided it has
157 the proper mode. */
158 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
160 /* In parallel with spill_regs, contains nonzero for a spill reg
161 that was stored after the last time it was used.
162 The precise value is the insn generated to do the store. */
163 static rtx spill_reg_store[FIRST_PSEUDO_REGISTER];
165 /* This is the register that was stored with spill_reg_store. This is a
166 copy of reload_out / reload_out_reg when the value was stored; if
167 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
168 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
170 /* This table is the inverse mapping of spill_regs:
171 indexed by hard reg number,
172 it contains the position of that reg in spill_regs,
173 or -1 for something that is not in spill_regs.
175 ?!? This is no longer accurate. */
176 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
178 /* This reg set indicates registers that can't be used as spill registers for
179 the currently processed insn. These are the hard registers which are live
180 during the insn, but not allocated to pseudos, as well as fixed
181 registers. */
182 static HARD_REG_SET bad_spill_regs;
184 /* These are the hard registers that can't be used as spill register for any
185 insn. This includes registers used for user variables and registers that
186 we can't eliminate. A register that appears in this set also can't be used
187 to retry register allocation. */
188 static HARD_REG_SET bad_spill_regs_global;
190 /* Describes order of use of registers for reloading
191 of spilled pseudo-registers. `n_spills' is the number of
192 elements that are actually valid; new ones are added at the end.
194 Both spill_regs and spill_reg_order are used on two occasions:
195 once during find_reload_regs, where they keep track of the spill registers
196 for a single insn, but also during reload_as_needed where they show all
197 the registers ever used by reload. For the latter case, the information
198 is calculated during finish_spills. */
199 static short spill_regs[FIRST_PSEUDO_REGISTER];
201 /* This vector of reg sets indicates, for each pseudo, which hard registers
202 may not be used for retrying global allocation because the register was
203 formerly spilled from one of them. If we allowed reallocating a pseudo to
204 a register that it was already allocated to, reload might not
205 terminate. */
206 static HARD_REG_SET *pseudo_previous_regs;
208 /* This vector of reg sets indicates, for each pseudo, which hard
209 registers may not be used for retrying global allocation because they
210 are used as spill registers during one of the insns in which the
211 pseudo is live. */
212 static HARD_REG_SET *pseudo_forbidden_regs;
214 /* All hard regs that have been used as spill registers for any insn are
215 marked in this set. */
216 static HARD_REG_SET used_spill_regs;
218 /* Index of last register assigned as a spill register. We allocate in
219 a round-robin fashion. */
220 static int last_spill_reg;
222 /* Nonzero if indirect addressing is supported on the machine; this means
223 that spilling (REG n) does not require reloading it into a register in
224 order to do (MEM (REG n)) or (MEM (PLUS (REG n) (CONST_INT c))). The
225 value indicates the level of indirect addressing supported, e.g., two
226 means that (MEM (MEM (REG n))) is also valid if (REG n) does not get
227 a hard register. */
228 static char spill_indirect_levels;
230 /* Nonzero if indirect addressing is supported when the innermost MEM is
231 of the form (MEM (SYMBOL_REF sym)). It is assumed that the level to
232 which these are valid is the same as spill_indirect_levels, above. */
233 char indirect_symref_ok;
235 /* Nonzero if an address (plus (reg frame_pointer) (reg ...)) is valid. */
236 char double_reg_address_ok;
238 /* Record the stack slot for each spilled hard register. */
239 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
241 /* Width allocated so far for that stack slot. */
242 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
244 /* Record which pseudos needed to be spilled. */
245 static regset_head spilled_pseudos;
247 /* Used for communication between order_regs_for_reload and count_pseudo.
248 Used to avoid counting one pseudo twice. */
249 static regset_head pseudos_counted;
251 /* First uid used by insns created by reload in this function.
252 Used in find_equiv_reg. */
253 int reload_first_uid;
255 /* Flag set by local-alloc or global-alloc if anything is live in
256 a call-clobbered reg across calls. */
257 int caller_save_needed;
259 /* Set to 1 while reload_as_needed is operating.
260 Required by some machines to handle any generated moves differently. */
261 int reload_in_progress = 0;
263 /* These arrays record the insn_code of insns that may be needed to
264 perform input and output reloads of special objects. They provide a
265 place to pass a scratch register. */
266 enum insn_code reload_in_optab[NUM_MACHINE_MODES];
267 enum insn_code reload_out_optab[NUM_MACHINE_MODES];
269 /* This obstack is used for allocation of rtl during register elimination.
270 The allocated storage can be freed once find_reloads has processed the
271 insn. */
272 static struct obstack reload_obstack;
274 /* Points to the beginning of the reload_obstack. All insn_chain structures
275 are allocated first. */
276 static char *reload_startobj;
278 /* The point after all insn_chain structures. Used to quickly deallocate
279 memory allocated in copy_reloads during calculate_needs_all_insns. */
280 static char *reload_firstobj;
282 /* This points before all local rtl generated by register elimination.
283 Used to quickly free all memory after processing one insn. */
284 static char *reload_insn_firstobj;
286 /* List of insn_chain instructions, one for every insn that reload needs to
287 examine. */
288 struct insn_chain *reload_insn_chain;
290 /* List of all insns needing reloads. */
291 static struct insn_chain *insns_need_reload;
293 /* This structure is used to record information about register eliminations.
294 Each array entry describes one possible way of eliminating a register
295 in favor of another. If there is more than one way of eliminating a
296 particular register, the most preferred should be specified first. */
298 struct elim_table
300 int from; /* Register number to be eliminated. */
301 int to; /* Register number used as replacement. */
302 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
303 int can_eliminate; /* Nonzero if this elimination can be done. */
304 int can_eliminate_previous; /* Value of CAN_ELIMINATE in previous scan over
305 insns made by reload. */
306 HOST_WIDE_INT offset; /* Current offset between the two regs. */
307 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
308 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
309 rtx from_rtx; /* REG rtx for the register to be eliminated.
310 We cannot simply compare the number since
311 we might then spuriously replace a hard
312 register corresponding to a pseudo
313 assigned to the reg to be eliminated. */
314 rtx to_rtx; /* REG rtx for the replacement. */
317 static struct elim_table *reg_eliminate = 0;
319 /* This is an intermediate structure to initialize the table. It has
320 exactly the members provided by ELIMINABLE_REGS. */
321 static const struct elim_table_1
323 const int from;
324 const int to;
325 } reg_eliminate_1[] =
327 /* If a set of eliminable registers was specified, define the table from it.
328 Otherwise, default to the normal case of the frame pointer being
329 replaced by the stack pointer. */
331 #ifdef ELIMINABLE_REGS
332 ELIMINABLE_REGS;
333 #else
334 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
335 #endif
337 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
339 /* Record the number of pending eliminations that have an offset not equal
340 to their initial offset. If nonzero, we use a new copy of each
341 replacement result in any insns encountered. */
342 int num_not_at_initial_offset;
344 /* Count the number of registers that we may be able to eliminate. */
345 static int num_eliminable;
346 /* And the number of registers that are equivalent to a constant that
347 can be eliminated to frame_pointer / arg_pointer + constant. */
348 static int num_eliminable_invariants;
350 /* For each label, we record the offset of each elimination. If we reach
351 a label by more than one path and an offset differs, we cannot do the
352 elimination. This information is indexed by the difference of the
353 number of the label and the first label number. We can't offset the
354 pointer itself as this can cause problems on machines with segmented
355 memory. The first table is an array of flags that records whether we
356 have yet encountered a label and the second table is an array of arrays,
357 one entry in the latter array for each elimination. */
359 static int first_label_num;
360 static char *offsets_known_at;
361 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
363 /* Number of labels in the current function. */
365 static int num_labels;
367 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
368 static void maybe_fix_stack_asms (void);
369 static void copy_reloads (struct insn_chain *);
370 static void calculate_needs_all_insns (int);
371 static int find_reg (struct insn_chain *, int);
372 static void find_reload_regs (struct insn_chain *);
373 static void select_reload_regs (void);
374 static void delete_caller_save_insns (void);
376 static void spill_failure (rtx, enum reg_class);
377 static void count_spilled_pseudo (int, int, int);
378 static void delete_dead_insn (rtx);
379 static void alter_reg (int, int);
380 static void set_label_offsets (rtx, rtx, int);
381 static void check_eliminable_occurrences (rtx);
382 static void elimination_effects (rtx, enum machine_mode);
383 static int eliminate_regs_in_insn (rtx, int);
384 static void update_eliminable_offsets (void);
385 static void mark_not_eliminable (rtx, rtx, void *);
386 static void set_initial_elim_offsets (void);
387 static bool verify_initial_elim_offsets (void);
388 static void set_initial_label_offsets (void);
389 static void set_offsets_for_label (rtx);
390 static void init_elim_table (void);
391 static void update_eliminables (HARD_REG_SET *);
392 static void spill_hard_reg (unsigned int, int);
393 static int finish_spills (int);
394 static void scan_paradoxical_subregs (rtx);
395 static void count_pseudo (int);
396 static void order_regs_for_reload (struct insn_chain *);
397 static void reload_as_needed (int);
398 static void forget_old_reloads_1 (rtx, rtx, void *);
399 static int reload_reg_class_lower (const void *, const void *);
400 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
401 enum machine_mode);
402 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
403 enum machine_mode);
404 static int reload_reg_free_p (unsigned int, int, enum reload_type);
405 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
406 rtx, rtx, int, int);
407 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
408 rtx, rtx, int, int);
409 static int reload_reg_reaches_end_p (unsigned int, int, enum reload_type);
410 static int allocate_reload_reg (struct insn_chain *, int, int);
411 static int conflicts_with_override (rtx);
412 static void failed_reload (rtx, int);
413 static int set_reload_reg (int, int);
414 static void choose_reload_regs_init (struct insn_chain *, rtx *);
415 static void choose_reload_regs (struct insn_chain *);
416 static void merge_assigned_reloads (rtx);
417 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
418 rtx, int);
419 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
420 int);
421 static void do_input_reload (struct insn_chain *, struct reload *, int);
422 static void do_output_reload (struct insn_chain *, struct reload *, int);
423 static bool inherit_piecemeal_p (int, int);
424 static void emit_reload_insns (struct insn_chain *);
425 static void delete_output_reload (rtx, int, int);
426 static void delete_address_reloads (rtx, rtx);
427 static void delete_address_reloads_1 (rtx, rtx, rtx);
428 static rtx inc_for_reload (rtx, rtx, rtx, int);
429 #ifdef AUTO_INC_DEC
430 static void add_auto_inc_notes (rtx, rtx);
431 #endif
432 static void copy_eh_notes (rtx, rtx);
433 static int reloads_conflict (int, int);
434 static rtx gen_reload (rtx, rtx, int, enum reload_type);
436 /* Initialize the reload pass once per compilation. */
438 void
439 init_reload (void)
441 int i;
443 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
444 Set spill_indirect_levels to the number of levels such addressing is
445 permitted, zero if it is not permitted at all. */
447 rtx tem
448 = gen_rtx_MEM (Pmode,
449 gen_rtx_PLUS (Pmode,
450 gen_rtx_REG (Pmode,
451 LAST_VIRTUAL_REGISTER + 1),
452 GEN_INT (4)));
453 spill_indirect_levels = 0;
455 while (memory_address_p (QImode, tem))
457 spill_indirect_levels++;
458 tem = gen_rtx_MEM (Pmode, tem);
461 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
463 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
464 indirect_symref_ok = memory_address_p (QImode, tem);
466 /* See if reg+reg is a valid (and offsettable) address. */
468 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
470 tem = gen_rtx_PLUS (Pmode,
471 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
472 gen_rtx_REG (Pmode, i));
474 /* This way, we make sure that reg+reg is an offsettable address. */
475 tem = plus_constant (tem, 4);
477 if (memory_address_p (QImode, tem))
479 double_reg_address_ok = 1;
480 break;
484 /* Initialize obstack for our rtl allocation. */
485 gcc_obstack_init (&reload_obstack);
486 reload_startobj = obstack_alloc (&reload_obstack, 0);
488 INIT_REG_SET (&spilled_pseudos);
489 INIT_REG_SET (&pseudos_counted);
490 VARRAY_RTX_INIT (reg_equiv_memory_loc_varray, 0, "reg_equiv_memory_loc");
493 /* List of insn chains that are currently unused. */
494 static struct insn_chain *unused_insn_chains = 0;
496 /* Allocate an empty insn_chain structure. */
497 struct insn_chain *
498 new_insn_chain (void)
500 struct insn_chain *c;
502 if (unused_insn_chains == 0)
504 c = obstack_alloc (&reload_obstack, sizeof (struct insn_chain));
505 INIT_REG_SET (&c->live_throughout);
506 INIT_REG_SET (&c->dead_or_set);
508 else
510 c = unused_insn_chains;
511 unused_insn_chains = c->next;
513 c->is_caller_save_insn = 0;
514 c->need_operand_change = 0;
515 c->need_reload = 0;
516 c->need_elim = 0;
517 return c;
520 /* Small utility function to set all regs in hard reg set TO which are
521 allocated to pseudos in regset FROM. */
523 void
524 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
526 unsigned int regno;
527 reg_set_iterator rsi;
529 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
531 int r = reg_renumber[regno];
532 int nregs;
534 if (r < 0)
536 /* reload_combine uses the information from
537 BASIC_BLOCK->global_live_at_start, which might still
538 contain registers that have not actually been allocated
539 since they have an equivalence. */
540 gcc_assert (reload_completed);
542 else
544 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (regno)];
545 while (nregs-- > 0)
546 SET_HARD_REG_BIT (*to, r + nregs);
551 /* Replace all pseudos found in LOC with their corresponding
552 equivalences. */
554 static void
555 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
557 rtx x = *loc;
558 enum rtx_code code;
559 const char *fmt;
560 int i, j;
562 if (! x)
563 return;
565 code = GET_CODE (x);
566 if (code == REG)
568 unsigned int regno = REGNO (x);
570 if (regno < FIRST_PSEUDO_REGISTER)
571 return;
573 x = eliminate_regs (x, mem_mode, usage);
574 if (x != *loc)
576 *loc = x;
577 replace_pseudos_in (loc, mem_mode, usage);
578 return;
581 if (reg_equiv_constant[regno])
582 *loc = reg_equiv_constant[regno];
583 else if (reg_equiv_mem[regno])
584 *loc = reg_equiv_mem[regno];
585 else if (reg_equiv_address[regno])
586 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address[regno]);
587 else
589 gcc_assert (!REG_P (regno_reg_rtx[regno])
590 || REGNO (regno_reg_rtx[regno]) != regno);
591 *loc = regno_reg_rtx[regno];
594 return;
596 else if (code == MEM)
598 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
599 return;
602 /* Process each of our operands recursively. */
603 fmt = GET_RTX_FORMAT (code);
604 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
605 if (*fmt == 'e')
606 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
607 else if (*fmt == 'E')
608 for (j = 0; j < XVECLEN (x, i); j++)
609 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
613 /* Global variables used by reload and its subroutines. */
615 /* Set during calculate_needs if an insn needs register elimination. */
616 static int something_needs_elimination;
617 /* Set during calculate_needs if an insn needs an operand changed. */
618 static int something_needs_operands_changed;
620 /* Nonzero means we couldn't get enough spill regs. */
621 static int failure;
623 /* Main entry point for the reload pass.
625 FIRST is the first insn of the function being compiled.
627 GLOBAL nonzero means we were called from global_alloc
628 and should attempt to reallocate any pseudoregs that we
629 displace from hard regs we will use for reloads.
630 If GLOBAL is zero, we do not have enough information to do that,
631 so any pseudo reg that is spilled must go to the stack.
633 Return value is nonzero if reload failed
634 and we must not do any more for this function. */
637 reload (rtx first, int global)
639 int i;
640 rtx insn;
641 struct elim_table *ep;
642 basic_block bb;
644 /* Make sure even insns with volatile mem refs are recognizable. */
645 init_recog ();
647 failure = 0;
649 reload_firstobj = obstack_alloc (&reload_obstack, 0);
651 /* Make sure that the last insn in the chain
652 is not something that needs reloading. */
653 emit_note (NOTE_INSN_DELETED);
655 /* Enable find_equiv_reg to distinguish insns made by reload. */
656 reload_first_uid = get_max_uid ();
658 #ifdef SECONDARY_MEMORY_NEEDED
659 /* Initialize the secondary memory table. */
660 clear_secondary_mem ();
661 #endif
663 /* We don't have a stack slot for any spill reg yet. */
664 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
665 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
667 /* Initialize the save area information for caller-save, in case some
668 are needed. */
669 init_save_areas ();
671 /* Compute which hard registers are now in use
672 as homes for pseudo registers.
673 This is done here rather than (eg) in global_alloc
674 because this point is reached even if not optimizing. */
675 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
676 mark_home_live (i);
678 /* A function that receives a nonlocal goto must save all call-saved
679 registers. */
680 if (current_function_has_nonlocal_label)
681 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
682 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
683 regs_ever_live[i] = 1;
685 /* Find all the pseudo registers that didn't get hard regs
686 but do have known equivalent constants or memory slots.
687 These include parameters (known equivalent to parameter slots)
688 and cse'd or loop-moved constant memory addresses.
690 Record constant equivalents in reg_equiv_constant
691 so they will be substituted by find_reloads.
692 Record memory equivalents in reg_mem_equiv so they can
693 be substituted eventually by altering the REG-rtx's. */
695 reg_equiv_constant = xcalloc (max_regno, sizeof (rtx));
696 reg_equiv_mem = xcalloc (max_regno, sizeof (rtx));
697 reg_equiv_address = xcalloc (max_regno, sizeof (rtx));
698 reg_max_ref_width = xcalloc (max_regno, sizeof (int));
699 reg_old_renumber = xcalloc (max_regno, sizeof (short));
700 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
701 pseudo_forbidden_regs = xmalloc (max_regno * sizeof (HARD_REG_SET));
702 pseudo_previous_regs = xcalloc (max_regno, sizeof (HARD_REG_SET));
704 CLEAR_HARD_REG_SET (bad_spill_regs_global);
706 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
707 to. Also find all paradoxical subregs and find largest such for
708 each pseudo. */
710 num_eliminable_invariants = 0;
711 for (insn = first; insn; insn = NEXT_INSN (insn))
713 rtx set = single_set (insn);
715 /* We may introduce USEs that we want to remove at the end, so
716 we'll mark them with QImode. Make sure there are no
717 previously-marked insns left by say regmove. */
718 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
719 && GET_MODE (insn) != VOIDmode)
720 PUT_MODE (insn, VOIDmode);
722 if (INSN_P (insn))
723 scan_paradoxical_subregs (PATTERN (insn));
725 if (set != 0 && REG_P (SET_DEST (set)))
727 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
728 rtx x;
730 if (! note)
731 continue;
733 i = REGNO (SET_DEST (set));
734 x = XEXP (note, 0);
736 if (i <= LAST_VIRTUAL_REGISTER)
737 continue;
739 if (! function_invariant_p (x)
740 || ! flag_pic
741 /* A function invariant is often CONSTANT_P but may
742 include a register. We promise to only pass
743 CONSTANT_P objects to LEGITIMATE_PIC_OPERAND_P. */
744 || (CONSTANT_P (x)
745 && LEGITIMATE_PIC_OPERAND_P (x)))
747 /* It can happen that a REG_EQUIV note contains a MEM
748 that is not a legitimate memory operand. As later
749 stages of reload assume that all addresses found
750 in the reg_equiv_* arrays were originally legitimate,
751 we ignore such REG_EQUIV notes. */
752 if (memory_operand (x, VOIDmode))
754 /* Always unshare the equivalence, so we can
755 substitute into this insn without touching the
756 equivalence. */
757 reg_equiv_memory_loc[i] = copy_rtx (x);
759 else if (function_invariant_p (x))
761 if (GET_CODE (x) == PLUS)
763 /* This is PLUS of frame pointer and a constant,
764 and might be shared. Unshare it. */
765 reg_equiv_constant[i] = copy_rtx (x);
766 num_eliminable_invariants++;
768 else if (x == frame_pointer_rtx
769 || x == arg_pointer_rtx)
771 reg_equiv_constant[i] = x;
772 num_eliminable_invariants++;
774 else if (LEGITIMATE_CONSTANT_P (x))
775 reg_equiv_constant[i] = x;
776 else
778 reg_equiv_memory_loc[i]
779 = force_const_mem (GET_MODE (SET_DEST (set)), x);
780 if (! reg_equiv_memory_loc[i])
781 reg_equiv_init[i] = NULL_RTX;
784 else
786 reg_equiv_init[i] = NULL_RTX;
787 continue;
790 else
791 reg_equiv_init[i] = NULL_RTX;
795 if (dump_file)
796 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
797 if (reg_equiv_init[i])
799 fprintf (dump_file, "init_insns for %u: ", i);
800 print_inline_rtx (dump_file, reg_equiv_init[i], 20);
801 fprintf (dump_file, "\n");
804 init_elim_table ();
806 first_label_num = get_first_label_num ();
807 num_labels = max_label_num () - first_label_num;
809 /* Allocate the tables used to store offset information at labels. */
810 /* We used to use alloca here, but the size of what it would try to
811 allocate would occasionally cause it to exceed the stack limit and
812 cause a core dump. */
813 offsets_known_at = xmalloc (num_labels);
814 offsets_at = xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
816 /* Alter each pseudo-reg rtx to contain its hard reg number.
817 Assign stack slots to the pseudos that lack hard regs or equivalents.
818 Do not touch virtual registers. */
820 for (i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
821 alter_reg (i, -1);
823 /* If we have some registers we think can be eliminated, scan all insns to
824 see if there is an insn that sets one of these registers to something
825 other than itself plus a constant. If so, the register cannot be
826 eliminated. Doing this scan here eliminates an extra pass through the
827 main reload loop in the most common case where register elimination
828 cannot be done. */
829 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
830 if (INSN_P (insn))
831 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
833 maybe_fix_stack_asms ();
835 insns_need_reload = 0;
836 something_needs_elimination = 0;
838 /* Initialize to -1, which means take the first spill register. */
839 last_spill_reg = -1;
841 /* Spill any hard regs that we know we can't eliminate. */
842 CLEAR_HARD_REG_SET (used_spill_regs);
843 /* There can be multiple ways to eliminate a register;
844 they should be listed adjacently.
845 Elimination for any register fails only if all possible ways fail. */
846 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
848 int from = ep->from;
849 int can_eliminate = 0;
852 can_eliminate |= ep->can_eliminate;
853 ep++;
855 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
856 if (! can_eliminate)
857 spill_hard_reg (from, 1);
860 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
861 if (frame_pointer_needed)
862 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
863 #endif
864 finish_spills (global);
866 /* From now on, we may need to generate moves differently. We may also
867 allow modifications of insns which cause them to not be recognized.
868 Any such modifications will be cleaned up during reload itself. */
869 reload_in_progress = 1;
871 /* This loop scans the entire function each go-round
872 and repeats until one repetition spills no additional hard regs. */
873 for (;;)
875 int something_changed;
876 int did_spill;
878 HOST_WIDE_INT starting_frame_size;
880 /* Round size of stack frame to stack_alignment_needed. This must be done
881 here because the stack size may be a part of the offset computation
882 for register elimination, and there might have been new stack slots
883 created in the last iteration of this loop. */
884 if (cfun->stack_alignment_needed)
885 assign_stack_local (BLKmode, 0, cfun->stack_alignment_needed);
887 starting_frame_size = get_frame_size ();
889 set_initial_elim_offsets ();
890 set_initial_label_offsets ();
892 /* For each pseudo register that has an equivalent location defined,
893 try to eliminate any eliminable registers (such as the frame pointer)
894 assuming initial offsets for the replacement register, which
895 is the normal case.
897 If the resulting location is directly addressable, substitute
898 the MEM we just got directly for the old REG.
900 If it is not addressable but is a constant or the sum of a hard reg
901 and constant, it is probably not addressable because the constant is
902 out of range, in that case record the address; we will generate
903 hairy code to compute the address in a register each time it is
904 needed. Similarly if it is a hard register, but one that is not
905 valid as an address register.
907 If the location is not addressable, but does not have one of the
908 above forms, assign a stack slot. We have to do this to avoid the
909 potential of producing lots of reloads if, e.g., a location involves
910 a pseudo that didn't get a hard register and has an equivalent memory
911 location that also involves a pseudo that didn't get a hard register.
913 Perhaps at some point we will improve reload_when_needed handling
914 so this problem goes away. But that's very hairy. */
916 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
917 if (reg_renumber[i] < 0 && reg_equiv_memory_loc[i])
919 rtx x = eliminate_regs (reg_equiv_memory_loc[i], 0, NULL_RTX);
921 if (strict_memory_address_p (GET_MODE (regno_reg_rtx[i]),
922 XEXP (x, 0)))
923 reg_equiv_mem[i] = x, reg_equiv_address[i] = 0;
924 else if (CONSTANT_P (XEXP (x, 0))
925 || (REG_P (XEXP (x, 0))
926 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
927 || (GET_CODE (XEXP (x, 0)) == PLUS
928 && REG_P (XEXP (XEXP (x, 0), 0))
929 && (REGNO (XEXP (XEXP (x, 0), 0))
930 < FIRST_PSEUDO_REGISTER)
931 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
932 reg_equiv_address[i] = XEXP (x, 0), reg_equiv_mem[i] = 0;
933 else
935 /* Make a new stack slot. Then indicate that something
936 changed so we go back and recompute offsets for
937 eliminable registers because the allocation of memory
938 below might change some offset. reg_equiv_{mem,address}
939 will be set up for this pseudo on the next pass around
940 the loop. */
941 reg_equiv_memory_loc[i] = 0;
942 reg_equiv_init[i] = 0;
943 alter_reg (i, -1);
947 if (caller_save_needed)
948 setup_save_areas ();
950 /* If we allocated another stack slot, redo elimination bookkeeping. */
951 if (starting_frame_size != get_frame_size ())
952 continue;
954 if (caller_save_needed)
956 save_call_clobbered_regs ();
957 /* That might have allocated new insn_chain structures. */
958 reload_firstobj = obstack_alloc (&reload_obstack, 0);
961 calculate_needs_all_insns (global);
963 CLEAR_REG_SET (&spilled_pseudos);
964 did_spill = 0;
966 something_changed = 0;
968 /* If we allocated any new memory locations, make another pass
969 since it might have changed elimination offsets. */
970 if (starting_frame_size != get_frame_size ())
971 something_changed = 1;
973 /* Even if the frame size remained the same, we might still have
974 changed elimination offsets, e.g. if find_reloads called
975 force_const_mem requiring the back end to allocate a constant
976 pool base register that needs to be saved on the stack. */
977 else if (!verify_initial_elim_offsets ())
978 something_changed = 1;
981 HARD_REG_SET to_spill;
982 CLEAR_HARD_REG_SET (to_spill);
983 update_eliminables (&to_spill);
984 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
985 if (TEST_HARD_REG_BIT (to_spill, i))
987 spill_hard_reg (i, 1);
988 did_spill = 1;
990 /* Regardless of the state of spills, if we previously had
991 a register that we thought we could eliminate, but now can
992 not eliminate, we must run another pass.
994 Consider pseudos which have an entry in reg_equiv_* which
995 reference an eliminable register. We must make another pass
996 to update reg_equiv_* so that we do not substitute in the
997 old value from when we thought the elimination could be
998 performed. */
999 something_changed = 1;
1003 select_reload_regs ();
1004 if (failure)
1005 goto failed;
1007 if (insns_need_reload != 0 || did_spill)
1008 something_changed |= finish_spills (global);
1010 if (! something_changed)
1011 break;
1013 if (caller_save_needed)
1014 delete_caller_save_insns ();
1016 obstack_free (&reload_obstack, reload_firstobj);
1019 /* If global-alloc was run, notify it of any register eliminations we have
1020 done. */
1021 if (global)
1022 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1023 if (ep->can_eliminate)
1024 mark_elimination (ep->from, ep->to);
1026 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
1027 If that insn didn't set the register (i.e., it copied the register to
1028 memory), just delete that insn instead of the equivalencing insn plus
1029 anything now dead. If we call delete_dead_insn on that insn, we may
1030 delete the insn that actually sets the register if the register dies
1031 there and that is incorrect. */
1033 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1035 if (reg_renumber[i] < 0 && reg_equiv_init[i] != 0)
1037 rtx list;
1038 for (list = reg_equiv_init[i]; list; list = XEXP (list, 1))
1040 rtx equiv_insn = XEXP (list, 0);
1042 /* If we already deleted the insn or if it may trap, we can't
1043 delete it. The latter case shouldn't happen, but can
1044 if an insn has a variable address, gets a REG_EH_REGION
1045 note added to it, and then gets converted into a load
1046 from a constant address. */
1047 if (NOTE_P (equiv_insn)
1048 || can_throw_internal (equiv_insn))
1050 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
1051 delete_dead_insn (equiv_insn);
1052 else
1053 SET_INSN_DELETED (equiv_insn);
1058 /* Use the reload registers where necessary
1059 by generating move instructions to move the must-be-register
1060 values into or out of the reload registers. */
1062 if (insns_need_reload != 0 || something_needs_elimination
1063 || something_needs_operands_changed)
1065 HOST_WIDE_INT old_frame_size = get_frame_size ();
1067 reload_as_needed (global);
1069 gcc_assert (old_frame_size == get_frame_size ());
1071 gcc_assert (verify_initial_elim_offsets ());
1074 /* If we were able to eliminate the frame pointer, show that it is no
1075 longer live at the start of any basic block. If it ls live by
1076 virtue of being in a pseudo, that pseudo will be marked live
1077 and hence the frame pointer will be known to be live via that
1078 pseudo. */
1080 if (! frame_pointer_needed)
1081 FOR_EACH_BB (bb)
1082 CLEAR_REGNO_REG_SET (bb->il.rtl->global_live_at_start,
1083 HARD_FRAME_POINTER_REGNUM);
1085 /* Come here (with failure set nonzero) if we can't get enough spill
1086 regs. */
1087 failed:
1089 CLEAR_REG_SET (&spilled_pseudos);
1090 reload_in_progress = 0;
1092 /* Now eliminate all pseudo regs by modifying them into
1093 their equivalent memory references.
1094 The REG-rtx's for the pseudos are modified in place,
1095 so all insns that used to refer to them now refer to memory.
1097 For a reg that has a reg_equiv_address, all those insns
1098 were changed by reloading so that no insns refer to it any longer;
1099 but the DECL_RTL of a variable decl may refer to it,
1100 and if so this causes the debugging info to mention the variable. */
1102 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1104 rtx addr = 0;
1106 if (reg_equiv_mem[i])
1107 addr = XEXP (reg_equiv_mem[i], 0);
1109 if (reg_equiv_address[i])
1110 addr = reg_equiv_address[i];
1112 if (addr)
1114 if (reg_renumber[i] < 0)
1116 rtx reg = regno_reg_rtx[i];
1118 REG_USERVAR_P (reg) = 0;
1119 PUT_CODE (reg, MEM);
1120 XEXP (reg, 0) = addr;
1121 if (reg_equiv_memory_loc[i])
1122 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc[i]);
1123 else
1125 MEM_IN_STRUCT_P (reg) = MEM_SCALAR_P (reg) = 0;
1126 MEM_ATTRS (reg) = 0;
1128 MEM_NOTRAP_P (reg) = 1;
1130 else if (reg_equiv_mem[i])
1131 XEXP (reg_equiv_mem[i], 0) = addr;
1135 /* We must set reload_completed now since the cleanup_subreg_operands call
1136 below will re-recognize each insn and reload may have generated insns
1137 which are only valid during and after reload. */
1138 reload_completed = 1;
1140 /* Make a pass over all the insns and delete all USEs which we inserted
1141 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1142 notes. Delete all CLOBBER insns, except those that refer to the return
1143 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1144 from misarranging variable-array code, and simplify (subreg (reg))
1145 operands. Also remove all REG_RETVAL and REG_LIBCALL notes since they
1146 are no longer useful or accurate. Strip and regenerate REG_INC notes
1147 that may have been moved around. */
1149 for (insn = first; insn; insn = NEXT_INSN (insn))
1150 if (INSN_P (insn))
1152 rtx *pnote;
1154 if (CALL_P (insn))
1155 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1156 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1158 if ((GET_CODE (PATTERN (insn)) == USE
1159 /* We mark with QImode USEs introduced by reload itself. */
1160 && (GET_MODE (insn) == QImode
1161 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1162 || (GET_CODE (PATTERN (insn)) == CLOBBER
1163 && (!MEM_P (XEXP (PATTERN (insn), 0))
1164 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1165 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1166 && XEXP (XEXP (PATTERN (insn), 0), 0)
1167 != stack_pointer_rtx))
1168 && (!REG_P (XEXP (PATTERN (insn), 0))
1169 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1171 delete_insn (insn);
1172 continue;
1175 /* Some CLOBBERs may survive until here and still reference unassigned
1176 pseudos with const equivalent, which may in turn cause ICE in later
1177 passes if the reference remains in place. */
1178 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1179 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1180 VOIDmode, PATTERN (insn));
1182 /* Discard obvious no-ops, even without -O. This optimization
1183 is fast and doesn't interfere with debugging. */
1184 if (NONJUMP_INSN_P (insn)
1185 && GET_CODE (PATTERN (insn)) == SET
1186 && REG_P (SET_SRC (PATTERN (insn)))
1187 && REG_P (SET_DEST (PATTERN (insn)))
1188 && (REGNO (SET_SRC (PATTERN (insn)))
1189 == REGNO (SET_DEST (PATTERN (insn)))))
1191 delete_insn (insn);
1192 continue;
1195 pnote = &REG_NOTES (insn);
1196 while (*pnote != 0)
1198 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1199 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1200 || REG_NOTE_KIND (*pnote) == REG_INC
1201 || REG_NOTE_KIND (*pnote) == REG_RETVAL
1202 || REG_NOTE_KIND (*pnote) == REG_LIBCALL)
1203 *pnote = XEXP (*pnote, 1);
1204 else
1205 pnote = &XEXP (*pnote, 1);
1208 #ifdef AUTO_INC_DEC
1209 add_auto_inc_notes (insn, PATTERN (insn));
1210 #endif
1212 /* And simplify (subreg (reg)) if it appears as an operand. */
1213 cleanup_subreg_operands (insn);
1216 /* If we are doing stack checking, give a warning if this function's
1217 frame size is larger than we expect. */
1218 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1220 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1221 static int verbose_warned = 0;
1223 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1224 if (regs_ever_live[i] && ! fixed_regs[i] && call_used_regs[i])
1225 size += UNITS_PER_WORD;
1227 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1229 warning (0, "frame size too large for reliable stack checking");
1230 if (! verbose_warned)
1232 warning (0, "try reducing the number of local variables");
1233 verbose_warned = 1;
1238 /* Indicate that we no longer have known memory locations or constants. */
1239 if (reg_equiv_constant)
1240 free (reg_equiv_constant);
1241 reg_equiv_constant = 0;
1242 VARRAY_GROW (reg_equiv_memory_loc_varray, 0);
1243 reg_equiv_memory_loc = 0;
1245 if (offsets_known_at)
1246 free (offsets_known_at);
1247 if (offsets_at)
1248 free (offsets_at);
1250 free (reg_equiv_mem);
1251 reg_equiv_init = 0;
1252 free (reg_equiv_address);
1253 free (reg_max_ref_width);
1254 free (reg_old_renumber);
1255 free (pseudo_previous_regs);
1256 free (pseudo_forbidden_regs);
1258 CLEAR_HARD_REG_SET (used_spill_regs);
1259 for (i = 0; i < n_spills; i++)
1260 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1262 /* Free all the insn_chain structures at once. */
1263 obstack_free (&reload_obstack, reload_startobj);
1264 unused_insn_chains = 0;
1265 fixup_abnormal_edges ();
1267 /* Replacing pseudos with their memory equivalents might have
1268 created shared rtx. Subsequent passes would get confused
1269 by this, so unshare everything here. */
1270 unshare_all_rtl_again (first);
1272 #ifdef STACK_BOUNDARY
1273 /* init_emit has set the alignment of the hard frame pointer
1274 to STACK_BOUNDARY. It is very likely no longer valid if
1275 the hard frame pointer was used for register allocation. */
1276 if (!frame_pointer_needed)
1277 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1278 #endif
1280 return failure;
1283 /* Yet another special case. Unfortunately, reg-stack forces people to
1284 write incorrect clobbers in asm statements. These clobbers must not
1285 cause the register to appear in bad_spill_regs, otherwise we'll call
1286 fatal_insn later. We clear the corresponding regnos in the live
1287 register sets to avoid this.
1288 The whole thing is rather sick, I'm afraid. */
1290 static void
1291 maybe_fix_stack_asms (void)
1293 #ifdef STACK_REGS
1294 const char *constraints[MAX_RECOG_OPERANDS];
1295 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1296 struct insn_chain *chain;
1298 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1300 int i, noperands;
1301 HARD_REG_SET clobbered, allowed;
1302 rtx pat;
1304 if (! INSN_P (chain->insn)
1305 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1306 continue;
1307 pat = PATTERN (chain->insn);
1308 if (GET_CODE (pat) != PARALLEL)
1309 continue;
1311 CLEAR_HARD_REG_SET (clobbered);
1312 CLEAR_HARD_REG_SET (allowed);
1314 /* First, make a mask of all stack regs that are clobbered. */
1315 for (i = 0; i < XVECLEN (pat, 0); i++)
1317 rtx t = XVECEXP (pat, 0, i);
1318 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1319 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1322 /* Get the operand values and constraints out of the insn. */
1323 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1324 constraints, operand_mode);
1326 /* For every operand, see what registers are allowed. */
1327 for (i = 0; i < noperands; i++)
1329 const char *p = constraints[i];
1330 /* For every alternative, we compute the class of registers allowed
1331 for reloading in CLS, and merge its contents into the reg set
1332 ALLOWED. */
1333 int cls = (int) NO_REGS;
1335 for (;;)
1337 char c = *p;
1339 if (c == '\0' || c == ',' || c == '#')
1341 /* End of one alternative - mark the regs in the current
1342 class, and reset the class. */
1343 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1344 cls = NO_REGS;
1345 p++;
1346 if (c == '#')
1347 do {
1348 c = *p++;
1349 } while (c != '\0' && c != ',');
1350 if (c == '\0')
1351 break;
1352 continue;
1355 switch (c)
1357 case '=': case '+': case '*': case '%': case '?': case '!':
1358 case '0': case '1': case '2': case '3': case '4': case 'm':
1359 case '<': case '>': case 'V': case 'o': case '&': case 'E':
1360 case 'F': case 's': case 'i': case 'n': case 'X': case 'I':
1361 case 'J': case 'K': case 'L': case 'M': case 'N': case 'O':
1362 case 'P':
1363 break;
1365 case 'p':
1366 cls = (int) reg_class_subunion[cls]
1367 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1368 break;
1370 case 'g':
1371 case 'r':
1372 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1373 break;
1375 default:
1376 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
1377 cls = (int) reg_class_subunion[cls]
1378 [(int) MODE_BASE_REG_CLASS (VOIDmode)];
1379 else
1380 cls = (int) reg_class_subunion[cls]
1381 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)];
1383 p += CONSTRAINT_LEN (c, p);
1386 /* Those of the registers which are clobbered, but allowed by the
1387 constraints, must be usable as reload registers. So clear them
1388 out of the life information. */
1389 AND_HARD_REG_SET (allowed, clobbered);
1390 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1391 if (TEST_HARD_REG_BIT (allowed, i))
1393 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1394 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1398 #endif
1401 /* Copy the global variables n_reloads and rld into the corresponding elts
1402 of CHAIN. */
1403 static void
1404 copy_reloads (struct insn_chain *chain)
1406 chain->n_reloads = n_reloads;
1407 chain->rld = obstack_alloc (&reload_obstack,
1408 n_reloads * sizeof (struct reload));
1409 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1410 reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
1413 /* Walk the chain of insns, and determine for each whether it needs reloads
1414 and/or eliminations. Build the corresponding insns_need_reload list, and
1415 set something_needs_elimination as appropriate. */
1416 static void
1417 calculate_needs_all_insns (int global)
1419 struct insn_chain **pprev_reload = &insns_need_reload;
1420 struct insn_chain *chain, *next = 0;
1422 something_needs_elimination = 0;
1424 reload_insn_firstobj = obstack_alloc (&reload_obstack, 0);
1425 for (chain = reload_insn_chain; chain != 0; chain = next)
1427 rtx insn = chain->insn;
1429 next = chain->next;
1431 /* Clear out the shortcuts. */
1432 chain->n_reloads = 0;
1433 chain->need_elim = 0;
1434 chain->need_reload = 0;
1435 chain->need_operand_change = 0;
1437 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1438 include REG_LABEL), we need to see what effects this has on the
1439 known offsets at labels. */
1441 if (LABEL_P (insn) || JUMP_P (insn)
1442 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1443 set_label_offsets (insn, insn, 0);
1445 if (INSN_P (insn))
1447 rtx old_body = PATTERN (insn);
1448 int old_code = INSN_CODE (insn);
1449 rtx old_notes = REG_NOTES (insn);
1450 int did_elimination = 0;
1451 int operands_changed = 0;
1452 rtx set = single_set (insn);
1454 /* Skip insns that only set an equivalence. */
1455 if (set && REG_P (SET_DEST (set))
1456 && reg_renumber[REGNO (SET_DEST (set))] < 0
1457 && reg_equiv_constant[REGNO (SET_DEST (set))])
1458 continue;
1460 /* If needed, eliminate any eliminable registers. */
1461 if (num_eliminable || num_eliminable_invariants)
1462 did_elimination = eliminate_regs_in_insn (insn, 0);
1464 /* Analyze the instruction. */
1465 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1466 global, spill_reg_order);
1468 /* If a no-op set needs more than one reload, this is likely
1469 to be something that needs input address reloads. We
1470 can't get rid of this cleanly later, and it is of no use
1471 anyway, so discard it now.
1472 We only do this when expensive_optimizations is enabled,
1473 since this complements reload inheritance / output
1474 reload deletion, and it can make debugging harder. */
1475 if (flag_expensive_optimizations && n_reloads > 1)
1477 rtx set = single_set (insn);
1478 if (set
1479 && SET_SRC (set) == SET_DEST (set)
1480 && REG_P (SET_SRC (set))
1481 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1483 delete_insn (insn);
1484 /* Delete it from the reload chain. */
1485 if (chain->prev)
1486 chain->prev->next = next;
1487 else
1488 reload_insn_chain = next;
1489 if (next)
1490 next->prev = chain->prev;
1491 chain->next = unused_insn_chains;
1492 unused_insn_chains = chain;
1493 continue;
1496 if (num_eliminable)
1497 update_eliminable_offsets ();
1499 /* Remember for later shortcuts which insns had any reloads or
1500 register eliminations. */
1501 chain->need_elim = did_elimination;
1502 chain->need_reload = n_reloads > 0;
1503 chain->need_operand_change = operands_changed;
1505 /* Discard any register replacements done. */
1506 if (did_elimination)
1508 obstack_free (&reload_obstack, reload_insn_firstobj);
1509 PATTERN (insn) = old_body;
1510 INSN_CODE (insn) = old_code;
1511 REG_NOTES (insn) = old_notes;
1512 something_needs_elimination = 1;
1515 something_needs_operands_changed |= operands_changed;
1517 if (n_reloads != 0)
1519 copy_reloads (chain);
1520 *pprev_reload = chain;
1521 pprev_reload = &chain->next_need_reload;
1525 *pprev_reload = 0;
1528 /* Comparison function for qsort to decide which of two reloads
1529 should be handled first. *P1 and *P2 are the reload numbers. */
1531 static int
1532 reload_reg_class_lower (const void *r1p, const void *r2p)
1534 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1535 int t;
1537 /* Consider required reloads before optional ones. */
1538 t = rld[r1].optional - rld[r2].optional;
1539 if (t != 0)
1540 return t;
1542 /* Count all solitary classes before non-solitary ones. */
1543 t = ((reg_class_size[(int) rld[r2].class] == 1)
1544 - (reg_class_size[(int) rld[r1].class] == 1));
1545 if (t != 0)
1546 return t;
1548 /* Aside from solitaires, consider all multi-reg groups first. */
1549 t = rld[r2].nregs - rld[r1].nregs;
1550 if (t != 0)
1551 return t;
1553 /* Consider reloads in order of increasing reg-class number. */
1554 t = (int) rld[r1].class - (int) rld[r2].class;
1555 if (t != 0)
1556 return t;
1558 /* If reloads are equally urgent, sort by reload number,
1559 so that the results of qsort leave nothing to chance. */
1560 return r1 - r2;
1563 /* The cost of spilling each hard reg. */
1564 static int spill_cost[FIRST_PSEUDO_REGISTER];
1566 /* When spilling multiple hard registers, we use SPILL_COST for the first
1567 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1568 only the first hard reg for a multi-reg pseudo. */
1569 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1571 /* Update the spill cost arrays, considering that pseudo REG is live. */
1573 static void
1574 count_pseudo (int reg)
1576 int freq = REG_FREQ (reg);
1577 int r = reg_renumber[reg];
1578 int nregs;
1580 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1581 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1582 return;
1584 SET_REGNO_REG_SET (&pseudos_counted, reg);
1586 gcc_assert (r >= 0);
1588 spill_add_cost[r] += freq;
1590 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1591 while (nregs-- > 0)
1592 spill_cost[r + nregs] += freq;
1595 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1596 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1598 static void
1599 order_regs_for_reload (struct insn_chain *chain)
1601 unsigned i;
1602 HARD_REG_SET used_by_pseudos;
1603 HARD_REG_SET used_by_pseudos2;
1604 reg_set_iterator rsi;
1606 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1608 memset (spill_cost, 0, sizeof spill_cost);
1609 memset (spill_add_cost, 0, sizeof spill_add_cost);
1611 /* Count number of uses of each hard reg by pseudo regs allocated to it
1612 and then order them by decreasing use. First exclude hard registers
1613 that are live in or across this insn. */
1615 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1616 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1617 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1618 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1620 /* Now find out which pseudos are allocated to it, and update
1621 hard_reg_n_uses. */
1622 CLEAR_REG_SET (&pseudos_counted);
1624 EXECUTE_IF_SET_IN_REG_SET
1625 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1627 count_pseudo (i);
1629 EXECUTE_IF_SET_IN_REG_SET
1630 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1632 count_pseudo (i);
1634 CLEAR_REG_SET (&pseudos_counted);
1637 /* Vector of reload-numbers showing the order in which the reloads should
1638 be processed. */
1639 static short reload_order[MAX_RELOADS];
1641 /* This is used to keep track of the spill regs used in one insn. */
1642 static HARD_REG_SET used_spill_regs_local;
1644 /* We decided to spill hard register SPILLED, which has a size of
1645 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1646 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1647 update SPILL_COST/SPILL_ADD_COST. */
1649 static void
1650 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1652 int r = reg_renumber[reg];
1653 int nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1655 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1656 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1657 return;
1659 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1661 spill_add_cost[r] -= REG_FREQ (reg);
1662 while (nregs-- > 0)
1663 spill_cost[r + nregs] -= REG_FREQ (reg);
1666 /* Find reload register to use for reload number ORDER. */
1668 static int
1669 find_reg (struct insn_chain *chain, int order)
1671 int rnum = reload_order[order];
1672 struct reload *rl = rld + rnum;
1673 int best_cost = INT_MAX;
1674 int best_reg = -1;
1675 unsigned int i, j;
1676 int k;
1677 HARD_REG_SET not_usable;
1678 HARD_REG_SET used_by_other_reload;
1679 reg_set_iterator rsi;
1681 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1682 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1683 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->class]);
1685 CLEAR_HARD_REG_SET (used_by_other_reload);
1686 for (k = 0; k < order; k++)
1688 int other = reload_order[k];
1690 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1691 for (j = 0; j < rld[other].nregs; j++)
1692 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1695 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1697 unsigned int regno = i;
1699 if (! TEST_HARD_REG_BIT (not_usable, regno)
1700 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1701 && HARD_REGNO_MODE_OK (regno, rl->mode))
1703 int this_cost = spill_cost[regno];
1704 int ok = 1;
1705 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1707 for (j = 1; j < this_nregs; j++)
1709 this_cost += spill_add_cost[regno + j];
1710 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1711 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1712 ok = 0;
1714 if (! ok)
1715 continue;
1716 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1717 this_cost--;
1718 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1719 this_cost--;
1720 if (this_cost < best_cost
1721 /* Among registers with equal cost, prefer caller-saved ones, or
1722 use REG_ALLOC_ORDER if it is defined. */
1723 || (this_cost == best_cost
1724 #ifdef REG_ALLOC_ORDER
1725 && (inv_reg_alloc_order[regno]
1726 < inv_reg_alloc_order[best_reg])
1727 #else
1728 && call_used_regs[regno]
1729 && ! call_used_regs[best_reg]
1730 #endif
1733 best_reg = regno;
1734 best_cost = this_cost;
1738 if (best_reg == -1)
1739 return 0;
1741 if (dump_file)
1742 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1744 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1745 rl->regno = best_reg;
1747 EXECUTE_IF_SET_IN_REG_SET
1748 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1750 count_spilled_pseudo (best_reg, rl->nregs, j);
1753 EXECUTE_IF_SET_IN_REG_SET
1754 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1756 count_spilled_pseudo (best_reg, rl->nregs, j);
1759 for (i = 0; i < rl->nregs; i++)
1761 gcc_assert (spill_cost[best_reg + i] == 0);
1762 gcc_assert (spill_add_cost[best_reg + i] == 0);
1763 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1765 return 1;
1768 /* Find more reload regs to satisfy the remaining need of an insn, which
1769 is given by CHAIN.
1770 Do it by ascending class number, since otherwise a reg
1771 might be spilled for a big class and might fail to count
1772 for a smaller class even though it belongs to that class. */
1774 static void
1775 find_reload_regs (struct insn_chain *chain)
1777 int i;
1779 /* In order to be certain of getting the registers we need,
1780 we must sort the reloads into order of increasing register class.
1781 Then our grabbing of reload registers will parallel the process
1782 that provided the reload registers. */
1783 for (i = 0; i < chain->n_reloads; i++)
1785 /* Show whether this reload already has a hard reg. */
1786 if (chain->rld[i].reg_rtx)
1788 int regno = REGNO (chain->rld[i].reg_rtx);
1789 chain->rld[i].regno = regno;
1790 chain->rld[i].nregs
1791 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
1793 else
1794 chain->rld[i].regno = -1;
1795 reload_order[i] = i;
1798 n_reloads = chain->n_reloads;
1799 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1801 CLEAR_HARD_REG_SET (used_spill_regs_local);
1803 if (dump_file)
1804 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1806 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1808 /* Compute the order of preference for hard registers to spill. */
1810 order_regs_for_reload (chain);
1812 for (i = 0; i < n_reloads; i++)
1814 int r = reload_order[i];
1816 /* Ignore reloads that got marked inoperative. */
1817 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1818 && ! rld[r].optional
1819 && rld[r].regno == -1)
1820 if (! find_reg (chain, i))
1822 spill_failure (chain->insn, rld[r].class);
1823 failure = 1;
1824 return;
1828 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
1829 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
1831 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1834 static void
1835 select_reload_regs (void)
1837 struct insn_chain *chain;
1839 /* Try to satisfy the needs for each insn. */
1840 for (chain = insns_need_reload; chain != 0;
1841 chain = chain->next_need_reload)
1842 find_reload_regs (chain);
1845 /* Delete all insns that were inserted by emit_caller_save_insns during
1846 this iteration. */
1847 static void
1848 delete_caller_save_insns (void)
1850 struct insn_chain *c = reload_insn_chain;
1852 while (c != 0)
1854 while (c != 0 && c->is_caller_save_insn)
1856 struct insn_chain *next = c->next;
1857 rtx insn = c->insn;
1859 if (c == reload_insn_chain)
1860 reload_insn_chain = next;
1861 delete_insn (insn);
1863 if (next)
1864 next->prev = c->prev;
1865 if (c->prev)
1866 c->prev->next = next;
1867 c->next = unused_insn_chains;
1868 unused_insn_chains = c;
1869 c = next;
1871 if (c != 0)
1872 c = c->next;
1876 /* Handle the failure to find a register to spill.
1877 INSN should be one of the insns which needed this particular spill reg. */
1879 static void
1880 spill_failure (rtx insn, enum reg_class class)
1882 if (asm_noperands (PATTERN (insn)) >= 0)
1883 error_for_asm (insn, "can't find a register in class %qs while "
1884 "reloading %<asm%>",
1885 reg_class_names[class]);
1886 else
1888 error ("unable to find a register to spill in class %qs",
1889 reg_class_names[class]);
1890 fatal_insn ("this is the insn:", insn);
1894 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
1895 data that is dead in INSN. */
1897 static void
1898 delete_dead_insn (rtx insn)
1900 rtx prev = prev_real_insn (insn);
1901 rtx prev_dest;
1903 /* If the previous insn sets a register that dies in our insn, delete it
1904 too. */
1905 if (prev && GET_CODE (PATTERN (prev)) == SET
1906 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
1907 && reg_mentioned_p (prev_dest, PATTERN (insn))
1908 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
1909 && ! side_effects_p (SET_SRC (PATTERN (prev))))
1910 delete_dead_insn (prev);
1912 SET_INSN_DELETED (insn);
1915 /* Modify the home of pseudo-reg I.
1916 The new home is present in reg_renumber[I].
1918 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
1919 or it may be -1, meaning there is none or it is not relevant.
1920 This is used so that all pseudos spilled from a given hard reg
1921 can share one stack slot. */
1923 static void
1924 alter_reg (int i, int from_reg)
1926 /* When outputting an inline function, this can happen
1927 for a reg that isn't actually used. */
1928 if (regno_reg_rtx[i] == 0)
1929 return;
1931 /* If the reg got changed to a MEM at rtl-generation time,
1932 ignore it. */
1933 if (!REG_P (regno_reg_rtx[i]))
1934 return;
1936 /* Modify the reg-rtx to contain the new hard reg
1937 number or else to contain its pseudo reg number. */
1938 REGNO (regno_reg_rtx[i])
1939 = reg_renumber[i] >= 0 ? reg_renumber[i] : i;
1941 /* If we have a pseudo that is needed but has no hard reg or equivalent,
1942 allocate a stack slot for it. */
1944 if (reg_renumber[i] < 0
1945 && REG_N_REFS (i) > 0
1946 && reg_equiv_constant[i] == 0
1947 && reg_equiv_memory_loc[i] == 0)
1949 rtx x;
1950 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
1951 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
1952 int adjust = 0;
1954 /* Each pseudo reg has an inherent size which comes from its own mode,
1955 and a total size which provides room for paradoxical subregs
1956 which refer to the pseudo reg in wider modes.
1958 We can use a slot already allocated if it provides both
1959 enough inherent space and enough total space.
1960 Otherwise, we allocate a new slot, making sure that it has no less
1961 inherent space, and no less total space, then the previous slot. */
1962 if (from_reg == -1)
1964 /* No known place to spill from => no slot to reuse. */
1965 x = assign_stack_local (GET_MODE (regno_reg_rtx[i]), total_size,
1966 inherent_size == total_size ? 0 : -1);
1967 if (BYTES_BIG_ENDIAN)
1968 /* Cancel the big-endian correction done in assign_stack_local.
1969 Get the address of the beginning of the slot.
1970 This is so we can do a big-endian correction unconditionally
1971 below. */
1972 adjust = inherent_size - total_size;
1974 /* Nothing can alias this slot except this pseudo. */
1975 set_mem_alias_set (x, new_alias_set ());
1978 /* Reuse a stack slot if possible. */
1979 else if (spill_stack_slot[from_reg] != 0
1980 && spill_stack_slot_width[from_reg] >= total_size
1981 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
1982 >= inherent_size))
1983 x = spill_stack_slot[from_reg];
1985 /* Allocate a bigger slot. */
1986 else
1988 /* Compute maximum size needed, both for inherent size
1989 and for total size. */
1990 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
1991 rtx stack_slot;
1993 if (spill_stack_slot[from_reg])
1995 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
1996 > inherent_size)
1997 mode = GET_MODE (spill_stack_slot[from_reg]);
1998 if (spill_stack_slot_width[from_reg] > total_size)
1999 total_size = spill_stack_slot_width[from_reg];
2002 /* Make a slot with that size. */
2003 x = assign_stack_local (mode, total_size,
2004 inherent_size == total_size ? 0 : -1);
2005 stack_slot = x;
2007 /* All pseudos mapped to this slot can alias each other. */
2008 if (spill_stack_slot[from_reg])
2009 set_mem_alias_set (x, MEM_ALIAS_SET (spill_stack_slot[from_reg]));
2010 else
2011 set_mem_alias_set (x, new_alias_set ());
2013 if (BYTES_BIG_ENDIAN)
2015 /* Cancel the big-endian correction done in assign_stack_local.
2016 Get the address of the beginning of the slot.
2017 This is so we can do a big-endian correction unconditionally
2018 below. */
2019 adjust = GET_MODE_SIZE (mode) - total_size;
2020 if (adjust)
2021 stack_slot
2022 = adjust_address_nv (x, mode_for_size (total_size
2023 * BITS_PER_UNIT,
2024 MODE_INT, 1),
2025 adjust);
2028 spill_stack_slot[from_reg] = stack_slot;
2029 spill_stack_slot_width[from_reg] = total_size;
2032 /* On a big endian machine, the "address" of the slot
2033 is the address of the low part that fits its inherent mode. */
2034 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2035 adjust += (total_size - inherent_size);
2037 /* If we have any adjustment to make, or if the stack slot is the
2038 wrong mode, make a new stack slot. */
2039 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2041 /* If we have a decl for the original register, set it for the
2042 memory. If this is a shared MEM, make a copy. */
2043 if (REG_EXPR (regno_reg_rtx[i])
2044 && DECL_P (REG_EXPR (regno_reg_rtx[i])))
2046 rtx decl = DECL_RTL_IF_SET (REG_EXPR (regno_reg_rtx[i]));
2048 /* We can do this only for the DECLs home pseudo, not for
2049 any copies of it, since otherwise when the stack slot
2050 is reused, nonoverlapping_memrefs_p might think they
2051 cannot overlap. */
2052 if (decl && REG_P (decl) && REGNO (decl) == (unsigned) i)
2054 if (from_reg != -1 && spill_stack_slot[from_reg] == x)
2055 x = copy_rtx (x);
2057 set_mem_attrs_from_reg (x, regno_reg_rtx[i]);
2061 /* Save the stack slot for later. */
2062 reg_equiv_memory_loc[i] = x;
2066 /* Mark the slots in regs_ever_live for the hard regs
2067 used by pseudo-reg number REGNO. */
2069 void
2070 mark_home_live (int regno)
2072 int i, lim;
2074 i = reg_renumber[regno];
2075 if (i < 0)
2076 return;
2077 lim = i + hard_regno_nregs[i][PSEUDO_REGNO_MODE (regno)];
2078 while (i < lim)
2079 regs_ever_live[i++] = 1;
2082 /* This function handles the tracking of elimination offsets around branches.
2084 X is a piece of RTL being scanned.
2086 INSN is the insn that it came from, if any.
2088 INITIAL_P is nonzero if we are to set the offset to be the initial
2089 offset and zero if we are setting the offset of the label to be the
2090 current offset. */
2092 static void
2093 set_label_offsets (rtx x, rtx insn, int initial_p)
2095 enum rtx_code code = GET_CODE (x);
2096 rtx tem;
2097 unsigned int i;
2098 struct elim_table *p;
2100 switch (code)
2102 case LABEL_REF:
2103 if (LABEL_REF_NONLOCAL_P (x))
2104 return;
2106 x = XEXP (x, 0);
2108 /* ... fall through ... */
2110 case CODE_LABEL:
2111 /* If we know nothing about this label, set the desired offsets. Note
2112 that this sets the offset at a label to be the offset before a label
2113 if we don't know anything about the label. This is not correct for
2114 the label after a BARRIER, but is the best guess we can make. If
2115 we guessed wrong, we will suppress an elimination that might have
2116 been possible had we been able to guess correctly. */
2118 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2120 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2121 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2122 = (initial_p ? reg_eliminate[i].initial_offset
2123 : reg_eliminate[i].offset);
2124 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2127 /* Otherwise, if this is the definition of a label and it is
2128 preceded by a BARRIER, set our offsets to the known offset of
2129 that label. */
2131 else if (x == insn
2132 && (tem = prev_nonnote_insn (insn)) != 0
2133 && BARRIER_P (tem))
2134 set_offsets_for_label (insn);
2135 else
2136 /* If neither of the above cases is true, compare each offset
2137 with those previously recorded and suppress any eliminations
2138 where the offsets disagree. */
2140 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2141 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2142 != (initial_p ? reg_eliminate[i].initial_offset
2143 : reg_eliminate[i].offset))
2144 reg_eliminate[i].can_eliminate = 0;
2146 return;
2148 case JUMP_INSN:
2149 set_label_offsets (PATTERN (insn), insn, initial_p);
2151 /* ... fall through ... */
2153 case INSN:
2154 case CALL_INSN:
2155 /* Any labels mentioned in REG_LABEL notes can be branched to indirectly
2156 and hence must have all eliminations at their initial offsets. */
2157 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2158 if (REG_NOTE_KIND (tem) == REG_LABEL)
2159 set_label_offsets (XEXP (tem, 0), insn, 1);
2160 return;
2162 case PARALLEL:
2163 case ADDR_VEC:
2164 case ADDR_DIFF_VEC:
2165 /* Each of the labels in the parallel or address vector must be
2166 at their initial offsets. We want the first field for PARALLEL
2167 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2169 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2170 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2171 insn, initial_p);
2172 return;
2174 case SET:
2175 /* We only care about setting PC. If the source is not RETURN,
2176 IF_THEN_ELSE, or a label, disable any eliminations not at
2177 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2178 isn't one of those possibilities. For branches to a label,
2179 call ourselves recursively.
2181 Note that this can disable elimination unnecessarily when we have
2182 a non-local goto since it will look like a non-constant jump to
2183 someplace in the current function. This isn't a significant
2184 problem since such jumps will normally be when all elimination
2185 pairs are back to their initial offsets. */
2187 if (SET_DEST (x) != pc_rtx)
2188 return;
2190 switch (GET_CODE (SET_SRC (x)))
2192 case PC:
2193 case RETURN:
2194 return;
2196 case LABEL_REF:
2197 set_label_offsets (SET_SRC (x), insn, initial_p);
2198 return;
2200 case IF_THEN_ELSE:
2201 tem = XEXP (SET_SRC (x), 1);
2202 if (GET_CODE (tem) == LABEL_REF)
2203 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2204 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2205 break;
2207 tem = XEXP (SET_SRC (x), 2);
2208 if (GET_CODE (tem) == LABEL_REF)
2209 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2210 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2211 break;
2212 return;
2214 default:
2215 break;
2218 /* If we reach here, all eliminations must be at their initial
2219 offset because we are doing a jump to a variable address. */
2220 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2221 if (p->offset != p->initial_offset)
2222 p->can_eliminate = 0;
2223 break;
2225 default:
2226 break;
2230 /* Scan X and replace any eliminable registers (such as fp) with a
2231 replacement (such as sp), plus an offset.
2233 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2234 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2235 MEM, we are allowed to replace a sum of a register and the constant zero
2236 with the register, which we cannot do outside a MEM. In addition, we need
2237 to record the fact that a register is referenced outside a MEM.
2239 If INSN is an insn, it is the insn containing X. If we replace a REG
2240 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2241 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2242 the REG is being modified.
2244 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2245 That's used when we eliminate in expressions stored in notes.
2246 This means, do not set ref_outside_mem even if the reference
2247 is outside of MEMs.
2249 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2250 replacements done assuming all offsets are at their initial values. If
2251 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2252 encounter, return the actual location so that find_reloads will do
2253 the proper thing. */
2256 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2258 enum rtx_code code = GET_CODE (x);
2259 struct elim_table *ep;
2260 int regno;
2261 rtx new;
2262 int i, j;
2263 const char *fmt;
2264 int copied = 0;
2266 if (! current_function_decl)
2267 return x;
2269 switch (code)
2271 case CONST_INT:
2272 case CONST_DOUBLE:
2273 case CONST_VECTOR:
2274 case CONST:
2275 case SYMBOL_REF:
2276 case CODE_LABEL:
2277 case PC:
2278 case CC0:
2279 case ASM_INPUT:
2280 case ADDR_VEC:
2281 case ADDR_DIFF_VEC:
2282 case RETURN:
2283 return x;
2285 case REG:
2286 regno = REGNO (x);
2288 /* First handle the case where we encounter a bare register that
2289 is eliminable. Replace it with a PLUS. */
2290 if (regno < FIRST_PSEUDO_REGISTER)
2292 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2293 ep++)
2294 if (ep->from_rtx == x && ep->can_eliminate)
2295 return plus_constant (ep->to_rtx, ep->previous_offset);
2298 else if (reg_renumber && reg_renumber[regno] < 0
2299 && reg_equiv_constant && reg_equiv_constant[regno]
2300 && ! CONSTANT_P (reg_equiv_constant[regno]))
2301 return eliminate_regs (copy_rtx (reg_equiv_constant[regno]),
2302 mem_mode, insn);
2303 return x;
2305 /* You might think handling MINUS in a manner similar to PLUS is a
2306 good idea. It is not. It has been tried multiple times and every
2307 time the change has had to have been reverted.
2309 Other parts of reload know a PLUS is special (gen_reload for example)
2310 and require special code to handle code a reloaded PLUS operand.
2312 Also consider backends where the flags register is clobbered by a
2313 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2314 lea instruction comes to mind). If we try to reload a MINUS, we
2315 may kill the flags register that was holding a useful value.
2317 So, please before trying to handle MINUS, consider reload as a
2318 whole instead of this little section as well as the backend issues. */
2319 case PLUS:
2320 /* If this is the sum of an eliminable register and a constant, rework
2321 the sum. */
2322 if (REG_P (XEXP (x, 0))
2323 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2324 && CONSTANT_P (XEXP (x, 1)))
2326 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2327 ep++)
2328 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2330 /* The only time we want to replace a PLUS with a REG (this
2331 occurs when the constant operand of the PLUS is the negative
2332 of the offset) is when we are inside a MEM. We won't want
2333 to do so at other times because that would change the
2334 structure of the insn in a way that reload can't handle.
2335 We special-case the commonest situation in
2336 eliminate_regs_in_insn, so just replace a PLUS with a
2337 PLUS here, unless inside a MEM. */
2338 if (mem_mode != 0 && GET_CODE (XEXP (x, 1)) == CONST_INT
2339 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2340 return ep->to_rtx;
2341 else
2342 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2343 plus_constant (XEXP (x, 1),
2344 ep->previous_offset));
2347 /* If the register is not eliminable, we are done since the other
2348 operand is a constant. */
2349 return x;
2352 /* If this is part of an address, we want to bring any constant to the
2353 outermost PLUS. We will do this by doing register replacement in
2354 our operands and seeing if a constant shows up in one of them.
2356 Note that there is no risk of modifying the structure of the insn,
2357 since we only get called for its operands, thus we are either
2358 modifying the address inside a MEM, or something like an address
2359 operand of a load-address insn. */
2362 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2363 rtx new1 = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2365 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2367 /* If one side is a PLUS and the other side is a pseudo that
2368 didn't get a hard register but has a reg_equiv_constant,
2369 we must replace the constant here since it may no longer
2370 be in the position of any operand. */
2371 if (GET_CODE (new0) == PLUS && REG_P (new1)
2372 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2373 && reg_renumber[REGNO (new1)] < 0
2374 && reg_equiv_constant != 0
2375 && reg_equiv_constant[REGNO (new1)] != 0)
2376 new1 = reg_equiv_constant[REGNO (new1)];
2377 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2378 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2379 && reg_renumber[REGNO (new0)] < 0
2380 && reg_equiv_constant[REGNO (new0)] != 0)
2381 new0 = reg_equiv_constant[REGNO (new0)];
2383 new = form_sum (new0, new1);
2385 /* As above, if we are not inside a MEM we do not want to
2386 turn a PLUS into something else. We might try to do so here
2387 for an addition of 0 if we aren't optimizing. */
2388 if (! mem_mode && GET_CODE (new) != PLUS)
2389 return gen_rtx_PLUS (GET_MODE (x), new, const0_rtx);
2390 else
2391 return new;
2394 return x;
2396 case MULT:
2397 /* If this is the product of an eliminable register and a
2398 constant, apply the distribute law and move the constant out
2399 so that we have (plus (mult ..) ..). This is needed in order
2400 to keep load-address insns valid. This case is pathological.
2401 We ignore the possibility of overflow here. */
2402 if (REG_P (XEXP (x, 0))
2403 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2404 && GET_CODE (XEXP (x, 1)) == CONST_INT)
2405 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2406 ep++)
2407 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2409 if (! mem_mode
2410 /* Refs inside notes don't count for this purpose. */
2411 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2412 || GET_CODE (insn) == INSN_LIST)))
2413 ep->ref_outside_mem = 1;
2415 return
2416 plus_constant (gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2417 ep->previous_offset * INTVAL (XEXP (x, 1)));
2420 /* ... fall through ... */
2422 case CALL:
2423 case COMPARE:
2424 /* See comments before PLUS about handling MINUS. */
2425 case MINUS:
2426 case DIV: case UDIV:
2427 case MOD: case UMOD:
2428 case AND: case IOR: case XOR:
2429 case ROTATERT: case ROTATE:
2430 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2431 case NE: case EQ:
2432 case GE: case GT: case GEU: case GTU:
2433 case LE: case LT: case LEU: case LTU:
2435 rtx new0 = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2436 rtx new1
2437 = XEXP (x, 1) ? eliminate_regs (XEXP (x, 1), mem_mode, insn) : 0;
2439 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2440 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2442 return x;
2444 case EXPR_LIST:
2445 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2446 if (XEXP (x, 0))
2448 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2449 if (new != XEXP (x, 0))
2451 /* If this is a REG_DEAD note, it is not valid anymore.
2452 Using the eliminated version could result in creating a
2453 REG_DEAD note for the stack or frame pointer. */
2454 if (GET_MODE (x) == REG_DEAD)
2455 return (XEXP (x, 1)
2456 ? eliminate_regs (XEXP (x, 1), mem_mode, insn)
2457 : NULL_RTX);
2459 x = gen_rtx_EXPR_LIST (REG_NOTE_KIND (x), new, XEXP (x, 1));
2463 /* ... fall through ... */
2465 case INSN_LIST:
2466 /* Now do eliminations in the rest of the chain. If this was
2467 an EXPR_LIST, this might result in allocating more memory than is
2468 strictly needed, but it simplifies the code. */
2469 if (XEXP (x, 1))
2471 new = eliminate_regs (XEXP (x, 1), mem_mode, insn);
2472 if (new != XEXP (x, 1))
2473 return
2474 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new);
2476 return x;
2478 case PRE_INC:
2479 case POST_INC:
2480 case PRE_DEC:
2481 case POST_DEC:
2482 case STRICT_LOW_PART:
2483 case NEG: case NOT:
2484 case SIGN_EXTEND: case ZERO_EXTEND:
2485 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2486 case FLOAT: case FIX:
2487 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2488 case ABS:
2489 case SQRT:
2490 case FFS:
2491 case CLZ:
2492 case CTZ:
2493 case POPCOUNT:
2494 case PARITY:
2495 new = eliminate_regs (XEXP (x, 0), mem_mode, insn);
2496 if (new != XEXP (x, 0))
2497 return gen_rtx_fmt_e (code, GET_MODE (x), new);
2498 return x;
2500 case SUBREG:
2501 /* Similar to above processing, but preserve SUBREG_BYTE.
2502 Convert (subreg (mem)) to (mem) if not paradoxical.
2503 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2504 pseudo didn't get a hard reg, we must replace this with the
2505 eliminated version of the memory location because push_reload
2506 may do the replacement in certain circumstances. */
2507 if (REG_P (SUBREG_REG (x))
2508 && (GET_MODE_SIZE (GET_MODE (x))
2509 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2510 && reg_equiv_memory_loc != 0
2511 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2513 new = SUBREG_REG (x);
2515 else
2516 new = eliminate_regs (SUBREG_REG (x), mem_mode, insn);
2518 if (new != SUBREG_REG (x))
2520 int x_size = GET_MODE_SIZE (GET_MODE (x));
2521 int new_size = GET_MODE_SIZE (GET_MODE (new));
2523 if (MEM_P (new)
2524 && ((x_size < new_size
2525 #ifdef WORD_REGISTER_OPERATIONS
2526 /* On these machines, combine can create rtl of the form
2527 (set (subreg:m1 (reg:m2 R) 0) ...)
2528 where m1 < m2, and expects something interesting to
2529 happen to the entire word. Moreover, it will use the
2530 (reg:m2 R) later, expecting all bits to be preserved.
2531 So if the number of words is the same, preserve the
2532 subreg so that push_reload can see it. */
2533 && ! ((x_size - 1) / UNITS_PER_WORD
2534 == (new_size -1 ) / UNITS_PER_WORD)
2535 #endif
2537 || x_size == new_size)
2539 return adjust_address_nv (new, GET_MODE (x), SUBREG_BYTE (x));
2540 else
2541 return gen_rtx_SUBREG (GET_MODE (x), new, SUBREG_BYTE (x));
2544 return x;
2546 case MEM:
2547 /* Our only special processing is to pass the mode of the MEM to our
2548 recursive call and copy the flags. While we are here, handle this
2549 case more efficiently. */
2550 return
2551 replace_equiv_address_nv (x,
2552 eliminate_regs (XEXP (x, 0),
2553 GET_MODE (x), insn));
2555 case USE:
2556 /* Handle insn_list USE that a call to a pure function may generate. */
2557 new = eliminate_regs (XEXP (x, 0), 0, insn);
2558 if (new != XEXP (x, 0))
2559 return gen_rtx_USE (GET_MODE (x), new);
2560 return x;
2562 case CLOBBER:
2563 case ASM_OPERANDS:
2564 case SET:
2565 gcc_unreachable ();
2567 default:
2568 break;
2571 /* Process each of our operands recursively. If any have changed, make a
2572 copy of the rtx. */
2573 fmt = GET_RTX_FORMAT (code);
2574 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2576 if (*fmt == 'e')
2578 new = eliminate_regs (XEXP (x, i), mem_mode, insn);
2579 if (new != XEXP (x, i) && ! copied)
2581 rtx new_x = rtx_alloc (code);
2582 memcpy (new_x, x, RTX_SIZE (code));
2583 x = new_x;
2584 copied = 1;
2586 XEXP (x, i) = new;
2588 else if (*fmt == 'E')
2590 int copied_vec = 0;
2591 for (j = 0; j < XVECLEN (x, i); j++)
2593 new = eliminate_regs (XVECEXP (x, i, j), mem_mode, insn);
2594 if (new != XVECEXP (x, i, j) && ! copied_vec)
2596 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2597 XVEC (x, i)->elem);
2598 if (! copied)
2600 rtx new_x = rtx_alloc (code);
2601 memcpy (new_x, x, RTX_SIZE (code));
2602 x = new_x;
2603 copied = 1;
2605 XVEC (x, i) = new_v;
2606 copied_vec = 1;
2608 XVECEXP (x, i, j) = new;
2613 return x;
2616 /* Scan rtx X for modifications of elimination target registers. Update
2617 the table of eliminables to reflect the changed state. MEM_MODE is
2618 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2620 static void
2621 elimination_effects (rtx x, enum machine_mode mem_mode)
2623 enum rtx_code code = GET_CODE (x);
2624 struct elim_table *ep;
2625 int regno;
2626 int i, j;
2627 const char *fmt;
2629 switch (code)
2631 case CONST_INT:
2632 case CONST_DOUBLE:
2633 case CONST_VECTOR:
2634 case CONST:
2635 case SYMBOL_REF:
2636 case CODE_LABEL:
2637 case PC:
2638 case CC0:
2639 case ASM_INPUT:
2640 case ADDR_VEC:
2641 case ADDR_DIFF_VEC:
2642 case RETURN:
2643 return;
2645 case REG:
2646 regno = REGNO (x);
2648 /* First handle the case where we encounter a bare register that
2649 is eliminable. Replace it with a PLUS. */
2650 if (regno < FIRST_PSEUDO_REGISTER)
2652 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2653 ep++)
2654 if (ep->from_rtx == x && ep->can_eliminate)
2656 if (! mem_mode)
2657 ep->ref_outside_mem = 1;
2658 return;
2662 else if (reg_renumber[regno] < 0 && reg_equiv_constant
2663 && reg_equiv_constant[regno]
2664 && ! function_invariant_p (reg_equiv_constant[regno]))
2665 elimination_effects (reg_equiv_constant[regno], mem_mode);
2666 return;
2668 case PRE_INC:
2669 case POST_INC:
2670 case PRE_DEC:
2671 case POST_DEC:
2672 case POST_MODIFY:
2673 case PRE_MODIFY:
2674 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2675 if (ep->to_rtx == XEXP (x, 0))
2677 int size = GET_MODE_SIZE (mem_mode);
2679 /* If more bytes than MEM_MODE are pushed, account for them. */
2680 #ifdef PUSH_ROUNDING
2681 if (ep->to_rtx == stack_pointer_rtx)
2682 size = PUSH_ROUNDING (size);
2683 #endif
2684 if (code == PRE_DEC || code == POST_DEC)
2685 ep->offset += size;
2686 else if (code == PRE_INC || code == POST_INC)
2687 ep->offset -= size;
2688 else if ((code == PRE_MODIFY || code == POST_MODIFY)
2689 && GET_CODE (XEXP (x, 1)) == PLUS
2690 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
2691 && CONSTANT_P (XEXP (XEXP (x, 1), 1)))
2692 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
2695 /* These two aren't unary operators. */
2696 if (code == POST_MODIFY || code == PRE_MODIFY)
2697 break;
2699 /* Fall through to generic unary operation case. */
2700 case STRICT_LOW_PART:
2701 case NEG: case NOT:
2702 case SIGN_EXTEND: case ZERO_EXTEND:
2703 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2704 case FLOAT: case FIX:
2705 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2706 case ABS:
2707 case SQRT:
2708 case FFS:
2709 case CLZ:
2710 case CTZ:
2711 case POPCOUNT:
2712 case PARITY:
2713 elimination_effects (XEXP (x, 0), mem_mode);
2714 return;
2716 case SUBREG:
2717 if (REG_P (SUBREG_REG (x))
2718 && (GET_MODE_SIZE (GET_MODE (x))
2719 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
2720 && reg_equiv_memory_loc != 0
2721 && reg_equiv_memory_loc[REGNO (SUBREG_REG (x))] != 0)
2722 return;
2724 elimination_effects (SUBREG_REG (x), mem_mode);
2725 return;
2727 case USE:
2728 /* If using a register that is the source of an eliminate we still
2729 think can be performed, note it cannot be performed since we don't
2730 know how this register is used. */
2731 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2732 if (ep->from_rtx == XEXP (x, 0))
2733 ep->can_eliminate = 0;
2735 elimination_effects (XEXP (x, 0), mem_mode);
2736 return;
2738 case CLOBBER:
2739 /* If clobbering a register that is the replacement register for an
2740 elimination we still think can be performed, note that it cannot
2741 be performed. Otherwise, we need not be concerned about it. */
2742 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2743 if (ep->to_rtx == XEXP (x, 0))
2744 ep->can_eliminate = 0;
2746 elimination_effects (XEXP (x, 0), mem_mode);
2747 return;
2749 case SET:
2750 /* Check for setting a register that we know about. */
2751 if (REG_P (SET_DEST (x)))
2753 /* See if this is setting the replacement register for an
2754 elimination.
2756 If DEST is the hard frame pointer, we do nothing because we
2757 assume that all assignments to the frame pointer are for
2758 non-local gotos and are being done at a time when they are valid
2759 and do not disturb anything else. Some machines want to
2760 eliminate a fake argument pointer (or even a fake frame pointer)
2761 with either the real frame or the stack pointer. Assignments to
2762 the hard frame pointer must not prevent this elimination. */
2764 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2765 ep++)
2766 if (ep->to_rtx == SET_DEST (x)
2767 && SET_DEST (x) != hard_frame_pointer_rtx)
2769 /* If it is being incremented, adjust the offset. Otherwise,
2770 this elimination can't be done. */
2771 rtx src = SET_SRC (x);
2773 if (GET_CODE (src) == PLUS
2774 && XEXP (src, 0) == SET_DEST (x)
2775 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2776 ep->offset -= INTVAL (XEXP (src, 1));
2777 else
2778 ep->can_eliminate = 0;
2782 elimination_effects (SET_DEST (x), 0);
2783 elimination_effects (SET_SRC (x), 0);
2784 return;
2786 case MEM:
2787 /* Our only special processing is to pass the mode of the MEM to our
2788 recursive call. */
2789 elimination_effects (XEXP (x, 0), GET_MODE (x));
2790 return;
2792 default:
2793 break;
2796 fmt = GET_RTX_FORMAT (code);
2797 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2799 if (*fmt == 'e')
2800 elimination_effects (XEXP (x, i), mem_mode);
2801 else if (*fmt == 'E')
2802 for (j = 0; j < XVECLEN (x, i); j++)
2803 elimination_effects (XVECEXP (x, i, j), mem_mode);
2807 /* Descend through rtx X and verify that no references to eliminable registers
2808 remain. If any do remain, mark the involved register as not
2809 eliminable. */
2811 static void
2812 check_eliminable_occurrences (rtx x)
2814 const char *fmt;
2815 int i;
2816 enum rtx_code code;
2818 if (x == 0)
2819 return;
2821 code = GET_CODE (x);
2823 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
2825 struct elim_table *ep;
2827 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2828 if (ep->from_rtx == x)
2829 ep->can_eliminate = 0;
2830 return;
2833 fmt = GET_RTX_FORMAT (code);
2834 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2836 if (*fmt == 'e')
2837 check_eliminable_occurrences (XEXP (x, i));
2838 else if (*fmt == 'E')
2840 int j;
2841 for (j = 0; j < XVECLEN (x, i); j++)
2842 check_eliminable_occurrences (XVECEXP (x, i, j));
2847 /* Scan INSN and eliminate all eliminable registers in it.
2849 If REPLACE is nonzero, do the replacement destructively. Also
2850 delete the insn as dead it if it is setting an eliminable register.
2852 If REPLACE is zero, do all our allocations in reload_obstack.
2854 If no eliminations were done and this insn doesn't require any elimination
2855 processing (these are not identical conditions: it might be updating sp,
2856 but not referencing fp; this needs to be seen during reload_as_needed so
2857 that the offset between fp and sp can be taken into consideration), zero
2858 is returned. Otherwise, 1 is returned. */
2860 static int
2861 eliminate_regs_in_insn (rtx insn, int replace)
2863 int icode = recog_memoized (insn);
2864 rtx old_body = PATTERN (insn);
2865 int insn_is_asm = asm_noperands (old_body) >= 0;
2866 rtx old_set = single_set (insn);
2867 rtx new_body;
2868 int val = 0;
2869 int i;
2870 rtx substed_operand[MAX_RECOG_OPERANDS];
2871 rtx orig_operand[MAX_RECOG_OPERANDS];
2872 struct elim_table *ep;
2873 rtx plus_src;
2875 if (! insn_is_asm && icode < 0)
2877 gcc_assert (GET_CODE (PATTERN (insn)) == USE
2878 || GET_CODE (PATTERN (insn)) == CLOBBER
2879 || GET_CODE (PATTERN (insn)) == ADDR_VEC
2880 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
2881 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
2882 return 0;
2885 if (old_set != 0 && REG_P (SET_DEST (old_set))
2886 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
2888 /* Check for setting an eliminable register. */
2889 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2890 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
2892 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2893 /* If this is setting the frame pointer register to the
2894 hardware frame pointer register and this is an elimination
2895 that will be done (tested above), this insn is really
2896 adjusting the frame pointer downward to compensate for
2897 the adjustment done before a nonlocal goto. */
2898 if (ep->from == FRAME_POINTER_REGNUM
2899 && ep->to == HARD_FRAME_POINTER_REGNUM)
2901 rtx base = SET_SRC (old_set);
2902 rtx base_insn = insn;
2903 HOST_WIDE_INT offset = 0;
2905 while (base != ep->to_rtx)
2907 rtx prev_insn, prev_set;
2909 if (GET_CODE (base) == PLUS
2910 && GET_CODE (XEXP (base, 1)) == CONST_INT)
2912 offset += INTVAL (XEXP (base, 1));
2913 base = XEXP (base, 0);
2915 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
2916 && (prev_set = single_set (prev_insn)) != 0
2917 && rtx_equal_p (SET_DEST (prev_set), base))
2919 base = SET_SRC (prev_set);
2920 base_insn = prev_insn;
2922 else
2923 break;
2926 if (base == ep->to_rtx)
2928 rtx src
2929 = plus_constant (ep->to_rtx, offset - ep->offset);
2931 new_body = old_body;
2932 if (! replace)
2934 new_body = copy_insn (old_body);
2935 if (REG_NOTES (insn))
2936 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
2938 PATTERN (insn) = new_body;
2939 old_set = single_set (insn);
2941 /* First see if this insn remains valid when we
2942 make the change. If not, keep the INSN_CODE
2943 the same and let reload fit it up. */
2944 validate_change (insn, &SET_SRC (old_set), src, 1);
2945 validate_change (insn, &SET_DEST (old_set),
2946 ep->to_rtx, 1);
2947 if (! apply_change_group ())
2949 SET_SRC (old_set) = src;
2950 SET_DEST (old_set) = ep->to_rtx;
2953 val = 1;
2954 goto done;
2957 #endif
2959 /* In this case this insn isn't serving a useful purpose. We
2960 will delete it in reload_as_needed once we know that this
2961 elimination is, in fact, being done.
2963 If REPLACE isn't set, we can't delete this insn, but needn't
2964 process it since it won't be used unless something changes. */
2965 if (replace)
2967 delete_dead_insn (insn);
2968 return 1;
2970 val = 1;
2971 goto done;
2975 /* We allow one special case which happens to work on all machines we
2976 currently support: a single set with the source or a REG_EQUAL
2977 note being a PLUS of an eliminable register and a constant. */
2978 plus_src = 0;
2979 if (old_set && REG_P (SET_DEST (old_set)))
2981 /* First see if the source is of the form (plus (reg) CST). */
2982 if (GET_CODE (SET_SRC (old_set)) == PLUS
2983 && REG_P (XEXP (SET_SRC (old_set), 0))
2984 && GET_CODE (XEXP (SET_SRC (old_set), 1)) == CONST_INT
2985 && REGNO (XEXP (SET_SRC (old_set), 0)) < FIRST_PSEUDO_REGISTER)
2986 plus_src = SET_SRC (old_set);
2987 else if (REG_P (SET_SRC (old_set)))
2989 /* Otherwise, see if we have a REG_EQUAL note of the form
2990 (plus (reg) CST). */
2991 rtx links;
2992 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
2994 if (REG_NOTE_KIND (links) == REG_EQUAL
2995 && GET_CODE (XEXP (links, 0)) == PLUS
2996 && REG_P (XEXP (XEXP (links, 0), 0))
2997 && GET_CODE (XEXP (XEXP (links, 0), 1)) == CONST_INT
2998 && REGNO (XEXP (XEXP (links, 0), 0)) < FIRST_PSEUDO_REGISTER)
3000 plus_src = XEXP (links, 0);
3001 break;
3006 if (plus_src)
3008 rtx reg = XEXP (plus_src, 0);
3009 HOST_WIDE_INT offset = INTVAL (XEXP (plus_src, 1));
3011 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3012 if (ep->from_rtx == reg && ep->can_eliminate)
3014 offset += ep->offset;
3016 if (offset == 0)
3018 int num_clobbers;
3019 /* We assume here that if we need a PARALLEL with
3020 CLOBBERs for this assignment, we can do with the
3021 MATCH_SCRATCHes that add_clobbers allocates.
3022 There's not much we can do if that doesn't work. */
3023 PATTERN (insn) = gen_rtx_SET (VOIDmode,
3024 SET_DEST (old_set),
3025 ep->to_rtx);
3026 num_clobbers = 0;
3027 INSN_CODE (insn) = recog (PATTERN (insn), insn, &num_clobbers);
3028 if (num_clobbers)
3030 rtvec vec = rtvec_alloc (num_clobbers + 1);
3032 vec->elem[0] = PATTERN (insn);
3033 PATTERN (insn) = gen_rtx_PARALLEL (VOIDmode, vec);
3034 add_clobbers (PATTERN (insn), INSN_CODE (insn));
3036 gcc_assert (INSN_CODE (insn) >= 0);
3038 /* If we have a nonzero offset, and the source is already
3039 a simple REG, the following transformation would
3040 increase the cost of the insn by replacing a simple REG
3041 with (plus (reg sp) CST). So try only when plus_src
3042 comes from old_set proper, not REG_NOTES. */
3043 else if (SET_SRC (old_set) == plus_src)
3045 new_body = old_body;
3046 if (! replace)
3048 new_body = copy_insn (old_body);
3049 if (REG_NOTES (insn))
3050 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3052 PATTERN (insn) = new_body;
3053 old_set = single_set (insn);
3055 XEXP (SET_SRC (old_set), 0) = ep->to_rtx;
3056 XEXP (SET_SRC (old_set), 1) = GEN_INT (offset);
3058 else
3059 break;
3061 val = 1;
3062 /* This can't have an effect on elimination offsets, so skip right
3063 to the end. */
3064 goto done;
3068 /* Determine the effects of this insn on elimination offsets. */
3069 elimination_effects (old_body, 0);
3071 /* Eliminate all eliminable registers occurring in operands that
3072 can be handled by reload. */
3073 extract_insn (insn);
3074 for (i = 0; i < recog_data.n_operands; i++)
3076 orig_operand[i] = recog_data.operand[i];
3077 substed_operand[i] = recog_data.operand[i];
3079 /* For an asm statement, every operand is eliminable. */
3080 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3082 /* Check for setting a register that we know about. */
3083 if (recog_data.operand_type[i] != OP_IN
3084 && REG_P (orig_operand[i]))
3086 /* If we are assigning to a register that can be eliminated, it
3087 must be as part of a PARALLEL, since the code above handles
3088 single SETs. We must indicate that we can no longer
3089 eliminate this reg. */
3090 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3091 ep++)
3092 if (ep->from_rtx == orig_operand[i])
3093 ep->can_eliminate = 0;
3096 substed_operand[i] = eliminate_regs (recog_data.operand[i], 0,
3097 replace ? insn : NULL_RTX);
3098 if (substed_operand[i] != orig_operand[i])
3099 val = 1;
3100 /* Terminate the search in check_eliminable_occurrences at
3101 this point. */
3102 *recog_data.operand_loc[i] = 0;
3104 /* If an output operand changed from a REG to a MEM and INSN is an
3105 insn, write a CLOBBER insn. */
3106 if (recog_data.operand_type[i] != OP_IN
3107 && REG_P (orig_operand[i])
3108 && MEM_P (substed_operand[i])
3109 && replace)
3110 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, orig_operand[i]),
3111 insn);
3115 for (i = 0; i < recog_data.n_dups; i++)
3116 *recog_data.dup_loc[i]
3117 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3119 /* If any eliminable remain, they aren't eliminable anymore. */
3120 check_eliminable_occurrences (old_body);
3122 /* Substitute the operands; the new values are in the substed_operand
3123 array. */
3124 for (i = 0; i < recog_data.n_operands; i++)
3125 *recog_data.operand_loc[i] = substed_operand[i];
3126 for (i = 0; i < recog_data.n_dups; i++)
3127 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3129 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3130 re-recognize the insn. We do this in case we had a simple addition
3131 but now can do this as a load-address. This saves an insn in this
3132 common case.
3133 If re-recognition fails, the old insn code number will still be used,
3134 and some register operands may have changed into PLUS expressions.
3135 These will be handled by find_reloads by loading them into a register
3136 again. */
3138 if (val)
3140 /* If we aren't replacing things permanently and we changed something,
3141 make another copy to ensure that all the RTL is new. Otherwise
3142 things can go wrong if find_reload swaps commutative operands
3143 and one is inside RTL that has been copied while the other is not. */
3144 new_body = old_body;
3145 if (! replace)
3147 new_body = copy_insn (old_body);
3148 if (REG_NOTES (insn))
3149 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3151 PATTERN (insn) = new_body;
3153 /* If we had a move insn but now we don't, rerecognize it. This will
3154 cause spurious re-recognition if the old move had a PARALLEL since
3155 the new one still will, but we can't call single_set without
3156 having put NEW_BODY into the insn and the re-recognition won't
3157 hurt in this rare case. */
3158 /* ??? Why this huge if statement - why don't we just rerecognize the
3159 thing always? */
3160 if (! insn_is_asm
3161 && old_set != 0
3162 && ((REG_P (SET_SRC (old_set))
3163 && (GET_CODE (new_body) != SET
3164 || !REG_P (SET_SRC (new_body))))
3165 /* If this was a load from or store to memory, compare
3166 the MEM in recog_data.operand to the one in the insn.
3167 If they are not equal, then rerecognize the insn. */
3168 || (old_set != 0
3169 && ((MEM_P (SET_SRC (old_set))
3170 && SET_SRC (old_set) != recog_data.operand[1])
3171 || (MEM_P (SET_DEST (old_set))
3172 && SET_DEST (old_set) != recog_data.operand[0])))
3173 /* If this was an add insn before, rerecognize. */
3174 || GET_CODE (SET_SRC (old_set)) == PLUS))
3176 int new_icode = recog (PATTERN (insn), insn, 0);
3177 if (new_icode < 0)
3178 INSN_CODE (insn) = icode;
3182 /* Restore the old body. If there were any changes to it, we made a copy
3183 of it while the changes were still in place, so we'll correctly return
3184 a modified insn below. */
3185 if (! replace)
3187 /* Restore the old body. */
3188 for (i = 0; i < recog_data.n_operands; i++)
3189 *recog_data.operand_loc[i] = orig_operand[i];
3190 for (i = 0; i < recog_data.n_dups; i++)
3191 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3194 /* Update all elimination pairs to reflect the status after the current
3195 insn. The changes we make were determined by the earlier call to
3196 elimination_effects.
3198 We also detect cases where register elimination cannot be done,
3199 namely, if a register would be both changed and referenced outside a MEM
3200 in the resulting insn since such an insn is often undefined and, even if
3201 not, we cannot know what meaning will be given to it. Note that it is
3202 valid to have a register used in an address in an insn that changes it
3203 (presumably with a pre- or post-increment or decrement).
3205 If anything changes, return nonzero. */
3207 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3209 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3210 ep->can_eliminate = 0;
3212 ep->ref_outside_mem = 0;
3214 if (ep->previous_offset != ep->offset)
3215 val = 1;
3218 done:
3219 /* If we changed something, perform elimination in REG_NOTES. This is
3220 needed even when REPLACE is zero because a REG_DEAD note might refer
3221 to a register that we eliminate and could cause a different number
3222 of spill registers to be needed in the final reload pass than in
3223 the pre-passes. */
3224 if (val && REG_NOTES (insn) != 0)
3225 REG_NOTES (insn) = eliminate_regs (REG_NOTES (insn), 0, REG_NOTES (insn));
3227 return val;
3230 /* Loop through all elimination pairs.
3231 Recalculate the number not at initial offset.
3233 Compute the maximum offset (minimum offset if the stack does not
3234 grow downward) for each elimination pair. */
3236 static void
3237 update_eliminable_offsets (void)
3239 struct elim_table *ep;
3241 num_not_at_initial_offset = 0;
3242 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3244 ep->previous_offset = ep->offset;
3245 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3246 num_not_at_initial_offset++;
3250 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3251 replacement we currently believe is valid, mark it as not eliminable if X
3252 modifies DEST in any way other than by adding a constant integer to it.
3254 If DEST is the frame pointer, we do nothing because we assume that
3255 all assignments to the hard frame pointer are nonlocal gotos and are being
3256 done at a time when they are valid and do not disturb anything else.
3257 Some machines want to eliminate a fake argument pointer with either the
3258 frame or stack pointer. Assignments to the hard frame pointer must not
3259 prevent this elimination.
3261 Called via note_stores from reload before starting its passes to scan
3262 the insns of the function. */
3264 static void
3265 mark_not_eliminable (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
3267 unsigned int i;
3269 /* A SUBREG of a hard register here is just changing its mode. We should
3270 not see a SUBREG of an eliminable hard register, but check just in
3271 case. */
3272 if (GET_CODE (dest) == SUBREG)
3273 dest = SUBREG_REG (dest);
3275 if (dest == hard_frame_pointer_rtx)
3276 return;
3278 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3279 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3280 && (GET_CODE (x) != SET
3281 || GET_CODE (SET_SRC (x)) != PLUS
3282 || XEXP (SET_SRC (x), 0) != dest
3283 || GET_CODE (XEXP (SET_SRC (x), 1)) != CONST_INT))
3285 reg_eliminate[i].can_eliminate_previous
3286 = reg_eliminate[i].can_eliminate = 0;
3287 num_eliminable--;
3291 /* Verify that the initial elimination offsets did not change since the
3292 last call to set_initial_elim_offsets. This is used to catch cases
3293 where something illegal happened during reload_as_needed that could
3294 cause incorrect code to be generated if we did not check for it. */
3296 static bool
3297 verify_initial_elim_offsets (void)
3299 HOST_WIDE_INT t;
3301 if (!num_eliminable)
3302 return true;
3304 #ifdef ELIMINABLE_REGS
3306 struct elim_table *ep;
3308 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3310 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3311 if (t != ep->initial_offset)
3312 return false;
3315 #else
3316 INITIAL_FRAME_POINTER_OFFSET (t);
3317 if (t != reg_eliminate[0].initial_offset)
3318 return false;
3319 #endif
3321 return true;
3324 /* Reset all offsets on eliminable registers to their initial values. */
3326 static void
3327 set_initial_elim_offsets (void)
3329 struct elim_table *ep = reg_eliminate;
3331 #ifdef ELIMINABLE_REGS
3332 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3334 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3335 ep->previous_offset = ep->offset = ep->initial_offset;
3337 #else
3338 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3339 ep->previous_offset = ep->offset = ep->initial_offset;
3340 #endif
3342 num_not_at_initial_offset = 0;
3345 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3347 static void
3348 set_initial_eh_label_offset (rtx label)
3350 set_label_offsets (label, NULL_RTX, 1);
3353 /* Initialize the known label offsets.
3354 Set a known offset for each forced label to be at the initial offset
3355 of each elimination. We do this because we assume that all
3356 computed jumps occur from a location where each elimination is
3357 at its initial offset.
3358 For all other labels, show that we don't know the offsets. */
3360 static void
3361 set_initial_label_offsets (void)
3363 rtx x;
3364 memset (offsets_known_at, 0, num_labels);
3366 for (x = forced_labels; x; x = XEXP (x, 1))
3367 if (XEXP (x, 0))
3368 set_label_offsets (XEXP (x, 0), NULL_RTX, 1);
3370 for_each_eh_label (set_initial_eh_label_offset);
3373 /* Set all elimination offsets to the known values for the code label given
3374 by INSN. */
3376 static void
3377 set_offsets_for_label (rtx insn)
3379 unsigned int i;
3380 int label_nr = CODE_LABEL_NUMBER (insn);
3381 struct elim_table *ep;
3383 num_not_at_initial_offset = 0;
3384 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3386 ep->offset = ep->previous_offset
3387 = offsets_at[label_nr - first_label_num][i];
3388 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3389 num_not_at_initial_offset++;
3393 /* See if anything that happened changes which eliminations are valid.
3394 For example, on the SPARC, whether or not the frame pointer can
3395 be eliminated can depend on what registers have been used. We need
3396 not check some conditions again (such as flag_omit_frame_pointer)
3397 since they can't have changed. */
3399 static void
3400 update_eliminables (HARD_REG_SET *pset)
3402 int previous_frame_pointer_needed = frame_pointer_needed;
3403 struct elim_table *ep;
3405 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3406 if ((ep->from == HARD_FRAME_POINTER_REGNUM && FRAME_POINTER_REQUIRED)
3407 #ifdef ELIMINABLE_REGS
3408 || ! CAN_ELIMINATE (ep->from, ep->to)
3409 #endif
3411 ep->can_eliminate = 0;
3413 /* Look for the case where we have discovered that we can't replace
3414 register A with register B and that means that we will now be
3415 trying to replace register A with register C. This means we can
3416 no longer replace register C with register B and we need to disable
3417 such an elimination, if it exists. This occurs often with A == ap,
3418 B == sp, and C == fp. */
3420 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3422 struct elim_table *op;
3423 int new_to = -1;
3425 if (! ep->can_eliminate && ep->can_eliminate_previous)
3427 /* Find the current elimination for ep->from, if there is a
3428 new one. */
3429 for (op = reg_eliminate;
3430 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3431 if (op->from == ep->from && op->can_eliminate)
3433 new_to = op->to;
3434 break;
3437 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3438 disable it. */
3439 for (op = reg_eliminate;
3440 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3441 if (op->from == new_to && op->to == ep->to)
3442 op->can_eliminate = 0;
3446 /* See if any registers that we thought we could eliminate the previous
3447 time are no longer eliminable. If so, something has changed and we
3448 must spill the register. Also, recompute the number of eliminable
3449 registers and see if the frame pointer is needed; it is if there is
3450 no elimination of the frame pointer that we can perform. */
3452 frame_pointer_needed = 1;
3453 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3455 if (ep->can_eliminate && ep->from == FRAME_POINTER_REGNUM
3456 && ep->to != HARD_FRAME_POINTER_REGNUM)
3457 frame_pointer_needed = 0;
3459 if (! ep->can_eliminate && ep->can_eliminate_previous)
3461 ep->can_eliminate_previous = 0;
3462 SET_HARD_REG_BIT (*pset, ep->from);
3463 num_eliminable--;
3467 /* If we didn't need a frame pointer last time, but we do now, spill
3468 the hard frame pointer. */
3469 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3470 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3473 /* Initialize the table of registers to eliminate. */
3475 static void
3476 init_elim_table (void)
3478 struct elim_table *ep;
3479 #ifdef ELIMINABLE_REGS
3480 const struct elim_table_1 *ep1;
3481 #endif
3483 if (!reg_eliminate)
3484 reg_eliminate = xcalloc (sizeof (struct elim_table), NUM_ELIMINABLE_REGS);
3486 /* Does this function require a frame pointer? */
3488 frame_pointer_needed = (! flag_omit_frame_pointer
3489 /* ?? If EXIT_IGNORE_STACK is set, we will not save
3490 and restore sp for alloca. So we can't eliminate
3491 the frame pointer in that case. At some point,
3492 we should improve this by emitting the
3493 sp-adjusting insns for this case. */
3494 || (current_function_calls_alloca
3495 && EXIT_IGNORE_STACK)
3496 || current_function_accesses_prior_frames
3497 || FRAME_POINTER_REQUIRED);
3499 num_eliminable = 0;
3501 #ifdef ELIMINABLE_REGS
3502 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
3503 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
3505 ep->from = ep1->from;
3506 ep->to = ep1->to;
3507 ep->can_eliminate = ep->can_eliminate_previous
3508 = (CAN_ELIMINATE (ep->from, ep->to)
3509 && ! (ep->to == STACK_POINTER_REGNUM && frame_pointer_needed));
3511 #else
3512 reg_eliminate[0].from = reg_eliminate_1[0].from;
3513 reg_eliminate[0].to = reg_eliminate_1[0].to;
3514 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
3515 = ! frame_pointer_needed;
3516 #endif
3518 /* Count the number of eliminable registers and build the FROM and TO
3519 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
3520 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
3521 We depend on this. */
3522 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3524 num_eliminable += ep->can_eliminate;
3525 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
3526 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
3530 /* Kick all pseudos out of hard register REGNO.
3532 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
3533 because we found we can't eliminate some register. In the case, no pseudos
3534 are allowed to be in the register, even if they are only in a block that
3535 doesn't require spill registers, unlike the case when we are spilling this
3536 hard reg to produce another spill register.
3538 Return nonzero if any pseudos needed to be kicked out. */
3540 static void
3541 spill_hard_reg (unsigned int regno, int cant_eliminate)
3543 int i;
3545 if (cant_eliminate)
3547 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
3548 regs_ever_live[regno] = 1;
3551 /* Spill every pseudo reg that was allocated to this reg
3552 or to something that overlaps this reg. */
3554 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
3555 if (reg_renumber[i] >= 0
3556 && (unsigned int) reg_renumber[i] <= regno
3557 && ((unsigned int) reg_renumber[i]
3558 + hard_regno_nregs[(unsigned int) reg_renumber[i]]
3559 [PSEUDO_REGNO_MODE (i)]
3560 > regno))
3561 SET_REGNO_REG_SET (&spilled_pseudos, i);
3564 /* After find_reload_regs has been run for all insn that need reloads,
3565 and/or spill_hard_regs was called, this function is used to actually
3566 spill pseudo registers and try to reallocate them. It also sets up the
3567 spill_regs array for use by choose_reload_regs. */
3569 static int
3570 finish_spills (int global)
3572 struct insn_chain *chain;
3573 int something_changed = 0;
3574 unsigned i;
3575 reg_set_iterator rsi;
3577 /* Build the spill_regs array for the function. */
3578 /* If there are some registers still to eliminate and one of the spill regs
3579 wasn't ever used before, additional stack space may have to be
3580 allocated to store this register. Thus, we may have changed the offset
3581 between the stack and frame pointers, so mark that something has changed.
3583 One might think that we need only set VAL to 1 if this is a call-used
3584 register. However, the set of registers that must be saved by the
3585 prologue is not identical to the call-used set. For example, the
3586 register used by the call insn for the return PC is a call-used register,
3587 but must be saved by the prologue. */
3589 n_spills = 0;
3590 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3591 if (TEST_HARD_REG_BIT (used_spill_regs, i))
3593 spill_reg_order[i] = n_spills;
3594 spill_regs[n_spills++] = i;
3595 if (num_eliminable && ! regs_ever_live[i])
3596 something_changed = 1;
3597 regs_ever_live[i] = 1;
3599 else
3600 spill_reg_order[i] = -1;
3602 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
3604 /* Record the current hard register the pseudo is allocated to in
3605 pseudo_previous_regs so we avoid reallocating it to the same
3606 hard reg in a later pass. */
3607 gcc_assert (reg_renumber[i] >= 0);
3609 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
3610 /* Mark it as no longer having a hard register home. */
3611 reg_renumber[i] = -1;
3612 /* We will need to scan everything again. */
3613 something_changed = 1;
3616 /* Retry global register allocation if possible. */
3617 if (global)
3619 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
3620 /* For every insn that needs reloads, set the registers used as spill
3621 regs in pseudo_forbidden_regs for every pseudo live across the
3622 insn. */
3623 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
3625 EXECUTE_IF_SET_IN_REG_SET
3626 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
3628 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3629 chain->used_spill_regs);
3631 EXECUTE_IF_SET_IN_REG_SET
3632 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
3634 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
3635 chain->used_spill_regs);
3639 /* Retry allocating the spilled pseudos. For each reg, merge the
3640 various reg sets that indicate which hard regs can't be used,
3641 and call retry_global_alloc.
3642 We change spill_pseudos here to only contain pseudos that did not
3643 get a new hard register. */
3644 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
3645 if (reg_old_renumber[i] != reg_renumber[i])
3647 HARD_REG_SET forbidden;
3648 COPY_HARD_REG_SET (forbidden, bad_spill_regs_global);
3649 IOR_HARD_REG_SET (forbidden, pseudo_forbidden_regs[i]);
3650 IOR_HARD_REG_SET (forbidden, pseudo_previous_regs[i]);
3651 retry_global_alloc (i, forbidden);
3652 if (reg_renumber[i] >= 0)
3653 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
3657 /* Fix up the register information in the insn chain.
3658 This involves deleting those of the spilled pseudos which did not get
3659 a new hard register home from the live_{before,after} sets. */
3660 for (chain = reload_insn_chain; chain; chain = chain->next)
3662 HARD_REG_SET used_by_pseudos;
3663 HARD_REG_SET used_by_pseudos2;
3665 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
3666 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
3668 /* Mark any unallocated hard regs as available for spills. That
3669 makes inheritance work somewhat better. */
3670 if (chain->need_reload)
3672 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
3673 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
3674 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
3676 /* Save the old value for the sanity test below. */
3677 COPY_HARD_REG_SET (used_by_pseudos2, chain->used_spill_regs);
3679 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
3680 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
3681 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
3682 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
3684 /* Make sure we only enlarge the set. */
3685 GO_IF_HARD_REG_SUBSET (used_by_pseudos2, chain->used_spill_regs, ok);
3686 gcc_unreachable ();
3687 ok:;
3691 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
3692 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
3694 int regno = reg_renumber[i];
3695 if (reg_old_renumber[i] == regno)
3696 continue;
3698 alter_reg (i, reg_old_renumber[i]);
3699 reg_old_renumber[i] = regno;
3700 if (dump_file)
3702 if (regno == -1)
3703 fprintf (dump_file, " Register %d now on stack.\n\n", i);
3704 else
3705 fprintf (dump_file, " Register %d now in %d.\n\n",
3706 i, reg_renumber[i]);
3710 return something_changed;
3713 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
3715 static void
3716 scan_paradoxical_subregs (rtx x)
3718 int i;
3719 const char *fmt;
3720 enum rtx_code code = GET_CODE (x);
3722 switch (code)
3724 case REG:
3725 case CONST_INT:
3726 case CONST:
3727 case SYMBOL_REF:
3728 case LABEL_REF:
3729 case CONST_DOUBLE:
3730 case CONST_VECTOR: /* shouldn't happen, but just in case. */
3731 case CC0:
3732 case PC:
3733 case USE:
3734 case CLOBBER:
3735 return;
3737 case SUBREG:
3738 if (REG_P (SUBREG_REG (x))
3739 && GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3740 reg_max_ref_width[REGNO (SUBREG_REG (x))]
3741 = GET_MODE_SIZE (GET_MODE (x));
3742 return;
3744 default:
3745 break;
3748 fmt = GET_RTX_FORMAT (code);
3749 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3751 if (fmt[i] == 'e')
3752 scan_paradoxical_subregs (XEXP (x, i));
3753 else if (fmt[i] == 'E')
3755 int j;
3756 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3757 scan_paradoxical_subregs (XVECEXP (x, i, j));
3762 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
3763 examine all of the reload insns between PREV and NEXT exclusive, and
3764 annotate all that may trap. */
3766 static void
3767 fixup_eh_region_note (rtx insn, rtx prev, rtx next)
3769 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
3770 unsigned int trap_count;
3771 rtx i;
3773 if (note == NULL)
3774 return;
3776 if (may_trap_p (PATTERN (insn)))
3777 trap_count = 1;
3778 else
3780 remove_note (insn, note);
3781 trap_count = 0;
3784 for (i = NEXT_INSN (prev); i != next; i = NEXT_INSN (i))
3785 if (INSN_P (i) && i != insn && may_trap_p (PATTERN (i)))
3787 trap_count++;
3788 REG_NOTES (i)
3789 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (note, 0), REG_NOTES (i));
3792 /* ??? Since we entered with one eh insn, we should exit with one eh insn;
3793 otherwise we're unsure that we're not losing an exception. Except that
3794 the instruction stream incoming to reload doesn't pass the "if
3795 reg_eh_region is present, may_trap_p is true" smoke test.
3797 Worse, even if it did, rtx_addr_can_trap_p returns false for some forms
3798 of address that include constants regardless of the actual value of the
3799 constant. If we decide that "int a[3]; a[100000]" should be considered
3800 non-trapping, we should get that story straight across more of the
3801 compiler. If we decide that it should trap, then we cannot decide
3802 may_trap_p on the basis of rtx_addr_can_trap_p at all. Which may not
3803 be such a big thing -- it doesn't seem hard to get MEM_NOTRAP_P set
3804 correctly in the first place.
3806 Fixing all that is not in the cards for gcc 4.2, so for the nonce we
3807 allow all eh insns to evaporate. */
3808 gcc_assert (trap_count <= 1);
3811 /* Reload pseudo-registers into hard regs around each insn as needed.
3812 Additional register load insns are output before the insn that needs it
3813 and perhaps store insns after insns that modify the reloaded pseudo reg.
3815 reg_last_reload_reg and reg_reloaded_contents keep track of
3816 which registers are already available in reload registers.
3817 We update these for the reloads that we perform,
3818 as the insns are scanned. */
3820 static void
3821 reload_as_needed (int live_known)
3823 struct insn_chain *chain;
3824 #if defined (AUTO_INC_DEC)
3825 int i;
3826 #endif
3827 rtx x;
3829 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
3830 memset (spill_reg_store, 0, sizeof spill_reg_store);
3831 reg_last_reload_reg = xcalloc (max_regno, sizeof (rtx));
3832 reg_has_output_reload = xmalloc (max_regno);
3833 CLEAR_HARD_REG_SET (reg_reloaded_valid);
3834 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
3836 set_initial_elim_offsets ();
3838 for (chain = reload_insn_chain; chain; chain = chain->next)
3840 rtx prev = 0;
3841 rtx insn = chain->insn;
3842 rtx old_next = NEXT_INSN (insn);
3844 /* If we pass a label, copy the offsets from the label information
3845 into the current offsets of each elimination. */
3846 if (LABEL_P (insn))
3847 set_offsets_for_label (insn);
3849 else if (INSN_P (insn))
3851 rtx oldpat = copy_rtx (PATTERN (insn));
3853 /* If this is a USE and CLOBBER of a MEM, ensure that any
3854 references to eliminable registers have been removed. */
3856 if ((GET_CODE (PATTERN (insn)) == USE
3857 || GET_CODE (PATTERN (insn)) == CLOBBER)
3858 && MEM_P (XEXP (PATTERN (insn), 0)))
3859 XEXP (XEXP (PATTERN (insn), 0), 0)
3860 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
3861 GET_MODE (XEXP (PATTERN (insn), 0)),
3862 NULL_RTX);
3864 /* If we need to do register elimination processing, do so.
3865 This might delete the insn, in which case we are done. */
3866 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
3868 eliminate_regs_in_insn (insn, 1);
3869 if (NOTE_P (insn))
3871 update_eliminable_offsets ();
3872 continue;
3876 /* If need_elim is nonzero but need_reload is zero, one might think
3877 that we could simply set n_reloads to 0. However, find_reloads
3878 could have done some manipulation of the insn (such as swapping
3879 commutative operands), and these manipulations are lost during
3880 the first pass for every insn that needs register elimination.
3881 So the actions of find_reloads must be redone here. */
3883 if (! chain->need_elim && ! chain->need_reload
3884 && ! chain->need_operand_change)
3885 n_reloads = 0;
3886 /* First find the pseudo regs that must be reloaded for this insn.
3887 This info is returned in the tables reload_... (see reload.h).
3888 Also modify the body of INSN by substituting RELOAD
3889 rtx's for those pseudo regs. */
3890 else
3892 memset (reg_has_output_reload, 0, max_regno);
3893 CLEAR_HARD_REG_SET (reg_is_output_reload);
3895 find_reloads (insn, 1, spill_indirect_levels, live_known,
3896 spill_reg_order);
3899 if (n_reloads > 0)
3901 rtx next = NEXT_INSN (insn);
3902 rtx p;
3904 prev = PREV_INSN (insn);
3906 /* Now compute which reload regs to reload them into. Perhaps
3907 reusing reload regs from previous insns, or else output
3908 load insns to reload them. Maybe output store insns too.
3909 Record the choices of reload reg in reload_reg_rtx. */
3910 choose_reload_regs (chain);
3912 /* Merge any reloads that we didn't combine for fear of
3913 increasing the number of spill registers needed but now
3914 discover can be safely merged. */
3915 if (SMALL_REGISTER_CLASSES)
3916 merge_assigned_reloads (insn);
3918 /* Generate the insns to reload operands into or out of
3919 their reload regs. */
3920 emit_reload_insns (chain);
3922 /* Substitute the chosen reload regs from reload_reg_rtx
3923 into the insn's body (or perhaps into the bodies of other
3924 load and store insn that we just made for reloading
3925 and that we moved the structure into). */
3926 subst_reloads (insn);
3928 /* Adjust the exception region notes for loads and stores. */
3929 if (flag_non_call_exceptions && !CALL_P (insn))
3930 fixup_eh_region_note (insn, prev, next);
3932 /* If this was an ASM, make sure that all the reload insns
3933 we have generated are valid. If not, give an error
3934 and delete them. */
3935 if (asm_noperands (PATTERN (insn)) >= 0)
3936 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
3937 if (p != insn && INSN_P (p)
3938 && GET_CODE (PATTERN (p)) != USE
3939 && (recog_memoized (p) < 0
3940 || (extract_insn (p), ! constrain_operands (1))))
3942 error_for_asm (insn,
3943 "%<asm%> operand requires "
3944 "impossible reload");
3945 delete_insn (p);
3949 if (num_eliminable && chain->need_elim)
3950 update_eliminable_offsets ();
3952 /* Any previously reloaded spilled pseudo reg, stored in this insn,
3953 is no longer validly lying around to save a future reload.
3954 Note that this does not detect pseudos that were reloaded
3955 for this insn in order to be stored in
3956 (obeying register constraints). That is correct; such reload
3957 registers ARE still valid. */
3958 note_stores (oldpat, forget_old_reloads_1, NULL);
3960 /* There may have been CLOBBER insns placed after INSN. So scan
3961 between INSN and NEXT and use them to forget old reloads. */
3962 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
3963 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
3964 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
3966 #ifdef AUTO_INC_DEC
3967 /* Likewise for regs altered by auto-increment in this insn.
3968 REG_INC notes have been changed by reloading:
3969 find_reloads_address_1 records substitutions for them,
3970 which have been performed by subst_reloads above. */
3971 for (i = n_reloads - 1; i >= 0; i--)
3973 rtx in_reg = rld[i].in_reg;
3974 if (in_reg)
3976 enum rtx_code code = GET_CODE (in_reg);
3977 /* PRE_INC / PRE_DEC will have the reload register ending up
3978 with the same value as the stack slot, but that doesn't
3979 hold true for POST_INC / POST_DEC. Either we have to
3980 convert the memory access to a true POST_INC / POST_DEC,
3981 or we can't use the reload register for inheritance. */
3982 if ((code == POST_INC || code == POST_DEC)
3983 && TEST_HARD_REG_BIT (reg_reloaded_valid,
3984 REGNO (rld[i].reg_rtx))
3985 /* Make sure it is the inc/dec pseudo, and not
3986 some other (e.g. output operand) pseudo. */
3987 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
3988 == REGNO (XEXP (in_reg, 0))))
3991 rtx reload_reg = rld[i].reg_rtx;
3992 enum machine_mode mode = GET_MODE (reload_reg);
3993 int n = 0;
3994 rtx p;
3996 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
3998 /* We really want to ignore REG_INC notes here, so
3999 use PATTERN (p) as argument to reg_set_p . */
4000 if (reg_set_p (reload_reg, PATTERN (p)))
4001 break;
4002 n = count_occurrences (PATTERN (p), reload_reg, 0);
4003 if (! n)
4004 continue;
4005 if (n == 1)
4007 n = validate_replace_rtx (reload_reg,
4008 gen_rtx_fmt_e (code,
4009 mode,
4010 reload_reg),
4013 /* We must also verify that the constraints
4014 are met after the replacement. */
4015 extract_insn (p);
4016 if (n)
4017 n = constrain_operands (1);
4018 else
4019 break;
4021 /* If the constraints were not met, then
4022 undo the replacement. */
4023 if (!n)
4025 validate_replace_rtx (gen_rtx_fmt_e (code,
4026 mode,
4027 reload_reg),
4028 reload_reg, p);
4029 break;
4033 break;
4035 if (n == 1)
4037 REG_NOTES (p)
4038 = gen_rtx_EXPR_LIST (REG_INC, reload_reg,
4039 REG_NOTES (p));
4040 /* Mark this as having an output reload so that the
4041 REG_INC processing code below won't invalidate
4042 the reload for inheritance. */
4043 SET_HARD_REG_BIT (reg_is_output_reload,
4044 REGNO (reload_reg));
4045 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4047 else
4048 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4049 NULL);
4051 else if ((code == PRE_INC || code == PRE_DEC)
4052 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4053 REGNO (rld[i].reg_rtx))
4054 /* Make sure it is the inc/dec pseudo, and not
4055 some other (e.g. output operand) pseudo. */
4056 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4057 == REGNO (XEXP (in_reg, 0))))
4059 SET_HARD_REG_BIT (reg_is_output_reload,
4060 REGNO (rld[i].reg_rtx));
4061 reg_has_output_reload[REGNO (XEXP (in_reg, 0))] = 1;
4065 /* If a pseudo that got a hard register is auto-incremented,
4066 we must purge records of copying it into pseudos without
4067 hard registers. */
4068 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4069 if (REG_NOTE_KIND (x) == REG_INC)
4071 /* See if this pseudo reg was reloaded in this insn.
4072 If so, its last-reload info is still valid
4073 because it is based on this insn's reload. */
4074 for (i = 0; i < n_reloads; i++)
4075 if (rld[i].out == XEXP (x, 0))
4076 break;
4078 if (i == n_reloads)
4079 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4081 #endif
4083 /* A reload reg's contents are unknown after a label. */
4084 if (LABEL_P (insn))
4085 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4087 /* Don't assume a reload reg is still good after a call insn
4088 if it is a call-used reg, or if it contains a value that will
4089 be partially clobbered by the call. */
4090 else if (CALL_P (insn))
4092 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4093 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4097 /* Clean up. */
4098 free (reg_last_reload_reg);
4099 free (reg_has_output_reload);
4102 /* Discard all record of any value reloaded from X,
4103 or reloaded in X from someplace else;
4104 unless X is an output reload reg of the current insn.
4106 X may be a hard reg (the reload reg)
4107 or it may be a pseudo reg that was reloaded from. */
4109 static void
4110 forget_old_reloads_1 (rtx x, rtx ignored ATTRIBUTE_UNUSED,
4111 void *data ATTRIBUTE_UNUSED)
4113 unsigned int regno;
4114 unsigned int nr;
4116 /* note_stores does give us subregs of hard regs,
4117 subreg_regno_offset requires a hard reg. */
4118 while (GET_CODE (x) == SUBREG)
4120 /* We ignore the subreg offset when calculating the regno,
4121 because we are using the entire underlying hard register
4122 below. */
4123 x = SUBREG_REG (x);
4126 if (!REG_P (x))
4127 return;
4129 regno = REGNO (x);
4131 if (regno >= FIRST_PSEUDO_REGISTER)
4132 nr = 1;
4133 else
4135 unsigned int i;
4137 nr = hard_regno_nregs[regno][GET_MODE (x)];
4138 /* Storing into a spilled-reg invalidates its contents.
4139 This can happen if a block-local pseudo is allocated to that reg
4140 and it wasn't spilled because this block's total need is 0.
4141 Then some insn might have an optional reload and use this reg. */
4142 for (i = 0; i < nr; i++)
4143 /* But don't do this if the reg actually serves as an output
4144 reload reg in the current instruction. */
4145 if (n_reloads == 0
4146 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4148 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4149 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, regno + i);
4150 spill_reg_store[regno + i] = 0;
4154 /* Since value of X has changed,
4155 forget any value previously copied from it. */
4157 while (nr-- > 0)
4158 /* But don't forget a copy if this is the output reload
4159 that establishes the copy's validity. */
4160 if (n_reloads == 0 || reg_has_output_reload[regno + nr] == 0)
4161 reg_last_reload_reg[regno + nr] = 0;
4164 /* The following HARD_REG_SETs indicate when each hard register is
4165 used for a reload of various parts of the current insn. */
4167 /* If reg is unavailable for all reloads. */
4168 static HARD_REG_SET reload_reg_unavailable;
4169 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4170 static HARD_REG_SET reload_reg_used;
4171 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4172 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4173 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4174 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4175 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4176 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4177 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4178 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4179 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4180 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4181 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4182 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4183 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4184 static HARD_REG_SET reload_reg_used_in_op_addr;
4185 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4186 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4187 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4188 static HARD_REG_SET reload_reg_used_in_insn;
4189 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4190 static HARD_REG_SET reload_reg_used_in_other_addr;
4192 /* If reg is in use as a reload reg for any sort of reload. */
4193 static HARD_REG_SET reload_reg_used_at_all;
4195 /* If reg is use as an inherited reload. We just mark the first register
4196 in the group. */
4197 static HARD_REG_SET reload_reg_used_for_inherit;
4199 /* Records which hard regs are used in any way, either as explicit use or
4200 by being allocated to a pseudo during any point of the current insn. */
4201 static HARD_REG_SET reg_used_in_insn;
4203 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
4204 TYPE. MODE is used to indicate how many consecutive regs are
4205 actually used. */
4207 static void
4208 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
4209 enum machine_mode mode)
4211 unsigned int nregs = hard_regno_nregs[regno][mode];
4212 unsigned int i;
4214 for (i = regno; i < nregs + regno; i++)
4216 switch (type)
4218 case RELOAD_OTHER:
4219 SET_HARD_REG_BIT (reload_reg_used, i);
4220 break;
4222 case RELOAD_FOR_INPUT_ADDRESS:
4223 SET_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], i);
4224 break;
4226 case RELOAD_FOR_INPADDR_ADDRESS:
4227 SET_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], i);
4228 break;
4230 case RELOAD_FOR_OUTPUT_ADDRESS:
4231 SET_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], i);
4232 break;
4234 case RELOAD_FOR_OUTADDR_ADDRESS:
4235 SET_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], i);
4236 break;
4238 case RELOAD_FOR_OPERAND_ADDRESS:
4239 SET_HARD_REG_BIT (reload_reg_used_in_op_addr, i);
4240 break;
4242 case RELOAD_FOR_OPADDR_ADDR:
4243 SET_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, i);
4244 break;
4246 case RELOAD_FOR_OTHER_ADDRESS:
4247 SET_HARD_REG_BIT (reload_reg_used_in_other_addr, i);
4248 break;
4250 case RELOAD_FOR_INPUT:
4251 SET_HARD_REG_BIT (reload_reg_used_in_input[opnum], i);
4252 break;
4254 case RELOAD_FOR_OUTPUT:
4255 SET_HARD_REG_BIT (reload_reg_used_in_output[opnum], i);
4256 break;
4258 case RELOAD_FOR_INSN:
4259 SET_HARD_REG_BIT (reload_reg_used_in_insn, i);
4260 break;
4263 SET_HARD_REG_BIT (reload_reg_used_at_all, i);
4267 /* Similarly, but show REGNO is no longer in use for a reload. */
4269 static void
4270 clear_reload_reg_in_use (unsigned int regno, int opnum,
4271 enum reload_type type, enum machine_mode mode)
4273 unsigned int nregs = hard_regno_nregs[regno][mode];
4274 unsigned int start_regno, end_regno, r;
4275 int i;
4276 /* A complication is that for some reload types, inheritance might
4277 allow multiple reloads of the same types to share a reload register.
4278 We set check_opnum if we have to check only reloads with the same
4279 operand number, and check_any if we have to check all reloads. */
4280 int check_opnum = 0;
4281 int check_any = 0;
4282 HARD_REG_SET *used_in_set;
4284 switch (type)
4286 case RELOAD_OTHER:
4287 used_in_set = &reload_reg_used;
4288 break;
4290 case RELOAD_FOR_INPUT_ADDRESS:
4291 used_in_set = &reload_reg_used_in_input_addr[opnum];
4292 break;
4294 case RELOAD_FOR_INPADDR_ADDRESS:
4295 check_opnum = 1;
4296 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
4297 break;
4299 case RELOAD_FOR_OUTPUT_ADDRESS:
4300 used_in_set = &reload_reg_used_in_output_addr[opnum];
4301 break;
4303 case RELOAD_FOR_OUTADDR_ADDRESS:
4304 check_opnum = 1;
4305 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
4306 break;
4308 case RELOAD_FOR_OPERAND_ADDRESS:
4309 used_in_set = &reload_reg_used_in_op_addr;
4310 break;
4312 case RELOAD_FOR_OPADDR_ADDR:
4313 check_any = 1;
4314 used_in_set = &reload_reg_used_in_op_addr_reload;
4315 break;
4317 case RELOAD_FOR_OTHER_ADDRESS:
4318 used_in_set = &reload_reg_used_in_other_addr;
4319 check_any = 1;
4320 break;
4322 case RELOAD_FOR_INPUT:
4323 used_in_set = &reload_reg_used_in_input[opnum];
4324 break;
4326 case RELOAD_FOR_OUTPUT:
4327 used_in_set = &reload_reg_used_in_output[opnum];
4328 break;
4330 case RELOAD_FOR_INSN:
4331 used_in_set = &reload_reg_used_in_insn;
4332 break;
4333 default:
4334 gcc_unreachable ();
4336 /* We resolve conflicts with remaining reloads of the same type by
4337 excluding the intervals of reload registers by them from the
4338 interval of freed reload registers. Since we only keep track of
4339 one set of interval bounds, we might have to exclude somewhat
4340 more than what would be necessary if we used a HARD_REG_SET here.
4341 But this should only happen very infrequently, so there should
4342 be no reason to worry about it. */
4344 start_regno = regno;
4345 end_regno = regno + nregs;
4346 if (check_opnum || check_any)
4348 for (i = n_reloads - 1; i >= 0; i--)
4350 if (rld[i].when_needed == type
4351 && (check_any || rld[i].opnum == opnum)
4352 && rld[i].reg_rtx)
4354 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
4355 unsigned int conflict_end
4356 = (conflict_start
4357 + hard_regno_nregs[conflict_start][rld[i].mode]);
4359 /* If there is an overlap with the first to-be-freed register,
4360 adjust the interval start. */
4361 if (conflict_start <= start_regno && conflict_end > start_regno)
4362 start_regno = conflict_end;
4363 /* Otherwise, if there is a conflict with one of the other
4364 to-be-freed registers, adjust the interval end. */
4365 if (conflict_start > start_regno && conflict_start < end_regno)
4366 end_regno = conflict_start;
4371 for (r = start_regno; r < end_regno; r++)
4372 CLEAR_HARD_REG_BIT (*used_in_set, r);
4375 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
4376 specified by OPNUM and TYPE. */
4378 static int
4379 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
4381 int i;
4383 /* In use for a RELOAD_OTHER means it's not available for anything. */
4384 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
4385 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4386 return 0;
4388 switch (type)
4390 case RELOAD_OTHER:
4391 /* In use for anything means we can't use it for RELOAD_OTHER. */
4392 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
4393 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4394 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4395 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4396 return 0;
4398 for (i = 0; i < reload_n_operands; i++)
4399 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4400 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4401 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4402 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4403 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4404 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4405 return 0;
4407 return 1;
4409 case RELOAD_FOR_INPUT:
4410 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4411 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
4412 return 0;
4414 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4415 return 0;
4417 /* If it is used for some other input, can't use it. */
4418 for (i = 0; i < reload_n_operands; i++)
4419 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4420 return 0;
4422 /* If it is used in a later operand's address, can't use it. */
4423 for (i = opnum + 1; i < reload_n_operands; i++)
4424 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4425 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4426 return 0;
4428 return 1;
4430 case RELOAD_FOR_INPUT_ADDRESS:
4431 /* Can't use a register if it is used for an input address for this
4432 operand or used as an input in an earlier one. */
4433 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
4434 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4435 return 0;
4437 for (i = 0; i < opnum; i++)
4438 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4439 return 0;
4441 return 1;
4443 case RELOAD_FOR_INPADDR_ADDRESS:
4444 /* Can't use a register if it is used for an input address
4445 for this operand or used as an input in an earlier
4446 one. */
4447 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
4448 return 0;
4450 for (i = 0; i < opnum; i++)
4451 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4452 return 0;
4454 return 1;
4456 case RELOAD_FOR_OUTPUT_ADDRESS:
4457 /* Can't use a register if it is used for an output address for this
4458 operand or used as an output in this or a later operand. Note
4459 that multiple output operands are emitted in reverse order, so
4460 the conflicting ones are those with lower indices. */
4461 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
4462 return 0;
4464 for (i = 0; i <= opnum; i++)
4465 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4466 return 0;
4468 return 1;
4470 case RELOAD_FOR_OUTADDR_ADDRESS:
4471 /* Can't use a register if it is used for an output address
4472 for this operand or used as an output in this or a
4473 later operand. Note that multiple output operands are
4474 emitted in reverse order, so the conflicting ones are
4475 those with lower indices. */
4476 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
4477 return 0;
4479 for (i = 0; i <= opnum; i++)
4480 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4481 return 0;
4483 return 1;
4485 case RELOAD_FOR_OPERAND_ADDRESS:
4486 for (i = 0; i < reload_n_operands; i++)
4487 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4488 return 0;
4490 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4491 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4493 case RELOAD_FOR_OPADDR_ADDR:
4494 for (i = 0; i < reload_n_operands; i++)
4495 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4496 return 0;
4498 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
4500 case RELOAD_FOR_OUTPUT:
4501 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
4502 outputs, or an operand address for this or an earlier output.
4503 Note that multiple output operands are emitted in reverse order,
4504 so the conflicting ones are those with higher indices. */
4505 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
4506 return 0;
4508 for (i = 0; i < reload_n_operands; i++)
4509 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4510 return 0;
4512 for (i = opnum; i < reload_n_operands; i++)
4513 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4514 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4515 return 0;
4517 return 1;
4519 case RELOAD_FOR_INSN:
4520 for (i = 0; i < reload_n_operands; i++)
4521 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
4522 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4523 return 0;
4525 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4526 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
4528 case RELOAD_FOR_OTHER_ADDRESS:
4529 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
4531 default:
4532 gcc_unreachable ();
4536 /* Return 1 if the value in reload reg REGNO, as used by a reload
4537 needed for the part of the insn specified by OPNUM and TYPE,
4538 is still available in REGNO at the end of the insn.
4540 We can assume that the reload reg was already tested for availability
4541 at the time it is needed, and we should not check this again,
4542 in case the reg has already been marked in use. */
4544 static int
4545 reload_reg_reaches_end_p (unsigned int regno, int opnum, enum reload_type type)
4547 int i;
4549 switch (type)
4551 case RELOAD_OTHER:
4552 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
4553 its value must reach the end. */
4554 return 1;
4556 /* If this use is for part of the insn,
4557 its value reaches if no subsequent part uses the same register.
4558 Just like the above function, don't try to do this with lots
4559 of fallthroughs. */
4561 case RELOAD_FOR_OTHER_ADDRESS:
4562 /* Here we check for everything else, since these don't conflict
4563 with anything else and everything comes later. */
4565 for (i = 0; i < reload_n_operands; i++)
4566 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4567 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4568 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
4569 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4570 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4571 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4572 return 0;
4574 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4575 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
4576 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4577 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
4579 case RELOAD_FOR_INPUT_ADDRESS:
4580 case RELOAD_FOR_INPADDR_ADDRESS:
4581 /* Similar, except that we check only for this and subsequent inputs
4582 and the address of only subsequent inputs and we do not need
4583 to check for RELOAD_OTHER objects since they are known not to
4584 conflict. */
4586 for (i = opnum; i < reload_n_operands; i++)
4587 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4588 return 0;
4590 for (i = opnum + 1; i < reload_n_operands; i++)
4591 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4592 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
4593 return 0;
4595 for (i = 0; i < reload_n_operands; i++)
4596 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4597 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4598 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4599 return 0;
4601 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
4602 return 0;
4604 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4605 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4606 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4608 case RELOAD_FOR_INPUT:
4609 /* Similar to input address, except we start at the next operand for
4610 both input and input address and we do not check for
4611 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
4612 would conflict. */
4614 for (i = opnum + 1; i < reload_n_operands; i++)
4615 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
4616 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
4617 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
4618 return 0;
4620 /* ... fall through ... */
4622 case RELOAD_FOR_OPERAND_ADDRESS:
4623 /* Check outputs and their addresses. */
4625 for (i = 0; i < reload_n_operands; i++)
4626 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4627 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4628 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4629 return 0;
4631 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
4633 case RELOAD_FOR_OPADDR_ADDR:
4634 for (i = 0; i < reload_n_operands; i++)
4635 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4636 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
4637 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
4638 return 0;
4640 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
4641 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
4642 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
4644 case RELOAD_FOR_INSN:
4645 /* These conflict with other outputs with RELOAD_OTHER. So
4646 we need only check for output addresses. */
4648 opnum = reload_n_operands;
4650 /* ... fall through ... */
4652 case RELOAD_FOR_OUTPUT:
4653 case RELOAD_FOR_OUTPUT_ADDRESS:
4654 case RELOAD_FOR_OUTADDR_ADDRESS:
4655 /* We already know these can't conflict with a later output. So the
4656 only thing to check are later output addresses.
4657 Note that multiple output operands are emitted in reverse order,
4658 so the conflicting ones are those with lower indices. */
4659 for (i = 0; i < opnum; i++)
4660 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
4661 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
4662 return 0;
4664 return 1;
4666 default:
4667 gcc_unreachable ();
4671 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
4672 Return 0 otherwise.
4674 This function uses the same algorithm as reload_reg_free_p above. */
4676 static int
4677 reloads_conflict (int r1, int r2)
4679 enum reload_type r1_type = rld[r1].when_needed;
4680 enum reload_type r2_type = rld[r2].when_needed;
4681 int r1_opnum = rld[r1].opnum;
4682 int r2_opnum = rld[r2].opnum;
4684 /* RELOAD_OTHER conflicts with everything. */
4685 if (r2_type == RELOAD_OTHER)
4686 return 1;
4688 /* Otherwise, check conflicts differently for each type. */
4690 switch (r1_type)
4692 case RELOAD_FOR_INPUT:
4693 return (r2_type == RELOAD_FOR_INSN
4694 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
4695 || r2_type == RELOAD_FOR_OPADDR_ADDR
4696 || r2_type == RELOAD_FOR_INPUT
4697 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
4698 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
4699 && r2_opnum > r1_opnum));
4701 case RELOAD_FOR_INPUT_ADDRESS:
4702 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
4703 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4705 case RELOAD_FOR_INPADDR_ADDRESS:
4706 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
4707 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
4709 case RELOAD_FOR_OUTPUT_ADDRESS:
4710 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
4711 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4713 case RELOAD_FOR_OUTADDR_ADDRESS:
4714 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
4715 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
4717 case RELOAD_FOR_OPERAND_ADDRESS:
4718 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
4719 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4721 case RELOAD_FOR_OPADDR_ADDR:
4722 return (r2_type == RELOAD_FOR_INPUT
4723 || r2_type == RELOAD_FOR_OPADDR_ADDR);
4725 case RELOAD_FOR_OUTPUT:
4726 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
4727 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
4728 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
4729 && r2_opnum >= r1_opnum));
4731 case RELOAD_FOR_INSN:
4732 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
4733 || r2_type == RELOAD_FOR_INSN
4734 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
4736 case RELOAD_FOR_OTHER_ADDRESS:
4737 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
4739 case RELOAD_OTHER:
4740 return 1;
4742 default:
4743 gcc_unreachable ();
4747 /* Indexed by reload number, 1 if incoming value
4748 inherited from previous insns. */
4749 static char reload_inherited[MAX_RELOADS];
4751 /* For an inherited reload, this is the insn the reload was inherited from,
4752 if we know it. Otherwise, this is 0. */
4753 static rtx reload_inheritance_insn[MAX_RELOADS];
4755 /* If nonzero, this is a place to get the value of the reload,
4756 rather than using reload_in. */
4757 static rtx reload_override_in[MAX_RELOADS];
4759 /* For each reload, the hard register number of the register used,
4760 or -1 if we did not need a register for this reload. */
4761 static int reload_spill_index[MAX_RELOADS];
4763 /* Subroutine of free_for_value_p, used to check a single register.
4764 START_REGNO is the starting regno of the full reload register
4765 (possibly comprising multiple hard registers) that we are considering. */
4767 static int
4768 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
4769 enum reload_type type, rtx value, rtx out,
4770 int reloadnum, int ignore_address_reloads)
4772 int time1;
4773 /* Set if we see an input reload that must not share its reload register
4774 with any new earlyclobber, but might otherwise share the reload
4775 register with an output or input-output reload. */
4776 int check_earlyclobber = 0;
4777 int i;
4778 int copy = 0;
4780 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
4781 return 0;
4783 if (out == const0_rtx)
4785 copy = 1;
4786 out = NULL_RTX;
4789 /* We use some pseudo 'time' value to check if the lifetimes of the
4790 new register use would overlap with the one of a previous reload
4791 that is not read-only or uses a different value.
4792 The 'time' used doesn't have to be linear in any shape or form, just
4793 monotonic.
4794 Some reload types use different 'buckets' for each operand.
4795 So there are MAX_RECOG_OPERANDS different time values for each
4796 such reload type.
4797 We compute TIME1 as the time when the register for the prospective
4798 new reload ceases to be live, and TIME2 for each existing
4799 reload as the time when that the reload register of that reload
4800 becomes live.
4801 Where there is little to be gained by exact lifetime calculations,
4802 we just make conservative assumptions, i.e. a longer lifetime;
4803 this is done in the 'default:' cases. */
4804 switch (type)
4806 case RELOAD_FOR_OTHER_ADDRESS:
4807 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
4808 time1 = copy ? 0 : 1;
4809 break;
4810 case RELOAD_OTHER:
4811 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
4812 break;
4813 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
4814 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
4815 respectively, to the time values for these, we get distinct time
4816 values. To get distinct time values for each operand, we have to
4817 multiply opnum by at least three. We round that up to four because
4818 multiply by four is often cheaper. */
4819 case RELOAD_FOR_INPADDR_ADDRESS:
4820 time1 = opnum * 4 + 2;
4821 break;
4822 case RELOAD_FOR_INPUT_ADDRESS:
4823 time1 = opnum * 4 + 3;
4824 break;
4825 case RELOAD_FOR_INPUT:
4826 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
4827 executes (inclusive). */
4828 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
4829 break;
4830 case RELOAD_FOR_OPADDR_ADDR:
4831 /* opnum * 4 + 4
4832 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
4833 time1 = MAX_RECOG_OPERANDS * 4 + 1;
4834 break;
4835 case RELOAD_FOR_OPERAND_ADDRESS:
4836 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
4837 is executed. */
4838 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
4839 break;
4840 case RELOAD_FOR_OUTADDR_ADDRESS:
4841 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
4842 break;
4843 case RELOAD_FOR_OUTPUT_ADDRESS:
4844 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
4845 break;
4846 default:
4847 time1 = MAX_RECOG_OPERANDS * 5 + 5;
4850 for (i = 0; i < n_reloads; i++)
4852 rtx reg = rld[i].reg_rtx;
4853 if (reg && REG_P (reg)
4854 && ((unsigned) regno - true_regnum (reg)
4855 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
4856 && i != reloadnum)
4858 rtx other_input = rld[i].in;
4860 /* If the other reload loads the same input value, that
4861 will not cause a conflict only if it's loading it into
4862 the same register. */
4863 if (true_regnum (reg) != start_regno)
4864 other_input = NULL_RTX;
4865 if (! other_input || ! rtx_equal_p (other_input, value)
4866 || rld[i].out || out)
4868 int time2;
4869 switch (rld[i].when_needed)
4871 case RELOAD_FOR_OTHER_ADDRESS:
4872 time2 = 0;
4873 break;
4874 case RELOAD_FOR_INPADDR_ADDRESS:
4875 /* find_reloads makes sure that a
4876 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
4877 by at most one - the first -
4878 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
4879 address reload is inherited, the address address reload
4880 goes away, so we can ignore this conflict. */
4881 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
4882 && ignore_address_reloads
4883 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
4884 Then the address address is still needed to store
4885 back the new address. */
4886 && ! rld[reloadnum].out)
4887 continue;
4888 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
4889 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
4890 reloads go away. */
4891 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4892 && ignore_address_reloads
4893 /* Unless we are reloading an auto_inc expression. */
4894 && ! rld[reloadnum].out)
4895 continue;
4896 time2 = rld[i].opnum * 4 + 2;
4897 break;
4898 case RELOAD_FOR_INPUT_ADDRESS:
4899 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
4900 && ignore_address_reloads
4901 && ! rld[reloadnum].out)
4902 continue;
4903 time2 = rld[i].opnum * 4 + 3;
4904 break;
4905 case RELOAD_FOR_INPUT:
4906 time2 = rld[i].opnum * 4 + 4;
4907 check_earlyclobber = 1;
4908 break;
4909 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
4910 == MAX_RECOG_OPERAND * 4 */
4911 case RELOAD_FOR_OPADDR_ADDR:
4912 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
4913 && ignore_address_reloads
4914 && ! rld[reloadnum].out)
4915 continue;
4916 time2 = MAX_RECOG_OPERANDS * 4 + 1;
4917 break;
4918 case RELOAD_FOR_OPERAND_ADDRESS:
4919 time2 = MAX_RECOG_OPERANDS * 4 + 2;
4920 check_earlyclobber = 1;
4921 break;
4922 case RELOAD_FOR_INSN:
4923 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4924 break;
4925 case RELOAD_FOR_OUTPUT:
4926 /* All RELOAD_FOR_OUTPUT reloads become live just after the
4927 instruction is executed. */
4928 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4929 break;
4930 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
4931 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
4932 value. */
4933 case RELOAD_FOR_OUTADDR_ADDRESS:
4934 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
4935 && ignore_address_reloads
4936 && ! rld[reloadnum].out)
4937 continue;
4938 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
4939 break;
4940 case RELOAD_FOR_OUTPUT_ADDRESS:
4941 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
4942 break;
4943 case RELOAD_OTHER:
4944 /* If there is no conflict in the input part, handle this
4945 like an output reload. */
4946 if (! rld[i].in || rtx_equal_p (other_input, value))
4948 time2 = MAX_RECOG_OPERANDS * 4 + 4;
4949 /* Earlyclobbered outputs must conflict with inputs. */
4950 if (earlyclobber_operand_p (rld[i].out))
4951 time2 = MAX_RECOG_OPERANDS * 4 + 3;
4953 break;
4955 time2 = 1;
4956 /* RELOAD_OTHER might be live beyond instruction execution,
4957 but this is not obvious when we set time2 = 1. So check
4958 here if there might be a problem with the new reload
4959 clobbering the register used by the RELOAD_OTHER. */
4960 if (out)
4961 return 0;
4962 break;
4963 default:
4964 return 0;
4966 if ((time1 >= time2
4967 && (! rld[i].in || rld[i].out
4968 || ! rtx_equal_p (other_input, value)))
4969 || (out && rld[reloadnum].out_reg
4970 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
4971 return 0;
4976 /* Earlyclobbered outputs must conflict with inputs. */
4977 if (check_earlyclobber && out && earlyclobber_operand_p (out))
4978 return 0;
4980 return 1;
4983 /* Return 1 if the value in reload reg REGNO, as used by a reload
4984 needed for the part of the insn specified by OPNUM and TYPE,
4985 may be used to load VALUE into it.
4987 MODE is the mode in which the register is used, this is needed to
4988 determine how many hard regs to test.
4990 Other read-only reloads with the same value do not conflict
4991 unless OUT is nonzero and these other reloads have to live while
4992 output reloads live.
4993 If OUT is CONST0_RTX, this is a special case: it means that the
4994 test should not be for using register REGNO as reload register, but
4995 for copying from register REGNO into the reload register.
4997 RELOADNUM is the number of the reload we want to load this value for;
4998 a reload does not conflict with itself.
5000 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
5001 reloads that load an address for the very reload we are considering.
5003 The caller has to make sure that there is no conflict with the return
5004 register. */
5006 static int
5007 free_for_value_p (int regno, enum machine_mode mode, int opnum,
5008 enum reload_type type, rtx value, rtx out, int reloadnum,
5009 int ignore_address_reloads)
5011 int nregs = hard_regno_nregs[regno][mode];
5012 while (nregs-- > 0)
5013 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
5014 value, out, reloadnum,
5015 ignore_address_reloads))
5016 return 0;
5017 return 1;
5020 /* Return nonzero if the rtx X is invariant over the current function. */
5021 /* ??? Actually, the places where we use this expect exactly what is
5022 tested here, and not everything that is function invariant. In
5023 particular, the frame pointer and arg pointer are special cased;
5024 pic_offset_table_rtx is not, and we must not spill these things to
5025 memory. */
5028 function_invariant_p (rtx x)
5030 if (CONSTANT_P (x))
5031 return 1;
5032 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
5033 return 1;
5034 if (GET_CODE (x) == PLUS
5035 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
5036 && CONSTANT_P (XEXP (x, 1)))
5037 return 1;
5038 return 0;
5041 /* Determine whether the reload reg X overlaps any rtx'es used for
5042 overriding inheritance. Return nonzero if so. */
5044 static int
5045 conflicts_with_override (rtx x)
5047 int i;
5048 for (i = 0; i < n_reloads; i++)
5049 if (reload_override_in[i]
5050 && reg_overlap_mentioned_p (x, reload_override_in[i]))
5051 return 1;
5052 return 0;
5055 /* Give an error message saying we failed to find a reload for INSN,
5056 and clear out reload R. */
5057 static void
5058 failed_reload (rtx insn, int r)
5060 if (asm_noperands (PATTERN (insn)) < 0)
5061 /* It's the compiler's fault. */
5062 fatal_insn ("could not find a spill register", insn);
5064 /* It's the user's fault; the operand's mode and constraint
5065 don't match. Disable this reload so we don't crash in final. */
5066 error_for_asm (insn,
5067 "%<asm%> operand constraint incompatible with operand size");
5068 rld[r].in = 0;
5069 rld[r].out = 0;
5070 rld[r].reg_rtx = 0;
5071 rld[r].optional = 1;
5072 rld[r].secondary_p = 1;
5075 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
5076 for reload R. If it's valid, get an rtx for it. Return nonzero if
5077 successful. */
5078 static int
5079 set_reload_reg (int i, int r)
5081 int regno;
5082 rtx reg = spill_reg_rtx[i];
5084 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
5085 spill_reg_rtx[i] = reg
5086 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
5088 regno = true_regnum (reg);
5090 /* Detect when the reload reg can't hold the reload mode.
5091 This used to be one `if', but Sequent compiler can't handle that. */
5092 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
5094 enum machine_mode test_mode = VOIDmode;
5095 if (rld[r].in)
5096 test_mode = GET_MODE (rld[r].in);
5097 /* If rld[r].in has VOIDmode, it means we will load it
5098 in whatever mode the reload reg has: to wit, rld[r].mode.
5099 We have already tested that for validity. */
5100 /* Aside from that, we need to test that the expressions
5101 to reload from or into have modes which are valid for this
5102 reload register. Otherwise the reload insns would be invalid. */
5103 if (! (rld[r].in != 0 && test_mode != VOIDmode
5104 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
5105 if (! (rld[r].out != 0
5106 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
5108 /* The reg is OK. */
5109 last_spill_reg = i;
5111 /* Mark as in use for this insn the reload regs we use
5112 for this. */
5113 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
5114 rld[r].when_needed, rld[r].mode);
5116 rld[r].reg_rtx = reg;
5117 reload_spill_index[r] = spill_regs[i];
5118 return 1;
5121 return 0;
5124 /* Find a spill register to use as a reload register for reload R.
5125 LAST_RELOAD is nonzero if this is the last reload for the insn being
5126 processed.
5128 Set rld[R].reg_rtx to the register allocated.
5130 We return 1 if successful, or 0 if we couldn't find a spill reg and
5131 we didn't change anything. */
5133 static int
5134 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
5135 int last_reload)
5137 int i, pass, count;
5139 /* If we put this reload ahead, thinking it is a group,
5140 then insist on finding a group. Otherwise we can grab a
5141 reg that some other reload needs.
5142 (That can happen when we have a 68000 DATA_OR_FP_REG
5143 which is a group of data regs or one fp reg.)
5144 We need not be so restrictive if there are no more reloads
5145 for this insn.
5147 ??? Really it would be nicer to have smarter handling
5148 for that kind of reg class, where a problem like this is normal.
5149 Perhaps those classes should be avoided for reloading
5150 by use of more alternatives. */
5152 int force_group = rld[r].nregs > 1 && ! last_reload;
5154 /* If we want a single register and haven't yet found one,
5155 take any reg in the right class and not in use.
5156 If we want a consecutive group, here is where we look for it.
5158 We use two passes so we can first look for reload regs to
5159 reuse, which are already in use for other reloads in this insn,
5160 and only then use additional registers.
5161 I think that maximizing reuse is needed to make sure we don't
5162 run out of reload regs. Suppose we have three reloads, and
5163 reloads A and B can share regs. These need two regs.
5164 Suppose A and B are given different regs.
5165 That leaves none for C. */
5166 for (pass = 0; pass < 2; pass++)
5168 /* I is the index in spill_regs.
5169 We advance it round-robin between insns to use all spill regs
5170 equally, so that inherited reloads have a chance
5171 of leapfrogging each other. */
5173 i = last_spill_reg;
5175 for (count = 0; count < n_spills; count++)
5177 int class = (int) rld[r].class;
5178 int regnum;
5180 i++;
5181 if (i >= n_spills)
5182 i -= n_spills;
5183 regnum = spill_regs[i];
5185 if ((reload_reg_free_p (regnum, rld[r].opnum,
5186 rld[r].when_needed)
5187 || (rld[r].in
5188 /* We check reload_reg_used to make sure we
5189 don't clobber the return register. */
5190 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
5191 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
5192 rld[r].when_needed, rld[r].in,
5193 rld[r].out, r, 1)))
5194 && TEST_HARD_REG_BIT (reg_class_contents[class], regnum)
5195 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
5196 /* Look first for regs to share, then for unshared. But
5197 don't share regs used for inherited reloads; they are
5198 the ones we want to preserve. */
5199 && (pass
5200 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
5201 regnum)
5202 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
5203 regnum))))
5205 int nr = hard_regno_nregs[regnum][rld[r].mode];
5206 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
5207 (on 68000) got us two FP regs. If NR is 1,
5208 we would reject both of them. */
5209 if (force_group)
5210 nr = rld[r].nregs;
5211 /* If we need only one reg, we have already won. */
5212 if (nr == 1)
5214 /* But reject a single reg if we demand a group. */
5215 if (force_group)
5216 continue;
5217 break;
5219 /* Otherwise check that as many consecutive regs as we need
5220 are available here. */
5221 while (nr > 1)
5223 int regno = regnum + nr - 1;
5224 if (!(TEST_HARD_REG_BIT (reg_class_contents[class], regno)
5225 && spill_reg_order[regno] >= 0
5226 && reload_reg_free_p (regno, rld[r].opnum,
5227 rld[r].when_needed)))
5228 break;
5229 nr--;
5231 if (nr == 1)
5232 break;
5236 /* If we found something on pass 1, omit pass 2. */
5237 if (count < n_spills)
5238 break;
5241 /* We should have found a spill register by now. */
5242 if (count >= n_spills)
5243 return 0;
5245 /* I is the index in SPILL_REG_RTX of the reload register we are to
5246 allocate. Get an rtx for it and find its register number. */
5248 return set_reload_reg (i, r);
5251 /* Initialize all the tables needed to allocate reload registers.
5252 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
5253 is the array we use to restore the reg_rtx field for every reload. */
5255 static void
5256 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
5258 int i;
5260 for (i = 0; i < n_reloads; i++)
5261 rld[i].reg_rtx = save_reload_reg_rtx[i];
5263 memset (reload_inherited, 0, MAX_RELOADS);
5264 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
5265 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
5267 CLEAR_HARD_REG_SET (reload_reg_used);
5268 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
5269 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
5270 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
5271 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
5272 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
5274 CLEAR_HARD_REG_SET (reg_used_in_insn);
5276 HARD_REG_SET tmp;
5277 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
5278 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5279 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
5280 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
5281 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
5282 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
5285 for (i = 0; i < reload_n_operands; i++)
5287 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
5288 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
5289 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
5290 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
5291 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
5292 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
5295 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
5297 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
5299 for (i = 0; i < n_reloads; i++)
5300 /* If we have already decided to use a certain register,
5301 don't use it in another way. */
5302 if (rld[i].reg_rtx)
5303 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
5304 rld[i].when_needed, rld[i].mode);
5307 /* Assign hard reg targets for the pseudo-registers we must reload
5308 into hard regs for this insn.
5309 Also output the instructions to copy them in and out of the hard regs.
5311 For machines with register classes, we are responsible for
5312 finding a reload reg in the proper class. */
5314 static void
5315 choose_reload_regs (struct insn_chain *chain)
5317 rtx insn = chain->insn;
5318 int i, j;
5319 unsigned int max_group_size = 1;
5320 enum reg_class group_class = NO_REGS;
5321 int pass, win, inheritance;
5323 rtx save_reload_reg_rtx[MAX_RELOADS];
5325 /* In order to be certain of getting the registers we need,
5326 we must sort the reloads into order of increasing register class.
5327 Then our grabbing of reload registers will parallel the process
5328 that provided the reload registers.
5330 Also note whether any of the reloads wants a consecutive group of regs.
5331 If so, record the maximum size of the group desired and what
5332 register class contains all the groups needed by this insn. */
5334 for (j = 0; j < n_reloads; j++)
5336 reload_order[j] = j;
5337 reload_spill_index[j] = -1;
5339 if (rld[j].nregs > 1)
5341 max_group_size = MAX (rld[j].nregs, max_group_size);
5342 group_class
5343 = reg_class_superunion[(int) rld[j].class][(int) group_class];
5346 save_reload_reg_rtx[j] = rld[j].reg_rtx;
5349 if (n_reloads > 1)
5350 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
5352 /* If -O, try first with inheritance, then turning it off.
5353 If not -O, don't do inheritance.
5354 Using inheritance when not optimizing leads to paradoxes
5355 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
5356 because one side of the comparison might be inherited. */
5357 win = 0;
5358 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
5360 choose_reload_regs_init (chain, save_reload_reg_rtx);
5362 /* Process the reloads in order of preference just found.
5363 Beyond this point, subregs can be found in reload_reg_rtx.
5365 This used to look for an existing reloaded home for all of the
5366 reloads, and only then perform any new reloads. But that could lose
5367 if the reloads were done out of reg-class order because a later
5368 reload with a looser constraint might have an old home in a register
5369 needed by an earlier reload with a tighter constraint.
5371 To solve this, we make two passes over the reloads, in the order
5372 described above. In the first pass we try to inherit a reload
5373 from a previous insn. If there is a later reload that needs a
5374 class that is a proper subset of the class being processed, we must
5375 also allocate a spill register during the first pass.
5377 Then make a second pass over the reloads to allocate any reloads
5378 that haven't been given registers yet. */
5380 for (j = 0; j < n_reloads; j++)
5382 int r = reload_order[j];
5383 rtx search_equiv = NULL_RTX;
5385 /* Ignore reloads that got marked inoperative. */
5386 if (rld[r].out == 0 && rld[r].in == 0
5387 && ! rld[r].secondary_p)
5388 continue;
5390 /* If find_reloads chose to use reload_in or reload_out as a reload
5391 register, we don't need to chose one. Otherwise, try even if it
5392 found one since we might save an insn if we find the value lying
5393 around.
5394 Try also when reload_in is a pseudo without a hard reg. */
5395 if (rld[r].in != 0 && rld[r].reg_rtx != 0
5396 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
5397 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
5398 && !MEM_P (rld[r].in)
5399 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
5400 continue;
5402 #if 0 /* No longer needed for correct operation.
5403 It might give better code, or might not; worth an experiment? */
5404 /* If this is an optional reload, we can't inherit from earlier insns
5405 until we are sure that any non-optional reloads have been allocated.
5406 The following code takes advantage of the fact that optional reloads
5407 are at the end of reload_order. */
5408 if (rld[r].optional != 0)
5409 for (i = 0; i < j; i++)
5410 if ((rld[reload_order[i]].out != 0
5411 || rld[reload_order[i]].in != 0
5412 || rld[reload_order[i]].secondary_p)
5413 && ! rld[reload_order[i]].optional
5414 && rld[reload_order[i]].reg_rtx == 0)
5415 allocate_reload_reg (chain, reload_order[i], 0);
5416 #endif
5418 /* First see if this pseudo is already available as reloaded
5419 for a previous insn. We cannot try to inherit for reloads
5420 that are smaller than the maximum number of registers needed
5421 for groups unless the register we would allocate cannot be used
5422 for the groups.
5424 We could check here to see if this is a secondary reload for
5425 an object that is already in a register of the desired class.
5426 This would avoid the need for the secondary reload register.
5427 But this is complex because we can't easily determine what
5428 objects might want to be loaded via this reload. So let a
5429 register be allocated here. In `emit_reload_insns' we suppress
5430 one of the loads in the case described above. */
5432 if (inheritance)
5434 int byte = 0;
5435 int regno = -1;
5436 enum machine_mode mode = VOIDmode;
5438 if (rld[r].in == 0)
5440 else if (REG_P (rld[r].in))
5442 regno = REGNO (rld[r].in);
5443 mode = GET_MODE (rld[r].in);
5445 else if (REG_P (rld[r].in_reg))
5447 regno = REGNO (rld[r].in_reg);
5448 mode = GET_MODE (rld[r].in_reg);
5450 else if (GET_CODE (rld[r].in_reg) == SUBREG
5451 && REG_P (SUBREG_REG (rld[r].in_reg)))
5453 byte = SUBREG_BYTE (rld[r].in_reg);
5454 regno = REGNO (SUBREG_REG (rld[r].in_reg));
5455 if (regno < FIRST_PSEUDO_REGISTER)
5456 regno = subreg_regno (rld[r].in_reg);
5457 mode = GET_MODE (rld[r].in_reg);
5459 #ifdef AUTO_INC_DEC
5460 else if ((GET_CODE (rld[r].in_reg) == PRE_INC
5461 || GET_CODE (rld[r].in_reg) == PRE_DEC
5462 || GET_CODE (rld[r].in_reg) == POST_INC
5463 || GET_CODE (rld[r].in_reg) == POST_DEC)
5464 && REG_P (XEXP (rld[r].in_reg, 0)))
5466 regno = REGNO (XEXP (rld[r].in_reg, 0));
5467 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
5468 rld[r].out = rld[r].in;
5470 #endif
5471 #if 0
5472 /* This won't work, since REGNO can be a pseudo reg number.
5473 Also, it takes much more hair to keep track of all the things
5474 that can invalidate an inherited reload of part of a pseudoreg. */
5475 else if (GET_CODE (rld[r].in) == SUBREG
5476 && REG_P (SUBREG_REG (rld[r].in)))
5477 regno = subreg_regno (rld[r].in);
5478 #endif
5480 if (regno >= 0 && reg_last_reload_reg[regno] != 0)
5482 enum reg_class class = rld[r].class, last_class;
5483 rtx last_reg = reg_last_reload_reg[regno];
5484 enum machine_mode need_mode;
5486 i = REGNO (last_reg);
5487 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
5488 last_class = REGNO_REG_CLASS (i);
5490 if (byte == 0)
5491 need_mode = mode;
5492 else
5493 need_mode
5494 = smallest_mode_for_size (GET_MODE_BITSIZE (mode)
5495 + byte * BITS_PER_UNIT,
5496 GET_MODE_CLASS (mode));
5498 if ((GET_MODE_SIZE (GET_MODE (last_reg))
5499 >= GET_MODE_SIZE (need_mode))
5500 #ifdef CANNOT_CHANGE_MODE_CLASS
5501 /* Verify that the register in "i" can be obtained
5502 from LAST_REG. */
5503 && !REG_CANNOT_CHANGE_MODE_P (REGNO (last_reg),
5504 GET_MODE (last_reg),
5505 mode)
5506 #endif
5507 && reg_reloaded_contents[i] == regno
5508 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
5509 && HARD_REGNO_MODE_OK (i, rld[r].mode)
5510 && (TEST_HARD_REG_BIT (reg_class_contents[(int) class], i)
5511 /* Even if we can't use this register as a reload
5512 register, we might use it for reload_override_in,
5513 if copying it to the desired class is cheap
5514 enough. */
5515 || ((REGISTER_MOVE_COST (mode, last_class, class)
5516 < MEMORY_MOVE_COST (mode, class, 1))
5517 #ifdef SECONDARY_INPUT_RELOAD_CLASS
5518 && (SECONDARY_INPUT_RELOAD_CLASS (class, mode,
5519 last_reg)
5520 == NO_REGS)
5521 #endif
5522 #ifdef SECONDARY_MEMORY_NEEDED
5523 && ! SECONDARY_MEMORY_NEEDED (last_class, class,
5524 mode)
5525 #endif
5528 && (rld[r].nregs == max_group_size
5529 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
5531 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
5532 rld[r].when_needed, rld[r].in,
5533 const0_rtx, r, 1))
5535 /* If a group is needed, verify that all the subsequent
5536 registers still have their values intact. */
5537 int nr = hard_regno_nregs[i][rld[r].mode];
5538 int k;
5540 for (k = 1; k < nr; k++)
5541 if (reg_reloaded_contents[i + k] != regno
5542 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
5543 break;
5545 if (k == nr)
5547 int i1;
5548 int bad_for_class;
5550 last_reg = (GET_MODE (last_reg) == mode
5551 ? last_reg : gen_rtx_REG (mode, i));
5553 bad_for_class = 0;
5554 for (k = 0; k < nr; k++)
5555 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5556 i+k);
5558 /* We found a register that contains the
5559 value we need. If this register is the
5560 same as an `earlyclobber' operand of the
5561 current insn, just mark it as a place to
5562 reload from since we can't use it as the
5563 reload register itself. */
5565 for (i1 = 0; i1 < n_earlyclobbers; i1++)
5566 if (reg_overlap_mentioned_for_reload_p
5567 (reg_last_reload_reg[regno],
5568 reload_earlyclobbers[i1]))
5569 break;
5571 if (i1 != n_earlyclobbers
5572 || ! (free_for_value_p (i, rld[r].mode,
5573 rld[r].opnum,
5574 rld[r].when_needed, rld[r].in,
5575 rld[r].out, r, 1))
5576 /* Don't use it if we'd clobber a pseudo reg. */
5577 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
5578 && rld[r].out
5579 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
5580 /* Don't clobber the frame pointer. */
5581 || (i == HARD_FRAME_POINTER_REGNUM
5582 && frame_pointer_needed
5583 && rld[r].out)
5584 /* Don't really use the inherited spill reg
5585 if we need it wider than we've got it. */
5586 || (GET_MODE_SIZE (rld[r].mode)
5587 > GET_MODE_SIZE (mode))
5588 || bad_for_class
5590 /* If find_reloads chose reload_out as reload
5591 register, stay with it - that leaves the
5592 inherited register for subsequent reloads. */
5593 || (rld[r].out && rld[r].reg_rtx
5594 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
5596 if (! rld[r].optional)
5598 reload_override_in[r] = last_reg;
5599 reload_inheritance_insn[r]
5600 = reg_reloaded_insn[i];
5603 else
5605 int k;
5606 /* We can use this as a reload reg. */
5607 /* Mark the register as in use for this part of
5608 the insn. */
5609 mark_reload_reg_in_use (i,
5610 rld[r].opnum,
5611 rld[r].when_needed,
5612 rld[r].mode);
5613 rld[r].reg_rtx = last_reg;
5614 reload_inherited[r] = 1;
5615 reload_inheritance_insn[r]
5616 = reg_reloaded_insn[i];
5617 reload_spill_index[r] = i;
5618 for (k = 0; k < nr; k++)
5619 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5620 i + k);
5627 /* Here's another way to see if the value is already lying around. */
5628 if (inheritance
5629 && rld[r].in != 0
5630 && ! reload_inherited[r]
5631 && rld[r].out == 0
5632 && (CONSTANT_P (rld[r].in)
5633 || GET_CODE (rld[r].in) == PLUS
5634 || REG_P (rld[r].in)
5635 || MEM_P (rld[r].in))
5636 && (rld[r].nregs == max_group_size
5637 || ! reg_classes_intersect_p (rld[r].class, group_class)))
5638 search_equiv = rld[r].in;
5639 /* If this is an output reload from a simple move insn, look
5640 if an equivalence for the input is available. */
5641 else if (inheritance && rld[r].in == 0 && rld[r].out != 0)
5643 rtx set = single_set (insn);
5645 if (set
5646 && rtx_equal_p (rld[r].out, SET_DEST (set))
5647 && CONSTANT_P (SET_SRC (set)))
5648 search_equiv = SET_SRC (set);
5651 if (search_equiv)
5653 rtx equiv
5654 = find_equiv_reg (search_equiv, insn, rld[r].class,
5655 -1, NULL, 0, rld[r].mode);
5656 int regno = 0;
5658 if (equiv != 0)
5660 if (REG_P (equiv))
5661 regno = REGNO (equiv);
5662 else
5664 /* This must be a SUBREG of a hard register.
5665 Make a new REG since this might be used in an
5666 address and not all machines support SUBREGs
5667 there. */
5668 gcc_assert (GET_CODE (equiv) == SUBREG);
5669 regno = subreg_regno (equiv);
5670 equiv = gen_rtx_REG (rld[r].mode, regno);
5671 /* If we choose EQUIV as the reload register, but the
5672 loop below decides to cancel the inheritance, we'll
5673 end up reloading EQUIV in rld[r].mode, not the mode
5674 it had originally. That isn't safe when EQUIV isn't
5675 available as a spill register since its value might
5676 still be live at this point. */
5677 for (i = regno; i < regno + (int) rld[r].nregs; i++)
5678 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
5679 equiv = 0;
5683 /* If we found a spill reg, reject it unless it is free
5684 and of the desired class. */
5685 if (equiv != 0)
5687 int regs_used = 0;
5688 int bad_for_class = 0;
5689 int max_regno = regno + rld[r].nregs;
5691 for (i = regno; i < max_regno; i++)
5693 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
5695 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].class],
5699 if ((regs_used
5700 && ! free_for_value_p (regno, rld[r].mode,
5701 rld[r].opnum, rld[r].when_needed,
5702 rld[r].in, rld[r].out, r, 1))
5703 || bad_for_class)
5704 equiv = 0;
5707 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
5708 equiv = 0;
5710 /* We found a register that contains the value we need.
5711 If this register is the same as an `earlyclobber' operand
5712 of the current insn, just mark it as a place to reload from
5713 since we can't use it as the reload register itself. */
5715 if (equiv != 0)
5716 for (i = 0; i < n_earlyclobbers; i++)
5717 if (reg_overlap_mentioned_for_reload_p (equiv,
5718 reload_earlyclobbers[i]))
5720 if (! rld[r].optional)
5721 reload_override_in[r] = equiv;
5722 equiv = 0;
5723 break;
5726 /* If the equiv register we have found is explicitly clobbered
5727 in the current insn, it depends on the reload type if we
5728 can use it, use it for reload_override_in, or not at all.
5729 In particular, we then can't use EQUIV for a
5730 RELOAD_FOR_OUTPUT_ADDRESS reload. */
5732 if (equiv != 0)
5734 if (regno_clobbered_p (regno, insn, rld[r].mode, 0))
5735 switch (rld[r].when_needed)
5737 case RELOAD_FOR_OTHER_ADDRESS:
5738 case RELOAD_FOR_INPADDR_ADDRESS:
5739 case RELOAD_FOR_INPUT_ADDRESS:
5740 case RELOAD_FOR_OPADDR_ADDR:
5741 break;
5742 case RELOAD_OTHER:
5743 case RELOAD_FOR_INPUT:
5744 case RELOAD_FOR_OPERAND_ADDRESS:
5745 if (! rld[r].optional)
5746 reload_override_in[r] = equiv;
5747 /* Fall through. */
5748 default:
5749 equiv = 0;
5750 break;
5752 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
5753 switch (rld[r].when_needed)
5755 case RELOAD_FOR_OTHER_ADDRESS:
5756 case RELOAD_FOR_INPADDR_ADDRESS:
5757 case RELOAD_FOR_INPUT_ADDRESS:
5758 case RELOAD_FOR_OPADDR_ADDR:
5759 case RELOAD_FOR_OPERAND_ADDRESS:
5760 case RELOAD_FOR_INPUT:
5761 break;
5762 case RELOAD_OTHER:
5763 if (! rld[r].optional)
5764 reload_override_in[r] = equiv;
5765 /* Fall through. */
5766 default:
5767 equiv = 0;
5768 break;
5772 /* If we found an equivalent reg, say no code need be generated
5773 to load it, and use it as our reload reg. */
5774 if (equiv != 0
5775 && (regno != HARD_FRAME_POINTER_REGNUM
5776 || !frame_pointer_needed))
5778 int nr = hard_regno_nregs[regno][rld[r].mode];
5779 int k;
5780 rld[r].reg_rtx = equiv;
5781 reload_inherited[r] = 1;
5783 /* If reg_reloaded_valid is not set for this register,
5784 there might be a stale spill_reg_store lying around.
5785 We must clear it, since otherwise emit_reload_insns
5786 might delete the store. */
5787 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
5788 spill_reg_store[regno] = NULL_RTX;
5789 /* If any of the hard registers in EQUIV are spill
5790 registers, mark them as in use for this insn. */
5791 for (k = 0; k < nr; k++)
5793 i = spill_reg_order[regno + k];
5794 if (i >= 0)
5796 mark_reload_reg_in_use (regno, rld[r].opnum,
5797 rld[r].when_needed,
5798 rld[r].mode);
5799 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
5800 regno + k);
5806 /* If we found a register to use already, or if this is an optional
5807 reload, we are done. */
5808 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
5809 continue;
5811 #if 0
5812 /* No longer needed for correct operation. Might or might
5813 not give better code on the average. Want to experiment? */
5815 /* See if there is a later reload that has a class different from our
5816 class that intersects our class or that requires less register
5817 than our reload. If so, we must allocate a register to this
5818 reload now, since that reload might inherit a previous reload
5819 and take the only available register in our class. Don't do this
5820 for optional reloads since they will force all previous reloads
5821 to be allocated. Also don't do this for reloads that have been
5822 turned off. */
5824 for (i = j + 1; i < n_reloads; i++)
5826 int s = reload_order[i];
5828 if ((rld[s].in == 0 && rld[s].out == 0
5829 && ! rld[s].secondary_p)
5830 || rld[s].optional)
5831 continue;
5833 if ((rld[s].class != rld[r].class
5834 && reg_classes_intersect_p (rld[r].class,
5835 rld[s].class))
5836 || rld[s].nregs < rld[r].nregs)
5837 break;
5840 if (i == n_reloads)
5841 continue;
5843 allocate_reload_reg (chain, r, j == n_reloads - 1);
5844 #endif
5847 /* Now allocate reload registers for anything non-optional that
5848 didn't get one yet. */
5849 for (j = 0; j < n_reloads; j++)
5851 int r = reload_order[j];
5853 /* Ignore reloads that got marked inoperative. */
5854 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
5855 continue;
5857 /* Skip reloads that already have a register allocated or are
5858 optional. */
5859 if (rld[r].reg_rtx != 0 || rld[r].optional)
5860 continue;
5862 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
5863 break;
5866 /* If that loop got all the way, we have won. */
5867 if (j == n_reloads)
5869 win = 1;
5870 break;
5873 /* Loop around and try without any inheritance. */
5876 if (! win)
5878 /* First undo everything done by the failed attempt
5879 to allocate with inheritance. */
5880 choose_reload_regs_init (chain, save_reload_reg_rtx);
5882 /* Some sanity tests to verify that the reloads found in the first
5883 pass are identical to the ones we have now. */
5884 gcc_assert (chain->n_reloads == n_reloads);
5886 for (i = 0; i < n_reloads; i++)
5888 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
5889 continue;
5890 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
5891 for (j = 0; j < n_spills; j++)
5892 if (spill_regs[j] == chain->rld[i].regno)
5893 if (! set_reload_reg (j, i))
5894 failed_reload (chain->insn, i);
5898 /* If we thought we could inherit a reload, because it seemed that
5899 nothing else wanted the same reload register earlier in the insn,
5900 verify that assumption, now that all reloads have been assigned.
5901 Likewise for reloads where reload_override_in has been set. */
5903 /* If doing expensive optimizations, do one preliminary pass that doesn't
5904 cancel any inheritance, but removes reloads that have been needed only
5905 for reloads that we know can be inherited. */
5906 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
5908 for (j = 0; j < n_reloads; j++)
5910 int r = reload_order[j];
5911 rtx check_reg;
5912 if (reload_inherited[r] && rld[r].reg_rtx)
5913 check_reg = rld[r].reg_rtx;
5914 else if (reload_override_in[r]
5915 && (REG_P (reload_override_in[r])
5916 || GET_CODE (reload_override_in[r]) == SUBREG))
5917 check_reg = reload_override_in[r];
5918 else
5919 continue;
5920 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
5921 rld[r].opnum, rld[r].when_needed, rld[r].in,
5922 (reload_inherited[r]
5923 ? rld[r].out : const0_rtx),
5924 r, 1))
5926 if (pass)
5927 continue;
5928 reload_inherited[r] = 0;
5929 reload_override_in[r] = 0;
5931 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
5932 reload_override_in, then we do not need its related
5933 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
5934 likewise for other reload types.
5935 We handle this by removing a reload when its only replacement
5936 is mentioned in reload_in of the reload we are going to inherit.
5937 A special case are auto_inc expressions; even if the input is
5938 inherited, we still need the address for the output. We can
5939 recognize them because they have RELOAD_OUT set to RELOAD_IN.
5940 If we succeeded removing some reload and we are doing a preliminary
5941 pass just to remove such reloads, make another pass, since the
5942 removal of one reload might allow us to inherit another one. */
5943 else if (rld[r].in
5944 && rld[r].out != rld[r].in
5945 && remove_address_replacements (rld[r].in) && pass)
5946 pass = 2;
5950 /* Now that reload_override_in is known valid,
5951 actually override reload_in. */
5952 for (j = 0; j < n_reloads; j++)
5953 if (reload_override_in[j])
5954 rld[j].in = reload_override_in[j];
5956 /* If this reload won't be done because it has been canceled or is
5957 optional and not inherited, clear reload_reg_rtx so other
5958 routines (such as subst_reloads) don't get confused. */
5959 for (j = 0; j < n_reloads; j++)
5960 if (rld[j].reg_rtx != 0
5961 && ((rld[j].optional && ! reload_inherited[j])
5962 || (rld[j].in == 0 && rld[j].out == 0
5963 && ! rld[j].secondary_p)))
5965 int regno = true_regnum (rld[j].reg_rtx);
5967 if (spill_reg_order[regno] >= 0)
5968 clear_reload_reg_in_use (regno, rld[j].opnum,
5969 rld[j].when_needed, rld[j].mode);
5970 rld[j].reg_rtx = 0;
5971 reload_spill_index[j] = -1;
5974 /* Record which pseudos and which spill regs have output reloads. */
5975 for (j = 0; j < n_reloads; j++)
5977 int r = reload_order[j];
5979 i = reload_spill_index[r];
5981 /* I is nonneg if this reload uses a register.
5982 If rld[r].reg_rtx is 0, this is an optional reload
5983 that we opted to ignore. */
5984 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
5985 && rld[r].reg_rtx != 0)
5987 int nregno = REGNO (rld[r].out_reg);
5988 int nr = 1;
5990 if (nregno < FIRST_PSEUDO_REGISTER)
5991 nr = hard_regno_nregs[nregno][rld[r].mode];
5993 while (--nr >= 0)
5994 reg_has_output_reload[nregno + nr] = 1;
5996 if (i >= 0)
5998 nr = hard_regno_nregs[i][rld[r].mode];
5999 while (--nr >= 0)
6000 SET_HARD_REG_BIT (reg_is_output_reload, i + nr);
6003 gcc_assert (rld[r].when_needed == RELOAD_OTHER
6004 || rld[r].when_needed == RELOAD_FOR_OUTPUT
6005 || rld[r].when_needed == RELOAD_FOR_INSN);
6010 /* Deallocate the reload register for reload R. This is called from
6011 remove_address_replacements. */
6013 void
6014 deallocate_reload_reg (int r)
6016 int regno;
6018 if (! rld[r].reg_rtx)
6019 return;
6020 regno = true_regnum (rld[r].reg_rtx);
6021 rld[r].reg_rtx = 0;
6022 if (spill_reg_order[regno] >= 0)
6023 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
6024 rld[r].mode);
6025 reload_spill_index[r] = -1;
6028 /* If SMALL_REGISTER_CLASSES is nonzero, we may not have merged two
6029 reloads of the same item for fear that we might not have enough reload
6030 registers. However, normally they will get the same reload register
6031 and hence actually need not be loaded twice.
6033 Here we check for the most common case of this phenomenon: when we have
6034 a number of reloads for the same object, each of which were allocated
6035 the same reload_reg_rtx, that reload_reg_rtx is not used for any other
6036 reload, and is not modified in the insn itself. If we find such,
6037 merge all the reloads and set the resulting reload to RELOAD_OTHER.
6038 This will not increase the number of spill registers needed and will
6039 prevent redundant code. */
6041 static void
6042 merge_assigned_reloads (rtx insn)
6044 int i, j;
6046 /* Scan all the reloads looking for ones that only load values and
6047 are not already RELOAD_OTHER and ones whose reload_reg_rtx are
6048 assigned and not modified by INSN. */
6050 for (i = 0; i < n_reloads; i++)
6052 int conflicting_input = 0;
6053 int max_input_address_opnum = -1;
6054 int min_conflicting_input_opnum = MAX_RECOG_OPERANDS;
6056 if (rld[i].in == 0 || rld[i].when_needed == RELOAD_OTHER
6057 || rld[i].out != 0 || rld[i].reg_rtx == 0
6058 || reg_set_p (rld[i].reg_rtx, insn))
6059 continue;
6061 /* Look at all other reloads. Ensure that the only use of this
6062 reload_reg_rtx is in a reload that just loads the same value
6063 as we do. Note that any secondary reloads must be of the identical
6064 class since the values, modes, and result registers are the
6065 same, so we need not do anything with any secondary reloads. */
6067 for (j = 0; j < n_reloads; j++)
6069 if (i == j || rld[j].reg_rtx == 0
6070 || ! reg_overlap_mentioned_p (rld[j].reg_rtx,
6071 rld[i].reg_rtx))
6072 continue;
6074 if (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6075 && rld[j].opnum > max_input_address_opnum)
6076 max_input_address_opnum = rld[j].opnum;
6078 /* If the reload regs aren't exactly the same (e.g, different modes)
6079 or if the values are different, we can't merge this reload.
6080 But if it is an input reload, we might still merge
6081 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_OTHER_ADDRESS reloads. */
6083 if (! rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6084 || rld[j].out != 0 || rld[j].in == 0
6085 || ! rtx_equal_p (rld[i].in, rld[j].in))
6087 if (rld[j].when_needed != RELOAD_FOR_INPUT
6088 || ((rld[i].when_needed != RELOAD_FOR_INPUT_ADDRESS
6089 || rld[i].opnum > rld[j].opnum)
6090 && rld[i].when_needed != RELOAD_FOR_OTHER_ADDRESS))
6091 break;
6092 conflicting_input = 1;
6093 if (min_conflicting_input_opnum > rld[j].opnum)
6094 min_conflicting_input_opnum = rld[j].opnum;
6098 /* If all is OK, merge the reloads. Only set this to RELOAD_OTHER if
6099 we, in fact, found any matching reloads. */
6101 if (j == n_reloads
6102 && max_input_address_opnum <= min_conflicting_input_opnum)
6104 for (j = 0; j < n_reloads; j++)
6105 if (i != j && rld[j].reg_rtx != 0
6106 && rtx_equal_p (rld[i].reg_rtx, rld[j].reg_rtx)
6107 && (! conflicting_input
6108 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6109 || rld[j].when_needed == RELOAD_FOR_OTHER_ADDRESS))
6111 rld[i].when_needed = RELOAD_OTHER;
6112 rld[j].in = 0;
6113 reload_spill_index[j] = -1;
6114 transfer_replacements (i, j);
6117 /* If this is now RELOAD_OTHER, look for any reloads that load
6118 parts of this operand and set them to RELOAD_FOR_OTHER_ADDRESS
6119 if they were for inputs, RELOAD_OTHER for outputs. Note that
6120 this test is equivalent to looking for reloads for this operand
6121 number. */
6122 /* We must take special care when there are two or more reloads to
6123 be merged and a RELOAD_FOR_OUTPUT_ADDRESS reload that loads the
6124 same value or a part of it; we must not change its type if there
6125 is a conflicting input. */
6127 if (rld[i].when_needed == RELOAD_OTHER)
6128 for (j = 0; j < n_reloads; j++)
6129 if (rld[j].in != 0
6130 && rld[j].when_needed != RELOAD_OTHER
6131 && rld[j].when_needed != RELOAD_FOR_OTHER_ADDRESS
6132 && (! conflicting_input
6133 || rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6134 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6135 && reg_overlap_mentioned_for_reload_p (rld[j].in,
6136 rld[i].in))
6138 int k;
6140 rld[j].when_needed
6141 = ((rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
6142 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
6143 ? RELOAD_FOR_OTHER_ADDRESS : RELOAD_OTHER);
6145 /* Check to see if we accidentally converted two
6146 reloads that use the same reload register with
6147 different inputs to the same type. If so, the
6148 resulting code won't work. */
6149 if (rld[j].reg_rtx)
6150 for (k = 0; k < j; k++)
6151 gcc_assert (rld[k].in == 0 || rld[k].reg_rtx == 0
6152 || rld[k].when_needed != rld[j].when_needed
6153 || !rtx_equal_p (rld[k].reg_rtx,
6154 rld[j].reg_rtx)
6155 || rtx_equal_p (rld[k].in,
6156 rld[j].in));
6162 /* These arrays are filled by emit_reload_insns and its subroutines. */
6163 static rtx input_reload_insns[MAX_RECOG_OPERANDS];
6164 static rtx other_input_address_reload_insns = 0;
6165 static rtx other_input_reload_insns = 0;
6166 static rtx input_address_reload_insns[MAX_RECOG_OPERANDS];
6167 static rtx inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6168 static rtx output_reload_insns[MAX_RECOG_OPERANDS];
6169 static rtx output_address_reload_insns[MAX_RECOG_OPERANDS];
6170 static rtx outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
6171 static rtx operand_reload_insns = 0;
6172 static rtx other_operand_reload_insns = 0;
6173 static rtx other_output_reload_insns[MAX_RECOG_OPERANDS];
6175 /* Values to be put in spill_reg_store are put here first. */
6176 static rtx new_spill_reg_store[FIRST_PSEUDO_REGISTER];
6177 static HARD_REG_SET reg_reloaded_died;
6179 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
6180 has the number J. OLD contains the value to be used as input. */
6182 static void
6183 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
6184 rtx old, int j)
6186 rtx insn = chain->insn;
6187 rtx reloadreg = rl->reg_rtx;
6188 rtx oldequiv_reg = 0;
6189 rtx oldequiv = 0;
6190 int special = 0;
6191 enum machine_mode mode;
6192 rtx *where;
6194 /* Determine the mode to reload in.
6195 This is very tricky because we have three to choose from.
6196 There is the mode the insn operand wants (rl->inmode).
6197 There is the mode of the reload register RELOADREG.
6198 There is the intrinsic mode of the operand, which we could find
6199 by stripping some SUBREGs.
6200 It turns out that RELOADREG's mode is irrelevant:
6201 we can change that arbitrarily.
6203 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
6204 then the reload reg may not support QImode moves, so use SImode.
6205 If foo is in memory due to spilling a pseudo reg, this is safe,
6206 because the QImode value is in the least significant part of a
6207 slot big enough for a SImode. If foo is some other sort of
6208 memory reference, then it is impossible to reload this case,
6209 so previous passes had better make sure this never happens.
6211 Then consider a one-word union which has SImode and one of its
6212 members is a float, being fetched as (SUBREG:SF union:SI).
6213 We must fetch that as SFmode because we could be loading into
6214 a float-only register. In this case OLD's mode is correct.
6216 Consider an immediate integer: it has VOIDmode. Here we need
6217 to get a mode from something else.
6219 In some cases, there is a fourth mode, the operand's
6220 containing mode. If the insn specifies a containing mode for
6221 this operand, it overrides all others.
6223 I am not sure whether the algorithm here is always right,
6224 but it does the right things in those cases. */
6226 mode = GET_MODE (old);
6227 if (mode == VOIDmode)
6228 mode = rl->inmode;
6230 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6231 /* If we need a secondary register for this operation, see if
6232 the value is already in a register in that class. Don't
6233 do this if the secondary register will be used as a scratch
6234 register. */
6236 if (rl->secondary_in_reload >= 0
6237 && rl->secondary_in_icode == CODE_FOR_nothing
6238 && optimize)
6239 oldequiv
6240 = find_equiv_reg (old, insn,
6241 rld[rl->secondary_in_reload].class,
6242 -1, NULL, 0, mode);
6243 #endif
6245 /* If reloading from memory, see if there is a register
6246 that already holds the same value. If so, reload from there.
6247 We can pass 0 as the reload_reg_p argument because
6248 any other reload has either already been emitted,
6249 in which case find_equiv_reg will see the reload-insn,
6250 or has yet to be emitted, in which case it doesn't matter
6251 because we will use this equiv reg right away. */
6253 if (oldequiv == 0 && optimize
6254 && (MEM_P (old)
6255 || (REG_P (old)
6256 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6257 && reg_renumber[REGNO (old)] < 0)))
6258 oldequiv = find_equiv_reg (old, insn, ALL_REGS, -1, NULL, 0, mode);
6260 if (oldequiv)
6262 unsigned int regno = true_regnum (oldequiv);
6264 /* Don't use OLDEQUIV if any other reload changes it at an
6265 earlier stage of this insn or at this stage. */
6266 if (! free_for_value_p (regno, rl->mode, rl->opnum, rl->when_needed,
6267 rl->in, const0_rtx, j, 0))
6268 oldequiv = 0;
6270 /* If it is no cheaper to copy from OLDEQUIV into the
6271 reload register than it would be to move from memory,
6272 don't use it. Likewise, if we need a secondary register
6273 or memory. */
6275 if (oldequiv != 0
6276 && (((enum reg_class) REGNO_REG_CLASS (regno) != rl->class
6277 && (REGISTER_MOVE_COST (mode, REGNO_REG_CLASS (regno),
6278 rl->class)
6279 >= MEMORY_MOVE_COST (mode, rl->class, 1)))
6280 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6281 || (SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6282 mode, oldequiv)
6283 != NO_REGS)
6284 #endif
6285 #ifdef SECONDARY_MEMORY_NEEDED
6286 || SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (regno),
6287 rl->class,
6288 mode)
6289 #endif
6291 oldequiv = 0;
6294 /* delete_output_reload is only invoked properly if old contains
6295 the original pseudo register. Since this is replaced with a
6296 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
6297 find the pseudo in RELOAD_IN_REG. */
6298 if (oldequiv == 0
6299 && reload_override_in[j]
6300 && REG_P (rl->in_reg))
6302 oldequiv = old;
6303 old = rl->in_reg;
6305 if (oldequiv == 0)
6306 oldequiv = old;
6307 else if (REG_P (oldequiv))
6308 oldequiv_reg = oldequiv;
6309 else if (GET_CODE (oldequiv) == SUBREG)
6310 oldequiv_reg = SUBREG_REG (oldequiv);
6312 /* If we are reloading from a register that was recently stored in
6313 with an output-reload, see if we can prove there was
6314 actually no need to store the old value in it. */
6316 if (optimize && REG_P (oldequiv)
6317 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6318 && spill_reg_store[REGNO (oldequiv)]
6319 && REG_P (old)
6320 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
6321 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6322 rl->out_reg)))
6323 delete_output_reload (insn, j, REGNO (oldequiv));
6325 /* Encapsulate both RELOADREG and OLDEQUIV into that mode,
6326 then load RELOADREG from OLDEQUIV. Note that we cannot use
6327 gen_lowpart_common since it can do the wrong thing when
6328 RELOADREG has a multi-word mode. Note that RELOADREG
6329 must always be a REG here. */
6331 if (GET_MODE (reloadreg) != mode)
6332 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6333 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
6334 oldequiv = SUBREG_REG (oldequiv);
6335 if (GET_MODE (oldequiv) != VOIDmode
6336 && mode != GET_MODE (oldequiv))
6337 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
6339 /* Switch to the right place to emit the reload insns. */
6340 switch (rl->when_needed)
6342 case RELOAD_OTHER:
6343 where = &other_input_reload_insns;
6344 break;
6345 case RELOAD_FOR_INPUT:
6346 where = &input_reload_insns[rl->opnum];
6347 break;
6348 case RELOAD_FOR_INPUT_ADDRESS:
6349 where = &input_address_reload_insns[rl->opnum];
6350 break;
6351 case RELOAD_FOR_INPADDR_ADDRESS:
6352 where = &inpaddr_address_reload_insns[rl->opnum];
6353 break;
6354 case RELOAD_FOR_OUTPUT_ADDRESS:
6355 where = &output_address_reload_insns[rl->opnum];
6356 break;
6357 case RELOAD_FOR_OUTADDR_ADDRESS:
6358 where = &outaddr_address_reload_insns[rl->opnum];
6359 break;
6360 case RELOAD_FOR_OPERAND_ADDRESS:
6361 where = &operand_reload_insns;
6362 break;
6363 case RELOAD_FOR_OPADDR_ADDR:
6364 where = &other_operand_reload_insns;
6365 break;
6366 case RELOAD_FOR_OTHER_ADDRESS:
6367 where = &other_input_address_reload_insns;
6368 break;
6369 default:
6370 gcc_unreachable ();
6373 push_to_sequence (*where);
6375 /* Auto-increment addresses must be reloaded in a special way. */
6376 if (rl->out && ! rl->out_reg)
6378 /* We are not going to bother supporting the case where a
6379 incremented register can't be copied directly from
6380 OLDEQUIV since this seems highly unlikely. */
6381 gcc_assert (rl->secondary_in_reload < 0);
6383 if (reload_inherited[j])
6384 oldequiv = reloadreg;
6386 old = XEXP (rl->in_reg, 0);
6388 if (optimize && REG_P (oldequiv)
6389 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
6390 && spill_reg_store[REGNO (oldequiv)]
6391 && REG_P (old)
6392 && (dead_or_set_p (insn,
6393 spill_reg_stored_to[REGNO (oldequiv)])
6394 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
6395 old)))
6396 delete_output_reload (insn, j, REGNO (oldequiv));
6398 /* Prevent normal processing of this reload. */
6399 special = 1;
6400 /* Output a special code sequence for this case. */
6401 new_spill_reg_store[REGNO (reloadreg)]
6402 = inc_for_reload (reloadreg, oldequiv, rl->out,
6403 rl->inc);
6406 /* If we are reloading a pseudo-register that was set by the previous
6407 insn, see if we can get rid of that pseudo-register entirely
6408 by redirecting the previous insn into our reload register. */
6410 else if (optimize && REG_P (old)
6411 && REGNO (old) >= FIRST_PSEUDO_REGISTER
6412 && dead_or_set_p (insn, old)
6413 /* This is unsafe if some other reload
6414 uses the same reg first. */
6415 && ! conflicts_with_override (reloadreg)
6416 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
6417 rl->when_needed, old, rl->out, j, 0))
6419 rtx temp = PREV_INSN (insn);
6420 while (temp && NOTE_P (temp))
6421 temp = PREV_INSN (temp);
6422 if (temp
6423 && NONJUMP_INSN_P (temp)
6424 && GET_CODE (PATTERN (temp)) == SET
6425 && SET_DEST (PATTERN (temp)) == old
6426 /* Make sure we can access insn_operand_constraint. */
6427 && asm_noperands (PATTERN (temp)) < 0
6428 /* This is unsafe if operand occurs more than once in current
6429 insn. Perhaps some occurrences aren't reloaded. */
6430 && count_occurrences (PATTERN (insn), old, 0) == 1)
6432 rtx old = SET_DEST (PATTERN (temp));
6433 /* Store into the reload register instead of the pseudo. */
6434 SET_DEST (PATTERN (temp)) = reloadreg;
6436 /* Verify that resulting insn is valid. */
6437 extract_insn (temp);
6438 if (constrain_operands (1))
6440 /* If the previous insn is an output reload, the source is
6441 a reload register, and its spill_reg_store entry will
6442 contain the previous destination. This is now
6443 invalid. */
6444 if (REG_P (SET_SRC (PATTERN (temp)))
6445 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
6447 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6448 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
6451 /* If these are the only uses of the pseudo reg,
6452 pretend for GDB it lives in the reload reg we used. */
6453 if (REG_N_DEATHS (REGNO (old)) == 1
6454 && REG_N_SETS (REGNO (old)) == 1)
6456 reg_renumber[REGNO (old)] = REGNO (rl->reg_rtx);
6457 alter_reg (REGNO (old), -1);
6459 special = 1;
6461 else
6463 SET_DEST (PATTERN (temp)) = old;
6468 /* We can't do that, so output an insn to load RELOADREG. */
6470 #ifdef SECONDARY_INPUT_RELOAD_CLASS
6471 /* If we have a secondary reload, pick up the secondary register
6472 and icode, if any. If OLDEQUIV and OLD are different or
6473 if this is an in-out reload, recompute whether or not we
6474 still need a secondary register and what the icode should
6475 be. If we still need a secondary register and the class or
6476 icode is different, go back to reloading from OLD if using
6477 OLDEQUIV means that we got the wrong type of register. We
6478 cannot have different class or icode due to an in-out reload
6479 because we don't make such reloads when both the input and
6480 output need secondary reload registers. */
6482 if (! special && rl->secondary_in_reload >= 0)
6484 rtx second_reload_reg = 0;
6485 int secondary_reload = rl->secondary_in_reload;
6486 rtx real_oldequiv = oldequiv;
6487 rtx real_old = old;
6488 rtx tmp;
6489 enum insn_code icode;
6491 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
6492 and similarly for OLD.
6493 See comments in get_secondary_reload in reload.c. */
6494 /* If it is a pseudo that cannot be replaced with its
6495 equivalent MEM, we must fall back to reload_in, which
6496 will have all the necessary substitutions registered.
6497 Likewise for a pseudo that can't be replaced with its
6498 equivalent constant.
6500 Take extra care for subregs of such pseudos. Note that
6501 we cannot use reg_equiv_mem in this case because it is
6502 not in the right mode. */
6504 tmp = oldequiv;
6505 if (GET_CODE (tmp) == SUBREG)
6506 tmp = SUBREG_REG (tmp);
6507 if (REG_P (tmp)
6508 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6509 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6510 || reg_equiv_constant[REGNO (tmp)] != 0))
6512 if (! reg_equiv_mem[REGNO (tmp)]
6513 || num_not_at_initial_offset
6514 || GET_CODE (oldequiv) == SUBREG)
6515 real_oldequiv = rl->in;
6516 else
6517 real_oldequiv = reg_equiv_mem[REGNO (tmp)];
6520 tmp = old;
6521 if (GET_CODE (tmp) == SUBREG)
6522 tmp = SUBREG_REG (tmp);
6523 if (REG_P (tmp)
6524 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
6525 && (reg_equiv_memory_loc[REGNO (tmp)] != 0
6526 || reg_equiv_constant[REGNO (tmp)] != 0))
6528 if (! reg_equiv_mem[REGNO (tmp)]
6529 || num_not_at_initial_offset
6530 || GET_CODE (old) == SUBREG)
6531 real_old = rl->in;
6532 else
6533 real_old = reg_equiv_mem[REGNO (tmp)];
6536 second_reload_reg = rld[secondary_reload].reg_rtx;
6537 icode = rl->secondary_in_icode;
6539 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
6540 || (rl->in != 0 && rl->out != 0))
6542 enum reg_class new_class
6543 = SECONDARY_INPUT_RELOAD_CLASS (rl->class,
6544 mode, real_oldequiv);
6546 if (new_class == NO_REGS)
6547 second_reload_reg = 0;
6548 else
6550 enum insn_code new_icode;
6551 enum machine_mode new_mode;
6553 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) new_class],
6554 REGNO (second_reload_reg)))
6555 oldequiv = old, real_oldequiv = real_old;
6556 else
6558 new_icode = reload_in_optab[(int) mode];
6559 if (new_icode != CODE_FOR_nothing
6560 && ((insn_data[(int) new_icode].operand[0].predicate
6561 && ! ((*insn_data[(int) new_icode].operand[0].predicate)
6562 (reloadreg, mode)))
6563 || (insn_data[(int) new_icode].operand[1].predicate
6564 && ! ((*insn_data[(int) new_icode].operand[1].predicate)
6565 (real_oldequiv, mode)))))
6566 new_icode = CODE_FOR_nothing;
6568 if (new_icode == CODE_FOR_nothing)
6569 new_mode = mode;
6570 else
6571 new_mode = insn_data[(int) new_icode].operand[2].mode;
6573 if (GET_MODE (second_reload_reg) != new_mode)
6575 if (!HARD_REGNO_MODE_OK (REGNO (second_reload_reg),
6576 new_mode))
6577 oldequiv = old, real_oldequiv = real_old;
6578 else
6579 second_reload_reg
6580 = reload_adjust_reg_for_mode (second_reload_reg,
6581 new_mode);
6587 /* If we still need a secondary reload register, check
6588 to see if it is being used as a scratch or intermediate
6589 register and generate code appropriately. If we need
6590 a scratch register, use REAL_OLDEQUIV since the form of
6591 the insn may depend on the actual address if it is
6592 a MEM. */
6594 if (second_reload_reg)
6596 if (icode != CODE_FOR_nothing)
6598 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
6599 second_reload_reg));
6600 special = 1;
6602 else
6604 /* See if we need a scratch register to load the
6605 intermediate register (a tertiary reload). */
6606 enum insn_code tertiary_icode
6607 = rld[secondary_reload].secondary_in_icode;
6609 if (tertiary_icode != CODE_FOR_nothing)
6611 rtx third_reload_reg
6612 = rld[rld[secondary_reload].secondary_in_reload].reg_rtx;
6614 emit_insn ((GEN_FCN (tertiary_icode)
6615 (second_reload_reg, real_oldequiv,
6616 third_reload_reg)));
6618 else
6619 gen_reload (second_reload_reg, real_oldequiv,
6620 rl->opnum,
6621 rl->when_needed);
6623 oldequiv = second_reload_reg;
6627 #endif
6629 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
6631 rtx real_oldequiv = oldequiv;
6633 if ((REG_P (oldequiv)
6634 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
6635 && (reg_equiv_memory_loc[REGNO (oldequiv)] != 0
6636 || reg_equiv_constant[REGNO (oldequiv)] != 0))
6637 || (GET_CODE (oldequiv) == SUBREG
6638 && REG_P (SUBREG_REG (oldequiv))
6639 && (REGNO (SUBREG_REG (oldequiv))
6640 >= FIRST_PSEUDO_REGISTER)
6641 && ((reg_equiv_memory_loc
6642 [REGNO (SUBREG_REG (oldequiv))] != 0)
6643 || (reg_equiv_constant
6644 [REGNO (SUBREG_REG (oldequiv))] != 0)))
6645 || (CONSTANT_P (oldequiv)
6646 && (PREFERRED_RELOAD_CLASS (oldequiv,
6647 REGNO_REG_CLASS (REGNO (reloadreg)))
6648 == NO_REGS)))
6649 real_oldequiv = rl->in;
6650 gen_reload (reloadreg, real_oldequiv, rl->opnum,
6651 rl->when_needed);
6654 if (flag_non_call_exceptions)
6655 copy_eh_notes (insn, get_insns ());
6657 /* End this sequence. */
6658 *where = get_insns ();
6659 end_sequence ();
6661 /* Update reload_override_in so that delete_address_reloads_1
6662 can see the actual register usage. */
6663 if (oldequiv_reg)
6664 reload_override_in[j] = oldequiv;
6667 /* Generate insns to for the output reload RL, which is for the insn described
6668 by CHAIN and has the number J. */
6669 static void
6670 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
6671 int j)
6673 rtx reloadreg = rl->reg_rtx;
6674 rtx insn = chain->insn;
6675 int special = 0;
6676 rtx old = rl->out;
6677 enum machine_mode mode = GET_MODE (old);
6678 rtx p;
6680 if (rl->when_needed == RELOAD_OTHER)
6681 start_sequence ();
6682 else
6683 push_to_sequence (output_reload_insns[rl->opnum]);
6685 /* Determine the mode to reload in.
6686 See comments above (for input reloading). */
6688 if (mode == VOIDmode)
6690 /* VOIDmode should never happen for an output. */
6691 if (asm_noperands (PATTERN (insn)) < 0)
6692 /* It's the compiler's fault. */
6693 fatal_insn ("VOIDmode on an output", insn);
6694 error_for_asm (insn, "output operand is constant in %<asm%>");
6695 /* Prevent crash--use something we know is valid. */
6696 mode = word_mode;
6697 old = gen_rtx_REG (mode, REGNO (reloadreg));
6700 if (GET_MODE (reloadreg) != mode)
6701 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6703 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
6705 /* If we need two reload regs, set RELOADREG to the intermediate
6706 one, since it will be stored into OLD. We might need a secondary
6707 register only for an input reload, so check again here. */
6709 if (rl->secondary_out_reload >= 0)
6711 rtx real_old = old;
6713 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
6714 && reg_equiv_mem[REGNO (old)] != 0)
6715 real_old = reg_equiv_mem[REGNO (old)];
6717 if ((SECONDARY_OUTPUT_RELOAD_CLASS (rl->class,
6718 mode, real_old)
6719 != NO_REGS))
6721 rtx second_reloadreg = reloadreg;
6722 reloadreg = rld[rl->secondary_out_reload].reg_rtx;
6724 /* See if RELOADREG is to be used as a scratch register
6725 or as an intermediate register. */
6726 if (rl->secondary_out_icode != CODE_FOR_nothing)
6728 emit_insn ((GEN_FCN (rl->secondary_out_icode)
6729 (real_old, second_reloadreg, reloadreg)));
6730 special = 1;
6732 else
6734 /* See if we need both a scratch and intermediate reload
6735 register. */
6737 int secondary_reload = rl->secondary_out_reload;
6738 enum insn_code tertiary_icode
6739 = rld[secondary_reload].secondary_out_icode;
6741 if (GET_MODE (reloadreg) != mode)
6742 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
6744 if (tertiary_icode != CODE_FOR_nothing)
6746 rtx third_reloadreg
6747 = rld[rld[secondary_reload].secondary_out_reload].reg_rtx;
6748 rtx tem;
6750 /* Copy primary reload reg to secondary reload reg.
6751 (Note that these have been swapped above, then
6752 secondary reload reg to OLD using our insn.) */
6754 /* If REAL_OLD is a paradoxical SUBREG, remove it
6755 and try to put the opposite SUBREG on
6756 RELOADREG. */
6757 if (GET_CODE (real_old) == SUBREG
6758 && (GET_MODE_SIZE (GET_MODE (real_old))
6759 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (real_old))))
6760 && 0 != (tem = gen_lowpart_common
6761 (GET_MODE (SUBREG_REG (real_old)),
6762 reloadreg)))
6763 real_old = SUBREG_REG (real_old), reloadreg = tem;
6765 gen_reload (reloadreg, second_reloadreg,
6766 rl->opnum, rl->when_needed);
6767 emit_insn ((GEN_FCN (tertiary_icode)
6768 (real_old, reloadreg, third_reloadreg)));
6769 special = 1;
6772 else
6773 /* Copy between the reload regs here and then to
6774 OUT later. */
6776 gen_reload (reloadreg, second_reloadreg,
6777 rl->opnum, rl->when_needed);
6781 #endif
6783 /* Output the last reload insn. */
6784 if (! special)
6786 rtx set;
6788 /* Don't output the last reload if OLD is not the dest of
6789 INSN and is in the src and is clobbered by INSN. */
6790 if (! flag_expensive_optimizations
6791 || !REG_P (old)
6792 || !(set = single_set (insn))
6793 || rtx_equal_p (old, SET_DEST (set))
6794 || !reg_mentioned_p (old, SET_SRC (set))
6795 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
6796 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
6797 gen_reload (old, reloadreg, rl->opnum,
6798 rl->when_needed);
6801 /* Look at all insns we emitted, just to be safe. */
6802 for (p = get_insns (); p; p = NEXT_INSN (p))
6803 if (INSN_P (p))
6805 rtx pat = PATTERN (p);
6807 /* If this output reload doesn't come from a spill reg,
6808 clear any memory of reloaded copies of the pseudo reg.
6809 If this output reload comes from a spill reg,
6810 reg_has_output_reload will make this do nothing. */
6811 note_stores (pat, forget_old_reloads_1, NULL);
6813 if (reg_mentioned_p (rl->reg_rtx, pat))
6815 rtx set = single_set (insn);
6816 if (reload_spill_index[j] < 0
6817 && set
6818 && SET_SRC (set) == rl->reg_rtx)
6820 int src = REGNO (SET_SRC (set));
6822 reload_spill_index[j] = src;
6823 SET_HARD_REG_BIT (reg_is_output_reload, src);
6824 if (find_regno_note (insn, REG_DEAD, src))
6825 SET_HARD_REG_BIT (reg_reloaded_died, src);
6827 if (REGNO (rl->reg_rtx) < FIRST_PSEUDO_REGISTER)
6829 int s = rl->secondary_out_reload;
6830 set = single_set (p);
6831 /* If this reload copies only to the secondary reload
6832 register, the secondary reload does the actual
6833 store. */
6834 if (s >= 0 && set == NULL_RTX)
6835 /* We can't tell what function the secondary reload
6836 has and where the actual store to the pseudo is
6837 made; leave new_spill_reg_store alone. */
6839 else if (s >= 0
6840 && SET_SRC (set) == rl->reg_rtx
6841 && SET_DEST (set) == rld[s].reg_rtx)
6843 /* Usually the next instruction will be the
6844 secondary reload insn; if we can confirm
6845 that it is, setting new_spill_reg_store to
6846 that insn will allow an extra optimization. */
6847 rtx s_reg = rld[s].reg_rtx;
6848 rtx next = NEXT_INSN (p);
6849 rld[s].out = rl->out;
6850 rld[s].out_reg = rl->out_reg;
6851 set = single_set (next);
6852 if (set && SET_SRC (set) == s_reg
6853 && ! new_spill_reg_store[REGNO (s_reg)])
6855 SET_HARD_REG_BIT (reg_is_output_reload,
6856 REGNO (s_reg));
6857 new_spill_reg_store[REGNO (s_reg)] = next;
6860 else
6861 new_spill_reg_store[REGNO (rl->reg_rtx)] = p;
6866 if (rl->when_needed == RELOAD_OTHER)
6868 emit_insn (other_output_reload_insns[rl->opnum]);
6869 other_output_reload_insns[rl->opnum] = get_insns ();
6871 else
6872 output_reload_insns[rl->opnum] = get_insns ();
6874 if (flag_non_call_exceptions)
6875 copy_eh_notes (insn, get_insns ());
6877 end_sequence ();
6880 /* Do input reloading for reload RL, which is for the insn described by CHAIN
6881 and has the number J. */
6882 static void
6883 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
6885 rtx insn = chain->insn;
6886 rtx old = (rl->in && MEM_P (rl->in)
6887 ? rl->in_reg : rl->in);
6889 if (old != 0
6890 /* AUTO_INC reloads need to be handled even if inherited. We got an
6891 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
6892 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
6893 && ! rtx_equal_p (rl->reg_rtx, old)
6894 && rl->reg_rtx != 0)
6895 emit_input_reload_insns (chain, rld + j, old, j);
6897 /* When inheriting a wider reload, we have a MEM in rl->in,
6898 e.g. inheriting a SImode output reload for
6899 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
6900 if (optimize && reload_inherited[j] && rl->in
6901 && MEM_P (rl->in)
6902 && MEM_P (rl->in_reg)
6903 && reload_spill_index[j] >= 0
6904 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
6905 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
6907 /* If we are reloading a register that was recently stored in with an
6908 output-reload, see if we can prove there was
6909 actually no need to store the old value in it. */
6911 if (optimize
6912 /* Only attempt this for input reloads; for RELOAD_OTHER we miss
6913 that there may be multiple uses of the previous output reload.
6914 Restricting to RELOAD_FOR_INPUT is mostly paranoia. */
6915 && rl->when_needed == RELOAD_FOR_INPUT
6916 && (reload_inherited[j] || reload_override_in[j])
6917 && rl->reg_rtx
6918 && REG_P (rl->reg_rtx)
6919 && spill_reg_store[REGNO (rl->reg_rtx)] != 0
6920 #if 0
6921 /* There doesn't seem to be any reason to restrict this to pseudos
6922 and doing so loses in the case where we are copying from a
6923 register of the wrong class. */
6924 && (REGNO (spill_reg_stored_to[REGNO (rl->reg_rtx)])
6925 >= FIRST_PSEUDO_REGISTER)
6926 #endif
6927 /* The insn might have already some references to stackslots
6928 replaced by MEMs, while reload_out_reg still names the
6929 original pseudo. */
6930 && (dead_or_set_p (insn,
6931 spill_reg_stored_to[REGNO (rl->reg_rtx)])
6932 || rtx_equal_p (spill_reg_stored_to[REGNO (rl->reg_rtx)],
6933 rl->out_reg)))
6934 delete_output_reload (insn, j, REGNO (rl->reg_rtx));
6937 /* Do output reloading for reload RL, which is for the insn described by
6938 CHAIN and has the number J.
6939 ??? At some point we need to support handling output reloads of
6940 JUMP_INSNs or insns that set cc0. */
6941 static void
6942 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
6944 rtx note, old;
6945 rtx insn = chain->insn;
6946 /* If this is an output reload that stores something that is
6947 not loaded in this same reload, see if we can eliminate a previous
6948 store. */
6949 rtx pseudo = rl->out_reg;
6951 if (pseudo
6952 && optimize
6953 && REG_P (pseudo)
6954 && ! rtx_equal_p (rl->in_reg, pseudo)
6955 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
6956 && reg_last_reload_reg[REGNO (pseudo)])
6958 int pseudo_no = REGNO (pseudo);
6959 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
6961 /* We don't need to test full validity of last_regno for
6962 inherit here; we only want to know if the store actually
6963 matches the pseudo. */
6964 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
6965 && reg_reloaded_contents[last_regno] == pseudo_no
6966 && spill_reg_store[last_regno]
6967 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
6968 delete_output_reload (insn, j, last_regno);
6971 old = rl->out_reg;
6972 if (old == 0
6973 || rl->reg_rtx == old
6974 || rl->reg_rtx == 0)
6975 return;
6977 /* An output operand that dies right away does need a reload,
6978 but need not be copied from it. Show the new location in the
6979 REG_UNUSED note. */
6980 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
6981 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
6983 XEXP (note, 0) = rl->reg_rtx;
6984 return;
6986 /* Likewise for a SUBREG of an operand that dies. */
6987 else if (GET_CODE (old) == SUBREG
6988 && REG_P (SUBREG_REG (old))
6989 && 0 != (note = find_reg_note (insn, REG_UNUSED,
6990 SUBREG_REG (old))))
6992 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old),
6993 rl->reg_rtx);
6994 return;
6996 else if (GET_CODE (old) == SCRATCH)
6997 /* If we aren't optimizing, there won't be a REG_UNUSED note,
6998 but we don't want to make an output reload. */
6999 return;
7001 /* If is a JUMP_INSN, we can't support output reloads yet. */
7002 gcc_assert (!JUMP_P (insn));
7004 emit_output_reload_insns (chain, rld + j, j);
7007 /* Reload number R reloads from or to a group of hard registers starting at
7008 register REGNO. Return true if it can be treated for inheritance purposes
7009 like a group of reloads, each one reloading a single hard register.
7010 The caller has already checked that the spill register and REGNO use
7011 the same number of registers to store the reload value. */
7013 static bool
7014 inherit_piecemeal_p (int r ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED)
7016 #ifdef CANNOT_CHANGE_MODE_CLASS
7017 return (!REG_CANNOT_CHANGE_MODE_P (reload_spill_index[r],
7018 GET_MODE (rld[r].reg_rtx),
7019 reg_raw_mode[reload_spill_index[r]])
7020 && !REG_CANNOT_CHANGE_MODE_P (regno,
7021 GET_MODE (rld[r].reg_rtx),
7022 reg_raw_mode[regno]));
7023 #else
7024 return true;
7025 #endif
7028 /* Output insns to reload values in and out of the chosen reload regs. */
7030 static void
7031 emit_reload_insns (struct insn_chain *chain)
7033 rtx insn = chain->insn;
7035 int j;
7037 CLEAR_HARD_REG_SET (reg_reloaded_died);
7039 for (j = 0; j < reload_n_operands; j++)
7040 input_reload_insns[j] = input_address_reload_insns[j]
7041 = inpaddr_address_reload_insns[j]
7042 = output_reload_insns[j] = output_address_reload_insns[j]
7043 = outaddr_address_reload_insns[j]
7044 = other_output_reload_insns[j] = 0;
7045 other_input_address_reload_insns = 0;
7046 other_input_reload_insns = 0;
7047 operand_reload_insns = 0;
7048 other_operand_reload_insns = 0;
7050 /* Dump reloads into the dump file. */
7051 if (dump_file)
7053 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
7054 debug_reload_to_stream (dump_file);
7057 /* Now output the instructions to copy the data into and out of the
7058 reload registers. Do these in the order that the reloads were reported,
7059 since reloads of base and index registers precede reloads of operands
7060 and the operands may need the base and index registers reloaded. */
7062 for (j = 0; j < n_reloads; j++)
7064 if (rld[j].reg_rtx
7065 && REGNO (rld[j].reg_rtx) < FIRST_PSEUDO_REGISTER)
7066 new_spill_reg_store[REGNO (rld[j].reg_rtx)] = 0;
7068 do_input_reload (chain, rld + j, j);
7069 do_output_reload (chain, rld + j, j);
7072 /* Now write all the insns we made for reloads in the order expected by
7073 the allocation functions. Prior to the insn being reloaded, we write
7074 the following reloads:
7076 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
7078 RELOAD_OTHER reloads.
7080 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
7081 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
7082 RELOAD_FOR_INPUT reload for the operand.
7084 RELOAD_FOR_OPADDR_ADDRS reloads.
7086 RELOAD_FOR_OPERAND_ADDRESS reloads.
7088 After the insn being reloaded, we write the following:
7090 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
7091 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
7092 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
7093 reloads for the operand. The RELOAD_OTHER output reloads are
7094 output in descending order by reload number. */
7096 emit_insn_before (other_input_address_reload_insns, insn);
7097 emit_insn_before (other_input_reload_insns, insn);
7099 for (j = 0; j < reload_n_operands; j++)
7101 emit_insn_before (inpaddr_address_reload_insns[j], insn);
7102 emit_insn_before (input_address_reload_insns[j], insn);
7103 emit_insn_before (input_reload_insns[j], insn);
7106 emit_insn_before (other_operand_reload_insns, insn);
7107 emit_insn_before (operand_reload_insns, insn);
7109 for (j = 0; j < reload_n_operands; j++)
7111 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
7112 x = emit_insn_after (output_address_reload_insns[j], x);
7113 x = emit_insn_after (output_reload_insns[j], x);
7114 emit_insn_after (other_output_reload_insns[j], x);
7117 /* For all the spill regs newly reloaded in this instruction,
7118 record what they were reloaded from, so subsequent instructions
7119 can inherit the reloads.
7121 Update spill_reg_store for the reloads of this insn.
7122 Copy the elements that were updated in the loop above. */
7124 for (j = 0; j < n_reloads; j++)
7126 int r = reload_order[j];
7127 int i = reload_spill_index[r];
7129 /* If this is a non-inherited input reload from a pseudo, we must
7130 clear any memory of a previous store to the same pseudo. Only do
7131 something if there will not be an output reload for the pseudo
7132 being reloaded. */
7133 if (rld[r].in_reg != 0
7134 && ! (reload_inherited[r] || reload_override_in[r]))
7136 rtx reg = rld[r].in_reg;
7138 if (GET_CODE (reg) == SUBREG)
7139 reg = SUBREG_REG (reg);
7141 if (REG_P (reg)
7142 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
7143 && ! reg_has_output_reload[REGNO (reg)])
7145 int nregno = REGNO (reg);
7147 if (reg_last_reload_reg[nregno])
7149 int last_regno = REGNO (reg_last_reload_reg[nregno]);
7151 if (reg_reloaded_contents[last_regno] == nregno)
7152 spill_reg_store[last_regno] = 0;
7157 /* I is nonneg if this reload used a register.
7158 If rld[r].reg_rtx is 0, this is an optional reload
7159 that we opted to ignore. */
7161 if (i >= 0 && rld[r].reg_rtx != 0)
7163 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
7164 int k;
7165 int part_reaches_end = 0;
7166 int all_reaches_end = 1;
7168 /* For a multi register reload, we need to check if all or part
7169 of the value lives to the end. */
7170 for (k = 0; k < nr; k++)
7172 if (reload_reg_reaches_end_p (i + k, rld[r].opnum,
7173 rld[r].when_needed))
7174 part_reaches_end = 1;
7175 else
7176 all_reaches_end = 0;
7179 /* Ignore reloads that don't reach the end of the insn in
7180 entirety. */
7181 if (all_reaches_end)
7183 /* First, clear out memory of what used to be in this spill reg.
7184 If consecutive registers are used, clear them all. */
7186 for (k = 0; k < nr; k++)
7188 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7189 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7192 /* Maybe the spill reg contains a copy of reload_out. */
7193 if (rld[r].out != 0
7194 && (REG_P (rld[r].out)
7195 #ifdef AUTO_INC_DEC
7196 || ! rld[r].out_reg
7197 #endif
7198 || REG_P (rld[r].out_reg)))
7200 rtx out = (REG_P (rld[r].out)
7201 ? rld[r].out
7202 : rld[r].out_reg
7203 ? rld[r].out_reg
7204 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
7205 int nregno = REGNO (out);
7206 int nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7207 : hard_regno_nregs[nregno]
7208 [GET_MODE (rld[r].reg_rtx)]);
7209 bool piecemeal;
7211 spill_reg_store[i] = new_spill_reg_store[i];
7212 spill_reg_stored_to[i] = out;
7213 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7215 piecemeal = (nregno < FIRST_PSEUDO_REGISTER
7216 && nr == nnr
7217 && inherit_piecemeal_p (r, nregno));
7219 /* If NREGNO is a hard register, it may occupy more than
7220 one register. If it does, say what is in the
7221 rest of the registers assuming that both registers
7222 agree on how many words the object takes. If not,
7223 invalidate the subsequent registers. */
7225 if (nregno < FIRST_PSEUDO_REGISTER)
7226 for (k = 1; k < nnr; k++)
7227 reg_last_reload_reg[nregno + k]
7228 = (piecemeal
7229 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7230 : 0);
7232 /* Now do the inverse operation. */
7233 for (k = 0; k < nr; k++)
7235 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7236 reg_reloaded_contents[i + k]
7237 = (nregno >= FIRST_PSEUDO_REGISTER || !piecemeal
7238 ? nregno
7239 : nregno + k);
7240 reg_reloaded_insn[i + k] = insn;
7241 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7242 if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (out)))
7243 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7247 /* Maybe the spill reg contains a copy of reload_in. Only do
7248 something if there will not be an output reload for
7249 the register being reloaded. */
7250 else if (rld[r].out_reg == 0
7251 && rld[r].in != 0
7252 && ((REG_P (rld[r].in)
7253 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER
7254 && ! reg_has_output_reload[REGNO (rld[r].in)])
7255 || (REG_P (rld[r].in_reg)
7256 && ! reg_has_output_reload[REGNO (rld[r].in_reg)]))
7257 && ! reg_set_p (rld[r].reg_rtx, PATTERN (insn)))
7259 int nregno;
7260 int nnr;
7261 rtx in;
7262 bool piecemeal;
7264 if (REG_P (rld[r].in)
7265 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
7266 in = rld[r].in;
7267 else if (REG_P (rld[r].in_reg))
7268 in = rld[r].in_reg;
7269 else
7270 in = XEXP (rld[r].in_reg, 0);
7271 nregno = REGNO (in);
7273 nnr = (nregno >= FIRST_PSEUDO_REGISTER ? 1
7274 : hard_regno_nregs[nregno]
7275 [GET_MODE (rld[r].reg_rtx)]);
7277 reg_last_reload_reg[nregno] = rld[r].reg_rtx;
7279 piecemeal = (nregno < FIRST_PSEUDO_REGISTER
7280 && nr == nnr
7281 && inherit_piecemeal_p (r, nregno));
7283 if (nregno < FIRST_PSEUDO_REGISTER)
7284 for (k = 1; k < nnr; k++)
7285 reg_last_reload_reg[nregno + k]
7286 = (piecemeal
7287 ? regno_reg_rtx[REGNO (rld[r].reg_rtx) + k]
7288 : 0);
7290 /* Unless we inherited this reload, show we haven't
7291 recently done a store.
7292 Previous stores of inherited auto_inc expressions
7293 also have to be discarded. */
7294 if (! reload_inherited[r]
7295 || (rld[r].out && ! rld[r].out_reg))
7296 spill_reg_store[i] = 0;
7298 for (k = 0; k < nr; k++)
7300 CLEAR_HARD_REG_BIT (reg_reloaded_dead, i + k);
7301 reg_reloaded_contents[i + k]
7302 = (nregno >= FIRST_PSEUDO_REGISTER || !piecemeal
7303 ? nregno
7304 : nregno + k);
7305 reg_reloaded_insn[i + k] = insn;
7306 SET_HARD_REG_BIT (reg_reloaded_valid, i + k);
7307 if (HARD_REGNO_CALL_PART_CLOBBERED (i + k, GET_MODE (in)))
7308 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered, i + k);
7313 /* However, if part of the reload reaches the end, then we must
7314 invalidate the old info for the part that survives to the end. */
7315 else if (part_reaches_end)
7317 for (k = 0; k < nr; k++)
7318 if (reload_reg_reaches_end_p (i + k,
7319 rld[r].opnum,
7320 rld[r].when_needed))
7321 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
7325 /* The following if-statement was #if 0'd in 1.34 (or before...).
7326 It's reenabled in 1.35 because supposedly nothing else
7327 deals with this problem. */
7329 /* If a register gets output-reloaded from a non-spill register,
7330 that invalidates any previous reloaded copy of it.
7331 But forget_old_reloads_1 won't get to see it, because
7332 it thinks only about the original insn. So invalidate it here. */
7333 if (i < 0 && rld[r].out != 0
7334 && (REG_P (rld[r].out)
7335 || (MEM_P (rld[r].out)
7336 && REG_P (rld[r].out_reg))))
7338 rtx out = (REG_P (rld[r].out)
7339 ? rld[r].out : rld[r].out_reg);
7340 int nregno = REGNO (out);
7341 if (nregno >= FIRST_PSEUDO_REGISTER)
7343 rtx src_reg, store_insn = NULL_RTX;
7345 reg_last_reload_reg[nregno] = 0;
7347 /* If we can find a hard register that is stored, record
7348 the storing insn so that we may delete this insn with
7349 delete_output_reload. */
7350 src_reg = rld[r].reg_rtx;
7352 /* If this is an optional reload, try to find the source reg
7353 from an input reload. */
7354 if (! src_reg)
7356 rtx set = single_set (insn);
7357 if (set && SET_DEST (set) == rld[r].out)
7359 int k;
7361 src_reg = SET_SRC (set);
7362 store_insn = insn;
7363 for (k = 0; k < n_reloads; k++)
7365 if (rld[k].in == src_reg)
7367 src_reg = rld[k].reg_rtx;
7368 break;
7373 else
7374 store_insn = new_spill_reg_store[REGNO (src_reg)];
7375 if (src_reg && REG_P (src_reg)
7376 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
7378 int src_regno = REGNO (src_reg);
7379 int nr = hard_regno_nregs[src_regno][rld[r].mode];
7380 /* The place where to find a death note varies with
7381 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
7382 necessarily checked exactly in the code that moves
7383 notes, so just check both locations. */
7384 rtx note = find_regno_note (insn, REG_DEAD, src_regno);
7385 if (! note && store_insn)
7386 note = find_regno_note (store_insn, REG_DEAD, src_regno);
7387 while (nr-- > 0)
7389 spill_reg_store[src_regno + nr] = store_insn;
7390 spill_reg_stored_to[src_regno + nr] = out;
7391 reg_reloaded_contents[src_regno + nr] = nregno;
7392 reg_reloaded_insn[src_regno + nr] = store_insn;
7393 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + nr);
7394 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + nr);
7395 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + nr,
7396 GET_MODE (src_reg)))
7397 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
7398 src_regno + nr);
7399 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + nr);
7400 if (note)
7401 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
7402 else
7403 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
7405 reg_last_reload_reg[nregno] = src_reg;
7406 /* We have to set reg_has_output_reload here, or else
7407 forget_old_reloads_1 will clear reg_last_reload_reg
7408 right away. */
7409 reg_has_output_reload[nregno] = 1;
7412 else
7414 int num_regs = hard_regno_nregs[nregno][GET_MODE (rld[r].out)];
7416 while (num_regs-- > 0)
7417 reg_last_reload_reg[nregno + num_regs] = 0;
7421 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
7424 /* Emit code to perform a reload from IN (which may be a reload register) to
7425 OUT (which may also be a reload register). IN or OUT is from operand
7426 OPNUM with reload type TYPE.
7428 Returns first insn emitted. */
7430 static rtx
7431 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
7433 rtx last = get_last_insn ();
7434 rtx tem;
7436 /* If IN is a paradoxical SUBREG, remove it and try to put the
7437 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
7438 if (GET_CODE (in) == SUBREG
7439 && (GET_MODE_SIZE (GET_MODE (in))
7440 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
7441 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (in)), out)) != 0)
7442 in = SUBREG_REG (in), out = tem;
7443 else if (GET_CODE (out) == SUBREG
7444 && (GET_MODE_SIZE (GET_MODE (out))
7445 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
7446 && (tem = gen_lowpart_common (GET_MODE (SUBREG_REG (out)), in)) != 0)
7447 out = SUBREG_REG (out), in = tem;
7449 /* How to do this reload can get quite tricky. Normally, we are being
7450 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
7451 register that didn't get a hard register. In that case we can just
7452 call emit_move_insn.
7454 We can also be asked to reload a PLUS that adds a register or a MEM to
7455 another register, constant or MEM. This can occur during frame pointer
7456 elimination and while reloading addresses. This case is handled by
7457 trying to emit a single insn to perform the add. If it is not valid,
7458 we use a two insn sequence.
7460 Finally, we could be called to handle an 'o' constraint by putting
7461 an address into a register. In that case, we first try to do this
7462 with a named pattern of "reload_load_address". If no such pattern
7463 exists, we just emit a SET insn and hope for the best (it will normally
7464 be valid on machines that use 'o').
7466 This entire process is made complex because reload will never
7467 process the insns we generate here and so we must ensure that
7468 they will fit their constraints and also by the fact that parts of
7469 IN might be being reloaded separately and replaced with spill registers.
7470 Because of this, we are, in some sense, just guessing the right approach
7471 here. The one listed above seems to work.
7473 ??? At some point, this whole thing needs to be rethought. */
7475 if (GET_CODE (in) == PLUS
7476 && (REG_P (XEXP (in, 0))
7477 || GET_CODE (XEXP (in, 0)) == SUBREG
7478 || MEM_P (XEXP (in, 0)))
7479 && (REG_P (XEXP (in, 1))
7480 || GET_CODE (XEXP (in, 1)) == SUBREG
7481 || CONSTANT_P (XEXP (in, 1))
7482 || MEM_P (XEXP (in, 1))))
7484 /* We need to compute the sum of a register or a MEM and another
7485 register, constant, or MEM, and put it into the reload
7486 register. The best possible way of doing this is if the machine
7487 has a three-operand ADD insn that accepts the required operands.
7489 The simplest approach is to try to generate such an insn and see if it
7490 is recognized and matches its constraints. If so, it can be used.
7492 It might be better not to actually emit the insn unless it is valid,
7493 but we need to pass the insn as an operand to `recog' and
7494 `extract_insn' and it is simpler to emit and then delete the insn if
7495 not valid than to dummy things up. */
7497 rtx op0, op1, tem, insn;
7498 int code;
7500 op0 = find_replacement (&XEXP (in, 0));
7501 op1 = find_replacement (&XEXP (in, 1));
7503 /* Since constraint checking is strict, commutativity won't be
7504 checked, so we need to do that here to avoid spurious failure
7505 if the add instruction is two-address and the second operand
7506 of the add is the same as the reload reg, which is frequently
7507 the case. If the insn would be A = B + A, rearrange it so
7508 it will be A = A + B as constrain_operands expects. */
7510 if (REG_P (XEXP (in, 1))
7511 && REGNO (out) == REGNO (XEXP (in, 1)))
7512 tem = op0, op0 = op1, op1 = tem;
7514 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
7515 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
7517 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
7518 code = recog_memoized (insn);
7520 if (code >= 0)
7522 extract_insn (insn);
7523 /* We want constrain operands to treat this insn strictly in
7524 its validity determination, i.e., the way it would after reload
7525 has completed. */
7526 if (constrain_operands (1))
7527 return insn;
7530 delete_insns_since (last);
7532 /* If that failed, we must use a conservative two-insn sequence.
7534 Use a move to copy one operand into the reload register. Prefer
7535 to reload a constant, MEM or pseudo since the move patterns can
7536 handle an arbitrary operand. If OP1 is not a constant, MEM or
7537 pseudo and OP1 is not a valid operand for an add instruction, then
7538 reload OP1.
7540 After reloading one of the operands into the reload register, add
7541 the reload register to the output register.
7543 If there is another way to do this for a specific machine, a
7544 DEFINE_PEEPHOLE should be specified that recognizes the sequence
7545 we emit below. */
7547 code = (int) add_optab->handlers[(int) GET_MODE (out)].insn_code;
7549 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
7550 || (REG_P (op1)
7551 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
7552 || (code != CODE_FOR_nothing
7553 && ! ((*insn_data[code].operand[2].predicate)
7554 (op1, insn_data[code].operand[2].mode))))
7555 tem = op0, op0 = op1, op1 = tem;
7557 gen_reload (out, op0, opnum, type);
7559 /* If OP0 and OP1 are the same, we can use OUT for OP1.
7560 This fixes a problem on the 32K where the stack pointer cannot
7561 be used as an operand of an add insn. */
7563 if (rtx_equal_p (op0, op1))
7564 op1 = out;
7566 insn = emit_insn (gen_add2_insn (out, op1));
7568 /* If that failed, copy the address register to the reload register.
7569 Then add the constant to the reload register. */
7571 code = recog_memoized (insn);
7573 if (code >= 0)
7575 extract_insn (insn);
7576 /* We want constrain operands to treat this insn strictly in
7577 its validity determination, i.e., the way it would after reload
7578 has completed. */
7579 if (constrain_operands (1))
7581 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
7582 REG_NOTES (insn)
7583 = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7584 return insn;
7588 delete_insns_since (last);
7590 gen_reload (out, op1, opnum, type);
7591 insn = emit_insn (gen_add2_insn (out, op0));
7592 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUIV, in, REG_NOTES (insn));
7595 #ifdef SECONDARY_MEMORY_NEEDED
7596 /* If we need a memory location to do the move, do it that way. */
7597 else if ((REG_P (in) || GET_CODE (in) == SUBREG)
7598 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
7599 && (REG_P (out) || GET_CODE (out) == SUBREG)
7600 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
7601 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
7602 REGNO_REG_CLASS (reg_or_subregno (out)),
7603 GET_MODE (out)))
7605 /* Get the memory to use and rewrite both registers to its mode. */
7606 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
7608 if (GET_MODE (loc) != GET_MODE (out))
7609 out = gen_rtx_REG (GET_MODE (loc), REGNO (out));
7611 if (GET_MODE (loc) != GET_MODE (in))
7612 in = gen_rtx_REG (GET_MODE (loc), REGNO (in));
7614 gen_reload (loc, in, opnum, type);
7615 gen_reload (out, loc, opnum, type);
7617 #endif
7619 /* If IN is a simple operand, use gen_move_insn. */
7620 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
7621 emit_insn (gen_move_insn (out, in));
7623 #ifdef HAVE_reload_load_address
7624 else if (HAVE_reload_load_address)
7625 emit_insn (gen_reload_load_address (out, in));
7626 #endif
7628 /* Otherwise, just write (set OUT IN) and hope for the best. */
7629 else
7630 emit_insn (gen_rtx_SET (VOIDmode, out, in));
7632 /* Return the first insn emitted.
7633 We can not just return get_last_insn, because there may have
7634 been multiple instructions emitted. Also note that gen_move_insn may
7635 emit more than one insn itself, so we can not assume that there is one
7636 insn emitted per emit_insn_before call. */
7638 return last ? NEXT_INSN (last) : get_insns ();
7641 /* Delete a previously made output-reload whose result we now believe
7642 is not needed. First we double-check.
7644 INSN is the insn now being processed.
7645 LAST_RELOAD_REG is the hard register number for which we want to delete
7646 the last output reload.
7647 J is the reload-number that originally used REG. The caller has made
7648 certain that reload J doesn't use REG any longer for input. */
7650 static void
7651 delete_output_reload (rtx insn, int j, int last_reload_reg)
7653 rtx output_reload_insn = spill_reg_store[last_reload_reg];
7654 rtx reg = spill_reg_stored_to[last_reload_reg];
7655 int k;
7656 int n_occurrences;
7657 int n_inherited = 0;
7658 rtx i1;
7659 rtx substed;
7661 /* It is possible that this reload has been only used to set another reload
7662 we eliminated earlier and thus deleted this instruction too. */
7663 if (INSN_DELETED_P (output_reload_insn))
7664 return;
7666 /* Get the raw pseudo-register referred to. */
7668 while (GET_CODE (reg) == SUBREG)
7669 reg = SUBREG_REG (reg);
7670 substed = reg_equiv_memory_loc[REGNO (reg)];
7672 /* This is unsafe if the operand occurs more often in the current
7673 insn than it is inherited. */
7674 for (k = n_reloads - 1; k >= 0; k--)
7676 rtx reg2 = rld[k].in;
7677 if (! reg2)
7678 continue;
7679 if (MEM_P (reg2) || reload_override_in[k])
7680 reg2 = rld[k].in_reg;
7681 #ifdef AUTO_INC_DEC
7682 if (rld[k].out && ! rld[k].out_reg)
7683 reg2 = XEXP (rld[k].in_reg, 0);
7684 #endif
7685 while (GET_CODE (reg2) == SUBREG)
7686 reg2 = SUBREG_REG (reg2);
7687 if (rtx_equal_p (reg2, reg))
7689 if (reload_inherited[k] || reload_override_in[k] || k == j)
7691 n_inherited++;
7692 reg2 = rld[k].out_reg;
7693 if (! reg2)
7694 continue;
7695 while (GET_CODE (reg2) == SUBREG)
7696 reg2 = XEXP (reg2, 0);
7697 if (rtx_equal_p (reg2, reg))
7698 n_inherited++;
7700 else
7701 return;
7704 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
7705 if (substed)
7706 n_occurrences += count_occurrences (PATTERN (insn),
7707 eliminate_regs (substed, 0,
7708 NULL_RTX), 0);
7709 if (n_occurrences > n_inherited)
7710 return;
7712 /* If the pseudo-reg we are reloading is no longer referenced
7713 anywhere between the store into it and here,
7714 and we're within the same basic block, then the value can only
7715 pass through the reload reg and end up here.
7716 Otherwise, give up--return. */
7717 for (i1 = NEXT_INSN (output_reload_insn);
7718 i1 != insn; i1 = NEXT_INSN (i1))
7720 if (NOTE_INSN_BASIC_BLOCK_P (i1))
7721 return;
7722 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
7723 && reg_mentioned_p (reg, PATTERN (i1)))
7725 /* If this is USE in front of INSN, we only have to check that
7726 there are no more references than accounted for by inheritance. */
7727 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
7729 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
7730 i1 = NEXT_INSN (i1);
7732 if (n_occurrences <= n_inherited && i1 == insn)
7733 break;
7734 return;
7738 /* We will be deleting the insn. Remove the spill reg information. */
7739 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
7741 spill_reg_store[last_reload_reg + k] = 0;
7742 spill_reg_stored_to[last_reload_reg + k] = 0;
7745 /* The caller has already checked that REG dies or is set in INSN.
7746 It has also checked that we are optimizing, and thus some
7747 inaccuracies in the debugging information are acceptable.
7748 So we could just delete output_reload_insn. But in some cases
7749 we can improve the debugging information without sacrificing
7750 optimization - maybe even improving the code: See if the pseudo
7751 reg has been completely replaced with reload regs. If so, delete
7752 the store insn and forget we had a stack slot for the pseudo. */
7753 if (rld[j].out != rld[j].in
7754 && REG_N_DEATHS (REGNO (reg)) == 1
7755 && REG_N_SETS (REGNO (reg)) == 1
7756 && REG_BASIC_BLOCK (REGNO (reg)) >= 0
7757 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
7759 rtx i2;
7761 /* We know that it was used only between here and the beginning of
7762 the current basic block. (We also know that the last use before
7763 INSN was the output reload we are thinking of deleting, but never
7764 mind that.) Search that range; see if any ref remains. */
7765 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7767 rtx set = single_set (i2);
7769 /* Uses which just store in the pseudo don't count,
7770 since if they are the only uses, they are dead. */
7771 if (set != 0 && SET_DEST (set) == reg)
7772 continue;
7773 if (LABEL_P (i2)
7774 || JUMP_P (i2))
7775 break;
7776 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
7777 && reg_mentioned_p (reg, PATTERN (i2)))
7779 /* Some other ref remains; just delete the output reload we
7780 know to be dead. */
7781 delete_address_reloads (output_reload_insn, insn);
7782 delete_insn (output_reload_insn);
7783 return;
7787 /* Delete the now-dead stores into this pseudo. Note that this
7788 loop also takes care of deleting output_reload_insn. */
7789 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
7791 rtx set = single_set (i2);
7793 if (set != 0 && SET_DEST (set) == reg)
7795 delete_address_reloads (i2, insn);
7796 delete_insn (i2);
7798 if (LABEL_P (i2)
7799 || JUMP_P (i2))
7800 break;
7803 /* For the debugging info, say the pseudo lives in this reload reg. */
7804 reg_renumber[REGNO (reg)] = REGNO (rld[j].reg_rtx);
7805 alter_reg (REGNO (reg), -1);
7807 else
7809 delete_address_reloads (output_reload_insn, insn);
7810 delete_insn (output_reload_insn);
7814 /* We are going to delete DEAD_INSN. Recursively delete loads of
7815 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
7816 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
7817 static void
7818 delete_address_reloads (rtx dead_insn, rtx current_insn)
7820 rtx set = single_set (dead_insn);
7821 rtx set2, dst, prev, next;
7822 if (set)
7824 rtx dst = SET_DEST (set);
7825 if (MEM_P (dst))
7826 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
7828 /* If we deleted the store from a reloaded post_{in,de}c expression,
7829 we can delete the matching adds. */
7830 prev = PREV_INSN (dead_insn);
7831 next = NEXT_INSN (dead_insn);
7832 if (! prev || ! next)
7833 return;
7834 set = single_set (next);
7835 set2 = single_set (prev);
7836 if (! set || ! set2
7837 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
7838 || GET_CODE (XEXP (SET_SRC (set), 1)) != CONST_INT
7839 || GET_CODE (XEXP (SET_SRC (set2), 1)) != CONST_INT)
7840 return;
7841 dst = SET_DEST (set);
7842 if (! rtx_equal_p (dst, SET_DEST (set2))
7843 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
7844 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
7845 || (INTVAL (XEXP (SET_SRC (set), 1))
7846 != -INTVAL (XEXP (SET_SRC (set2), 1))))
7847 return;
7848 delete_related_insns (prev);
7849 delete_related_insns (next);
7852 /* Subfunction of delete_address_reloads: process registers found in X. */
7853 static void
7854 delete_address_reloads_1 (rtx dead_insn, rtx x, rtx current_insn)
7856 rtx prev, set, dst, i2;
7857 int i, j;
7858 enum rtx_code code = GET_CODE (x);
7860 if (code != REG)
7862 const char *fmt = GET_RTX_FORMAT (code);
7863 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7865 if (fmt[i] == 'e')
7866 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
7867 else if (fmt[i] == 'E')
7869 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7870 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
7871 current_insn);
7874 return;
7877 if (spill_reg_order[REGNO (x)] < 0)
7878 return;
7880 /* Scan backwards for the insn that sets x. This might be a way back due
7881 to inheritance. */
7882 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
7884 code = GET_CODE (prev);
7885 if (code == CODE_LABEL || code == JUMP_INSN)
7886 return;
7887 if (!INSN_P (prev))
7888 continue;
7889 if (reg_set_p (x, PATTERN (prev)))
7890 break;
7891 if (reg_referenced_p (x, PATTERN (prev)))
7892 return;
7894 if (! prev || INSN_UID (prev) < reload_first_uid)
7895 return;
7896 /* Check that PREV only sets the reload register. */
7897 set = single_set (prev);
7898 if (! set)
7899 return;
7900 dst = SET_DEST (set);
7901 if (!REG_P (dst)
7902 || ! rtx_equal_p (dst, x))
7903 return;
7904 if (! reg_set_p (dst, PATTERN (dead_insn)))
7906 /* Check if DST was used in a later insn -
7907 it might have been inherited. */
7908 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
7910 if (LABEL_P (i2))
7911 break;
7912 if (! INSN_P (i2))
7913 continue;
7914 if (reg_referenced_p (dst, PATTERN (i2)))
7916 /* If there is a reference to the register in the current insn,
7917 it might be loaded in a non-inherited reload. If no other
7918 reload uses it, that means the register is set before
7919 referenced. */
7920 if (i2 == current_insn)
7922 for (j = n_reloads - 1; j >= 0; j--)
7923 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7924 || reload_override_in[j] == dst)
7925 return;
7926 for (j = n_reloads - 1; j >= 0; j--)
7927 if (rld[j].in && rld[j].reg_rtx == dst)
7928 break;
7929 if (j >= 0)
7930 break;
7932 return;
7934 if (JUMP_P (i2))
7935 break;
7936 /* If DST is still live at CURRENT_INSN, check if it is used for
7937 any reload. Note that even if CURRENT_INSN sets DST, we still
7938 have to check the reloads. */
7939 if (i2 == current_insn)
7941 for (j = n_reloads - 1; j >= 0; j--)
7942 if ((rld[j].reg_rtx == dst && reload_inherited[j])
7943 || reload_override_in[j] == dst)
7944 return;
7945 /* ??? We can't finish the loop here, because dst might be
7946 allocated to a pseudo in this block if no reload in this
7947 block needs any of the classes containing DST - see
7948 spill_hard_reg. There is no easy way to tell this, so we
7949 have to scan till the end of the basic block. */
7951 if (reg_set_p (dst, PATTERN (i2)))
7952 break;
7955 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
7956 reg_reloaded_contents[REGNO (dst)] = -1;
7957 delete_insn (prev);
7960 /* Output reload-insns to reload VALUE into RELOADREG.
7961 VALUE is an autoincrement or autodecrement RTX whose operand
7962 is a register or memory location;
7963 so reloading involves incrementing that location.
7964 IN is either identical to VALUE, or some cheaper place to reload from.
7966 INC_AMOUNT is the number to increment or decrement by (always positive).
7967 This cannot be deduced from VALUE.
7969 Return the instruction that stores into RELOADREG. */
7971 static rtx
7972 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
7974 /* REG or MEM to be copied and incremented. */
7975 rtx incloc = XEXP (value, 0);
7976 /* Nonzero if increment after copying. */
7977 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC);
7978 rtx last;
7979 rtx inc;
7980 rtx add_insn;
7981 int code;
7982 rtx store;
7983 rtx real_in = in == value ? XEXP (in, 0) : in;
7985 /* No hard register is equivalent to this register after
7986 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
7987 we could inc/dec that register as well (maybe even using it for
7988 the source), but I'm not sure it's worth worrying about. */
7989 if (REG_P (incloc))
7990 reg_last_reload_reg[REGNO (incloc)] = 0;
7992 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
7993 inc_amount = -inc_amount;
7995 inc = GEN_INT (inc_amount);
7997 /* If this is post-increment, first copy the location to the reload reg. */
7998 if (post && real_in != reloadreg)
7999 emit_insn (gen_move_insn (reloadreg, real_in));
8001 if (in == value)
8003 /* See if we can directly increment INCLOC. Use a method similar to
8004 that in gen_reload. */
8006 last = get_last_insn ();
8007 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
8008 gen_rtx_PLUS (GET_MODE (incloc),
8009 incloc, inc)));
8011 code = recog_memoized (add_insn);
8012 if (code >= 0)
8014 extract_insn (add_insn);
8015 if (constrain_operands (1))
8017 /* If this is a pre-increment and we have incremented the value
8018 where it lives, copy the incremented value to RELOADREG to
8019 be used as an address. */
8021 if (! post)
8022 emit_insn (gen_move_insn (reloadreg, incloc));
8024 return add_insn;
8027 delete_insns_since (last);
8030 /* If couldn't do the increment directly, must increment in RELOADREG.
8031 The way we do this depends on whether this is pre- or post-increment.
8032 For pre-increment, copy INCLOC to the reload register, increment it
8033 there, then save back. */
8035 if (! post)
8037 if (in != reloadreg)
8038 emit_insn (gen_move_insn (reloadreg, real_in));
8039 emit_insn (gen_add2_insn (reloadreg, inc));
8040 store = emit_insn (gen_move_insn (incloc, reloadreg));
8042 else
8044 /* Postincrement.
8045 Because this might be a jump insn or a compare, and because RELOADREG
8046 may not be available after the insn in an input reload, we must do
8047 the incrementation before the insn being reloaded for.
8049 We have already copied IN to RELOADREG. Increment the copy in
8050 RELOADREG, save that back, then decrement RELOADREG so it has
8051 the original value. */
8053 emit_insn (gen_add2_insn (reloadreg, inc));
8054 store = emit_insn (gen_move_insn (incloc, reloadreg));
8055 emit_insn (gen_add2_insn (reloadreg, GEN_INT (-inc_amount)));
8058 return store;
8061 #ifdef AUTO_INC_DEC
8062 static void
8063 add_auto_inc_notes (rtx insn, rtx x)
8065 enum rtx_code code = GET_CODE (x);
8066 const char *fmt;
8067 int i, j;
8069 if (code == MEM && auto_inc_p (XEXP (x, 0)))
8071 REG_NOTES (insn)
8072 = gen_rtx_EXPR_LIST (REG_INC, XEXP (XEXP (x, 0), 0), REG_NOTES (insn));
8073 return;
8076 /* Scan all the operand sub-expressions. */
8077 fmt = GET_RTX_FORMAT (code);
8078 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8080 if (fmt[i] == 'e')
8081 add_auto_inc_notes (insn, XEXP (x, i));
8082 else if (fmt[i] == 'E')
8083 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8084 add_auto_inc_notes (insn, XVECEXP (x, i, j));
8087 #endif
8089 /* Copy EH notes from an insn to its reloads. */
8090 static void
8091 copy_eh_notes (rtx insn, rtx x)
8093 rtx eh_note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
8094 if (eh_note)
8096 for (; x != 0; x = NEXT_INSN (x))
8098 if (may_trap_p (PATTERN (x)))
8099 REG_NOTES (x)
8100 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
8101 REG_NOTES (x));
8106 /* This is used by reload pass, that does emit some instructions after
8107 abnormal calls moving basic block end, but in fact it wants to emit
8108 them on the edge. Looks for abnormal call edges, find backward the
8109 proper call and fix the damage.
8111 Similar handle instructions throwing exceptions internally. */
8112 void
8113 fixup_abnormal_edges (void)
8115 bool inserted = false;
8116 basic_block bb;
8118 FOR_EACH_BB (bb)
8120 edge e;
8121 edge_iterator ei;
8123 /* Look for cases we are interested in - calls or instructions causing
8124 exceptions. */
8125 FOR_EACH_EDGE (e, ei, bb->succs)
8127 if (e->flags & EDGE_ABNORMAL_CALL)
8128 break;
8129 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH))
8130 == (EDGE_ABNORMAL | EDGE_EH))
8131 break;
8133 if (e && !CALL_P (BB_END (bb))
8134 && !can_throw_internal (BB_END (bb)))
8136 rtx insn;
8138 /* Get past the new insns generated. Allow notes, as the insns
8139 may be already deleted. */
8140 insn = BB_END (bb);
8141 while ((NONJUMP_INSN_P (insn) || NOTE_P (insn))
8142 && !can_throw_internal (insn)
8143 && insn != BB_HEAD (bb))
8144 insn = PREV_INSN (insn);
8146 if (CALL_P (insn) || can_throw_internal (insn))
8148 rtx stop, next;
8150 stop = NEXT_INSN (BB_END (bb));
8151 BB_END (bb) = insn;
8152 insn = NEXT_INSN (insn);
8154 FOR_EACH_EDGE (e, ei, bb->succs)
8155 if (e->flags & EDGE_FALLTHRU)
8156 break;
8158 while (insn && insn != stop)
8160 next = NEXT_INSN (insn);
8161 if (INSN_P (insn))
8163 delete_insn (insn);
8165 /* Sometimes there's still the return value USE.
8166 If it's placed after a trapping call (i.e. that
8167 call is the last insn anyway), we have no fallthru
8168 edge. Simply delete this use and don't try to insert
8169 on the non-existent edge. */
8170 if (GET_CODE (PATTERN (insn)) != USE)
8172 /* We're not deleting it, we're moving it. */
8173 INSN_DELETED_P (insn) = 0;
8174 PREV_INSN (insn) = NULL_RTX;
8175 NEXT_INSN (insn) = NULL_RTX;
8177 insert_insn_on_edge (insn, e);
8178 inserted = true;
8181 insn = next;
8185 /* It may be that we don't find any such trapping insn. In this
8186 case we discovered quite late that the insn that had been
8187 marked as can_throw_internal in fact couldn't trap at all.
8188 So we should in fact delete the EH edges out of the block. */
8189 else
8190 purge_dead_edges (bb);
8194 if (inserted)
8195 commit_edge_insertions ();
8197 #ifdef ENABLE_CHECKING
8198 /* Verify that we didn't turn one trapping insn into many, and that
8199 we found and corrected all of the problems wrt fixups on the
8200 fallthru edge. */
8201 verify_flow_info ();
8202 #endif