* tree-ssa-phiopt.c (conditional_replacement): Construct proper SSA
[official-gcc.git] / gcc / ggc-page.c
blob85b73adf8afb492aef6faf83f25679a16d7530e0
1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "toplev.h"
30 #include "flags.h"
31 #include "ggc.h"
32 #include "timevar.h"
33 #include "params.h"
34 #include "tree-flow.h"
35 #ifdef ENABLE_VALGRIND_CHECKING
36 # ifdef HAVE_VALGRIND_MEMCHECK_H
37 # include <valgrind/memcheck.h>
38 # elif defined HAVE_MEMCHECK_H
39 # include <memcheck.h>
40 # else
41 # include <valgrind.h>
42 # endif
43 #else
44 /* Avoid #ifdef:s when we can help it. */
45 #define VALGRIND_DISCARD(x)
46 #endif
48 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
49 file open. Prefer either to valloc. */
50 #ifdef HAVE_MMAP_ANON
51 # undef HAVE_MMAP_DEV_ZERO
53 # include <sys/mman.h>
54 # ifndef MAP_FAILED
55 # define MAP_FAILED -1
56 # endif
57 # if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
58 # define MAP_ANONYMOUS MAP_ANON
59 # endif
60 # define USING_MMAP
62 #endif
64 #ifdef HAVE_MMAP_DEV_ZERO
66 # include <sys/mman.h>
67 # ifndef MAP_FAILED
68 # define MAP_FAILED -1
69 # endif
70 # define USING_MMAP
72 #endif
74 #ifndef USING_MMAP
75 #define USING_MALLOC_PAGE_GROUPS
76 #endif
78 /* Strategy:
80 This garbage-collecting allocator allocates objects on one of a set
81 of pages. Each page can allocate objects of a single size only;
82 available sizes are powers of two starting at four bytes. The size
83 of an allocation request is rounded up to the next power of two
84 (`order'), and satisfied from the appropriate page.
86 Each page is recorded in a page-entry, which also maintains an
87 in-use bitmap of object positions on the page. This allows the
88 allocation state of a particular object to be flipped without
89 touching the page itself.
91 Each page-entry also has a context depth, which is used to track
92 pushing and popping of allocation contexts. Only objects allocated
93 in the current (highest-numbered) context may be collected.
95 Page entries are arranged in an array of singly-linked lists. The
96 array is indexed by the allocation size, in bits, of the pages on
97 it; i.e. all pages on a list allocate objects of the same size.
98 Pages are ordered on the list such that all non-full pages precede
99 all full pages, with non-full pages arranged in order of decreasing
100 context depth.
102 Empty pages (of all orders) are kept on a single page cache list,
103 and are considered first when new pages are required; they are
104 deallocated at the start of the next collection if they haven't
105 been recycled by then. */
107 /* Define GGC_DEBUG_LEVEL to print debugging information.
108 0: No debugging output.
109 1: GC statistics only.
110 2: Page-entry allocations/deallocations as well.
111 3: Object allocations as well.
112 4: Object marks as well. */
113 #define GGC_DEBUG_LEVEL (0)
115 #ifndef HOST_BITS_PER_PTR
116 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
117 #endif
120 /* A two-level tree is used to look up the page-entry for a given
121 pointer. Two chunks of the pointer's bits are extracted to index
122 the first and second levels of the tree, as follows:
124 HOST_PAGE_SIZE_BITS
125 32 | |
126 msb +----------------+----+------+------+ lsb
127 | | |
128 PAGE_L1_BITS |
130 PAGE_L2_BITS
132 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
133 pages are aligned on system page boundaries. The next most
134 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
135 index values in the lookup table, respectively.
137 For 32-bit architectures and the settings below, there are no
138 leftover bits. For architectures with wider pointers, the lookup
139 tree points to a list of pages, which must be scanned to find the
140 correct one. */
142 #define PAGE_L1_BITS (8)
143 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
144 #define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
145 #define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
147 #define LOOKUP_L1(p) \
148 (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
150 #define LOOKUP_L2(p) \
151 (((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
153 /* The number of objects per allocation page, for objects on a page of
154 the indicated ORDER. */
155 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
157 /* The number of objects in P. */
158 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
160 /* The size of an object on a page of the indicated ORDER. */
161 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
163 /* For speed, we avoid doing a general integer divide to locate the
164 offset in the allocation bitmap, by precalculating numbers M, S
165 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
166 within the page which is evenly divisible by the object size Z. */
167 #define DIV_MULT(ORDER) inverse_table[ORDER].mult
168 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
169 #define OFFSET_TO_BIT(OFFSET, ORDER) \
170 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
172 /* The number of extra orders, not corresponding to power-of-two sized
173 objects. */
175 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
177 #define RTL_SIZE(NSLOTS) \
178 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
180 #define TREE_EXP_SIZE(OPS) \
181 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
183 /* The Ith entry is the maximum size of an object to be stored in the
184 Ith extra order. Adding a new entry to this array is the *only*
185 thing you need to do to add a new special allocation size. */
187 static const size_t extra_order_size_table[] = {
188 sizeof (struct stmt_ann_d),
189 sizeof (struct tree_decl_non_common),
190 sizeof (struct tree_field_decl),
191 sizeof (struct tree_parm_decl),
192 sizeof (struct tree_var_decl),
193 sizeof (struct tree_list),
194 TREE_EXP_SIZE (2),
195 RTL_SIZE (2), /* MEM, PLUS, etc. */
196 RTL_SIZE (9), /* INSN */
199 /* The total number of orders. */
201 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
203 /* We use this structure to determine the alignment required for
204 allocations. For power-of-two sized allocations, that's not a
205 problem, but it does matter for odd-sized allocations. */
207 struct max_alignment {
208 char c;
209 union {
210 HOST_WIDEST_INT i;
211 long double d;
212 } u;
215 /* The biggest alignment required. */
217 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
219 /* Compute the smallest nonnegative number which when added to X gives
220 a multiple of F. */
222 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
224 /* Compute the smallest multiple of F that is >= X. */
226 #define ROUND_UP(x, f) (CEIL (x, f) * (f))
228 /* The Ith entry is the number of objects on a page or order I. */
230 static unsigned objects_per_page_table[NUM_ORDERS];
232 /* The Ith entry is the size of an object on a page of order I. */
234 static size_t object_size_table[NUM_ORDERS];
236 /* The Ith entry is a pair of numbers (mult, shift) such that
237 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
238 for all k evenly divisible by OBJECT_SIZE(I). */
240 static struct
242 size_t mult;
243 unsigned int shift;
245 inverse_table[NUM_ORDERS];
247 /* A page_entry records the status of an allocation page. This
248 structure is dynamically sized to fit the bitmap in_use_p. */
249 typedef struct page_entry
251 /* The next page-entry with objects of the same size, or NULL if
252 this is the last page-entry. */
253 struct page_entry *next;
255 /* The previous page-entry with objects of the same size, or NULL if
256 this is the first page-entry. The PREV pointer exists solely to
257 keep the cost of ggc_free manageable. */
258 struct page_entry *prev;
260 /* The number of bytes allocated. (This will always be a multiple
261 of the host system page size.) */
262 size_t bytes;
264 /* The address at which the memory is allocated. */
265 char *page;
267 #ifdef USING_MALLOC_PAGE_GROUPS
268 /* Back pointer to the page group this page came from. */
269 struct page_group *group;
270 #endif
272 /* This is the index in the by_depth varray where this page table
273 can be found. */
274 unsigned long index_by_depth;
276 /* Context depth of this page. */
277 unsigned short context_depth;
279 /* The number of free objects remaining on this page. */
280 unsigned short num_free_objects;
282 /* A likely candidate for the bit position of a free object for the
283 next allocation from this page. */
284 unsigned short next_bit_hint;
286 /* The lg of size of objects allocated from this page. */
287 unsigned char order;
289 /* A bit vector indicating whether or not objects are in use. The
290 Nth bit is one if the Nth object on this page is allocated. This
291 array is dynamically sized. */
292 unsigned long in_use_p[1];
293 } page_entry;
295 #ifdef USING_MALLOC_PAGE_GROUPS
296 /* A page_group describes a large allocation from malloc, from which
297 we parcel out aligned pages. */
298 typedef struct page_group
300 /* A linked list of all extant page groups. */
301 struct page_group *next;
303 /* The address we received from malloc. */
304 char *allocation;
306 /* The size of the block. */
307 size_t alloc_size;
309 /* A bitmask of pages in use. */
310 unsigned int in_use;
311 } page_group;
312 #endif
314 #if HOST_BITS_PER_PTR <= 32
316 /* On 32-bit hosts, we use a two level page table, as pictured above. */
317 typedef page_entry **page_table[PAGE_L1_SIZE];
319 #else
321 /* On 64-bit hosts, we use the same two level page tables plus a linked
322 list that disambiguates the top 32-bits. There will almost always be
323 exactly one entry in the list. */
324 typedef struct page_table_chain
326 struct page_table_chain *next;
327 size_t high_bits;
328 page_entry **table[PAGE_L1_SIZE];
329 } *page_table;
331 #endif
333 /* The rest of the global variables. */
334 static struct globals
336 /* The Nth element in this array is a page with objects of size 2^N.
337 If there are any pages with free objects, they will be at the
338 head of the list. NULL if there are no page-entries for this
339 object size. */
340 page_entry *pages[NUM_ORDERS];
342 /* The Nth element in this array is the last page with objects of
343 size 2^N. NULL if there are no page-entries for this object
344 size. */
345 page_entry *page_tails[NUM_ORDERS];
347 /* Lookup table for associating allocation pages with object addresses. */
348 page_table lookup;
350 /* The system's page size. */
351 size_t pagesize;
352 size_t lg_pagesize;
354 /* Bytes currently allocated. */
355 size_t allocated;
357 /* Bytes currently allocated at the end of the last collection. */
358 size_t allocated_last_gc;
360 /* Total amount of memory mapped. */
361 size_t bytes_mapped;
363 /* Bit N set if any allocations have been done at context depth N. */
364 unsigned long context_depth_allocations;
366 /* Bit N set if any collections have been done at context depth N. */
367 unsigned long context_depth_collections;
369 /* The current depth in the context stack. */
370 unsigned short context_depth;
372 /* A file descriptor open to /dev/zero for reading. */
373 #if defined (HAVE_MMAP_DEV_ZERO)
374 int dev_zero_fd;
375 #endif
377 /* A cache of free system pages. */
378 page_entry *free_pages;
380 #ifdef USING_MALLOC_PAGE_GROUPS
381 page_group *page_groups;
382 #endif
384 /* The file descriptor for debugging output. */
385 FILE *debug_file;
387 /* Current number of elements in use in depth below. */
388 unsigned int depth_in_use;
390 /* Maximum number of elements that can be used before resizing. */
391 unsigned int depth_max;
393 /* Each element of this arry is an index in by_depth where the given
394 depth starts. This structure is indexed by that given depth we
395 are interested in. */
396 unsigned int *depth;
398 /* Current number of elements in use in by_depth below. */
399 unsigned int by_depth_in_use;
401 /* Maximum number of elements that can be used before resizing. */
402 unsigned int by_depth_max;
404 /* Each element of this array is a pointer to a page_entry, all
405 page_entries can be found in here by increasing depth.
406 index_by_depth in the page_entry is the index into this data
407 structure where that page_entry can be found. This is used to
408 speed up finding all page_entries at a particular depth. */
409 page_entry **by_depth;
411 /* Each element is a pointer to the saved in_use_p bits, if any,
412 zero otherwise. We allocate them all together, to enable a
413 better runtime data access pattern. */
414 unsigned long **save_in_use;
416 #ifdef ENABLE_GC_ALWAYS_COLLECT
417 /* List of free objects to be verified as actually free on the
418 next collection. */
419 struct free_object
421 void *object;
422 struct free_object *next;
423 } *free_object_list;
424 #endif
426 #ifdef GATHER_STATISTICS
427 struct
429 /* Total memory allocated with ggc_alloc. */
430 unsigned long long total_allocated;
431 /* Total overhead for memory to be allocated with ggc_alloc. */
432 unsigned long long total_overhead;
434 /* Total allocations and overhead for sizes less than 32, 64 and 128.
435 These sizes are interesting because they are typical cache line
436 sizes. */
438 unsigned long long total_allocated_under32;
439 unsigned long long total_overhead_under32;
441 unsigned long long total_allocated_under64;
442 unsigned long long total_overhead_under64;
444 unsigned long long total_allocated_under128;
445 unsigned long long total_overhead_under128;
447 /* The allocations for each of the allocation orders. */
448 unsigned long long total_allocated_per_order[NUM_ORDERS];
450 /* The overhead for each of the allocation orders. */
451 unsigned long long total_overhead_per_order[NUM_ORDERS];
452 } stats;
453 #endif
454 } G;
456 /* The size in bytes required to maintain a bitmap for the objects
457 on a page-entry. */
458 #define BITMAP_SIZE(Num_objects) \
459 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
461 /* Allocate pages in chunks of this size, to throttle calls to memory
462 allocation routines. The first page is used, the rest go onto the
463 free list. This cannot be larger than HOST_BITS_PER_INT for the
464 in_use bitmask for page_group. Hosts that need a different value
465 can override this by defining GGC_QUIRE_SIZE explicitly. */
466 #ifndef GGC_QUIRE_SIZE
467 # ifdef USING_MMAP
468 # define GGC_QUIRE_SIZE 256
469 # else
470 # define GGC_QUIRE_SIZE 16
471 # endif
472 #endif
474 /* Initial guess as to how many page table entries we might need. */
475 #define INITIAL_PTE_COUNT 128
477 static int ggc_allocated_p (const void *);
478 static page_entry *lookup_page_table_entry (const void *);
479 static void set_page_table_entry (void *, page_entry *);
480 #ifdef USING_MMAP
481 static char *alloc_anon (char *, size_t);
482 #endif
483 #ifdef USING_MALLOC_PAGE_GROUPS
484 static size_t page_group_index (char *, char *);
485 static void set_page_group_in_use (page_group *, char *);
486 static void clear_page_group_in_use (page_group *, char *);
487 #endif
488 static struct page_entry * alloc_page (unsigned);
489 static void free_page (struct page_entry *);
490 static void release_pages (void);
491 static void clear_marks (void);
492 static void sweep_pages (void);
493 static void ggc_recalculate_in_use_p (page_entry *);
494 static void compute_inverse (unsigned);
495 static inline void adjust_depth (void);
496 static void move_ptes_to_front (int, int);
498 void debug_print_page_list (int);
499 static void push_depth (unsigned int);
500 static void push_by_depth (page_entry *, unsigned long *);
502 /* Push an entry onto G.depth. */
504 inline static void
505 push_depth (unsigned int i)
507 if (G.depth_in_use >= G.depth_max)
509 G.depth_max *= 2;
510 G.depth = xrealloc (G.depth, G.depth_max * sizeof (unsigned int));
512 G.depth[G.depth_in_use++] = i;
515 /* Push an entry onto G.by_depth and G.save_in_use. */
517 inline static void
518 push_by_depth (page_entry *p, unsigned long *s)
520 if (G.by_depth_in_use >= G.by_depth_max)
522 G.by_depth_max *= 2;
523 G.by_depth = xrealloc (G.by_depth,
524 G.by_depth_max * sizeof (page_entry *));
525 G.save_in_use = xrealloc (G.save_in_use,
526 G.by_depth_max * sizeof (unsigned long *));
528 G.by_depth[G.by_depth_in_use] = p;
529 G.save_in_use[G.by_depth_in_use++] = s;
532 #if (GCC_VERSION < 3001)
533 #define prefetch(X) ((void) X)
534 #else
535 #define prefetch(X) __builtin_prefetch (X)
536 #endif
538 #define save_in_use_p_i(__i) \
539 (G.save_in_use[__i])
540 #define save_in_use_p(__p) \
541 (save_in_use_p_i (__p->index_by_depth))
543 /* Returns nonzero if P was allocated in GC'able memory. */
545 static inline int
546 ggc_allocated_p (const void *p)
548 page_entry ***base;
549 size_t L1, L2;
551 #if HOST_BITS_PER_PTR <= 32
552 base = &G.lookup[0];
553 #else
554 page_table table = G.lookup;
555 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
556 while (1)
558 if (table == NULL)
559 return 0;
560 if (table->high_bits == high_bits)
561 break;
562 table = table->next;
564 base = &table->table[0];
565 #endif
567 /* Extract the level 1 and 2 indices. */
568 L1 = LOOKUP_L1 (p);
569 L2 = LOOKUP_L2 (p);
571 return base[L1] && base[L1][L2];
574 /* Traverse the page table and find the entry for a page.
575 Die (probably) if the object wasn't allocated via GC. */
577 static inline page_entry *
578 lookup_page_table_entry (const void *p)
580 page_entry ***base;
581 size_t L1, L2;
583 #if HOST_BITS_PER_PTR <= 32
584 base = &G.lookup[0];
585 #else
586 page_table table = G.lookup;
587 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
588 while (table->high_bits != high_bits)
589 table = table->next;
590 base = &table->table[0];
591 #endif
593 /* Extract the level 1 and 2 indices. */
594 L1 = LOOKUP_L1 (p);
595 L2 = LOOKUP_L2 (p);
597 return base[L1][L2];
600 /* Set the page table entry for a page. */
602 static void
603 set_page_table_entry (void *p, page_entry *entry)
605 page_entry ***base;
606 size_t L1, L2;
608 #if HOST_BITS_PER_PTR <= 32
609 base = &G.lookup[0];
610 #else
611 page_table table;
612 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
613 for (table = G.lookup; table; table = table->next)
614 if (table->high_bits == high_bits)
615 goto found;
617 /* Not found -- allocate a new table. */
618 table = xcalloc (1, sizeof(*table));
619 table->next = G.lookup;
620 table->high_bits = high_bits;
621 G.lookup = table;
622 found:
623 base = &table->table[0];
624 #endif
626 /* Extract the level 1 and 2 indices. */
627 L1 = LOOKUP_L1 (p);
628 L2 = LOOKUP_L2 (p);
630 if (base[L1] == NULL)
631 base[L1] = xcalloc (PAGE_L2_SIZE, sizeof (page_entry *));
633 base[L1][L2] = entry;
636 /* Prints the page-entry for object size ORDER, for debugging. */
638 void
639 debug_print_page_list (int order)
641 page_entry *p;
642 printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
643 (void *) G.page_tails[order]);
644 p = G.pages[order];
645 while (p != NULL)
647 printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
648 p->num_free_objects);
649 p = p->next;
651 printf ("NULL\n");
652 fflush (stdout);
655 #ifdef USING_MMAP
656 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
657 (if non-null). The ifdef structure here is intended to cause a
658 compile error unless exactly one of the HAVE_* is defined. */
660 static inline char *
661 alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size)
663 #ifdef HAVE_MMAP_ANON
664 char *page = mmap (pref, size, PROT_READ | PROT_WRITE,
665 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
666 #endif
667 #ifdef HAVE_MMAP_DEV_ZERO
668 char *page = mmap (pref, size, PROT_READ | PROT_WRITE,
669 MAP_PRIVATE, G.dev_zero_fd, 0);
670 #endif
672 if (page == (char *) MAP_FAILED)
674 perror ("virtual memory exhausted");
675 exit (FATAL_EXIT_CODE);
678 /* Remember that we allocated this memory. */
679 G.bytes_mapped += size;
681 /* Pretend we don't have access to the allocated pages. We'll enable
682 access to smaller pieces of the area in ggc_alloc. Discard the
683 handle to avoid handle leak. */
684 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (page, size));
686 return page;
688 #endif
689 #ifdef USING_MALLOC_PAGE_GROUPS
690 /* Compute the index for this page into the page group. */
692 static inline size_t
693 page_group_index (char *allocation, char *page)
695 return (size_t) (page - allocation) >> G.lg_pagesize;
698 /* Set and clear the in_use bit for this page in the page group. */
700 static inline void
701 set_page_group_in_use (page_group *group, char *page)
703 group->in_use |= 1 << page_group_index (group->allocation, page);
706 static inline void
707 clear_page_group_in_use (page_group *group, char *page)
709 group->in_use &= ~(1 << page_group_index (group->allocation, page));
711 #endif
713 /* Allocate a new page for allocating objects of size 2^ORDER,
714 and return an entry for it. The entry is not added to the
715 appropriate page_table list. */
717 static inline struct page_entry *
718 alloc_page (unsigned order)
720 struct page_entry *entry, *p, **pp;
721 char *page;
722 size_t num_objects;
723 size_t bitmap_size;
724 size_t page_entry_size;
725 size_t entry_size;
726 #ifdef USING_MALLOC_PAGE_GROUPS
727 page_group *group;
728 #endif
730 num_objects = OBJECTS_PER_PAGE (order);
731 bitmap_size = BITMAP_SIZE (num_objects + 1);
732 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
733 entry_size = num_objects * OBJECT_SIZE (order);
734 if (entry_size < G.pagesize)
735 entry_size = G.pagesize;
737 entry = NULL;
738 page = NULL;
740 /* Check the list of free pages for one we can use. */
741 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
742 if (p->bytes == entry_size)
743 break;
745 if (p != NULL)
747 /* Recycle the allocated memory from this page ... */
748 *pp = p->next;
749 page = p->page;
751 #ifdef USING_MALLOC_PAGE_GROUPS
752 group = p->group;
753 #endif
755 /* ... and, if possible, the page entry itself. */
756 if (p->order == order)
758 entry = p;
759 memset (entry, 0, page_entry_size);
761 else
762 free (p);
764 #ifdef USING_MMAP
765 else if (entry_size == G.pagesize)
767 /* We want just one page. Allocate a bunch of them and put the
768 extras on the freelist. (Can only do this optimization with
769 mmap for backing store.) */
770 struct page_entry *e, *f = G.free_pages;
771 int i;
773 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE);
775 /* This loop counts down so that the chain will be in ascending
776 memory order. */
777 for (i = GGC_QUIRE_SIZE - 1; i >= 1; i--)
779 e = xcalloc (1, page_entry_size);
780 e->order = order;
781 e->bytes = G.pagesize;
782 e->page = page + (i << G.lg_pagesize);
783 e->next = f;
784 f = e;
787 G.free_pages = f;
789 else
790 page = alloc_anon (NULL, entry_size);
791 #endif
792 #ifdef USING_MALLOC_PAGE_GROUPS
793 else
795 /* Allocate a large block of memory and serve out the aligned
796 pages therein. This results in much less memory wastage
797 than the traditional implementation of valloc. */
799 char *allocation, *a, *enda;
800 size_t alloc_size, head_slop, tail_slop;
801 int multiple_pages = (entry_size == G.pagesize);
803 if (multiple_pages)
804 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
805 else
806 alloc_size = entry_size + G.pagesize - 1;
807 allocation = xmalloc (alloc_size);
809 page = (char *) (((size_t) allocation + G.pagesize - 1) & -G.pagesize);
810 head_slop = page - allocation;
811 if (multiple_pages)
812 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
813 else
814 tail_slop = alloc_size - entry_size - head_slop;
815 enda = allocation + alloc_size - tail_slop;
817 /* We allocated N pages, which are likely not aligned, leaving
818 us with N-1 usable pages. We plan to place the page_group
819 structure somewhere in the slop. */
820 if (head_slop >= sizeof (page_group))
821 group = (page_group *)page - 1;
822 else
824 /* We magically got an aligned allocation. Too bad, we have
825 to waste a page anyway. */
826 if (tail_slop == 0)
828 enda -= G.pagesize;
829 tail_slop += G.pagesize;
831 gcc_assert (tail_slop >= sizeof (page_group));
832 group = (page_group *)enda;
833 tail_slop -= sizeof (page_group);
836 /* Remember that we allocated this memory. */
837 group->next = G.page_groups;
838 group->allocation = allocation;
839 group->alloc_size = alloc_size;
840 group->in_use = 0;
841 G.page_groups = group;
842 G.bytes_mapped += alloc_size;
844 /* If we allocated multiple pages, put the rest on the free list. */
845 if (multiple_pages)
847 struct page_entry *e, *f = G.free_pages;
848 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
850 e = xcalloc (1, page_entry_size);
851 e->order = order;
852 e->bytes = G.pagesize;
853 e->page = a;
854 e->group = group;
855 e->next = f;
856 f = e;
858 G.free_pages = f;
861 #endif
863 if (entry == NULL)
864 entry = xcalloc (1, page_entry_size);
866 entry->bytes = entry_size;
867 entry->page = page;
868 entry->context_depth = G.context_depth;
869 entry->order = order;
870 entry->num_free_objects = num_objects;
871 entry->next_bit_hint = 1;
873 G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
875 #ifdef USING_MALLOC_PAGE_GROUPS
876 entry->group = group;
877 set_page_group_in_use (group, page);
878 #endif
880 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
881 increment the hint. */
882 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
883 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
885 set_page_table_entry (page, entry);
887 if (GGC_DEBUG_LEVEL >= 2)
888 fprintf (G.debug_file,
889 "Allocating page at %p, object size=%lu, data %p-%p\n",
890 (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
891 page + entry_size - 1);
893 return entry;
896 /* Adjust the size of G.depth so that no index greater than the one
897 used by the top of the G.by_depth is used. */
899 static inline void
900 adjust_depth (void)
902 page_entry *top;
904 if (G.by_depth_in_use)
906 top = G.by_depth[G.by_depth_in_use-1];
908 /* Peel back indices in depth that index into by_depth, so that
909 as new elements are added to by_depth, we note the indices
910 of those elements, if they are for new context depths. */
911 while (G.depth_in_use > (size_t)top->context_depth+1)
912 --G.depth_in_use;
916 /* For a page that is no longer needed, put it on the free page list. */
918 static void
919 free_page (page_entry *entry)
921 if (GGC_DEBUG_LEVEL >= 2)
922 fprintf (G.debug_file,
923 "Deallocating page at %p, data %p-%p\n", (void *) entry,
924 entry->page, entry->page + entry->bytes - 1);
926 /* Mark the page as inaccessible. Discard the handle to avoid handle
927 leak. */
928 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (entry->page, entry->bytes));
930 set_page_table_entry (entry->page, NULL);
932 #ifdef USING_MALLOC_PAGE_GROUPS
933 clear_page_group_in_use (entry->group, entry->page);
934 #endif
936 if (G.by_depth_in_use > 1)
938 page_entry *top = G.by_depth[G.by_depth_in_use-1];
939 int i = entry->index_by_depth;
941 /* We cannot free a page from a context deeper than the current
942 one. */
943 gcc_assert (entry->context_depth == top->context_depth);
945 /* Put top element into freed slot. */
946 G.by_depth[i] = top;
947 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
948 top->index_by_depth = i;
950 --G.by_depth_in_use;
952 adjust_depth ();
954 entry->next = G.free_pages;
955 G.free_pages = entry;
958 /* Release the free page cache to the system. */
960 static void
961 release_pages (void)
963 #ifdef USING_MMAP
964 page_entry *p, *next;
965 char *start;
966 size_t len;
968 /* Gather up adjacent pages so they are unmapped together. */
969 p = G.free_pages;
971 while (p)
973 start = p->page;
974 next = p->next;
975 len = p->bytes;
976 free (p);
977 p = next;
979 while (p && p->page == start + len)
981 next = p->next;
982 len += p->bytes;
983 free (p);
984 p = next;
987 munmap (start, len);
988 G.bytes_mapped -= len;
991 G.free_pages = NULL;
992 #endif
993 #ifdef USING_MALLOC_PAGE_GROUPS
994 page_entry **pp, *p;
995 page_group **gp, *g;
997 /* Remove all pages from free page groups from the list. */
998 pp = &G.free_pages;
999 while ((p = *pp) != NULL)
1000 if (p->group->in_use == 0)
1002 *pp = p->next;
1003 free (p);
1005 else
1006 pp = &p->next;
1008 /* Remove all free page groups, and release the storage. */
1009 gp = &G.page_groups;
1010 while ((g = *gp) != NULL)
1011 if (g->in_use == 0)
1013 *gp = g->next;
1014 G.bytes_mapped -= g->alloc_size;
1015 free (g->allocation);
1017 else
1018 gp = &g->next;
1019 #endif
1022 /* This table provides a fast way to determine ceil(log_2(size)) for
1023 allocation requests. The minimum allocation size is eight bytes. */
1025 static unsigned char size_lookup[257] =
1027 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1028 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1029 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1030 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1031 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1032 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1033 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1034 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1035 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1036 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1037 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1038 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1039 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1040 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1041 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1042 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1046 /* Typed allocation function. Does nothing special in this collector. */
1048 void *
1049 ggc_alloc_typed_stat (enum gt_types_enum type ATTRIBUTE_UNUSED, size_t size
1050 MEM_STAT_DECL)
1052 return ggc_alloc_stat (size PASS_MEM_STAT);
1055 /* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
1057 void *
1058 ggc_alloc_stat (size_t size MEM_STAT_DECL)
1060 size_t order, word, bit, object_offset, object_size;
1061 struct page_entry *entry;
1062 void *result;
1064 if (size <= 256)
1066 order = size_lookup[size];
1067 object_size = OBJECT_SIZE (order);
1069 else
1071 order = 9;
1072 while (size > (object_size = OBJECT_SIZE (order)))
1073 order++;
1076 /* If there are non-full pages for this size allocation, they are at
1077 the head of the list. */
1078 entry = G.pages[order];
1080 /* If there is no page for this object size, or all pages in this
1081 context are full, allocate a new page. */
1082 if (entry == NULL || entry->num_free_objects == 0)
1084 struct page_entry *new_entry;
1085 new_entry = alloc_page (order);
1087 new_entry->index_by_depth = G.by_depth_in_use;
1088 push_by_depth (new_entry, 0);
1090 /* We can skip context depths, if we do, make sure we go all the
1091 way to the new depth. */
1092 while (new_entry->context_depth >= G.depth_in_use)
1093 push_depth (G.by_depth_in_use-1);
1095 /* If this is the only entry, it's also the tail. If it is not
1096 the only entry, then we must update the PREV pointer of the
1097 ENTRY (G.pages[order]) to point to our new page entry. */
1098 if (entry == NULL)
1099 G.page_tails[order] = new_entry;
1100 else
1101 entry->prev = new_entry;
1103 /* Put new pages at the head of the page list. By definition the
1104 entry at the head of the list always has a NULL pointer. */
1105 new_entry->next = entry;
1106 new_entry->prev = NULL;
1107 entry = new_entry;
1108 G.pages[order] = new_entry;
1110 /* For a new page, we know the word and bit positions (in the
1111 in_use bitmap) of the first available object -- they're zero. */
1112 new_entry->next_bit_hint = 1;
1113 word = 0;
1114 bit = 0;
1115 object_offset = 0;
1117 else
1119 /* First try to use the hint left from the previous allocation
1120 to locate a clear bit in the in-use bitmap. We've made sure
1121 that the one-past-the-end bit is always set, so if the hint
1122 has run over, this test will fail. */
1123 unsigned hint = entry->next_bit_hint;
1124 word = hint / HOST_BITS_PER_LONG;
1125 bit = hint % HOST_BITS_PER_LONG;
1127 /* If the hint didn't work, scan the bitmap from the beginning. */
1128 if ((entry->in_use_p[word] >> bit) & 1)
1130 word = bit = 0;
1131 while (~entry->in_use_p[word] == 0)
1132 ++word;
1134 #if GCC_VERSION >= 3004
1135 bit = __builtin_ctzl (~entry->in_use_p[word]);
1136 #else
1137 while ((entry->in_use_p[word] >> bit) & 1)
1138 ++bit;
1139 #endif
1141 hint = word * HOST_BITS_PER_LONG + bit;
1144 /* Next time, try the next bit. */
1145 entry->next_bit_hint = hint + 1;
1147 object_offset = hint * object_size;
1150 /* Set the in-use bit. */
1151 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1153 /* Keep a running total of the number of free objects. If this page
1154 fills up, we may have to move it to the end of the list if the
1155 next page isn't full. If the next page is full, all subsequent
1156 pages are full, so there's no need to move it. */
1157 if (--entry->num_free_objects == 0
1158 && entry->next != NULL
1159 && entry->next->num_free_objects > 0)
1161 /* We have a new head for the list. */
1162 G.pages[order] = entry->next;
1164 /* We are moving ENTRY to the end of the page table list.
1165 The new page at the head of the list will have NULL in
1166 its PREV field and ENTRY will have NULL in its NEXT field. */
1167 entry->next->prev = NULL;
1168 entry->next = NULL;
1170 /* Append ENTRY to the tail of the list. */
1171 entry->prev = G.page_tails[order];
1172 G.page_tails[order]->next = entry;
1173 G.page_tails[order] = entry;
1176 /* Calculate the object's address. */
1177 result = entry->page + object_offset;
1178 #ifdef GATHER_STATISTICS
1179 ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
1180 result PASS_MEM_STAT);
1181 #endif
1183 #ifdef ENABLE_GC_CHECKING
1184 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1185 exact same semantics in presence of memory bugs, regardless of
1186 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1187 handle to avoid handle leak. */
1188 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result, object_size));
1190 /* `Poison' the entire allocated object, including any padding at
1191 the end. */
1192 memset (result, 0xaf, object_size);
1194 /* Make the bytes after the end of the object unaccessible. Discard the
1195 handle to avoid handle leak. */
1196 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS ((char *) result + size,
1197 object_size - size));
1198 #endif
1200 /* Tell Valgrind that the memory is there, but its content isn't
1201 defined. The bytes at the end of the object are still marked
1202 unaccessible. */
1203 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (result, size));
1205 /* Keep track of how many bytes are being allocated. This
1206 information is used in deciding when to collect. */
1207 G.allocated += object_size;
1209 /* For timevar statistics. */
1210 timevar_ggc_mem_total += object_size;
1212 #ifdef GATHER_STATISTICS
1214 size_t overhead = object_size - size;
1216 G.stats.total_overhead += overhead;
1217 G.stats.total_allocated += object_size;
1218 G.stats.total_overhead_per_order[order] += overhead;
1219 G.stats.total_allocated_per_order[order] += object_size;
1221 if (size <= 32)
1223 G.stats.total_overhead_under32 += overhead;
1224 G.stats.total_allocated_under32 += object_size;
1226 if (size <= 64)
1228 G.stats.total_overhead_under64 += overhead;
1229 G.stats.total_allocated_under64 += object_size;
1231 if (size <= 128)
1233 G.stats.total_overhead_under128 += overhead;
1234 G.stats.total_allocated_under128 += object_size;
1237 #endif
1239 if (GGC_DEBUG_LEVEL >= 3)
1240 fprintf (G.debug_file,
1241 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
1242 (unsigned long) size, (unsigned long) object_size, result,
1243 (void *) entry);
1245 return result;
1248 /* If P is not marked, marks it and return false. Otherwise return true.
1249 P must have been allocated by the GC allocator; it mustn't point to
1250 static objects, stack variables, or memory allocated with malloc. */
1253 ggc_set_mark (const void *p)
1255 page_entry *entry;
1256 unsigned bit, word;
1257 unsigned long mask;
1259 /* Look up the page on which the object is alloced. If the object
1260 wasn't allocated by the collector, we'll probably die. */
1261 entry = lookup_page_table_entry (p);
1262 gcc_assert (entry);
1264 /* Calculate the index of the object on the page; this is its bit
1265 position in the in_use_p bitmap. */
1266 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1267 word = bit / HOST_BITS_PER_LONG;
1268 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1270 /* If the bit was previously set, skip it. */
1271 if (entry->in_use_p[word] & mask)
1272 return 1;
1274 /* Otherwise set it, and decrement the free object count. */
1275 entry->in_use_p[word] |= mask;
1276 entry->num_free_objects -= 1;
1278 if (GGC_DEBUG_LEVEL >= 4)
1279 fprintf (G.debug_file, "Marking %p\n", p);
1281 return 0;
1284 /* Return 1 if P has been marked, zero otherwise.
1285 P must have been allocated by the GC allocator; it mustn't point to
1286 static objects, stack variables, or memory allocated with malloc. */
1289 ggc_marked_p (const void *p)
1291 page_entry *entry;
1292 unsigned bit, word;
1293 unsigned long mask;
1295 /* Look up the page on which the object is alloced. If the object
1296 wasn't allocated by the collector, we'll probably die. */
1297 entry = lookup_page_table_entry (p);
1298 gcc_assert (entry);
1300 /* Calculate the index of the object on the page; this is its bit
1301 position in the in_use_p bitmap. */
1302 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1303 word = bit / HOST_BITS_PER_LONG;
1304 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1306 return (entry->in_use_p[word] & mask) != 0;
1309 /* Return the size of the gc-able object P. */
1311 size_t
1312 ggc_get_size (const void *p)
1314 page_entry *pe = lookup_page_table_entry (p);
1315 return OBJECT_SIZE (pe->order);
1318 /* Release the memory for object P. */
1320 void
1321 ggc_free (void *p)
1323 page_entry *pe = lookup_page_table_entry (p);
1324 size_t order = pe->order;
1325 size_t size = OBJECT_SIZE (order);
1327 #ifdef GATHER_STATISTICS
1328 ggc_free_overhead (p);
1329 #endif
1331 if (GGC_DEBUG_LEVEL >= 3)
1332 fprintf (G.debug_file,
1333 "Freeing object, actual size=%lu, at %p on %p\n",
1334 (unsigned long) size, p, (void *) pe);
1336 #ifdef ENABLE_GC_CHECKING
1337 /* Poison the data, to indicate the data is garbage. */
1338 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (p, size));
1339 memset (p, 0xa5, size);
1340 #endif
1341 /* Let valgrind know the object is free. */
1342 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (p, size));
1344 #ifdef ENABLE_GC_ALWAYS_COLLECT
1345 /* In the completely-anal-checking mode, we do *not* immediately free
1346 the data, but instead verify that the data is *actually* not
1347 reachable the next time we collect. */
1349 struct free_object *fo = xmalloc (sizeof (struct free_object));
1350 fo->object = p;
1351 fo->next = G.free_object_list;
1352 G.free_object_list = fo;
1354 #else
1356 unsigned int bit_offset, word, bit;
1358 G.allocated -= size;
1360 /* Mark the object not-in-use. */
1361 bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
1362 word = bit_offset / HOST_BITS_PER_LONG;
1363 bit = bit_offset % HOST_BITS_PER_LONG;
1364 pe->in_use_p[word] &= ~(1UL << bit);
1366 if (pe->num_free_objects++ == 0)
1368 page_entry *p, *q;
1370 /* If the page is completely full, then it's supposed to
1371 be after all pages that aren't. Since we've freed one
1372 object from a page that was full, we need to move the
1373 page to the head of the list.
1375 PE is the node we want to move. Q is the previous node
1376 and P is the next node in the list. */
1377 q = pe->prev;
1378 if (q && q->num_free_objects == 0)
1380 p = pe->next;
1382 q->next = p;
1384 /* If PE was at the end of the list, then Q becomes the
1385 new end of the list. If PE was not the end of the
1386 list, then we need to update the PREV field for P. */
1387 if (!p)
1388 G.page_tails[order] = q;
1389 else
1390 p->prev = q;
1392 /* Move PE to the head of the list. */
1393 pe->next = G.pages[order];
1394 pe->prev = NULL;
1395 G.pages[order]->prev = pe;
1396 G.pages[order] = pe;
1399 /* Reset the hint bit to point to the only free object. */
1400 pe->next_bit_hint = bit_offset;
1403 #endif
1406 /* Subroutine of init_ggc which computes the pair of numbers used to
1407 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1409 This algorithm is taken from Granlund and Montgomery's paper
1410 "Division by Invariant Integers using Multiplication"
1411 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1412 constants). */
1414 static void
1415 compute_inverse (unsigned order)
1417 size_t size, inv;
1418 unsigned int e;
1420 size = OBJECT_SIZE (order);
1421 e = 0;
1422 while (size % 2 == 0)
1424 e++;
1425 size >>= 1;
1428 inv = size;
1429 while (inv * size != 1)
1430 inv = inv * (2 - inv*size);
1432 DIV_MULT (order) = inv;
1433 DIV_SHIFT (order) = e;
1436 /* Initialize the ggc-mmap allocator. */
1437 void
1438 init_ggc (void)
1440 unsigned order;
1442 G.pagesize = getpagesize();
1443 G.lg_pagesize = exact_log2 (G.pagesize);
1445 #ifdef HAVE_MMAP_DEV_ZERO
1446 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1447 if (G.dev_zero_fd == -1)
1448 internal_error ("open /dev/zero: %m");
1449 #endif
1451 #if 0
1452 G.debug_file = fopen ("ggc-mmap.debug", "w");
1453 #else
1454 G.debug_file = stdout;
1455 #endif
1457 #ifdef USING_MMAP
1458 /* StunOS has an amazing off-by-one error for the first mmap allocation
1459 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1460 believe, is an unaligned page allocation, which would cause us to
1461 hork badly if we tried to use it. */
1463 char *p = alloc_anon (NULL, G.pagesize);
1464 struct page_entry *e;
1465 if ((size_t)p & (G.pagesize - 1))
1467 /* How losing. Discard this one and try another. If we still
1468 can't get something useful, give up. */
1470 p = alloc_anon (NULL, G.pagesize);
1471 gcc_assert (!((size_t)p & (G.pagesize - 1)));
1474 /* We have a good page, might as well hold onto it... */
1475 e = xcalloc (1, sizeof (struct page_entry));
1476 e->bytes = G.pagesize;
1477 e->page = p;
1478 e->next = G.free_pages;
1479 G.free_pages = e;
1481 #endif
1483 /* Initialize the object size table. */
1484 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1485 object_size_table[order] = (size_t) 1 << order;
1486 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1488 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1490 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1491 so that we're sure of getting aligned memory. */
1492 s = ROUND_UP (s, MAX_ALIGNMENT);
1493 object_size_table[order] = s;
1496 /* Initialize the objects-per-page and inverse tables. */
1497 for (order = 0; order < NUM_ORDERS; ++order)
1499 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1500 if (objects_per_page_table[order] == 0)
1501 objects_per_page_table[order] = 1;
1502 compute_inverse (order);
1505 /* Reset the size_lookup array to put appropriately sized objects in
1506 the special orders. All objects bigger than the previous power
1507 of two, but no greater than the special size, should go in the
1508 new order. */
1509 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1511 int o;
1512 int i;
1514 o = size_lookup[OBJECT_SIZE (order)];
1515 for (i = OBJECT_SIZE (order); size_lookup [i] == o; --i)
1516 size_lookup[i] = order;
1519 G.depth_in_use = 0;
1520 G.depth_max = 10;
1521 G.depth = xmalloc (G.depth_max * sizeof (unsigned int));
1523 G.by_depth_in_use = 0;
1524 G.by_depth_max = INITIAL_PTE_COUNT;
1525 G.by_depth = xmalloc (G.by_depth_max * sizeof (page_entry *));
1526 G.save_in_use = xmalloc (G.by_depth_max * sizeof (unsigned long *));
1529 /* Start a new GGC zone. */
1531 struct alloc_zone *
1532 new_ggc_zone (const char *name ATTRIBUTE_UNUSED)
1534 return NULL;
1537 /* Destroy a GGC zone. */
1538 void
1539 destroy_ggc_zone (struct alloc_zone *zone ATTRIBUTE_UNUSED)
1543 /* Increment the `GC context'. Objects allocated in an outer context
1544 are never freed, eliminating the need to register their roots. */
1546 void
1547 ggc_push_context (void)
1549 ++G.context_depth;
1551 /* Die on wrap. */
1552 gcc_assert (G.context_depth < HOST_BITS_PER_LONG);
1555 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1556 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1558 static void
1559 ggc_recalculate_in_use_p (page_entry *p)
1561 unsigned int i;
1562 size_t num_objects;
1564 /* Because the past-the-end bit in in_use_p is always set, we
1565 pretend there is one additional object. */
1566 num_objects = OBJECTS_IN_PAGE (p) + 1;
1568 /* Reset the free object count. */
1569 p->num_free_objects = num_objects;
1571 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
1572 for (i = 0;
1573 i < CEIL (BITMAP_SIZE (num_objects),
1574 sizeof (*p->in_use_p));
1575 ++i)
1577 unsigned long j;
1579 /* Something is in use if it is marked, or if it was in use in a
1580 context further down the context stack. */
1581 p->in_use_p[i] |= save_in_use_p (p)[i];
1583 /* Decrement the free object count for every object allocated. */
1584 for (j = p->in_use_p[i]; j; j >>= 1)
1585 p->num_free_objects -= (j & 1);
1588 gcc_assert (p->num_free_objects < num_objects);
1591 /* Decrement the `GC context'. All objects allocated since the
1592 previous ggc_push_context are migrated to the outer context. */
1594 void
1595 ggc_pop_context (void)
1597 unsigned long omask;
1598 unsigned int depth, i, e;
1599 #ifdef ENABLE_CHECKING
1600 unsigned int order;
1601 #endif
1603 depth = --G.context_depth;
1604 omask = (unsigned long)1 << (depth + 1);
1606 if (!((G.context_depth_allocations | G.context_depth_collections) & omask))
1607 return;
1609 G.context_depth_allocations |= (G.context_depth_allocations & omask) >> 1;
1610 G.context_depth_allocations &= omask - 1;
1611 G.context_depth_collections &= omask - 1;
1613 /* The G.depth array is shortened so that the last index is the
1614 context_depth of the top element of by_depth. */
1615 if (depth+1 < G.depth_in_use)
1616 e = G.depth[depth+1];
1617 else
1618 e = G.by_depth_in_use;
1620 /* We might not have any PTEs of depth depth. */
1621 if (depth < G.depth_in_use)
1624 /* First we go through all the pages at depth depth to
1625 recalculate the in use bits. */
1626 for (i = G.depth[depth]; i < e; ++i)
1628 page_entry *p = G.by_depth[i];
1630 /* Check that all of the pages really are at the depth that
1631 we expect. */
1632 gcc_assert (p->context_depth == depth);
1633 gcc_assert (p->index_by_depth == i);
1635 prefetch (&save_in_use_p_i (i+8));
1636 prefetch (&save_in_use_p_i (i+16));
1637 if (save_in_use_p_i (i))
1639 p = G.by_depth[i];
1640 ggc_recalculate_in_use_p (p);
1641 free (save_in_use_p_i (i));
1642 save_in_use_p_i (i) = 0;
1647 /* Then, we reset all page_entries with a depth greater than depth
1648 to be at depth. */
1649 for (i = e; i < G.by_depth_in_use; ++i)
1651 page_entry *p = G.by_depth[i];
1653 /* Check that all of the pages really are at the depth we
1654 expect. */
1655 gcc_assert (p->context_depth > depth);
1656 gcc_assert (p->index_by_depth == i);
1657 p->context_depth = depth;
1660 adjust_depth ();
1662 #ifdef ENABLE_CHECKING
1663 for (order = 2; order < NUM_ORDERS; order++)
1665 page_entry *p;
1667 for (p = G.pages[order]; p != NULL; p = p->next)
1668 gcc_assert (p->context_depth < depth ||
1669 (p->context_depth == depth && !save_in_use_p (p)));
1671 #endif
1674 /* Unmark all objects. */
1676 static void
1677 clear_marks (void)
1679 unsigned order;
1681 for (order = 2; order < NUM_ORDERS; order++)
1683 page_entry *p;
1685 for (p = G.pages[order]; p != NULL; p = p->next)
1687 size_t num_objects = OBJECTS_IN_PAGE (p);
1688 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1690 /* The data should be page-aligned. */
1691 gcc_assert (!((size_t) p->page & (G.pagesize - 1)));
1693 /* Pages that aren't in the topmost context are not collected;
1694 nevertheless, we need their in-use bit vectors to store GC
1695 marks. So, back them up first. */
1696 if (p->context_depth < G.context_depth)
1698 if (! save_in_use_p (p))
1699 save_in_use_p (p) = xmalloc (bitmap_size);
1700 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
1703 /* Reset reset the number of free objects and clear the
1704 in-use bits. These will be adjusted by mark_obj. */
1705 p->num_free_objects = num_objects;
1706 memset (p->in_use_p, 0, bitmap_size);
1708 /* Make sure the one-past-the-end bit is always set. */
1709 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1710 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1715 /* Free all empty pages. Partially empty pages need no attention
1716 because the `mark' bit doubles as an `unused' bit. */
1718 static void
1719 sweep_pages (void)
1721 unsigned order;
1723 for (order = 2; order < NUM_ORDERS; order++)
1725 /* The last page-entry to consider, regardless of entries
1726 placed at the end of the list. */
1727 page_entry * const last = G.page_tails[order];
1729 size_t num_objects;
1730 size_t live_objects;
1731 page_entry *p, *previous;
1732 int done;
1734 p = G.pages[order];
1735 if (p == NULL)
1736 continue;
1738 previous = NULL;
1741 page_entry *next = p->next;
1743 /* Loop until all entries have been examined. */
1744 done = (p == last);
1746 num_objects = OBJECTS_IN_PAGE (p);
1748 /* Add all live objects on this page to the count of
1749 allocated memory. */
1750 live_objects = num_objects - p->num_free_objects;
1752 G.allocated += OBJECT_SIZE (order) * live_objects;
1754 /* Only objects on pages in the topmost context should get
1755 collected. */
1756 if (p->context_depth < G.context_depth)
1759 /* Remove the page if it's empty. */
1760 else if (live_objects == 0)
1762 /* If P was the first page in the list, then NEXT
1763 becomes the new first page in the list, otherwise
1764 splice P out of the forward pointers. */
1765 if (! previous)
1766 G.pages[order] = next;
1767 else
1768 previous->next = next;
1770 /* Splice P out of the back pointers too. */
1771 if (next)
1772 next->prev = previous;
1774 /* Are we removing the last element? */
1775 if (p == G.page_tails[order])
1776 G.page_tails[order] = previous;
1777 free_page (p);
1778 p = previous;
1781 /* If the page is full, move it to the end. */
1782 else if (p->num_free_objects == 0)
1784 /* Don't move it if it's already at the end. */
1785 if (p != G.page_tails[order])
1787 /* Move p to the end of the list. */
1788 p->next = NULL;
1789 p->prev = G.page_tails[order];
1790 G.page_tails[order]->next = p;
1792 /* Update the tail pointer... */
1793 G.page_tails[order] = p;
1795 /* ... and the head pointer, if necessary. */
1796 if (! previous)
1797 G.pages[order] = next;
1798 else
1799 previous->next = next;
1801 /* And update the backpointer in NEXT if necessary. */
1802 if (next)
1803 next->prev = previous;
1805 p = previous;
1809 /* If we've fallen through to here, it's a page in the
1810 topmost context that is neither full nor empty. Such a
1811 page must precede pages at lesser context depth in the
1812 list, so move it to the head. */
1813 else if (p != G.pages[order])
1815 previous->next = p->next;
1817 /* Update the backchain in the next node if it exists. */
1818 if (p->next)
1819 p->next->prev = previous;
1821 /* Move P to the head of the list. */
1822 p->next = G.pages[order];
1823 p->prev = NULL;
1824 G.pages[order]->prev = p;
1826 /* Update the head pointer. */
1827 G.pages[order] = p;
1829 /* Are we moving the last element? */
1830 if (G.page_tails[order] == p)
1831 G.page_tails[order] = previous;
1832 p = previous;
1835 previous = p;
1836 p = next;
1838 while (! done);
1840 /* Now, restore the in_use_p vectors for any pages from contexts
1841 other than the current one. */
1842 for (p = G.pages[order]; p; p = p->next)
1843 if (p->context_depth != G.context_depth)
1844 ggc_recalculate_in_use_p (p);
1848 #ifdef ENABLE_GC_CHECKING
1849 /* Clobber all free objects. */
1851 static void
1852 poison_pages (void)
1854 unsigned order;
1856 for (order = 2; order < NUM_ORDERS; order++)
1858 size_t size = OBJECT_SIZE (order);
1859 page_entry *p;
1861 for (p = G.pages[order]; p != NULL; p = p->next)
1863 size_t num_objects;
1864 size_t i;
1866 if (p->context_depth != G.context_depth)
1867 /* Since we don't do any collection for pages in pushed
1868 contexts, there's no need to do any poisoning. And
1869 besides, the IN_USE_P array isn't valid until we pop
1870 contexts. */
1871 continue;
1873 num_objects = OBJECTS_IN_PAGE (p);
1874 for (i = 0; i < num_objects; i++)
1876 size_t word, bit;
1877 word = i / HOST_BITS_PER_LONG;
1878 bit = i % HOST_BITS_PER_LONG;
1879 if (((p->in_use_p[word] >> bit) & 1) == 0)
1881 char *object = p->page + i * size;
1883 /* Keep poison-by-write when we expect to use Valgrind,
1884 so the exact same memory semantics is kept, in case
1885 there are memory errors. We override this request
1886 below. */
1887 VALGRIND_DISCARD (VALGRIND_MAKE_WRITABLE (object, size));
1888 memset (object, 0xa5, size);
1890 /* Drop the handle to avoid handle leak. */
1891 VALGRIND_DISCARD (VALGRIND_MAKE_NOACCESS (object, size));
1897 #else
1898 #define poison_pages()
1899 #endif
1901 #ifdef ENABLE_GC_ALWAYS_COLLECT
1902 /* Validate that the reportedly free objects actually are. */
1904 static void
1905 validate_free_objects (void)
1907 struct free_object *f, *next, *still_free = NULL;
1909 for (f = G.free_object_list; f ; f = next)
1911 page_entry *pe = lookup_page_table_entry (f->object);
1912 size_t bit, word;
1914 bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
1915 word = bit / HOST_BITS_PER_LONG;
1916 bit = bit % HOST_BITS_PER_LONG;
1917 next = f->next;
1919 /* Make certain it isn't visible from any root. Notice that we
1920 do this check before sweep_pages merges save_in_use_p. */
1921 gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
1923 /* If the object comes from an outer context, then retain the
1924 free_object entry, so that we can verify that the address
1925 isn't live on the stack in some outer context. */
1926 if (pe->context_depth != G.context_depth)
1928 f->next = still_free;
1929 still_free = f;
1931 else
1932 free (f);
1935 G.free_object_list = still_free;
1937 #else
1938 #define validate_free_objects()
1939 #endif
1941 /* Top level mark-and-sweep routine. */
1943 void
1944 ggc_collect (void)
1946 /* Avoid frequent unnecessary work by skipping collection if the
1947 total allocations haven't expanded much since the last
1948 collection. */
1949 float allocated_last_gc =
1950 MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
1952 float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
1954 if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
1955 return;
1957 timevar_push (TV_GC);
1958 if (!quiet_flag)
1959 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
1960 if (GGC_DEBUG_LEVEL >= 2)
1961 fprintf (G.debug_file, "BEGIN COLLECTING\n");
1963 /* Zero the total allocated bytes. This will be recalculated in the
1964 sweep phase. */
1965 G.allocated = 0;
1967 /* Release the pages we freed the last time we collected, but didn't
1968 reuse in the interim. */
1969 release_pages ();
1971 /* Indicate that we've seen collections at this context depth. */
1972 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
1974 clear_marks ();
1975 ggc_mark_roots ();
1976 #ifdef GATHER_STATISTICS
1977 ggc_prune_overhead_list ();
1978 #endif
1979 poison_pages ();
1980 validate_free_objects ();
1981 sweep_pages ();
1983 G.allocated_last_gc = G.allocated;
1985 timevar_pop (TV_GC);
1987 if (!quiet_flag)
1988 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
1989 if (GGC_DEBUG_LEVEL >= 2)
1990 fprintf (G.debug_file, "END COLLECTING\n");
1993 /* Print allocation statistics. */
1994 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
1995 ? (x) \
1996 : ((x) < 1024*1024*10 \
1997 ? (x) / 1024 \
1998 : (x) / (1024*1024))))
1999 #define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
2001 void
2002 ggc_print_statistics (void)
2004 struct ggc_statistics stats;
2005 unsigned int i;
2006 size_t total_overhead = 0;
2008 /* Clear the statistics. */
2009 memset (&stats, 0, sizeof (stats));
2011 /* Make sure collection will really occur. */
2012 G.allocated_last_gc = 0;
2014 /* Collect and print the statistics common across collectors. */
2015 ggc_print_common_statistics (stderr, &stats);
2017 /* Release free pages so that we will not count the bytes allocated
2018 there as part of the total allocated memory. */
2019 release_pages ();
2021 /* Collect some information about the various sizes of
2022 allocation. */
2023 fprintf (stderr,
2024 "Memory still allocated at the end of the compilation process\n");
2025 fprintf (stderr, "%-5s %10s %10s %10s\n",
2026 "Size", "Allocated", "Used", "Overhead");
2027 for (i = 0; i < NUM_ORDERS; ++i)
2029 page_entry *p;
2030 size_t allocated;
2031 size_t in_use;
2032 size_t overhead;
2034 /* Skip empty entries. */
2035 if (!G.pages[i])
2036 continue;
2038 overhead = allocated = in_use = 0;
2040 /* Figure out the total number of bytes allocated for objects of
2041 this size, and how many of them are actually in use. Also figure
2042 out how much memory the page table is using. */
2043 for (p = G.pages[i]; p; p = p->next)
2045 allocated += p->bytes;
2046 in_use +=
2047 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
2049 overhead += (sizeof (page_entry) - sizeof (long)
2050 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
2052 fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n",
2053 (unsigned long) OBJECT_SIZE (i),
2054 SCALE (allocated), STAT_LABEL (allocated),
2055 SCALE (in_use), STAT_LABEL (in_use),
2056 SCALE (overhead), STAT_LABEL (overhead));
2057 total_overhead += overhead;
2059 fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
2060 SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped),
2061 SCALE (G.allocated), STAT_LABEL(G.allocated),
2062 SCALE (total_overhead), STAT_LABEL (total_overhead));
2064 #ifdef GATHER_STATISTICS
2066 fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
2068 fprintf (stderr, "Total Overhead: %10lld\n",
2069 G.stats.total_overhead);
2070 fprintf (stderr, "Total Allocated: %10lld\n",
2071 G.stats.total_allocated);
2073 fprintf (stderr, "Total Overhead under 32B: %10lld\n",
2074 G.stats.total_overhead_under32);
2075 fprintf (stderr, "Total Allocated under 32B: %10lld\n",
2076 G.stats.total_allocated_under32);
2077 fprintf (stderr, "Total Overhead under 64B: %10lld\n",
2078 G.stats.total_overhead_under64);
2079 fprintf (stderr, "Total Allocated under 64B: %10lld\n",
2080 G.stats.total_allocated_under64);
2081 fprintf (stderr, "Total Overhead under 128B: %10lld\n",
2082 G.stats.total_overhead_under128);
2083 fprintf (stderr, "Total Allocated under 128B: %10lld\n",
2084 G.stats.total_allocated_under128);
2086 for (i = 0; i < NUM_ORDERS; i++)
2087 if (G.stats.total_allocated_per_order[i])
2089 fprintf (stderr, "Total Overhead page size %7d: %10lld\n",
2090 OBJECT_SIZE (i), G.stats.total_overhead_per_order[i]);
2091 fprintf (stderr, "Total Allocated page size %7d: %10lld\n",
2092 OBJECT_SIZE (i), G.stats.total_allocated_per_order[i]);
2095 #endif
2098 struct ggc_pch_data
2100 struct ggc_pch_ondisk
2102 unsigned totals[NUM_ORDERS];
2103 } d;
2104 size_t base[NUM_ORDERS];
2105 size_t written[NUM_ORDERS];
2108 struct ggc_pch_data *
2109 init_ggc_pch (void)
2111 return xcalloc (sizeof (struct ggc_pch_data), 1);
2114 void
2115 ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2116 size_t size, bool is_string ATTRIBUTE_UNUSED,
2117 enum gt_types_enum type ATTRIBUTE_UNUSED)
2119 unsigned order;
2121 if (size <= 256)
2122 order = size_lookup[size];
2123 else
2125 order = 9;
2126 while (size > OBJECT_SIZE (order))
2127 order++;
2130 d->d.totals[order]++;
2133 size_t
2134 ggc_pch_total_size (struct ggc_pch_data *d)
2136 size_t a = 0;
2137 unsigned i;
2139 for (i = 0; i < NUM_ORDERS; i++)
2140 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2141 return a;
2144 void
2145 ggc_pch_this_base (struct ggc_pch_data *d, void *base)
2147 size_t a = (size_t) base;
2148 unsigned i;
2150 for (i = 0; i < NUM_ORDERS; i++)
2152 d->base[i] = a;
2153 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2158 char *
2159 ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2160 size_t size, bool is_string ATTRIBUTE_UNUSED,
2161 enum gt_types_enum type ATTRIBUTE_UNUSED)
2163 unsigned order;
2164 char *result;
2166 if (size <= 256)
2167 order = size_lookup[size];
2168 else
2170 order = 9;
2171 while (size > OBJECT_SIZE (order))
2172 order++;
2175 result = (char *) d->base[order];
2176 d->base[order] += OBJECT_SIZE (order);
2177 return result;
2180 void
2181 ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2182 FILE *f ATTRIBUTE_UNUSED)
2184 /* Nothing to do. */
2187 void
2188 ggc_pch_write_object (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2189 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
2190 size_t size, bool is_string ATTRIBUTE_UNUSED)
2192 unsigned order;
2193 static const char emptyBytes[256];
2195 if (size <= 256)
2196 order = size_lookup[size];
2197 else
2199 order = 9;
2200 while (size > OBJECT_SIZE (order))
2201 order++;
2204 if (fwrite (x, size, 1, f) != 1)
2205 fatal_error ("can't write PCH file: %m");
2207 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2208 object out to OBJECT_SIZE(order). This happens for strings. */
2210 if (size != OBJECT_SIZE (order))
2212 unsigned padding = OBJECT_SIZE(order) - size;
2214 /* To speed small writes, we use a nulled-out array that's larger
2215 than most padding requests as the source for our null bytes. This
2216 permits us to do the padding with fwrite() rather than fseek(), and
2217 limits the chance the OS may try to flush any outstanding writes. */
2218 if (padding <= sizeof(emptyBytes))
2220 if (fwrite (emptyBytes, 1, padding, f) != padding)
2221 fatal_error ("can't write PCH file");
2223 else
2225 /* Larger than our buffer? Just default to fseek. */
2226 if (fseek (f, padding, SEEK_CUR) != 0)
2227 fatal_error ("can't write PCH file");
2231 d->written[order]++;
2232 if (d->written[order] == d->d.totals[order]
2233 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2234 G.pagesize),
2235 SEEK_CUR) != 0)
2236 fatal_error ("can't write PCH file: %m");
2239 void
2240 ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
2242 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
2243 fatal_error ("can't write PCH file: %m");
2244 free (d);
2247 /* Move the PCH PTE entries just added to the end of by_depth, to the
2248 front. */
2250 static void
2251 move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
2253 unsigned i;
2255 /* First, we swap the new entries to the front of the varrays. */
2256 page_entry **new_by_depth;
2257 unsigned long **new_save_in_use;
2259 new_by_depth = xmalloc (G.by_depth_max * sizeof (page_entry *));
2260 new_save_in_use = xmalloc (G.by_depth_max * sizeof (unsigned long *));
2262 memcpy (&new_by_depth[0],
2263 &G.by_depth[count_old_page_tables],
2264 count_new_page_tables * sizeof (void *));
2265 memcpy (&new_by_depth[count_new_page_tables],
2266 &G.by_depth[0],
2267 count_old_page_tables * sizeof (void *));
2268 memcpy (&new_save_in_use[0],
2269 &G.save_in_use[count_old_page_tables],
2270 count_new_page_tables * sizeof (void *));
2271 memcpy (&new_save_in_use[count_new_page_tables],
2272 &G.save_in_use[0],
2273 count_old_page_tables * sizeof (void *));
2275 free (G.by_depth);
2276 free (G.save_in_use);
2278 G.by_depth = new_by_depth;
2279 G.save_in_use = new_save_in_use;
2281 /* Now update all the index_by_depth fields. */
2282 for (i = G.by_depth_in_use; i > 0; --i)
2284 page_entry *p = G.by_depth[i-1];
2285 p->index_by_depth = i-1;
2288 /* And last, we update the depth pointers in G.depth. The first
2289 entry is already 0, and context 0 entries always start at index
2290 0, so there is nothing to update in the first slot. We need a
2291 second slot, only if we have old ptes, and if we do, they start
2292 at index count_new_page_tables. */
2293 if (count_old_page_tables)
2294 push_depth (count_new_page_tables);
2297 void
2298 ggc_pch_read (FILE *f, void *addr)
2300 struct ggc_pch_ondisk d;
2301 unsigned i;
2302 char *offs = addr;
2303 unsigned long count_old_page_tables;
2304 unsigned long count_new_page_tables;
2306 count_old_page_tables = G.by_depth_in_use;
2308 /* We've just read in a PCH file. So, every object that used to be
2309 allocated is now free. */
2310 clear_marks ();
2311 #ifdef ENABLE_GC_CHECKING
2312 poison_pages ();
2313 #endif
2315 /* No object read from a PCH file should ever be freed. So, set the
2316 context depth to 1, and set the depth of all the currently-allocated
2317 pages to be 1 too. PCH pages will have depth 0. */
2318 gcc_assert (!G.context_depth);
2319 G.context_depth = 1;
2320 for (i = 0; i < NUM_ORDERS; i++)
2322 page_entry *p;
2323 for (p = G.pages[i]; p != NULL; p = p->next)
2324 p->context_depth = G.context_depth;
2327 /* Allocate the appropriate page-table entries for the pages read from
2328 the PCH file. */
2329 if (fread (&d, sizeof (d), 1, f) != 1)
2330 fatal_error ("can't read PCH file: %m");
2332 for (i = 0; i < NUM_ORDERS; i++)
2334 struct page_entry *entry;
2335 char *pte;
2336 size_t bytes;
2337 size_t num_objs;
2338 size_t j;
2340 if (d.totals[i] == 0)
2341 continue;
2343 bytes = ROUND_UP (d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2344 num_objs = bytes / OBJECT_SIZE (i);
2345 entry = xcalloc (1, (sizeof (struct page_entry)
2346 - sizeof (long)
2347 + BITMAP_SIZE (num_objs + 1)));
2348 entry->bytes = bytes;
2349 entry->page = offs;
2350 entry->context_depth = 0;
2351 offs += bytes;
2352 entry->num_free_objects = 0;
2353 entry->order = i;
2355 for (j = 0;
2356 j + HOST_BITS_PER_LONG <= num_objs + 1;
2357 j += HOST_BITS_PER_LONG)
2358 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2359 for (; j < num_objs + 1; j++)
2360 entry->in_use_p[j / HOST_BITS_PER_LONG]
2361 |= 1L << (j % HOST_BITS_PER_LONG);
2363 for (pte = entry->page;
2364 pte < entry->page + entry->bytes;
2365 pte += G.pagesize)
2366 set_page_table_entry (pte, entry);
2368 if (G.page_tails[i] != NULL)
2369 G.page_tails[i]->next = entry;
2370 else
2371 G.pages[i] = entry;
2372 G.page_tails[i] = entry;
2374 /* We start off by just adding all the new information to the
2375 end of the varrays, later, we will move the new information
2376 to the front of the varrays, as the PCH page tables are at
2377 context 0. */
2378 push_by_depth (entry, 0);
2381 /* Now, we update the various data structures that speed page table
2382 handling. */
2383 count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2385 move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2387 /* Update the statistics. */
2388 G.allocated = G.allocated_last_gc = offs - (char *)addr;