* gcc/testsuite/ada/acats/run_acats: Missed in last commit.
[official-gcc.git] / gcc / cp / parser.c
blob265abdb81e42e60b38ce6b38d07d739a3496387c
1 /* C++ Parser.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
3 Written by Mark Mitchell <mark@codesourcery.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "dyn-string.h"
27 #include "varray.h"
28 #include "cpplib.h"
29 #include "tree.h"
30 #include "cp-tree.h"
31 #include "c-pragma.h"
32 #include "decl.h"
33 #include "flags.h"
34 #include "diagnostic.h"
35 #include "toplev.h"
36 #include "output.h"
37 #include "target.h"
40 /* The lexer. */
42 /* The cp_lexer_* routines mediate between the lexer proper (in libcpp
43 and c-lex.c) and the C++ parser. */
45 /* A C++ token. */
47 typedef struct cp_token GTY (())
49 /* The kind of token. */
50 ENUM_BITFIELD (cpp_ttype) type : 8;
51 /* If this token is a keyword, this value indicates which keyword.
52 Otherwise, this value is RID_MAX. */
53 ENUM_BITFIELD (rid) keyword : 8;
54 /* Token flags. */
55 unsigned char flags;
56 /* True if this token is from a system header. */
57 BOOL_BITFIELD in_system_header : 1;
58 /* True if this token is from a context where it is implicitly extern "C" */
59 BOOL_BITFIELD implicit_extern_c : 1;
60 /* The value associated with this token, if any. */
61 tree value;
62 /* The location at which this token was found. */
63 location_t location;
64 } cp_token;
66 /* We use a stack of token pointer for saving token sets. */
67 typedef struct cp_token *cp_token_position;
68 DEF_VEC_MALLOC_P (cp_token_position);
70 static const cp_token eof_token =
72 CPP_EOF, RID_MAX, 0, 0, 0, NULL_TREE,
73 #if USE_MAPPED_LOCATION
75 #else
76 {0, 0}
77 #endif
80 /* The cp_lexer structure represents the C++ lexer. It is responsible
81 for managing the token stream from the preprocessor and supplying
82 it to the parser. Tokens are never added to the cp_lexer after
83 it is created. */
85 typedef struct cp_lexer GTY (())
87 /* The memory allocated for the buffer. NULL if this lexer does not
88 own the token buffer. */
89 cp_token * GTY ((length ("%h.buffer_length"))) buffer;
90 /* If the lexer owns the buffer, this is the number of tokens in the
91 buffer. */
92 size_t buffer_length;
94 /* A pointer just past the last available token. The tokens
95 in this lexer are [buffer, last_token). */
96 cp_token_position GTY ((skip)) last_token;
98 /* The next available token. If NEXT_TOKEN is &eof_token, then there are
99 no more available tokens. */
100 cp_token_position GTY ((skip)) next_token;
102 /* A stack indicating positions at which cp_lexer_save_tokens was
103 called. The top entry is the most recent position at which we
104 began saving tokens. If the stack is non-empty, we are saving
105 tokens. */
106 VEC (cp_token_position) *GTY ((skip)) saved_tokens;
108 /* True if we should output debugging information. */
109 bool debugging_p;
111 /* The next lexer in a linked list of lexers. */
112 struct cp_lexer *next;
113 } cp_lexer;
115 /* cp_token_cache is a range of tokens. There is no need to represent
116 allocate heap memory for it, since tokens are never removed from the
117 lexer's array. There is also no need for the GC to walk through
118 a cp_token_cache, since everything in here is referenced through
119 a lexer. */
121 typedef struct cp_token_cache GTY(())
123 /* The beginning of the token range. */
124 cp_token * GTY((skip)) first;
126 /* Points immediately after the last token in the range. */
127 cp_token * GTY ((skip)) last;
128 } cp_token_cache;
130 /* Prototypes. */
132 static cp_lexer *cp_lexer_new_main
133 (void);
134 static cp_lexer *cp_lexer_new_from_tokens
135 (cp_token_cache *tokens);
136 static void cp_lexer_destroy
137 (cp_lexer *);
138 static int cp_lexer_saving_tokens
139 (const cp_lexer *);
140 static cp_token_position cp_lexer_token_position
141 (cp_lexer *, bool);
142 static cp_token *cp_lexer_token_at
143 (cp_lexer *, cp_token_position);
144 static void cp_lexer_get_preprocessor_token
145 (cp_lexer *, cp_token *);
146 static inline cp_token *cp_lexer_peek_token
147 (cp_lexer *);
148 static cp_token *cp_lexer_peek_nth_token
149 (cp_lexer *, size_t);
150 static inline bool cp_lexer_next_token_is
151 (cp_lexer *, enum cpp_ttype);
152 static bool cp_lexer_next_token_is_not
153 (cp_lexer *, enum cpp_ttype);
154 static bool cp_lexer_next_token_is_keyword
155 (cp_lexer *, enum rid);
156 static cp_token *cp_lexer_consume_token
157 (cp_lexer *);
158 static void cp_lexer_purge_token
159 (cp_lexer *);
160 static void cp_lexer_purge_tokens_after
161 (cp_lexer *, cp_token_position);
162 static void cp_lexer_handle_pragma
163 (cp_lexer *);
164 static void cp_lexer_save_tokens
165 (cp_lexer *);
166 static void cp_lexer_commit_tokens
167 (cp_lexer *);
168 static void cp_lexer_rollback_tokens
169 (cp_lexer *);
170 #ifdef ENABLE_CHECKING
171 static void cp_lexer_print_token
172 (FILE *, cp_token *);
173 static inline bool cp_lexer_debugging_p
174 (cp_lexer *);
175 static void cp_lexer_start_debugging
176 (cp_lexer *) ATTRIBUTE_UNUSED;
177 static void cp_lexer_stop_debugging
178 (cp_lexer *) ATTRIBUTE_UNUSED;
179 #else
180 /* If we define cp_lexer_debug_stream to NULL it will provoke warnings
181 about passing NULL to functions that require non-NULL arguments
182 (fputs, fprintf). It will never be used, so all we need is a value
183 of the right type that's guaranteed not to be NULL. */
184 #define cp_lexer_debug_stream stdout
185 #define cp_lexer_print_token(str, tok) (void) 0
186 #define cp_lexer_debugging_p(lexer) 0
187 #endif /* ENABLE_CHECKING */
189 static cp_token_cache *cp_token_cache_new
190 (cp_token *, cp_token *);
192 /* Manifest constants. */
193 #define CP_LEXER_BUFFER_SIZE 10000
194 #define CP_SAVED_TOKEN_STACK 5
196 /* A token type for keywords, as opposed to ordinary identifiers. */
197 #define CPP_KEYWORD ((enum cpp_ttype) (N_TTYPES + 1))
199 /* A token type for template-ids. If a template-id is processed while
200 parsing tentatively, it is replaced with a CPP_TEMPLATE_ID token;
201 the value of the CPP_TEMPLATE_ID is whatever was returned by
202 cp_parser_template_id. */
203 #define CPP_TEMPLATE_ID ((enum cpp_ttype) (CPP_KEYWORD + 1))
205 /* A token type for nested-name-specifiers. If a
206 nested-name-specifier is processed while parsing tentatively, it is
207 replaced with a CPP_NESTED_NAME_SPECIFIER token; the value of the
208 CPP_NESTED_NAME_SPECIFIER is whatever was returned by
209 cp_parser_nested_name_specifier_opt. */
210 #define CPP_NESTED_NAME_SPECIFIER ((enum cpp_ttype) (CPP_TEMPLATE_ID + 1))
212 /* A token type for tokens that are not tokens at all; these are used
213 to represent slots in the array where there used to be a token
214 that has now been deleted. */
215 #define CPP_PURGED ((enum cpp_ttype) (CPP_NESTED_NAME_SPECIFIER + 1))
217 /* The number of token types, including C++-specific ones. */
218 #define N_CP_TTYPES ((int) (CPP_PURGED + 1))
220 /* Variables. */
222 #ifdef ENABLE_CHECKING
223 /* The stream to which debugging output should be written. */
224 static FILE *cp_lexer_debug_stream;
225 #endif /* ENABLE_CHECKING */
227 /* Create a new main C++ lexer, the lexer that gets tokens from the
228 preprocessor. */
230 static cp_lexer *
231 cp_lexer_new_main (void)
233 cp_token first_token;
234 cp_lexer *lexer;
235 cp_token *pos;
236 size_t alloc;
237 size_t space;
238 cp_token *buffer;
240 /* Tell cpplib we want CPP_PRAGMA tokens. */
241 cpp_get_options (parse_in)->defer_pragmas = true;
243 /* Tell c_lex not to merge string constants. */
244 c_lex_return_raw_strings = true;
246 /* It's possible that lexing the first token will load a PCH file,
247 which is a GC collection point. So we have to grab the first
248 token before allocating any memory. */
249 cp_lexer_get_preprocessor_token (NULL, &first_token);
250 c_common_no_more_pch ();
252 /* Allocate the memory. */
253 lexer = GGC_CNEW (cp_lexer);
255 #ifdef ENABLE_CHECKING
256 /* Initially we are not debugging. */
257 lexer->debugging_p = false;
258 #endif /* ENABLE_CHECKING */
259 lexer->saved_tokens = VEC_alloc (cp_token_position, CP_SAVED_TOKEN_STACK);
261 /* Create the buffer. */
262 alloc = CP_LEXER_BUFFER_SIZE;
263 buffer = ggc_alloc (alloc * sizeof (cp_token));
265 /* Put the first token in the buffer. */
266 space = alloc;
267 pos = buffer;
268 *pos = first_token;
270 /* Get the remaining tokens from the preprocessor. */
271 while (pos->type != CPP_EOF)
273 pos++;
274 if (!--space)
276 space = alloc;
277 alloc *= 2;
278 buffer = ggc_realloc (buffer, alloc * sizeof (cp_token));
279 pos = buffer + space;
281 cp_lexer_get_preprocessor_token (lexer, pos);
283 lexer->buffer = buffer;
284 lexer->buffer_length = alloc - space;
285 lexer->last_token = pos;
286 lexer->next_token = lexer->buffer_length ? buffer : (cp_token *)&eof_token;
288 /* Pragma processing (via cpp_handle_deferred_pragma) may result in
289 direct calls to c_lex. Those callers all expect c_lex to do
290 string constant concatenation. */
291 c_lex_return_raw_strings = false;
293 gcc_assert (lexer->next_token->type != CPP_PURGED);
294 return lexer;
297 /* Create a new lexer whose token stream is primed with the tokens in
298 CACHE. When these tokens are exhausted, no new tokens will be read. */
300 static cp_lexer *
301 cp_lexer_new_from_tokens (cp_token_cache *cache)
303 cp_token *first = cache->first;
304 cp_token *last = cache->last;
305 cp_lexer *lexer = GGC_CNEW (cp_lexer);
307 /* We do not own the buffer. */
308 lexer->buffer = NULL;
309 lexer->buffer_length = 0;
310 lexer->next_token = first == last ? (cp_token *)&eof_token : first;
311 lexer->last_token = last;
313 lexer->saved_tokens = VEC_alloc (cp_token_position, CP_SAVED_TOKEN_STACK);
315 #ifdef ENABLE_CHECKING
316 /* Initially we are not debugging. */
317 lexer->debugging_p = false;
318 #endif
320 gcc_assert (lexer->next_token->type != CPP_PURGED);
321 return lexer;
324 /* Frees all resources associated with LEXER. */
326 static void
327 cp_lexer_destroy (cp_lexer *lexer)
329 if (lexer->buffer)
330 ggc_free (lexer->buffer);
331 VEC_free (cp_token_position, lexer->saved_tokens);
332 ggc_free (lexer);
335 /* Returns nonzero if debugging information should be output. */
337 #ifdef ENABLE_CHECKING
339 static inline bool
340 cp_lexer_debugging_p (cp_lexer *lexer)
342 return lexer->debugging_p;
345 #endif /* ENABLE_CHECKING */
347 static inline cp_token_position
348 cp_lexer_token_position (cp_lexer *lexer, bool previous_p)
350 gcc_assert (!previous_p || lexer->next_token != &eof_token);
352 return lexer->next_token - previous_p;
355 static inline cp_token *
356 cp_lexer_token_at (cp_lexer *lexer ATTRIBUTE_UNUSED, cp_token_position pos)
358 return pos;
361 /* nonzero if we are presently saving tokens. */
363 static inline int
364 cp_lexer_saving_tokens (const cp_lexer* lexer)
366 return VEC_length (cp_token_position, lexer->saved_tokens) != 0;
369 /* Store the next token from the preprocessor in *TOKEN. Return true
370 if we reach EOF. */
372 static void
373 cp_lexer_get_preprocessor_token (cp_lexer *lexer ATTRIBUTE_UNUSED ,
374 cp_token *token)
376 static int is_extern_c = 0;
378 /* Get a new token from the preprocessor. */
379 token->type = c_lex_with_flags (&token->value, &token->flags);
380 token->location = input_location;
381 token->in_system_header = in_system_header;
383 /* On some systems, some header files are surrounded by an
384 implicit extern "C" block. Set a flag in the token if it
385 comes from such a header. */
386 is_extern_c += pending_lang_change;
387 pending_lang_change = 0;
388 token->implicit_extern_c = is_extern_c > 0;
390 /* Check to see if this token is a keyword. */
391 if (token->type == CPP_NAME
392 && C_IS_RESERVED_WORD (token->value))
394 /* Mark this token as a keyword. */
395 token->type = CPP_KEYWORD;
396 /* Record which keyword. */
397 token->keyword = C_RID_CODE (token->value);
398 /* Update the value. Some keywords are mapped to particular
399 entities, rather than simply having the value of the
400 corresponding IDENTIFIER_NODE. For example, `__const' is
401 mapped to `const'. */
402 token->value = ridpointers[token->keyword];
404 else
405 token->keyword = RID_MAX;
408 /* Update the globals input_location and in_system_header from TOKEN. */
409 static inline void
410 cp_lexer_set_source_position_from_token (cp_token *token)
412 if (token->type != CPP_EOF)
414 input_location = token->location;
415 in_system_header = token->in_system_header;
419 /* Return a pointer to the next token in the token stream, but do not
420 consume it. */
422 static inline cp_token *
423 cp_lexer_peek_token (cp_lexer *lexer)
425 if (cp_lexer_debugging_p (lexer))
427 fputs ("cp_lexer: peeking at token: ", cp_lexer_debug_stream);
428 cp_lexer_print_token (cp_lexer_debug_stream, lexer->next_token);
429 putc ('\n', cp_lexer_debug_stream);
431 return lexer->next_token;
434 /* Return true if the next token has the indicated TYPE. */
436 static inline bool
437 cp_lexer_next_token_is (cp_lexer* lexer, enum cpp_ttype type)
439 return cp_lexer_peek_token (lexer)->type == type;
442 /* Return true if the next token does not have the indicated TYPE. */
444 static inline bool
445 cp_lexer_next_token_is_not (cp_lexer* lexer, enum cpp_ttype type)
447 return !cp_lexer_next_token_is (lexer, type);
450 /* Return true if the next token is the indicated KEYWORD. */
452 static inline bool
453 cp_lexer_next_token_is_keyword (cp_lexer* lexer, enum rid keyword)
455 cp_token *token;
457 /* Peek at the next token. */
458 token = cp_lexer_peek_token (lexer);
459 /* Check to see if it is the indicated keyword. */
460 return token->keyword == keyword;
463 /* Return a pointer to the Nth token in the token stream. If N is 1,
464 then this is precisely equivalent to cp_lexer_peek_token (except
465 that it is not inline). One would like to disallow that case, but
466 there is one case (cp_parser_nth_token_starts_template_id) where
467 the caller passes a variable for N and it might be 1. */
469 static cp_token *
470 cp_lexer_peek_nth_token (cp_lexer* lexer, size_t n)
472 cp_token *token;
474 /* N is 1-based, not zero-based. */
475 gcc_assert (n > 0 && lexer->next_token != &eof_token);
477 if (cp_lexer_debugging_p (lexer))
478 fprintf (cp_lexer_debug_stream,
479 "cp_lexer: peeking ahead %ld at token: ", (long)n);
481 --n;
482 token = lexer->next_token;
483 while (n != 0)
485 ++token;
486 if (token == lexer->last_token)
488 token = (cp_token *)&eof_token;
489 break;
492 if (token->type != CPP_PURGED)
493 --n;
496 if (cp_lexer_debugging_p (lexer))
498 cp_lexer_print_token (cp_lexer_debug_stream, token);
499 putc ('\n', cp_lexer_debug_stream);
502 return token;
505 /* Return the next token, and advance the lexer's next_token pointer
506 to point to the next non-purged token. */
508 static cp_token *
509 cp_lexer_consume_token (cp_lexer* lexer)
511 cp_token *token = lexer->next_token;
513 gcc_assert (token != &eof_token);
517 lexer->next_token++;
518 if (lexer->next_token == lexer->last_token)
520 lexer->next_token = (cp_token *)&eof_token;
521 break;
525 while (lexer->next_token->type == CPP_PURGED);
527 cp_lexer_set_source_position_from_token (token);
529 /* Provide debugging output. */
530 if (cp_lexer_debugging_p (lexer))
532 fputs ("cp_lexer: consuming token: ", cp_lexer_debug_stream);
533 cp_lexer_print_token (cp_lexer_debug_stream, token);
534 putc ('\n', cp_lexer_debug_stream);
537 return token;
540 /* Permanently remove the next token from the token stream, and
541 advance the next_token pointer to refer to the next non-purged
542 token. */
544 static void
545 cp_lexer_purge_token (cp_lexer *lexer)
547 cp_token *tok = lexer->next_token;
549 gcc_assert (tok != &eof_token);
550 tok->type = CPP_PURGED;
551 tok->location = UNKNOWN_LOCATION;
552 tok->value = NULL_TREE;
553 tok->keyword = RID_MAX;
557 tok++;
558 if (tok == lexer->last_token)
560 tok = (cp_token *)&eof_token;
561 break;
564 while (tok->type == CPP_PURGED);
565 lexer->next_token = tok;
568 /* Permanently remove all tokens after TOK, up to, but not
569 including, the token that will be returned next by
570 cp_lexer_peek_token. */
572 static void
573 cp_lexer_purge_tokens_after (cp_lexer *lexer, cp_token *tok)
575 cp_token *peek = lexer->next_token;
577 if (peek == &eof_token)
578 peek = lexer->last_token;
580 gcc_assert (tok < peek);
582 for ( tok += 1; tok != peek; tok += 1)
584 tok->type = CPP_PURGED;
585 tok->location = UNKNOWN_LOCATION;
586 tok->value = NULL_TREE;
587 tok->keyword = RID_MAX;
591 /* Consume and handle a pragma token. */
592 static void
593 cp_lexer_handle_pragma (cp_lexer *lexer)
595 cpp_string s;
596 cp_token *token = cp_lexer_consume_token (lexer);
597 gcc_assert (token->type == CPP_PRAGMA);
598 gcc_assert (token->value);
600 s.len = TREE_STRING_LENGTH (token->value);
601 s.text = (const unsigned char *) TREE_STRING_POINTER (token->value);
603 cpp_handle_deferred_pragma (parse_in, &s);
605 /* Clearing token->value here means that we will get an ICE if we
606 try to process this #pragma again (which should be impossible). */
607 token->value = NULL;
610 /* Begin saving tokens. All tokens consumed after this point will be
611 preserved. */
613 static void
614 cp_lexer_save_tokens (cp_lexer* lexer)
616 /* Provide debugging output. */
617 if (cp_lexer_debugging_p (lexer))
618 fprintf (cp_lexer_debug_stream, "cp_lexer: saving tokens\n");
620 VEC_safe_push (cp_token_position, lexer->saved_tokens, lexer->next_token);
623 /* Commit to the portion of the token stream most recently saved. */
625 static void
626 cp_lexer_commit_tokens (cp_lexer* lexer)
628 /* Provide debugging output. */
629 if (cp_lexer_debugging_p (lexer))
630 fprintf (cp_lexer_debug_stream, "cp_lexer: committing tokens\n");
632 VEC_pop (cp_token_position, lexer->saved_tokens);
635 /* Return all tokens saved since the last call to cp_lexer_save_tokens
636 to the token stream. Stop saving tokens. */
638 static void
639 cp_lexer_rollback_tokens (cp_lexer* lexer)
641 /* Provide debugging output. */
642 if (cp_lexer_debugging_p (lexer))
643 fprintf (cp_lexer_debug_stream, "cp_lexer: restoring tokens\n");
645 lexer->next_token = VEC_pop (cp_token_position, lexer->saved_tokens);
648 /* Print a representation of the TOKEN on the STREAM. */
650 #ifdef ENABLE_CHECKING
652 static void
653 cp_lexer_print_token (FILE * stream, cp_token *token)
655 /* We don't use cpp_type2name here because the parser defines
656 a few tokens of its own. */
657 static const char *const token_names[] = {
658 /* cpplib-defined token types */
659 #define OP(e, s) #e,
660 #define TK(e, s) #e,
661 TTYPE_TABLE
662 #undef OP
663 #undef TK
664 /* C++ parser token types - see "Manifest constants", above. */
665 "KEYWORD",
666 "TEMPLATE_ID",
667 "NESTED_NAME_SPECIFIER",
668 "PURGED"
671 /* If we have a name for the token, print it out. Otherwise, we
672 simply give the numeric code. */
673 gcc_assert (token->type < ARRAY_SIZE(token_names));
674 fputs (token_names[token->type], stream);
676 /* For some tokens, print the associated data. */
677 switch (token->type)
679 case CPP_KEYWORD:
680 /* Some keywords have a value that is not an IDENTIFIER_NODE.
681 For example, `struct' is mapped to an INTEGER_CST. */
682 if (TREE_CODE (token->value) != IDENTIFIER_NODE)
683 break;
684 /* else fall through */
685 case CPP_NAME:
686 fputs (IDENTIFIER_POINTER (token->value), stream);
687 break;
689 case CPP_STRING:
690 case CPP_WSTRING:
691 case CPP_PRAGMA:
692 fprintf (stream, " \"%s\"", TREE_STRING_POINTER (token->value));
693 break;
695 default:
696 break;
700 /* Start emitting debugging information. */
702 static void
703 cp_lexer_start_debugging (cp_lexer* lexer)
705 ++lexer->debugging_p;
708 /* Stop emitting debugging information. */
710 static void
711 cp_lexer_stop_debugging (cp_lexer* lexer)
713 --lexer->debugging_p;
716 #endif /* ENABLE_CHECKING */
718 /* Create a new cp_token_cache, representing a range of tokens. */
720 static cp_token_cache *
721 cp_token_cache_new (cp_token *first, cp_token *last)
723 cp_token_cache *cache = GGC_NEW (cp_token_cache);
724 cache->first = first;
725 cache->last = last;
726 return cache;
730 /* Decl-specifiers. */
732 static void clear_decl_specs
733 (cp_decl_specifier_seq *);
735 /* Set *DECL_SPECS to represent an empty decl-specifier-seq. */
737 static void
738 clear_decl_specs (cp_decl_specifier_seq *decl_specs)
740 memset (decl_specs, 0, sizeof (cp_decl_specifier_seq));
743 /* Declarators. */
745 /* Nothing other than the parser should be creating declarators;
746 declarators are a semi-syntactic representation of C++ entities.
747 Other parts of the front end that need to create entities (like
748 VAR_DECLs or FUNCTION_DECLs) should do that directly. */
750 static cp_declarator *make_id_declarator
751 (tree);
752 static cp_declarator *make_call_declarator
753 (cp_declarator *, cp_parameter_declarator *, cp_cv_quals, tree);
754 static cp_declarator *make_array_declarator
755 (cp_declarator *, tree);
756 static cp_declarator *make_pointer_declarator
757 (cp_cv_quals, cp_declarator *);
758 static cp_declarator *make_reference_declarator
759 (cp_cv_quals, cp_declarator *);
760 static cp_parameter_declarator *make_parameter_declarator
761 (cp_decl_specifier_seq *, cp_declarator *, tree);
762 static cp_declarator *make_ptrmem_declarator
763 (cp_cv_quals, tree, cp_declarator *);
765 cp_declarator *cp_error_declarator;
767 /* The obstack on which declarators and related data structures are
768 allocated. */
769 static struct obstack declarator_obstack;
771 /* Alloc BYTES from the declarator memory pool. */
773 static inline void *
774 alloc_declarator (size_t bytes)
776 return obstack_alloc (&declarator_obstack, bytes);
779 /* Allocate a declarator of the indicated KIND. Clear fields that are
780 common to all declarators. */
782 static cp_declarator *
783 make_declarator (cp_declarator_kind kind)
785 cp_declarator *declarator;
787 declarator = (cp_declarator *) alloc_declarator (sizeof (cp_declarator));
788 declarator->kind = kind;
789 declarator->attributes = NULL_TREE;
790 declarator->declarator = NULL;
792 return declarator;
795 /* Make a declarator for a generalized identifier. */
797 cp_declarator *
798 make_id_declarator (tree id)
800 cp_declarator *declarator;
802 declarator = make_declarator (cdk_id);
803 declarator->u.id.name = id;
804 declarator->u.id.sfk = sfk_none;
806 return declarator;
809 /* Make a declarator for a pointer to TARGET. CV_QUALIFIERS is a list
810 of modifiers such as const or volatile to apply to the pointer
811 type, represented as identifiers. */
813 cp_declarator *
814 make_pointer_declarator (cp_cv_quals cv_qualifiers, cp_declarator *target)
816 cp_declarator *declarator;
818 declarator = make_declarator (cdk_pointer);
819 declarator->declarator = target;
820 declarator->u.pointer.qualifiers = cv_qualifiers;
821 declarator->u.pointer.class_type = NULL_TREE;
823 return declarator;
826 /* Like make_pointer_declarator -- but for references. */
828 cp_declarator *
829 make_reference_declarator (cp_cv_quals cv_qualifiers, cp_declarator *target)
831 cp_declarator *declarator;
833 declarator = make_declarator (cdk_reference);
834 declarator->declarator = target;
835 declarator->u.pointer.qualifiers = cv_qualifiers;
836 declarator->u.pointer.class_type = NULL_TREE;
838 return declarator;
841 /* Like make_pointer_declarator -- but for a pointer to a non-static
842 member of CLASS_TYPE. */
844 cp_declarator *
845 make_ptrmem_declarator (cp_cv_quals cv_qualifiers, tree class_type,
846 cp_declarator *pointee)
848 cp_declarator *declarator;
850 declarator = make_declarator (cdk_ptrmem);
851 declarator->declarator = pointee;
852 declarator->u.pointer.qualifiers = cv_qualifiers;
853 declarator->u.pointer.class_type = class_type;
855 return declarator;
858 /* Make a declarator for the function given by TARGET, with the
859 indicated PARMS. The CV_QUALIFIERS aply to the function, as in
860 "const"-qualified member function. The EXCEPTION_SPECIFICATION
861 indicates what exceptions can be thrown. */
863 cp_declarator *
864 make_call_declarator (cp_declarator *target,
865 cp_parameter_declarator *parms,
866 cp_cv_quals cv_qualifiers,
867 tree exception_specification)
869 cp_declarator *declarator;
871 declarator = make_declarator (cdk_function);
872 declarator->declarator = target;
873 declarator->u.function.parameters = parms;
874 declarator->u.function.qualifiers = cv_qualifiers;
875 declarator->u.function.exception_specification = exception_specification;
877 return declarator;
880 /* Make a declarator for an array of BOUNDS elements, each of which is
881 defined by ELEMENT. */
883 cp_declarator *
884 make_array_declarator (cp_declarator *element, tree bounds)
886 cp_declarator *declarator;
888 declarator = make_declarator (cdk_array);
889 declarator->declarator = element;
890 declarator->u.array.bounds = bounds;
892 return declarator;
895 cp_parameter_declarator *no_parameters;
897 /* Create a parameter declarator with the indicated DECL_SPECIFIERS,
898 DECLARATOR and DEFAULT_ARGUMENT. */
900 cp_parameter_declarator *
901 make_parameter_declarator (cp_decl_specifier_seq *decl_specifiers,
902 cp_declarator *declarator,
903 tree default_argument)
905 cp_parameter_declarator *parameter;
907 parameter = ((cp_parameter_declarator *)
908 alloc_declarator (sizeof (cp_parameter_declarator)));
909 parameter->next = NULL;
910 if (decl_specifiers)
911 parameter->decl_specifiers = *decl_specifiers;
912 else
913 clear_decl_specs (&parameter->decl_specifiers);
914 parameter->declarator = declarator;
915 parameter->default_argument = default_argument;
916 parameter->ellipsis_p = false;
918 return parameter;
921 /* The parser. */
923 /* Overview
924 --------
926 A cp_parser parses the token stream as specified by the C++
927 grammar. Its job is purely parsing, not semantic analysis. For
928 example, the parser breaks the token stream into declarators,
929 expressions, statements, and other similar syntactic constructs.
930 It does not check that the types of the expressions on either side
931 of an assignment-statement are compatible, or that a function is
932 not declared with a parameter of type `void'.
934 The parser invokes routines elsewhere in the compiler to perform
935 semantic analysis and to build up the abstract syntax tree for the
936 code processed.
938 The parser (and the template instantiation code, which is, in a
939 way, a close relative of parsing) are the only parts of the
940 compiler that should be calling push_scope and pop_scope, or
941 related functions. The parser (and template instantiation code)
942 keeps track of what scope is presently active; everything else
943 should simply honor that. (The code that generates static
944 initializers may also need to set the scope, in order to check
945 access control correctly when emitting the initializers.)
947 Methodology
948 -----------
950 The parser is of the standard recursive-descent variety. Upcoming
951 tokens in the token stream are examined in order to determine which
952 production to use when parsing a non-terminal. Some C++ constructs
953 require arbitrary look ahead to disambiguate. For example, it is
954 impossible, in the general case, to tell whether a statement is an
955 expression or declaration without scanning the entire statement.
956 Therefore, the parser is capable of "parsing tentatively." When the
957 parser is not sure what construct comes next, it enters this mode.
958 Then, while we attempt to parse the construct, the parser queues up
959 error messages, rather than issuing them immediately, and saves the
960 tokens it consumes. If the construct is parsed successfully, the
961 parser "commits", i.e., it issues any queued error messages and
962 the tokens that were being preserved are permanently discarded.
963 If, however, the construct is not parsed successfully, the parser
964 rolls back its state completely so that it can resume parsing using
965 a different alternative.
967 Future Improvements
968 -------------------
970 The performance of the parser could probably be improved substantially.
971 We could often eliminate the need to parse tentatively by looking ahead
972 a little bit. In some places, this approach might not entirely eliminate
973 the need to parse tentatively, but it might still speed up the average
974 case. */
976 /* Flags that are passed to some parsing functions. These values can
977 be bitwise-ored together. */
979 typedef enum cp_parser_flags
981 /* No flags. */
982 CP_PARSER_FLAGS_NONE = 0x0,
983 /* The construct is optional. If it is not present, then no error
984 should be issued. */
985 CP_PARSER_FLAGS_OPTIONAL = 0x1,
986 /* When parsing a type-specifier, do not allow user-defined types. */
987 CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES = 0x2
988 } cp_parser_flags;
990 /* The different kinds of declarators we want to parse. */
992 typedef enum cp_parser_declarator_kind
994 /* We want an abstract declarator. */
995 CP_PARSER_DECLARATOR_ABSTRACT,
996 /* We want a named declarator. */
997 CP_PARSER_DECLARATOR_NAMED,
998 /* We don't mind, but the name must be an unqualified-id. */
999 CP_PARSER_DECLARATOR_EITHER
1000 } cp_parser_declarator_kind;
1002 /* The precedence values used to parse binary expressions. The minimum value
1003 of PREC must be 1, because zero is reserved to quickly discriminate
1004 binary operators from other tokens. */
1006 enum cp_parser_prec
1008 PREC_NOT_OPERATOR,
1009 PREC_LOGICAL_OR_EXPRESSION,
1010 PREC_LOGICAL_AND_EXPRESSION,
1011 PREC_INCLUSIVE_OR_EXPRESSION,
1012 PREC_EXCLUSIVE_OR_EXPRESSION,
1013 PREC_AND_EXPRESSION,
1014 PREC_EQUALITY_EXPRESSION,
1015 PREC_RELATIONAL_EXPRESSION,
1016 PREC_SHIFT_EXPRESSION,
1017 PREC_ADDITIVE_EXPRESSION,
1018 PREC_MULTIPLICATIVE_EXPRESSION,
1019 PREC_PM_EXPRESSION,
1020 NUM_PREC_VALUES = PREC_PM_EXPRESSION
1023 /* A mapping from a token type to a corresponding tree node type, with a
1024 precedence value. */
1026 typedef struct cp_parser_binary_operations_map_node
1028 /* The token type. */
1029 enum cpp_ttype token_type;
1030 /* The corresponding tree code. */
1031 enum tree_code tree_type;
1032 /* The precedence of this operator. */
1033 enum cp_parser_prec prec;
1034 } cp_parser_binary_operations_map_node;
1036 /* The status of a tentative parse. */
1038 typedef enum cp_parser_status_kind
1040 /* No errors have occurred. */
1041 CP_PARSER_STATUS_KIND_NO_ERROR,
1042 /* An error has occurred. */
1043 CP_PARSER_STATUS_KIND_ERROR,
1044 /* We are committed to this tentative parse, whether or not an error
1045 has occurred. */
1046 CP_PARSER_STATUS_KIND_COMMITTED
1047 } cp_parser_status_kind;
1049 typedef struct cp_parser_expression_stack_entry
1051 tree lhs;
1052 enum tree_code tree_type;
1053 int prec;
1054 } cp_parser_expression_stack_entry;
1056 /* The stack for storing partial expressions. We only need NUM_PREC_VALUES
1057 entries because precedence levels on the stack are monotonically
1058 increasing. */
1059 typedef struct cp_parser_expression_stack_entry
1060 cp_parser_expression_stack[NUM_PREC_VALUES];
1062 /* Context that is saved and restored when parsing tentatively. */
1063 typedef struct cp_parser_context GTY (())
1065 /* If this is a tentative parsing context, the status of the
1066 tentative parse. */
1067 enum cp_parser_status_kind status;
1068 /* If non-NULL, we have just seen a `x->' or `x.' expression. Names
1069 that are looked up in this context must be looked up both in the
1070 scope given by OBJECT_TYPE (the type of `x' or `*x') and also in
1071 the context of the containing expression. */
1072 tree object_type;
1074 /* The next parsing context in the stack. */
1075 struct cp_parser_context *next;
1076 } cp_parser_context;
1078 /* Prototypes. */
1080 /* Constructors and destructors. */
1082 static cp_parser_context *cp_parser_context_new
1083 (cp_parser_context *);
1085 /* Class variables. */
1087 static GTY((deletable)) cp_parser_context* cp_parser_context_free_list;
1089 /* The operator-precedence table used by cp_parser_binary_expression.
1090 Transformed into an associative array (binops_by_token) by
1091 cp_parser_new. */
1093 static const cp_parser_binary_operations_map_node binops[] = {
1094 { CPP_DEREF_STAR, MEMBER_REF, PREC_PM_EXPRESSION },
1095 { CPP_DOT_STAR, DOTSTAR_EXPR, PREC_PM_EXPRESSION },
1097 { CPP_MULT, MULT_EXPR, PREC_MULTIPLICATIVE_EXPRESSION },
1098 { CPP_DIV, TRUNC_DIV_EXPR, PREC_MULTIPLICATIVE_EXPRESSION },
1099 { CPP_MOD, TRUNC_MOD_EXPR, PREC_MULTIPLICATIVE_EXPRESSION },
1101 { CPP_PLUS, PLUS_EXPR, PREC_ADDITIVE_EXPRESSION },
1102 { CPP_MINUS, MINUS_EXPR, PREC_ADDITIVE_EXPRESSION },
1104 { CPP_LSHIFT, LSHIFT_EXPR, PREC_SHIFT_EXPRESSION },
1105 { CPP_RSHIFT, RSHIFT_EXPR, PREC_SHIFT_EXPRESSION },
1107 { CPP_LESS, LT_EXPR, PREC_RELATIONAL_EXPRESSION },
1108 { CPP_GREATER, GT_EXPR, PREC_RELATIONAL_EXPRESSION },
1109 { CPP_LESS_EQ, LE_EXPR, PREC_RELATIONAL_EXPRESSION },
1110 { CPP_GREATER_EQ, GE_EXPR, PREC_RELATIONAL_EXPRESSION },
1111 { CPP_MIN, MIN_EXPR, PREC_RELATIONAL_EXPRESSION },
1112 { CPP_MAX, MAX_EXPR, PREC_RELATIONAL_EXPRESSION },
1114 { CPP_EQ_EQ, EQ_EXPR, PREC_EQUALITY_EXPRESSION },
1115 { CPP_NOT_EQ, NE_EXPR, PREC_EQUALITY_EXPRESSION },
1117 { CPP_AND, BIT_AND_EXPR, PREC_AND_EXPRESSION },
1119 { CPP_XOR, BIT_XOR_EXPR, PREC_EXCLUSIVE_OR_EXPRESSION },
1121 { CPP_OR, BIT_IOR_EXPR, PREC_INCLUSIVE_OR_EXPRESSION },
1123 { CPP_AND_AND, TRUTH_ANDIF_EXPR, PREC_LOGICAL_AND_EXPRESSION },
1125 { CPP_OR_OR, TRUTH_ORIF_EXPR, PREC_LOGICAL_OR_EXPRESSION }
1128 /* The same as binops, but initialized by cp_parser_new so that
1129 binops_by_token[N].token_type == N. Used in cp_parser_binary_expression
1130 for speed. */
1131 static cp_parser_binary_operations_map_node binops_by_token[N_CP_TTYPES];
1133 /* Constructors and destructors. */
1135 /* Construct a new context. The context below this one on the stack
1136 is given by NEXT. */
1138 static cp_parser_context *
1139 cp_parser_context_new (cp_parser_context* next)
1141 cp_parser_context *context;
1143 /* Allocate the storage. */
1144 if (cp_parser_context_free_list != NULL)
1146 /* Pull the first entry from the free list. */
1147 context = cp_parser_context_free_list;
1148 cp_parser_context_free_list = context->next;
1149 memset (context, 0, sizeof (*context));
1151 else
1152 context = GGC_CNEW (cp_parser_context);
1154 /* No errors have occurred yet in this context. */
1155 context->status = CP_PARSER_STATUS_KIND_NO_ERROR;
1156 /* If this is not the bottomost context, copy information that we
1157 need from the previous context. */
1158 if (next)
1160 /* If, in the NEXT context, we are parsing an `x->' or `x.'
1161 expression, then we are parsing one in this context, too. */
1162 context->object_type = next->object_type;
1163 /* Thread the stack. */
1164 context->next = next;
1167 return context;
1170 /* The cp_parser structure represents the C++ parser. */
1172 typedef struct cp_parser GTY(())
1174 /* The lexer from which we are obtaining tokens. */
1175 cp_lexer *lexer;
1177 /* The scope in which names should be looked up. If NULL_TREE, then
1178 we look up names in the scope that is currently open in the
1179 source program. If non-NULL, this is either a TYPE or
1180 NAMESPACE_DECL for the scope in which we should look.
1182 This value is not cleared automatically after a name is looked
1183 up, so we must be careful to clear it before starting a new look
1184 up sequence. (If it is not cleared, then `X::Y' followed by `Z'
1185 will look up `Z' in the scope of `X', rather than the current
1186 scope.) Unfortunately, it is difficult to tell when name lookup
1187 is complete, because we sometimes peek at a token, look it up,
1188 and then decide not to consume it. */
1189 tree scope;
1191 /* OBJECT_SCOPE and QUALIFYING_SCOPE give the scopes in which the
1192 last lookup took place. OBJECT_SCOPE is used if an expression
1193 like "x->y" or "x.y" was used; it gives the type of "*x" or "x",
1194 respectively. QUALIFYING_SCOPE is used for an expression of the
1195 form "X::Y"; it refers to X. */
1196 tree object_scope;
1197 tree qualifying_scope;
1199 /* A stack of parsing contexts. All but the bottom entry on the
1200 stack will be tentative contexts.
1202 We parse tentatively in order to determine which construct is in
1203 use in some situations. For example, in order to determine
1204 whether a statement is an expression-statement or a
1205 declaration-statement we parse it tentatively as a
1206 declaration-statement. If that fails, we then reparse the same
1207 token stream as an expression-statement. */
1208 cp_parser_context *context;
1210 /* True if we are parsing GNU C++. If this flag is not set, then
1211 GNU extensions are not recognized. */
1212 bool allow_gnu_extensions_p;
1214 /* TRUE if the `>' token should be interpreted as the greater-than
1215 operator. FALSE if it is the end of a template-id or
1216 template-parameter-list. */
1217 bool greater_than_is_operator_p;
1219 /* TRUE if default arguments are allowed within a parameter list
1220 that starts at this point. FALSE if only a gnu extension makes
1221 them permissible. */
1222 bool default_arg_ok_p;
1224 /* TRUE if we are parsing an integral constant-expression. See
1225 [expr.const] for a precise definition. */
1226 bool integral_constant_expression_p;
1228 /* TRUE if we are parsing an integral constant-expression -- but a
1229 non-constant expression should be permitted as well. This flag
1230 is used when parsing an array bound so that GNU variable-length
1231 arrays are tolerated. */
1232 bool allow_non_integral_constant_expression_p;
1234 /* TRUE if ALLOW_NON_CONSTANT_EXPRESSION_P is TRUE and something has
1235 been seen that makes the expression non-constant. */
1236 bool non_integral_constant_expression_p;
1238 /* TRUE if local variable names and `this' are forbidden in the
1239 current context. */
1240 bool local_variables_forbidden_p;
1242 /* TRUE if the declaration we are parsing is part of a
1243 linkage-specification of the form `extern string-literal
1244 declaration'. */
1245 bool in_unbraced_linkage_specification_p;
1247 /* TRUE if we are presently parsing a declarator, after the
1248 direct-declarator. */
1249 bool in_declarator_p;
1251 /* TRUE if we are presently parsing a template-argument-list. */
1252 bool in_template_argument_list_p;
1254 /* TRUE if we are presently parsing the body of an
1255 iteration-statement. */
1256 bool in_iteration_statement_p;
1258 /* TRUE if we are presently parsing the body of a switch
1259 statement. */
1260 bool in_switch_statement_p;
1262 /* TRUE if we are parsing a type-id in an expression context. In
1263 such a situation, both "type (expr)" and "type (type)" are valid
1264 alternatives. */
1265 bool in_type_id_in_expr_p;
1267 /* TRUE if we are currently in a header file where declarations are
1268 implicitly extern "C". */
1269 bool implicit_extern_c;
1271 /* TRUE if strings in expressions should be translated to the execution
1272 character set. */
1273 bool translate_strings_p;
1275 /* If non-NULL, then we are parsing a construct where new type
1276 definitions are not permitted. The string stored here will be
1277 issued as an error message if a type is defined. */
1278 const char *type_definition_forbidden_message;
1280 /* A list of lists. The outer list is a stack, used for member
1281 functions of local classes. At each level there are two sub-list,
1282 one on TREE_VALUE and one on TREE_PURPOSE. Each of those
1283 sub-lists has a FUNCTION_DECL or TEMPLATE_DECL on their
1284 TREE_VALUE's. The functions are chained in reverse declaration
1285 order.
1287 The TREE_PURPOSE sublist contains those functions with default
1288 arguments that need post processing, and the TREE_VALUE sublist
1289 contains those functions with definitions that need post
1290 processing.
1292 These lists can only be processed once the outermost class being
1293 defined is complete. */
1294 tree unparsed_functions_queues;
1296 /* The number of classes whose definitions are currently in
1297 progress. */
1298 unsigned num_classes_being_defined;
1300 /* The number of template parameter lists that apply directly to the
1301 current declaration. */
1302 unsigned num_template_parameter_lists;
1303 } cp_parser;
1305 /* The type of a function that parses some kind of expression. */
1306 typedef tree (*cp_parser_expression_fn) (cp_parser *);
1308 /* Prototypes. */
1310 /* Constructors and destructors. */
1312 static cp_parser *cp_parser_new
1313 (void);
1315 /* Routines to parse various constructs.
1317 Those that return `tree' will return the error_mark_node (rather
1318 than NULL_TREE) if a parse error occurs, unless otherwise noted.
1319 Sometimes, they will return an ordinary node if error-recovery was
1320 attempted, even though a parse error occurred. So, to check
1321 whether or not a parse error occurred, you should always use
1322 cp_parser_error_occurred. If the construct is optional (indicated
1323 either by an `_opt' in the name of the function that does the
1324 parsing or via a FLAGS parameter), then NULL_TREE is returned if
1325 the construct is not present. */
1327 /* Lexical conventions [gram.lex] */
1329 static tree cp_parser_identifier
1330 (cp_parser *);
1331 static tree cp_parser_string_literal
1332 (cp_parser *, bool, bool);
1334 /* Basic concepts [gram.basic] */
1336 static bool cp_parser_translation_unit
1337 (cp_parser *);
1339 /* Expressions [gram.expr] */
1341 static tree cp_parser_primary_expression
1342 (cp_parser *, cp_id_kind *, tree *);
1343 static tree cp_parser_id_expression
1344 (cp_parser *, bool, bool, bool *, bool);
1345 static tree cp_parser_unqualified_id
1346 (cp_parser *, bool, bool, bool);
1347 static tree cp_parser_nested_name_specifier_opt
1348 (cp_parser *, bool, bool, bool, bool);
1349 static tree cp_parser_nested_name_specifier
1350 (cp_parser *, bool, bool, bool, bool);
1351 static tree cp_parser_class_or_namespace_name
1352 (cp_parser *, bool, bool, bool, bool, bool);
1353 static tree cp_parser_postfix_expression
1354 (cp_parser *, bool);
1355 static tree cp_parser_postfix_open_square_expression
1356 (cp_parser *, tree, bool);
1357 static tree cp_parser_postfix_dot_deref_expression
1358 (cp_parser *, enum cpp_ttype, tree, bool, cp_id_kind *);
1359 static tree cp_parser_parenthesized_expression_list
1360 (cp_parser *, bool, bool *);
1361 static void cp_parser_pseudo_destructor_name
1362 (cp_parser *, tree *, tree *);
1363 static tree cp_parser_unary_expression
1364 (cp_parser *, bool);
1365 static enum tree_code cp_parser_unary_operator
1366 (cp_token *);
1367 static tree cp_parser_new_expression
1368 (cp_parser *);
1369 static tree cp_parser_new_placement
1370 (cp_parser *);
1371 static tree cp_parser_new_type_id
1372 (cp_parser *, tree *);
1373 static cp_declarator *cp_parser_new_declarator_opt
1374 (cp_parser *);
1375 static cp_declarator *cp_parser_direct_new_declarator
1376 (cp_parser *);
1377 static tree cp_parser_new_initializer
1378 (cp_parser *);
1379 static tree cp_parser_delete_expression
1380 (cp_parser *);
1381 static tree cp_parser_cast_expression
1382 (cp_parser *, bool);
1383 static tree cp_parser_binary_expression
1384 (cp_parser *);
1385 static tree cp_parser_question_colon_clause
1386 (cp_parser *, tree);
1387 static tree cp_parser_assignment_expression
1388 (cp_parser *);
1389 static enum tree_code cp_parser_assignment_operator_opt
1390 (cp_parser *);
1391 static tree cp_parser_expression
1392 (cp_parser *);
1393 static tree cp_parser_constant_expression
1394 (cp_parser *, bool, bool *);
1395 static tree cp_parser_builtin_offsetof
1396 (cp_parser *);
1398 /* Statements [gram.stmt.stmt] */
1400 static void cp_parser_statement
1401 (cp_parser *, tree);
1402 static tree cp_parser_labeled_statement
1403 (cp_parser *, tree);
1404 static tree cp_parser_expression_statement
1405 (cp_parser *, tree);
1406 static tree cp_parser_compound_statement
1407 (cp_parser *, tree, bool);
1408 static void cp_parser_statement_seq_opt
1409 (cp_parser *, tree);
1410 static tree cp_parser_selection_statement
1411 (cp_parser *);
1412 static tree cp_parser_condition
1413 (cp_parser *);
1414 static tree cp_parser_iteration_statement
1415 (cp_parser *);
1416 static void cp_parser_for_init_statement
1417 (cp_parser *);
1418 static tree cp_parser_jump_statement
1419 (cp_parser *);
1420 static void cp_parser_declaration_statement
1421 (cp_parser *);
1423 static tree cp_parser_implicitly_scoped_statement
1424 (cp_parser *);
1425 static void cp_parser_already_scoped_statement
1426 (cp_parser *);
1428 /* Declarations [gram.dcl.dcl] */
1430 static void cp_parser_declaration_seq_opt
1431 (cp_parser *);
1432 static void cp_parser_declaration
1433 (cp_parser *);
1434 static void cp_parser_block_declaration
1435 (cp_parser *, bool);
1436 static void cp_parser_simple_declaration
1437 (cp_parser *, bool);
1438 static void cp_parser_decl_specifier_seq
1439 (cp_parser *, cp_parser_flags, cp_decl_specifier_seq *, int *);
1440 static tree cp_parser_storage_class_specifier_opt
1441 (cp_parser *);
1442 static tree cp_parser_function_specifier_opt
1443 (cp_parser *, cp_decl_specifier_seq *);
1444 static tree cp_parser_type_specifier
1445 (cp_parser *, cp_parser_flags, cp_decl_specifier_seq *, bool,
1446 int *, bool *);
1447 static tree cp_parser_simple_type_specifier
1448 (cp_parser *, cp_decl_specifier_seq *, cp_parser_flags);
1449 static tree cp_parser_type_name
1450 (cp_parser *);
1451 static tree cp_parser_elaborated_type_specifier
1452 (cp_parser *, bool, bool);
1453 static tree cp_parser_enum_specifier
1454 (cp_parser *);
1455 static void cp_parser_enumerator_list
1456 (cp_parser *, tree);
1457 static void cp_parser_enumerator_definition
1458 (cp_parser *, tree);
1459 static tree cp_parser_namespace_name
1460 (cp_parser *);
1461 static void cp_parser_namespace_definition
1462 (cp_parser *);
1463 static void cp_parser_namespace_body
1464 (cp_parser *);
1465 static tree cp_parser_qualified_namespace_specifier
1466 (cp_parser *);
1467 static void cp_parser_namespace_alias_definition
1468 (cp_parser *);
1469 static void cp_parser_using_declaration
1470 (cp_parser *);
1471 static void cp_parser_using_directive
1472 (cp_parser *);
1473 static void cp_parser_asm_definition
1474 (cp_parser *);
1475 static void cp_parser_linkage_specification
1476 (cp_parser *);
1478 /* Declarators [gram.dcl.decl] */
1480 static tree cp_parser_init_declarator
1481 (cp_parser *, cp_decl_specifier_seq *, bool, bool, int, bool *);
1482 static cp_declarator *cp_parser_declarator
1483 (cp_parser *, cp_parser_declarator_kind, int *, bool *, bool);
1484 static cp_declarator *cp_parser_direct_declarator
1485 (cp_parser *, cp_parser_declarator_kind, int *, bool);
1486 static enum tree_code cp_parser_ptr_operator
1487 (cp_parser *, tree *, cp_cv_quals *);
1488 static cp_cv_quals cp_parser_cv_qualifier_seq_opt
1489 (cp_parser *);
1490 static tree cp_parser_declarator_id
1491 (cp_parser *);
1492 static tree cp_parser_type_id
1493 (cp_parser *);
1494 static void cp_parser_type_specifier_seq
1495 (cp_parser *, cp_decl_specifier_seq *);
1496 static cp_parameter_declarator *cp_parser_parameter_declaration_clause
1497 (cp_parser *);
1498 static cp_parameter_declarator *cp_parser_parameter_declaration_list
1499 (cp_parser *, bool *);
1500 static cp_parameter_declarator *cp_parser_parameter_declaration
1501 (cp_parser *, bool, bool *);
1502 static void cp_parser_function_body
1503 (cp_parser *);
1504 static tree cp_parser_initializer
1505 (cp_parser *, bool *, bool *);
1506 static tree cp_parser_initializer_clause
1507 (cp_parser *, bool *);
1508 static tree cp_parser_initializer_list
1509 (cp_parser *, bool *);
1511 static bool cp_parser_ctor_initializer_opt_and_function_body
1512 (cp_parser *);
1514 /* Classes [gram.class] */
1516 static tree cp_parser_class_name
1517 (cp_parser *, bool, bool, bool, bool, bool, bool);
1518 static tree cp_parser_class_specifier
1519 (cp_parser *);
1520 static tree cp_parser_class_head
1521 (cp_parser *, bool *, tree *);
1522 static enum tag_types cp_parser_class_key
1523 (cp_parser *);
1524 static void cp_parser_member_specification_opt
1525 (cp_parser *);
1526 static void cp_parser_member_declaration
1527 (cp_parser *);
1528 static tree cp_parser_pure_specifier
1529 (cp_parser *);
1530 static tree cp_parser_constant_initializer
1531 (cp_parser *);
1533 /* Derived classes [gram.class.derived] */
1535 static tree cp_parser_base_clause
1536 (cp_parser *);
1537 static tree cp_parser_base_specifier
1538 (cp_parser *);
1540 /* Special member functions [gram.special] */
1542 static tree cp_parser_conversion_function_id
1543 (cp_parser *);
1544 static tree cp_parser_conversion_type_id
1545 (cp_parser *);
1546 static cp_declarator *cp_parser_conversion_declarator_opt
1547 (cp_parser *);
1548 static bool cp_parser_ctor_initializer_opt
1549 (cp_parser *);
1550 static void cp_parser_mem_initializer_list
1551 (cp_parser *);
1552 static tree cp_parser_mem_initializer
1553 (cp_parser *);
1554 static tree cp_parser_mem_initializer_id
1555 (cp_parser *);
1557 /* Overloading [gram.over] */
1559 static tree cp_parser_operator_function_id
1560 (cp_parser *);
1561 static tree cp_parser_operator
1562 (cp_parser *);
1564 /* Templates [gram.temp] */
1566 static void cp_parser_template_declaration
1567 (cp_parser *, bool);
1568 static tree cp_parser_template_parameter_list
1569 (cp_parser *);
1570 static tree cp_parser_template_parameter
1571 (cp_parser *, bool *);
1572 static tree cp_parser_type_parameter
1573 (cp_parser *);
1574 static tree cp_parser_template_id
1575 (cp_parser *, bool, bool, bool);
1576 static tree cp_parser_template_name
1577 (cp_parser *, bool, bool, bool, bool *);
1578 static tree cp_parser_template_argument_list
1579 (cp_parser *);
1580 static tree cp_parser_template_argument
1581 (cp_parser *);
1582 static void cp_parser_explicit_instantiation
1583 (cp_parser *);
1584 static void cp_parser_explicit_specialization
1585 (cp_parser *);
1587 /* Exception handling [gram.exception] */
1589 static tree cp_parser_try_block
1590 (cp_parser *);
1591 static bool cp_parser_function_try_block
1592 (cp_parser *);
1593 static void cp_parser_handler_seq
1594 (cp_parser *);
1595 static void cp_parser_handler
1596 (cp_parser *);
1597 static tree cp_parser_exception_declaration
1598 (cp_parser *);
1599 static tree cp_parser_throw_expression
1600 (cp_parser *);
1601 static tree cp_parser_exception_specification_opt
1602 (cp_parser *);
1603 static tree cp_parser_type_id_list
1604 (cp_parser *);
1606 /* GNU Extensions */
1608 static tree cp_parser_asm_specification_opt
1609 (cp_parser *);
1610 static tree cp_parser_asm_operand_list
1611 (cp_parser *);
1612 static tree cp_parser_asm_clobber_list
1613 (cp_parser *);
1614 static tree cp_parser_attributes_opt
1615 (cp_parser *);
1616 static tree cp_parser_attribute_list
1617 (cp_parser *);
1618 static bool cp_parser_extension_opt
1619 (cp_parser *, int *);
1620 static void cp_parser_label_declaration
1621 (cp_parser *);
1623 /* Utility Routines */
1625 static tree cp_parser_lookup_name
1626 (cp_parser *, tree, bool, bool, bool, bool, bool *);
1627 static tree cp_parser_lookup_name_simple
1628 (cp_parser *, tree);
1629 static tree cp_parser_maybe_treat_template_as_class
1630 (tree, bool);
1631 static bool cp_parser_check_declarator_template_parameters
1632 (cp_parser *, cp_declarator *);
1633 static bool cp_parser_check_template_parameters
1634 (cp_parser *, unsigned);
1635 static tree cp_parser_simple_cast_expression
1636 (cp_parser *);
1637 static tree cp_parser_global_scope_opt
1638 (cp_parser *, bool);
1639 static bool cp_parser_constructor_declarator_p
1640 (cp_parser *, bool);
1641 static tree cp_parser_function_definition_from_specifiers_and_declarator
1642 (cp_parser *, cp_decl_specifier_seq *, tree, const cp_declarator *);
1643 static tree cp_parser_function_definition_after_declarator
1644 (cp_parser *, bool);
1645 static void cp_parser_template_declaration_after_export
1646 (cp_parser *, bool);
1647 static tree cp_parser_single_declaration
1648 (cp_parser *, bool, bool *);
1649 static tree cp_parser_functional_cast
1650 (cp_parser *, tree);
1651 static tree cp_parser_save_member_function_body
1652 (cp_parser *, cp_decl_specifier_seq *, cp_declarator *, tree);
1653 static tree cp_parser_enclosed_template_argument_list
1654 (cp_parser *);
1655 static void cp_parser_save_default_args
1656 (cp_parser *, tree);
1657 static void cp_parser_late_parsing_for_member
1658 (cp_parser *, tree);
1659 static void cp_parser_late_parsing_default_args
1660 (cp_parser *, tree);
1661 static tree cp_parser_sizeof_operand
1662 (cp_parser *, enum rid);
1663 static bool cp_parser_declares_only_class_p
1664 (cp_parser *);
1665 static void cp_parser_set_storage_class
1666 (cp_decl_specifier_seq *, cp_storage_class);
1667 static void cp_parser_set_decl_spec_type
1668 (cp_decl_specifier_seq *, tree, bool);
1669 static bool cp_parser_friend_p
1670 (const cp_decl_specifier_seq *);
1671 static cp_token *cp_parser_require
1672 (cp_parser *, enum cpp_ttype, const char *);
1673 static cp_token *cp_parser_require_keyword
1674 (cp_parser *, enum rid, const char *);
1675 static bool cp_parser_token_starts_function_definition_p
1676 (cp_token *);
1677 static bool cp_parser_next_token_starts_class_definition_p
1678 (cp_parser *);
1679 static bool cp_parser_next_token_ends_template_argument_p
1680 (cp_parser *);
1681 static bool cp_parser_nth_token_starts_template_argument_list_p
1682 (cp_parser *, size_t);
1683 static enum tag_types cp_parser_token_is_class_key
1684 (cp_token *);
1685 static void cp_parser_check_class_key
1686 (enum tag_types, tree type);
1687 static void cp_parser_check_access_in_redeclaration
1688 (tree type);
1689 static bool cp_parser_optional_template_keyword
1690 (cp_parser *);
1691 static void cp_parser_pre_parsed_nested_name_specifier
1692 (cp_parser *);
1693 static void cp_parser_cache_group
1694 (cp_parser *, enum cpp_ttype, unsigned);
1695 static void cp_parser_parse_tentatively
1696 (cp_parser *);
1697 static void cp_parser_commit_to_tentative_parse
1698 (cp_parser *);
1699 static void cp_parser_abort_tentative_parse
1700 (cp_parser *);
1701 static bool cp_parser_parse_definitely
1702 (cp_parser *);
1703 static inline bool cp_parser_parsing_tentatively
1704 (cp_parser *);
1705 static bool cp_parser_committed_to_tentative_parse
1706 (cp_parser *);
1707 static void cp_parser_error
1708 (cp_parser *, const char *);
1709 static void cp_parser_name_lookup_error
1710 (cp_parser *, tree, tree, const char *);
1711 static bool cp_parser_simulate_error
1712 (cp_parser *);
1713 static void cp_parser_check_type_definition
1714 (cp_parser *);
1715 static void cp_parser_check_for_definition_in_return_type
1716 (cp_declarator *, int);
1717 static void cp_parser_check_for_invalid_template_id
1718 (cp_parser *, tree);
1719 static bool cp_parser_non_integral_constant_expression
1720 (cp_parser *, const char *);
1721 static void cp_parser_diagnose_invalid_type_name
1722 (cp_parser *, tree, tree);
1723 static bool cp_parser_parse_and_diagnose_invalid_type_name
1724 (cp_parser *);
1725 static int cp_parser_skip_to_closing_parenthesis
1726 (cp_parser *, bool, bool, bool);
1727 static void cp_parser_skip_to_end_of_statement
1728 (cp_parser *);
1729 static void cp_parser_consume_semicolon_at_end_of_statement
1730 (cp_parser *);
1731 static void cp_parser_skip_to_end_of_block_or_statement
1732 (cp_parser *);
1733 static void cp_parser_skip_to_closing_brace
1734 (cp_parser *);
1735 static void cp_parser_skip_until_found
1736 (cp_parser *, enum cpp_ttype, const char *);
1737 static bool cp_parser_error_occurred
1738 (cp_parser *);
1739 static bool cp_parser_allow_gnu_extensions_p
1740 (cp_parser *);
1741 static bool cp_parser_is_string_literal
1742 (cp_token *);
1743 static bool cp_parser_is_keyword
1744 (cp_token *, enum rid);
1745 static tree cp_parser_make_typename_type
1746 (cp_parser *, tree, tree);
1748 /* Returns nonzero if we are parsing tentatively. */
1750 static inline bool
1751 cp_parser_parsing_tentatively (cp_parser* parser)
1753 return parser->context->next != NULL;
1756 /* Returns nonzero if TOKEN is a string literal. */
1758 static bool
1759 cp_parser_is_string_literal (cp_token* token)
1761 return (token->type == CPP_STRING || token->type == CPP_WSTRING);
1764 /* Returns nonzero if TOKEN is the indicated KEYWORD. */
1766 static bool
1767 cp_parser_is_keyword (cp_token* token, enum rid keyword)
1769 return token->keyword == keyword;
1772 /* If not parsing tentatively, issue a diagnostic of the form
1773 FILE:LINE: MESSAGE before TOKEN
1774 where TOKEN is the next token in the input stream. MESSAGE
1775 (specified by the caller) is usually of the form "expected
1776 OTHER-TOKEN". */
1778 static void
1779 cp_parser_error (cp_parser* parser, const char* message)
1781 if (!cp_parser_simulate_error (parser))
1783 cp_token *token = cp_lexer_peek_token (parser->lexer);
1784 /* This diagnostic makes more sense if it is tagged to the line
1785 of the token we just peeked at. */
1786 cp_lexer_set_source_position_from_token (token);
1787 c_parse_error (message,
1788 /* Because c_parser_error does not understand
1789 CPP_KEYWORD, keywords are treated like
1790 identifiers. */
1791 (token->type == CPP_KEYWORD ? CPP_NAME : token->type),
1792 token->value);
1796 /* Issue an error about name-lookup failing. NAME is the
1797 IDENTIFIER_NODE DECL is the result of
1798 the lookup (as returned from cp_parser_lookup_name). DESIRED is
1799 the thing that we hoped to find. */
1801 static void
1802 cp_parser_name_lookup_error (cp_parser* parser,
1803 tree name,
1804 tree decl,
1805 const char* desired)
1807 /* If name lookup completely failed, tell the user that NAME was not
1808 declared. */
1809 if (decl == error_mark_node)
1811 if (parser->scope && parser->scope != global_namespace)
1812 error ("%<%D::%D%> has not been declared",
1813 parser->scope, name);
1814 else if (parser->scope == global_namespace)
1815 error ("%<::%D%> has not been declared", name);
1816 else if (parser->object_scope
1817 && !CLASS_TYPE_P (parser->object_scope))
1818 error ("request for member %qD in non-class type %qT",
1819 name, parser->object_scope);
1820 else if (parser->object_scope)
1821 error ("%<%T::%D%> has not been declared",
1822 parser->object_scope, name);
1823 else
1824 error ("%qD has not been declared", name);
1826 else if (parser->scope && parser->scope != global_namespace)
1827 error ("%<%D::%D%> %s", parser->scope, name, desired);
1828 else if (parser->scope == global_namespace)
1829 error ("%<::%D%> %s", name, desired);
1830 else
1831 error ("%qD %s", name, desired);
1834 /* If we are parsing tentatively, remember that an error has occurred
1835 during this tentative parse. Returns true if the error was
1836 simulated; false if a message should be issued by the caller. */
1838 static bool
1839 cp_parser_simulate_error (cp_parser* parser)
1841 if (cp_parser_parsing_tentatively (parser)
1842 && !cp_parser_committed_to_tentative_parse (parser))
1844 parser->context->status = CP_PARSER_STATUS_KIND_ERROR;
1845 return true;
1847 return false;
1850 /* This function is called when a type is defined. If type
1851 definitions are forbidden at this point, an error message is
1852 issued. */
1854 static void
1855 cp_parser_check_type_definition (cp_parser* parser)
1857 /* If types are forbidden here, issue a message. */
1858 if (parser->type_definition_forbidden_message)
1859 /* Use `%s' to print the string in case there are any escape
1860 characters in the message. */
1861 error ("%s", parser->type_definition_forbidden_message);
1864 /* This function is called when a declaration is parsed. If
1865 DECLARATOR is a function declarator and DECLARES_CLASS_OR_ENUM
1866 indicates that a type was defined in the decl-specifiers for DECL,
1867 then an error is issued. */
1869 static void
1870 cp_parser_check_for_definition_in_return_type (cp_declarator *declarator,
1871 int declares_class_or_enum)
1873 /* [dcl.fct] forbids type definitions in return types.
1874 Unfortunately, it's not easy to know whether or not we are
1875 processing a return type until after the fact. */
1876 while (declarator
1877 && (declarator->kind == cdk_pointer
1878 || declarator->kind == cdk_reference
1879 || declarator->kind == cdk_ptrmem))
1880 declarator = declarator->declarator;
1881 if (declarator
1882 && declarator->kind == cdk_function
1883 && declares_class_or_enum & 2)
1884 error ("new types may not be defined in a return type");
1887 /* A type-specifier (TYPE) has been parsed which cannot be followed by
1888 "<" in any valid C++ program. If the next token is indeed "<",
1889 issue a message warning the user about what appears to be an
1890 invalid attempt to form a template-id. */
1892 static void
1893 cp_parser_check_for_invalid_template_id (cp_parser* parser,
1894 tree type)
1896 cp_token_position start = 0;
1898 if (cp_lexer_next_token_is (parser->lexer, CPP_LESS))
1900 if (TYPE_P (type))
1901 error ("%qT is not a template", type);
1902 else if (TREE_CODE (type) == IDENTIFIER_NODE)
1903 error ("%qE is not a template", type);
1904 else
1905 error ("invalid template-id");
1906 /* Remember the location of the invalid "<". */
1907 if (cp_parser_parsing_tentatively (parser)
1908 && !cp_parser_committed_to_tentative_parse (parser))
1909 start = cp_lexer_token_position (parser->lexer, true);
1910 /* Consume the "<". */
1911 cp_lexer_consume_token (parser->lexer);
1912 /* Parse the template arguments. */
1913 cp_parser_enclosed_template_argument_list (parser);
1914 /* Permanently remove the invalid template arguments so that
1915 this error message is not issued again. */
1916 if (start)
1917 cp_lexer_purge_tokens_after (parser->lexer, start);
1921 /* If parsing an integral constant-expression, issue an error message
1922 about the fact that THING appeared and return true. Otherwise,
1923 return false, marking the current expression as non-constant. */
1925 static bool
1926 cp_parser_non_integral_constant_expression (cp_parser *parser,
1927 const char *thing)
1929 if (parser->integral_constant_expression_p)
1931 if (!parser->allow_non_integral_constant_expression_p)
1933 error ("%s cannot appear in a constant-expression", thing);
1934 return true;
1936 parser->non_integral_constant_expression_p = true;
1938 return false;
1941 /* Emit a diagnostic for an invalid type name. Consider also if it is
1942 qualified or not and the result of a lookup, to provide a better
1943 message. */
1945 static void
1946 cp_parser_diagnose_invalid_type_name (cp_parser *parser, tree scope, tree id)
1948 tree decl, old_scope;
1949 /* Try to lookup the identifier. */
1950 old_scope = parser->scope;
1951 parser->scope = scope;
1952 decl = cp_parser_lookup_name_simple (parser, id);
1953 parser->scope = old_scope;
1954 /* If the lookup found a template-name, it means that the user forgot
1955 to specify an argument list. Emit an useful error message. */
1956 if (TREE_CODE (decl) == TEMPLATE_DECL)
1957 error ("invalid use of template-name %qE without an argument list",
1958 decl);
1959 else if (!parser->scope)
1961 /* Issue an error message. */
1962 error ("%qE does not name a type", id);
1963 /* If we're in a template class, it's possible that the user was
1964 referring to a type from a base class. For example:
1966 template <typename T> struct A { typedef T X; };
1967 template <typename T> struct B : public A<T> { X x; };
1969 The user should have said "typename A<T>::X". */
1970 if (processing_template_decl && current_class_type)
1972 tree b;
1974 for (b = TREE_CHAIN (TYPE_BINFO (current_class_type));
1976 b = TREE_CHAIN (b))
1978 tree base_type = BINFO_TYPE (b);
1979 if (CLASS_TYPE_P (base_type)
1980 && dependent_type_p (base_type))
1982 tree field;
1983 /* Go from a particular instantiation of the
1984 template (which will have an empty TYPE_FIELDs),
1985 to the main version. */
1986 base_type = CLASSTYPE_PRIMARY_TEMPLATE_TYPE (base_type);
1987 for (field = TYPE_FIELDS (base_type);
1988 field;
1989 field = TREE_CHAIN (field))
1990 if (TREE_CODE (field) == TYPE_DECL
1991 && DECL_NAME (field) == id)
1993 inform ("(perhaps %<typename %T::%E%> was intended)",
1994 BINFO_TYPE (b), id);
1995 break;
1997 if (field)
1998 break;
2003 /* Here we diagnose qualified-ids where the scope is actually correct,
2004 but the identifier does not resolve to a valid type name. */
2005 else
2007 if (TREE_CODE (parser->scope) == NAMESPACE_DECL)
2008 error ("%qE in namespace %qE does not name a type",
2009 id, parser->scope);
2010 else if (TYPE_P (parser->scope))
2011 error ("%qE in class %qT does not name a type", id, parser->scope);
2012 else
2013 gcc_unreachable ();
2017 /* Check for a common situation where a type-name should be present,
2018 but is not, and issue a sensible error message. Returns true if an
2019 invalid type-name was detected.
2021 The situation handled by this function are variable declarations of the
2022 form `ID a', where `ID' is an id-expression and `a' is a plain identifier.
2023 Usually, `ID' should name a type, but if we got here it means that it
2024 does not. We try to emit the best possible error message depending on
2025 how exactly the id-expression looks like.
2028 static bool
2029 cp_parser_parse_and_diagnose_invalid_type_name (cp_parser *parser)
2031 tree id;
2033 cp_parser_parse_tentatively (parser);
2034 id = cp_parser_id_expression (parser,
2035 /*template_keyword_p=*/false,
2036 /*check_dependency_p=*/true,
2037 /*template_p=*/NULL,
2038 /*declarator_p=*/true);
2039 /* After the id-expression, there should be a plain identifier,
2040 otherwise this is not a simple variable declaration. Also, if
2041 the scope is dependent, we cannot do much. */
2042 if (!cp_lexer_next_token_is (parser->lexer, CPP_NAME)
2043 || (parser->scope && TYPE_P (parser->scope)
2044 && dependent_type_p (parser->scope)))
2046 cp_parser_abort_tentative_parse (parser);
2047 return false;
2049 if (!cp_parser_parse_definitely (parser)
2050 || TREE_CODE (id) != IDENTIFIER_NODE)
2051 return false;
2053 /* Emit a diagnostic for the invalid type. */
2054 cp_parser_diagnose_invalid_type_name (parser, parser->scope, id);
2055 /* Skip to the end of the declaration; there's no point in
2056 trying to process it. */
2057 cp_parser_skip_to_end_of_block_or_statement (parser);
2058 return true;
2061 /* Consume tokens up to, and including, the next non-nested closing `)'.
2062 Returns 1 iff we found a closing `)'. RECOVERING is true, if we
2063 are doing error recovery. Returns -1 if OR_COMMA is true and we
2064 found an unnested comma. */
2066 static int
2067 cp_parser_skip_to_closing_parenthesis (cp_parser *parser,
2068 bool recovering,
2069 bool or_comma,
2070 bool consume_paren)
2072 unsigned paren_depth = 0;
2073 unsigned brace_depth = 0;
2074 int result;
2076 if (recovering && !or_comma && cp_parser_parsing_tentatively (parser)
2077 && !cp_parser_committed_to_tentative_parse (parser))
2078 return 0;
2080 while (true)
2082 cp_token *token;
2084 /* If we've run out of tokens, then there is no closing `)'. */
2085 if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
2087 result = 0;
2088 break;
2091 token = cp_lexer_peek_token (parser->lexer);
2093 /* This matches the processing in skip_to_end_of_statement. */
2094 if (token->type == CPP_SEMICOLON && !brace_depth)
2096 result = 0;
2097 break;
2099 if (token->type == CPP_OPEN_BRACE)
2100 ++brace_depth;
2101 if (token->type == CPP_CLOSE_BRACE)
2103 if (!brace_depth--)
2105 result = 0;
2106 break;
2109 if (recovering && or_comma && token->type == CPP_COMMA
2110 && !brace_depth && !paren_depth)
2112 result = -1;
2113 break;
2116 if (!brace_depth)
2118 /* If it is an `(', we have entered another level of nesting. */
2119 if (token->type == CPP_OPEN_PAREN)
2120 ++paren_depth;
2121 /* If it is a `)', then we might be done. */
2122 else if (token->type == CPP_CLOSE_PAREN && !paren_depth--)
2124 if (consume_paren)
2125 cp_lexer_consume_token (parser->lexer);
2127 result = 1;
2128 break;
2133 /* Consume the token. */
2134 cp_lexer_consume_token (parser->lexer);
2137 return result;
2140 /* Consume tokens until we reach the end of the current statement.
2141 Normally, that will be just before consuming a `;'. However, if a
2142 non-nested `}' comes first, then we stop before consuming that. */
2144 static void
2145 cp_parser_skip_to_end_of_statement (cp_parser* parser)
2147 unsigned nesting_depth = 0;
2149 while (true)
2151 cp_token *token;
2153 /* Peek at the next token. */
2154 token = cp_lexer_peek_token (parser->lexer);
2155 /* If we've run out of tokens, stop. */
2156 if (token->type == CPP_EOF)
2157 break;
2158 /* If the next token is a `;', we have reached the end of the
2159 statement. */
2160 if (token->type == CPP_SEMICOLON && !nesting_depth)
2161 break;
2162 /* If the next token is a non-nested `}', then we have reached
2163 the end of the current block. */
2164 if (token->type == CPP_CLOSE_BRACE)
2166 /* If this is a non-nested `}', stop before consuming it.
2167 That way, when confronted with something like:
2169 { 3 + }
2171 we stop before consuming the closing `}', even though we
2172 have not yet reached a `;'. */
2173 if (nesting_depth == 0)
2174 break;
2175 /* If it is the closing `}' for a block that we have
2176 scanned, stop -- but only after consuming the token.
2177 That way given:
2179 void f g () { ... }
2180 typedef int I;
2182 we will stop after the body of the erroneously declared
2183 function, but before consuming the following `typedef'
2184 declaration. */
2185 if (--nesting_depth == 0)
2187 cp_lexer_consume_token (parser->lexer);
2188 break;
2191 /* If it the next token is a `{', then we are entering a new
2192 block. Consume the entire block. */
2193 else if (token->type == CPP_OPEN_BRACE)
2194 ++nesting_depth;
2195 /* Consume the token. */
2196 cp_lexer_consume_token (parser->lexer);
2200 /* This function is called at the end of a statement or declaration.
2201 If the next token is a semicolon, it is consumed; otherwise, error
2202 recovery is attempted. */
2204 static void
2205 cp_parser_consume_semicolon_at_end_of_statement (cp_parser *parser)
2207 /* Look for the trailing `;'. */
2208 if (!cp_parser_require (parser, CPP_SEMICOLON, "`;'"))
2210 /* If there is additional (erroneous) input, skip to the end of
2211 the statement. */
2212 cp_parser_skip_to_end_of_statement (parser);
2213 /* If the next token is now a `;', consume it. */
2214 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
2215 cp_lexer_consume_token (parser->lexer);
2219 /* Skip tokens until we have consumed an entire block, or until we
2220 have consumed a non-nested `;'. */
2222 static void
2223 cp_parser_skip_to_end_of_block_or_statement (cp_parser* parser)
2225 unsigned nesting_depth = 0;
2227 while (true)
2229 cp_token *token;
2231 /* Peek at the next token. */
2232 token = cp_lexer_peek_token (parser->lexer);
2233 /* If we've run out of tokens, stop. */
2234 if (token->type == CPP_EOF)
2235 break;
2236 /* If the next token is a `;', we have reached the end of the
2237 statement. */
2238 if (token->type == CPP_SEMICOLON && !nesting_depth)
2240 /* Consume the `;'. */
2241 cp_lexer_consume_token (parser->lexer);
2242 break;
2244 /* Consume the token. */
2245 token = cp_lexer_consume_token (parser->lexer);
2246 /* If the next token is a non-nested `}', then we have reached
2247 the end of the current block. */
2248 if (token->type == CPP_CLOSE_BRACE
2249 && (nesting_depth == 0 || --nesting_depth == 0))
2250 break;
2251 /* If it the next token is a `{', then we are entering a new
2252 block. Consume the entire block. */
2253 if (token->type == CPP_OPEN_BRACE)
2254 ++nesting_depth;
2258 /* Skip tokens until a non-nested closing curly brace is the next
2259 token. */
2261 static void
2262 cp_parser_skip_to_closing_brace (cp_parser *parser)
2264 unsigned nesting_depth = 0;
2266 while (true)
2268 cp_token *token;
2270 /* Peek at the next token. */
2271 token = cp_lexer_peek_token (parser->lexer);
2272 /* If we've run out of tokens, stop. */
2273 if (token->type == CPP_EOF)
2274 break;
2275 /* If the next token is a non-nested `}', then we have reached
2276 the end of the current block. */
2277 if (token->type == CPP_CLOSE_BRACE && nesting_depth-- == 0)
2278 break;
2279 /* If it the next token is a `{', then we are entering a new
2280 block. Consume the entire block. */
2281 else if (token->type == CPP_OPEN_BRACE)
2282 ++nesting_depth;
2283 /* Consume the token. */
2284 cp_lexer_consume_token (parser->lexer);
2288 /* This is a simple wrapper around make_typename_type. When the id is
2289 an unresolved identifier node, we can provide a superior diagnostic
2290 using cp_parser_diagnose_invalid_type_name. */
2292 static tree
2293 cp_parser_make_typename_type (cp_parser *parser, tree scope, tree id)
2295 tree result;
2296 if (TREE_CODE (id) == IDENTIFIER_NODE)
2298 result = make_typename_type (scope, id, /*complain=*/0);
2299 if (result == error_mark_node)
2300 cp_parser_diagnose_invalid_type_name (parser, scope, id);
2301 return result;
2303 return make_typename_type (scope, id, tf_error);
2307 /* Create a new C++ parser. */
2309 static cp_parser *
2310 cp_parser_new (void)
2312 cp_parser *parser;
2313 cp_lexer *lexer;
2314 unsigned i;
2316 /* cp_lexer_new_main is called before calling ggc_alloc because
2317 cp_lexer_new_main might load a PCH file. */
2318 lexer = cp_lexer_new_main ();
2320 /* Initialize the binops_by_token so that we can get the tree
2321 directly from the token. */
2322 for (i = 0; i < sizeof (binops) / sizeof (binops[0]); i++)
2323 binops_by_token[binops[i].token_type] = binops[i];
2325 parser = GGC_CNEW (cp_parser);
2326 parser->lexer = lexer;
2327 parser->context = cp_parser_context_new (NULL);
2329 /* For now, we always accept GNU extensions. */
2330 parser->allow_gnu_extensions_p = 1;
2332 /* The `>' token is a greater-than operator, not the end of a
2333 template-id. */
2334 parser->greater_than_is_operator_p = true;
2336 parser->default_arg_ok_p = true;
2338 /* We are not parsing a constant-expression. */
2339 parser->integral_constant_expression_p = false;
2340 parser->allow_non_integral_constant_expression_p = false;
2341 parser->non_integral_constant_expression_p = false;
2343 /* Local variable names are not forbidden. */
2344 parser->local_variables_forbidden_p = false;
2346 /* We are not processing an `extern "C"' declaration. */
2347 parser->in_unbraced_linkage_specification_p = false;
2349 /* We are not processing a declarator. */
2350 parser->in_declarator_p = false;
2352 /* We are not processing a template-argument-list. */
2353 parser->in_template_argument_list_p = false;
2355 /* We are not in an iteration statement. */
2356 parser->in_iteration_statement_p = false;
2358 /* We are not in a switch statement. */
2359 parser->in_switch_statement_p = false;
2361 /* We are not parsing a type-id inside an expression. */
2362 parser->in_type_id_in_expr_p = false;
2364 /* Declarations aren't implicitly extern "C". */
2365 parser->implicit_extern_c = false;
2367 /* String literals should be translated to the execution character set. */
2368 parser->translate_strings_p = true;
2370 /* The unparsed function queue is empty. */
2371 parser->unparsed_functions_queues = build_tree_list (NULL_TREE, NULL_TREE);
2373 /* There are no classes being defined. */
2374 parser->num_classes_being_defined = 0;
2376 /* No template parameters apply. */
2377 parser->num_template_parameter_lists = 0;
2379 return parser;
2382 /* Create a cp_lexer structure which will emit the tokens in CACHE
2383 and push it onto the parser's lexer stack. This is used for delayed
2384 parsing of in-class method bodies and default arguments, and should
2385 not be confused with tentative parsing. */
2386 static void
2387 cp_parser_push_lexer_for_tokens (cp_parser *parser, cp_token_cache *cache)
2389 cp_lexer *lexer = cp_lexer_new_from_tokens (cache);
2390 lexer->next = parser->lexer;
2391 parser->lexer = lexer;
2393 /* Move the current source position to that of the first token in the
2394 new lexer. */
2395 cp_lexer_set_source_position_from_token (lexer->next_token);
2398 /* Pop the top lexer off the parser stack. This is never used for the
2399 "main" lexer, only for those pushed by cp_parser_push_lexer_for_tokens. */
2400 static void
2401 cp_parser_pop_lexer (cp_parser *parser)
2403 cp_lexer *lexer = parser->lexer;
2404 parser->lexer = lexer->next;
2405 cp_lexer_destroy (lexer);
2407 /* Put the current source position back where it was before this
2408 lexer was pushed. */
2409 cp_lexer_set_source_position_from_token (parser->lexer->next_token);
2412 /* Lexical conventions [gram.lex] */
2414 /* Parse an identifier. Returns an IDENTIFIER_NODE representing the
2415 identifier. */
2417 static tree
2418 cp_parser_identifier (cp_parser* parser)
2420 cp_token *token;
2422 /* Look for the identifier. */
2423 token = cp_parser_require (parser, CPP_NAME, "identifier");
2424 /* Return the value. */
2425 return token ? token->value : error_mark_node;
2428 /* Parse a sequence of adjacent string constants. Returns a
2429 TREE_STRING representing the combined, nul-terminated string
2430 constant. If TRANSLATE is true, translate the string to the
2431 execution character set. If WIDE_OK is true, a wide string is
2432 invalid here.
2434 C++98 [lex.string] says that if a narrow string literal token is
2435 adjacent to a wide string literal token, the behavior is undefined.
2436 However, C99 6.4.5p4 says that this results in a wide string literal.
2437 We follow C99 here, for consistency with the C front end.
2439 This code is largely lifted from lex_string() in c-lex.c.
2441 FUTURE: ObjC++ will need to handle @-strings here. */
2442 static tree
2443 cp_parser_string_literal (cp_parser *parser, bool translate, bool wide_ok)
2445 tree value;
2446 bool wide = false;
2447 size_t count;
2448 struct obstack str_ob;
2449 cpp_string str, istr, *strs;
2450 cp_token *tok;
2452 tok = cp_lexer_peek_token (parser->lexer);
2453 if (!cp_parser_is_string_literal (tok))
2455 cp_parser_error (parser, "expected string-literal");
2456 return error_mark_node;
2459 /* Try to avoid the overhead of creating and destroying an obstack
2460 for the common case of just one string. */
2461 if (!cp_parser_is_string_literal
2462 (cp_lexer_peek_nth_token (parser->lexer, 2)))
2464 cp_lexer_consume_token (parser->lexer);
2466 str.text = (const unsigned char *)TREE_STRING_POINTER (tok->value);
2467 str.len = TREE_STRING_LENGTH (tok->value);
2468 count = 1;
2469 if (tok->type == CPP_WSTRING)
2470 wide = true;
2472 strs = &str;
2474 else
2476 gcc_obstack_init (&str_ob);
2477 count = 0;
2481 cp_lexer_consume_token (parser->lexer);
2482 count++;
2483 str.text = (unsigned char *)TREE_STRING_POINTER (tok->value);
2484 str.len = TREE_STRING_LENGTH (tok->value);
2485 if (tok->type == CPP_WSTRING)
2486 wide = true;
2488 obstack_grow (&str_ob, &str, sizeof (cpp_string));
2490 tok = cp_lexer_peek_token (parser->lexer);
2492 while (cp_parser_is_string_literal (tok));
2494 strs = (cpp_string *) obstack_finish (&str_ob);
2497 if (wide && !wide_ok)
2499 cp_parser_error (parser, "a wide string is invalid in this context");
2500 wide = false;
2503 if ((translate ? cpp_interpret_string : cpp_interpret_string_notranslate)
2504 (parse_in, strs, count, &istr, wide))
2506 value = build_string (istr.len, (char *)istr.text);
2507 free ((void *)istr.text);
2509 TREE_TYPE (value) = wide ? wchar_array_type_node : char_array_type_node;
2510 value = fix_string_type (value);
2512 else
2513 /* cpp_interpret_string has issued an error. */
2514 value = error_mark_node;
2516 if (count > 1)
2517 obstack_free (&str_ob, 0);
2519 return value;
2523 /* Basic concepts [gram.basic] */
2525 /* Parse a translation-unit.
2527 translation-unit:
2528 declaration-seq [opt]
2530 Returns TRUE if all went well. */
2532 static bool
2533 cp_parser_translation_unit (cp_parser* parser)
2535 /* The address of the first non-permanent object on the declarator
2536 obstack. */
2537 static void *declarator_obstack_base;
2539 bool success;
2541 /* Create the declarator obstack, if necessary. */
2542 if (!cp_error_declarator)
2544 gcc_obstack_init (&declarator_obstack);
2545 /* Create the error declarator. */
2546 cp_error_declarator = make_declarator (cdk_error);
2547 /* Create the empty parameter list. */
2548 no_parameters = make_parameter_declarator (NULL, NULL, NULL_TREE);
2549 /* Remember where the base of the declarator obstack lies. */
2550 declarator_obstack_base = obstack_next_free (&declarator_obstack);
2553 while (true)
2555 cp_parser_declaration_seq_opt (parser);
2557 /* If there are no tokens left then all went well. */
2558 if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
2560 /* Get rid of the token array; we don't need it any more. */
2561 cp_lexer_destroy (parser->lexer);
2562 parser->lexer = NULL;
2564 /* This file might have been a context that's implicitly extern
2565 "C". If so, pop the lang context. (Only relevant for PCH.) */
2566 if (parser->implicit_extern_c)
2568 pop_lang_context ();
2569 parser->implicit_extern_c = false;
2572 /* Finish up. */
2573 finish_translation_unit ();
2575 success = true;
2576 break;
2578 else
2580 cp_parser_error (parser, "expected declaration");
2581 success = false;
2582 break;
2586 /* Make sure the declarator obstack was fully cleaned up. */
2587 gcc_assert (obstack_next_free (&declarator_obstack)
2588 == declarator_obstack_base);
2590 /* All went well. */
2591 return success;
2594 /* Expressions [gram.expr] */
2596 /* Parse a primary-expression.
2598 primary-expression:
2599 literal
2600 this
2601 ( expression )
2602 id-expression
2604 GNU Extensions:
2606 primary-expression:
2607 ( compound-statement )
2608 __builtin_va_arg ( assignment-expression , type-id )
2610 literal:
2611 __null
2613 Returns a representation of the expression.
2615 *IDK indicates what kind of id-expression (if any) was present.
2617 *QUALIFYING_CLASS is set to a non-NULL value if the id-expression can be
2618 used as the operand of a pointer-to-member. In that case,
2619 *QUALIFYING_CLASS gives the class that is used as the qualifying
2620 class in the pointer-to-member. */
2622 static tree
2623 cp_parser_primary_expression (cp_parser *parser,
2624 cp_id_kind *idk,
2625 tree *qualifying_class)
2627 cp_token *token;
2629 /* Assume the primary expression is not an id-expression. */
2630 *idk = CP_ID_KIND_NONE;
2631 /* And that it cannot be used as pointer-to-member. */
2632 *qualifying_class = NULL_TREE;
2634 /* Peek at the next token. */
2635 token = cp_lexer_peek_token (parser->lexer);
2636 switch (token->type)
2638 /* literal:
2639 integer-literal
2640 character-literal
2641 floating-literal
2642 string-literal
2643 boolean-literal */
2644 case CPP_CHAR:
2645 case CPP_WCHAR:
2646 case CPP_NUMBER:
2647 token = cp_lexer_consume_token (parser->lexer);
2648 return token->value;
2650 case CPP_STRING:
2651 case CPP_WSTRING:
2652 /* ??? Should wide strings be allowed when parser->translate_strings_p
2653 is false (i.e. in attributes)? If not, we can kill the third
2654 argument to cp_parser_string_literal. */
2655 return cp_parser_string_literal (parser,
2656 parser->translate_strings_p,
2657 true);
2659 case CPP_OPEN_PAREN:
2661 tree expr;
2662 bool saved_greater_than_is_operator_p;
2664 /* Consume the `('. */
2665 cp_lexer_consume_token (parser->lexer);
2666 /* Within a parenthesized expression, a `>' token is always
2667 the greater-than operator. */
2668 saved_greater_than_is_operator_p
2669 = parser->greater_than_is_operator_p;
2670 parser->greater_than_is_operator_p = true;
2671 /* If we see `( { ' then we are looking at the beginning of
2672 a GNU statement-expression. */
2673 if (cp_parser_allow_gnu_extensions_p (parser)
2674 && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
2676 /* Statement-expressions are not allowed by the standard. */
2677 if (pedantic)
2678 pedwarn ("ISO C++ forbids braced-groups within expressions");
2680 /* And they're not allowed outside of a function-body; you
2681 cannot, for example, write:
2683 int i = ({ int j = 3; j + 1; });
2685 at class or namespace scope. */
2686 if (!at_function_scope_p ())
2687 error ("statement-expressions are allowed only inside functions");
2688 /* Start the statement-expression. */
2689 expr = begin_stmt_expr ();
2690 /* Parse the compound-statement. */
2691 cp_parser_compound_statement (parser, expr, false);
2692 /* Finish up. */
2693 expr = finish_stmt_expr (expr, false);
2695 else
2697 /* Parse the parenthesized expression. */
2698 expr = cp_parser_expression (parser);
2699 /* Let the front end know that this expression was
2700 enclosed in parentheses. This matters in case, for
2701 example, the expression is of the form `A::B', since
2702 `&A::B' might be a pointer-to-member, but `&(A::B)' is
2703 not. */
2704 finish_parenthesized_expr (expr);
2706 /* The `>' token might be the end of a template-id or
2707 template-parameter-list now. */
2708 parser->greater_than_is_operator_p
2709 = saved_greater_than_is_operator_p;
2710 /* Consume the `)'. */
2711 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
2712 cp_parser_skip_to_end_of_statement (parser);
2714 return expr;
2717 case CPP_KEYWORD:
2718 switch (token->keyword)
2720 /* These two are the boolean literals. */
2721 case RID_TRUE:
2722 cp_lexer_consume_token (parser->lexer);
2723 return boolean_true_node;
2724 case RID_FALSE:
2725 cp_lexer_consume_token (parser->lexer);
2726 return boolean_false_node;
2728 /* The `__null' literal. */
2729 case RID_NULL:
2730 cp_lexer_consume_token (parser->lexer);
2731 return null_node;
2733 /* Recognize the `this' keyword. */
2734 case RID_THIS:
2735 cp_lexer_consume_token (parser->lexer);
2736 if (parser->local_variables_forbidden_p)
2738 error ("%<this%> may not be used in this context");
2739 return error_mark_node;
2741 /* Pointers cannot appear in constant-expressions. */
2742 if (cp_parser_non_integral_constant_expression (parser,
2743 "`this'"))
2744 return error_mark_node;
2745 return finish_this_expr ();
2747 /* The `operator' keyword can be the beginning of an
2748 id-expression. */
2749 case RID_OPERATOR:
2750 goto id_expression;
2752 case RID_FUNCTION_NAME:
2753 case RID_PRETTY_FUNCTION_NAME:
2754 case RID_C99_FUNCTION_NAME:
2755 /* The symbols __FUNCTION__, __PRETTY_FUNCTION__, and
2756 __func__ are the names of variables -- but they are
2757 treated specially. Therefore, they are handled here,
2758 rather than relying on the generic id-expression logic
2759 below. Grammatically, these names are id-expressions.
2761 Consume the token. */
2762 token = cp_lexer_consume_token (parser->lexer);
2763 /* Look up the name. */
2764 return finish_fname (token->value);
2766 case RID_VA_ARG:
2768 tree expression;
2769 tree type;
2771 /* The `__builtin_va_arg' construct is used to handle
2772 `va_arg'. Consume the `__builtin_va_arg' token. */
2773 cp_lexer_consume_token (parser->lexer);
2774 /* Look for the opening `('. */
2775 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
2776 /* Now, parse the assignment-expression. */
2777 expression = cp_parser_assignment_expression (parser);
2778 /* Look for the `,'. */
2779 cp_parser_require (parser, CPP_COMMA, "`,'");
2780 /* Parse the type-id. */
2781 type = cp_parser_type_id (parser);
2782 /* Look for the closing `)'. */
2783 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
2784 /* Using `va_arg' in a constant-expression is not
2785 allowed. */
2786 if (cp_parser_non_integral_constant_expression (parser,
2787 "`va_arg'"))
2788 return error_mark_node;
2789 return build_x_va_arg (expression, type);
2792 case RID_OFFSETOF:
2793 return cp_parser_builtin_offsetof (parser);
2795 default:
2796 cp_parser_error (parser, "expected primary-expression");
2797 return error_mark_node;
2800 /* An id-expression can start with either an identifier, a
2801 `::' as the beginning of a qualified-id, or the "operator"
2802 keyword. */
2803 case CPP_NAME:
2804 case CPP_SCOPE:
2805 case CPP_TEMPLATE_ID:
2806 case CPP_NESTED_NAME_SPECIFIER:
2808 tree id_expression;
2809 tree decl;
2810 const char *error_msg;
2812 id_expression:
2813 /* Parse the id-expression. */
2814 id_expression
2815 = cp_parser_id_expression (parser,
2816 /*template_keyword_p=*/false,
2817 /*check_dependency_p=*/true,
2818 /*template_p=*/NULL,
2819 /*declarator_p=*/false);
2820 if (id_expression == error_mark_node)
2821 return error_mark_node;
2822 /* If we have a template-id, then no further lookup is
2823 required. If the template-id was for a template-class, we
2824 will sometimes have a TYPE_DECL at this point. */
2825 else if (TREE_CODE (id_expression) == TEMPLATE_ID_EXPR
2826 || TREE_CODE (id_expression) == TYPE_DECL)
2827 decl = id_expression;
2828 /* Look up the name. */
2829 else
2831 bool ambiguous_p;
2833 decl = cp_parser_lookup_name (parser, id_expression,
2834 /*is_type=*/false,
2835 /*is_template=*/false,
2836 /*is_namespace=*/false,
2837 /*check_dependency=*/true,
2838 &ambiguous_p);
2839 /* If the lookup was ambiguous, an error will already have
2840 been issued. */
2841 if (ambiguous_p)
2842 return error_mark_node;
2843 /* If name lookup gives us a SCOPE_REF, then the
2844 qualifying scope was dependent. Just propagate the
2845 name. */
2846 if (TREE_CODE (decl) == SCOPE_REF)
2848 if (TYPE_P (TREE_OPERAND (decl, 0)))
2849 *qualifying_class = TREE_OPERAND (decl, 0);
2850 return decl;
2852 /* Check to see if DECL is a local variable in a context
2853 where that is forbidden. */
2854 if (parser->local_variables_forbidden_p
2855 && local_variable_p (decl))
2857 /* It might be that we only found DECL because we are
2858 trying to be generous with pre-ISO scoping rules.
2859 For example, consider:
2861 int i;
2862 void g() {
2863 for (int i = 0; i < 10; ++i) {}
2864 extern void f(int j = i);
2867 Here, name look up will originally find the out
2868 of scope `i'. We need to issue a warning message,
2869 but then use the global `i'. */
2870 decl = check_for_out_of_scope_variable (decl);
2871 if (local_variable_p (decl))
2873 error ("local variable %qD may not appear in this context",
2874 decl);
2875 return error_mark_node;
2880 decl = finish_id_expression (id_expression, decl, parser->scope,
2881 idk, qualifying_class,
2882 parser->integral_constant_expression_p,
2883 parser->allow_non_integral_constant_expression_p,
2884 &parser->non_integral_constant_expression_p,
2885 &error_msg);
2886 if (error_msg)
2887 cp_parser_error (parser, error_msg);
2888 return decl;
2891 /* Anything else is an error. */
2892 default:
2893 cp_parser_error (parser, "expected primary-expression");
2894 return error_mark_node;
2898 /* Parse an id-expression.
2900 id-expression:
2901 unqualified-id
2902 qualified-id
2904 qualified-id:
2905 :: [opt] nested-name-specifier template [opt] unqualified-id
2906 :: identifier
2907 :: operator-function-id
2908 :: template-id
2910 Return a representation of the unqualified portion of the
2911 identifier. Sets PARSER->SCOPE to the qualifying scope if there is
2912 a `::' or nested-name-specifier.
2914 Often, if the id-expression was a qualified-id, the caller will
2915 want to make a SCOPE_REF to represent the qualified-id. This
2916 function does not do this in order to avoid wastefully creating
2917 SCOPE_REFs when they are not required.
2919 If TEMPLATE_KEYWORD_P is true, then we have just seen the
2920 `template' keyword.
2922 If CHECK_DEPENDENCY_P is false, then names are looked up inside
2923 uninstantiated templates.
2925 If *TEMPLATE_P is non-NULL, it is set to true iff the
2926 `template' keyword is used to explicitly indicate that the entity
2927 named is a template.
2929 If DECLARATOR_P is true, the id-expression is appearing as part of
2930 a declarator, rather than as part of an expression. */
2932 static tree
2933 cp_parser_id_expression (cp_parser *parser,
2934 bool template_keyword_p,
2935 bool check_dependency_p,
2936 bool *template_p,
2937 bool declarator_p)
2939 bool global_scope_p;
2940 bool nested_name_specifier_p;
2942 /* Assume the `template' keyword was not used. */
2943 if (template_p)
2944 *template_p = false;
2946 /* Look for the optional `::' operator. */
2947 global_scope_p
2948 = (cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false)
2949 != NULL_TREE);
2950 /* Look for the optional nested-name-specifier. */
2951 nested_name_specifier_p
2952 = (cp_parser_nested_name_specifier_opt (parser,
2953 /*typename_keyword_p=*/false,
2954 check_dependency_p,
2955 /*type_p=*/false,
2956 declarator_p)
2957 != NULL_TREE);
2958 /* If there is a nested-name-specifier, then we are looking at
2959 the first qualified-id production. */
2960 if (nested_name_specifier_p)
2962 tree saved_scope;
2963 tree saved_object_scope;
2964 tree saved_qualifying_scope;
2965 tree unqualified_id;
2966 bool is_template;
2968 /* See if the next token is the `template' keyword. */
2969 if (!template_p)
2970 template_p = &is_template;
2971 *template_p = cp_parser_optional_template_keyword (parser);
2972 /* Name lookup we do during the processing of the
2973 unqualified-id might obliterate SCOPE. */
2974 saved_scope = parser->scope;
2975 saved_object_scope = parser->object_scope;
2976 saved_qualifying_scope = parser->qualifying_scope;
2977 /* Process the final unqualified-id. */
2978 unqualified_id = cp_parser_unqualified_id (parser, *template_p,
2979 check_dependency_p,
2980 declarator_p);
2981 /* Restore the SAVED_SCOPE for our caller. */
2982 parser->scope = saved_scope;
2983 parser->object_scope = saved_object_scope;
2984 parser->qualifying_scope = saved_qualifying_scope;
2986 return unqualified_id;
2988 /* Otherwise, if we are in global scope, then we are looking at one
2989 of the other qualified-id productions. */
2990 else if (global_scope_p)
2992 cp_token *token;
2993 tree id;
2995 /* Peek at the next token. */
2996 token = cp_lexer_peek_token (parser->lexer);
2998 /* If it's an identifier, and the next token is not a "<", then
2999 we can avoid the template-id case. This is an optimization
3000 for this common case. */
3001 if (token->type == CPP_NAME
3002 && !cp_parser_nth_token_starts_template_argument_list_p
3003 (parser, 2))
3004 return cp_parser_identifier (parser);
3006 cp_parser_parse_tentatively (parser);
3007 /* Try a template-id. */
3008 id = cp_parser_template_id (parser,
3009 /*template_keyword_p=*/false,
3010 /*check_dependency_p=*/true,
3011 declarator_p);
3012 /* If that worked, we're done. */
3013 if (cp_parser_parse_definitely (parser))
3014 return id;
3016 /* Peek at the next token. (Changes in the token buffer may
3017 have invalidated the pointer obtained above.) */
3018 token = cp_lexer_peek_token (parser->lexer);
3020 switch (token->type)
3022 case CPP_NAME:
3023 return cp_parser_identifier (parser);
3025 case CPP_KEYWORD:
3026 if (token->keyword == RID_OPERATOR)
3027 return cp_parser_operator_function_id (parser);
3028 /* Fall through. */
3030 default:
3031 cp_parser_error (parser, "expected id-expression");
3032 return error_mark_node;
3035 else
3036 return cp_parser_unqualified_id (parser, template_keyword_p,
3037 /*check_dependency_p=*/true,
3038 declarator_p);
3041 /* Parse an unqualified-id.
3043 unqualified-id:
3044 identifier
3045 operator-function-id
3046 conversion-function-id
3047 ~ class-name
3048 template-id
3050 If TEMPLATE_KEYWORD_P is TRUE, we have just seen the `template'
3051 keyword, in a construct like `A::template ...'.
3053 Returns a representation of unqualified-id. For the `identifier'
3054 production, an IDENTIFIER_NODE is returned. For the `~ class-name'
3055 production a BIT_NOT_EXPR is returned; the operand of the
3056 BIT_NOT_EXPR is an IDENTIFIER_NODE for the class-name. For the
3057 other productions, see the documentation accompanying the
3058 corresponding parsing functions. If CHECK_DEPENDENCY_P is false,
3059 names are looked up in uninstantiated templates. If DECLARATOR_P
3060 is true, the unqualified-id is appearing as part of a declarator,
3061 rather than as part of an expression. */
3063 static tree
3064 cp_parser_unqualified_id (cp_parser* parser,
3065 bool template_keyword_p,
3066 bool check_dependency_p,
3067 bool declarator_p)
3069 cp_token *token;
3071 /* Peek at the next token. */
3072 token = cp_lexer_peek_token (parser->lexer);
3074 switch (token->type)
3076 case CPP_NAME:
3078 tree id;
3080 /* We don't know yet whether or not this will be a
3081 template-id. */
3082 cp_parser_parse_tentatively (parser);
3083 /* Try a template-id. */
3084 id = cp_parser_template_id (parser, template_keyword_p,
3085 check_dependency_p,
3086 declarator_p);
3087 /* If it worked, we're done. */
3088 if (cp_parser_parse_definitely (parser))
3089 return id;
3090 /* Otherwise, it's an ordinary identifier. */
3091 return cp_parser_identifier (parser);
3094 case CPP_TEMPLATE_ID:
3095 return cp_parser_template_id (parser, template_keyword_p,
3096 check_dependency_p,
3097 declarator_p);
3099 case CPP_COMPL:
3101 tree type_decl;
3102 tree qualifying_scope;
3103 tree object_scope;
3104 tree scope;
3106 /* Consume the `~' token. */
3107 cp_lexer_consume_token (parser->lexer);
3108 /* Parse the class-name. The standard, as written, seems to
3109 say that:
3111 template <typename T> struct S { ~S (); };
3112 template <typename T> S<T>::~S() {}
3114 is invalid, since `~' must be followed by a class-name, but
3115 `S<T>' is dependent, and so not known to be a class.
3116 That's not right; we need to look in uninstantiated
3117 templates. A further complication arises from:
3119 template <typename T> void f(T t) {
3120 t.T::~T();
3123 Here, it is not possible to look up `T' in the scope of `T'
3124 itself. We must look in both the current scope, and the
3125 scope of the containing complete expression.
3127 Yet another issue is:
3129 struct S {
3130 int S;
3131 ~S();
3134 S::~S() {}
3136 The standard does not seem to say that the `S' in `~S'
3137 should refer to the type `S' and not the data member
3138 `S::S'. */
3140 /* DR 244 says that we look up the name after the "~" in the
3141 same scope as we looked up the qualifying name. That idea
3142 isn't fully worked out; it's more complicated than that. */
3143 scope = parser->scope;
3144 object_scope = parser->object_scope;
3145 qualifying_scope = parser->qualifying_scope;
3147 /* If the name is of the form "X::~X" it's OK. */
3148 if (scope && TYPE_P (scope)
3149 && cp_lexer_next_token_is (parser->lexer, CPP_NAME)
3150 && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
3151 == CPP_OPEN_PAREN)
3152 && (cp_lexer_peek_token (parser->lexer)->value
3153 == TYPE_IDENTIFIER (scope)))
3155 cp_lexer_consume_token (parser->lexer);
3156 return build_nt (BIT_NOT_EXPR, scope);
3159 /* If there was an explicit qualification (S::~T), first look
3160 in the scope given by the qualification (i.e., S). */
3161 if (scope)
3163 cp_parser_parse_tentatively (parser);
3164 type_decl = cp_parser_class_name (parser,
3165 /*typename_keyword_p=*/false,
3166 /*template_keyword_p=*/false,
3167 /*type_p=*/false,
3168 /*check_dependency=*/false,
3169 /*class_head_p=*/false,
3170 declarator_p);
3171 if (cp_parser_parse_definitely (parser))
3172 return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
3174 /* In "N::S::~S", look in "N" as well. */
3175 if (scope && qualifying_scope)
3177 cp_parser_parse_tentatively (parser);
3178 parser->scope = qualifying_scope;
3179 parser->object_scope = NULL_TREE;
3180 parser->qualifying_scope = NULL_TREE;
3181 type_decl
3182 = cp_parser_class_name (parser,
3183 /*typename_keyword_p=*/false,
3184 /*template_keyword_p=*/false,
3185 /*type_p=*/false,
3186 /*check_dependency=*/false,
3187 /*class_head_p=*/false,
3188 declarator_p);
3189 if (cp_parser_parse_definitely (parser))
3190 return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
3192 /* In "p->S::~T", look in the scope given by "*p" as well. */
3193 else if (object_scope)
3195 cp_parser_parse_tentatively (parser);
3196 parser->scope = object_scope;
3197 parser->object_scope = NULL_TREE;
3198 parser->qualifying_scope = NULL_TREE;
3199 type_decl
3200 = cp_parser_class_name (parser,
3201 /*typename_keyword_p=*/false,
3202 /*template_keyword_p=*/false,
3203 /*type_p=*/false,
3204 /*check_dependency=*/false,
3205 /*class_head_p=*/false,
3206 declarator_p);
3207 if (cp_parser_parse_definitely (parser))
3208 return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
3210 /* Look in the surrounding context. */
3211 parser->scope = NULL_TREE;
3212 parser->object_scope = NULL_TREE;
3213 parser->qualifying_scope = NULL_TREE;
3214 type_decl
3215 = cp_parser_class_name (parser,
3216 /*typename_keyword_p=*/false,
3217 /*template_keyword_p=*/false,
3218 /*type_p=*/false,
3219 /*check_dependency=*/false,
3220 /*class_head_p=*/false,
3221 declarator_p);
3222 /* If an error occurred, assume that the name of the
3223 destructor is the same as the name of the qualifying
3224 class. That allows us to keep parsing after running
3225 into ill-formed destructor names. */
3226 if (type_decl == error_mark_node && scope && TYPE_P (scope))
3227 return build_nt (BIT_NOT_EXPR, scope);
3228 else if (type_decl == error_mark_node)
3229 return error_mark_node;
3231 /* [class.dtor]
3233 A typedef-name that names a class shall not be used as the
3234 identifier in the declarator for a destructor declaration. */
3235 if (declarator_p
3236 && !DECL_IMPLICIT_TYPEDEF_P (type_decl)
3237 && !DECL_SELF_REFERENCE_P (type_decl))
3238 error ("typedef-name %qD used as destructor declarator",
3239 type_decl);
3241 return build_nt (BIT_NOT_EXPR, TREE_TYPE (type_decl));
3244 case CPP_KEYWORD:
3245 if (token->keyword == RID_OPERATOR)
3247 tree id;
3249 /* This could be a template-id, so we try that first. */
3250 cp_parser_parse_tentatively (parser);
3251 /* Try a template-id. */
3252 id = cp_parser_template_id (parser, template_keyword_p,
3253 /*check_dependency_p=*/true,
3254 declarator_p);
3255 /* If that worked, we're done. */
3256 if (cp_parser_parse_definitely (parser))
3257 return id;
3258 /* We still don't know whether we're looking at an
3259 operator-function-id or a conversion-function-id. */
3260 cp_parser_parse_tentatively (parser);
3261 /* Try an operator-function-id. */
3262 id = cp_parser_operator_function_id (parser);
3263 /* If that didn't work, try a conversion-function-id. */
3264 if (!cp_parser_parse_definitely (parser))
3265 id = cp_parser_conversion_function_id (parser);
3267 return id;
3269 /* Fall through. */
3271 default:
3272 cp_parser_error (parser, "expected unqualified-id");
3273 return error_mark_node;
3277 /* Parse an (optional) nested-name-specifier.
3279 nested-name-specifier:
3280 class-or-namespace-name :: nested-name-specifier [opt]
3281 class-or-namespace-name :: template nested-name-specifier [opt]
3283 PARSER->SCOPE should be set appropriately before this function is
3284 called. TYPENAME_KEYWORD_P is TRUE if the `typename' keyword is in
3285 effect. TYPE_P is TRUE if we non-type bindings should be ignored
3286 in name lookups.
3288 Sets PARSER->SCOPE to the class (TYPE) or namespace
3289 (NAMESPACE_DECL) specified by the nested-name-specifier, or leaves
3290 it unchanged if there is no nested-name-specifier. Returns the new
3291 scope iff there is a nested-name-specifier, or NULL_TREE otherwise.
3293 If IS_DECLARATION is TRUE, the nested-name-specifier is known to be
3294 part of a declaration and/or decl-specifier. */
3296 static tree
3297 cp_parser_nested_name_specifier_opt (cp_parser *parser,
3298 bool typename_keyword_p,
3299 bool check_dependency_p,
3300 bool type_p,
3301 bool is_declaration)
3303 bool success = false;
3304 tree access_check = NULL_TREE;
3305 cp_token_position start = 0;
3306 cp_token *token;
3308 /* If the next token corresponds to a nested name specifier, there
3309 is no need to reparse it. However, if CHECK_DEPENDENCY_P is
3310 false, it may have been true before, in which case something
3311 like `A<X>::B<Y>::C' may have resulted in a nested-name-specifier
3312 of `A<X>::', where it should now be `A<X>::B<Y>::'. So, when
3313 CHECK_DEPENDENCY_P is false, we have to fall through into the
3314 main loop. */
3315 if (check_dependency_p
3316 && cp_lexer_next_token_is (parser->lexer, CPP_NESTED_NAME_SPECIFIER))
3318 cp_parser_pre_parsed_nested_name_specifier (parser);
3319 return parser->scope;
3322 /* Remember where the nested-name-specifier starts. */
3323 if (cp_parser_parsing_tentatively (parser)
3324 && !cp_parser_committed_to_tentative_parse (parser))
3325 start = cp_lexer_token_position (parser->lexer, false);
3327 push_deferring_access_checks (dk_deferred);
3329 while (true)
3331 tree new_scope;
3332 tree old_scope;
3333 tree saved_qualifying_scope;
3334 bool template_keyword_p;
3336 /* Spot cases that cannot be the beginning of a
3337 nested-name-specifier. */
3338 token = cp_lexer_peek_token (parser->lexer);
3340 /* If the next token is CPP_NESTED_NAME_SPECIFIER, just process
3341 the already parsed nested-name-specifier. */
3342 if (token->type == CPP_NESTED_NAME_SPECIFIER)
3344 /* Grab the nested-name-specifier and continue the loop. */
3345 cp_parser_pre_parsed_nested_name_specifier (parser);
3346 success = true;
3347 continue;
3350 /* Spot cases that cannot be the beginning of a
3351 nested-name-specifier. On the second and subsequent times
3352 through the loop, we look for the `template' keyword. */
3353 if (success && token->keyword == RID_TEMPLATE)
3355 /* A template-id can start a nested-name-specifier. */
3356 else if (token->type == CPP_TEMPLATE_ID)
3358 else
3360 /* If the next token is not an identifier, then it is
3361 definitely not a class-or-namespace-name. */
3362 if (token->type != CPP_NAME)
3363 break;
3364 /* If the following token is neither a `<' (to begin a
3365 template-id), nor a `::', then we are not looking at a
3366 nested-name-specifier. */
3367 token = cp_lexer_peek_nth_token (parser->lexer, 2);
3368 if (token->type != CPP_SCOPE
3369 && !cp_parser_nth_token_starts_template_argument_list_p
3370 (parser, 2))
3371 break;
3374 /* The nested-name-specifier is optional, so we parse
3375 tentatively. */
3376 cp_parser_parse_tentatively (parser);
3378 /* Look for the optional `template' keyword, if this isn't the
3379 first time through the loop. */
3380 if (success)
3381 template_keyword_p = cp_parser_optional_template_keyword (parser);
3382 else
3383 template_keyword_p = false;
3385 /* Save the old scope since the name lookup we are about to do
3386 might destroy it. */
3387 old_scope = parser->scope;
3388 saved_qualifying_scope = parser->qualifying_scope;
3389 /* In a declarator-id like "X<T>::I::Y<T>" we must be able to
3390 look up names in "X<T>::I" in order to determine that "Y" is
3391 a template. So, if we have a typename at this point, we make
3392 an effort to look through it. */
3393 if (is_declaration
3394 && !typename_keyword_p
3395 && parser->scope
3396 && TREE_CODE (parser->scope) == TYPENAME_TYPE)
3397 parser->scope = resolve_typename_type (parser->scope,
3398 /*only_current_p=*/false);
3399 /* Parse the qualifying entity. */
3400 new_scope
3401 = cp_parser_class_or_namespace_name (parser,
3402 typename_keyword_p,
3403 template_keyword_p,
3404 check_dependency_p,
3405 type_p,
3406 is_declaration);
3407 /* Look for the `::' token. */
3408 cp_parser_require (parser, CPP_SCOPE, "`::'");
3410 /* If we found what we wanted, we keep going; otherwise, we're
3411 done. */
3412 if (!cp_parser_parse_definitely (parser))
3414 bool error_p = false;
3416 /* Restore the OLD_SCOPE since it was valid before the
3417 failed attempt at finding the last
3418 class-or-namespace-name. */
3419 parser->scope = old_scope;
3420 parser->qualifying_scope = saved_qualifying_scope;
3421 /* If the next token is an identifier, and the one after
3422 that is a `::', then any valid interpretation would have
3423 found a class-or-namespace-name. */
3424 while (cp_lexer_next_token_is (parser->lexer, CPP_NAME)
3425 && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
3426 == CPP_SCOPE)
3427 && (cp_lexer_peek_nth_token (parser->lexer, 3)->type
3428 != CPP_COMPL))
3430 token = cp_lexer_consume_token (parser->lexer);
3431 if (!error_p)
3433 tree decl;
3435 decl = cp_parser_lookup_name_simple (parser, token->value);
3436 if (TREE_CODE (decl) == TEMPLATE_DECL)
3437 error ("%qD used without template parameters", decl);
3438 else
3439 cp_parser_name_lookup_error
3440 (parser, token->value, decl,
3441 "is not a class or namespace");
3442 parser->scope = NULL_TREE;
3443 error_p = true;
3444 /* Treat this as a successful nested-name-specifier
3445 due to:
3447 [basic.lookup.qual]
3449 If the name found is not a class-name (clause
3450 _class_) or namespace-name (_namespace.def_), the
3451 program is ill-formed. */
3452 success = true;
3454 cp_lexer_consume_token (parser->lexer);
3456 break;
3459 /* We've found one valid nested-name-specifier. */
3460 success = true;
3461 /* Make sure we look in the right scope the next time through
3462 the loop. */
3463 parser->scope = (TREE_CODE (new_scope) == TYPE_DECL
3464 ? TREE_TYPE (new_scope)
3465 : new_scope);
3466 /* If it is a class scope, try to complete it; we are about to
3467 be looking up names inside the class. */
3468 if (TYPE_P (parser->scope)
3469 /* Since checking types for dependency can be expensive,
3470 avoid doing it if the type is already complete. */
3471 && !COMPLETE_TYPE_P (parser->scope)
3472 /* Do not try to complete dependent types. */
3473 && !dependent_type_p (parser->scope))
3474 complete_type (parser->scope);
3477 /* Retrieve any deferred checks. Do not pop this access checks yet
3478 so the memory will not be reclaimed during token replacing below. */
3479 access_check = get_deferred_access_checks ();
3481 /* If parsing tentatively, replace the sequence of tokens that makes
3482 up the nested-name-specifier with a CPP_NESTED_NAME_SPECIFIER
3483 token. That way, should we re-parse the token stream, we will
3484 not have to repeat the effort required to do the parse, nor will
3485 we issue duplicate error messages. */
3486 if (success && start)
3488 cp_token *token = cp_lexer_token_at (parser->lexer, start);
3490 /* Reset the contents of the START token. */
3491 token->type = CPP_NESTED_NAME_SPECIFIER;
3492 token->value = build_tree_list (access_check, parser->scope);
3493 TREE_TYPE (token->value) = parser->qualifying_scope;
3494 token->keyword = RID_MAX;
3496 /* Purge all subsequent tokens. */
3497 cp_lexer_purge_tokens_after (parser->lexer, start);
3500 pop_deferring_access_checks ();
3501 return success ? parser->scope : NULL_TREE;
3504 /* Parse a nested-name-specifier. See
3505 cp_parser_nested_name_specifier_opt for details. This function
3506 behaves identically, except that it will an issue an error if no
3507 nested-name-specifier is present, and it will return
3508 ERROR_MARK_NODE, rather than NULL_TREE, if no nested-name-specifier
3509 is present. */
3511 static tree
3512 cp_parser_nested_name_specifier (cp_parser *parser,
3513 bool typename_keyword_p,
3514 bool check_dependency_p,
3515 bool type_p,
3516 bool is_declaration)
3518 tree scope;
3520 /* Look for the nested-name-specifier. */
3521 scope = cp_parser_nested_name_specifier_opt (parser,
3522 typename_keyword_p,
3523 check_dependency_p,
3524 type_p,
3525 is_declaration);
3526 /* If it was not present, issue an error message. */
3527 if (!scope)
3529 cp_parser_error (parser, "expected nested-name-specifier");
3530 parser->scope = NULL_TREE;
3531 return error_mark_node;
3534 return scope;
3537 /* Parse a class-or-namespace-name.
3539 class-or-namespace-name:
3540 class-name
3541 namespace-name
3543 TYPENAME_KEYWORD_P is TRUE iff the `typename' keyword is in effect.
3544 TEMPLATE_KEYWORD_P is TRUE iff the `template' keyword is in effect.
3545 CHECK_DEPENDENCY_P is FALSE iff dependent names should be looked up.
3546 TYPE_P is TRUE iff the next name should be taken as a class-name,
3547 even the same name is declared to be another entity in the same
3548 scope.
3550 Returns the class (TYPE_DECL) or namespace (NAMESPACE_DECL)
3551 specified by the class-or-namespace-name. If neither is found the
3552 ERROR_MARK_NODE is returned. */
3554 static tree
3555 cp_parser_class_or_namespace_name (cp_parser *parser,
3556 bool typename_keyword_p,
3557 bool template_keyword_p,
3558 bool check_dependency_p,
3559 bool type_p,
3560 bool is_declaration)
3562 tree saved_scope;
3563 tree saved_qualifying_scope;
3564 tree saved_object_scope;
3565 tree scope;
3566 bool only_class_p;
3568 /* Before we try to parse the class-name, we must save away the
3569 current PARSER->SCOPE since cp_parser_class_name will destroy
3570 it. */
3571 saved_scope = parser->scope;
3572 saved_qualifying_scope = parser->qualifying_scope;
3573 saved_object_scope = parser->object_scope;
3574 /* Try for a class-name first. If the SAVED_SCOPE is a type, then
3575 there is no need to look for a namespace-name. */
3576 only_class_p = template_keyword_p || (saved_scope && TYPE_P (saved_scope));
3577 if (!only_class_p)
3578 cp_parser_parse_tentatively (parser);
3579 scope = cp_parser_class_name (parser,
3580 typename_keyword_p,
3581 template_keyword_p,
3582 type_p,
3583 check_dependency_p,
3584 /*class_head_p=*/false,
3585 is_declaration);
3586 /* If that didn't work, try for a namespace-name. */
3587 if (!only_class_p && !cp_parser_parse_definitely (parser))
3589 /* Restore the saved scope. */
3590 parser->scope = saved_scope;
3591 parser->qualifying_scope = saved_qualifying_scope;
3592 parser->object_scope = saved_object_scope;
3593 /* If we are not looking at an identifier followed by the scope
3594 resolution operator, then this is not part of a
3595 nested-name-specifier. (Note that this function is only used
3596 to parse the components of a nested-name-specifier.) */
3597 if (cp_lexer_next_token_is_not (parser->lexer, CPP_NAME)
3598 || cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_SCOPE)
3599 return error_mark_node;
3600 scope = cp_parser_namespace_name (parser);
3603 return scope;
3606 /* Parse a postfix-expression.
3608 postfix-expression:
3609 primary-expression
3610 postfix-expression [ expression ]
3611 postfix-expression ( expression-list [opt] )
3612 simple-type-specifier ( expression-list [opt] )
3613 typename :: [opt] nested-name-specifier identifier
3614 ( expression-list [opt] )
3615 typename :: [opt] nested-name-specifier template [opt] template-id
3616 ( expression-list [opt] )
3617 postfix-expression . template [opt] id-expression
3618 postfix-expression -> template [opt] id-expression
3619 postfix-expression . pseudo-destructor-name
3620 postfix-expression -> pseudo-destructor-name
3621 postfix-expression ++
3622 postfix-expression --
3623 dynamic_cast < type-id > ( expression )
3624 static_cast < type-id > ( expression )
3625 reinterpret_cast < type-id > ( expression )
3626 const_cast < type-id > ( expression )
3627 typeid ( expression )
3628 typeid ( type-id )
3630 GNU Extension:
3632 postfix-expression:
3633 ( type-id ) { initializer-list , [opt] }
3635 This extension is a GNU version of the C99 compound-literal
3636 construct. (The C99 grammar uses `type-name' instead of `type-id',
3637 but they are essentially the same concept.)
3639 If ADDRESS_P is true, the postfix expression is the operand of the
3640 `&' operator.
3642 Returns a representation of the expression. */
3644 static tree
3645 cp_parser_postfix_expression (cp_parser *parser, bool address_p)
3647 cp_token *token;
3648 enum rid keyword;
3649 cp_id_kind idk = CP_ID_KIND_NONE;
3650 tree postfix_expression = NULL_TREE;
3651 /* Non-NULL only if the current postfix-expression can be used to
3652 form a pointer-to-member. In that case, QUALIFYING_CLASS is the
3653 class used to qualify the member. */
3654 tree qualifying_class = NULL_TREE;
3656 /* Peek at the next token. */
3657 token = cp_lexer_peek_token (parser->lexer);
3658 /* Some of the productions are determined by keywords. */
3659 keyword = token->keyword;
3660 switch (keyword)
3662 case RID_DYNCAST:
3663 case RID_STATCAST:
3664 case RID_REINTCAST:
3665 case RID_CONSTCAST:
3667 tree type;
3668 tree expression;
3669 const char *saved_message;
3671 /* All of these can be handled in the same way from the point
3672 of view of parsing. Begin by consuming the token
3673 identifying the cast. */
3674 cp_lexer_consume_token (parser->lexer);
3676 /* New types cannot be defined in the cast. */
3677 saved_message = parser->type_definition_forbidden_message;
3678 parser->type_definition_forbidden_message
3679 = "types may not be defined in casts";
3681 /* Look for the opening `<'. */
3682 cp_parser_require (parser, CPP_LESS, "`<'");
3683 /* Parse the type to which we are casting. */
3684 type = cp_parser_type_id (parser);
3685 /* Look for the closing `>'. */
3686 cp_parser_require (parser, CPP_GREATER, "`>'");
3687 /* Restore the old message. */
3688 parser->type_definition_forbidden_message = saved_message;
3690 /* And the expression which is being cast. */
3691 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
3692 expression = cp_parser_expression (parser);
3693 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
3695 /* Only type conversions to integral or enumeration types
3696 can be used in constant-expressions. */
3697 if (parser->integral_constant_expression_p
3698 && !dependent_type_p (type)
3699 && !INTEGRAL_OR_ENUMERATION_TYPE_P (type)
3700 && (cp_parser_non_integral_constant_expression
3701 (parser,
3702 "a cast to a type other than an integral or "
3703 "enumeration type")))
3704 return error_mark_node;
3706 switch (keyword)
3708 case RID_DYNCAST:
3709 postfix_expression
3710 = build_dynamic_cast (type, expression);
3711 break;
3712 case RID_STATCAST:
3713 postfix_expression
3714 = build_static_cast (type, expression);
3715 break;
3716 case RID_REINTCAST:
3717 postfix_expression
3718 = build_reinterpret_cast (type, expression);
3719 break;
3720 case RID_CONSTCAST:
3721 postfix_expression
3722 = build_const_cast (type, expression);
3723 break;
3724 default:
3725 gcc_unreachable ();
3728 break;
3730 case RID_TYPEID:
3732 tree type;
3733 const char *saved_message;
3734 bool saved_in_type_id_in_expr_p;
3736 /* Consume the `typeid' token. */
3737 cp_lexer_consume_token (parser->lexer);
3738 /* Look for the `(' token. */
3739 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
3740 /* Types cannot be defined in a `typeid' expression. */
3741 saved_message = parser->type_definition_forbidden_message;
3742 parser->type_definition_forbidden_message
3743 = "types may not be defined in a `typeid\' expression";
3744 /* We can't be sure yet whether we're looking at a type-id or an
3745 expression. */
3746 cp_parser_parse_tentatively (parser);
3747 /* Try a type-id first. */
3748 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
3749 parser->in_type_id_in_expr_p = true;
3750 type = cp_parser_type_id (parser);
3751 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
3752 /* Look for the `)' token. Otherwise, we can't be sure that
3753 we're not looking at an expression: consider `typeid (int
3754 (3))', for example. */
3755 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
3756 /* If all went well, simply lookup the type-id. */
3757 if (cp_parser_parse_definitely (parser))
3758 postfix_expression = get_typeid (type);
3759 /* Otherwise, fall back to the expression variant. */
3760 else
3762 tree expression;
3764 /* Look for an expression. */
3765 expression = cp_parser_expression (parser);
3766 /* Compute its typeid. */
3767 postfix_expression = build_typeid (expression);
3768 /* Look for the `)' token. */
3769 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
3771 /* `typeid' may not appear in an integral constant expression. */
3772 if (cp_parser_non_integral_constant_expression(parser,
3773 "`typeid' operator"))
3774 return error_mark_node;
3775 /* Restore the saved message. */
3776 parser->type_definition_forbidden_message = saved_message;
3778 break;
3780 case RID_TYPENAME:
3782 bool template_p = false;
3783 tree id;
3784 tree type;
3786 /* Consume the `typename' token. */
3787 cp_lexer_consume_token (parser->lexer);
3788 /* Look for the optional `::' operator. */
3789 cp_parser_global_scope_opt (parser,
3790 /*current_scope_valid_p=*/false);
3791 /* Look for the nested-name-specifier. */
3792 cp_parser_nested_name_specifier (parser,
3793 /*typename_keyword_p=*/true,
3794 /*check_dependency_p=*/true,
3795 /*type_p=*/true,
3796 /*is_declaration=*/true);
3797 /* Look for the optional `template' keyword. */
3798 template_p = cp_parser_optional_template_keyword (parser);
3799 /* We don't know whether we're looking at a template-id or an
3800 identifier. */
3801 cp_parser_parse_tentatively (parser);
3802 /* Try a template-id. */
3803 id = cp_parser_template_id (parser, template_p,
3804 /*check_dependency_p=*/true,
3805 /*is_declaration=*/true);
3806 /* If that didn't work, try an identifier. */
3807 if (!cp_parser_parse_definitely (parser))
3808 id = cp_parser_identifier (parser);
3809 /* If we look up a template-id in a non-dependent qualifying
3810 scope, there's no need to create a dependent type. */
3811 if (TREE_CODE (id) == TYPE_DECL
3812 && !dependent_type_p (parser->scope))
3813 type = TREE_TYPE (id);
3814 /* Create a TYPENAME_TYPE to represent the type to which the
3815 functional cast is being performed. */
3816 else
3817 type = make_typename_type (parser->scope, id,
3818 /*complain=*/1);
3820 postfix_expression = cp_parser_functional_cast (parser, type);
3822 break;
3824 default:
3826 tree type;
3828 /* If the next thing is a simple-type-specifier, we may be
3829 looking at a functional cast. We could also be looking at
3830 an id-expression. So, we try the functional cast, and if
3831 that doesn't work we fall back to the primary-expression. */
3832 cp_parser_parse_tentatively (parser);
3833 /* Look for the simple-type-specifier. */
3834 type = cp_parser_simple_type_specifier (parser,
3835 /*decl_specs=*/NULL,
3836 CP_PARSER_FLAGS_NONE);
3837 /* Parse the cast itself. */
3838 if (!cp_parser_error_occurred (parser))
3839 postfix_expression
3840 = cp_parser_functional_cast (parser, type);
3841 /* If that worked, we're done. */
3842 if (cp_parser_parse_definitely (parser))
3843 break;
3845 /* If the functional-cast didn't work out, try a
3846 compound-literal. */
3847 if (cp_parser_allow_gnu_extensions_p (parser)
3848 && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
3850 tree initializer_list = NULL_TREE;
3851 bool saved_in_type_id_in_expr_p;
3853 cp_parser_parse_tentatively (parser);
3854 /* Consume the `('. */
3855 cp_lexer_consume_token (parser->lexer);
3856 /* Parse the type. */
3857 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
3858 parser->in_type_id_in_expr_p = true;
3859 type = cp_parser_type_id (parser);
3860 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
3861 /* Look for the `)'. */
3862 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
3863 /* Look for the `{'. */
3864 cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
3865 /* If things aren't going well, there's no need to
3866 keep going. */
3867 if (!cp_parser_error_occurred (parser))
3869 bool non_constant_p;
3870 /* Parse the initializer-list. */
3871 initializer_list
3872 = cp_parser_initializer_list (parser, &non_constant_p);
3873 /* Allow a trailing `,'. */
3874 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
3875 cp_lexer_consume_token (parser->lexer);
3876 /* Look for the final `}'. */
3877 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
3879 /* If that worked, we're definitely looking at a
3880 compound-literal expression. */
3881 if (cp_parser_parse_definitely (parser))
3883 /* Warn the user that a compound literal is not
3884 allowed in standard C++. */
3885 if (pedantic)
3886 pedwarn ("ISO C++ forbids compound-literals");
3887 /* Form the representation of the compound-literal. */
3888 postfix_expression
3889 = finish_compound_literal (type, initializer_list);
3890 break;
3894 /* It must be a primary-expression. */
3895 postfix_expression = cp_parser_primary_expression (parser,
3896 &idk,
3897 &qualifying_class);
3899 break;
3902 /* If we were avoiding committing to the processing of a
3903 qualified-id until we knew whether or not we had a
3904 pointer-to-member, we now know. */
3905 if (qualifying_class)
3907 bool done;
3909 /* Peek at the next token. */
3910 token = cp_lexer_peek_token (parser->lexer);
3911 done = (token->type != CPP_OPEN_SQUARE
3912 && token->type != CPP_OPEN_PAREN
3913 && token->type != CPP_DOT
3914 && token->type != CPP_DEREF
3915 && token->type != CPP_PLUS_PLUS
3916 && token->type != CPP_MINUS_MINUS);
3918 postfix_expression = finish_qualified_id_expr (qualifying_class,
3919 postfix_expression,
3920 done,
3921 address_p);
3922 if (done)
3923 return postfix_expression;
3926 /* Keep looping until the postfix-expression is complete. */
3927 while (true)
3929 if (idk == CP_ID_KIND_UNQUALIFIED
3930 && TREE_CODE (postfix_expression) == IDENTIFIER_NODE
3931 && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
3932 /* It is not a Koenig lookup function call. */
3933 postfix_expression
3934 = unqualified_name_lookup_error (postfix_expression);
3936 /* Peek at the next token. */
3937 token = cp_lexer_peek_token (parser->lexer);
3939 switch (token->type)
3941 case CPP_OPEN_SQUARE:
3942 postfix_expression
3943 = cp_parser_postfix_open_square_expression (parser,
3944 postfix_expression,
3945 false);
3946 idk = CP_ID_KIND_NONE;
3947 break;
3949 case CPP_OPEN_PAREN:
3950 /* postfix-expression ( expression-list [opt] ) */
3952 bool koenig_p;
3953 tree args = (cp_parser_parenthesized_expression_list
3954 (parser, false, /*non_constant_p=*/NULL));
3956 if (args == error_mark_node)
3958 postfix_expression = error_mark_node;
3959 break;
3962 /* Function calls are not permitted in
3963 constant-expressions. */
3964 if (cp_parser_non_integral_constant_expression (parser,
3965 "a function call"))
3967 postfix_expression = error_mark_node;
3968 break;
3971 koenig_p = false;
3972 if (idk == CP_ID_KIND_UNQUALIFIED)
3974 if (TREE_CODE (postfix_expression) == IDENTIFIER_NODE)
3976 if (args)
3978 koenig_p = true;
3979 postfix_expression
3980 = perform_koenig_lookup (postfix_expression, args);
3982 else
3983 postfix_expression
3984 = unqualified_fn_lookup_error (postfix_expression);
3986 /* We do not perform argument-dependent lookup if
3987 normal lookup finds a non-function, in accordance
3988 with the expected resolution of DR 218. */
3989 else if (args && is_overloaded_fn (postfix_expression))
3991 tree fn = get_first_fn (postfix_expression);
3993 if (TREE_CODE (fn) == TEMPLATE_ID_EXPR)
3994 fn = OVL_CURRENT (TREE_OPERAND (fn, 0));
3996 /* Only do argument dependent lookup if regular
3997 lookup does not find a set of member functions.
3998 [basic.lookup.koenig]/2a */
3999 if (!DECL_FUNCTION_MEMBER_P (fn))
4001 koenig_p = true;
4002 postfix_expression
4003 = perform_koenig_lookup (postfix_expression, args);
4008 if (TREE_CODE (postfix_expression) == COMPONENT_REF)
4010 tree instance = TREE_OPERAND (postfix_expression, 0);
4011 tree fn = TREE_OPERAND (postfix_expression, 1);
4013 if (processing_template_decl
4014 && (type_dependent_expression_p (instance)
4015 || (!BASELINK_P (fn)
4016 && TREE_CODE (fn) != FIELD_DECL)
4017 || type_dependent_expression_p (fn)
4018 || any_type_dependent_arguments_p (args)))
4020 postfix_expression
4021 = build_min_nt (CALL_EXPR, postfix_expression,
4022 args, NULL_TREE);
4023 break;
4026 if (BASELINK_P (fn))
4027 postfix_expression
4028 = (build_new_method_call
4029 (instance, fn, args, NULL_TREE,
4030 (idk == CP_ID_KIND_QUALIFIED
4031 ? LOOKUP_NONVIRTUAL : LOOKUP_NORMAL)));
4032 else
4033 postfix_expression
4034 = finish_call_expr (postfix_expression, args,
4035 /*disallow_virtual=*/false,
4036 /*koenig_p=*/false);
4038 else if (TREE_CODE (postfix_expression) == OFFSET_REF
4039 || TREE_CODE (postfix_expression) == MEMBER_REF
4040 || TREE_CODE (postfix_expression) == DOTSTAR_EXPR)
4041 postfix_expression = (build_offset_ref_call_from_tree
4042 (postfix_expression, args));
4043 else if (idk == CP_ID_KIND_QUALIFIED)
4044 /* A call to a static class member, or a namespace-scope
4045 function. */
4046 postfix_expression
4047 = finish_call_expr (postfix_expression, args,
4048 /*disallow_virtual=*/true,
4049 koenig_p);
4050 else
4051 /* All other function calls. */
4052 postfix_expression
4053 = finish_call_expr (postfix_expression, args,
4054 /*disallow_virtual=*/false,
4055 koenig_p);
4057 /* The POSTFIX_EXPRESSION is certainly no longer an id. */
4058 idk = CP_ID_KIND_NONE;
4060 break;
4062 case CPP_DOT:
4063 case CPP_DEREF:
4064 /* postfix-expression . template [opt] id-expression
4065 postfix-expression . pseudo-destructor-name
4066 postfix-expression -> template [opt] id-expression
4067 postfix-expression -> pseudo-destructor-name */
4069 /* Consume the `.' or `->' operator. */
4070 cp_lexer_consume_token (parser->lexer);
4072 postfix_expression
4073 = cp_parser_postfix_dot_deref_expression (parser, token->type,
4074 postfix_expression,
4075 false, &idk);
4076 break;
4078 case CPP_PLUS_PLUS:
4079 /* postfix-expression ++ */
4080 /* Consume the `++' token. */
4081 cp_lexer_consume_token (parser->lexer);
4082 /* Generate a representation for the complete expression. */
4083 postfix_expression
4084 = finish_increment_expr (postfix_expression,
4085 POSTINCREMENT_EXPR);
4086 /* Increments may not appear in constant-expressions. */
4087 if (cp_parser_non_integral_constant_expression (parser,
4088 "an increment"))
4089 postfix_expression = error_mark_node;
4090 idk = CP_ID_KIND_NONE;
4091 break;
4093 case CPP_MINUS_MINUS:
4094 /* postfix-expression -- */
4095 /* Consume the `--' token. */
4096 cp_lexer_consume_token (parser->lexer);
4097 /* Generate a representation for the complete expression. */
4098 postfix_expression
4099 = finish_increment_expr (postfix_expression,
4100 POSTDECREMENT_EXPR);
4101 /* Decrements may not appear in constant-expressions. */
4102 if (cp_parser_non_integral_constant_expression (parser,
4103 "a decrement"))
4104 postfix_expression = error_mark_node;
4105 idk = CP_ID_KIND_NONE;
4106 break;
4108 default:
4109 return postfix_expression;
4113 /* We should never get here. */
4114 gcc_unreachable ();
4115 return error_mark_node;
4118 /* A subroutine of cp_parser_postfix_expression that also gets hijacked
4119 by cp_parser_builtin_offsetof. We're looking for
4121 postfix-expression [ expression ]
4123 FOR_OFFSETOF is set if we're being called in that context, which
4124 changes how we deal with integer constant expressions. */
4126 static tree
4127 cp_parser_postfix_open_square_expression (cp_parser *parser,
4128 tree postfix_expression,
4129 bool for_offsetof)
4131 tree index;
4133 /* Consume the `[' token. */
4134 cp_lexer_consume_token (parser->lexer);
4136 /* Parse the index expression. */
4137 /* ??? For offsetof, there is a question of what to allow here. If
4138 offsetof is not being used in an integral constant expression context,
4139 then we *could* get the right answer by computing the value at runtime.
4140 If we are in an integral constant expression context, then we might
4141 could accept any constant expression; hard to say without analysis.
4142 Rather than open the barn door too wide right away, allow only integer
4143 constant expressions here. */
4144 if (for_offsetof)
4145 index = cp_parser_constant_expression (parser, false, NULL);
4146 else
4147 index = cp_parser_expression (parser);
4149 /* Look for the closing `]'. */
4150 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
4152 /* Build the ARRAY_REF. */
4153 postfix_expression = grok_array_decl (postfix_expression, index);
4155 /* When not doing offsetof, array references are not permitted in
4156 constant-expressions. */
4157 if (!for_offsetof
4158 && (cp_parser_non_integral_constant_expression
4159 (parser, "an array reference")))
4160 postfix_expression = error_mark_node;
4162 return postfix_expression;
4165 /* A subroutine of cp_parser_postfix_expression that also gets hijacked
4166 by cp_parser_builtin_offsetof. We're looking for
4168 postfix-expression . template [opt] id-expression
4169 postfix-expression . pseudo-destructor-name
4170 postfix-expression -> template [opt] id-expression
4171 postfix-expression -> pseudo-destructor-name
4173 FOR_OFFSETOF is set if we're being called in that context. That sorta
4174 limits what of the above we'll actually accept, but nevermind.
4175 TOKEN_TYPE is the "." or "->" token, which will already have been
4176 removed from the stream. */
4178 static tree
4179 cp_parser_postfix_dot_deref_expression (cp_parser *parser,
4180 enum cpp_ttype token_type,
4181 tree postfix_expression,
4182 bool for_offsetof, cp_id_kind *idk)
4184 tree name;
4185 bool dependent_p;
4186 bool template_p;
4187 bool pseudo_destructor_p;
4188 tree scope = NULL_TREE;
4190 /* If this is a `->' operator, dereference the pointer. */
4191 if (token_type == CPP_DEREF)
4192 postfix_expression = build_x_arrow (postfix_expression);
4193 /* Check to see whether or not the expression is type-dependent. */
4194 dependent_p = type_dependent_expression_p (postfix_expression);
4195 /* The identifier following the `->' or `.' is not qualified. */
4196 parser->scope = NULL_TREE;
4197 parser->qualifying_scope = NULL_TREE;
4198 parser->object_scope = NULL_TREE;
4199 *idk = CP_ID_KIND_NONE;
4200 /* Enter the scope corresponding to the type of the object
4201 given by the POSTFIX_EXPRESSION. */
4202 if (!dependent_p && TREE_TYPE (postfix_expression) != NULL_TREE)
4204 scope = TREE_TYPE (postfix_expression);
4205 /* According to the standard, no expression should ever have
4206 reference type. Unfortunately, we do not currently match
4207 the standard in this respect in that our internal representation
4208 of an expression may have reference type even when the standard
4209 says it does not. Therefore, we have to manually obtain the
4210 underlying type here. */
4211 scope = non_reference (scope);
4212 /* The type of the POSTFIX_EXPRESSION must be complete. */
4213 scope = complete_type_or_else (scope, NULL_TREE);
4214 /* Let the name lookup machinery know that we are processing a
4215 class member access expression. */
4216 parser->context->object_type = scope;
4217 /* If something went wrong, we want to be able to discern that case,
4218 as opposed to the case where there was no SCOPE due to the type
4219 of expression being dependent. */
4220 if (!scope)
4221 scope = error_mark_node;
4222 /* If the SCOPE was erroneous, make the various semantic analysis
4223 functions exit quickly -- and without issuing additional error
4224 messages. */
4225 if (scope == error_mark_node)
4226 postfix_expression = error_mark_node;
4229 /* Assume this expression is not a pseudo-destructor access. */
4230 pseudo_destructor_p = false;
4232 /* If the SCOPE is a scalar type, then, if this is a valid program,
4233 we must be looking at a pseudo-destructor-name. */
4234 if (scope && SCALAR_TYPE_P (scope))
4236 tree s;
4237 tree type;
4239 cp_parser_parse_tentatively (parser);
4240 /* Parse the pseudo-destructor-name. */
4241 s = NULL_TREE;
4242 cp_parser_pseudo_destructor_name (parser, &s, &type);
4243 if (cp_parser_parse_definitely (parser))
4245 pseudo_destructor_p = true;
4246 postfix_expression
4247 = finish_pseudo_destructor_expr (postfix_expression,
4248 s, TREE_TYPE (type));
4252 if (!pseudo_destructor_p)
4254 /* If the SCOPE is not a scalar type, we are looking at an
4255 ordinary class member access expression, rather than a
4256 pseudo-destructor-name. */
4257 template_p = cp_parser_optional_template_keyword (parser);
4258 /* Parse the id-expression. */
4259 name = cp_parser_id_expression (parser, template_p,
4260 /*check_dependency_p=*/true,
4261 /*template_p=*/NULL,
4262 /*declarator_p=*/false);
4263 /* In general, build a SCOPE_REF if the member name is qualified.
4264 However, if the name was not dependent and has already been
4265 resolved; there is no need to build the SCOPE_REF. For example;
4267 struct X { void f(); };
4268 template <typename T> void f(T* t) { t->X::f(); }
4270 Even though "t" is dependent, "X::f" is not and has been resolved
4271 to a BASELINK; there is no need to include scope information. */
4273 /* But we do need to remember that there was an explicit scope for
4274 virtual function calls. */
4275 if (parser->scope)
4276 *idk = CP_ID_KIND_QUALIFIED;
4278 if (name != error_mark_node && !BASELINK_P (name) && parser->scope)
4280 name = build_nt (SCOPE_REF, parser->scope, name);
4281 parser->scope = NULL_TREE;
4282 parser->qualifying_scope = NULL_TREE;
4283 parser->object_scope = NULL_TREE;
4285 if (scope && name && BASELINK_P (name))
4286 adjust_result_of_qualified_name_lookup
4287 (name, BINFO_TYPE (BASELINK_BINFO (name)), scope);
4288 postfix_expression
4289 = finish_class_member_access_expr (postfix_expression, name);
4292 /* We no longer need to look up names in the scope of the object on
4293 the left-hand side of the `.' or `->' operator. */
4294 parser->context->object_type = NULL_TREE;
4296 /* Outside of offsetof, these operators may not appear in
4297 constant-expressions. */
4298 if (!for_offsetof
4299 && (cp_parser_non_integral_constant_expression
4300 (parser, token_type == CPP_DEREF ? "'->'" : "`.'")))
4301 postfix_expression = error_mark_node;
4303 return postfix_expression;
4306 /* Parse a parenthesized expression-list.
4308 expression-list:
4309 assignment-expression
4310 expression-list, assignment-expression
4312 attribute-list:
4313 expression-list
4314 identifier
4315 identifier, expression-list
4317 Returns a TREE_LIST. The TREE_VALUE of each node is a
4318 representation of an assignment-expression. Note that a TREE_LIST
4319 is returned even if there is only a single expression in the list.
4320 error_mark_node is returned if the ( and or ) are
4321 missing. NULL_TREE is returned on no expressions. The parentheses
4322 are eaten. IS_ATTRIBUTE_LIST is true if this is really an attribute
4323 list being parsed. If NON_CONSTANT_P is non-NULL, *NON_CONSTANT_P
4324 indicates whether or not all of the expressions in the list were
4325 constant. */
4327 static tree
4328 cp_parser_parenthesized_expression_list (cp_parser* parser,
4329 bool is_attribute_list,
4330 bool *non_constant_p)
4332 tree expression_list = NULL_TREE;
4333 bool fold_expr_p = is_attribute_list;
4334 tree identifier = NULL_TREE;
4336 /* Assume all the expressions will be constant. */
4337 if (non_constant_p)
4338 *non_constant_p = false;
4340 if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
4341 return error_mark_node;
4343 /* Consume expressions until there are no more. */
4344 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
4345 while (true)
4347 tree expr;
4349 /* At the beginning of attribute lists, check to see if the
4350 next token is an identifier. */
4351 if (is_attribute_list
4352 && cp_lexer_peek_token (parser->lexer)->type == CPP_NAME)
4354 cp_token *token;
4356 /* Consume the identifier. */
4357 token = cp_lexer_consume_token (parser->lexer);
4358 /* Save the identifier. */
4359 identifier = token->value;
4361 else
4363 /* Parse the next assignment-expression. */
4364 if (non_constant_p)
4366 bool expr_non_constant_p;
4367 expr = (cp_parser_constant_expression
4368 (parser, /*allow_non_constant_p=*/true,
4369 &expr_non_constant_p));
4370 if (expr_non_constant_p)
4371 *non_constant_p = true;
4373 else
4374 expr = cp_parser_assignment_expression (parser);
4376 if (fold_expr_p)
4377 expr = fold_non_dependent_expr (expr);
4379 /* Add it to the list. We add error_mark_node
4380 expressions to the list, so that we can still tell if
4381 the correct form for a parenthesized expression-list
4382 is found. That gives better errors. */
4383 expression_list = tree_cons (NULL_TREE, expr, expression_list);
4385 if (expr == error_mark_node)
4386 goto skip_comma;
4389 /* After the first item, attribute lists look the same as
4390 expression lists. */
4391 is_attribute_list = false;
4393 get_comma:;
4394 /* If the next token isn't a `,', then we are done. */
4395 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
4396 break;
4398 /* Otherwise, consume the `,' and keep going. */
4399 cp_lexer_consume_token (parser->lexer);
4402 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
4404 int ending;
4406 skip_comma:;
4407 /* We try and resync to an unnested comma, as that will give the
4408 user better diagnostics. */
4409 ending = cp_parser_skip_to_closing_parenthesis (parser,
4410 /*recovering=*/true,
4411 /*or_comma=*/true,
4412 /*consume_paren=*/true);
4413 if (ending < 0)
4414 goto get_comma;
4415 if (!ending)
4416 return error_mark_node;
4419 /* We built up the list in reverse order so we must reverse it now. */
4420 expression_list = nreverse (expression_list);
4421 if (identifier)
4422 expression_list = tree_cons (NULL_TREE, identifier, expression_list);
4424 return expression_list;
4427 /* Parse a pseudo-destructor-name.
4429 pseudo-destructor-name:
4430 :: [opt] nested-name-specifier [opt] type-name :: ~ type-name
4431 :: [opt] nested-name-specifier template template-id :: ~ type-name
4432 :: [opt] nested-name-specifier [opt] ~ type-name
4434 If either of the first two productions is used, sets *SCOPE to the
4435 TYPE specified before the final `::'. Otherwise, *SCOPE is set to
4436 NULL_TREE. *TYPE is set to the TYPE_DECL for the final type-name,
4437 or ERROR_MARK_NODE if the parse fails. */
4439 static void
4440 cp_parser_pseudo_destructor_name (cp_parser* parser,
4441 tree* scope,
4442 tree* type)
4444 bool nested_name_specifier_p;
4446 /* Assume that things will not work out. */
4447 *type = error_mark_node;
4449 /* Look for the optional `::' operator. */
4450 cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/true);
4451 /* Look for the optional nested-name-specifier. */
4452 nested_name_specifier_p
4453 = (cp_parser_nested_name_specifier_opt (parser,
4454 /*typename_keyword_p=*/false,
4455 /*check_dependency_p=*/true,
4456 /*type_p=*/false,
4457 /*is_declaration=*/true)
4458 != NULL_TREE);
4459 /* Now, if we saw a nested-name-specifier, we might be doing the
4460 second production. */
4461 if (nested_name_specifier_p
4462 && cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
4464 /* Consume the `template' keyword. */
4465 cp_lexer_consume_token (parser->lexer);
4466 /* Parse the template-id. */
4467 cp_parser_template_id (parser,
4468 /*template_keyword_p=*/true,
4469 /*check_dependency_p=*/false,
4470 /*is_declaration=*/true);
4471 /* Look for the `::' token. */
4472 cp_parser_require (parser, CPP_SCOPE, "`::'");
4474 /* If the next token is not a `~', then there might be some
4475 additional qualification. */
4476 else if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMPL))
4478 /* Look for the type-name. */
4479 *scope = TREE_TYPE (cp_parser_type_name (parser));
4481 if (*scope == error_mark_node)
4482 return;
4484 /* If we don't have ::~, then something has gone wrong. Since
4485 the only caller of this function is looking for something
4486 after `.' or `->' after a scalar type, most likely the
4487 program is trying to get a member of a non-aggregate
4488 type. */
4489 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SCOPE)
4490 || cp_lexer_peek_nth_token (parser->lexer, 2)->type != CPP_COMPL)
4492 cp_parser_error (parser, "request for member of non-aggregate type");
4493 return;
4496 /* Look for the `::' token. */
4497 cp_parser_require (parser, CPP_SCOPE, "`::'");
4499 else
4500 *scope = NULL_TREE;
4502 /* Look for the `~'. */
4503 cp_parser_require (parser, CPP_COMPL, "`~'");
4504 /* Look for the type-name again. We are not responsible for
4505 checking that it matches the first type-name. */
4506 *type = cp_parser_type_name (parser);
4509 /* Parse a unary-expression.
4511 unary-expression:
4512 postfix-expression
4513 ++ cast-expression
4514 -- cast-expression
4515 unary-operator cast-expression
4516 sizeof unary-expression
4517 sizeof ( type-id )
4518 new-expression
4519 delete-expression
4521 GNU Extensions:
4523 unary-expression:
4524 __extension__ cast-expression
4525 __alignof__ unary-expression
4526 __alignof__ ( type-id )
4527 __real__ cast-expression
4528 __imag__ cast-expression
4529 && identifier
4531 ADDRESS_P is true iff the unary-expression is appearing as the
4532 operand of the `&' operator.
4534 Returns a representation of the expression. */
4536 static tree
4537 cp_parser_unary_expression (cp_parser *parser, bool address_p)
4539 cp_token *token;
4540 enum tree_code unary_operator;
4542 /* Peek at the next token. */
4543 token = cp_lexer_peek_token (parser->lexer);
4544 /* Some keywords give away the kind of expression. */
4545 if (token->type == CPP_KEYWORD)
4547 enum rid keyword = token->keyword;
4549 switch (keyword)
4551 case RID_ALIGNOF:
4552 case RID_SIZEOF:
4554 tree operand;
4555 enum tree_code op;
4557 op = keyword == RID_ALIGNOF ? ALIGNOF_EXPR : SIZEOF_EXPR;
4558 /* Consume the token. */
4559 cp_lexer_consume_token (parser->lexer);
4560 /* Parse the operand. */
4561 operand = cp_parser_sizeof_operand (parser, keyword);
4563 if (TYPE_P (operand))
4564 return cxx_sizeof_or_alignof_type (operand, op, true);
4565 else
4566 return cxx_sizeof_or_alignof_expr (operand, op);
4569 case RID_NEW:
4570 return cp_parser_new_expression (parser);
4572 case RID_DELETE:
4573 return cp_parser_delete_expression (parser);
4575 case RID_EXTENSION:
4577 /* The saved value of the PEDANTIC flag. */
4578 int saved_pedantic;
4579 tree expr;
4581 /* Save away the PEDANTIC flag. */
4582 cp_parser_extension_opt (parser, &saved_pedantic);
4583 /* Parse the cast-expression. */
4584 expr = cp_parser_simple_cast_expression (parser);
4585 /* Restore the PEDANTIC flag. */
4586 pedantic = saved_pedantic;
4588 return expr;
4591 case RID_REALPART:
4592 case RID_IMAGPART:
4594 tree expression;
4596 /* Consume the `__real__' or `__imag__' token. */
4597 cp_lexer_consume_token (parser->lexer);
4598 /* Parse the cast-expression. */
4599 expression = cp_parser_simple_cast_expression (parser);
4600 /* Create the complete representation. */
4601 return build_x_unary_op ((keyword == RID_REALPART
4602 ? REALPART_EXPR : IMAGPART_EXPR),
4603 expression);
4605 break;
4607 default:
4608 break;
4612 /* Look for the `:: new' and `:: delete', which also signal the
4613 beginning of a new-expression, or delete-expression,
4614 respectively. If the next token is `::', then it might be one of
4615 these. */
4616 if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
4618 enum rid keyword;
4620 /* See if the token after the `::' is one of the keywords in
4621 which we're interested. */
4622 keyword = cp_lexer_peek_nth_token (parser->lexer, 2)->keyword;
4623 /* If it's `new', we have a new-expression. */
4624 if (keyword == RID_NEW)
4625 return cp_parser_new_expression (parser);
4626 /* Similarly, for `delete'. */
4627 else if (keyword == RID_DELETE)
4628 return cp_parser_delete_expression (parser);
4631 /* Look for a unary operator. */
4632 unary_operator = cp_parser_unary_operator (token);
4633 /* The `++' and `--' operators can be handled similarly, even though
4634 they are not technically unary-operators in the grammar. */
4635 if (unary_operator == ERROR_MARK)
4637 if (token->type == CPP_PLUS_PLUS)
4638 unary_operator = PREINCREMENT_EXPR;
4639 else if (token->type == CPP_MINUS_MINUS)
4640 unary_operator = PREDECREMENT_EXPR;
4641 /* Handle the GNU address-of-label extension. */
4642 else if (cp_parser_allow_gnu_extensions_p (parser)
4643 && token->type == CPP_AND_AND)
4645 tree identifier;
4647 /* Consume the '&&' token. */
4648 cp_lexer_consume_token (parser->lexer);
4649 /* Look for the identifier. */
4650 identifier = cp_parser_identifier (parser);
4651 /* Create an expression representing the address. */
4652 return finish_label_address_expr (identifier);
4655 if (unary_operator != ERROR_MARK)
4657 tree cast_expression;
4658 tree expression = error_mark_node;
4659 const char *non_constant_p = NULL;
4661 /* Consume the operator token. */
4662 token = cp_lexer_consume_token (parser->lexer);
4663 /* Parse the cast-expression. */
4664 cast_expression
4665 = cp_parser_cast_expression (parser, unary_operator == ADDR_EXPR);
4666 /* Now, build an appropriate representation. */
4667 switch (unary_operator)
4669 case INDIRECT_REF:
4670 non_constant_p = "`*'";
4671 expression = build_x_indirect_ref (cast_expression, "unary *");
4672 break;
4674 case ADDR_EXPR:
4675 non_constant_p = "`&'";
4676 /* Fall through. */
4677 case BIT_NOT_EXPR:
4678 expression = build_x_unary_op (unary_operator, cast_expression);
4679 break;
4681 case PREINCREMENT_EXPR:
4682 case PREDECREMENT_EXPR:
4683 non_constant_p = (unary_operator == PREINCREMENT_EXPR
4684 ? "`++'" : "`--'");
4685 /* Fall through. */
4686 case CONVERT_EXPR:
4687 case NEGATE_EXPR:
4688 case TRUTH_NOT_EXPR:
4689 expression = finish_unary_op_expr (unary_operator, cast_expression);
4690 break;
4692 default:
4693 gcc_unreachable ();
4696 if (non_constant_p
4697 && cp_parser_non_integral_constant_expression (parser,
4698 non_constant_p))
4699 expression = error_mark_node;
4701 return expression;
4704 return cp_parser_postfix_expression (parser, address_p);
4707 /* Returns ERROR_MARK if TOKEN is not a unary-operator. If TOKEN is a
4708 unary-operator, the corresponding tree code is returned. */
4710 static enum tree_code
4711 cp_parser_unary_operator (cp_token* token)
4713 switch (token->type)
4715 case CPP_MULT:
4716 return INDIRECT_REF;
4718 case CPP_AND:
4719 return ADDR_EXPR;
4721 case CPP_PLUS:
4722 return CONVERT_EXPR;
4724 case CPP_MINUS:
4725 return NEGATE_EXPR;
4727 case CPP_NOT:
4728 return TRUTH_NOT_EXPR;
4730 case CPP_COMPL:
4731 return BIT_NOT_EXPR;
4733 default:
4734 return ERROR_MARK;
4738 /* Parse a new-expression.
4740 new-expression:
4741 :: [opt] new new-placement [opt] new-type-id new-initializer [opt]
4742 :: [opt] new new-placement [opt] ( type-id ) new-initializer [opt]
4744 Returns a representation of the expression. */
4746 static tree
4747 cp_parser_new_expression (cp_parser* parser)
4749 bool global_scope_p;
4750 tree placement;
4751 tree type;
4752 tree initializer;
4753 tree nelts;
4755 /* Look for the optional `::' operator. */
4756 global_scope_p
4757 = (cp_parser_global_scope_opt (parser,
4758 /*current_scope_valid_p=*/false)
4759 != NULL_TREE);
4760 /* Look for the `new' operator. */
4761 cp_parser_require_keyword (parser, RID_NEW, "`new'");
4762 /* There's no easy way to tell a new-placement from the
4763 `( type-id )' construct. */
4764 cp_parser_parse_tentatively (parser);
4765 /* Look for a new-placement. */
4766 placement = cp_parser_new_placement (parser);
4767 /* If that didn't work out, there's no new-placement. */
4768 if (!cp_parser_parse_definitely (parser))
4769 placement = NULL_TREE;
4771 /* If the next token is a `(', then we have a parenthesized
4772 type-id. */
4773 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
4775 /* Consume the `('. */
4776 cp_lexer_consume_token (parser->lexer);
4777 /* Parse the type-id. */
4778 type = cp_parser_type_id (parser);
4779 /* Look for the closing `)'. */
4780 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
4781 /* There should not be a direct-new-declarator in this production,
4782 but GCC used to allowed this, so we check and emit a sensible error
4783 message for this case. */
4784 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
4786 error ("array bound forbidden after parenthesized type-id");
4787 inform ("try removing the parentheses around the type-id");
4788 cp_parser_direct_new_declarator (parser);
4790 nelts = NULL_TREE;
4792 /* Otherwise, there must be a new-type-id. */
4793 else
4794 type = cp_parser_new_type_id (parser, &nelts);
4796 /* If the next token is a `(', then we have a new-initializer. */
4797 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
4798 initializer = cp_parser_new_initializer (parser);
4799 else
4800 initializer = NULL_TREE;
4802 /* A new-expression may not appear in an integral constant
4803 expression. */
4804 if (cp_parser_non_integral_constant_expression (parser, "`new'"))
4805 return error_mark_node;
4807 /* Create a representation of the new-expression. */
4808 return build_new (placement, type, nelts, initializer, global_scope_p);
4811 /* Parse a new-placement.
4813 new-placement:
4814 ( expression-list )
4816 Returns the same representation as for an expression-list. */
4818 static tree
4819 cp_parser_new_placement (cp_parser* parser)
4821 tree expression_list;
4823 /* Parse the expression-list. */
4824 expression_list = (cp_parser_parenthesized_expression_list
4825 (parser, false, /*non_constant_p=*/NULL));
4827 return expression_list;
4830 /* Parse a new-type-id.
4832 new-type-id:
4833 type-specifier-seq new-declarator [opt]
4835 Returns the TYPE allocated. If the new-type-id indicates an array
4836 type, *NELTS is set to the number of elements in the last array
4837 bound; the TYPE will not include the last array bound. */
4839 static tree
4840 cp_parser_new_type_id (cp_parser* parser, tree *nelts)
4842 cp_decl_specifier_seq type_specifier_seq;
4843 cp_declarator *new_declarator;
4844 cp_declarator *declarator;
4845 cp_declarator *outer_declarator;
4846 const char *saved_message;
4847 tree type;
4849 /* The type-specifier sequence must not contain type definitions.
4850 (It cannot contain declarations of new types either, but if they
4851 are not definitions we will catch that because they are not
4852 complete.) */
4853 saved_message = parser->type_definition_forbidden_message;
4854 parser->type_definition_forbidden_message
4855 = "types may not be defined in a new-type-id";
4856 /* Parse the type-specifier-seq. */
4857 cp_parser_type_specifier_seq (parser, &type_specifier_seq);
4858 /* Restore the old message. */
4859 parser->type_definition_forbidden_message = saved_message;
4860 /* Parse the new-declarator. */
4861 new_declarator = cp_parser_new_declarator_opt (parser);
4863 /* Determine the number of elements in the last array dimension, if
4864 any. */
4865 *nelts = NULL_TREE;
4866 /* Skip down to the last array dimension. */
4867 declarator = new_declarator;
4868 outer_declarator = NULL;
4869 while (declarator && (declarator->kind == cdk_pointer
4870 || declarator->kind == cdk_ptrmem))
4872 outer_declarator = declarator;
4873 declarator = declarator->declarator;
4875 while (declarator
4876 && declarator->kind == cdk_array
4877 && declarator->declarator
4878 && declarator->declarator->kind == cdk_array)
4880 outer_declarator = declarator;
4881 declarator = declarator->declarator;
4884 if (declarator && declarator->kind == cdk_array)
4886 *nelts = declarator->u.array.bounds;
4887 if (*nelts == error_mark_node)
4888 *nelts = integer_one_node;
4889 else if (!processing_template_decl)
4891 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, *nelts,
4892 false))
4893 pedwarn ("size in array new must have integral type");
4894 *nelts = save_expr (cp_convert (sizetype, *nelts));
4895 if (*nelts == integer_zero_node)
4896 warning ("zero size array reserves no space");
4898 if (outer_declarator)
4899 outer_declarator->declarator = declarator->declarator;
4900 else
4901 new_declarator = NULL;
4904 type = groktypename (&type_specifier_seq, new_declarator);
4905 if (TREE_CODE (type) == ARRAY_TYPE && *nelts == NULL_TREE)
4907 *nelts = array_type_nelts_top (type);
4908 type = TREE_TYPE (type);
4910 return type;
4913 /* Parse an (optional) new-declarator.
4915 new-declarator:
4916 ptr-operator new-declarator [opt]
4917 direct-new-declarator
4919 Returns the declarator. */
4921 static cp_declarator *
4922 cp_parser_new_declarator_opt (cp_parser* parser)
4924 enum tree_code code;
4925 tree type;
4926 cp_cv_quals cv_quals;
4928 /* We don't know if there's a ptr-operator next, or not. */
4929 cp_parser_parse_tentatively (parser);
4930 /* Look for a ptr-operator. */
4931 code = cp_parser_ptr_operator (parser, &type, &cv_quals);
4932 /* If that worked, look for more new-declarators. */
4933 if (cp_parser_parse_definitely (parser))
4935 cp_declarator *declarator;
4937 /* Parse another optional declarator. */
4938 declarator = cp_parser_new_declarator_opt (parser);
4940 /* Create the representation of the declarator. */
4941 if (type)
4942 declarator = make_ptrmem_declarator (cv_quals, type, declarator);
4943 else if (code == INDIRECT_REF)
4944 declarator = make_pointer_declarator (cv_quals, declarator);
4945 else
4946 declarator = make_reference_declarator (cv_quals, declarator);
4948 return declarator;
4951 /* If the next token is a `[', there is a direct-new-declarator. */
4952 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
4953 return cp_parser_direct_new_declarator (parser);
4955 return NULL;
4958 /* Parse a direct-new-declarator.
4960 direct-new-declarator:
4961 [ expression ]
4962 direct-new-declarator [constant-expression]
4966 static cp_declarator *
4967 cp_parser_direct_new_declarator (cp_parser* parser)
4969 cp_declarator *declarator = NULL;
4971 while (true)
4973 tree expression;
4975 /* Look for the opening `['. */
4976 cp_parser_require (parser, CPP_OPEN_SQUARE, "`['");
4977 /* The first expression is not required to be constant. */
4978 if (!declarator)
4980 expression = cp_parser_expression (parser);
4981 /* The standard requires that the expression have integral
4982 type. DR 74 adds enumeration types. We believe that the
4983 real intent is that these expressions be handled like the
4984 expression in a `switch' condition, which also allows
4985 classes with a single conversion to integral or
4986 enumeration type. */
4987 if (!processing_template_decl)
4989 expression
4990 = build_expr_type_conversion (WANT_INT | WANT_ENUM,
4991 expression,
4992 /*complain=*/true);
4993 if (!expression)
4995 error ("expression in new-declarator must have integral "
4996 "or enumeration type");
4997 expression = error_mark_node;
5001 /* But all the other expressions must be. */
5002 else
5003 expression
5004 = cp_parser_constant_expression (parser,
5005 /*allow_non_constant=*/false,
5006 NULL);
5007 /* Look for the closing `]'. */
5008 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
5010 /* Add this bound to the declarator. */
5011 declarator = make_array_declarator (declarator, expression);
5013 /* If the next token is not a `[', then there are no more
5014 bounds. */
5015 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_SQUARE))
5016 break;
5019 return declarator;
5022 /* Parse a new-initializer.
5024 new-initializer:
5025 ( expression-list [opt] )
5027 Returns a representation of the expression-list. If there is no
5028 expression-list, VOID_ZERO_NODE is returned. */
5030 static tree
5031 cp_parser_new_initializer (cp_parser* parser)
5033 tree expression_list;
5035 expression_list = (cp_parser_parenthesized_expression_list
5036 (parser, false, /*non_constant_p=*/NULL));
5037 if (!expression_list)
5038 expression_list = void_zero_node;
5040 return expression_list;
5043 /* Parse a delete-expression.
5045 delete-expression:
5046 :: [opt] delete cast-expression
5047 :: [opt] delete [ ] cast-expression
5049 Returns a representation of the expression. */
5051 static tree
5052 cp_parser_delete_expression (cp_parser* parser)
5054 bool global_scope_p;
5055 bool array_p;
5056 tree expression;
5058 /* Look for the optional `::' operator. */
5059 global_scope_p
5060 = (cp_parser_global_scope_opt (parser,
5061 /*current_scope_valid_p=*/false)
5062 != NULL_TREE);
5063 /* Look for the `delete' keyword. */
5064 cp_parser_require_keyword (parser, RID_DELETE, "`delete'");
5065 /* See if the array syntax is in use. */
5066 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
5068 /* Consume the `[' token. */
5069 cp_lexer_consume_token (parser->lexer);
5070 /* Look for the `]' token. */
5071 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
5072 /* Remember that this is the `[]' construct. */
5073 array_p = true;
5075 else
5076 array_p = false;
5078 /* Parse the cast-expression. */
5079 expression = cp_parser_simple_cast_expression (parser);
5081 /* A delete-expression may not appear in an integral constant
5082 expression. */
5083 if (cp_parser_non_integral_constant_expression (parser, "`delete'"))
5084 return error_mark_node;
5086 return delete_sanity (expression, NULL_TREE, array_p, global_scope_p);
5089 /* Parse a cast-expression.
5091 cast-expression:
5092 unary-expression
5093 ( type-id ) cast-expression
5095 Returns a representation of the expression. */
5097 static tree
5098 cp_parser_cast_expression (cp_parser *parser, bool address_p)
5100 /* If it's a `(', then we might be looking at a cast. */
5101 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
5103 tree type = NULL_TREE;
5104 tree expr = NULL_TREE;
5105 bool compound_literal_p;
5106 const char *saved_message;
5108 /* There's no way to know yet whether or not this is a cast.
5109 For example, `(int (3))' is a unary-expression, while `(int)
5110 3' is a cast. So, we resort to parsing tentatively. */
5111 cp_parser_parse_tentatively (parser);
5112 /* Types may not be defined in a cast. */
5113 saved_message = parser->type_definition_forbidden_message;
5114 parser->type_definition_forbidden_message
5115 = "types may not be defined in casts";
5116 /* Consume the `('. */
5117 cp_lexer_consume_token (parser->lexer);
5118 /* A very tricky bit is that `(struct S) { 3 }' is a
5119 compound-literal (which we permit in C++ as an extension).
5120 But, that construct is not a cast-expression -- it is a
5121 postfix-expression. (The reason is that `(struct S) { 3 }.i'
5122 is legal; if the compound-literal were a cast-expression,
5123 you'd need an extra set of parentheses.) But, if we parse
5124 the type-id, and it happens to be a class-specifier, then we
5125 will commit to the parse at that point, because we cannot
5126 undo the action that is done when creating a new class. So,
5127 then we cannot back up and do a postfix-expression.
5129 Therefore, we scan ahead to the closing `)', and check to see
5130 if the token after the `)' is a `{'. If so, we are not
5131 looking at a cast-expression.
5133 Save tokens so that we can put them back. */
5134 cp_lexer_save_tokens (parser->lexer);
5135 /* Skip tokens until the next token is a closing parenthesis.
5136 If we find the closing `)', and the next token is a `{', then
5137 we are looking at a compound-literal. */
5138 compound_literal_p
5139 = (cp_parser_skip_to_closing_parenthesis (parser, false, false,
5140 /*consume_paren=*/true)
5141 && cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE));
5142 /* Roll back the tokens we skipped. */
5143 cp_lexer_rollback_tokens (parser->lexer);
5144 /* If we were looking at a compound-literal, simulate an error
5145 so that the call to cp_parser_parse_definitely below will
5146 fail. */
5147 if (compound_literal_p)
5148 cp_parser_simulate_error (parser);
5149 else
5151 bool saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
5152 parser->in_type_id_in_expr_p = true;
5153 /* Look for the type-id. */
5154 type = cp_parser_type_id (parser);
5155 /* Look for the closing `)'. */
5156 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
5157 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
5160 /* Restore the saved message. */
5161 parser->type_definition_forbidden_message = saved_message;
5163 /* If ok so far, parse the dependent expression. We cannot be
5164 sure it is a cast. Consider `(T ())'. It is a parenthesized
5165 ctor of T, but looks like a cast to function returning T
5166 without a dependent expression. */
5167 if (!cp_parser_error_occurred (parser))
5168 expr = cp_parser_simple_cast_expression (parser);
5170 if (cp_parser_parse_definitely (parser))
5172 /* Warn about old-style casts, if so requested. */
5173 if (warn_old_style_cast
5174 && !in_system_header
5175 && !VOID_TYPE_P (type)
5176 && current_lang_name != lang_name_c)
5177 warning ("use of old-style cast");
5179 /* Only type conversions to integral or enumeration types
5180 can be used in constant-expressions. */
5181 if (parser->integral_constant_expression_p
5182 && !dependent_type_p (type)
5183 && !INTEGRAL_OR_ENUMERATION_TYPE_P (type)
5184 && (cp_parser_non_integral_constant_expression
5185 (parser,
5186 "a cast to a type other than an integral or "
5187 "enumeration type")))
5188 return error_mark_node;
5190 /* Perform the cast. */
5191 expr = build_c_cast (type, expr);
5192 return expr;
5196 /* If we get here, then it's not a cast, so it must be a
5197 unary-expression. */
5198 return cp_parser_unary_expression (parser, address_p);
5201 /* Parse a binary expression of the general form:
5203 pm-expression:
5204 cast-expression
5205 pm-expression .* cast-expression
5206 pm-expression ->* cast-expression
5208 multiplicative-expression:
5209 pm-expression
5210 multiplicative-expression * pm-expression
5211 multiplicative-expression / pm-expression
5212 multiplicative-expression % pm-expression
5214 additive-expression:
5215 multiplicative-expression
5216 additive-expression + multiplicative-expression
5217 additive-expression - multiplicative-expression
5219 shift-expression:
5220 additive-expression
5221 shift-expression << additive-expression
5222 shift-expression >> additive-expression
5224 relational-expression:
5225 shift-expression
5226 relational-expression < shift-expression
5227 relational-expression > shift-expression
5228 relational-expression <= shift-expression
5229 relational-expression >= shift-expression
5231 GNU Extension:
5233 relational-expression:
5234 relational-expression <? shift-expression
5235 relational-expression >? shift-expression
5237 equality-expression:
5238 relational-expression
5239 equality-expression == relational-expression
5240 equality-expression != relational-expression
5242 and-expression:
5243 equality-expression
5244 and-expression & equality-expression
5246 exclusive-or-expression:
5247 and-expression
5248 exclusive-or-expression ^ and-expression
5250 inclusive-or-expression:
5251 exclusive-or-expression
5252 inclusive-or-expression | exclusive-or-expression
5254 logical-and-expression:
5255 inclusive-or-expression
5256 logical-and-expression && inclusive-or-expression
5258 logical-or-expression:
5259 logical-and-expression
5260 logical-or-expression || logical-and-expression
5262 All these are implemented with a single function like:
5264 binary-expression:
5265 simple-cast-expression
5266 binary-expression <token> binary-expression
5268 The binops_by_token map is used to get the tree codes for each <token> type.
5269 binary-expressions are associated according to a precedence table. */
5271 #define TOKEN_PRECEDENCE(token) \
5272 ((token->type == CPP_GREATER && !parser->greater_than_is_operator_p) \
5273 ? PREC_NOT_OPERATOR \
5274 : binops_by_token[token->type].prec)
5276 static tree
5277 cp_parser_binary_expression (cp_parser* parser)
5279 cp_parser_expression_stack stack;
5280 cp_parser_expression_stack_entry *sp = &stack[0];
5281 tree lhs, rhs;
5282 cp_token *token;
5283 enum tree_code tree_type;
5284 enum cp_parser_prec prec = PREC_NOT_OPERATOR, new_prec, lookahead_prec;
5285 bool overloaded_p;
5287 /* Parse the first expression. */
5288 lhs = cp_parser_simple_cast_expression (parser);
5290 for (;;)
5292 /* Get an operator token. */
5293 token = cp_lexer_peek_token (parser->lexer);
5294 new_prec = TOKEN_PRECEDENCE (token);
5296 /* Popping an entry off the stack means we completed a subexpression:
5297 - either we found a token which is not an operator (`>' where it is not
5298 an operator, or prec == PREC_NOT_OPERATOR), in which case popping
5299 will happen repeatedly;
5300 - or, we found an operator which has lower priority. This is the case
5301 where the recursive descent *ascends*, as in `3 * 4 + 5' after
5302 parsing `3 * 4'. */
5303 if (new_prec <= prec)
5305 if (sp == stack)
5306 break;
5307 else
5308 goto pop;
5311 get_rhs:
5312 tree_type = binops_by_token[token->type].tree_type;
5314 /* We used the operator token. */
5315 cp_lexer_consume_token (parser->lexer);
5317 /* Extract another operand. It may be the RHS of this expression
5318 or the LHS of a new, higher priority expression. */
5319 rhs = cp_parser_simple_cast_expression (parser);
5321 /* Get another operator token. Look up its precedence to avoid
5322 building a useless (immediately popped) stack entry for common
5323 cases such as 3 + 4 + 5 or 3 * 4 + 5. */
5324 token = cp_lexer_peek_token (parser->lexer);
5325 lookahead_prec = TOKEN_PRECEDENCE (token);
5326 if (lookahead_prec > new_prec)
5328 /* ... and prepare to parse the RHS of the new, higher priority
5329 expression. Since precedence levels on the stack are
5330 monotonically increasing, we do not have to care about
5331 stack overflows. */
5332 sp->prec = prec;
5333 sp->tree_type = tree_type;
5334 sp->lhs = lhs;
5335 sp++;
5336 lhs = rhs;
5337 prec = new_prec;
5338 new_prec = lookahead_prec;
5339 goto get_rhs;
5341 pop:
5342 /* If the stack is not empty, we have parsed into LHS the right side
5343 (`4' in the example above) of an expression we had suspended.
5344 We can use the information on the stack to recover the LHS (`3')
5345 from the stack together with the tree code (`MULT_EXPR'), and
5346 the precedence of the higher level subexpression
5347 (`PREC_ADDITIVE_EXPRESSION'). TOKEN is the CPP_PLUS token,
5348 which will be used to actually build the additive expression. */
5349 --sp;
5350 prec = sp->prec;
5351 tree_type = sp->tree_type;
5352 rhs = lhs;
5353 lhs = sp->lhs;
5356 overloaded_p = false;
5357 lhs = build_x_binary_op (tree_type, lhs, rhs, &overloaded_p);
5359 /* If the binary operator required the use of an overloaded operator,
5360 then this expression cannot be an integral constant-expression.
5361 An overloaded operator can be used even if both operands are
5362 otherwise permissible in an integral constant-expression if at
5363 least one of the operands is of enumeration type. */
5365 if (overloaded_p
5366 && (cp_parser_non_integral_constant_expression
5367 (parser, "calls to overloaded operators")))
5368 return error_mark_node;
5371 return lhs;
5375 /* Parse the `? expression : assignment-expression' part of a
5376 conditional-expression. The LOGICAL_OR_EXPR is the
5377 logical-or-expression that started the conditional-expression.
5378 Returns a representation of the entire conditional-expression.
5380 This routine is used by cp_parser_assignment_expression.
5382 ? expression : assignment-expression
5384 GNU Extensions:
5386 ? : assignment-expression */
5388 static tree
5389 cp_parser_question_colon_clause (cp_parser* parser, tree logical_or_expr)
5391 tree expr;
5392 tree assignment_expr;
5394 /* Consume the `?' token. */
5395 cp_lexer_consume_token (parser->lexer);
5396 if (cp_parser_allow_gnu_extensions_p (parser)
5397 && cp_lexer_next_token_is (parser->lexer, CPP_COLON))
5398 /* Implicit true clause. */
5399 expr = NULL_TREE;
5400 else
5401 /* Parse the expression. */
5402 expr = cp_parser_expression (parser);
5404 /* The next token should be a `:'. */
5405 cp_parser_require (parser, CPP_COLON, "`:'");
5406 /* Parse the assignment-expression. */
5407 assignment_expr = cp_parser_assignment_expression (parser);
5409 /* Build the conditional-expression. */
5410 return build_x_conditional_expr (logical_or_expr,
5411 expr,
5412 assignment_expr);
5415 /* Parse an assignment-expression.
5417 assignment-expression:
5418 conditional-expression
5419 logical-or-expression assignment-operator assignment_expression
5420 throw-expression
5422 Returns a representation for the expression. */
5424 static tree
5425 cp_parser_assignment_expression (cp_parser* parser)
5427 tree expr;
5429 /* If the next token is the `throw' keyword, then we're looking at
5430 a throw-expression. */
5431 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_THROW))
5432 expr = cp_parser_throw_expression (parser);
5433 /* Otherwise, it must be that we are looking at a
5434 logical-or-expression. */
5435 else
5437 /* Parse the binary expressions (logical-or-expression). */
5438 expr = cp_parser_binary_expression (parser);
5439 /* If the next token is a `?' then we're actually looking at a
5440 conditional-expression. */
5441 if (cp_lexer_next_token_is (parser->lexer, CPP_QUERY))
5442 return cp_parser_question_colon_clause (parser, expr);
5443 else
5445 enum tree_code assignment_operator;
5447 /* If it's an assignment-operator, we're using the second
5448 production. */
5449 assignment_operator
5450 = cp_parser_assignment_operator_opt (parser);
5451 if (assignment_operator != ERROR_MARK)
5453 tree rhs;
5455 /* Parse the right-hand side of the assignment. */
5456 rhs = cp_parser_assignment_expression (parser);
5457 /* An assignment may not appear in a
5458 constant-expression. */
5459 if (cp_parser_non_integral_constant_expression (parser,
5460 "an assignment"))
5461 return error_mark_node;
5462 /* Build the assignment expression. */
5463 expr = build_x_modify_expr (expr,
5464 assignment_operator,
5465 rhs);
5470 return expr;
5473 /* Parse an (optional) assignment-operator.
5475 assignment-operator: one of
5476 = *= /= %= += -= >>= <<= &= ^= |=
5478 GNU Extension:
5480 assignment-operator: one of
5481 <?= >?=
5483 If the next token is an assignment operator, the corresponding tree
5484 code is returned, and the token is consumed. For example, for
5485 `+=', PLUS_EXPR is returned. For `=' itself, the code returned is
5486 NOP_EXPR. For `/', TRUNC_DIV_EXPR is returned; for `%',
5487 TRUNC_MOD_EXPR is returned. If TOKEN is not an assignment
5488 operator, ERROR_MARK is returned. */
5490 static enum tree_code
5491 cp_parser_assignment_operator_opt (cp_parser* parser)
5493 enum tree_code op;
5494 cp_token *token;
5496 /* Peek at the next toen. */
5497 token = cp_lexer_peek_token (parser->lexer);
5499 switch (token->type)
5501 case CPP_EQ:
5502 op = NOP_EXPR;
5503 break;
5505 case CPP_MULT_EQ:
5506 op = MULT_EXPR;
5507 break;
5509 case CPP_DIV_EQ:
5510 op = TRUNC_DIV_EXPR;
5511 break;
5513 case CPP_MOD_EQ:
5514 op = TRUNC_MOD_EXPR;
5515 break;
5517 case CPP_PLUS_EQ:
5518 op = PLUS_EXPR;
5519 break;
5521 case CPP_MINUS_EQ:
5522 op = MINUS_EXPR;
5523 break;
5525 case CPP_RSHIFT_EQ:
5526 op = RSHIFT_EXPR;
5527 break;
5529 case CPP_LSHIFT_EQ:
5530 op = LSHIFT_EXPR;
5531 break;
5533 case CPP_AND_EQ:
5534 op = BIT_AND_EXPR;
5535 break;
5537 case CPP_XOR_EQ:
5538 op = BIT_XOR_EXPR;
5539 break;
5541 case CPP_OR_EQ:
5542 op = BIT_IOR_EXPR;
5543 break;
5545 case CPP_MIN_EQ:
5546 op = MIN_EXPR;
5547 break;
5549 case CPP_MAX_EQ:
5550 op = MAX_EXPR;
5551 break;
5553 default:
5554 /* Nothing else is an assignment operator. */
5555 op = ERROR_MARK;
5558 /* If it was an assignment operator, consume it. */
5559 if (op != ERROR_MARK)
5560 cp_lexer_consume_token (parser->lexer);
5562 return op;
5565 /* Parse an expression.
5567 expression:
5568 assignment-expression
5569 expression , assignment-expression
5571 Returns a representation of the expression. */
5573 static tree
5574 cp_parser_expression (cp_parser* parser)
5576 tree expression = NULL_TREE;
5578 while (true)
5580 tree assignment_expression;
5582 /* Parse the next assignment-expression. */
5583 assignment_expression
5584 = cp_parser_assignment_expression (parser);
5585 /* If this is the first assignment-expression, we can just
5586 save it away. */
5587 if (!expression)
5588 expression = assignment_expression;
5589 else
5590 expression = build_x_compound_expr (expression,
5591 assignment_expression);
5592 /* If the next token is not a comma, then we are done with the
5593 expression. */
5594 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
5595 break;
5596 /* Consume the `,'. */
5597 cp_lexer_consume_token (parser->lexer);
5598 /* A comma operator cannot appear in a constant-expression. */
5599 if (cp_parser_non_integral_constant_expression (parser,
5600 "a comma operator"))
5601 expression = error_mark_node;
5604 return expression;
5607 /* Parse a constant-expression.
5609 constant-expression:
5610 conditional-expression
5612 If ALLOW_NON_CONSTANT_P a non-constant expression is silently
5613 accepted. If ALLOW_NON_CONSTANT_P is true and the expression is not
5614 constant, *NON_CONSTANT_P is set to TRUE. If ALLOW_NON_CONSTANT_P
5615 is false, NON_CONSTANT_P should be NULL. */
5617 static tree
5618 cp_parser_constant_expression (cp_parser* parser,
5619 bool allow_non_constant_p,
5620 bool *non_constant_p)
5622 bool saved_integral_constant_expression_p;
5623 bool saved_allow_non_integral_constant_expression_p;
5624 bool saved_non_integral_constant_expression_p;
5625 tree expression;
5627 /* It might seem that we could simply parse the
5628 conditional-expression, and then check to see if it were
5629 TREE_CONSTANT. However, an expression that is TREE_CONSTANT is
5630 one that the compiler can figure out is constant, possibly after
5631 doing some simplifications or optimizations. The standard has a
5632 precise definition of constant-expression, and we must honor
5633 that, even though it is somewhat more restrictive.
5635 For example:
5637 int i[(2, 3)];
5639 is not a legal declaration, because `(2, 3)' is not a
5640 constant-expression. The `,' operator is forbidden in a
5641 constant-expression. However, GCC's constant-folding machinery
5642 will fold this operation to an INTEGER_CST for `3'. */
5644 /* Save the old settings. */
5645 saved_integral_constant_expression_p = parser->integral_constant_expression_p;
5646 saved_allow_non_integral_constant_expression_p
5647 = parser->allow_non_integral_constant_expression_p;
5648 saved_non_integral_constant_expression_p = parser->non_integral_constant_expression_p;
5649 /* We are now parsing a constant-expression. */
5650 parser->integral_constant_expression_p = true;
5651 parser->allow_non_integral_constant_expression_p = allow_non_constant_p;
5652 parser->non_integral_constant_expression_p = false;
5653 /* Although the grammar says "conditional-expression", we parse an
5654 "assignment-expression", which also permits "throw-expression"
5655 and the use of assignment operators. In the case that
5656 ALLOW_NON_CONSTANT_P is false, we get better errors than we would
5657 otherwise. In the case that ALLOW_NON_CONSTANT_P is true, it is
5658 actually essential that we look for an assignment-expression.
5659 For example, cp_parser_initializer_clauses uses this function to
5660 determine whether a particular assignment-expression is in fact
5661 constant. */
5662 expression = cp_parser_assignment_expression (parser);
5663 /* Restore the old settings. */
5664 parser->integral_constant_expression_p = saved_integral_constant_expression_p;
5665 parser->allow_non_integral_constant_expression_p
5666 = saved_allow_non_integral_constant_expression_p;
5667 if (allow_non_constant_p)
5668 *non_constant_p = parser->non_integral_constant_expression_p;
5669 parser->non_integral_constant_expression_p = saved_non_integral_constant_expression_p;
5671 return expression;
5674 /* Parse __builtin_offsetof.
5676 offsetof-expression:
5677 "__builtin_offsetof" "(" type-id "," offsetof-member-designator ")"
5679 offsetof-member-designator:
5680 id-expression
5681 | offsetof-member-designator "." id-expression
5682 | offsetof-member-designator "[" expression "]"
5685 static tree
5686 cp_parser_builtin_offsetof (cp_parser *parser)
5688 int save_ice_p, save_non_ice_p;
5689 tree type, expr;
5690 cp_id_kind dummy;
5692 /* We're about to accept non-integral-constant things, but will
5693 definitely yield an integral constant expression. Save and
5694 restore these values around our local parsing. */
5695 save_ice_p = parser->integral_constant_expression_p;
5696 save_non_ice_p = parser->non_integral_constant_expression_p;
5698 /* Consume the "__builtin_offsetof" token. */
5699 cp_lexer_consume_token (parser->lexer);
5700 /* Consume the opening `('. */
5701 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
5702 /* Parse the type-id. */
5703 type = cp_parser_type_id (parser);
5704 /* Look for the `,'. */
5705 cp_parser_require (parser, CPP_COMMA, "`,'");
5707 /* Build the (type *)null that begins the traditional offsetof macro. */
5708 expr = build_static_cast (build_pointer_type (type), null_pointer_node);
5710 /* Parse the offsetof-member-designator. We begin as if we saw "expr->". */
5711 expr = cp_parser_postfix_dot_deref_expression (parser, CPP_DEREF, expr,
5712 true, &dummy);
5713 while (true)
5715 cp_token *token = cp_lexer_peek_token (parser->lexer);
5716 switch (token->type)
5718 case CPP_OPEN_SQUARE:
5719 /* offsetof-member-designator "[" expression "]" */
5720 expr = cp_parser_postfix_open_square_expression (parser, expr, true);
5721 break;
5723 case CPP_DOT:
5724 /* offsetof-member-designator "." identifier */
5725 cp_lexer_consume_token (parser->lexer);
5726 expr = cp_parser_postfix_dot_deref_expression (parser, CPP_DOT, expr,
5727 true, &dummy);
5728 break;
5730 case CPP_CLOSE_PAREN:
5731 /* Consume the ")" token. */
5732 cp_lexer_consume_token (parser->lexer);
5733 goto success;
5735 default:
5736 /* Error. We know the following require will fail, but
5737 that gives the proper error message. */
5738 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
5739 cp_parser_skip_to_closing_parenthesis (parser, true, false, true);
5740 expr = error_mark_node;
5741 goto failure;
5745 success:
5746 /* If we're processing a template, we can't finish the semantics yet.
5747 Otherwise we can fold the entire expression now. */
5748 if (processing_template_decl)
5749 expr = build1 (OFFSETOF_EXPR, size_type_node, expr);
5750 else
5751 expr = fold_offsetof (expr);
5753 failure:
5754 parser->integral_constant_expression_p = save_ice_p;
5755 parser->non_integral_constant_expression_p = save_non_ice_p;
5757 return expr;
5760 /* Statements [gram.stmt.stmt] */
5762 /* Parse a statement.
5764 statement:
5765 labeled-statement
5766 expression-statement
5767 compound-statement
5768 selection-statement
5769 iteration-statement
5770 jump-statement
5771 declaration-statement
5772 try-block */
5774 static void
5775 cp_parser_statement (cp_parser* parser, tree in_statement_expr)
5777 tree statement;
5778 cp_token *token;
5779 location_t statement_location;
5781 /* There is no statement yet. */
5782 statement = NULL_TREE;
5783 /* Peek at the next token. */
5784 token = cp_lexer_peek_token (parser->lexer);
5785 /* Remember the location of the first token in the statement. */
5786 statement_location = token->location;
5787 /* If this is a keyword, then that will often determine what kind of
5788 statement we have. */
5789 if (token->type == CPP_KEYWORD)
5791 enum rid keyword = token->keyword;
5793 switch (keyword)
5795 case RID_CASE:
5796 case RID_DEFAULT:
5797 statement = cp_parser_labeled_statement (parser,
5798 in_statement_expr);
5799 break;
5801 case RID_IF:
5802 case RID_SWITCH:
5803 statement = cp_parser_selection_statement (parser);
5804 break;
5806 case RID_WHILE:
5807 case RID_DO:
5808 case RID_FOR:
5809 statement = cp_parser_iteration_statement (parser);
5810 break;
5812 case RID_BREAK:
5813 case RID_CONTINUE:
5814 case RID_RETURN:
5815 case RID_GOTO:
5816 statement = cp_parser_jump_statement (parser);
5817 break;
5819 case RID_TRY:
5820 statement = cp_parser_try_block (parser);
5821 break;
5823 default:
5824 /* It might be a keyword like `int' that can start a
5825 declaration-statement. */
5826 break;
5829 else if (token->type == CPP_NAME)
5831 /* If the next token is a `:', then we are looking at a
5832 labeled-statement. */
5833 token = cp_lexer_peek_nth_token (parser->lexer, 2);
5834 if (token->type == CPP_COLON)
5835 statement = cp_parser_labeled_statement (parser, in_statement_expr);
5837 /* Anything that starts with a `{' must be a compound-statement. */
5838 else if (token->type == CPP_OPEN_BRACE)
5839 statement = cp_parser_compound_statement (parser, NULL, false);
5840 /* CPP_PRAGMA is a #pragma inside a function body, which constitutes
5841 a statement all its own. */
5842 else if (token->type == CPP_PRAGMA)
5844 cp_lexer_handle_pragma (parser->lexer);
5845 return;
5848 /* Everything else must be a declaration-statement or an
5849 expression-statement. Try for the declaration-statement
5850 first, unless we are looking at a `;', in which case we know that
5851 we have an expression-statement. */
5852 if (!statement)
5854 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
5856 cp_parser_parse_tentatively (parser);
5857 /* Try to parse the declaration-statement. */
5858 cp_parser_declaration_statement (parser);
5859 /* If that worked, we're done. */
5860 if (cp_parser_parse_definitely (parser))
5861 return;
5863 /* Look for an expression-statement instead. */
5864 statement = cp_parser_expression_statement (parser, in_statement_expr);
5867 /* Set the line number for the statement. */
5868 if (statement && STATEMENT_CODE_P (TREE_CODE (statement)))
5869 SET_EXPR_LOCATION (statement, statement_location);
5872 /* Parse a labeled-statement.
5874 labeled-statement:
5875 identifier : statement
5876 case constant-expression : statement
5877 default : statement
5879 GNU Extension:
5881 labeled-statement:
5882 case constant-expression ... constant-expression : statement
5884 Returns the new CASE_LABEL_EXPR, for a `case' or `default' label.
5885 For an ordinary label, returns a LABEL_EXPR. */
5887 static tree
5888 cp_parser_labeled_statement (cp_parser* parser, tree in_statement_expr)
5890 cp_token *token;
5891 tree statement = error_mark_node;
5893 /* The next token should be an identifier. */
5894 token = cp_lexer_peek_token (parser->lexer);
5895 if (token->type != CPP_NAME
5896 && token->type != CPP_KEYWORD)
5898 cp_parser_error (parser, "expected labeled-statement");
5899 return error_mark_node;
5902 switch (token->keyword)
5904 case RID_CASE:
5906 tree expr, expr_hi;
5907 cp_token *ellipsis;
5909 /* Consume the `case' token. */
5910 cp_lexer_consume_token (parser->lexer);
5911 /* Parse the constant-expression. */
5912 expr = cp_parser_constant_expression (parser,
5913 /*allow_non_constant_p=*/false,
5914 NULL);
5916 ellipsis = cp_lexer_peek_token (parser->lexer);
5917 if (ellipsis->type == CPP_ELLIPSIS)
5919 /* Consume the `...' token. */
5920 cp_lexer_consume_token (parser->lexer);
5921 expr_hi =
5922 cp_parser_constant_expression (parser,
5923 /*allow_non_constant_p=*/false,
5924 NULL);
5925 /* We don't need to emit warnings here, as the common code
5926 will do this for us. */
5928 else
5929 expr_hi = NULL_TREE;
5931 if (!parser->in_switch_statement_p)
5932 error ("case label %qE not within a switch statement", expr);
5933 else
5934 statement = finish_case_label (expr, expr_hi);
5936 break;
5938 case RID_DEFAULT:
5939 /* Consume the `default' token. */
5940 cp_lexer_consume_token (parser->lexer);
5941 if (!parser->in_switch_statement_p)
5942 error ("case label not within a switch statement");
5943 else
5944 statement = finish_case_label (NULL_TREE, NULL_TREE);
5945 break;
5947 default:
5948 /* Anything else must be an ordinary label. */
5949 statement = finish_label_stmt (cp_parser_identifier (parser));
5950 break;
5953 /* Require the `:' token. */
5954 cp_parser_require (parser, CPP_COLON, "`:'");
5955 /* Parse the labeled statement. */
5956 cp_parser_statement (parser, in_statement_expr);
5958 /* Return the label, in the case of a `case' or `default' label. */
5959 return statement;
5962 /* Parse an expression-statement.
5964 expression-statement:
5965 expression [opt] ;
5967 Returns the new EXPR_STMT -- or NULL_TREE if the expression
5968 statement consists of nothing more than an `;'. IN_STATEMENT_EXPR_P
5969 indicates whether this expression-statement is part of an
5970 expression statement. */
5972 static tree
5973 cp_parser_expression_statement (cp_parser* parser, tree in_statement_expr)
5975 tree statement = NULL_TREE;
5977 /* If the next token is a ';', then there is no expression
5978 statement. */
5979 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
5980 statement = cp_parser_expression (parser);
5982 /* Consume the final `;'. */
5983 cp_parser_consume_semicolon_at_end_of_statement (parser);
5985 if (in_statement_expr
5986 && cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
5988 /* This is the final expression statement of a statement
5989 expression. */
5990 statement = finish_stmt_expr_expr (statement, in_statement_expr);
5992 else if (statement)
5993 statement = finish_expr_stmt (statement);
5994 else
5995 finish_stmt ();
5997 return statement;
6000 /* Parse a compound-statement.
6002 compound-statement:
6003 { statement-seq [opt] }
6005 Returns a tree representing the statement. */
6007 static tree
6008 cp_parser_compound_statement (cp_parser *parser, tree in_statement_expr,
6009 bool in_try)
6011 tree compound_stmt;
6013 /* Consume the `{'. */
6014 if (!cp_parser_require (parser, CPP_OPEN_BRACE, "`{'"))
6015 return error_mark_node;
6016 /* Begin the compound-statement. */
6017 compound_stmt = begin_compound_stmt (in_try ? BCS_TRY_BLOCK : 0);
6018 /* Parse an (optional) statement-seq. */
6019 cp_parser_statement_seq_opt (parser, in_statement_expr);
6020 /* Finish the compound-statement. */
6021 finish_compound_stmt (compound_stmt);
6022 /* Consume the `}'. */
6023 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
6025 return compound_stmt;
6028 /* Parse an (optional) statement-seq.
6030 statement-seq:
6031 statement
6032 statement-seq [opt] statement */
6034 static void
6035 cp_parser_statement_seq_opt (cp_parser* parser, tree in_statement_expr)
6037 /* Scan statements until there aren't any more. */
6038 while (true)
6040 /* If we're looking at a `}', then we've run out of statements. */
6041 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE)
6042 || cp_lexer_next_token_is (parser->lexer, CPP_EOF))
6043 break;
6045 /* Parse the statement. */
6046 cp_parser_statement (parser, in_statement_expr);
6050 /* Parse a selection-statement.
6052 selection-statement:
6053 if ( condition ) statement
6054 if ( condition ) statement else statement
6055 switch ( condition ) statement
6057 Returns the new IF_STMT or SWITCH_STMT. */
6059 static tree
6060 cp_parser_selection_statement (cp_parser* parser)
6062 cp_token *token;
6063 enum rid keyword;
6065 /* Peek at the next token. */
6066 token = cp_parser_require (parser, CPP_KEYWORD, "selection-statement");
6068 /* See what kind of keyword it is. */
6069 keyword = token->keyword;
6070 switch (keyword)
6072 case RID_IF:
6073 case RID_SWITCH:
6075 tree statement;
6076 tree condition;
6078 /* Look for the `('. */
6079 if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
6081 cp_parser_skip_to_end_of_statement (parser);
6082 return error_mark_node;
6085 /* Begin the selection-statement. */
6086 if (keyword == RID_IF)
6087 statement = begin_if_stmt ();
6088 else
6089 statement = begin_switch_stmt ();
6091 /* Parse the condition. */
6092 condition = cp_parser_condition (parser);
6093 /* Look for the `)'. */
6094 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
6095 cp_parser_skip_to_closing_parenthesis (parser, true, false,
6096 /*consume_paren=*/true);
6098 if (keyword == RID_IF)
6100 /* Add the condition. */
6101 finish_if_stmt_cond (condition, statement);
6103 /* Parse the then-clause. */
6104 cp_parser_implicitly_scoped_statement (parser);
6105 finish_then_clause (statement);
6107 /* If the next token is `else', parse the else-clause. */
6108 if (cp_lexer_next_token_is_keyword (parser->lexer,
6109 RID_ELSE))
6111 /* Consume the `else' keyword. */
6112 cp_lexer_consume_token (parser->lexer);
6113 begin_else_clause (statement);
6114 /* Parse the else-clause. */
6115 cp_parser_implicitly_scoped_statement (parser);
6116 finish_else_clause (statement);
6119 /* Now we're all done with the if-statement. */
6120 finish_if_stmt (statement);
6122 else
6124 bool in_switch_statement_p;
6126 /* Add the condition. */
6127 finish_switch_cond (condition, statement);
6129 /* Parse the body of the switch-statement. */
6130 in_switch_statement_p = parser->in_switch_statement_p;
6131 parser->in_switch_statement_p = true;
6132 cp_parser_implicitly_scoped_statement (parser);
6133 parser->in_switch_statement_p = in_switch_statement_p;
6135 /* Now we're all done with the switch-statement. */
6136 finish_switch_stmt (statement);
6139 return statement;
6141 break;
6143 default:
6144 cp_parser_error (parser, "expected selection-statement");
6145 return error_mark_node;
6149 /* Parse a condition.
6151 condition:
6152 expression
6153 type-specifier-seq declarator = assignment-expression
6155 GNU Extension:
6157 condition:
6158 type-specifier-seq declarator asm-specification [opt]
6159 attributes [opt] = assignment-expression
6161 Returns the expression that should be tested. */
6163 static tree
6164 cp_parser_condition (cp_parser* parser)
6166 cp_decl_specifier_seq type_specifiers;
6167 const char *saved_message;
6169 /* Try the declaration first. */
6170 cp_parser_parse_tentatively (parser);
6171 /* New types are not allowed in the type-specifier-seq for a
6172 condition. */
6173 saved_message = parser->type_definition_forbidden_message;
6174 parser->type_definition_forbidden_message
6175 = "types may not be defined in conditions";
6176 /* Parse the type-specifier-seq. */
6177 cp_parser_type_specifier_seq (parser, &type_specifiers);
6178 /* Restore the saved message. */
6179 parser->type_definition_forbidden_message = saved_message;
6180 /* If all is well, we might be looking at a declaration. */
6181 if (!cp_parser_error_occurred (parser))
6183 tree decl;
6184 tree asm_specification;
6185 tree attributes;
6186 cp_declarator *declarator;
6187 tree initializer = NULL_TREE;
6189 /* Parse the declarator. */
6190 declarator = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
6191 /*ctor_dtor_or_conv_p=*/NULL,
6192 /*parenthesized_p=*/NULL,
6193 /*member_p=*/false);
6194 /* Parse the attributes. */
6195 attributes = cp_parser_attributes_opt (parser);
6196 /* Parse the asm-specification. */
6197 asm_specification = cp_parser_asm_specification_opt (parser);
6198 /* If the next token is not an `=', then we might still be
6199 looking at an expression. For example:
6201 if (A(a).x)
6203 looks like a decl-specifier-seq and a declarator -- but then
6204 there is no `=', so this is an expression. */
6205 cp_parser_require (parser, CPP_EQ, "`='");
6206 /* If we did see an `=', then we are looking at a declaration
6207 for sure. */
6208 if (cp_parser_parse_definitely (parser))
6210 bool pop_p;
6212 /* Create the declaration. */
6213 decl = start_decl (declarator, &type_specifiers,
6214 /*initialized_p=*/true,
6215 attributes, /*prefix_attributes=*/NULL_TREE,
6216 &pop_p);
6217 /* Parse the assignment-expression. */
6218 initializer = cp_parser_assignment_expression (parser);
6220 /* Process the initializer. */
6221 cp_finish_decl (decl,
6222 initializer,
6223 asm_specification,
6224 LOOKUP_ONLYCONVERTING);
6226 if (pop_p)
6227 pop_scope (DECL_CONTEXT (decl));
6229 return convert_from_reference (decl);
6232 /* If we didn't even get past the declarator successfully, we are
6233 definitely not looking at a declaration. */
6234 else
6235 cp_parser_abort_tentative_parse (parser);
6237 /* Otherwise, we are looking at an expression. */
6238 return cp_parser_expression (parser);
6241 /* Parse an iteration-statement.
6243 iteration-statement:
6244 while ( condition ) statement
6245 do statement while ( expression ) ;
6246 for ( for-init-statement condition [opt] ; expression [opt] )
6247 statement
6249 Returns the new WHILE_STMT, DO_STMT, or FOR_STMT. */
6251 static tree
6252 cp_parser_iteration_statement (cp_parser* parser)
6254 cp_token *token;
6255 enum rid keyword;
6256 tree statement;
6257 bool in_iteration_statement_p;
6260 /* Peek at the next token. */
6261 token = cp_parser_require (parser, CPP_KEYWORD, "iteration-statement");
6262 if (!token)
6263 return error_mark_node;
6265 /* Remember whether or not we are already within an iteration
6266 statement. */
6267 in_iteration_statement_p = parser->in_iteration_statement_p;
6269 /* See what kind of keyword it is. */
6270 keyword = token->keyword;
6271 switch (keyword)
6273 case RID_WHILE:
6275 tree condition;
6277 /* Begin the while-statement. */
6278 statement = begin_while_stmt ();
6279 /* Look for the `('. */
6280 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
6281 /* Parse the condition. */
6282 condition = cp_parser_condition (parser);
6283 finish_while_stmt_cond (condition, statement);
6284 /* Look for the `)'. */
6285 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
6286 /* Parse the dependent statement. */
6287 parser->in_iteration_statement_p = true;
6288 cp_parser_already_scoped_statement (parser);
6289 parser->in_iteration_statement_p = in_iteration_statement_p;
6290 /* We're done with the while-statement. */
6291 finish_while_stmt (statement);
6293 break;
6295 case RID_DO:
6297 tree expression;
6299 /* Begin the do-statement. */
6300 statement = begin_do_stmt ();
6301 /* Parse the body of the do-statement. */
6302 parser->in_iteration_statement_p = true;
6303 cp_parser_implicitly_scoped_statement (parser);
6304 parser->in_iteration_statement_p = in_iteration_statement_p;
6305 finish_do_body (statement);
6306 /* Look for the `while' keyword. */
6307 cp_parser_require_keyword (parser, RID_WHILE, "`while'");
6308 /* Look for the `('. */
6309 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
6310 /* Parse the expression. */
6311 expression = cp_parser_expression (parser);
6312 /* We're done with the do-statement. */
6313 finish_do_stmt (expression, statement);
6314 /* Look for the `)'. */
6315 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
6316 /* Look for the `;'. */
6317 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
6319 break;
6321 case RID_FOR:
6323 tree condition = NULL_TREE;
6324 tree expression = NULL_TREE;
6326 /* Begin the for-statement. */
6327 statement = begin_for_stmt ();
6328 /* Look for the `('. */
6329 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
6330 /* Parse the initialization. */
6331 cp_parser_for_init_statement (parser);
6332 finish_for_init_stmt (statement);
6334 /* If there's a condition, process it. */
6335 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6336 condition = cp_parser_condition (parser);
6337 finish_for_cond (condition, statement);
6338 /* Look for the `;'. */
6339 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
6341 /* If there's an expression, process it. */
6342 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN))
6343 expression = cp_parser_expression (parser);
6344 finish_for_expr (expression, statement);
6345 /* Look for the `)'. */
6346 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
6348 /* Parse the body of the for-statement. */
6349 parser->in_iteration_statement_p = true;
6350 cp_parser_already_scoped_statement (parser);
6351 parser->in_iteration_statement_p = in_iteration_statement_p;
6353 /* We're done with the for-statement. */
6354 finish_for_stmt (statement);
6356 break;
6358 default:
6359 cp_parser_error (parser, "expected iteration-statement");
6360 statement = error_mark_node;
6361 break;
6364 return statement;
6367 /* Parse a for-init-statement.
6369 for-init-statement:
6370 expression-statement
6371 simple-declaration */
6373 static void
6374 cp_parser_for_init_statement (cp_parser* parser)
6376 /* If the next token is a `;', then we have an empty
6377 expression-statement. Grammatically, this is also a
6378 simple-declaration, but an invalid one, because it does not
6379 declare anything. Therefore, if we did not handle this case
6380 specially, we would issue an error message about an invalid
6381 declaration. */
6382 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6384 /* We're going to speculatively look for a declaration, falling back
6385 to an expression, if necessary. */
6386 cp_parser_parse_tentatively (parser);
6387 /* Parse the declaration. */
6388 cp_parser_simple_declaration (parser,
6389 /*function_definition_allowed_p=*/false);
6390 /* If the tentative parse failed, then we shall need to look for an
6391 expression-statement. */
6392 if (cp_parser_parse_definitely (parser))
6393 return;
6396 cp_parser_expression_statement (parser, false);
6399 /* Parse a jump-statement.
6401 jump-statement:
6402 break ;
6403 continue ;
6404 return expression [opt] ;
6405 goto identifier ;
6407 GNU extension:
6409 jump-statement:
6410 goto * expression ;
6412 Returns the new BREAK_STMT, CONTINUE_STMT, RETURN_EXPR, or GOTO_EXPR. */
6414 static tree
6415 cp_parser_jump_statement (cp_parser* parser)
6417 tree statement = error_mark_node;
6418 cp_token *token;
6419 enum rid keyword;
6421 /* Peek at the next token. */
6422 token = cp_parser_require (parser, CPP_KEYWORD, "jump-statement");
6423 if (!token)
6424 return error_mark_node;
6426 /* See what kind of keyword it is. */
6427 keyword = token->keyword;
6428 switch (keyword)
6430 case RID_BREAK:
6431 if (!parser->in_switch_statement_p
6432 && !parser->in_iteration_statement_p)
6434 error ("break statement not within loop or switch");
6435 statement = error_mark_node;
6437 else
6438 statement = finish_break_stmt ();
6439 cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
6440 break;
6442 case RID_CONTINUE:
6443 if (!parser->in_iteration_statement_p)
6445 error ("continue statement not within a loop");
6446 statement = error_mark_node;
6448 else
6449 statement = finish_continue_stmt ();
6450 cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
6451 break;
6453 case RID_RETURN:
6455 tree expr;
6457 /* If the next token is a `;', then there is no
6458 expression. */
6459 if (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
6460 expr = cp_parser_expression (parser);
6461 else
6462 expr = NULL_TREE;
6463 /* Build the return-statement. */
6464 statement = finish_return_stmt (expr);
6465 /* Look for the final `;'. */
6466 cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
6468 break;
6470 case RID_GOTO:
6471 /* Create the goto-statement. */
6472 if (cp_lexer_next_token_is (parser->lexer, CPP_MULT))
6474 /* Issue a warning about this use of a GNU extension. */
6475 if (pedantic)
6476 pedwarn ("ISO C++ forbids computed gotos");
6477 /* Consume the '*' token. */
6478 cp_lexer_consume_token (parser->lexer);
6479 /* Parse the dependent expression. */
6480 finish_goto_stmt (cp_parser_expression (parser));
6482 else
6483 finish_goto_stmt (cp_parser_identifier (parser));
6484 /* Look for the final `;'. */
6485 cp_parser_require (parser, CPP_SEMICOLON, "%<;%>");
6486 break;
6488 default:
6489 cp_parser_error (parser, "expected jump-statement");
6490 break;
6493 return statement;
6496 /* Parse a declaration-statement.
6498 declaration-statement:
6499 block-declaration */
6501 static void
6502 cp_parser_declaration_statement (cp_parser* parser)
6504 void *p;
6506 /* Get the high-water mark for the DECLARATOR_OBSTACK. */
6507 p = obstack_alloc (&declarator_obstack, 0);
6509 /* Parse the block-declaration. */
6510 cp_parser_block_declaration (parser, /*statement_p=*/true);
6512 /* Free any declarators allocated. */
6513 obstack_free (&declarator_obstack, p);
6515 /* Finish off the statement. */
6516 finish_stmt ();
6519 /* Some dependent statements (like `if (cond) statement'), are
6520 implicitly in their own scope. In other words, if the statement is
6521 a single statement (as opposed to a compound-statement), it is
6522 none-the-less treated as if it were enclosed in braces. Any
6523 declarations appearing in the dependent statement are out of scope
6524 after control passes that point. This function parses a statement,
6525 but ensures that is in its own scope, even if it is not a
6526 compound-statement.
6528 Returns the new statement. */
6530 static tree
6531 cp_parser_implicitly_scoped_statement (cp_parser* parser)
6533 tree statement;
6535 /* If the token is not a `{', then we must take special action. */
6536 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
6538 /* Create a compound-statement. */
6539 statement = begin_compound_stmt (0);
6540 /* Parse the dependent-statement. */
6541 cp_parser_statement (parser, false);
6542 /* Finish the dummy compound-statement. */
6543 finish_compound_stmt (statement);
6545 /* Otherwise, we simply parse the statement directly. */
6546 else
6547 statement = cp_parser_compound_statement (parser, NULL, false);
6549 /* Return the statement. */
6550 return statement;
6553 /* For some dependent statements (like `while (cond) statement'), we
6554 have already created a scope. Therefore, even if the dependent
6555 statement is a compound-statement, we do not want to create another
6556 scope. */
6558 static void
6559 cp_parser_already_scoped_statement (cp_parser* parser)
6561 /* If the token is a `{', then we must take special action. */
6562 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
6563 cp_parser_statement (parser, false);
6564 else
6566 /* Avoid calling cp_parser_compound_statement, so that we
6567 don't create a new scope. Do everything else by hand. */
6568 cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
6569 cp_parser_statement_seq_opt (parser, false);
6570 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
6574 /* Declarations [gram.dcl.dcl] */
6576 /* Parse an optional declaration-sequence.
6578 declaration-seq:
6579 declaration
6580 declaration-seq declaration */
6582 static void
6583 cp_parser_declaration_seq_opt (cp_parser* parser)
6585 while (true)
6587 cp_token *token;
6589 token = cp_lexer_peek_token (parser->lexer);
6591 if (token->type == CPP_CLOSE_BRACE
6592 || token->type == CPP_EOF)
6593 break;
6595 if (token->type == CPP_SEMICOLON)
6597 /* A declaration consisting of a single semicolon is
6598 invalid. Allow it unless we're being pedantic. */
6599 cp_lexer_consume_token (parser->lexer);
6600 if (pedantic && !in_system_header)
6601 pedwarn ("extra %<;%>");
6602 continue;
6605 /* If we're entering or exiting a region that's implicitly
6606 extern "C", modify the lang context appropriately. */
6607 if (!parser->implicit_extern_c && token->implicit_extern_c)
6609 push_lang_context (lang_name_c);
6610 parser->implicit_extern_c = true;
6612 else if (parser->implicit_extern_c && !token->implicit_extern_c)
6614 pop_lang_context ();
6615 parser->implicit_extern_c = false;
6618 if (token->type == CPP_PRAGMA)
6620 /* A top-level declaration can consist solely of a #pragma.
6621 A nested declaration cannot, so this is done here and not
6622 in cp_parser_declaration. (A #pragma at block scope is
6623 handled in cp_parser_statement.) */
6624 cp_lexer_handle_pragma (parser->lexer);
6625 continue;
6628 /* Parse the declaration itself. */
6629 cp_parser_declaration (parser);
6633 /* Parse a declaration.
6635 declaration:
6636 block-declaration
6637 function-definition
6638 template-declaration
6639 explicit-instantiation
6640 explicit-specialization
6641 linkage-specification
6642 namespace-definition
6644 GNU extension:
6646 declaration:
6647 __extension__ declaration */
6649 static void
6650 cp_parser_declaration (cp_parser* parser)
6652 cp_token token1;
6653 cp_token token2;
6654 int saved_pedantic;
6655 void *p;
6657 /* Check for the `__extension__' keyword. */
6658 if (cp_parser_extension_opt (parser, &saved_pedantic))
6660 /* Parse the qualified declaration. */
6661 cp_parser_declaration (parser);
6662 /* Restore the PEDANTIC flag. */
6663 pedantic = saved_pedantic;
6665 return;
6668 /* Try to figure out what kind of declaration is present. */
6669 token1 = *cp_lexer_peek_token (parser->lexer);
6671 if (token1.type != CPP_EOF)
6672 token2 = *cp_lexer_peek_nth_token (parser->lexer, 2);
6674 /* Get the high-water mark for the DECLARATOR_OBSTACK. */
6675 p = obstack_alloc (&declarator_obstack, 0);
6677 /* If the next token is `extern' and the following token is a string
6678 literal, then we have a linkage specification. */
6679 if (token1.keyword == RID_EXTERN
6680 && cp_parser_is_string_literal (&token2))
6681 cp_parser_linkage_specification (parser);
6682 /* If the next token is `template', then we have either a template
6683 declaration, an explicit instantiation, or an explicit
6684 specialization. */
6685 else if (token1.keyword == RID_TEMPLATE)
6687 /* `template <>' indicates a template specialization. */
6688 if (token2.type == CPP_LESS
6689 && cp_lexer_peek_nth_token (parser->lexer, 3)->type == CPP_GREATER)
6690 cp_parser_explicit_specialization (parser);
6691 /* `template <' indicates a template declaration. */
6692 else if (token2.type == CPP_LESS)
6693 cp_parser_template_declaration (parser, /*member_p=*/false);
6694 /* Anything else must be an explicit instantiation. */
6695 else
6696 cp_parser_explicit_instantiation (parser);
6698 /* If the next token is `export', then we have a template
6699 declaration. */
6700 else if (token1.keyword == RID_EXPORT)
6701 cp_parser_template_declaration (parser, /*member_p=*/false);
6702 /* If the next token is `extern', 'static' or 'inline' and the one
6703 after that is `template', we have a GNU extended explicit
6704 instantiation directive. */
6705 else if (cp_parser_allow_gnu_extensions_p (parser)
6706 && (token1.keyword == RID_EXTERN
6707 || token1.keyword == RID_STATIC
6708 || token1.keyword == RID_INLINE)
6709 && token2.keyword == RID_TEMPLATE)
6710 cp_parser_explicit_instantiation (parser);
6711 /* If the next token is `namespace', check for a named or unnamed
6712 namespace definition. */
6713 else if (token1.keyword == RID_NAMESPACE
6714 && (/* A named namespace definition. */
6715 (token2.type == CPP_NAME
6716 && (cp_lexer_peek_nth_token (parser->lexer, 3)->type
6717 == CPP_OPEN_BRACE))
6718 /* An unnamed namespace definition. */
6719 || token2.type == CPP_OPEN_BRACE))
6720 cp_parser_namespace_definition (parser);
6721 /* We must have either a block declaration or a function
6722 definition. */
6723 else
6724 /* Try to parse a block-declaration, or a function-definition. */
6725 cp_parser_block_declaration (parser, /*statement_p=*/false);
6727 /* Free any declarators allocated. */
6728 obstack_free (&declarator_obstack, p);
6731 /* Parse a block-declaration.
6733 block-declaration:
6734 simple-declaration
6735 asm-definition
6736 namespace-alias-definition
6737 using-declaration
6738 using-directive
6740 GNU Extension:
6742 block-declaration:
6743 __extension__ block-declaration
6744 label-declaration
6746 If STATEMENT_P is TRUE, then this block-declaration is occurring as
6747 part of a declaration-statement. */
6749 static void
6750 cp_parser_block_declaration (cp_parser *parser,
6751 bool statement_p)
6753 cp_token *token1;
6754 int saved_pedantic;
6756 /* Check for the `__extension__' keyword. */
6757 if (cp_parser_extension_opt (parser, &saved_pedantic))
6759 /* Parse the qualified declaration. */
6760 cp_parser_block_declaration (parser, statement_p);
6761 /* Restore the PEDANTIC flag. */
6762 pedantic = saved_pedantic;
6764 return;
6767 /* Peek at the next token to figure out which kind of declaration is
6768 present. */
6769 token1 = cp_lexer_peek_token (parser->lexer);
6771 /* If the next keyword is `asm', we have an asm-definition. */
6772 if (token1->keyword == RID_ASM)
6774 if (statement_p)
6775 cp_parser_commit_to_tentative_parse (parser);
6776 cp_parser_asm_definition (parser);
6778 /* If the next keyword is `namespace', we have a
6779 namespace-alias-definition. */
6780 else if (token1->keyword == RID_NAMESPACE)
6781 cp_parser_namespace_alias_definition (parser);
6782 /* If the next keyword is `using', we have either a
6783 using-declaration or a using-directive. */
6784 else if (token1->keyword == RID_USING)
6786 cp_token *token2;
6788 if (statement_p)
6789 cp_parser_commit_to_tentative_parse (parser);
6790 /* If the token after `using' is `namespace', then we have a
6791 using-directive. */
6792 token2 = cp_lexer_peek_nth_token (parser->lexer, 2);
6793 if (token2->keyword == RID_NAMESPACE)
6794 cp_parser_using_directive (parser);
6795 /* Otherwise, it's a using-declaration. */
6796 else
6797 cp_parser_using_declaration (parser);
6799 /* If the next keyword is `__label__' we have a label declaration. */
6800 else if (token1->keyword == RID_LABEL)
6802 if (statement_p)
6803 cp_parser_commit_to_tentative_parse (parser);
6804 cp_parser_label_declaration (parser);
6806 /* Anything else must be a simple-declaration. */
6807 else
6808 cp_parser_simple_declaration (parser, !statement_p);
6811 /* Parse a simple-declaration.
6813 simple-declaration:
6814 decl-specifier-seq [opt] init-declarator-list [opt] ;
6816 init-declarator-list:
6817 init-declarator
6818 init-declarator-list , init-declarator
6820 If FUNCTION_DEFINITION_ALLOWED_P is TRUE, then we also recognize a
6821 function-definition as a simple-declaration. */
6823 static void
6824 cp_parser_simple_declaration (cp_parser* parser,
6825 bool function_definition_allowed_p)
6827 cp_decl_specifier_seq decl_specifiers;
6828 int declares_class_or_enum;
6829 bool saw_declarator;
6831 /* Defer access checks until we know what is being declared; the
6832 checks for names appearing in the decl-specifier-seq should be
6833 done as if we were in the scope of the thing being declared. */
6834 push_deferring_access_checks (dk_deferred);
6836 /* Parse the decl-specifier-seq. We have to keep track of whether
6837 or not the decl-specifier-seq declares a named class or
6838 enumeration type, since that is the only case in which the
6839 init-declarator-list is allowed to be empty.
6841 [dcl.dcl]
6843 In a simple-declaration, the optional init-declarator-list can be
6844 omitted only when declaring a class or enumeration, that is when
6845 the decl-specifier-seq contains either a class-specifier, an
6846 elaborated-type-specifier, or an enum-specifier. */
6847 cp_parser_decl_specifier_seq (parser,
6848 CP_PARSER_FLAGS_OPTIONAL,
6849 &decl_specifiers,
6850 &declares_class_or_enum);
6851 /* We no longer need to defer access checks. */
6852 stop_deferring_access_checks ();
6854 /* In a block scope, a valid declaration must always have a
6855 decl-specifier-seq. By not trying to parse declarators, we can
6856 resolve the declaration/expression ambiguity more quickly. */
6857 if (!function_definition_allowed_p
6858 && !decl_specifiers.any_specifiers_p)
6860 cp_parser_error (parser, "expected declaration");
6861 goto done;
6864 /* If the next two tokens are both identifiers, the code is
6865 erroneous. The usual cause of this situation is code like:
6867 T t;
6869 where "T" should name a type -- but does not. */
6870 if (!decl_specifiers.type
6871 && cp_parser_parse_and_diagnose_invalid_type_name (parser))
6873 /* If parsing tentatively, we should commit; we really are
6874 looking at a declaration. */
6875 cp_parser_commit_to_tentative_parse (parser);
6876 /* Give up. */
6877 goto done;
6880 /* If we have seen at least one decl-specifier, and the next token
6881 is not a parenthesis, then we must be looking at a declaration.
6882 (After "int (" we might be looking at a functional cast.) */
6883 if (decl_specifiers.any_specifiers_p
6884 && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
6885 cp_parser_commit_to_tentative_parse (parser);
6887 /* Keep going until we hit the `;' at the end of the simple
6888 declaration. */
6889 saw_declarator = false;
6890 while (cp_lexer_next_token_is_not (parser->lexer,
6891 CPP_SEMICOLON))
6893 cp_token *token;
6894 bool function_definition_p;
6895 tree decl;
6897 saw_declarator = true;
6898 /* Parse the init-declarator. */
6899 decl = cp_parser_init_declarator (parser, &decl_specifiers,
6900 function_definition_allowed_p,
6901 /*member_p=*/false,
6902 declares_class_or_enum,
6903 &function_definition_p);
6904 /* If an error occurred while parsing tentatively, exit quickly.
6905 (That usually happens when in the body of a function; each
6906 statement is treated as a declaration-statement until proven
6907 otherwise.) */
6908 if (cp_parser_error_occurred (parser))
6909 goto done;
6910 /* Handle function definitions specially. */
6911 if (function_definition_p)
6913 /* If the next token is a `,', then we are probably
6914 processing something like:
6916 void f() {}, *p;
6918 which is erroneous. */
6919 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
6920 error ("mixing declarations and function-definitions is forbidden");
6921 /* Otherwise, we're done with the list of declarators. */
6922 else
6924 pop_deferring_access_checks ();
6925 return;
6928 /* The next token should be either a `,' or a `;'. */
6929 token = cp_lexer_peek_token (parser->lexer);
6930 /* If it's a `,', there are more declarators to come. */
6931 if (token->type == CPP_COMMA)
6932 cp_lexer_consume_token (parser->lexer);
6933 /* If it's a `;', we are done. */
6934 else if (token->type == CPP_SEMICOLON)
6935 break;
6936 /* Anything else is an error. */
6937 else
6939 /* If we have already issued an error message we don't need
6940 to issue another one. */
6941 if (decl != error_mark_node
6942 || (cp_parser_parsing_tentatively (parser)
6943 && !cp_parser_committed_to_tentative_parse (parser)))
6944 cp_parser_error (parser, "expected %<,%> or %<;%>");
6945 /* Skip tokens until we reach the end of the statement. */
6946 cp_parser_skip_to_end_of_statement (parser);
6947 /* If the next token is now a `;', consume it. */
6948 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
6949 cp_lexer_consume_token (parser->lexer);
6950 goto done;
6952 /* After the first time around, a function-definition is not
6953 allowed -- even if it was OK at first. For example:
6955 int i, f() {}
6957 is not valid. */
6958 function_definition_allowed_p = false;
6961 /* Issue an error message if no declarators are present, and the
6962 decl-specifier-seq does not itself declare a class or
6963 enumeration. */
6964 if (!saw_declarator)
6966 if (cp_parser_declares_only_class_p (parser))
6967 shadow_tag (&decl_specifiers);
6968 /* Perform any deferred access checks. */
6969 perform_deferred_access_checks ();
6972 /* Consume the `;'. */
6973 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
6975 done:
6976 pop_deferring_access_checks ();
6979 /* Parse a decl-specifier-seq.
6981 decl-specifier-seq:
6982 decl-specifier-seq [opt] decl-specifier
6984 decl-specifier:
6985 storage-class-specifier
6986 type-specifier
6987 function-specifier
6988 friend
6989 typedef
6991 GNU Extension:
6993 decl-specifier:
6994 attributes
6996 Set *DECL_SPECS to a representation of the decl-specifier-seq.
6998 The parser flags FLAGS is used to control type-specifier parsing.
7000 *DECLARES_CLASS_OR_ENUM is set to the bitwise or of the following
7001 flags:
7003 1: one of the decl-specifiers is an elaborated-type-specifier
7004 (i.e., a type declaration)
7005 2: one of the decl-specifiers is an enum-specifier or a
7006 class-specifier (i.e., a type definition)
7010 static void
7011 cp_parser_decl_specifier_seq (cp_parser* parser,
7012 cp_parser_flags flags,
7013 cp_decl_specifier_seq *decl_specs,
7014 int* declares_class_or_enum)
7016 bool constructor_possible_p = !parser->in_declarator_p;
7018 /* Clear DECL_SPECS. */
7019 clear_decl_specs (decl_specs);
7021 /* Assume no class or enumeration type is declared. */
7022 *declares_class_or_enum = 0;
7024 /* Keep reading specifiers until there are no more to read. */
7025 while (true)
7027 bool constructor_p;
7028 bool found_decl_spec;
7029 cp_token *token;
7031 /* Peek at the next token. */
7032 token = cp_lexer_peek_token (parser->lexer);
7033 /* Handle attributes. */
7034 if (token->keyword == RID_ATTRIBUTE)
7036 /* Parse the attributes. */
7037 decl_specs->attributes
7038 = chainon (decl_specs->attributes,
7039 cp_parser_attributes_opt (parser));
7040 continue;
7042 /* Assume we will find a decl-specifier keyword. */
7043 found_decl_spec = true;
7044 /* If the next token is an appropriate keyword, we can simply
7045 add it to the list. */
7046 switch (token->keyword)
7048 /* decl-specifier:
7049 friend */
7050 case RID_FRIEND:
7051 if (decl_specs->specs[(int) ds_friend]++)
7052 error ("duplicate %<friend%>");
7053 /* Consume the token. */
7054 cp_lexer_consume_token (parser->lexer);
7055 break;
7057 /* function-specifier:
7058 inline
7059 virtual
7060 explicit */
7061 case RID_INLINE:
7062 case RID_VIRTUAL:
7063 case RID_EXPLICIT:
7064 cp_parser_function_specifier_opt (parser, decl_specs);
7065 break;
7067 /* decl-specifier:
7068 typedef */
7069 case RID_TYPEDEF:
7070 ++decl_specs->specs[(int) ds_typedef];
7071 /* Consume the token. */
7072 cp_lexer_consume_token (parser->lexer);
7073 /* A constructor declarator cannot appear in a typedef. */
7074 constructor_possible_p = false;
7075 /* The "typedef" keyword can only occur in a declaration; we
7076 may as well commit at this point. */
7077 cp_parser_commit_to_tentative_parse (parser);
7078 break;
7080 /* storage-class-specifier:
7081 auto
7082 register
7083 static
7084 extern
7085 mutable
7087 GNU Extension:
7088 thread */
7089 case RID_AUTO:
7090 /* Consume the token. */
7091 cp_lexer_consume_token (parser->lexer);
7092 cp_parser_set_storage_class (decl_specs, sc_auto);
7093 break;
7094 case RID_REGISTER:
7095 /* Consume the token. */
7096 cp_lexer_consume_token (parser->lexer);
7097 cp_parser_set_storage_class (decl_specs, sc_register);
7098 break;
7099 case RID_STATIC:
7100 /* Consume the token. */
7101 cp_lexer_consume_token (parser->lexer);
7102 if (decl_specs->specs[(int) ds_thread])
7104 error ("%<__thread%> before %<static%>");
7105 decl_specs->specs[(int) ds_thread] = 0;
7107 cp_parser_set_storage_class (decl_specs, sc_static);
7108 break;
7109 case RID_EXTERN:
7110 /* Consume the token. */
7111 cp_lexer_consume_token (parser->lexer);
7112 if (decl_specs->specs[(int) ds_thread])
7114 error ("%<__thread%> before %<extern%>");
7115 decl_specs->specs[(int) ds_thread] = 0;
7117 cp_parser_set_storage_class (decl_specs, sc_extern);
7118 break;
7119 case RID_MUTABLE:
7120 /* Consume the token. */
7121 cp_lexer_consume_token (parser->lexer);
7122 cp_parser_set_storage_class (decl_specs, sc_mutable);
7123 break;
7124 case RID_THREAD:
7125 /* Consume the token. */
7126 cp_lexer_consume_token (parser->lexer);
7127 ++decl_specs->specs[(int) ds_thread];
7128 break;
7130 default:
7131 /* We did not yet find a decl-specifier yet. */
7132 found_decl_spec = false;
7133 break;
7136 /* Constructors are a special case. The `S' in `S()' is not a
7137 decl-specifier; it is the beginning of the declarator. */
7138 constructor_p
7139 = (!found_decl_spec
7140 && constructor_possible_p
7141 && (cp_parser_constructor_declarator_p
7142 (parser, decl_specs->specs[(int) ds_friend] != 0)));
7144 /* If we don't have a DECL_SPEC yet, then we must be looking at
7145 a type-specifier. */
7146 if (!found_decl_spec && !constructor_p)
7148 int decl_spec_declares_class_or_enum;
7149 bool is_cv_qualifier;
7150 tree type_spec;
7152 type_spec
7153 = cp_parser_type_specifier (parser, flags,
7154 decl_specs,
7155 /*is_declaration=*/true,
7156 &decl_spec_declares_class_or_enum,
7157 &is_cv_qualifier);
7159 *declares_class_or_enum |= decl_spec_declares_class_or_enum;
7161 /* If this type-specifier referenced a user-defined type
7162 (a typedef, class-name, etc.), then we can't allow any
7163 more such type-specifiers henceforth.
7165 [dcl.spec]
7167 The longest sequence of decl-specifiers that could
7168 possibly be a type name is taken as the
7169 decl-specifier-seq of a declaration. The sequence shall
7170 be self-consistent as described below.
7172 [dcl.type]
7174 As a general rule, at most one type-specifier is allowed
7175 in the complete decl-specifier-seq of a declaration. The
7176 only exceptions are the following:
7178 -- const or volatile can be combined with any other
7179 type-specifier.
7181 -- signed or unsigned can be combined with char, long,
7182 short, or int.
7184 -- ..
7186 Example:
7188 typedef char* Pc;
7189 void g (const int Pc);
7191 Here, Pc is *not* part of the decl-specifier seq; it's
7192 the declarator. Therefore, once we see a type-specifier
7193 (other than a cv-qualifier), we forbid any additional
7194 user-defined types. We *do* still allow things like `int
7195 int' to be considered a decl-specifier-seq, and issue the
7196 error message later. */
7197 if (type_spec && !is_cv_qualifier)
7198 flags |= CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES;
7199 /* A constructor declarator cannot follow a type-specifier. */
7200 if (type_spec)
7202 constructor_possible_p = false;
7203 found_decl_spec = true;
7207 /* If we still do not have a DECL_SPEC, then there are no more
7208 decl-specifiers. */
7209 if (!found_decl_spec)
7210 break;
7212 decl_specs->any_specifiers_p = true;
7213 /* After we see one decl-specifier, further decl-specifiers are
7214 always optional. */
7215 flags |= CP_PARSER_FLAGS_OPTIONAL;
7218 /* Don't allow a friend specifier with a class definition. */
7219 if (decl_specs->specs[(int) ds_friend] != 0
7220 && (*declares_class_or_enum & 2))
7221 error ("class definition may not be declared a friend");
7224 /* Parse an (optional) storage-class-specifier.
7226 storage-class-specifier:
7227 auto
7228 register
7229 static
7230 extern
7231 mutable
7233 GNU Extension:
7235 storage-class-specifier:
7236 thread
7238 Returns an IDENTIFIER_NODE corresponding to the keyword used. */
7240 static tree
7241 cp_parser_storage_class_specifier_opt (cp_parser* parser)
7243 switch (cp_lexer_peek_token (parser->lexer)->keyword)
7245 case RID_AUTO:
7246 case RID_REGISTER:
7247 case RID_STATIC:
7248 case RID_EXTERN:
7249 case RID_MUTABLE:
7250 case RID_THREAD:
7251 /* Consume the token. */
7252 return cp_lexer_consume_token (parser->lexer)->value;
7254 default:
7255 return NULL_TREE;
7259 /* Parse an (optional) function-specifier.
7261 function-specifier:
7262 inline
7263 virtual
7264 explicit
7266 Returns an IDENTIFIER_NODE corresponding to the keyword used.
7267 Updates DECL_SPECS, if it is non-NULL. */
7269 static tree
7270 cp_parser_function_specifier_opt (cp_parser* parser,
7271 cp_decl_specifier_seq *decl_specs)
7273 switch (cp_lexer_peek_token (parser->lexer)->keyword)
7275 case RID_INLINE:
7276 if (decl_specs)
7277 ++decl_specs->specs[(int) ds_inline];
7278 break;
7280 case RID_VIRTUAL:
7281 if (decl_specs)
7282 ++decl_specs->specs[(int) ds_virtual];
7283 break;
7285 case RID_EXPLICIT:
7286 if (decl_specs)
7287 ++decl_specs->specs[(int) ds_explicit];
7288 break;
7290 default:
7291 return NULL_TREE;
7294 /* Consume the token. */
7295 return cp_lexer_consume_token (parser->lexer)->value;
7298 /* Parse a linkage-specification.
7300 linkage-specification:
7301 extern string-literal { declaration-seq [opt] }
7302 extern string-literal declaration */
7304 static void
7305 cp_parser_linkage_specification (cp_parser* parser)
7307 tree linkage;
7309 /* Look for the `extern' keyword. */
7310 cp_parser_require_keyword (parser, RID_EXTERN, "`extern'");
7312 /* Look for the string-literal. */
7313 linkage = cp_parser_string_literal (parser, false, false);
7315 /* Transform the literal into an identifier. If the literal is a
7316 wide-character string, or contains embedded NULs, then we can't
7317 handle it as the user wants. */
7318 if (strlen (TREE_STRING_POINTER (linkage))
7319 != (size_t) (TREE_STRING_LENGTH (linkage) - 1))
7321 cp_parser_error (parser, "invalid linkage-specification");
7322 /* Assume C++ linkage. */
7323 linkage = lang_name_cplusplus;
7325 else
7326 linkage = get_identifier (TREE_STRING_POINTER (linkage));
7328 /* We're now using the new linkage. */
7329 push_lang_context (linkage);
7331 /* If the next token is a `{', then we're using the first
7332 production. */
7333 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
7335 /* Consume the `{' token. */
7336 cp_lexer_consume_token (parser->lexer);
7337 /* Parse the declarations. */
7338 cp_parser_declaration_seq_opt (parser);
7339 /* Look for the closing `}'. */
7340 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
7342 /* Otherwise, there's just one declaration. */
7343 else
7345 bool saved_in_unbraced_linkage_specification_p;
7347 saved_in_unbraced_linkage_specification_p
7348 = parser->in_unbraced_linkage_specification_p;
7349 parser->in_unbraced_linkage_specification_p = true;
7350 have_extern_spec = true;
7351 cp_parser_declaration (parser);
7352 have_extern_spec = false;
7353 parser->in_unbraced_linkage_specification_p
7354 = saved_in_unbraced_linkage_specification_p;
7357 /* We're done with the linkage-specification. */
7358 pop_lang_context ();
7361 /* Special member functions [gram.special] */
7363 /* Parse a conversion-function-id.
7365 conversion-function-id:
7366 operator conversion-type-id
7368 Returns an IDENTIFIER_NODE representing the operator. */
7370 static tree
7371 cp_parser_conversion_function_id (cp_parser* parser)
7373 tree type;
7374 tree saved_scope;
7375 tree saved_qualifying_scope;
7376 tree saved_object_scope;
7377 bool pop_p = false;
7379 /* Look for the `operator' token. */
7380 if (!cp_parser_require_keyword (parser, RID_OPERATOR, "`operator'"))
7381 return error_mark_node;
7382 /* When we parse the conversion-type-id, the current scope will be
7383 reset. However, we need that information in able to look up the
7384 conversion function later, so we save it here. */
7385 saved_scope = parser->scope;
7386 saved_qualifying_scope = parser->qualifying_scope;
7387 saved_object_scope = parser->object_scope;
7388 /* We must enter the scope of the class so that the names of
7389 entities declared within the class are available in the
7390 conversion-type-id. For example, consider:
7392 struct S {
7393 typedef int I;
7394 operator I();
7397 S::operator I() { ... }
7399 In order to see that `I' is a type-name in the definition, we
7400 must be in the scope of `S'. */
7401 if (saved_scope)
7402 pop_p = push_scope (saved_scope);
7403 /* Parse the conversion-type-id. */
7404 type = cp_parser_conversion_type_id (parser);
7405 /* Leave the scope of the class, if any. */
7406 if (pop_p)
7407 pop_scope (saved_scope);
7408 /* Restore the saved scope. */
7409 parser->scope = saved_scope;
7410 parser->qualifying_scope = saved_qualifying_scope;
7411 parser->object_scope = saved_object_scope;
7412 /* If the TYPE is invalid, indicate failure. */
7413 if (type == error_mark_node)
7414 return error_mark_node;
7415 return mangle_conv_op_name_for_type (type);
7418 /* Parse a conversion-type-id:
7420 conversion-type-id:
7421 type-specifier-seq conversion-declarator [opt]
7423 Returns the TYPE specified. */
7425 static tree
7426 cp_parser_conversion_type_id (cp_parser* parser)
7428 tree attributes;
7429 cp_decl_specifier_seq type_specifiers;
7430 cp_declarator *declarator;
7431 tree type_specified;
7433 /* Parse the attributes. */
7434 attributes = cp_parser_attributes_opt (parser);
7435 /* Parse the type-specifiers. */
7436 cp_parser_type_specifier_seq (parser, &type_specifiers);
7437 /* If that didn't work, stop. */
7438 if (type_specifiers.type == error_mark_node)
7439 return error_mark_node;
7440 /* Parse the conversion-declarator. */
7441 declarator = cp_parser_conversion_declarator_opt (parser);
7443 type_specified = grokdeclarator (declarator, &type_specifiers, TYPENAME,
7444 /*initialized=*/0, &attributes);
7445 if (attributes)
7446 cplus_decl_attributes (&type_specified, attributes, /*flags=*/0);
7447 return type_specified;
7450 /* Parse an (optional) conversion-declarator.
7452 conversion-declarator:
7453 ptr-operator conversion-declarator [opt]
7457 static cp_declarator *
7458 cp_parser_conversion_declarator_opt (cp_parser* parser)
7460 enum tree_code code;
7461 tree class_type;
7462 cp_cv_quals cv_quals;
7464 /* We don't know if there's a ptr-operator next, or not. */
7465 cp_parser_parse_tentatively (parser);
7466 /* Try the ptr-operator. */
7467 code = cp_parser_ptr_operator (parser, &class_type, &cv_quals);
7468 /* If it worked, look for more conversion-declarators. */
7469 if (cp_parser_parse_definitely (parser))
7471 cp_declarator *declarator;
7473 /* Parse another optional declarator. */
7474 declarator = cp_parser_conversion_declarator_opt (parser);
7476 /* Create the representation of the declarator. */
7477 if (class_type)
7478 declarator = make_ptrmem_declarator (cv_quals, class_type,
7479 declarator);
7480 else if (code == INDIRECT_REF)
7481 declarator = make_pointer_declarator (cv_quals, declarator);
7482 else
7483 declarator = make_reference_declarator (cv_quals, declarator);
7485 return declarator;
7488 return NULL;
7491 /* Parse an (optional) ctor-initializer.
7493 ctor-initializer:
7494 : mem-initializer-list
7496 Returns TRUE iff the ctor-initializer was actually present. */
7498 static bool
7499 cp_parser_ctor_initializer_opt (cp_parser* parser)
7501 /* If the next token is not a `:', then there is no
7502 ctor-initializer. */
7503 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COLON))
7505 /* Do default initialization of any bases and members. */
7506 if (DECL_CONSTRUCTOR_P (current_function_decl))
7507 finish_mem_initializers (NULL_TREE);
7509 return false;
7512 /* Consume the `:' token. */
7513 cp_lexer_consume_token (parser->lexer);
7514 /* And the mem-initializer-list. */
7515 cp_parser_mem_initializer_list (parser);
7517 return true;
7520 /* Parse a mem-initializer-list.
7522 mem-initializer-list:
7523 mem-initializer
7524 mem-initializer , mem-initializer-list */
7526 static void
7527 cp_parser_mem_initializer_list (cp_parser* parser)
7529 tree mem_initializer_list = NULL_TREE;
7531 /* Let the semantic analysis code know that we are starting the
7532 mem-initializer-list. */
7533 if (!DECL_CONSTRUCTOR_P (current_function_decl))
7534 error ("only constructors take base initializers");
7536 /* Loop through the list. */
7537 while (true)
7539 tree mem_initializer;
7541 /* Parse the mem-initializer. */
7542 mem_initializer = cp_parser_mem_initializer (parser);
7543 /* Add it to the list, unless it was erroneous. */
7544 if (mem_initializer)
7546 TREE_CHAIN (mem_initializer) = mem_initializer_list;
7547 mem_initializer_list = mem_initializer;
7549 /* If the next token is not a `,', we're done. */
7550 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
7551 break;
7552 /* Consume the `,' token. */
7553 cp_lexer_consume_token (parser->lexer);
7556 /* Perform semantic analysis. */
7557 if (DECL_CONSTRUCTOR_P (current_function_decl))
7558 finish_mem_initializers (mem_initializer_list);
7561 /* Parse a mem-initializer.
7563 mem-initializer:
7564 mem-initializer-id ( expression-list [opt] )
7566 GNU extension:
7568 mem-initializer:
7569 ( expression-list [opt] )
7571 Returns a TREE_LIST. The TREE_PURPOSE is the TYPE (for a base
7572 class) or FIELD_DECL (for a non-static data member) to initialize;
7573 the TREE_VALUE is the expression-list. */
7575 static tree
7576 cp_parser_mem_initializer (cp_parser* parser)
7578 tree mem_initializer_id;
7579 tree expression_list;
7580 tree member;
7582 /* Find out what is being initialized. */
7583 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
7585 pedwarn ("anachronistic old-style base class initializer");
7586 mem_initializer_id = NULL_TREE;
7588 else
7589 mem_initializer_id = cp_parser_mem_initializer_id (parser);
7590 member = expand_member_init (mem_initializer_id);
7591 if (member && !DECL_P (member))
7592 in_base_initializer = 1;
7594 expression_list
7595 = cp_parser_parenthesized_expression_list (parser, false,
7596 /*non_constant_p=*/NULL);
7597 if (!expression_list)
7598 expression_list = void_type_node;
7600 in_base_initializer = 0;
7602 return member ? build_tree_list (member, expression_list) : NULL_TREE;
7605 /* Parse a mem-initializer-id.
7607 mem-initializer-id:
7608 :: [opt] nested-name-specifier [opt] class-name
7609 identifier
7611 Returns a TYPE indicating the class to be initializer for the first
7612 production. Returns an IDENTIFIER_NODE indicating the data member
7613 to be initialized for the second production. */
7615 static tree
7616 cp_parser_mem_initializer_id (cp_parser* parser)
7618 bool global_scope_p;
7619 bool nested_name_specifier_p;
7620 bool template_p = false;
7621 tree id;
7623 /* `typename' is not allowed in this context ([temp.res]). */
7624 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TYPENAME))
7626 error ("keyword %<typename%> not allowed in this context (a qualified "
7627 "member initializer is implicitly a type)");
7628 cp_lexer_consume_token (parser->lexer);
7630 /* Look for the optional `::' operator. */
7631 global_scope_p
7632 = (cp_parser_global_scope_opt (parser,
7633 /*current_scope_valid_p=*/false)
7634 != NULL_TREE);
7635 /* Look for the optional nested-name-specifier. The simplest way to
7636 implement:
7638 [temp.res]
7640 The keyword `typename' is not permitted in a base-specifier or
7641 mem-initializer; in these contexts a qualified name that
7642 depends on a template-parameter is implicitly assumed to be a
7643 type name.
7645 is to assume that we have seen the `typename' keyword at this
7646 point. */
7647 nested_name_specifier_p
7648 = (cp_parser_nested_name_specifier_opt (parser,
7649 /*typename_keyword_p=*/true,
7650 /*check_dependency_p=*/true,
7651 /*type_p=*/true,
7652 /*is_declaration=*/true)
7653 != NULL_TREE);
7654 if (nested_name_specifier_p)
7655 template_p = cp_parser_optional_template_keyword (parser);
7656 /* If there is a `::' operator or a nested-name-specifier, then we
7657 are definitely looking for a class-name. */
7658 if (global_scope_p || nested_name_specifier_p)
7659 return cp_parser_class_name (parser,
7660 /*typename_keyword_p=*/true,
7661 /*template_keyword_p=*/template_p,
7662 /*type_p=*/false,
7663 /*check_dependency_p=*/true,
7664 /*class_head_p=*/false,
7665 /*is_declaration=*/true);
7666 /* Otherwise, we could also be looking for an ordinary identifier. */
7667 cp_parser_parse_tentatively (parser);
7668 /* Try a class-name. */
7669 id = cp_parser_class_name (parser,
7670 /*typename_keyword_p=*/true,
7671 /*template_keyword_p=*/false,
7672 /*type_p=*/false,
7673 /*check_dependency_p=*/true,
7674 /*class_head_p=*/false,
7675 /*is_declaration=*/true);
7676 /* If we found one, we're done. */
7677 if (cp_parser_parse_definitely (parser))
7678 return id;
7679 /* Otherwise, look for an ordinary identifier. */
7680 return cp_parser_identifier (parser);
7683 /* Overloading [gram.over] */
7685 /* Parse an operator-function-id.
7687 operator-function-id:
7688 operator operator
7690 Returns an IDENTIFIER_NODE for the operator which is a
7691 human-readable spelling of the identifier, e.g., `operator +'. */
7693 static tree
7694 cp_parser_operator_function_id (cp_parser* parser)
7696 /* Look for the `operator' keyword. */
7697 if (!cp_parser_require_keyword (parser, RID_OPERATOR, "`operator'"))
7698 return error_mark_node;
7699 /* And then the name of the operator itself. */
7700 return cp_parser_operator (parser);
7703 /* Parse an operator.
7705 operator:
7706 new delete new[] delete[] + - * / % ^ & | ~ ! = < >
7707 += -= *= /= %= ^= &= |= << >> >>= <<= == != <= >= &&
7708 || ++ -- , ->* -> () []
7710 GNU Extensions:
7712 operator:
7713 <? >? <?= >?=
7715 Returns an IDENTIFIER_NODE for the operator which is a
7716 human-readable spelling of the identifier, e.g., `operator +'. */
7718 static tree
7719 cp_parser_operator (cp_parser* parser)
7721 tree id = NULL_TREE;
7722 cp_token *token;
7724 /* Peek at the next token. */
7725 token = cp_lexer_peek_token (parser->lexer);
7726 /* Figure out which operator we have. */
7727 switch (token->type)
7729 case CPP_KEYWORD:
7731 enum tree_code op;
7733 /* The keyword should be either `new' or `delete'. */
7734 if (token->keyword == RID_NEW)
7735 op = NEW_EXPR;
7736 else if (token->keyword == RID_DELETE)
7737 op = DELETE_EXPR;
7738 else
7739 break;
7741 /* Consume the `new' or `delete' token. */
7742 cp_lexer_consume_token (parser->lexer);
7744 /* Peek at the next token. */
7745 token = cp_lexer_peek_token (parser->lexer);
7746 /* If it's a `[' token then this is the array variant of the
7747 operator. */
7748 if (token->type == CPP_OPEN_SQUARE)
7750 /* Consume the `[' token. */
7751 cp_lexer_consume_token (parser->lexer);
7752 /* Look for the `]' token. */
7753 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
7754 id = ansi_opname (op == NEW_EXPR
7755 ? VEC_NEW_EXPR : VEC_DELETE_EXPR);
7757 /* Otherwise, we have the non-array variant. */
7758 else
7759 id = ansi_opname (op);
7761 return id;
7764 case CPP_PLUS:
7765 id = ansi_opname (PLUS_EXPR);
7766 break;
7768 case CPP_MINUS:
7769 id = ansi_opname (MINUS_EXPR);
7770 break;
7772 case CPP_MULT:
7773 id = ansi_opname (MULT_EXPR);
7774 break;
7776 case CPP_DIV:
7777 id = ansi_opname (TRUNC_DIV_EXPR);
7778 break;
7780 case CPP_MOD:
7781 id = ansi_opname (TRUNC_MOD_EXPR);
7782 break;
7784 case CPP_XOR:
7785 id = ansi_opname (BIT_XOR_EXPR);
7786 break;
7788 case CPP_AND:
7789 id = ansi_opname (BIT_AND_EXPR);
7790 break;
7792 case CPP_OR:
7793 id = ansi_opname (BIT_IOR_EXPR);
7794 break;
7796 case CPP_COMPL:
7797 id = ansi_opname (BIT_NOT_EXPR);
7798 break;
7800 case CPP_NOT:
7801 id = ansi_opname (TRUTH_NOT_EXPR);
7802 break;
7804 case CPP_EQ:
7805 id = ansi_assopname (NOP_EXPR);
7806 break;
7808 case CPP_LESS:
7809 id = ansi_opname (LT_EXPR);
7810 break;
7812 case CPP_GREATER:
7813 id = ansi_opname (GT_EXPR);
7814 break;
7816 case CPP_PLUS_EQ:
7817 id = ansi_assopname (PLUS_EXPR);
7818 break;
7820 case CPP_MINUS_EQ:
7821 id = ansi_assopname (MINUS_EXPR);
7822 break;
7824 case CPP_MULT_EQ:
7825 id = ansi_assopname (MULT_EXPR);
7826 break;
7828 case CPP_DIV_EQ:
7829 id = ansi_assopname (TRUNC_DIV_EXPR);
7830 break;
7832 case CPP_MOD_EQ:
7833 id = ansi_assopname (TRUNC_MOD_EXPR);
7834 break;
7836 case CPP_XOR_EQ:
7837 id = ansi_assopname (BIT_XOR_EXPR);
7838 break;
7840 case CPP_AND_EQ:
7841 id = ansi_assopname (BIT_AND_EXPR);
7842 break;
7844 case CPP_OR_EQ:
7845 id = ansi_assopname (BIT_IOR_EXPR);
7846 break;
7848 case CPP_LSHIFT:
7849 id = ansi_opname (LSHIFT_EXPR);
7850 break;
7852 case CPP_RSHIFT:
7853 id = ansi_opname (RSHIFT_EXPR);
7854 break;
7856 case CPP_LSHIFT_EQ:
7857 id = ansi_assopname (LSHIFT_EXPR);
7858 break;
7860 case CPP_RSHIFT_EQ:
7861 id = ansi_assopname (RSHIFT_EXPR);
7862 break;
7864 case CPP_EQ_EQ:
7865 id = ansi_opname (EQ_EXPR);
7866 break;
7868 case CPP_NOT_EQ:
7869 id = ansi_opname (NE_EXPR);
7870 break;
7872 case CPP_LESS_EQ:
7873 id = ansi_opname (LE_EXPR);
7874 break;
7876 case CPP_GREATER_EQ:
7877 id = ansi_opname (GE_EXPR);
7878 break;
7880 case CPP_AND_AND:
7881 id = ansi_opname (TRUTH_ANDIF_EXPR);
7882 break;
7884 case CPP_OR_OR:
7885 id = ansi_opname (TRUTH_ORIF_EXPR);
7886 break;
7888 case CPP_PLUS_PLUS:
7889 id = ansi_opname (POSTINCREMENT_EXPR);
7890 break;
7892 case CPP_MINUS_MINUS:
7893 id = ansi_opname (PREDECREMENT_EXPR);
7894 break;
7896 case CPP_COMMA:
7897 id = ansi_opname (COMPOUND_EXPR);
7898 break;
7900 case CPP_DEREF_STAR:
7901 id = ansi_opname (MEMBER_REF);
7902 break;
7904 case CPP_DEREF:
7905 id = ansi_opname (COMPONENT_REF);
7906 break;
7908 case CPP_OPEN_PAREN:
7909 /* Consume the `('. */
7910 cp_lexer_consume_token (parser->lexer);
7911 /* Look for the matching `)'. */
7912 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
7913 return ansi_opname (CALL_EXPR);
7915 case CPP_OPEN_SQUARE:
7916 /* Consume the `['. */
7917 cp_lexer_consume_token (parser->lexer);
7918 /* Look for the matching `]'. */
7919 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
7920 return ansi_opname (ARRAY_REF);
7922 /* Extensions. */
7923 case CPP_MIN:
7924 id = ansi_opname (MIN_EXPR);
7925 break;
7927 case CPP_MAX:
7928 id = ansi_opname (MAX_EXPR);
7929 break;
7931 case CPP_MIN_EQ:
7932 id = ansi_assopname (MIN_EXPR);
7933 break;
7935 case CPP_MAX_EQ:
7936 id = ansi_assopname (MAX_EXPR);
7937 break;
7939 default:
7940 /* Anything else is an error. */
7941 break;
7944 /* If we have selected an identifier, we need to consume the
7945 operator token. */
7946 if (id)
7947 cp_lexer_consume_token (parser->lexer);
7948 /* Otherwise, no valid operator name was present. */
7949 else
7951 cp_parser_error (parser, "expected operator");
7952 id = error_mark_node;
7955 return id;
7958 /* Parse a template-declaration.
7960 template-declaration:
7961 export [opt] template < template-parameter-list > declaration
7963 If MEMBER_P is TRUE, this template-declaration occurs within a
7964 class-specifier.
7966 The grammar rule given by the standard isn't correct. What
7967 is really meant is:
7969 template-declaration:
7970 export [opt] template-parameter-list-seq
7971 decl-specifier-seq [opt] init-declarator [opt] ;
7972 export [opt] template-parameter-list-seq
7973 function-definition
7975 template-parameter-list-seq:
7976 template-parameter-list-seq [opt]
7977 template < template-parameter-list > */
7979 static void
7980 cp_parser_template_declaration (cp_parser* parser, bool member_p)
7982 /* Check for `export'. */
7983 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_EXPORT))
7985 /* Consume the `export' token. */
7986 cp_lexer_consume_token (parser->lexer);
7987 /* Warn that we do not support `export'. */
7988 warning ("keyword %<export%> not implemented, and will be ignored");
7991 cp_parser_template_declaration_after_export (parser, member_p);
7994 /* Parse a template-parameter-list.
7996 template-parameter-list:
7997 template-parameter
7998 template-parameter-list , template-parameter
8000 Returns a TREE_LIST. Each node represents a template parameter.
8001 The nodes are connected via their TREE_CHAINs. */
8003 static tree
8004 cp_parser_template_parameter_list (cp_parser* parser)
8006 tree parameter_list = NULL_TREE;
8008 while (true)
8010 tree parameter;
8011 cp_token *token;
8012 bool is_non_type;
8014 /* Parse the template-parameter. */
8015 parameter = cp_parser_template_parameter (parser, &is_non_type);
8016 /* Add it to the list. */
8017 parameter_list = process_template_parm (parameter_list,
8018 parameter,
8019 is_non_type);
8020 /* Peek at the next token. */
8021 token = cp_lexer_peek_token (parser->lexer);
8022 /* If it's not a `,', we're done. */
8023 if (token->type != CPP_COMMA)
8024 break;
8025 /* Otherwise, consume the `,' token. */
8026 cp_lexer_consume_token (parser->lexer);
8029 return parameter_list;
8032 /* Parse a template-parameter.
8034 template-parameter:
8035 type-parameter
8036 parameter-declaration
8038 Returns a TREE_LIST. The TREE_VALUE represents the parameter. The
8039 TREE_PURPOSE is the default value, if any. *IS_NON_TYPE is set to
8040 true iff this parameter is a non-type parameter. */
8042 static tree
8043 cp_parser_template_parameter (cp_parser* parser, bool *is_non_type)
8045 cp_token *token;
8046 cp_parameter_declarator *parameter_declarator;
8048 /* Assume it is a type parameter or a template parameter. */
8049 *is_non_type = false;
8050 /* Peek at the next token. */
8051 token = cp_lexer_peek_token (parser->lexer);
8052 /* If it is `class' or `template', we have a type-parameter. */
8053 if (token->keyword == RID_TEMPLATE)
8054 return cp_parser_type_parameter (parser);
8055 /* If it is `class' or `typename' we do not know yet whether it is a
8056 type parameter or a non-type parameter. Consider:
8058 template <typename T, typename T::X X> ...
8062 template <class C, class D*> ...
8064 Here, the first parameter is a type parameter, and the second is
8065 a non-type parameter. We can tell by looking at the token after
8066 the identifier -- if it is a `,', `=', or `>' then we have a type
8067 parameter. */
8068 if (token->keyword == RID_TYPENAME || token->keyword == RID_CLASS)
8070 /* Peek at the token after `class' or `typename'. */
8071 token = cp_lexer_peek_nth_token (parser->lexer, 2);
8072 /* If it's an identifier, skip it. */
8073 if (token->type == CPP_NAME)
8074 token = cp_lexer_peek_nth_token (parser->lexer, 3);
8075 /* Now, see if the token looks like the end of a template
8076 parameter. */
8077 if (token->type == CPP_COMMA
8078 || token->type == CPP_EQ
8079 || token->type == CPP_GREATER)
8080 return cp_parser_type_parameter (parser);
8083 /* Otherwise, it is a non-type parameter.
8085 [temp.param]
8087 When parsing a default template-argument for a non-type
8088 template-parameter, the first non-nested `>' is taken as the end
8089 of the template parameter-list rather than a greater-than
8090 operator. */
8091 *is_non_type = true;
8092 parameter_declarator
8093 = cp_parser_parameter_declaration (parser, /*template_parm_p=*/true,
8094 /*parenthesized_p=*/NULL);
8095 return (build_tree_list
8096 (parameter_declarator->default_argument,
8097 grokdeclarator (parameter_declarator->declarator,
8098 &parameter_declarator->decl_specifiers,
8099 PARM, /*initialized=*/0,
8100 /*attrlist=*/NULL)));
8103 /* Parse a type-parameter.
8105 type-parameter:
8106 class identifier [opt]
8107 class identifier [opt] = type-id
8108 typename identifier [opt]
8109 typename identifier [opt] = type-id
8110 template < template-parameter-list > class identifier [opt]
8111 template < template-parameter-list > class identifier [opt]
8112 = id-expression
8114 Returns a TREE_LIST. The TREE_VALUE is itself a TREE_LIST. The
8115 TREE_PURPOSE is the default-argument, if any. The TREE_VALUE is
8116 the declaration of the parameter. */
8118 static tree
8119 cp_parser_type_parameter (cp_parser* parser)
8121 cp_token *token;
8122 tree parameter;
8124 /* Look for a keyword to tell us what kind of parameter this is. */
8125 token = cp_parser_require (parser, CPP_KEYWORD,
8126 "`class', `typename', or `template'");
8127 if (!token)
8128 return error_mark_node;
8130 switch (token->keyword)
8132 case RID_CLASS:
8133 case RID_TYPENAME:
8135 tree identifier;
8136 tree default_argument;
8138 /* If the next token is an identifier, then it names the
8139 parameter. */
8140 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
8141 identifier = cp_parser_identifier (parser);
8142 else
8143 identifier = NULL_TREE;
8145 /* Create the parameter. */
8146 parameter = finish_template_type_parm (class_type_node, identifier);
8148 /* If the next token is an `=', we have a default argument. */
8149 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
8151 /* Consume the `=' token. */
8152 cp_lexer_consume_token (parser->lexer);
8153 /* Parse the default-argument. */
8154 default_argument = cp_parser_type_id (parser);
8156 else
8157 default_argument = NULL_TREE;
8159 /* Create the combined representation of the parameter and the
8160 default argument. */
8161 parameter = build_tree_list (default_argument, parameter);
8163 break;
8165 case RID_TEMPLATE:
8167 tree parameter_list;
8168 tree identifier;
8169 tree default_argument;
8171 /* Look for the `<'. */
8172 cp_parser_require (parser, CPP_LESS, "`<'");
8173 /* Parse the template-parameter-list. */
8174 begin_template_parm_list ();
8175 parameter_list
8176 = cp_parser_template_parameter_list (parser);
8177 parameter_list = end_template_parm_list (parameter_list);
8178 /* Look for the `>'. */
8179 cp_parser_require (parser, CPP_GREATER, "`>'");
8180 /* Look for the `class' keyword. */
8181 cp_parser_require_keyword (parser, RID_CLASS, "`class'");
8182 /* If the next token is an `=', then there is a
8183 default-argument. If the next token is a `>', we are at
8184 the end of the parameter-list. If the next token is a `,',
8185 then we are at the end of this parameter. */
8186 if (cp_lexer_next_token_is_not (parser->lexer, CPP_EQ)
8187 && cp_lexer_next_token_is_not (parser->lexer, CPP_GREATER)
8188 && cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
8190 identifier = cp_parser_identifier (parser);
8191 /* Treat invalid names as if the parameter were nameless. */
8192 if (identifier == error_mark_node)
8193 identifier = NULL_TREE;
8195 else
8196 identifier = NULL_TREE;
8198 /* Create the template parameter. */
8199 parameter = finish_template_template_parm (class_type_node,
8200 identifier);
8202 /* If the next token is an `=', then there is a
8203 default-argument. */
8204 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
8206 bool is_template;
8208 /* Consume the `='. */
8209 cp_lexer_consume_token (parser->lexer);
8210 /* Parse the id-expression. */
8211 default_argument
8212 = cp_parser_id_expression (parser,
8213 /*template_keyword_p=*/false,
8214 /*check_dependency_p=*/true,
8215 /*template_p=*/&is_template,
8216 /*declarator_p=*/false);
8217 if (TREE_CODE (default_argument) == TYPE_DECL)
8218 /* If the id-expression was a template-id that refers to
8219 a template-class, we already have the declaration here,
8220 so no further lookup is needed. */
8222 else
8223 /* Look up the name. */
8224 default_argument
8225 = cp_parser_lookup_name (parser, default_argument,
8226 /*is_type=*/false,
8227 /*is_template=*/is_template,
8228 /*is_namespace=*/false,
8229 /*check_dependency=*/true,
8230 /*ambiguous_p=*/NULL);
8231 /* See if the default argument is valid. */
8232 default_argument
8233 = check_template_template_default_arg (default_argument);
8235 else
8236 default_argument = NULL_TREE;
8238 /* Create the combined representation of the parameter and the
8239 default argument. */
8240 parameter = build_tree_list (default_argument, parameter);
8242 break;
8244 default:
8245 gcc_unreachable ();
8246 break;
8249 return parameter;
8252 /* Parse a template-id.
8254 template-id:
8255 template-name < template-argument-list [opt] >
8257 If TEMPLATE_KEYWORD_P is TRUE, then we have just seen the
8258 `template' keyword. In this case, a TEMPLATE_ID_EXPR will be
8259 returned. Otherwise, if the template-name names a function, or set
8260 of functions, returns a TEMPLATE_ID_EXPR. If the template-name
8261 names a class, returns a TYPE_DECL for the specialization.
8263 If CHECK_DEPENDENCY_P is FALSE, names are looked up in
8264 uninstantiated templates. */
8266 static tree
8267 cp_parser_template_id (cp_parser *parser,
8268 bool template_keyword_p,
8269 bool check_dependency_p,
8270 bool is_declaration)
8272 tree template;
8273 tree arguments;
8274 tree template_id;
8275 cp_token_position start_of_id = 0;
8276 tree access_check = NULL_TREE;
8277 cp_token *next_token, *next_token_2;
8278 bool is_identifier;
8280 /* If the next token corresponds to a template-id, there is no need
8281 to reparse it. */
8282 next_token = cp_lexer_peek_token (parser->lexer);
8283 if (next_token->type == CPP_TEMPLATE_ID)
8285 tree value;
8286 tree check;
8288 /* Get the stored value. */
8289 value = cp_lexer_consume_token (parser->lexer)->value;
8290 /* Perform any access checks that were deferred. */
8291 for (check = TREE_PURPOSE (value); check; check = TREE_CHAIN (check))
8292 perform_or_defer_access_check (TREE_PURPOSE (check),
8293 TREE_VALUE (check));
8294 /* Return the stored value. */
8295 return TREE_VALUE (value);
8298 /* Avoid performing name lookup if there is no possibility of
8299 finding a template-id. */
8300 if ((next_token->type != CPP_NAME && next_token->keyword != RID_OPERATOR)
8301 || (next_token->type == CPP_NAME
8302 && !cp_parser_nth_token_starts_template_argument_list_p
8303 (parser, 2)))
8305 cp_parser_error (parser, "expected template-id");
8306 return error_mark_node;
8309 /* Remember where the template-id starts. */
8310 if (cp_parser_parsing_tentatively (parser)
8311 && !cp_parser_committed_to_tentative_parse (parser))
8312 start_of_id = cp_lexer_token_position (parser->lexer, false);
8314 push_deferring_access_checks (dk_deferred);
8316 /* Parse the template-name. */
8317 is_identifier = false;
8318 template = cp_parser_template_name (parser, template_keyword_p,
8319 check_dependency_p,
8320 is_declaration,
8321 &is_identifier);
8322 if (template == error_mark_node || is_identifier)
8324 pop_deferring_access_checks ();
8325 return template;
8328 /* If we find the sequence `[:' after a template-name, it's probably
8329 a digraph-typo for `< ::'. Substitute the tokens and check if we can
8330 parse correctly the argument list. */
8331 next_token = cp_lexer_peek_token (parser->lexer);
8332 next_token_2 = cp_lexer_peek_nth_token (parser->lexer, 2);
8333 if (next_token->type == CPP_OPEN_SQUARE
8334 && next_token->flags & DIGRAPH
8335 && next_token_2->type == CPP_COLON
8336 && !(next_token_2->flags & PREV_WHITE))
8338 cp_parser_parse_tentatively (parser);
8339 /* Change `:' into `::'. */
8340 next_token_2->type = CPP_SCOPE;
8341 /* Consume the first token (CPP_OPEN_SQUARE - which we pretend it is
8342 CPP_LESS. */
8343 cp_lexer_consume_token (parser->lexer);
8344 /* Parse the arguments. */
8345 arguments = cp_parser_enclosed_template_argument_list (parser);
8346 if (!cp_parser_parse_definitely (parser))
8348 /* If we couldn't parse an argument list, then we revert our changes
8349 and return simply an error. Maybe this is not a template-id
8350 after all. */
8351 next_token_2->type = CPP_COLON;
8352 cp_parser_error (parser, "expected %<<%>");
8353 pop_deferring_access_checks ();
8354 return error_mark_node;
8356 /* Otherwise, emit an error about the invalid digraph, but continue
8357 parsing because we got our argument list. */
8358 pedwarn ("%<<::%> cannot begin a template-argument list");
8359 inform ("%<<:%> is an alternate spelling for %<[%>. Insert whitespace "
8360 "between %<<%> and %<::%>");
8361 if (!flag_permissive)
8363 static bool hint;
8364 if (!hint)
8366 inform ("(if you use -fpermissive G++ will accept your code)");
8367 hint = true;
8371 else
8373 /* Look for the `<' that starts the template-argument-list. */
8374 if (!cp_parser_require (parser, CPP_LESS, "`<'"))
8376 pop_deferring_access_checks ();
8377 return error_mark_node;
8379 /* Parse the arguments. */
8380 arguments = cp_parser_enclosed_template_argument_list (parser);
8383 /* Build a representation of the specialization. */
8384 if (TREE_CODE (template) == IDENTIFIER_NODE)
8385 template_id = build_min_nt (TEMPLATE_ID_EXPR, template, arguments);
8386 else if (DECL_CLASS_TEMPLATE_P (template)
8387 || DECL_TEMPLATE_TEMPLATE_PARM_P (template))
8388 template_id
8389 = finish_template_type (template, arguments,
8390 cp_lexer_next_token_is (parser->lexer,
8391 CPP_SCOPE));
8392 else
8394 /* If it's not a class-template or a template-template, it should be
8395 a function-template. */
8396 gcc_assert ((DECL_FUNCTION_TEMPLATE_P (template)
8397 || TREE_CODE (template) == OVERLOAD
8398 || BASELINK_P (template)));
8400 template_id = lookup_template_function (template, arguments);
8403 /* Retrieve any deferred checks. Do not pop this access checks yet
8404 so the memory will not be reclaimed during token replacing below. */
8405 access_check = get_deferred_access_checks ();
8407 /* If parsing tentatively, replace the sequence of tokens that makes
8408 up the template-id with a CPP_TEMPLATE_ID token. That way,
8409 should we re-parse the token stream, we will not have to repeat
8410 the effort required to do the parse, nor will we issue duplicate
8411 error messages about problems during instantiation of the
8412 template. */
8413 if (start_of_id)
8415 cp_token *token = cp_lexer_token_at (parser->lexer, start_of_id);
8417 /* Reset the contents of the START_OF_ID token. */
8418 token->type = CPP_TEMPLATE_ID;
8419 token->value = build_tree_list (access_check, template_id);
8420 token->keyword = RID_MAX;
8422 /* Purge all subsequent tokens. */
8423 cp_lexer_purge_tokens_after (parser->lexer, start_of_id);
8426 pop_deferring_access_checks ();
8427 return template_id;
8430 /* Parse a template-name.
8432 template-name:
8433 identifier
8435 The standard should actually say:
8437 template-name:
8438 identifier
8439 operator-function-id
8441 A defect report has been filed about this issue.
8443 A conversion-function-id cannot be a template name because they cannot
8444 be part of a template-id. In fact, looking at this code:
8446 a.operator K<int>()
8448 the conversion-function-id is "operator K<int>", and K<int> is a type-id.
8449 It is impossible to call a templated conversion-function-id with an
8450 explicit argument list, since the only allowed template parameter is
8451 the type to which it is converting.
8453 If TEMPLATE_KEYWORD_P is true, then we have just seen the
8454 `template' keyword, in a construction like:
8456 T::template f<3>()
8458 In that case `f' is taken to be a template-name, even though there
8459 is no way of knowing for sure.
8461 Returns the TEMPLATE_DECL for the template, or an OVERLOAD if the
8462 name refers to a set of overloaded functions, at least one of which
8463 is a template, or an IDENTIFIER_NODE with the name of the template,
8464 if TEMPLATE_KEYWORD_P is true. If CHECK_DEPENDENCY_P is FALSE,
8465 names are looked up inside uninstantiated templates. */
8467 static tree
8468 cp_parser_template_name (cp_parser* parser,
8469 bool template_keyword_p,
8470 bool check_dependency_p,
8471 bool is_declaration,
8472 bool *is_identifier)
8474 tree identifier;
8475 tree decl;
8476 tree fns;
8478 /* If the next token is `operator', then we have either an
8479 operator-function-id or a conversion-function-id. */
8480 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_OPERATOR))
8482 /* We don't know whether we're looking at an
8483 operator-function-id or a conversion-function-id. */
8484 cp_parser_parse_tentatively (parser);
8485 /* Try an operator-function-id. */
8486 identifier = cp_parser_operator_function_id (parser);
8487 /* If that didn't work, try a conversion-function-id. */
8488 if (!cp_parser_parse_definitely (parser))
8490 cp_parser_error (parser, "expected template-name");
8491 return error_mark_node;
8494 /* Look for the identifier. */
8495 else
8496 identifier = cp_parser_identifier (parser);
8498 /* If we didn't find an identifier, we don't have a template-id. */
8499 if (identifier == error_mark_node)
8500 return error_mark_node;
8502 /* If the name immediately followed the `template' keyword, then it
8503 is a template-name. However, if the next token is not `<', then
8504 we do not treat it as a template-name, since it is not being used
8505 as part of a template-id. This enables us to handle constructs
8506 like:
8508 template <typename T> struct S { S(); };
8509 template <typename T> S<T>::S();
8511 correctly. We would treat `S' as a template -- if it were `S<T>'
8512 -- but we do not if there is no `<'. */
8514 if (processing_template_decl
8515 && cp_parser_nth_token_starts_template_argument_list_p (parser, 1))
8517 /* In a declaration, in a dependent context, we pretend that the
8518 "template" keyword was present in order to improve error
8519 recovery. For example, given:
8521 template <typename T> void f(T::X<int>);
8523 we want to treat "X<int>" as a template-id. */
8524 if (is_declaration
8525 && !template_keyword_p
8526 && parser->scope && TYPE_P (parser->scope)
8527 && check_dependency_p
8528 && dependent_type_p (parser->scope)
8529 /* Do not do this for dtors (or ctors), since they never
8530 need the template keyword before their name. */
8531 && !constructor_name_p (identifier, parser->scope))
8533 cp_token_position start = 0;
8535 /* Explain what went wrong. */
8536 error ("non-template %qD used as template", identifier);
8537 inform ("use %<%T::template %D%> to indicate that it is a template",
8538 parser->scope, identifier);
8539 /* If parsing tentatively, find the location of the "<"
8540 token. */
8541 if (cp_parser_parsing_tentatively (parser)
8542 && !cp_parser_committed_to_tentative_parse (parser))
8544 cp_parser_simulate_error (parser);
8545 start = cp_lexer_token_position (parser->lexer, true);
8547 /* Parse the template arguments so that we can issue error
8548 messages about them. */
8549 cp_lexer_consume_token (parser->lexer);
8550 cp_parser_enclosed_template_argument_list (parser);
8551 /* Skip tokens until we find a good place from which to
8552 continue parsing. */
8553 cp_parser_skip_to_closing_parenthesis (parser,
8554 /*recovering=*/true,
8555 /*or_comma=*/true,
8556 /*consume_paren=*/false);
8557 /* If parsing tentatively, permanently remove the
8558 template argument list. That will prevent duplicate
8559 error messages from being issued about the missing
8560 "template" keyword. */
8561 if (start)
8562 cp_lexer_purge_tokens_after (parser->lexer, start);
8563 if (is_identifier)
8564 *is_identifier = true;
8565 return identifier;
8568 /* If the "template" keyword is present, then there is generally
8569 no point in doing name-lookup, so we just return IDENTIFIER.
8570 But, if the qualifying scope is non-dependent then we can
8571 (and must) do name-lookup normally. */
8572 if (template_keyword_p
8573 && (!parser->scope
8574 || (TYPE_P (parser->scope)
8575 && dependent_type_p (parser->scope))))
8576 return identifier;
8579 /* Look up the name. */
8580 decl = cp_parser_lookup_name (parser, identifier,
8581 /*is_type=*/false,
8582 /*is_template=*/false,
8583 /*is_namespace=*/false,
8584 check_dependency_p,
8585 /*ambiguous_p=*/NULL);
8586 decl = maybe_get_template_decl_from_type_decl (decl);
8588 /* If DECL is a template, then the name was a template-name. */
8589 if (TREE_CODE (decl) == TEMPLATE_DECL)
8591 else
8593 /* The standard does not explicitly indicate whether a name that
8594 names a set of overloaded declarations, some of which are
8595 templates, is a template-name. However, such a name should
8596 be a template-name; otherwise, there is no way to form a
8597 template-id for the overloaded templates. */
8598 fns = BASELINK_P (decl) ? BASELINK_FUNCTIONS (decl) : decl;
8599 if (TREE_CODE (fns) == OVERLOAD)
8601 tree fn;
8603 for (fn = fns; fn; fn = OVL_NEXT (fn))
8604 if (TREE_CODE (OVL_CURRENT (fn)) == TEMPLATE_DECL)
8605 break;
8607 else
8609 /* Otherwise, the name does not name a template. */
8610 cp_parser_error (parser, "expected template-name");
8611 return error_mark_node;
8615 /* If DECL is dependent, and refers to a function, then just return
8616 its name; we will look it up again during template instantiation. */
8617 if (DECL_FUNCTION_TEMPLATE_P (decl) || !DECL_P (decl))
8619 tree scope = CP_DECL_CONTEXT (get_first_fn (decl));
8620 if (TYPE_P (scope) && dependent_type_p (scope))
8621 return identifier;
8624 return decl;
8627 /* Parse a template-argument-list.
8629 template-argument-list:
8630 template-argument
8631 template-argument-list , template-argument
8633 Returns a TREE_VEC containing the arguments. */
8635 static tree
8636 cp_parser_template_argument_list (cp_parser* parser)
8638 tree fixed_args[10];
8639 unsigned n_args = 0;
8640 unsigned alloced = 10;
8641 tree *arg_ary = fixed_args;
8642 tree vec;
8643 bool saved_in_template_argument_list_p;
8645 saved_in_template_argument_list_p = parser->in_template_argument_list_p;
8646 parser->in_template_argument_list_p = true;
8649 tree argument;
8651 if (n_args)
8652 /* Consume the comma. */
8653 cp_lexer_consume_token (parser->lexer);
8655 /* Parse the template-argument. */
8656 argument = cp_parser_template_argument (parser);
8657 if (n_args == alloced)
8659 alloced *= 2;
8661 if (arg_ary == fixed_args)
8663 arg_ary = xmalloc (sizeof (tree) * alloced);
8664 memcpy (arg_ary, fixed_args, sizeof (tree) * n_args);
8666 else
8667 arg_ary = xrealloc (arg_ary, sizeof (tree) * alloced);
8669 arg_ary[n_args++] = argument;
8671 while (cp_lexer_next_token_is (parser->lexer, CPP_COMMA));
8673 vec = make_tree_vec (n_args);
8675 while (n_args--)
8676 TREE_VEC_ELT (vec, n_args) = arg_ary[n_args];
8678 if (arg_ary != fixed_args)
8679 free (arg_ary);
8680 parser->in_template_argument_list_p = saved_in_template_argument_list_p;
8681 return vec;
8684 /* Parse a template-argument.
8686 template-argument:
8687 assignment-expression
8688 type-id
8689 id-expression
8691 The representation is that of an assignment-expression, type-id, or
8692 id-expression -- except that the qualified id-expression is
8693 evaluated, so that the value returned is either a DECL or an
8694 OVERLOAD.
8696 Although the standard says "assignment-expression", it forbids
8697 throw-expressions or assignments in the template argument.
8698 Therefore, we use "conditional-expression" instead. */
8700 static tree
8701 cp_parser_template_argument (cp_parser* parser)
8703 tree argument;
8704 bool template_p;
8705 bool address_p;
8706 bool maybe_type_id = false;
8707 cp_token *token;
8708 cp_id_kind idk;
8709 tree qualifying_class;
8711 /* There's really no way to know what we're looking at, so we just
8712 try each alternative in order.
8714 [temp.arg]
8716 In a template-argument, an ambiguity between a type-id and an
8717 expression is resolved to a type-id, regardless of the form of
8718 the corresponding template-parameter.
8720 Therefore, we try a type-id first. */
8721 cp_parser_parse_tentatively (parser);
8722 argument = cp_parser_type_id (parser);
8723 /* If there was no error parsing the type-id but the next token is a '>>',
8724 we probably found a typo for '> >'. But there are type-id which are
8725 also valid expressions. For instance:
8727 struct X { int operator >> (int); };
8728 template <int V> struct Foo {};
8729 Foo<X () >> 5> r;
8731 Here 'X()' is a valid type-id of a function type, but the user just
8732 wanted to write the expression "X() >> 5". Thus, we remember that we
8733 found a valid type-id, but we still try to parse the argument as an
8734 expression to see what happens. */
8735 if (!cp_parser_error_occurred (parser)
8736 && cp_lexer_next_token_is (parser->lexer, CPP_RSHIFT))
8738 maybe_type_id = true;
8739 cp_parser_abort_tentative_parse (parser);
8741 else
8743 /* If the next token isn't a `,' or a `>', then this argument wasn't
8744 really finished. This means that the argument is not a valid
8745 type-id. */
8746 if (!cp_parser_next_token_ends_template_argument_p (parser))
8747 cp_parser_error (parser, "expected template-argument");
8748 /* If that worked, we're done. */
8749 if (cp_parser_parse_definitely (parser))
8750 return argument;
8752 /* We're still not sure what the argument will be. */
8753 cp_parser_parse_tentatively (parser);
8754 /* Try a template. */
8755 argument = cp_parser_id_expression (parser,
8756 /*template_keyword_p=*/false,
8757 /*check_dependency_p=*/true,
8758 &template_p,
8759 /*declarator_p=*/false);
8760 /* If the next token isn't a `,' or a `>', then this argument wasn't
8761 really finished. */
8762 if (!cp_parser_next_token_ends_template_argument_p (parser))
8763 cp_parser_error (parser, "expected template-argument");
8764 if (!cp_parser_error_occurred (parser))
8766 /* Figure out what is being referred to. If the id-expression
8767 was for a class template specialization, then we will have a
8768 TYPE_DECL at this point. There is no need to do name lookup
8769 at this point in that case. */
8770 if (TREE_CODE (argument) != TYPE_DECL)
8771 argument = cp_parser_lookup_name (parser, argument,
8772 /*is_type=*/false,
8773 /*is_template=*/template_p,
8774 /*is_namespace=*/false,
8775 /*check_dependency=*/true,
8776 /*ambiguous_p=*/NULL);
8777 if (TREE_CODE (argument) != TEMPLATE_DECL
8778 && TREE_CODE (argument) != UNBOUND_CLASS_TEMPLATE)
8779 cp_parser_error (parser, "expected template-name");
8781 if (cp_parser_parse_definitely (parser))
8782 return argument;
8783 /* It must be a non-type argument. There permitted cases are given
8784 in [temp.arg.nontype]:
8786 -- an integral constant-expression of integral or enumeration
8787 type; or
8789 -- the name of a non-type template-parameter; or
8791 -- the name of an object or function with external linkage...
8793 -- the address of an object or function with external linkage...
8795 -- a pointer to member... */
8796 /* Look for a non-type template parameter. */
8797 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
8799 cp_parser_parse_tentatively (parser);
8800 argument = cp_parser_primary_expression (parser,
8801 &idk,
8802 &qualifying_class);
8803 if (TREE_CODE (argument) != TEMPLATE_PARM_INDEX
8804 || !cp_parser_next_token_ends_template_argument_p (parser))
8805 cp_parser_simulate_error (parser);
8806 if (cp_parser_parse_definitely (parser))
8807 return argument;
8809 /* If the next token is "&", the argument must be the address of an
8810 object or function with external linkage. */
8811 address_p = cp_lexer_next_token_is (parser->lexer, CPP_AND);
8812 if (address_p)
8813 cp_lexer_consume_token (parser->lexer);
8814 /* See if we might have an id-expression. */
8815 token = cp_lexer_peek_token (parser->lexer);
8816 if (token->type == CPP_NAME
8817 || token->keyword == RID_OPERATOR
8818 || token->type == CPP_SCOPE
8819 || token->type == CPP_TEMPLATE_ID
8820 || token->type == CPP_NESTED_NAME_SPECIFIER)
8822 cp_parser_parse_tentatively (parser);
8823 argument = cp_parser_primary_expression (parser,
8824 &idk,
8825 &qualifying_class);
8826 if (cp_parser_error_occurred (parser)
8827 || !cp_parser_next_token_ends_template_argument_p (parser))
8828 cp_parser_abort_tentative_parse (parser);
8829 else
8831 if (qualifying_class)
8832 argument = finish_qualified_id_expr (qualifying_class,
8833 argument,
8834 /*done=*/true,
8835 address_p);
8836 if (TREE_CODE (argument) == VAR_DECL)
8838 /* A variable without external linkage might still be a
8839 valid constant-expression, so no error is issued here
8840 if the external-linkage check fails. */
8841 if (!DECL_EXTERNAL_LINKAGE_P (argument))
8842 cp_parser_simulate_error (parser);
8844 else if (is_overloaded_fn (argument))
8845 /* All overloaded functions are allowed; if the external
8846 linkage test does not pass, an error will be issued
8847 later. */
8849 else if (address_p
8850 && (TREE_CODE (argument) == OFFSET_REF
8851 || TREE_CODE (argument) == SCOPE_REF))
8852 /* A pointer-to-member. */
8854 else
8855 cp_parser_simulate_error (parser);
8857 if (cp_parser_parse_definitely (parser))
8859 if (address_p)
8860 argument = build_x_unary_op (ADDR_EXPR, argument);
8861 return argument;
8865 /* If the argument started with "&", there are no other valid
8866 alternatives at this point. */
8867 if (address_p)
8869 cp_parser_error (parser, "invalid non-type template argument");
8870 return error_mark_node;
8872 /* If the argument wasn't successfully parsed as a type-id followed
8873 by '>>', the argument can only be a constant expression now.
8874 Otherwise, we try parsing the constant-expression tentatively,
8875 because the argument could really be a type-id. */
8876 if (maybe_type_id)
8877 cp_parser_parse_tentatively (parser);
8878 argument = cp_parser_constant_expression (parser,
8879 /*allow_non_constant_p=*/false,
8880 /*non_constant_p=*/NULL);
8881 argument = fold_non_dependent_expr (argument);
8882 if (!maybe_type_id)
8883 return argument;
8884 if (!cp_parser_next_token_ends_template_argument_p (parser))
8885 cp_parser_error (parser, "expected template-argument");
8886 if (cp_parser_parse_definitely (parser))
8887 return argument;
8888 /* We did our best to parse the argument as a non type-id, but that
8889 was the only alternative that matched (albeit with a '>' after
8890 it). We can assume it's just a typo from the user, and a
8891 diagnostic will then be issued. */
8892 return cp_parser_type_id (parser);
8895 /* Parse an explicit-instantiation.
8897 explicit-instantiation:
8898 template declaration
8900 Although the standard says `declaration', what it really means is:
8902 explicit-instantiation:
8903 template decl-specifier-seq [opt] declarator [opt] ;
8905 Things like `template int S<int>::i = 5, int S<double>::j;' are not
8906 supposed to be allowed. A defect report has been filed about this
8907 issue.
8909 GNU Extension:
8911 explicit-instantiation:
8912 storage-class-specifier template
8913 decl-specifier-seq [opt] declarator [opt] ;
8914 function-specifier template
8915 decl-specifier-seq [opt] declarator [opt] ; */
8917 static void
8918 cp_parser_explicit_instantiation (cp_parser* parser)
8920 int declares_class_or_enum;
8921 cp_decl_specifier_seq decl_specifiers;
8922 tree extension_specifier = NULL_TREE;
8924 /* Look for an (optional) storage-class-specifier or
8925 function-specifier. */
8926 if (cp_parser_allow_gnu_extensions_p (parser))
8928 extension_specifier
8929 = cp_parser_storage_class_specifier_opt (parser);
8930 if (!extension_specifier)
8931 extension_specifier
8932 = cp_parser_function_specifier_opt (parser,
8933 /*decl_specs=*/NULL);
8936 /* Look for the `template' keyword. */
8937 cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'");
8938 /* Let the front end know that we are processing an explicit
8939 instantiation. */
8940 begin_explicit_instantiation ();
8941 /* [temp.explicit] says that we are supposed to ignore access
8942 control while processing explicit instantiation directives. */
8943 push_deferring_access_checks (dk_no_check);
8944 /* Parse a decl-specifier-seq. */
8945 cp_parser_decl_specifier_seq (parser,
8946 CP_PARSER_FLAGS_OPTIONAL,
8947 &decl_specifiers,
8948 &declares_class_or_enum);
8949 /* If there was exactly one decl-specifier, and it declared a class,
8950 and there's no declarator, then we have an explicit type
8951 instantiation. */
8952 if (declares_class_or_enum && cp_parser_declares_only_class_p (parser))
8954 tree type;
8956 type = check_tag_decl (&decl_specifiers);
8957 /* Turn access control back on for names used during
8958 template instantiation. */
8959 pop_deferring_access_checks ();
8960 if (type)
8961 do_type_instantiation (type, extension_specifier, /*complain=*/1);
8963 else
8965 cp_declarator *declarator;
8966 tree decl;
8968 /* Parse the declarator. */
8969 declarator
8970 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
8971 /*ctor_dtor_or_conv_p=*/NULL,
8972 /*parenthesized_p=*/NULL,
8973 /*member_p=*/false);
8974 cp_parser_check_for_definition_in_return_type (declarator,
8975 declares_class_or_enum);
8976 if (declarator != cp_error_declarator)
8978 decl = grokdeclarator (declarator, &decl_specifiers,
8979 NORMAL, 0, NULL);
8980 /* Turn access control back on for names used during
8981 template instantiation. */
8982 pop_deferring_access_checks ();
8983 /* Do the explicit instantiation. */
8984 do_decl_instantiation (decl, extension_specifier);
8986 else
8988 pop_deferring_access_checks ();
8989 /* Skip the body of the explicit instantiation. */
8990 cp_parser_skip_to_end_of_statement (parser);
8993 /* We're done with the instantiation. */
8994 end_explicit_instantiation ();
8996 cp_parser_consume_semicolon_at_end_of_statement (parser);
8999 /* Parse an explicit-specialization.
9001 explicit-specialization:
9002 template < > declaration
9004 Although the standard says `declaration', what it really means is:
9006 explicit-specialization:
9007 template <> decl-specifier [opt] init-declarator [opt] ;
9008 template <> function-definition
9009 template <> explicit-specialization
9010 template <> template-declaration */
9012 static void
9013 cp_parser_explicit_specialization (cp_parser* parser)
9015 /* Look for the `template' keyword. */
9016 cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'");
9017 /* Look for the `<'. */
9018 cp_parser_require (parser, CPP_LESS, "`<'");
9019 /* Look for the `>'. */
9020 cp_parser_require (parser, CPP_GREATER, "`>'");
9021 /* We have processed another parameter list. */
9022 ++parser->num_template_parameter_lists;
9023 /* Let the front end know that we are beginning a specialization. */
9024 begin_specialization ();
9026 /* If the next keyword is `template', we need to figure out whether
9027 or not we're looking a template-declaration. */
9028 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
9030 if (cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_LESS
9031 && cp_lexer_peek_nth_token (parser->lexer, 3)->type != CPP_GREATER)
9032 cp_parser_template_declaration_after_export (parser,
9033 /*member_p=*/false);
9034 else
9035 cp_parser_explicit_specialization (parser);
9037 else
9038 /* Parse the dependent declaration. */
9039 cp_parser_single_declaration (parser,
9040 /*member_p=*/false,
9041 /*friend_p=*/NULL);
9043 /* We're done with the specialization. */
9044 end_specialization ();
9045 /* We're done with this parameter list. */
9046 --parser->num_template_parameter_lists;
9049 /* Parse a type-specifier.
9051 type-specifier:
9052 simple-type-specifier
9053 class-specifier
9054 enum-specifier
9055 elaborated-type-specifier
9056 cv-qualifier
9058 GNU Extension:
9060 type-specifier:
9061 __complex__
9063 Returns a representation of the type-specifier. For a
9064 class-specifier, enum-specifier, or elaborated-type-specifier, a
9065 TREE_TYPE is returned; otherwise, a TYPE_DECL is returned.
9067 The parser flags FLAGS is used to control type-specifier parsing.
9069 If IS_DECLARATION is TRUE, then this type-specifier is appearing
9070 in a decl-specifier-seq.
9072 If DECLARES_CLASS_OR_ENUM is non-NULL, and the type-specifier is a
9073 class-specifier, enum-specifier, or elaborated-type-specifier, then
9074 *DECLARES_CLASS_OR_ENUM is set to a nonzero value. The value is 1
9075 if a type is declared; 2 if it is defined. Otherwise, it is set to
9076 zero.
9078 If IS_CV_QUALIFIER is non-NULL, and the type-specifier is a
9079 cv-qualifier, then IS_CV_QUALIFIER is set to TRUE. Otherwise, it
9080 is set to FALSE. */
9082 static tree
9083 cp_parser_type_specifier (cp_parser* parser,
9084 cp_parser_flags flags,
9085 cp_decl_specifier_seq *decl_specs,
9086 bool is_declaration,
9087 int* declares_class_or_enum,
9088 bool* is_cv_qualifier)
9090 tree type_spec = NULL_TREE;
9091 cp_token *token;
9092 enum rid keyword;
9093 cp_decl_spec ds = ds_last;
9095 /* Assume this type-specifier does not declare a new type. */
9096 if (declares_class_or_enum)
9097 *declares_class_or_enum = 0;
9098 /* And that it does not specify a cv-qualifier. */
9099 if (is_cv_qualifier)
9100 *is_cv_qualifier = false;
9101 /* Peek at the next token. */
9102 token = cp_lexer_peek_token (parser->lexer);
9104 /* If we're looking at a keyword, we can use that to guide the
9105 production we choose. */
9106 keyword = token->keyword;
9107 switch (keyword)
9109 case RID_ENUM:
9110 /* 'enum' [identifier] '{' introduces an enum-specifier;
9111 'enum' <anything else> introduces an elaborated-type-specifier. */
9112 if (cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_OPEN_BRACE
9113 || (cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_NAME
9114 && cp_lexer_peek_nth_token (parser->lexer, 3)->type
9115 == CPP_OPEN_BRACE))
9117 type_spec = cp_parser_enum_specifier (parser);
9118 if (declares_class_or_enum)
9119 *declares_class_or_enum = 2;
9120 if (decl_specs)
9121 cp_parser_set_decl_spec_type (decl_specs,
9122 type_spec,
9123 /*user_defined_p=*/true);
9124 return type_spec;
9126 else
9127 goto elaborated_type_specifier;
9129 /* Any of these indicate either a class-specifier, or an
9130 elaborated-type-specifier. */
9131 case RID_CLASS:
9132 case RID_STRUCT:
9133 case RID_UNION:
9134 /* Parse tentatively so that we can back up if we don't find a
9135 class-specifier. */
9136 cp_parser_parse_tentatively (parser);
9137 /* Look for the class-specifier. */
9138 type_spec = cp_parser_class_specifier (parser);
9139 /* If that worked, we're done. */
9140 if (cp_parser_parse_definitely (parser))
9142 if (declares_class_or_enum)
9143 *declares_class_or_enum = 2;
9144 if (decl_specs)
9145 cp_parser_set_decl_spec_type (decl_specs,
9146 type_spec,
9147 /*user_defined_p=*/true);
9148 return type_spec;
9151 /* Fall through. */
9152 elaborated_type_specifier:
9153 /* We're declaring (not defining) a class or enum. */
9154 if (declares_class_or_enum)
9155 *declares_class_or_enum = 1;
9157 /* Fall through. */
9158 case RID_TYPENAME:
9159 /* Look for an elaborated-type-specifier. */
9160 type_spec
9161 = (cp_parser_elaborated_type_specifier
9162 (parser,
9163 decl_specs && decl_specs->specs[(int) ds_friend],
9164 is_declaration));
9165 if (decl_specs)
9166 cp_parser_set_decl_spec_type (decl_specs,
9167 type_spec,
9168 /*user_defined_p=*/true);
9169 return type_spec;
9171 case RID_CONST:
9172 ds = ds_const;
9173 if (is_cv_qualifier)
9174 *is_cv_qualifier = true;
9175 break;
9177 case RID_VOLATILE:
9178 ds = ds_volatile;
9179 if (is_cv_qualifier)
9180 *is_cv_qualifier = true;
9181 break;
9183 case RID_RESTRICT:
9184 ds = ds_restrict;
9185 if (is_cv_qualifier)
9186 *is_cv_qualifier = true;
9187 break;
9189 case RID_COMPLEX:
9190 /* The `__complex__' keyword is a GNU extension. */
9191 ds = ds_complex;
9192 break;
9194 default:
9195 break;
9198 /* Handle simple keywords. */
9199 if (ds != ds_last)
9201 if (decl_specs)
9203 ++decl_specs->specs[(int)ds];
9204 decl_specs->any_specifiers_p = true;
9206 return cp_lexer_consume_token (parser->lexer)->value;
9209 /* If we do not already have a type-specifier, assume we are looking
9210 at a simple-type-specifier. */
9211 type_spec = cp_parser_simple_type_specifier (parser,
9212 decl_specs,
9213 flags);
9215 /* If we didn't find a type-specifier, and a type-specifier was not
9216 optional in this context, issue an error message. */
9217 if (!type_spec && !(flags & CP_PARSER_FLAGS_OPTIONAL))
9219 cp_parser_error (parser, "expected type specifier");
9220 return error_mark_node;
9223 return type_spec;
9226 /* Parse a simple-type-specifier.
9228 simple-type-specifier:
9229 :: [opt] nested-name-specifier [opt] type-name
9230 :: [opt] nested-name-specifier template template-id
9231 char
9232 wchar_t
9233 bool
9234 short
9236 long
9237 signed
9238 unsigned
9239 float
9240 double
9241 void
9243 GNU Extension:
9245 simple-type-specifier:
9246 __typeof__ unary-expression
9247 __typeof__ ( type-id )
9249 Returns the indicated TYPE_DECL. If DECL_SPECS is not NULL, it is
9250 appropriately updated. */
9252 static tree
9253 cp_parser_simple_type_specifier (cp_parser* parser,
9254 cp_decl_specifier_seq *decl_specs,
9255 cp_parser_flags flags)
9257 tree type = NULL_TREE;
9258 cp_token *token;
9260 /* Peek at the next token. */
9261 token = cp_lexer_peek_token (parser->lexer);
9263 /* If we're looking at a keyword, things are easy. */
9264 switch (token->keyword)
9266 case RID_CHAR:
9267 if (decl_specs)
9268 decl_specs->explicit_char_p = true;
9269 type = char_type_node;
9270 break;
9271 case RID_WCHAR:
9272 type = wchar_type_node;
9273 break;
9274 case RID_BOOL:
9275 type = boolean_type_node;
9276 break;
9277 case RID_SHORT:
9278 if (decl_specs)
9279 ++decl_specs->specs[(int) ds_short];
9280 type = short_integer_type_node;
9281 break;
9282 case RID_INT:
9283 if (decl_specs)
9284 decl_specs->explicit_int_p = true;
9285 type = integer_type_node;
9286 break;
9287 case RID_LONG:
9288 if (decl_specs)
9289 ++decl_specs->specs[(int) ds_long];
9290 type = long_integer_type_node;
9291 break;
9292 case RID_SIGNED:
9293 if (decl_specs)
9294 ++decl_specs->specs[(int) ds_signed];
9295 type = integer_type_node;
9296 break;
9297 case RID_UNSIGNED:
9298 if (decl_specs)
9299 ++decl_specs->specs[(int) ds_unsigned];
9300 type = unsigned_type_node;
9301 break;
9302 case RID_FLOAT:
9303 type = float_type_node;
9304 break;
9305 case RID_DOUBLE:
9306 type = double_type_node;
9307 break;
9308 case RID_VOID:
9309 type = void_type_node;
9310 break;
9312 case RID_TYPEOF:
9313 /* Consume the `typeof' token. */
9314 cp_lexer_consume_token (parser->lexer);
9315 /* Parse the operand to `typeof'. */
9316 type = cp_parser_sizeof_operand (parser, RID_TYPEOF);
9317 /* If it is not already a TYPE, take its type. */
9318 if (!TYPE_P (type))
9319 type = finish_typeof (type);
9321 if (decl_specs)
9322 cp_parser_set_decl_spec_type (decl_specs, type,
9323 /*user_defined_p=*/true);
9325 return type;
9327 default:
9328 break;
9331 /* If the type-specifier was for a built-in type, we're done. */
9332 if (type)
9334 tree id;
9336 /* Record the type. */
9337 if (decl_specs
9338 && (token->keyword != RID_SIGNED
9339 && token->keyword != RID_UNSIGNED
9340 && token->keyword != RID_SHORT
9341 && token->keyword != RID_LONG))
9342 cp_parser_set_decl_spec_type (decl_specs,
9343 type,
9344 /*user_defined=*/false);
9345 if (decl_specs)
9346 decl_specs->any_specifiers_p = true;
9348 /* Consume the token. */
9349 id = cp_lexer_consume_token (parser->lexer)->value;
9351 /* There is no valid C++ program where a non-template type is
9352 followed by a "<". That usually indicates that the user thought
9353 that the type was a template. */
9354 cp_parser_check_for_invalid_template_id (parser, type);
9356 return TYPE_NAME (type);
9359 /* The type-specifier must be a user-defined type. */
9360 if (!(flags & CP_PARSER_FLAGS_NO_USER_DEFINED_TYPES))
9362 bool qualified_p;
9363 bool global_p;
9365 /* Don't gobble tokens or issue error messages if this is an
9366 optional type-specifier. */
9367 if (flags & CP_PARSER_FLAGS_OPTIONAL)
9368 cp_parser_parse_tentatively (parser);
9370 /* Look for the optional `::' operator. */
9371 global_p
9372 = (cp_parser_global_scope_opt (parser,
9373 /*current_scope_valid_p=*/false)
9374 != NULL_TREE);
9375 /* Look for the nested-name specifier. */
9376 qualified_p
9377 = (cp_parser_nested_name_specifier_opt (parser,
9378 /*typename_keyword_p=*/false,
9379 /*check_dependency_p=*/true,
9380 /*type_p=*/false,
9381 /*is_declaration=*/false)
9382 != NULL_TREE);
9383 /* If we have seen a nested-name-specifier, and the next token
9384 is `template', then we are using the template-id production. */
9385 if (parser->scope
9386 && cp_parser_optional_template_keyword (parser))
9388 /* Look for the template-id. */
9389 type = cp_parser_template_id (parser,
9390 /*template_keyword_p=*/true,
9391 /*check_dependency_p=*/true,
9392 /*is_declaration=*/false);
9393 /* If the template-id did not name a type, we are out of
9394 luck. */
9395 if (TREE_CODE (type) != TYPE_DECL)
9397 cp_parser_error (parser, "expected template-id for type");
9398 type = NULL_TREE;
9401 /* Otherwise, look for a type-name. */
9402 else
9403 type = cp_parser_type_name (parser);
9404 /* Keep track of all name-lookups performed in class scopes. */
9405 if (type
9406 && !global_p
9407 && !qualified_p
9408 && TREE_CODE (type) == TYPE_DECL
9409 && TREE_CODE (DECL_NAME (type)) == IDENTIFIER_NODE)
9410 maybe_note_name_used_in_class (DECL_NAME (type), type);
9411 /* If it didn't work out, we don't have a TYPE. */
9412 if ((flags & CP_PARSER_FLAGS_OPTIONAL)
9413 && !cp_parser_parse_definitely (parser))
9414 type = NULL_TREE;
9415 if (type && decl_specs)
9416 cp_parser_set_decl_spec_type (decl_specs, type,
9417 /*user_defined=*/true);
9420 /* If we didn't get a type-name, issue an error message. */
9421 if (!type && !(flags & CP_PARSER_FLAGS_OPTIONAL))
9423 cp_parser_error (parser, "expected type-name");
9424 return error_mark_node;
9427 /* There is no valid C++ program where a non-template type is
9428 followed by a "<". That usually indicates that the user thought
9429 that the type was a template. */
9430 if (type && type != error_mark_node)
9431 cp_parser_check_for_invalid_template_id (parser, TREE_TYPE (type));
9433 return type;
9436 /* Parse a type-name.
9438 type-name:
9439 class-name
9440 enum-name
9441 typedef-name
9443 enum-name:
9444 identifier
9446 typedef-name:
9447 identifier
9449 Returns a TYPE_DECL for the the type. */
9451 static tree
9452 cp_parser_type_name (cp_parser* parser)
9454 tree type_decl;
9455 tree identifier;
9457 /* We can't know yet whether it is a class-name or not. */
9458 cp_parser_parse_tentatively (parser);
9459 /* Try a class-name. */
9460 type_decl = cp_parser_class_name (parser,
9461 /*typename_keyword_p=*/false,
9462 /*template_keyword_p=*/false,
9463 /*type_p=*/false,
9464 /*check_dependency_p=*/true,
9465 /*class_head_p=*/false,
9466 /*is_declaration=*/false);
9467 /* If it's not a class-name, keep looking. */
9468 if (!cp_parser_parse_definitely (parser))
9470 /* It must be a typedef-name or an enum-name. */
9471 identifier = cp_parser_identifier (parser);
9472 if (identifier == error_mark_node)
9473 return error_mark_node;
9475 /* Look up the type-name. */
9476 type_decl = cp_parser_lookup_name_simple (parser, identifier);
9477 /* Issue an error if we did not find a type-name. */
9478 if (TREE_CODE (type_decl) != TYPE_DECL)
9480 if (!cp_parser_simulate_error (parser))
9481 cp_parser_name_lookup_error (parser, identifier, type_decl,
9482 "is not a type");
9483 type_decl = error_mark_node;
9485 /* Remember that the name was used in the definition of the
9486 current class so that we can check later to see if the
9487 meaning would have been different after the class was
9488 entirely defined. */
9489 else if (type_decl != error_mark_node
9490 && !parser->scope)
9491 maybe_note_name_used_in_class (identifier, type_decl);
9494 return type_decl;
9498 /* Parse an elaborated-type-specifier. Note that the grammar given
9499 here incorporates the resolution to DR68.
9501 elaborated-type-specifier:
9502 class-key :: [opt] nested-name-specifier [opt] identifier
9503 class-key :: [opt] nested-name-specifier [opt] template [opt] template-id
9504 enum :: [opt] nested-name-specifier [opt] identifier
9505 typename :: [opt] nested-name-specifier identifier
9506 typename :: [opt] nested-name-specifier template [opt]
9507 template-id
9509 GNU extension:
9511 elaborated-type-specifier:
9512 class-key attributes :: [opt] nested-name-specifier [opt] identifier
9513 class-key attributes :: [opt] nested-name-specifier [opt]
9514 template [opt] template-id
9515 enum attributes :: [opt] nested-name-specifier [opt] identifier
9517 If IS_FRIEND is TRUE, then this elaborated-type-specifier is being
9518 declared `friend'. If IS_DECLARATION is TRUE, then this
9519 elaborated-type-specifier appears in a decl-specifiers-seq, i.e.,
9520 something is being declared.
9522 Returns the TYPE specified. */
9524 static tree
9525 cp_parser_elaborated_type_specifier (cp_parser* parser,
9526 bool is_friend,
9527 bool is_declaration)
9529 enum tag_types tag_type;
9530 tree identifier;
9531 tree type = NULL_TREE;
9532 tree attributes = NULL_TREE;
9534 /* See if we're looking at the `enum' keyword. */
9535 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_ENUM))
9537 /* Consume the `enum' token. */
9538 cp_lexer_consume_token (parser->lexer);
9539 /* Remember that it's an enumeration type. */
9540 tag_type = enum_type;
9541 /* Parse the attributes. */
9542 attributes = cp_parser_attributes_opt (parser);
9544 /* Or, it might be `typename'. */
9545 else if (cp_lexer_next_token_is_keyword (parser->lexer,
9546 RID_TYPENAME))
9548 /* Consume the `typename' token. */
9549 cp_lexer_consume_token (parser->lexer);
9550 /* Remember that it's a `typename' type. */
9551 tag_type = typename_type;
9552 /* The `typename' keyword is only allowed in templates. */
9553 if (!processing_template_decl)
9554 pedwarn ("using %<typename%> outside of template");
9556 /* Otherwise it must be a class-key. */
9557 else
9559 tag_type = cp_parser_class_key (parser);
9560 if (tag_type == none_type)
9561 return error_mark_node;
9562 /* Parse the attributes. */
9563 attributes = cp_parser_attributes_opt (parser);
9566 /* Look for the `::' operator. */
9567 cp_parser_global_scope_opt (parser,
9568 /*current_scope_valid_p=*/false);
9569 /* Look for the nested-name-specifier. */
9570 if (tag_type == typename_type)
9572 if (cp_parser_nested_name_specifier (parser,
9573 /*typename_keyword_p=*/true,
9574 /*check_dependency_p=*/true,
9575 /*type_p=*/true,
9576 is_declaration)
9577 == error_mark_node)
9578 return error_mark_node;
9580 else
9581 /* Even though `typename' is not present, the proposed resolution
9582 to Core Issue 180 says that in `class A<T>::B', `B' should be
9583 considered a type-name, even if `A<T>' is dependent. */
9584 cp_parser_nested_name_specifier_opt (parser,
9585 /*typename_keyword_p=*/true,
9586 /*check_dependency_p=*/true,
9587 /*type_p=*/true,
9588 is_declaration);
9589 /* For everything but enumeration types, consider a template-id. */
9590 if (tag_type != enum_type)
9592 bool template_p = false;
9593 tree decl;
9595 /* Allow the `template' keyword. */
9596 template_p = cp_parser_optional_template_keyword (parser);
9597 /* If we didn't see `template', we don't know if there's a
9598 template-id or not. */
9599 if (!template_p)
9600 cp_parser_parse_tentatively (parser);
9601 /* Parse the template-id. */
9602 decl = cp_parser_template_id (parser, template_p,
9603 /*check_dependency_p=*/true,
9604 is_declaration);
9605 /* If we didn't find a template-id, look for an ordinary
9606 identifier. */
9607 if (!template_p && !cp_parser_parse_definitely (parser))
9609 /* If DECL is a TEMPLATE_ID_EXPR, and the `typename' keyword is
9610 in effect, then we must assume that, upon instantiation, the
9611 template will correspond to a class. */
9612 else if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
9613 && tag_type == typename_type)
9614 type = make_typename_type (parser->scope, decl,
9615 /*complain=*/1);
9616 else
9617 type = TREE_TYPE (decl);
9620 /* For an enumeration type, consider only a plain identifier. */
9621 if (!type)
9623 identifier = cp_parser_identifier (parser);
9625 if (identifier == error_mark_node)
9627 parser->scope = NULL_TREE;
9628 return error_mark_node;
9631 /* For a `typename', we needn't call xref_tag. */
9632 if (tag_type == typename_type)
9633 return cp_parser_make_typename_type (parser, parser->scope,
9634 identifier);
9635 /* Look up a qualified name in the usual way. */
9636 if (parser->scope)
9638 tree decl;
9640 /* In an elaborated-type-specifier, names are assumed to name
9641 types, so we set IS_TYPE to TRUE when calling
9642 cp_parser_lookup_name. */
9643 decl = cp_parser_lookup_name (parser, identifier,
9644 /*is_type=*/true,
9645 /*is_template=*/false,
9646 /*is_namespace=*/false,
9647 /*check_dependency=*/true,
9648 /*ambiguous_p=*/NULL);
9650 /* If we are parsing friend declaration, DECL may be a
9651 TEMPLATE_DECL tree node here. However, we need to check
9652 whether this TEMPLATE_DECL results in valid code. Consider
9653 the following example:
9655 namespace N {
9656 template <class T> class C {};
9658 class X {
9659 template <class T> friend class N::C; // #1, valid code
9661 template <class T> class Y {
9662 friend class N::C; // #2, invalid code
9665 For both case #1 and #2, we arrive at a TEMPLATE_DECL after
9666 name lookup of `N::C'. We see that friend declaration must
9667 be template for the code to be valid. Note that
9668 processing_template_decl does not work here since it is
9669 always 1 for the above two cases. */
9671 decl = (cp_parser_maybe_treat_template_as_class
9672 (decl, /*tag_name_p=*/is_friend
9673 && parser->num_template_parameter_lists));
9675 if (TREE_CODE (decl) != TYPE_DECL)
9677 error ("expected type-name");
9678 return error_mark_node;
9681 if (TREE_CODE (TREE_TYPE (decl)) != TYPENAME_TYPE)
9682 check_elaborated_type_specifier
9683 (tag_type, decl,
9684 (parser->num_template_parameter_lists
9685 || DECL_SELF_REFERENCE_P (decl)));
9687 type = TREE_TYPE (decl);
9689 else
9691 /* An elaborated-type-specifier sometimes introduces a new type and
9692 sometimes names an existing type. Normally, the rule is that it
9693 introduces a new type only if there is not an existing type of
9694 the same name already in scope. For example, given:
9696 struct S {};
9697 void f() { struct S s; }
9699 the `struct S' in the body of `f' is the same `struct S' as in
9700 the global scope; the existing definition is used. However, if
9701 there were no global declaration, this would introduce a new
9702 local class named `S'.
9704 An exception to this rule applies to the following code:
9706 namespace N { struct S; }
9708 Here, the elaborated-type-specifier names a new type
9709 unconditionally; even if there is already an `S' in the
9710 containing scope this declaration names a new type.
9711 This exception only applies if the elaborated-type-specifier
9712 forms the complete declaration:
9714 [class.name]
9716 A declaration consisting solely of `class-key identifier ;' is
9717 either a redeclaration of the name in the current scope or a
9718 forward declaration of the identifier as a class name. It
9719 introduces the name into the current scope.
9721 We are in this situation precisely when the next token is a `;'.
9723 An exception to the exception is that a `friend' declaration does
9724 *not* name a new type; i.e., given:
9726 struct S { friend struct T; };
9728 `T' is not a new type in the scope of `S'.
9730 Also, `new struct S' or `sizeof (struct S)' never results in the
9731 definition of a new type; a new type can only be declared in a
9732 declaration context. */
9734 /* Warn about attributes. They are ignored. */
9735 if (attributes)
9736 warning ("type attributes are honored only at type definition");
9738 type = xref_tag (tag_type, identifier,
9739 (is_friend
9740 || !is_declaration
9741 || cp_lexer_next_token_is_not (parser->lexer,
9742 CPP_SEMICOLON)),
9743 parser->num_template_parameter_lists);
9746 if (tag_type != enum_type)
9747 cp_parser_check_class_key (tag_type, type);
9749 /* A "<" cannot follow an elaborated type specifier. If that
9750 happens, the user was probably trying to form a template-id. */
9751 cp_parser_check_for_invalid_template_id (parser, type);
9753 return type;
9756 /* Parse an enum-specifier.
9758 enum-specifier:
9759 enum identifier [opt] { enumerator-list [opt] }
9761 GNU Extensions:
9762 enum identifier [opt] { enumerator-list [opt] } attributes
9764 Returns an ENUM_TYPE representing the enumeration. */
9766 static tree
9767 cp_parser_enum_specifier (cp_parser* parser)
9769 tree identifier;
9770 tree type;
9772 /* Caller guarantees that the current token is 'enum', an identifier
9773 possibly follows, and the token after that is an opening brace.
9774 If we don't have an identifier, fabricate an anonymous name for
9775 the enumeration being defined. */
9776 cp_lexer_consume_token (parser->lexer);
9778 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
9779 identifier = cp_parser_identifier (parser);
9780 else
9781 identifier = make_anon_name ();
9783 /* Issue an error message if type-definitions are forbidden here. */
9784 cp_parser_check_type_definition (parser);
9786 /* Create the new type. We do this before consuming the opening brace
9787 so the enum will be recorded as being on the line of its tag (or the
9788 'enum' keyword, if there is no tag). */
9789 type = start_enum (identifier);
9791 /* Consume the opening brace. */
9792 cp_lexer_consume_token (parser->lexer);
9794 /* If the next token is not '}', then there are some enumerators. */
9795 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_BRACE))
9796 cp_parser_enumerator_list (parser, type);
9798 /* Consume the final '}'. */
9799 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
9801 /* Look for trailing attributes to apply to this enumeration, and
9802 apply them if appropriate. */
9803 if (cp_parser_allow_gnu_extensions_p (parser))
9805 tree trailing_attr = cp_parser_attributes_opt (parser);
9806 cplus_decl_attributes (&type,
9807 trailing_attr,
9808 (int) ATTR_FLAG_TYPE_IN_PLACE);
9811 /* Finish up the enumeration. */
9812 finish_enum (type);
9814 return type;
9817 /* Parse an enumerator-list. The enumerators all have the indicated
9818 TYPE.
9820 enumerator-list:
9821 enumerator-definition
9822 enumerator-list , enumerator-definition */
9824 static void
9825 cp_parser_enumerator_list (cp_parser* parser, tree type)
9827 while (true)
9829 /* Parse an enumerator-definition. */
9830 cp_parser_enumerator_definition (parser, type);
9832 /* If the next token is not a ',', we've reached the end of
9833 the list. */
9834 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
9835 break;
9836 /* Otherwise, consume the `,' and keep going. */
9837 cp_lexer_consume_token (parser->lexer);
9838 /* If the next token is a `}', there is a trailing comma. */
9839 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_BRACE))
9841 if (pedantic && !in_system_header)
9842 pedwarn ("comma at end of enumerator list");
9843 break;
9848 /* Parse an enumerator-definition. The enumerator has the indicated
9849 TYPE.
9851 enumerator-definition:
9852 enumerator
9853 enumerator = constant-expression
9855 enumerator:
9856 identifier */
9858 static void
9859 cp_parser_enumerator_definition (cp_parser* parser, tree type)
9861 tree identifier;
9862 tree value;
9864 /* Look for the identifier. */
9865 identifier = cp_parser_identifier (parser);
9866 if (identifier == error_mark_node)
9867 return;
9869 /* If the next token is an '=', then there is an explicit value. */
9870 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
9872 /* Consume the `=' token. */
9873 cp_lexer_consume_token (parser->lexer);
9874 /* Parse the value. */
9875 value = cp_parser_constant_expression (parser,
9876 /*allow_non_constant_p=*/false,
9877 NULL);
9879 else
9880 value = NULL_TREE;
9882 /* Create the enumerator. */
9883 build_enumerator (identifier, value, type);
9886 /* Parse a namespace-name.
9888 namespace-name:
9889 original-namespace-name
9890 namespace-alias
9892 Returns the NAMESPACE_DECL for the namespace. */
9894 static tree
9895 cp_parser_namespace_name (cp_parser* parser)
9897 tree identifier;
9898 tree namespace_decl;
9900 /* Get the name of the namespace. */
9901 identifier = cp_parser_identifier (parser);
9902 if (identifier == error_mark_node)
9903 return error_mark_node;
9905 /* Look up the identifier in the currently active scope. Look only
9906 for namespaces, due to:
9908 [basic.lookup.udir]
9910 When looking up a namespace-name in a using-directive or alias
9911 definition, only namespace names are considered.
9913 And:
9915 [basic.lookup.qual]
9917 During the lookup of a name preceding the :: scope resolution
9918 operator, object, function, and enumerator names are ignored.
9920 (Note that cp_parser_class_or_namespace_name only calls this
9921 function if the token after the name is the scope resolution
9922 operator.) */
9923 namespace_decl = cp_parser_lookup_name (parser, identifier,
9924 /*is_type=*/false,
9925 /*is_template=*/false,
9926 /*is_namespace=*/true,
9927 /*check_dependency=*/true,
9928 /*ambiguous_p=*/NULL);
9929 /* If it's not a namespace, issue an error. */
9930 if (namespace_decl == error_mark_node
9931 || TREE_CODE (namespace_decl) != NAMESPACE_DECL)
9933 cp_parser_error (parser, "expected namespace-name");
9934 namespace_decl = error_mark_node;
9937 return namespace_decl;
9940 /* Parse a namespace-definition.
9942 namespace-definition:
9943 named-namespace-definition
9944 unnamed-namespace-definition
9946 named-namespace-definition:
9947 original-namespace-definition
9948 extension-namespace-definition
9950 original-namespace-definition:
9951 namespace identifier { namespace-body }
9953 extension-namespace-definition:
9954 namespace original-namespace-name { namespace-body }
9956 unnamed-namespace-definition:
9957 namespace { namespace-body } */
9959 static void
9960 cp_parser_namespace_definition (cp_parser* parser)
9962 tree identifier;
9964 /* Look for the `namespace' keyword. */
9965 cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
9967 /* Get the name of the namespace. We do not attempt to distinguish
9968 between an original-namespace-definition and an
9969 extension-namespace-definition at this point. The semantic
9970 analysis routines are responsible for that. */
9971 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
9972 identifier = cp_parser_identifier (parser);
9973 else
9974 identifier = NULL_TREE;
9976 /* Look for the `{' to start the namespace. */
9977 cp_parser_require (parser, CPP_OPEN_BRACE, "`{'");
9978 /* Start the namespace. */
9979 push_namespace (identifier);
9980 /* Parse the body of the namespace. */
9981 cp_parser_namespace_body (parser);
9982 /* Finish the namespace. */
9983 pop_namespace ();
9984 /* Look for the final `}'. */
9985 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
9988 /* Parse a namespace-body.
9990 namespace-body:
9991 declaration-seq [opt] */
9993 static void
9994 cp_parser_namespace_body (cp_parser* parser)
9996 cp_parser_declaration_seq_opt (parser);
9999 /* Parse a namespace-alias-definition.
10001 namespace-alias-definition:
10002 namespace identifier = qualified-namespace-specifier ; */
10004 static void
10005 cp_parser_namespace_alias_definition (cp_parser* parser)
10007 tree identifier;
10008 tree namespace_specifier;
10010 /* Look for the `namespace' keyword. */
10011 cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
10012 /* Look for the identifier. */
10013 identifier = cp_parser_identifier (parser);
10014 if (identifier == error_mark_node)
10015 return;
10016 /* Look for the `=' token. */
10017 cp_parser_require (parser, CPP_EQ, "`='");
10018 /* Look for the qualified-namespace-specifier. */
10019 namespace_specifier
10020 = cp_parser_qualified_namespace_specifier (parser);
10021 /* Look for the `;' token. */
10022 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10024 /* Register the alias in the symbol table. */
10025 do_namespace_alias (identifier, namespace_specifier);
10028 /* Parse a qualified-namespace-specifier.
10030 qualified-namespace-specifier:
10031 :: [opt] nested-name-specifier [opt] namespace-name
10033 Returns a NAMESPACE_DECL corresponding to the specified
10034 namespace. */
10036 static tree
10037 cp_parser_qualified_namespace_specifier (cp_parser* parser)
10039 /* Look for the optional `::'. */
10040 cp_parser_global_scope_opt (parser,
10041 /*current_scope_valid_p=*/false);
10043 /* Look for the optional nested-name-specifier. */
10044 cp_parser_nested_name_specifier_opt (parser,
10045 /*typename_keyword_p=*/false,
10046 /*check_dependency_p=*/true,
10047 /*type_p=*/false,
10048 /*is_declaration=*/true);
10050 return cp_parser_namespace_name (parser);
10053 /* Parse a using-declaration.
10055 using-declaration:
10056 using typename [opt] :: [opt] nested-name-specifier unqualified-id ;
10057 using :: unqualified-id ; */
10059 static void
10060 cp_parser_using_declaration (cp_parser* parser)
10062 cp_token *token;
10063 bool typename_p = false;
10064 bool global_scope_p;
10065 tree decl;
10066 tree identifier;
10067 tree qscope;
10069 /* Look for the `using' keyword. */
10070 cp_parser_require_keyword (parser, RID_USING, "`using'");
10072 /* Peek at the next token. */
10073 token = cp_lexer_peek_token (parser->lexer);
10074 /* See if it's `typename'. */
10075 if (token->keyword == RID_TYPENAME)
10077 /* Remember that we've seen it. */
10078 typename_p = true;
10079 /* Consume the `typename' token. */
10080 cp_lexer_consume_token (parser->lexer);
10083 /* Look for the optional global scope qualification. */
10084 global_scope_p
10085 = (cp_parser_global_scope_opt (parser,
10086 /*current_scope_valid_p=*/false)
10087 != NULL_TREE);
10089 /* If we saw `typename', or didn't see `::', then there must be a
10090 nested-name-specifier present. */
10091 if (typename_p || !global_scope_p)
10092 qscope = cp_parser_nested_name_specifier (parser, typename_p,
10093 /*check_dependency_p=*/true,
10094 /*type_p=*/false,
10095 /*is_declaration=*/true);
10096 /* Otherwise, we could be in either of the two productions. In that
10097 case, treat the nested-name-specifier as optional. */
10098 else
10099 qscope = cp_parser_nested_name_specifier_opt (parser,
10100 /*typename_keyword_p=*/false,
10101 /*check_dependency_p=*/true,
10102 /*type_p=*/false,
10103 /*is_declaration=*/true);
10104 if (!qscope)
10105 qscope = global_namespace;
10107 /* Parse the unqualified-id. */
10108 identifier = cp_parser_unqualified_id (parser,
10109 /*template_keyword_p=*/false,
10110 /*check_dependency_p=*/true,
10111 /*declarator_p=*/true);
10113 /* The function we call to handle a using-declaration is different
10114 depending on what scope we are in. */
10115 if (identifier == error_mark_node)
10117 else if (TREE_CODE (identifier) != IDENTIFIER_NODE
10118 && TREE_CODE (identifier) != BIT_NOT_EXPR)
10119 /* [namespace.udecl]
10121 A using declaration shall not name a template-id. */
10122 error ("a template-id may not appear in a using-declaration");
10123 else
10125 if (at_class_scope_p ())
10127 /* Create the USING_DECL. */
10128 decl = do_class_using_decl (build_nt (SCOPE_REF,
10129 parser->scope,
10130 identifier));
10131 /* Add it to the list of members in this class. */
10132 finish_member_declaration (decl);
10134 else
10136 decl = cp_parser_lookup_name_simple (parser, identifier);
10137 if (decl == error_mark_node)
10138 cp_parser_name_lookup_error (parser, identifier, decl, NULL);
10139 else if (!at_namespace_scope_p ())
10140 do_local_using_decl (decl, qscope, identifier);
10141 else
10142 do_toplevel_using_decl (decl, qscope, identifier);
10146 /* Look for the final `;'. */
10147 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10150 /* Parse a using-directive.
10152 using-directive:
10153 using namespace :: [opt] nested-name-specifier [opt]
10154 namespace-name ; */
10156 static void
10157 cp_parser_using_directive (cp_parser* parser)
10159 tree namespace_decl;
10160 tree attribs;
10162 /* Look for the `using' keyword. */
10163 cp_parser_require_keyword (parser, RID_USING, "`using'");
10164 /* And the `namespace' keyword. */
10165 cp_parser_require_keyword (parser, RID_NAMESPACE, "`namespace'");
10166 /* Look for the optional `::' operator. */
10167 cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false);
10168 /* And the optional nested-name-specifier. */
10169 cp_parser_nested_name_specifier_opt (parser,
10170 /*typename_keyword_p=*/false,
10171 /*check_dependency_p=*/true,
10172 /*type_p=*/false,
10173 /*is_declaration=*/true);
10174 /* Get the namespace being used. */
10175 namespace_decl = cp_parser_namespace_name (parser);
10176 /* And any specified attributes. */
10177 attribs = cp_parser_attributes_opt (parser);
10178 /* Update the symbol table. */
10179 parse_using_directive (namespace_decl, attribs);
10180 /* Look for the final `;'. */
10181 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10184 /* Parse an asm-definition.
10186 asm-definition:
10187 asm ( string-literal ) ;
10189 GNU Extension:
10191 asm-definition:
10192 asm volatile [opt] ( string-literal ) ;
10193 asm volatile [opt] ( string-literal : asm-operand-list [opt] ) ;
10194 asm volatile [opt] ( string-literal : asm-operand-list [opt]
10195 : asm-operand-list [opt] ) ;
10196 asm volatile [opt] ( string-literal : asm-operand-list [opt]
10197 : asm-operand-list [opt]
10198 : asm-operand-list [opt] ) ; */
10200 static void
10201 cp_parser_asm_definition (cp_parser* parser)
10203 tree string;
10204 tree outputs = NULL_TREE;
10205 tree inputs = NULL_TREE;
10206 tree clobbers = NULL_TREE;
10207 tree asm_stmt;
10208 bool volatile_p = false;
10209 bool extended_p = false;
10211 /* Look for the `asm' keyword. */
10212 cp_parser_require_keyword (parser, RID_ASM, "`asm'");
10213 /* See if the next token is `volatile'. */
10214 if (cp_parser_allow_gnu_extensions_p (parser)
10215 && cp_lexer_next_token_is_keyword (parser->lexer, RID_VOLATILE))
10217 /* Remember that we saw the `volatile' keyword. */
10218 volatile_p = true;
10219 /* Consume the token. */
10220 cp_lexer_consume_token (parser->lexer);
10222 /* Look for the opening `('. */
10223 if (!cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
10224 return;
10225 /* Look for the string. */
10226 string = cp_parser_string_literal (parser, false, false);
10227 if (string == error_mark_node)
10229 cp_parser_skip_to_closing_parenthesis (parser, true, false,
10230 /*consume_paren=*/true);
10231 return;
10234 /* If we're allowing GNU extensions, check for the extended assembly
10235 syntax. Unfortunately, the `:' tokens need not be separated by
10236 a space in C, and so, for compatibility, we tolerate that here
10237 too. Doing that means that we have to treat the `::' operator as
10238 two `:' tokens. */
10239 if (cp_parser_allow_gnu_extensions_p (parser)
10240 && at_function_scope_p ()
10241 && (cp_lexer_next_token_is (parser->lexer, CPP_COLON)
10242 || cp_lexer_next_token_is (parser->lexer, CPP_SCOPE)))
10244 bool inputs_p = false;
10245 bool clobbers_p = false;
10247 /* The extended syntax was used. */
10248 extended_p = true;
10250 /* Look for outputs. */
10251 if (cp_lexer_next_token_is (parser->lexer, CPP_COLON))
10253 /* Consume the `:'. */
10254 cp_lexer_consume_token (parser->lexer);
10255 /* Parse the output-operands. */
10256 if (cp_lexer_next_token_is_not (parser->lexer,
10257 CPP_COLON)
10258 && cp_lexer_next_token_is_not (parser->lexer,
10259 CPP_SCOPE)
10260 && cp_lexer_next_token_is_not (parser->lexer,
10261 CPP_CLOSE_PAREN))
10262 outputs = cp_parser_asm_operand_list (parser);
10264 /* If the next token is `::', there are no outputs, and the
10265 next token is the beginning of the inputs. */
10266 else if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
10267 /* The inputs are coming next. */
10268 inputs_p = true;
10270 /* Look for inputs. */
10271 if (inputs_p
10272 || cp_lexer_next_token_is (parser->lexer, CPP_COLON))
10274 /* Consume the `:' or `::'. */
10275 cp_lexer_consume_token (parser->lexer);
10276 /* Parse the output-operands. */
10277 if (cp_lexer_next_token_is_not (parser->lexer,
10278 CPP_COLON)
10279 && cp_lexer_next_token_is_not (parser->lexer,
10280 CPP_CLOSE_PAREN))
10281 inputs = cp_parser_asm_operand_list (parser);
10283 else if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
10284 /* The clobbers are coming next. */
10285 clobbers_p = true;
10287 /* Look for clobbers. */
10288 if (clobbers_p
10289 || cp_lexer_next_token_is (parser->lexer, CPP_COLON))
10291 /* Consume the `:' or `::'. */
10292 cp_lexer_consume_token (parser->lexer);
10293 /* Parse the clobbers. */
10294 if (cp_lexer_next_token_is_not (parser->lexer,
10295 CPP_CLOSE_PAREN))
10296 clobbers = cp_parser_asm_clobber_list (parser);
10299 /* Look for the closing `)'. */
10300 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
10301 cp_parser_skip_to_closing_parenthesis (parser, true, false,
10302 /*consume_paren=*/true);
10303 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
10305 /* Create the ASM_EXPR. */
10306 if (at_function_scope_p ())
10308 asm_stmt = finish_asm_stmt (volatile_p, string, outputs,
10309 inputs, clobbers);
10310 /* If the extended syntax was not used, mark the ASM_EXPR. */
10311 if (!extended_p)
10313 tree temp = asm_stmt;
10314 if (TREE_CODE (temp) == CLEANUP_POINT_EXPR)
10315 temp = TREE_OPERAND (temp, 0);
10317 ASM_INPUT_P (temp) = 1;
10320 else
10321 assemble_asm (string);
10324 /* Declarators [gram.dcl.decl] */
10326 /* Parse an init-declarator.
10328 init-declarator:
10329 declarator initializer [opt]
10331 GNU Extension:
10333 init-declarator:
10334 declarator asm-specification [opt] attributes [opt] initializer [opt]
10336 function-definition:
10337 decl-specifier-seq [opt] declarator ctor-initializer [opt]
10338 function-body
10339 decl-specifier-seq [opt] declarator function-try-block
10341 GNU Extension:
10343 function-definition:
10344 __extension__ function-definition
10346 The DECL_SPECIFIERS and PREFIX_ATTRIBUTES apply to this declarator.
10347 Returns a representation of the entity declared. If MEMBER_P is TRUE,
10348 then this declarator appears in a class scope. The new DECL created
10349 by this declarator is returned.
10351 If FUNCTION_DEFINITION_ALLOWED_P then we handle the declarator and
10352 for a function-definition here as well. If the declarator is a
10353 declarator for a function-definition, *FUNCTION_DEFINITION_P will
10354 be TRUE upon return. By that point, the function-definition will
10355 have been completely parsed.
10357 FUNCTION_DEFINITION_P may be NULL if FUNCTION_DEFINITION_ALLOWED_P
10358 is FALSE. */
10360 static tree
10361 cp_parser_init_declarator (cp_parser* parser,
10362 cp_decl_specifier_seq *decl_specifiers,
10363 bool function_definition_allowed_p,
10364 bool member_p,
10365 int declares_class_or_enum,
10366 bool* function_definition_p)
10368 cp_token *token;
10369 cp_declarator *declarator;
10370 tree prefix_attributes;
10371 tree attributes;
10372 tree asm_specification;
10373 tree initializer;
10374 tree decl = NULL_TREE;
10375 tree scope;
10376 bool is_initialized;
10377 bool is_parenthesized_init;
10378 bool is_non_constant_init;
10379 int ctor_dtor_or_conv_p;
10380 bool friend_p;
10381 bool pop_p = false;
10383 /* Gather the attributes that were provided with the
10384 decl-specifiers. */
10385 prefix_attributes = decl_specifiers->attributes;
10387 /* Assume that this is not the declarator for a function
10388 definition. */
10389 if (function_definition_p)
10390 *function_definition_p = false;
10392 /* Defer access checks while parsing the declarator; we cannot know
10393 what names are accessible until we know what is being
10394 declared. */
10395 resume_deferring_access_checks ();
10397 /* Parse the declarator. */
10398 declarator
10399 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
10400 &ctor_dtor_or_conv_p,
10401 /*parenthesized_p=*/NULL,
10402 /*member_p=*/false);
10403 /* Gather up the deferred checks. */
10404 stop_deferring_access_checks ();
10406 /* If the DECLARATOR was erroneous, there's no need to go
10407 further. */
10408 if (declarator == cp_error_declarator)
10409 return error_mark_node;
10411 cp_parser_check_for_definition_in_return_type (declarator,
10412 declares_class_or_enum);
10414 /* Figure out what scope the entity declared by the DECLARATOR is
10415 located in. `grokdeclarator' sometimes changes the scope, so
10416 we compute it now. */
10417 scope = get_scope_of_declarator (declarator);
10419 /* If we're allowing GNU extensions, look for an asm-specification
10420 and attributes. */
10421 if (cp_parser_allow_gnu_extensions_p (parser))
10423 /* Look for an asm-specification. */
10424 asm_specification = cp_parser_asm_specification_opt (parser);
10425 /* And attributes. */
10426 attributes = cp_parser_attributes_opt (parser);
10428 else
10430 asm_specification = NULL_TREE;
10431 attributes = NULL_TREE;
10434 /* Peek at the next token. */
10435 token = cp_lexer_peek_token (parser->lexer);
10436 /* Check to see if the token indicates the start of a
10437 function-definition. */
10438 if (cp_parser_token_starts_function_definition_p (token))
10440 if (!function_definition_allowed_p)
10442 /* If a function-definition should not appear here, issue an
10443 error message. */
10444 cp_parser_error (parser,
10445 "a function-definition is not allowed here");
10446 return error_mark_node;
10448 else
10450 /* Neither attributes nor an asm-specification are allowed
10451 on a function-definition. */
10452 if (asm_specification)
10453 error ("an asm-specification is not allowed on a function-definition");
10454 if (attributes)
10455 error ("attributes are not allowed on a function-definition");
10456 /* This is a function-definition. */
10457 *function_definition_p = true;
10459 /* Parse the function definition. */
10460 if (member_p)
10461 decl = cp_parser_save_member_function_body (parser,
10462 decl_specifiers,
10463 declarator,
10464 prefix_attributes);
10465 else
10466 decl
10467 = (cp_parser_function_definition_from_specifiers_and_declarator
10468 (parser, decl_specifiers, prefix_attributes, declarator));
10470 return decl;
10474 /* [dcl.dcl]
10476 Only in function declarations for constructors, destructors, and
10477 type conversions can the decl-specifier-seq be omitted.
10479 We explicitly postpone this check past the point where we handle
10480 function-definitions because we tolerate function-definitions
10481 that are missing their return types in some modes. */
10482 if (!decl_specifiers->any_specifiers_p && ctor_dtor_or_conv_p <= 0)
10484 cp_parser_error (parser,
10485 "expected constructor, destructor, or type conversion");
10486 return error_mark_node;
10489 /* An `=' or an `(' indicates an initializer. */
10490 is_initialized = (token->type == CPP_EQ
10491 || token->type == CPP_OPEN_PAREN);
10492 /* If the init-declarator isn't initialized and isn't followed by a
10493 `,' or `;', it's not a valid init-declarator. */
10494 if (!is_initialized
10495 && token->type != CPP_COMMA
10496 && token->type != CPP_SEMICOLON)
10498 cp_parser_error (parser, "expected initializer");
10499 return error_mark_node;
10502 /* Because start_decl has side-effects, we should only call it if we
10503 know we're going ahead. By this point, we know that we cannot
10504 possibly be looking at any other construct. */
10505 cp_parser_commit_to_tentative_parse (parser);
10507 /* If the decl specifiers were bad, issue an error now that we're
10508 sure this was intended to be a declarator. Then continue
10509 declaring the variable(s), as int, to try to cut down on further
10510 errors. */
10511 if (decl_specifiers->any_specifiers_p
10512 && decl_specifiers->type == error_mark_node)
10514 cp_parser_error (parser, "invalid type in declaration");
10515 decl_specifiers->type = integer_type_node;
10518 /* Check to see whether or not this declaration is a friend. */
10519 friend_p = cp_parser_friend_p (decl_specifiers);
10521 /* Check that the number of template-parameter-lists is OK. */
10522 if (!cp_parser_check_declarator_template_parameters (parser, declarator))
10523 return error_mark_node;
10525 /* Enter the newly declared entry in the symbol table. If we're
10526 processing a declaration in a class-specifier, we wait until
10527 after processing the initializer. */
10528 if (!member_p)
10530 if (parser->in_unbraced_linkage_specification_p)
10532 decl_specifiers->storage_class = sc_extern;
10533 have_extern_spec = false;
10535 decl = start_decl (declarator, decl_specifiers,
10536 is_initialized, attributes, prefix_attributes,
10537 &pop_p);
10539 else if (scope)
10540 /* Enter the SCOPE. That way unqualified names appearing in the
10541 initializer will be looked up in SCOPE. */
10542 pop_p = push_scope (scope);
10544 /* Perform deferred access control checks, now that we know in which
10545 SCOPE the declared entity resides. */
10546 if (!member_p && decl)
10548 tree saved_current_function_decl = NULL_TREE;
10550 /* If the entity being declared is a function, pretend that we
10551 are in its scope. If it is a `friend', it may have access to
10552 things that would not otherwise be accessible. */
10553 if (TREE_CODE (decl) == FUNCTION_DECL)
10555 saved_current_function_decl = current_function_decl;
10556 current_function_decl = decl;
10559 /* Perform the access control checks for the declarator and the
10560 the decl-specifiers. */
10561 perform_deferred_access_checks ();
10563 /* Restore the saved value. */
10564 if (TREE_CODE (decl) == FUNCTION_DECL)
10565 current_function_decl = saved_current_function_decl;
10568 /* Parse the initializer. */
10569 if (is_initialized)
10570 initializer = cp_parser_initializer (parser,
10571 &is_parenthesized_init,
10572 &is_non_constant_init);
10573 else
10575 initializer = NULL_TREE;
10576 is_parenthesized_init = false;
10577 is_non_constant_init = true;
10580 /* The old parser allows attributes to appear after a parenthesized
10581 initializer. Mark Mitchell proposed removing this functionality
10582 on the GCC mailing lists on 2002-08-13. This parser accepts the
10583 attributes -- but ignores them. */
10584 if (cp_parser_allow_gnu_extensions_p (parser) && is_parenthesized_init)
10585 if (cp_parser_attributes_opt (parser))
10586 warning ("attributes after parenthesized initializer ignored");
10588 /* For an in-class declaration, use `grokfield' to create the
10589 declaration. */
10590 if (member_p)
10592 if (pop_p)
10593 pop_scope (scope);
10594 decl = grokfield (declarator, decl_specifiers,
10595 initializer, /*asmspec=*/NULL_TREE,
10596 /*attributes=*/NULL_TREE);
10597 if (decl && TREE_CODE (decl) == FUNCTION_DECL)
10598 cp_parser_save_default_args (parser, decl);
10601 /* Finish processing the declaration. But, skip friend
10602 declarations. */
10603 if (!friend_p && decl && decl != error_mark_node)
10605 cp_finish_decl (decl,
10606 initializer,
10607 asm_specification,
10608 /* If the initializer is in parentheses, then this is
10609 a direct-initialization, which means that an
10610 `explicit' constructor is OK. Otherwise, an
10611 `explicit' constructor cannot be used. */
10612 ((is_parenthesized_init || !is_initialized)
10613 ? 0 : LOOKUP_ONLYCONVERTING));
10614 if (pop_p)
10615 pop_scope (DECL_CONTEXT (decl));
10618 /* Remember whether or not variables were initialized by
10619 constant-expressions. */
10620 if (decl && TREE_CODE (decl) == VAR_DECL
10621 && is_initialized && !is_non_constant_init)
10622 DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl) = true;
10624 return decl;
10627 /* Parse a declarator.
10629 declarator:
10630 direct-declarator
10631 ptr-operator declarator
10633 abstract-declarator:
10634 ptr-operator abstract-declarator [opt]
10635 direct-abstract-declarator
10637 GNU Extensions:
10639 declarator:
10640 attributes [opt] direct-declarator
10641 attributes [opt] ptr-operator declarator
10643 abstract-declarator:
10644 attributes [opt] ptr-operator abstract-declarator [opt]
10645 attributes [opt] direct-abstract-declarator
10647 If CTOR_DTOR_OR_CONV_P is not NULL, *CTOR_DTOR_OR_CONV_P is used to
10648 detect constructor, destructor or conversion operators. It is set
10649 to -1 if the declarator is a name, and +1 if it is a
10650 function. Otherwise it is set to zero. Usually you just want to
10651 test for >0, but internally the negative value is used.
10653 (The reason for CTOR_DTOR_OR_CONV_P is that a declaration must have
10654 a decl-specifier-seq unless it declares a constructor, destructor,
10655 or conversion. It might seem that we could check this condition in
10656 semantic analysis, rather than parsing, but that makes it difficult
10657 to handle something like `f()'. We want to notice that there are
10658 no decl-specifiers, and therefore realize that this is an
10659 expression, not a declaration.)
10661 If PARENTHESIZED_P is non-NULL, *PARENTHESIZED_P is set to true iff
10662 the declarator is a direct-declarator of the form "(...)".
10664 MEMBER_P is true iff this declarator is a member-declarator. */
10666 static cp_declarator *
10667 cp_parser_declarator (cp_parser* parser,
10668 cp_parser_declarator_kind dcl_kind,
10669 int* ctor_dtor_or_conv_p,
10670 bool* parenthesized_p,
10671 bool member_p)
10673 cp_token *token;
10674 cp_declarator *declarator;
10675 enum tree_code code;
10676 cp_cv_quals cv_quals;
10677 tree class_type;
10678 tree attributes = NULL_TREE;
10680 /* Assume this is not a constructor, destructor, or type-conversion
10681 operator. */
10682 if (ctor_dtor_or_conv_p)
10683 *ctor_dtor_or_conv_p = 0;
10685 if (cp_parser_allow_gnu_extensions_p (parser))
10686 attributes = cp_parser_attributes_opt (parser);
10688 /* Peek at the next token. */
10689 token = cp_lexer_peek_token (parser->lexer);
10691 /* Check for the ptr-operator production. */
10692 cp_parser_parse_tentatively (parser);
10693 /* Parse the ptr-operator. */
10694 code = cp_parser_ptr_operator (parser,
10695 &class_type,
10696 &cv_quals);
10697 /* If that worked, then we have a ptr-operator. */
10698 if (cp_parser_parse_definitely (parser))
10700 /* If a ptr-operator was found, then this declarator was not
10701 parenthesized. */
10702 if (parenthesized_p)
10703 *parenthesized_p = true;
10704 /* The dependent declarator is optional if we are parsing an
10705 abstract-declarator. */
10706 if (dcl_kind != CP_PARSER_DECLARATOR_NAMED)
10707 cp_parser_parse_tentatively (parser);
10709 /* Parse the dependent declarator. */
10710 declarator = cp_parser_declarator (parser, dcl_kind,
10711 /*ctor_dtor_or_conv_p=*/NULL,
10712 /*parenthesized_p=*/NULL,
10713 /*member_p=*/false);
10715 /* If we are parsing an abstract-declarator, we must handle the
10716 case where the dependent declarator is absent. */
10717 if (dcl_kind != CP_PARSER_DECLARATOR_NAMED
10718 && !cp_parser_parse_definitely (parser))
10719 declarator = NULL;
10721 /* Build the representation of the ptr-operator. */
10722 if (class_type)
10723 declarator = make_ptrmem_declarator (cv_quals,
10724 class_type,
10725 declarator);
10726 else if (code == INDIRECT_REF)
10727 declarator = make_pointer_declarator (cv_quals, declarator);
10728 else
10729 declarator = make_reference_declarator (cv_quals, declarator);
10731 /* Everything else is a direct-declarator. */
10732 else
10734 if (parenthesized_p)
10735 *parenthesized_p = cp_lexer_next_token_is (parser->lexer,
10736 CPP_OPEN_PAREN);
10737 declarator = cp_parser_direct_declarator (parser, dcl_kind,
10738 ctor_dtor_or_conv_p,
10739 member_p);
10742 if (attributes && declarator != cp_error_declarator)
10743 declarator->attributes = attributes;
10745 return declarator;
10748 /* Parse a direct-declarator or direct-abstract-declarator.
10750 direct-declarator:
10751 declarator-id
10752 direct-declarator ( parameter-declaration-clause )
10753 cv-qualifier-seq [opt]
10754 exception-specification [opt]
10755 direct-declarator [ constant-expression [opt] ]
10756 ( declarator )
10758 direct-abstract-declarator:
10759 direct-abstract-declarator [opt]
10760 ( parameter-declaration-clause )
10761 cv-qualifier-seq [opt]
10762 exception-specification [opt]
10763 direct-abstract-declarator [opt] [ constant-expression [opt] ]
10764 ( abstract-declarator )
10766 Returns a representation of the declarator. DCL_KIND is
10767 CP_PARSER_DECLARATOR_ABSTRACT, if we are parsing a
10768 direct-abstract-declarator. It is CP_PARSER_DECLARATOR_NAMED, if
10769 we are parsing a direct-declarator. It is
10770 CP_PARSER_DECLARATOR_EITHER, if we can accept either - in the case
10771 of ambiguity we prefer an abstract declarator, as per
10772 [dcl.ambig.res]. CTOR_DTOR_OR_CONV_P and MEMBER_P are as for
10773 cp_parser_declarator. */
10775 static cp_declarator *
10776 cp_parser_direct_declarator (cp_parser* parser,
10777 cp_parser_declarator_kind dcl_kind,
10778 int* ctor_dtor_or_conv_p,
10779 bool member_p)
10781 cp_token *token;
10782 cp_declarator *declarator = NULL;
10783 tree scope = NULL_TREE;
10784 bool saved_default_arg_ok_p = parser->default_arg_ok_p;
10785 bool saved_in_declarator_p = parser->in_declarator_p;
10786 bool first = true;
10787 bool pop_p = false;
10789 while (true)
10791 /* Peek at the next token. */
10792 token = cp_lexer_peek_token (parser->lexer);
10793 if (token->type == CPP_OPEN_PAREN)
10795 /* This is either a parameter-declaration-clause, or a
10796 parenthesized declarator. When we know we are parsing a
10797 named declarator, it must be a parenthesized declarator
10798 if FIRST is true. For instance, `(int)' is a
10799 parameter-declaration-clause, with an omitted
10800 direct-abstract-declarator. But `((*))', is a
10801 parenthesized abstract declarator. Finally, when T is a
10802 template parameter `(T)' is a
10803 parameter-declaration-clause, and not a parenthesized
10804 named declarator.
10806 We first try and parse a parameter-declaration-clause,
10807 and then try a nested declarator (if FIRST is true).
10809 It is not an error for it not to be a
10810 parameter-declaration-clause, even when FIRST is
10811 false. Consider,
10813 int i (int);
10814 int i (3);
10816 The first is the declaration of a function while the
10817 second is a the definition of a variable, including its
10818 initializer.
10820 Having seen only the parenthesis, we cannot know which of
10821 these two alternatives should be selected. Even more
10822 complex are examples like:
10824 int i (int (a));
10825 int i (int (3));
10827 The former is a function-declaration; the latter is a
10828 variable initialization.
10830 Thus again, we try a parameter-declaration-clause, and if
10831 that fails, we back out and return. */
10833 if (!first || dcl_kind != CP_PARSER_DECLARATOR_NAMED)
10835 cp_parameter_declarator *params;
10836 unsigned saved_num_template_parameter_lists;
10838 /* In a member-declarator, the only valid interpretation
10839 of a parenthesis is the start of a
10840 parameter-declaration-clause. (It is invalid to
10841 initialize a static data member with a parenthesized
10842 initializer; only the "=" form of initialization is
10843 permitted.) */
10844 if (!member_p)
10845 cp_parser_parse_tentatively (parser);
10847 /* Consume the `('. */
10848 cp_lexer_consume_token (parser->lexer);
10849 if (first)
10851 /* If this is going to be an abstract declarator, we're
10852 in a declarator and we can't have default args. */
10853 parser->default_arg_ok_p = false;
10854 parser->in_declarator_p = true;
10857 /* Inside the function parameter list, surrounding
10858 template-parameter-lists do not apply. */
10859 saved_num_template_parameter_lists
10860 = parser->num_template_parameter_lists;
10861 parser->num_template_parameter_lists = 0;
10863 /* Parse the parameter-declaration-clause. */
10864 params = cp_parser_parameter_declaration_clause (parser);
10866 parser->num_template_parameter_lists
10867 = saved_num_template_parameter_lists;
10869 /* If all went well, parse the cv-qualifier-seq and the
10870 exception-specification. */
10871 if (member_p || cp_parser_parse_definitely (parser))
10873 cp_cv_quals cv_quals;
10874 tree exception_specification;
10876 if (ctor_dtor_or_conv_p)
10877 *ctor_dtor_or_conv_p = *ctor_dtor_or_conv_p < 0;
10878 first = false;
10879 /* Consume the `)'. */
10880 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
10882 /* Parse the cv-qualifier-seq. */
10883 cv_quals = cp_parser_cv_qualifier_seq_opt (parser);
10884 /* And the exception-specification. */
10885 exception_specification
10886 = cp_parser_exception_specification_opt (parser);
10888 /* Create the function-declarator. */
10889 declarator = make_call_declarator (declarator,
10890 params,
10891 cv_quals,
10892 exception_specification);
10893 /* Any subsequent parameter lists are to do with
10894 return type, so are not those of the declared
10895 function. */
10896 parser->default_arg_ok_p = false;
10898 /* Repeat the main loop. */
10899 continue;
10903 /* If this is the first, we can try a parenthesized
10904 declarator. */
10905 if (first)
10907 bool saved_in_type_id_in_expr_p;
10909 parser->default_arg_ok_p = saved_default_arg_ok_p;
10910 parser->in_declarator_p = saved_in_declarator_p;
10912 /* Consume the `('. */
10913 cp_lexer_consume_token (parser->lexer);
10914 /* Parse the nested declarator. */
10915 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
10916 parser->in_type_id_in_expr_p = true;
10917 declarator
10918 = cp_parser_declarator (parser, dcl_kind, ctor_dtor_or_conv_p,
10919 /*parenthesized_p=*/NULL,
10920 member_p);
10921 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
10922 first = false;
10923 /* Expect a `)'. */
10924 if (!cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'"))
10925 declarator = cp_error_declarator;
10926 if (declarator == cp_error_declarator)
10927 break;
10929 goto handle_declarator;
10931 /* Otherwise, we must be done. */
10932 else
10933 break;
10935 else if ((!first || dcl_kind != CP_PARSER_DECLARATOR_NAMED)
10936 && token->type == CPP_OPEN_SQUARE)
10938 /* Parse an array-declarator. */
10939 tree bounds;
10941 if (ctor_dtor_or_conv_p)
10942 *ctor_dtor_or_conv_p = 0;
10944 first = false;
10945 parser->default_arg_ok_p = false;
10946 parser->in_declarator_p = true;
10947 /* Consume the `['. */
10948 cp_lexer_consume_token (parser->lexer);
10949 /* Peek at the next token. */
10950 token = cp_lexer_peek_token (parser->lexer);
10951 /* If the next token is `]', then there is no
10952 constant-expression. */
10953 if (token->type != CPP_CLOSE_SQUARE)
10955 bool non_constant_p;
10957 bounds
10958 = cp_parser_constant_expression (parser,
10959 /*allow_non_constant=*/true,
10960 &non_constant_p);
10961 if (!non_constant_p)
10962 bounds = fold_non_dependent_expr (bounds);
10963 else if (!at_function_scope_p ())
10965 error ("array bound is not an integer constant");
10966 bounds = error_mark_node;
10969 else
10970 bounds = NULL_TREE;
10971 /* Look for the closing `]'. */
10972 if (!cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'"))
10974 declarator = cp_error_declarator;
10975 break;
10978 declarator = make_array_declarator (declarator, bounds);
10980 else if (first && dcl_kind != CP_PARSER_DECLARATOR_ABSTRACT)
10982 tree id;
10984 /* Parse a declarator-id */
10985 if (dcl_kind == CP_PARSER_DECLARATOR_EITHER)
10986 cp_parser_parse_tentatively (parser);
10987 id = cp_parser_declarator_id (parser);
10988 if (dcl_kind == CP_PARSER_DECLARATOR_EITHER)
10990 if (!cp_parser_parse_definitely (parser))
10991 id = error_mark_node;
10992 else if (TREE_CODE (id) != IDENTIFIER_NODE)
10994 cp_parser_error (parser, "expected unqualified-id");
10995 id = error_mark_node;
10999 if (id == error_mark_node)
11001 declarator = cp_error_declarator;
11002 break;
11005 if (TREE_CODE (id) == SCOPE_REF && at_namespace_scope_p ())
11007 tree scope = TREE_OPERAND (id, 0);
11009 /* In the declaration of a member of a template class
11010 outside of the class itself, the SCOPE will sometimes
11011 be a TYPENAME_TYPE. For example, given:
11013 template <typename T>
11014 int S<T>::R::i = 3;
11016 the SCOPE will be a TYPENAME_TYPE for `S<T>::R'. In
11017 this context, we must resolve S<T>::R to an ordinary
11018 type, rather than a typename type.
11020 The reason we normally avoid resolving TYPENAME_TYPEs
11021 is that a specialization of `S' might render
11022 `S<T>::R' not a type. However, if `S' is
11023 specialized, then this `i' will not be used, so there
11024 is no harm in resolving the types here. */
11025 if (TREE_CODE (scope) == TYPENAME_TYPE)
11027 tree type;
11029 /* Resolve the TYPENAME_TYPE. */
11030 type = resolve_typename_type (scope,
11031 /*only_current_p=*/false);
11032 /* If that failed, the declarator is invalid. */
11033 if (type == error_mark_node)
11034 error ("%<%T::%D%> is not a type",
11035 TYPE_CONTEXT (scope),
11036 TYPE_IDENTIFIER (scope));
11037 /* Build a new DECLARATOR. */
11038 id = build_nt (SCOPE_REF, type, TREE_OPERAND (id, 1));
11042 declarator = make_id_declarator (id);
11043 if (id)
11045 tree class_type;
11046 tree unqualified_name;
11048 if (TREE_CODE (id) == SCOPE_REF
11049 && CLASS_TYPE_P (TREE_OPERAND (id, 0)))
11051 class_type = TREE_OPERAND (id, 0);
11052 unqualified_name = TREE_OPERAND (id, 1);
11054 else
11056 class_type = current_class_type;
11057 unqualified_name = id;
11060 if (class_type)
11062 if (TREE_CODE (unqualified_name) == BIT_NOT_EXPR)
11063 declarator->u.id.sfk = sfk_destructor;
11064 else if (IDENTIFIER_TYPENAME_P (unqualified_name))
11065 declarator->u.id.sfk = sfk_conversion;
11066 else if (constructor_name_p (unqualified_name,
11067 class_type)
11068 || (TREE_CODE (unqualified_name) == TYPE_DECL
11069 && same_type_p (TREE_TYPE (unqualified_name),
11070 class_type)))
11071 declarator->u.id.sfk = sfk_constructor;
11073 if (ctor_dtor_or_conv_p && declarator->u.id.sfk != sfk_none)
11074 *ctor_dtor_or_conv_p = -1;
11075 if (TREE_CODE (id) == SCOPE_REF
11076 && TREE_CODE (unqualified_name) == TYPE_DECL
11077 && CLASSTYPE_USE_TEMPLATE (TREE_TYPE (unqualified_name)))
11079 error ("invalid use of constructor as a template");
11080 inform ("use %<%T::%D%> instead of %<%T::%T%> to name "
11081 "the constructor in a qualified name",
11082 class_type,
11083 DECL_NAME (TYPE_TI_TEMPLATE (class_type)),
11084 class_type, class_type);
11089 handle_declarator:;
11090 scope = get_scope_of_declarator (declarator);
11091 if (scope)
11092 /* Any names that appear after the declarator-id for a
11093 member are looked up in the containing scope. */
11094 pop_p = push_scope (scope);
11095 parser->in_declarator_p = true;
11096 if ((ctor_dtor_or_conv_p && *ctor_dtor_or_conv_p)
11097 || (declarator && declarator->kind == cdk_id))
11098 /* Default args are only allowed on function
11099 declarations. */
11100 parser->default_arg_ok_p = saved_default_arg_ok_p;
11101 else
11102 parser->default_arg_ok_p = false;
11104 first = false;
11106 /* We're done. */
11107 else
11108 break;
11111 /* For an abstract declarator, we might wind up with nothing at this
11112 point. That's an error; the declarator is not optional. */
11113 if (!declarator)
11114 cp_parser_error (parser, "expected declarator");
11116 /* If we entered a scope, we must exit it now. */
11117 if (pop_p)
11118 pop_scope (scope);
11120 parser->default_arg_ok_p = saved_default_arg_ok_p;
11121 parser->in_declarator_p = saved_in_declarator_p;
11123 return declarator;
11126 /* Parse a ptr-operator.
11128 ptr-operator:
11129 * cv-qualifier-seq [opt]
11131 :: [opt] nested-name-specifier * cv-qualifier-seq [opt]
11133 GNU Extension:
11135 ptr-operator:
11136 & cv-qualifier-seq [opt]
11138 Returns INDIRECT_REF if a pointer, or pointer-to-member, was used.
11139 Returns ADDR_EXPR if a reference was used. In the case of a
11140 pointer-to-member, *TYPE is filled in with the TYPE containing the
11141 member. *CV_QUALS is filled in with the cv-qualifier-seq, or
11142 TYPE_UNQUALIFIED, if there are no cv-qualifiers. Returns
11143 ERROR_MARK if an error occurred. */
11145 static enum tree_code
11146 cp_parser_ptr_operator (cp_parser* parser,
11147 tree* type,
11148 cp_cv_quals *cv_quals)
11150 enum tree_code code = ERROR_MARK;
11151 cp_token *token;
11153 /* Assume that it's not a pointer-to-member. */
11154 *type = NULL_TREE;
11155 /* And that there are no cv-qualifiers. */
11156 *cv_quals = TYPE_UNQUALIFIED;
11158 /* Peek at the next token. */
11159 token = cp_lexer_peek_token (parser->lexer);
11160 /* If it's a `*' or `&' we have a pointer or reference. */
11161 if (token->type == CPP_MULT || token->type == CPP_AND)
11163 /* Remember which ptr-operator we were processing. */
11164 code = (token->type == CPP_AND ? ADDR_EXPR : INDIRECT_REF);
11166 /* Consume the `*' or `&'. */
11167 cp_lexer_consume_token (parser->lexer);
11169 /* A `*' can be followed by a cv-qualifier-seq, and so can a
11170 `&', if we are allowing GNU extensions. (The only qualifier
11171 that can legally appear after `&' is `restrict', but that is
11172 enforced during semantic analysis. */
11173 if (code == INDIRECT_REF
11174 || cp_parser_allow_gnu_extensions_p (parser))
11175 *cv_quals = cp_parser_cv_qualifier_seq_opt (parser);
11177 else
11179 /* Try the pointer-to-member case. */
11180 cp_parser_parse_tentatively (parser);
11181 /* Look for the optional `::' operator. */
11182 cp_parser_global_scope_opt (parser,
11183 /*current_scope_valid_p=*/false);
11184 /* Look for the nested-name specifier. */
11185 cp_parser_nested_name_specifier (parser,
11186 /*typename_keyword_p=*/false,
11187 /*check_dependency_p=*/true,
11188 /*type_p=*/false,
11189 /*is_declaration=*/false);
11190 /* If we found it, and the next token is a `*', then we are
11191 indeed looking at a pointer-to-member operator. */
11192 if (!cp_parser_error_occurred (parser)
11193 && cp_parser_require (parser, CPP_MULT, "`*'"))
11195 /* The type of which the member is a member is given by the
11196 current SCOPE. */
11197 *type = parser->scope;
11198 /* The next name will not be qualified. */
11199 parser->scope = NULL_TREE;
11200 parser->qualifying_scope = NULL_TREE;
11201 parser->object_scope = NULL_TREE;
11202 /* Indicate that the `*' operator was used. */
11203 code = INDIRECT_REF;
11204 /* Look for the optional cv-qualifier-seq. */
11205 *cv_quals = cp_parser_cv_qualifier_seq_opt (parser);
11207 /* If that didn't work we don't have a ptr-operator. */
11208 if (!cp_parser_parse_definitely (parser))
11209 cp_parser_error (parser, "expected ptr-operator");
11212 return code;
11215 /* Parse an (optional) cv-qualifier-seq.
11217 cv-qualifier-seq:
11218 cv-qualifier cv-qualifier-seq [opt]
11220 cv-qualifier:
11221 const
11222 volatile
11224 GNU Extension:
11226 cv-qualifier:
11227 __restrict__
11229 Returns a bitmask representing the cv-qualifiers. */
11231 static cp_cv_quals
11232 cp_parser_cv_qualifier_seq_opt (cp_parser* parser)
11234 cp_cv_quals cv_quals = TYPE_UNQUALIFIED;
11236 while (true)
11238 cp_token *token;
11239 cp_cv_quals cv_qualifier;
11241 /* Peek at the next token. */
11242 token = cp_lexer_peek_token (parser->lexer);
11243 /* See if it's a cv-qualifier. */
11244 switch (token->keyword)
11246 case RID_CONST:
11247 cv_qualifier = TYPE_QUAL_CONST;
11248 break;
11250 case RID_VOLATILE:
11251 cv_qualifier = TYPE_QUAL_VOLATILE;
11252 break;
11254 case RID_RESTRICT:
11255 cv_qualifier = TYPE_QUAL_RESTRICT;
11256 break;
11258 default:
11259 cv_qualifier = TYPE_UNQUALIFIED;
11260 break;
11263 if (!cv_qualifier)
11264 break;
11266 if (cv_quals & cv_qualifier)
11268 error ("duplicate cv-qualifier");
11269 cp_lexer_purge_token (parser->lexer);
11271 else
11273 cp_lexer_consume_token (parser->lexer);
11274 cv_quals |= cv_qualifier;
11278 return cv_quals;
11281 /* Parse a declarator-id.
11283 declarator-id:
11284 id-expression
11285 :: [opt] nested-name-specifier [opt] type-name
11287 In the `id-expression' case, the value returned is as for
11288 cp_parser_id_expression if the id-expression was an unqualified-id.
11289 If the id-expression was a qualified-id, then a SCOPE_REF is
11290 returned. The first operand is the scope (either a NAMESPACE_DECL
11291 or TREE_TYPE), but the second is still just a representation of an
11292 unqualified-id. */
11294 static tree
11295 cp_parser_declarator_id (cp_parser* parser)
11297 tree id_expression;
11299 /* The expression must be an id-expression. Assume that qualified
11300 names are the names of types so that:
11302 template <class T>
11303 int S<T>::R::i = 3;
11305 will work; we must treat `S<T>::R' as the name of a type.
11306 Similarly, assume that qualified names are templates, where
11307 required, so that:
11309 template <class T>
11310 int S<T>::R<T>::i = 3;
11312 will work, too. */
11313 id_expression = cp_parser_id_expression (parser,
11314 /*template_keyword_p=*/false,
11315 /*check_dependency_p=*/false,
11316 /*template_p=*/NULL,
11317 /*declarator_p=*/true);
11318 /* If the name was qualified, create a SCOPE_REF to represent
11319 that. */
11320 if (parser->scope)
11322 id_expression = build_nt (SCOPE_REF, parser->scope, id_expression);
11323 parser->scope = NULL_TREE;
11326 return id_expression;
11329 /* Parse a type-id.
11331 type-id:
11332 type-specifier-seq abstract-declarator [opt]
11334 Returns the TYPE specified. */
11336 static tree
11337 cp_parser_type_id (cp_parser* parser)
11339 cp_decl_specifier_seq type_specifier_seq;
11340 cp_declarator *abstract_declarator;
11342 /* Parse the type-specifier-seq. */
11343 cp_parser_type_specifier_seq (parser, &type_specifier_seq);
11344 if (type_specifier_seq.type == error_mark_node)
11345 return error_mark_node;
11347 /* There might or might not be an abstract declarator. */
11348 cp_parser_parse_tentatively (parser);
11349 /* Look for the declarator. */
11350 abstract_declarator
11351 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_ABSTRACT, NULL,
11352 /*parenthesized_p=*/NULL,
11353 /*member_p=*/false);
11354 /* Check to see if there really was a declarator. */
11355 if (!cp_parser_parse_definitely (parser))
11356 abstract_declarator = NULL;
11358 return groktypename (&type_specifier_seq, abstract_declarator);
11361 /* Parse a type-specifier-seq.
11363 type-specifier-seq:
11364 type-specifier type-specifier-seq [opt]
11366 GNU extension:
11368 type-specifier-seq:
11369 attributes type-specifier-seq [opt]
11371 Sets *TYPE_SPECIFIER_SEQ to represent the sequence. */
11373 static void
11374 cp_parser_type_specifier_seq (cp_parser* parser,
11375 cp_decl_specifier_seq *type_specifier_seq)
11377 bool seen_type_specifier = false;
11379 /* Clear the TYPE_SPECIFIER_SEQ. */
11380 clear_decl_specs (type_specifier_seq);
11382 /* Parse the type-specifiers and attributes. */
11383 while (true)
11385 tree type_specifier;
11387 /* Check for attributes first. */
11388 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_ATTRIBUTE))
11390 type_specifier_seq->attributes =
11391 chainon (type_specifier_seq->attributes,
11392 cp_parser_attributes_opt (parser));
11393 continue;
11396 /* Look for the type-specifier. */
11397 type_specifier = cp_parser_type_specifier (parser,
11398 CP_PARSER_FLAGS_OPTIONAL,
11399 type_specifier_seq,
11400 /*is_declaration=*/false,
11401 NULL,
11402 NULL);
11403 /* If the first type-specifier could not be found, this is not a
11404 type-specifier-seq at all. */
11405 if (!seen_type_specifier && !type_specifier)
11407 cp_parser_error (parser, "expected type-specifier");
11408 type_specifier_seq->type = error_mark_node;
11409 return;
11411 /* If subsequent type-specifiers could not be found, the
11412 type-specifier-seq is complete. */
11413 else if (seen_type_specifier && !type_specifier)
11414 break;
11416 seen_type_specifier = true;
11419 return;
11422 /* Parse a parameter-declaration-clause.
11424 parameter-declaration-clause:
11425 parameter-declaration-list [opt] ... [opt]
11426 parameter-declaration-list , ...
11428 Returns a representation for the parameter declarations. A return
11429 value of NULL indicates a parameter-declaration-clause consisting
11430 only of an ellipsis. */
11432 static cp_parameter_declarator *
11433 cp_parser_parameter_declaration_clause (cp_parser* parser)
11435 cp_parameter_declarator *parameters;
11436 cp_token *token;
11437 bool ellipsis_p;
11438 bool is_error;
11440 /* Peek at the next token. */
11441 token = cp_lexer_peek_token (parser->lexer);
11442 /* Check for trivial parameter-declaration-clauses. */
11443 if (token->type == CPP_ELLIPSIS)
11445 /* Consume the `...' token. */
11446 cp_lexer_consume_token (parser->lexer);
11447 return NULL;
11449 else if (token->type == CPP_CLOSE_PAREN)
11450 /* There are no parameters. */
11452 #ifndef NO_IMPLICIT_EXTERN_C
11453 if (in_system_header && current_class_type == NULL
11454 && current_lang_name == lang_name_c)
11455 return NULL;
11456 else
11457 #endif
11458 return no_parameters;
11460 /* Check for `(void)', too, which is a special case. */
11461 else if (token->keyword == RID_VOID
11462 && (cp_lexer_peek_nth_token (parser->lexer, 2)->type
11463 == CPP_CLOSE_PAREN))
11465 /* Consume the `void' token. */
11466 cp_lexer_consume_token (parser->lexer);
11467 /* There are no parameters. */
11468 return no_parameters;
11471 /* Parse the parameter-declaration-list. */
11472 parameters = cp_parser_parameter_declaration_list (parser, &is_error);
11473 /* If a parse error occurred while parsing the
11474 parameter-declaration-list, then the entire
11475 parameter-declaration-clause is erroneous. */
11476 if (is_error)
11477 return NULL;
11479 /* Peek at the next token. */
11480 token = cp_lexer_peek_token (parser->lexer);
11481 /* If it's a `,', the clause should terminate with an ellipsis. */
11482 if (token->type == CPP_COMMA)
11484 /* Consume the `,'. */
11485 cp_lexer_consume_token (parser->lexer);
11486 /* Expect an ellipsis. */
11487 ellipsis_p
11488 = (cp_parser_require (parser, CPP_ELLIPSIS, "`...'") != NULL);
11490 /* It might also be `...' if the optional trailing `,' was
11491 omitted. */
11492 else if (token->type == CPP_ELLIPSIS)
11494 /* Consume the `...' token. */
11495 cp_lexer_consume_token (parser->lexer);
11496 /* And remember that we saw it. */
11497 ellipsis_p = true;
11499 else
11500 ellipsis_p = false;
11502 /* Finish the parameter list. */
11503 if (parameters && ellipsis_p)
11504 parameters->ellipsis_p = true;
11506 return parameters;
11509 /* Parse a parameter-declaration-list.
11511 parameter-declaration-list:
11512 parameter-declaration
11513 parameter-declaration-list , parameter-declaration
11515 Returns a representation of the parameter-declaration-list, as for
11516 cp_parser_parameter_declaration_clause. However, the
11517 `void_list_node' is never appended to the list. Upon return,
11518 *IS_ERROR will be true iff an error occurred. */
11520 static cp_parameter_declarator *
11521 cp_parser_parameter_declaration_list (cp_parser* parser, bool *is_error)
11523 cp_parameter_declarator *parameters = NULL;
11524 cp_parameter_declarator **tail = &parameters;
11526 /* Assume all will go well. */
11527 *is_error = false;
11529 /* Look for more parameters. */
11530 while (true)
11532 cp_parameter_declarator *parameter;
11533 bool parenthesized_p;
11534 /* Parse the parameter. */
11535 parameter
11536 = cp_parser_parameter_declaration (parser,
11537 /*template_parm_p=*/false,
11538 &parenthesized_p);
11540 /* If a parse error occurred parsing the parameter declaration,
11541 then the entire parameter-declaration-list is erroneous. */
11542 if (!parameter)
11544 *is_error = true;
11545 parameters = NULL;
11546 break;
11548 /* Add the new parameter to the list. */
11549 *tail = parameter;
11550 tail = &parameter->next;
11552 /* Peek at the next token. */
11553 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN)
11554 || cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
11555 /* The parameter-declaration-list is complete. */
11556 break;
11557 else if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
11559 cp_token *token;
11561 /* Peek at the next token. */
11562 token = cp_lexer_peek_nth_token (parser->lexer, 2);
11563 /* If it's an ellipsis, then the list is complete. */
11564 if (token->type == CPP_ELLIPSIS)
11565 break;
11566 /* Otherwise, there must be more parameters. Consume the
11567 `,'. */
11568 cp_lexer_consume_token (parser->lexer);
11569 /* When parsing something like:
11571 int i(float f, double d)
11573 we can tell after seeing the declaration for "f" that we
11574 are not looking at an initialization of a variable "i",
11575 but rather at the declaration of a function "i".
11577 Due to the fact that the parsing of template arguments
11578 (as specified to a template-id) requires backtracking we
11579 cannot use this technique when inside a template argument
11580 list. */
11581 if (!parser->in_template_argument_list_p
11582 && !parser->in_type_id_in_expr_p
11583 && cp_parser_parsing_tentatively (parser)
11584 && !cp_parser_committed_to_tentative_parse (parser)
11585 /* However, a parameter-declaration of the form
11586 "foat(f)" (which is a valid declaration of a
11587 parameter "f") can also be interpreted as an
11588 expression (the conversion of "f" to "float"). */
11589 && !parenthesized_p)
11590 cp_parser_commit_to_tentative_parse (parser);
11592 else
11594 cp_parser_error (parser, "expected %<,%> or %<...%>");
11595 if (!cp_parser_parsing_tentatively (parser)
11596 || cp_parser_committed_to_tentative_parse (parser))
11597 cp_parser_skip_to_closing_parenthesis (parser,
11598 /*recovering=*/true,
11599 /*or_comma=*/false,
11600 /*consume_paren=*/false);
11601 break;
11605 return parameters;
11608 /* Parse a parameter declaration.
11610 parameter-declaration:
11611 decl-specifier-seq declarator
11612 decl-specifier-seq declarator = assignment-expression
11613 decl-specifier-seq abstract-declarator [opt]
11614 decl-specifier-seq abstract-declarator [opt] = assignment-expression
11616 If TEMPLATE_PARM_P is TRUE, then this parameter-declaration
11617 declares a template parameter. (In that case, a non-nested `>'
11618 token encountered during the parsing of the assignment-expression
11619 is not interpreted as a greater-than operator.)
11621 Returns a representation of the parameter, or NULL if an error
11622 occurs. If PARENTHESIZED_P is non-NULL, *PARENTHESIZED_P is set to
11623 true iff the declarator is of the form "(p)". */
11625 static cp_parameter_declarator *
11626 cp_parser_parameter_declaration (cp_parser *parser,
11627 bool template_parm_p,
11628 bool *parenthesized_p)
11630 int declares_class_or_enum;
11631 bool greater_than_is_operator_p;
11632 cp_decl_specifier_seq decl_specifiers;
11633 cp_declarator *declarator;
11634 tree default_argument;
11635 cp_token *token;
11636 const char *saved_message;
11638 /* In a template parameter, `>' is not an operator.
11640 [temp.param]
11642 When parsing a default template-argument for a non-type
11643 template-parameter, the first non-nested `>' is taken as the end
11644 of the template parameter-list rather than a greater-than
11645 operator. */
11646 greater_than_is_operator_p = !template_parm_p;
11648 /* Type definitions may not appear in parameter types. */
11649 saved_message = parser->type_definition_forbidden_message;
11650 parser->type_definition_forbidden_message
11651 = "types may not be defined in parameter types";
11653 /* Parse the declaration-specifiers. */
11654 cp_parser_decl_specifier_seq (parser,
11655 CP_PARSER_FLAGS_NONE,
11656 &decl_specifiers,
11657 &declares_class_or_enum);
11658 /* If an error occurred, there's no reason to attempt to parse the
11659 rest of the declaration. */
11660 if (cp_parser_error_occurred (parser))
11662 parser->type_definition_forbidden_message = saved_message;
11663 return NULL;
11666 /* Peek at the next token. */
11667 token = cp_lexer_peek_token (parser->lexer);
11668 /* If the next token is a `)', `,', `=', `>', or `...', then there
11669 is no declarator. */
11670 if (token->type == CPP_CLOSE_PAREN
11671 || token->type == CPP_COMMA
11672 || token->type == CPP_EQ
11673 || token->type == CPP_ELLIPSIS
11674 || token->type == CPP_GREATER)
11676 declarator = NULL;
11677 if (parenthesized_p)
11678 *parenthesized_p = false;
11680 /* Otherwise, there should be a declarator. */
11681 else
11683 bool saved_default_arg_ok_p = parser->default_arg_ok_p;
11684 parser->default_arg_ok_p = false;
11686 /* After seeing a decl-specifier-seq, if the next token is not a
11687 "(", there is no possibility that the code is a valid
11688 expression. Therefore, if parsing tentatively, we commit at
11689 this point. */
11690 if (!parser->in_template_argument_list_p
11691 /* In an expression context, having seen:
11693 (int((char ...
11695 we cannot be sure whether we are looking at a
11696 function-type (taking a "char" as a parameter) or a cast
11697 of some object of type "char" to "int". */
11698 && !parser->in_type_id_in_expr_p
11699 && cp_parser_parsing_tentatively (parser)
11700 && !cp_parser_committed_to_tentative_parse (parser)
11701 && cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_PAREN))
11702 cp_parser_commit_to_tentative_parse (parser);
11703 /* Parse the declarator. */
11704 declarator = cp_parser_declarator (parser,
11705 CP_PARSER_DECLARATOR_EITHER,
11706 /*ctor_dtor_or_conv_p=*/NULL,
11707 parenthesized_p,
11708 /*member_p=*/false);
11709 parser->default_arg_ok_p = saved_default_arg_ok_p;
11710 /* After the declarator, allow more attributes. */
11711 decl_specifiers.attributes
11712 = chainon (decl_specifiers.attributes,
11713 cp_parser_attributes_opt (parser));
11716 /* The restriction on defining new types applies only to the type
11717 of the parameter, not to the default argument. */
11718 parser->type_definition_forbidden_message = saved_message;
11720 /* If the next token is `=', then process a default argument. */
11721 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
11723 bool saved_greater_than_is_operator_p;
11724 /* Consume the `='. */
11725 cp_lexer_consume_token (parser->lexer);
11727 /* If we are defining a class, then the tokens that make up the
11728 default argument must be saved and processed later. */
11729 if (!template_parm_p && at_class_scope_p ()
11730 && TYPE_BEING_DEFINED (current_class_type))
11732 unsigned depth = 0;
11733 cp_token *first_token;
11734 cp_token *token;
11736 /* Add tokens until we have processed the entire default
11737 argument. We add the range [first_token, token). */
11738 first_token = cp_lexer_peek_token (parser->lexer);
11739 while (true)
11741 bool done = false;
11743 /* Peek at the next token. */
11744 token = cp_lexer_peek_token (parser->lexer);
11745 /* What we do depends on what token we have. */
11746 switch (token->type)
11748 /* In valid code, a default argument must be
11749 immediately followed by a `,' `)', or `...'. */
11750 case CPP_COMMA:
11751 case CPP_CLOSE_PAREN:
11752 case CPP_ELLIPSIS:
11753 /* If we run into a non-nested `;', `}', or `]',
11754 then the code is invalid -- but the default
11755 argument is certainly over. */
11756 case CPP_SEMICOLON:
11757 case CPP_CLOSE_BRACE:
11758 case CPP_CLOSE_SQUARE:
11759 if (depth == 0)
11760 done = true;
11761 /* Update DEPTH, if necessary. */
11762 else if (token->type == CPP_CLOSE_PAREN
11763 || token->type == CPP_CLOSE_BRACE
11764 || token->type == CPP_CLOSE_SQUARE)
11765 --depth;
11766 break;
11768 case CPP_OPEN_PAREN:
11769 case CPP_OPEN_SQUARE:
11770 case CPP_OPEN_BRACE:
11771 ++depth;
11772 break;
11774 case CPP_GREATER:
11775 /* If we see a non-nested `>', and `>' is not an
11776 operator, then it marks the end of the default
11777 argument. */
11778 if (!depth && !greater_than_is_operator_p)
11779 done = true;
11780 break;
11782 /* If we run out of tokens, issue an error message. */
11783 case CPP_EOF:
11784 error ("file ends in default argument");
11785 done = true;
11786 break;
11788 case CPP_NAME:
11789 case CPP_SCOPE:
11790 /* In these cases, we should look for template-ids.
11791 For example, if the default argument is
11792 `X<int, double>()', we need to do name lookup to
11793 figure out whether or not `X' is a template; if
11794 so, the `,' does not end the default argument.
11796 That is not yet done. */
11797 break;
11799 default:
11800 break;
11803 /* If we've reached the end, stop. */
11804 if (done)
11805 break;
11807 /* Add the token to the token block. */
11808 token = cp_lexer_consume_token (parser->lexer);
11811 /* Create a DEFAULT_ARG to represented the unparsed default
11812 argument. */
11813 default_argument = make_node (DEFAULT_ARG);
11814 DEFARG_TOKENS (default_argument)
11815 = cp_token_cache_new (first_token, token);
11817 /* Outside of a class definition, we can just parse the
11818 assignment-expression. */
11819 else
11821 bool saved_local_variables_forbidden_p;
11823 /* Make sure that PARSER->GREATER_THAN_IS_OPERATOR_P is
11824 set correctly. */
11825 saved_greater_than_is_operator_p
11826 = parser->greater_than_is_operator_p;
11827 parser->greater_than_is_operator_p = greater_than_is_operator_p;
11828 /* Local variable names (and the `this' keyword) may not
11829 appear in a default argument. */
11830 saved_local_variables_forbidden_p
11831 = parser->local_variables_forbidden_p;
11832 parser->local_variables_forbidden_p = true;
11833 /* Parse the assignment-expression. */
11834 default_argument = cp_parser_assignment_expression (parser);
11835 /* Restore saved state. */
11836 parser->greater_than_is_operator_p
11837 = saved_greater_than_is_operator_p;
11838 parser->local_variables_forbidden_p
11839 = saved_local_variables_forbidden_p;
11841 if (!parser->default_arg_ok_p)
11843 if (!flag_pedantic_errors)
11844 warning ("deprecated use of default argument for parameter of non-function");
11845 else
11847 error ("default arguments are only permitted for function parameters");
11848 default_argument = NULL_TREE;
11852 else
11853 default_argument = NULL_TREE;
11855 return make_parameter_declarator (&decl_specifiers,
11856 declarator,
11857 default_argument);
11860 /* Parse a function-body.
11862 function-body:
11863 compound_statement */
11865 static void
11866 cp_parser_function_body (cp_parser *parser)
11868 cp_parser_compound_statement (parser, NULL, false);
11871 /* Parse a ctor-initializer-opt followed by a function-body. Return
11872 true if a ctor-initializer was present. */
11874 static bool
11875 cp_parser_ctor_initializer_opt_and_function_body (cp_parser *parser)
11877 tree body;
11878 bool ctor_initializer_p;
11880 /* Begin the function body. */
11881 body = begin_function_body ();
11882 /* Parse the optional ctor-initializer. */
11883 ctor_initializer_p = cp_parser_ctor_initializer_opt (parser);
11884 /* Parse the function-body. */
11885 cp_parser_function_body (parser);
11886 /* Finish the function body. */
11887 finish_function_body (body);
11889 return ctor_initializer_p;
11892 /* Parse an initializer.
11894 initializer:
11895 = initializer-clause
11896 ( expression-list )
11898 Returns a expression representing the initializer. If no
11899 initializer is present, NULL_TREE is returned.
11901 *IS_PARENTHESIZED_INIT is set to TRUE if the `( expression-list )'
11902 production is used, and zero otherwise. *IS_PARENTHESIZED_INIT is
11903 set to FALSE if there is no initializer present. If there is an
11904 initializer, and it is not a constant-expression, *NON_CONSTANT_P
11905 is set to true; otherwise it is set to false. */
11907 static tree
11908 cp_parser_initializer (cp_parser* parser, bool* is_parenthesized_init,
11909 bool* non_constant_p)
11911 cp_token *token;
11912 tree init;
11914 /* Peek at the next token. */
11915 token = cp_lexer_peek_token (parser->lexer);
11917 /* Let our caller know whether or not this initializer was
11918 parenthesized. */
11919 *is_parenthesized_init = (token->type == CPP_OPEN_PAREN);
11920 /* Assume that the initializer is constant. */
11921 *non_constant_p = false;
11923 if (token->type == CPP_EQ)
11925 /* Consume the `='. */
11926 cp_lexer_consume_token (parser->lexer);
11927 /* Parse the initializer-clause. */
11928 init = cp_parser_initializer_clause (parser, non_constant_p);
11930 else if (token->type == CPP_OPEN_PAREN)
11931 init = cp_parser_parenthesized_expression_list (parser, false,
11932 non_constant_p);
11933 else
11935 /* Anything else is an error. */
11936 cp_parser_error (parser, "expected initializer");
11937 init = error_mark_node;
11940 return init;
11943 /* Parse an initializer-clause.
11945 initializer-clause:
11946 assignment-expression
11947 { initializer-list , [opt] }
11950 Returns an expression representing the initializer.
11952 If the `assignment-expression' production is used the value
11953 returned is simply a representation for the expression.
11955 Otherwise, a CONSTRUCTOR is returned. The CONSTRUCTOR_ELTS will be
11956 the elements of the initializer-list (or NULL_TREE, if the last
11957 production is used). The TREE_TYPE for the CONSTRUCTOR will be
11958 NULL_TREE. There is no way to detect whether or not the optional
11959 trailing `,' was provided. NON_CONSTANT_P is as for
11960 cp_parser_initializer. */
11962 static tree
11963 cp_parser_initializer_clause (cp_parser* parser, bool* non_constant_p)
11965 tree initializer;
11967 /* If it is not a `{', then we are looking at an
11968 assignment-expression. */
11969 if (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE))
11971 initializer
11972 = cp_parser_constant_expression (parser,
11973 /*allow_non_constant_p=*/true,
11974 non_constant_p);
11975 if (!*non_constant_p)
11976 initializer = fold_non_dependent_expr (initializer);
11978 else
11980 /* Consume the `{' token. */
11981 cp_lexer_consume_token (parser->lexer);
11982 /* Create a CONSTRUCTOR to represent the braced-initializer. */
11983 initializer = make_node (CONSTRUCTOR);
11984 /* If it's not a `}', then there is a non-trivial initializer. */
11985 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_BRACE))
11987 /* Parse the initializer list. */
11988 CONSTRUCTOR_ELTS (initializer)
11989 = cp_parser_initializer_list (parser, non_constant_p);
11990 /* A trailing `,' token is allowed. */
11991 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
11992 cp_lexer_consume_token (parser->lexer);
11994 /* Now, there should be a trailing `}'. */
11995 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
11998 return initializer;
12001 /* Parse an initializer-list.
12003 initializer-list:
12004 initializer-clause
12005 initializer-list , initializer-clause
12007 GNU Extension:
12009 initializer-list:
12010 identifier : initializer-clause
12011 initializer-list, identifier : initializer-clause
12013 Returns a TREE_LIST. The TREE_VALUE of each node is an expression
12014 for the initializer. If the TREE_PURPOSE is non-NULL, it is the
12015 IDENTIFIER_NODE naming the field to initialize. NON_CONSTANT_P is
12016 as for cp_parser_initializer. */
12018 static tree
12019 cp_parser_initializer_list (cp_parser* parser, bool* non_constant_p)
12021 tree initializers = NULL_TREE;
12023 /* Assume all of the expressions are constant. */
12024 *non_constant_p = false;
12026 /* Parse the rest of the list. */
12027 while (true)
12029 cp_token *token;
12030 tree identifier;
12031 tree initializer;
12032 bool clause_non_constant_p;
12034 /* If the next token is an identifier and the following one is a
12035 colon, we are looking at the GNU designated-initializer
12036 syntax. */
12037 if (cp_parser_allow_gnu_extensions_p (parser)
12038 && cp_lexer_next_token_is (parser->lexer, CPP_NAME)
12039 && cp_lexer_peek_nth_token (parser->lexer, 2)->type == CPP_COLON)
12041 /* Consume the identifier. */
12042 identifier = cp_lexer_consume_token (parser->lexer)->value;
12043 /* Consume the `:'. */
12044 cp_lexer_consume_token (parser->lexer);
12046 else
12047 identifier = NULL_TREE;
12049 /* Parse the initializer. */
12050 initializer = cp_parser_initializer_clause (parser,
12051 &clause_non_constant_p);
12052 /* If any clause is non-constant, so is the entire initializer. */
12053 if (clause_non_constant_p)
12054 *non_constant_p = true;
12055 /* Add it to the list. */
12056 initializers = tree_cons (identifier, initializer, initializers);
12058 /* If the next token is not a comma, we have reached the end of
12059 the list. */
12060 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
12061 break;
12063 /* Peek at the next token. */
12064 token = cp_lexer_peek_nth_token (parser->lexer, 2);
12065 /* If the next token is a `}', then we're still done. An
12066 initializer-clause can have a trailing `,' after the
12067 initializer-list and before the closing `}'. */
12068 if (token->type == CPP_CLOSE_BRACE)
12069 break;
12071 /* Consume the `,' token. */
12072 cp_lexer_consume_token (parser->lexer);
12075 /* The initializers were built up in reverse order, so we need to
12076 reverse them now. */
12077 return nreverse (initializers);
12080 /* Classes [gram.class] */
12082 /* Parse a class-name.
12084 class-name:
12085 identifier
12086 template-id
12088 TYPENAME_KEYWORD_P is true iff the `typename' keyword has been used
12089 to indicate that names looked up in dependent types should be
12090 assumed to be types. TEMPLATE_KEYWORD_P is true iff the `template'
12091 keyword has been used to indicate that the name that appears next
12092 is a template. TYPE_P is true iff the next name should be treated
12093 as class-name, even if it is declared to be some other kind of name
12094 as well. If CHECK_DEPENDENCY_P is FALSE, names are looked up in
12095 dependent scopes. If CLASS_HEAD_P is TRUE, this class is the class
12096 being defined in a class-head.
12098 Returns the TYPE_DECL representing the class. */
12100 static tree
12101 cp_parser_class_name (cp_parser *parser,
12102 bool typename_keyword_p,
12103 bool template_keyword_p,
12104 bool type_p,
12105 bool check_dependency_p,
12106 bool class_head_p,
12107 bool is_declaration)
12109 tree decl;
12110 tree scope;
12111 bool typename_p;
12112 cp_token *token;
12114 /* All class-names start with an identifier. */
12115 token = cp_lexer_peek_token (parser->lexer);
12116 if (token->type != CPP_NAME && token->type != CPP_TEMPLATE_ID)
12118 cp_parser_error (parser, "expected class-name");
12119 return error_mark_node;
12122 /* PARSER->SCOPE can be cleared when parsing the template-arguments
12123 to a template-id, so we save it here. */
12124 scope = parser->scope;
12125 if (scope == error_mark_node)
12126 return error_mark_node;
12128 /* Any name names a type if we're following the `typename' keyword
12129 in a qualified name where the enclosing scope is type-dependent. */
12130 typename_p = (typename_keyword_p && scope && TYPE_P (scope)
12131 && dependent_type_p (scope));
12132 /* Handle the common case (an identifier, but not a template-id)
12133 efficiently. */
12134 if (token->type == CPP_NAME
12135 && !cp_parser_nth_token_starts_template_argument_list_p (parser, 2))
12137 tree identifier;
12139 /* Look for the identifier. */
12140 identifier = cp_parser_identifier (parser);
12141 /* If the next token isn't an identifier, we are certainly not
12142 looking at a class-name. */
12143 if (identifier == error_mark_node)
12144 decl = error_mark_node;
12145 /* If we know this is a type-name, there's no need to look it
12146 up. */
12147 else if (typename_p)
12148 decl = identifier;
12149 else
12151 /* If the next token is a `::', then the name must be a type
12152 name.
12154 [basic.lookup.qual]
12156 During the lookup for a name preceding the :: scope
12157 resolution operator, object, function, and enumerator
12158 names are ignored. */
12159 if (cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
12160 type_p = true;
12161 /* Look up the name. */
12162 decl = cp_parser_lookup_name (parser, identifier,
12163 type_p,
12164 /*is_template=*/false,
12165 /*is_namespace=*/false,
12166 check_dependency_p,
12167 /*ambiguous_p=*/NULL);
12170 else
12172 /* Try a template-id. */
12173 decl = cp_parser_template_id (parser, template_keyword_p,
12174 check_dependency_p,
12175 is_declaration);
12176 if (decl == error_mark_node)
12177 return error_mark_node;
12180 decl = cp_parser_maybe_treat_template_as_class (decl, class_head_p);
12182 /* If this is a typename, create a TYPENAME_TYPE. */
12183 if (typename_p && decl != error_mark_node)
12185 decl = make_typename_type (scope, decl, /*complain=*/1);
12186 if (decl != error_mark_node)
12187 decl = TYPE_NAME (decl);
12190 /* Check to see that it is really the name of a class. */
12191 if (TREE_CODE (decl) == TEMPLATE_ID_EXPR
12192 && TREE_CODE (TREE_OPERAND (decl, 0)) == IDENTIFIER_NODE
12193 && cp_lexer_next_token_is (parser->lexer, CPP_SCOPE))
12194 /* Situations like this:
12196 template <typename T> struct A {
12197 typename T::template X<int>::I i;
12200 are problematic. Is `T::template X<int>' a class-name? The
12201 standard does not seem to be definitive, but there is no other
12202 valid interpretation of the following `::'. Therefore, those
12203 names are considered class-names. */
12204 decl = TYPE_NAME (make_typename_type (scope, decl, tf_error));
12205 else if (decl == error_mark_node
12206 || TREE_CODE (decl) != TYPE_DECL
12207 || !IS_AGGR_TYPE (TREE_TYPE (decl)))
12209 cp_parser_error (parser, "expected class-name");
12210 return error_mark_node;
12213 return decl;
12216 /* Parse a class-specifier.
12218 class-specifier:
12219 class-head { member-specification [opt] }
12221 Returns the TREE_TYPE representing the class. */
12223 static tree
12224 cp_parser_class_specifier (cp_parser* parser)
12226 cp_token *token;
12227 tree type;
12228 tree attributes = NULL_TREE;
12229 int has_trailing_semicolon;
12230 bool nested_name_specifier_p;
12231 unsigned saved_num_template_parameter_lists;
12232 bool pop_p = false;
12233 tree scope = NULL_TREE;
12235 push_deferring_access_checks (dk_no_deferred);
12237 /* Parse the class-head. */
12238 type = cp_parser_class_head (parser,
12239 &nested_name_specifier_p,
12240 &attributes);
12241 /* If the class-head was a semantic disaster, skip the entire body
12242 of the class. */
12243 if (!type)
12245 cp_parser_skip_to_end_of_block_or_statement (parser);
12246 pop_deferring_access_checks ();
12247 return error_mark_node;
12250 /* Look for the `{'. */
12251 if (!cp_parser_require (parser, CPP_OPEN_BRACE, "`{'"))
12253 pop_deferring_access_checks ();
12254 return error_mark_node;
12257 /* Issue an error message if type-definitions are forbidden here. */
12258 cp_parser_check_type_definition (parser);
12259 /* Remember that we are defining one more class. */
12260 ++parser->num_classes_being_defined;
12261 /* Inside the class, surrounding template-parameter-lists do not
12262 apply. */
12263 saved_num_template_parameter_lists
12264 = parser->num_template_parameter_lists;
12265 parser->num_template_parameter_lists = 0;
12267 /* Start the class. */
12268 if (nested_name_specifier_p)
12270 scope = CP_DECL_CONTEXT (TYPE_MAIN_DECL (type));
12271 pop_p = push_scope (scope);
12273 type = begin_class_definition (type);
12275 if (type == error_mark_node)
12276 /* If the type is erroneous, skip the entire body of the class. */
12277 cp_parser_skip_to_closing_brace (parser);
12278 else
12279 /* Parse the member-specification. */
12280 cp_parser_member_specification_opt (parser);
12282 /* Look for the trailing `}'. */
12283 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
12284 /* We get better error messages by noticing a common problem: a
12285 missing trailing `;'. */
12286 token = cp_lexer_peek_token (parser->lexer);
12287 has_trailing_semicolon = (token->type == CPP_SEMICOLON);
12288 /* Look for trailing attributes to apply to this class. */
12289 if (cp_parser_allow_gnu_extensions_p (parser))
12291 tree sub_attr = cp_parser_attributes_opt (parser);
12292 attributes = chainon (attributes, sub_attr);
12294 if (type != error_mark_node)
12295 type = finish_struct (type, attributes);
12296 if (pop_p)
12297 pop_scope (scope);
12298 /* If this class is not itself within the scope of another class,
12299 then we need to parse the bodies of all of the queued function
12300 definitions. Note that the queued functions defined in a class
12301 are not always processed immediately following the
12302 class-specifier for that class. Consider:
12304 struct A {
12305 struct B { void f() { sizeof (A); } };
12308 If `f' were processed before the processing of `A' were
12309 completed, there would be no way to compute the size of `A'.
12310 Note that the nesting we are interested in here is lexical --
12311 not the semantic nesting given by TYPE_CONTEXT. In particular,
12312 for:
12314 struct A { struct B; };
12315 struct A::B { void f() { } };
12317 there is no need to delay the parsing of `A::B::f'. */
12318 if (--parser->num_classes_being_defined == 0)
12320 tree queue_entry;
12321 tree fn;
12322 tree class_type;
12323 bool pop_p;
12325 /* In a first pass, parse default arguments to the functions.
12326 Then, in a second pass, parse the bodies of the functions.
12327 This two-phased approach handles cases like:
12329 struct S {
12330 void f() { g(); }
12331 void g(int i = 3);
12335 class_type = NULL_TREE;
12336 pop_p = false;
12337 for (TREE_PURPOSE (parser->unparsed_functions_queues)
12338 = nreverse (TREE_PURPOSE (parser->unparsed_functions_queues));
12339 (queue_entry = TREE_PURPOSE (parser->unparsed_functions_queues));
12340 TREE_PURPOSE (parser->unparsed_functions_queues)
12341 = TREE_CHAIN (TREE_PURPOSE (parser->unparsed_functions_queues)))
12343 fn = TREE_VALUE (queue_entry);
12344 /* If there are default arguments that have not yet been processed,
12345 take care of them now. */
12346 if (class_type != TREE_PURPOSE (queue_entry))
12348 if (pop_p)
12349 pop_scope (class_type);
12350 class_type = TREE_PURPOSE (queue_entry);
12351 pop_p = push_scope (class_type);
12353 /* Make sure that any template parameters are in scope. */
12354 maybe_begin_member_template_processing (fn);
12355 /* Parse the default argument expressions. */
12356 cp_parser_late_parsing_default_args (parser, fn);
12357 /* Remove any template parameters from the symbol table. */
12358 maybe_end_member_template_processing ();
12360 if (pop_p)
12361 pop_scope (class_type);
12362 /* Now parse the body of the functions. */
12363 for (TREE_VALUE (parser->unparsed_functions_queues)
12364 = nreverse (TREE_VALUE (parser->unparsed_functions_queues));
12365 (queue_entry = TREE_VALUE (parser->unparsed_functions_queues));
12366 TREE_VALUE (parser->unparsed_functions_queues)
12367 = TREE_CHAIN (TREE_VALUE (parser->unparsed_functions_queues)))
12369 /* Figure out which function we need to process. */
12370 fn = TREE_VALUE (queue_entry);
12372 /* A hack to prevent garbage collection. */
12373 function_depth++;
12375 /* Parse the function. */
12376 cp_parser_late_parsing_for_member (parser, fn);
12377 function_depth--;
12381 /* Put back any saved access checks. */
12382 pop_deferring_access_checks ();
12384 /* Restore the count of active template-parameter-lists. */
12385 parser->num_template_parameter_lists
12386 = saved_num_template_parameter_lists;
12388 return type;
12391 /* Parse a class-head.
12393 class-head:
12394 class-key identifier [opt] base-clause [opt]
12395 class-key nested-name-specifier identifier base-clause [opt]
12396 class-key nested-name-specifier [opt] template-id
12397 base-clause [opt]
12399 GNU Extensions:
12400 class-key attributes identifier [opt] base-clause [opt]
12401 class-key attributes nested-name-specifier identifier base-clause [opt]
12402 class-key attributes nested-name-specifier [opt] template-id
12403 base-clause [opt]
12405 Returns the TYPE of the indicated class. Sets
12406 *NESTED_NAME_SPECIFIER_P to TRUE iff one of the productions
12407 involving a nested-name-specifier was used, and FALSE otherwise.
12409 Returns NULL_TREE if the class-head is syntactically valid, but
12410 semantically invalid in a way that means we should skip the entire
12411 body of the class. */
12413 static tree
12414 cp_parser_class_head (cp_parser* parser,
12415 bool* nested_name_specifier_p,
12416 tree *attributes_p)
12418 tree nested_name_specifier;
12419 enum tag_types class_key;
12420 tree id = NULL_TREE;
12421 tree type = NULL_TREE;
12422 tree attributes;
12423 bool template_id_p = false;
12424 bool qualified_p = false;
12425 bool invalid_nested_name_p = false;
12426 bool invalid_explicit_specialization_p = false;
12427 bool pop_p = false;
12428 unsigned num_templates;
12429 tree bases;
12431 /* Assume no nested-name-specifier will be present. */
12432 *nested_name_specifier_p = false;
12433 /* Assume no template parameter lists will be used in defining the
12434 type. */
12435 num_templates = 0;
12437 /* Look for the class-key. */
12438 class_key = cp_parser_class_key (parser);
12439 if (class_key == none_type)
12440 return error_mark_node;
12442 /* Parse the attributes. */
12443 attributes = cp_parser_attributes_opt (parser);
12445 /* If the next token is `::', that is invalid -- but sometimes
12446 people do try to write:
12448 struct ::S {};
12450 Handle this gracefully by accepting the extra qualifier, and then
12451 issuing an error about it later if this really is a
12452 class-head. If it turns out just to be an elaborated type
12453 specifier, remain silent. */
12454 if (cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false))
12455 qualified_p = true;
12457 push_deferring_access_checks (dk_no_check);
12459 /* Determine the name of the class. Begin by looking for an
12460 optional nested-name-specifier. */
12461 nested_name_specifier
12462 = cp_parser_nested_name_specifier_opt (parser,
12463 /*typename_keyword_p=*/false,
12464 /*check_dependency_p=*/false,
12465 /*type_p=*/false,
12466 /*is_declaration=*/false);
12467 /* If there was a nested-name-specifier, then there *must* be an
12468 identifier. */
12469 if (nested_name_specifier)
12471 /* Although the grammar says `identifier', it really means
12472 `class-name' or `template-name'. You are only allowed to
12473 define a class that has already been declared with this
12474 syntax.
12476 The proposed resolution for Core Issue 180 says that whever
12477 you see `class T::X' you should treat `X' as a type-name.
12479 It is OK to define an inaccessible class; for example:
12481 class A { class B; };
12482 class A::B {};
12484 We do not know if we will see a class-name, or a
12485 template-name. We look for a class-name first, in case the
12486 class-name is a template-id; if we looked for the
12487 template-name first we would stop after the template-name. */
12488 cp_parser_parse_tentatively (parser);
12489 type = cp_parser_class_name (parser,
12490 /*typename_keyword_p=*/false,
12491 /*template_keyword_p=*/false,
12492 /*type_p=*/true,
12493 /*check_dependency_p=*/false,
12494 /*class_head_p=*/true,
12495 /*is_declaration=*/false);
12496 /* If that didn't work, ignore the nested-name-specifier. */
12497 if (!cp_parser_parse_definitely (parser))
12499 invalid_nested_name_p = true;
12500 id = cp_parser_identifier (parser);
12501 if (id == error_mark_node)
12502 id = NULL_TREE;
12504 /* If we could not find a corresponding TYPE, treat this
12505 declaration like an unqualified declaration. */
12506 if (type == error_mark_node)
12507 nested_name_specifier = NULL_TREE;
12508 /* Otherwise, count the number of templates used in TYPE and its
12509 containing scopes. */
12510 else
12512 tree scope;
12514 for (scope = TREE_TYPE (type);
12515 scope && TREE_CODE (scope) != NAMESPACE_DECL;
12516 scope = (TYPE_P (scope)
12517 ? TYPE_CONTEXT (scope)
12518 : DECL_CONTEXT (scope)))
12519 if (TYPE_P (scope)
12520 && CLASS_TYPE_P (scope)
12521 && CLASSTYPE_TEMPLATE_INFO (scope)
12522 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (scope))
12523 && !CLASSTYPE_TEMPLATE_SPECIALIZATION (scope))
12524 ++num_templates;
12527 /* Otherwise, the identifier is optional. */
12528 else
12530 /* We don't know whether what comes next is a template-id,
12531 an identifier, or nothing at all. */
12532 cp_parser_parse_tentatively (parser);
12533 /* Check for a template-id. */
12534 id = cp_parser_template_id (parser,
12535 /*template_keyword_p=*/false,
12536 /*check_dependency_p=*/true,
12537 /*is_declaration=*/true);
12538 /* If that didn't work, it could still be an identifier. */
12539 if (!cp_parser_parse_definitely (parser))
12541 if (cp_lexer_next_token_is (parser->lexer, CPP_NAME))
12542 id = cp_parser_identifier (parser);
12543 else
12544 id = NULL_TREE;
12546 else
12548 template_id_p = true;
12549 ++num_templates;
12553 pop_deferring_access_checks ();
12555 if (id)
12556 cp_parser_check_for_invalid_template_id (parser, id);
12558 /* If it's not a `:' or a `{' then we can't really be looking at a
12559 class-head, since a class-head only appears as part of a
12560 class-specifier. We have to detect this situation before calling
12561 xref_tag, since that has irreversible side-effects. */
12562 if (!cp_parser_next_token_starts_class_definition_p (parser))
12564 cp_parser_error (parser, "expected %<{%> or %<:%>");
12565 return error_mark_node;
12568 /* At this point, we're going ahead with the class-specifier, even
12569 if some other problem occurs. */
12570 cp_parser_commit_to_tentative_parse (parser);
12571 /* Issue the error about the overly-qualified name now. */
12572 if (qualified_p)
12573 cp_parser_error (parser,
12574 "global qualification of class name is invalid");
12575 else if (invalid_nested_name_p)
12576 cp_parser_error (parser,
12577 "qualified name does not name a class");
12578 else if (nested_name_specifier)
12580 tree scope;
12581 /* Figure out in what scope the declaration is being placed. */
12582 scope = current_scope ();
12583 /* If that scope does not contain the scope in which the
12584 class was originally declared, the program is invalid. */
12585 if (scope && !is_ancestor (scope, nested_name_specifier))
12587 error ("declaration of %qD in %qD which does not enclose %qD",
12588 type, scope, nested_name_specifier);
12589 type = NULL_TREE;
12590 goto done;
12592 /* [dcl.meaning]
12594 A declarator-id shall not be qualified exception of the
12595 definition of a ... nested class outside of its class
12596 ... [or] a the definition or explicit instantiation of a
12597 class member of a namespace outside of its namespace. */
12598 if (scope == nested_name_specifier)
12600 pedwarn ("extra qualification ignored");
12601 nested_name_specifier = NULL_TREE;
12602 num_templates = 0;
12605 /* An explicit-specialization must be preceded by "template <>". If
12606 it is not, try to recover gracefully. */
12607 if (at_namespace_scope_p ()
12608 && parser->num_template_parameter_lists == 0
12609 && template_id_p)
12611 error ("an explicit specialization must be preceded by %<template <>%>");
12612 invalid_explicit_specialization_p = true;
12613 /* Take the same action that would have been taken by
12614 cp_parser_explicit_specialization. */
12615 ++parser->num_template_parameter_lists;
12616 begin_specialization ();
12618 /* There must be no "return" statements between this point and the
12619 end of this function; set "type "to the correct return value and
12620 use "goto done;" to return. */
12621 /* Make sure that the right number of template parameters were
12622 present. */
12623 if (!cp_parser_check_template_parameters (parser, num_templates))
12625 /* If something went wrong, there is no point in even trying to
12626 process the class-definition. */
12627 type = NULL_TREE;
12628 goto done;
12631 /* Look up the type. */
12632 if (template_id_p)
12634 type = TREE_TYPE (id);
12635 maybe_process_partial_specialization (type);
12637 else if (!nested_name_specifier)
12639 /* If the class was unnamed, create a dummy name. */
12640 if (!id)
12641 id = make_anon_name ();
12642 type = xref_tag (class_key, id, /*globalize=*/false,
12643 parser->num_template_parameter_lists);
12645 else
12647 tree class_type;
12648 bool pop_p = false;
12650 /* Given:
12652 template <typename T> struct S { struct T };
12653 template <typename T> struct S<T>::T { };
12655 we will get a TYPENAME_TYPE when processing the definition of
12656 `S::T'. We need to resolve it to the actual type before we
12657 try to define it. */
12658 if (TREE_CODE (TREE_TYPE (type)) == TYPENAME_TYPE)
12660 class_type = resolve_typename_type (TREE_TYPE (type),
12661 /*only_current_p=*/false);
12662 if (class_type != error_mark_node)
12663 type = TYPE_NAME (class_type);
12664 else
12666 cp_parser_error (parser, "could not resolve typename type");
12667 type = error_mark_node;
12671 maybe_process_partial_specialization (TREE_TYPE (type));
12672 class_type = current_class_type;
12673 /* Enter the scope indicated by the nested-name-specifier. */
12674 if (nested_name_specifier)
12675 pop_p = push_scope (nested_name_specifier);
12676 /* Get the canonical version of this type. */
12677 type = TYPE_MAIN_DECL (TREE_TYPE (type));
12678 if (PROCESSING_REAL_TEMPLATE_DECL_P ()
12679 && !CLASSTYPE_TEMPLATE_SPECIALIZATION (TREE_TYPE (type)))
12680 type = push_template_decl (type);
12681 type = TREE_TYPE (type);
12682 if (nested_name_specifier)
12684 *nested_name_specifier_p = true;
12685 if (pop_p)
12686 pop_scope (nested_name_specifier);
12689 /* Indicate whether this class was declared as a `class' or as a
12690 `struct'. */
12691 if (TREE_CODE (type) == RECORD_TYPE)
12692 CLASSTYPE_DECLARED_CLASS (type) = (class_key == class_type);
12693 cp_parser_check_class_key (class_key, type);
12695 /* Enter the scope containing the class; the names of base classes
12696 should be looked up in that context. For example, given:
12698 struct A { struct B {}; struct C; };
12699 struct A::C : B {};
12701 is valid. */
12702 if (nested_name_specifier)
12703 pop_p = push_scope (nested_name_specifier);
12705 bases = NULL_TREE;
12707 /* Get the list of base-classes, if there is one. */
12708 if (cp_lexer_next_token_is (parser->lexer, CPP_COLON))
12709 bases = cp_parser_base_clause (parser);
12711 /* Process the base classes. */
12712 xref_basetypes (type, bases);
12714 /* Leave the scope given by the nested-name-specifier. We will
12715 enter the class scope itself while processing the members. */
12716 if (pop_p)
12717 pop_scope (nested_name_specifier);
12719 done:
12720 if (invalid_explicit_specialization_p)
12722 end_specialization ();
12723 --parser->num_template_parameter_lists;
12725 *attributes_p = attributes;
12726 return type;
12729 /* Parse a class-key.
12731 class-key:
12732 class
12733 struct
12734 union
12736 Returns the kind of class-key specified, or none_type to indicate
12737 error. */
12739 static enum tag_types
12740 cp_parser_class_key (cp_parser* parser)
12742 cp_token *token;
12743 enum tag_types tag_type;
12745 /* Look for the class-key. */
12746 token = cp_parser_require (parser, CPP_KEYWORD, "class-key");
12747 if (!token)
12748 return none_type;
12750 /* Check to see if the TOKEN is a class-key. */
12751 tag_type = cp_parser_token_is_class_key (token);
12752 if (!tag_type)
12753 cp_parser_error (parser, "expected class-key");
12754 return tag_type;
12757 /* Parse an (optional) member-specification.
12759 member-specification:
12760 member-declaration member-specification [opt]
12761 access-specifier : member-specification [opt] */
12763 static void
12764 cp_parser_member_specification_opt (cp_parser* parser)
12766 while (true)
12768 cp_token *token;
12769 enum rid keyword;
12771 /* Peek at the next token. */
12772 token = cp_lexer_peek_token (parser->lexer);
12773 /* If it's a `}', or EOF then we've seen all the members. */
12774 if (token->type == CPP_CLOSE_BRACE || token->type == CPP_EOF)
12775 break;
12777 /* See if this token is a keyword. */
12778 keyword = token->keyword;
12779 switch (keyword)
12781 case RID_PUBLIC:
12782 case RID_PROTECTED:
12783 case RID_PRIVATE:
12784 /* Consume the access-specifier. */
12785 cp_lexer_consume_token (parser->lexer);
12786 /* Remember which access-specifier is active. */
12787 current_access_specifier = token->value;
12788 /* Look for the `:'. */
12789 cp_parser_require (parser, CPP_COLON, "`:'");
12790 break;
12792 default:
12793 /* Accept #pragmas at class scope. */
12794 if (token->type == CPP_PRAGMA)
12796 cp_lexer_handle_pragma (parser->lexer);
12797 break;
12800 /* Otherwise, the next construction must be a
12801 member-declaration. */
12802 cp_parser_member_declaration (parser);
12807 /* Parse a member-declaration.
12809 member-declaration:
12810 decl-specifier-seq [opt] member-declarator-list [opt] ;
12811 function-definition ; [opt]
12812 :: [opt] nested-name-specifier template [opt] unqualified-id ;
12813 using-declaration
12814 template-declaration
12816 member-declarator-list:
12817 member-declarator
12818 member-declarator-list , member-declarator
12820 member-declarator:
12821 declarator pure-specifier [opt]
12822 declarator constant-initializer [opt]
12823 identifier [opt] : constant-expression
12825 GNU Extensions:
12827 member-declaration:
12828 __extension__ member-declaration
12830 member-declarator:
12831 declarator attributes [opt] pure-specifier [opt]
12832 declarator attributes [opt] constant-initializer [opt]
12833 identifier [opt] attributes [opt] : constant-expression */
12835 static void
12836 cp_parser_member_declaration (cp_parser* parser)
12838 cp_decl_specifier_seq decl_specifiers;
12839 tree prefix_attributes;
12840 tree decl;
12841 int declares_class_or_enum;
12842 bool friend_p;
12843 cp_token *token;
12844 int saved_pedantic;
12846 /* Check for the `__extension__' keyword. */
12847 if (cp_parser_extension_opt (parser, &saved_pedantic))
12849 /* Recurse. */
12850 cp_parser_member_declaration (parser);
12851 /* Restore the old value of the PEDANTIC flag. */
12852 pedantic = saved_pedantic;
12854 return;
12857 /* Check for a template-declaration. */
12858 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
12860 /* Parse the template-declaration. */
12861 cp_parser_template_declaration (parser, /*member_p=*/true);
12863 return;
12866 /* Check for a using-declaration. */
12867 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_USING))
12869 /* Parse the using-declaration. */
12870 cp_parser_using_declaration (parser);
12872 return;
12875 /* Parse the decl-specifier-seq. */
12876 cp_parser_decl_specifier_seq (parser,
12877 CP_PARSER_FLAGS_OPTIONAL,
12878 &decl_specifiers,
12879 &declares_class_or_enum);
12880 prefix_attributes = decl_specifiers.attributes;
12881 decl_specifiers.attributes = NULL_TREE;
12882 /* Check for an invalid type-name. */
12883 if (!decl_specifiers.type
12884 && cp_parser_parse_and_diagnose_invalid_type_name (parser))
12885 return;
12886 /* If there is no declarator, then the decl-specifier-seq should
12887 specify a type. */
12888 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
12890 /* If there was no decl-specifier-seq, and the next token is a
12891 `;', then we have something like:
12893 struct S { ; };
12895 [class.mem]
12897 Each member-declaration shall declare at least one member
12898 name of the class. */
12899 if (!decl_specifiers.any_specifiers_p)
12901 cp_token *token = cp_lexer_peek_token (parser->lexer);
12902 if (pedantic && !token->in_system_header)
12903 pedwarn ("%Hextra %<;%>", &token->location);
12905 else
12907 tree type;
12909 /* See if this declaration is a friend. */
12910 friend_p = cp_parser_friend_p (&decl_specifiers);
12911 /* If there were decl-specifiers, check to see if there was
12912 a class-declaration. */
12913 type = check_tag_decl (&decl_specifiers);
12914 /* Nested classes have already been added to the class, but
12915 a `friend' needs to be explicitly registered. */
12916 if (friend_p)
12918 /* If the `friend' keyword was present, the friend must
12919 be introduced with a class-key. */
12920 if (!declares_class_or_enum)
12921 error ("a class-key must be used when declaring a friend");
12922 /* In this case:
12924 template <typename T> struct A {
12925 friend struct A<T>::B;
12928 A<T>::B will be represented by a TYPENAME_TYPE, and
12929 therefore not recognized by check_tag_decl. */
12930 if (!type
12931 && decl_specifiers.type
12932 && TYPE_P (decl_specifiers.type))
12933 type = decl_specifiers.type;
12934 if (!type || !TYPE_P (type))
12935 error ("friend declaration does not name a class or "
12936 "function");
12937 else
12938 make_friend_class (current_class_type, type,
12939 /*complain=*/true);
12941 /* If there is no TYPE, an error message will already have
12942 been issued. */
12943 else if (!type || type == error_mark_node)
12945 /* An anonymous aggregate has to be handled specially; such
12946 a declaration really declares a data member (with a
12947 particular type), as opposed to a nested class. */
12948 else if (ANON_AGGR_TYPE_P (type))
12950 /* Remove constructors and such from TYPE, now that we
12951 know it is an anonymous aggregate. */
12952 fixup_anonymous_aggr (type);
12953 /* And make the corresponding data member. */
12954 decl = build_decl (FIELD_DECL, NULL_TREE, type);
12955 /* Add it to the class. */
12956 finish_member_declaration (decl);
12958 else
12959 cp_parser_check_access_in_redeclaration (TYPE_NAME (type));
12962 else
12964 /* See if these declarations will be friends. */
12965 friend_p = cp_parser_friend_p (&decl_specifiers);
12967 /* Keep going until we hit the `;' at the end of the
12968 declaration. */
12969 while (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON))
12971 tree attributes = NULL_TREE;
12972 tree first_attribute;
12974 /* Peek at the next token. */
12975 token = cp_lexer_peek_token (parser->lexer);
12977 /* Check for a bitfield declaration. */
12978 if (token->type == CPP_COLON
12979 || (token->type == CPP_NAME
12980 && cp_lexer_peek_nth_token (parser->lexer, 2)->type
12981 == CPP_COLON))
12983 tree identifier;
12984 tree width;
12986 /* Get the name of the bitfield. Note that we cannot just
12987 check TOKEN here because it may have been invalidated by
12988 the call to cp_lexer_peek_nth_token above. */
12989 if (cp_lexer_peek_token (parser->lexer)->type != CPP_COLON)
12990 identifier = cp_parser_identifier (parser);
12991 else
12992 identifier = NULL_TREE;
12994 /* Consume the `:' token. */
12995 cp_lexer_consume_token (parser->lexer);
12996 /* Get the width of the bitfield. */
12997 width
12998 = cp_parser_constant_expression (parser,
12999 /*allow_non_constant=*/false,
13000 NULL);
13002 /* Look for attributes that apply to the bitfield. */
13003 attributes = cp_parser_attributes_opt (parser);
13004 /* Remember which attributes are prefix attributes and
13005 which are not. */
13006 first_attribute = attributes;
13007 /* Combine the attributes. */
13008 attributes = chainon (prefix_attributes, attributes);
13010 /* Create the bitfield declaration. */
13011 decl = grokbitfield (identifier
13012 ? make_id_declarator (identifier)
13013 : NULL,
13014 &decl_specifiers,
13015 width);
13016 /* Apply the attributes. */
13017 cplus_decl_attributes (&decl, attributes, /*flags=*/0);
13019 else
13021 cp_declarator *declarator;
13022 tree initializer;
13023 tree asm_specification;
13024 int ctor_dtor_or_conv_p;
13026 /* Parse the declarator. */
13027 declarator
13028 = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_NAMED,
13029 &ctor_dtor_or_conv_p,
13030 /*parenthesized_p=*/NULL,
13031 /*member_p=*/true);
13033 /* If something went wrong parsing the declarator, make sure
13034 that we at least consume some tokens. */
13035 if (declarator == cp_error_declarator)
13037 /* Skip to the end of the statement. */
13038 cp_parser_skip_to_end_of_statement (parser);
13039 /* If the next token is not a semicolon, that is
13040 probably because we just skipped over the body of
13041 a function. So, we consume a semicolon if
13042 present, but do not issue an error message if it
13043 is not present. */
13044 if (cp_lexer_next_token_is (parser->lexer,
13045 CPP_SEMICOLON))
13046 cp_lexer_consume_token (parser->lexer);
13047 return;
13050 cp_parser_check_for_definition_in_return_type
13051 (declarator, declares_class_or_enum);
13053 /* Look for an asm-specification. */
13054 asm_specification = cp_parser_asm_specification_opt (parser);
13055 /* Look for attributes that apply to the declaration. */
13056 attributes = cp_parser_attributes_opt (parser);
13057 /* Remember which attributes are prefix attributes and
13058 which are not. */
13059 first_attribute = attributes;
13060 /* Combine the attributes. */
13061 attributes = chainon (prefix_attributes, attributes);
13063 /* If it's an `=', then we have a constant-initializer or a
13064 pure-specifier. It is not correct to parse the
13065 initializer before registering the member declaration
13066 since the member declaration should be in scope while
13067 its initializer is processed. However, the rest of the
13068 front end does not yet provide an interface that allows
13069 us to handle this correctly. */
13070 if (cp_lexer_next_token_is (parser->lexer, CPP_EQ))
13072 /* In [class.mem]:
13074 A pure-specifier shall be used only in the declaration of
13075 a virtual function.
13077 A member-declarator can contain a constant-initializer
13078 only if it declares a static member of integral or
13079 enumeration type.
13081 Therefore, if the DECLARATOR is for a function, we look
13082 for a pure-specifier; otherwise, we look for a
13083 constant-initializer. When we call `grokfield', it will
13084 perform more stringent semantics checks. */
13085 if (declarator->kind == cdk_function)
13086 initializer = cp_parser_pure_specifier (parser);
13087 else
13088 /* Parse the initializer. */
13089 initializer = cp_parser_constant_initializer (parser);
13091 /* Otherwise, there is no initializer. */
13092 else
13093 initializer = NULL_TREE;
13095 /* See if we are probably looking at a function
13096 definition. We are certainly not looking at at a
13097 member-declarator. Calling `grokfield' has
13098 side-effects, so we must not do it unless we are sure
13099 that we are looking at a member-declarator. */
13100 if (cp_parser_token_starts_function_definition_p
13101 (cp_lexer_peek_token (parser->lexer)))
13103 /* The grammar does not allow a pure-specifier to be
13104 used when a member function is defined. (It is
13105 possible that this fact is an oversight in the
13106 standard, since a pure function may be defined
13107 outside of the class-specifier. */
13108 if (initializer)
13109 error ("pure-specifier on function-definition");
13110 decl = cp_parser_save_member_function_body (parser,
13111 &decl_specifiers,
13112 declarator,
13113 attributes);
13114 /* If the member was not a friend, declare it here. */
13115 if (!friend_p)
13116 finish_member_declaration (decl);
13117 /* Peek at the next token. */
13118 token = cp_lexer_peek_token (parser->lexer);
13119 /* If the next token is a semicolon, consume it. */
13120 if (token->type == CPP_SEMICOLON)
13121 cp_lexer_consume_token (parser->lexer);
13122 return;
13124 else
13126 /* Create the declaration. */
13127 decl = grokfield (declarator, &decl_specifiers,
13128 initializer, asm_specification,
13129 attributes);
13130 /* Any initialization must have been from a
13131 constant-expression. */
13132 if (decl && TREE_CODE (decl) == VAR_DECL && initializer)
13133 DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl) = 1;
13137 /* Reset PREFIX_ATTRIBUTES. */
13138 while (attributes && TREE_CHAIN (attributes) != first_attribute)
13139 attributes = TREE_CHAIN (attributes);
13140 if (attributes)
13141 TREE_CHAIN (attributes) = NULL_TREE;
13143 /* If there is any qualification still in effect, clear it
13144 now; we will be starting fresh with the next declarator. */
13145 parser->scope = NULL_TREE;
13146 parser->qualifying_scope = NULL_TREE;
13147 parser->object_scope = NULL_TREE;
13148 /* If it's a `,', then there are more declarators. */
13149 if (cp_lexer_next_token_is (parser->lexer, CPP_COMMA))
13150 cp_lexer_consume_token (parser->lexer);
13151 /* If the next token isn't a `;', then we have a parse error. */
13152 else if (cp_lexer_next_token_is_not (parser->lexer,
13153 CPP_SEMICOLON))
13155 cp_parser_error (parser, "expected %<;%>");
13156 /* Skip tokens until we find a `;'. */
13157 cp_parser_skip_to_end_of_statement (parser);
13159 break;
13162 if (decl)
13164 /* Add DECL to the list of members. */
13165 if (!friend_p)
13166 finish_member_declaration (decl);
13168 if (TREE_CODE (decl) == FUNCTION_DECL)
13169 cp_parser_save_default_args (parser, decl);
13174 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
13177 /* Parse a pure-specifier.
13179 pure-specifier:
13182 Returns INTEGER_ZERO_NODE if a pure specifier is found.
13183 Otherwise, ERROR_MARK_NODE is returned. */
13185 static tree
13186 cp_parser_pure_specifier (cp_parser* parser)
13188 cp_token *token;
13190 /* Look for the `=' token. */
13191 if (!cp_parser_require (parser, CPP_EQ, "`='"))
13192 return error_mark_node;
13193 /* Look for the `0' token. */
13194 token = cp_parser_require (parser, CPP_NUMBER, "`0'");
13195 /* Unfortunately, this will accept `0L' and `0x00' as well. We need
13196 to get information from the lexer about how the number was
13197 spelled in order to fix this problem. */
13198 if (!token || !integer_zerop (token->value))
13199 return error_mark_node;
13201 return integer_zero_node;
13204 /* Parse a constant-initializer.
13206 constant-initializer:
13207 = constant-expression
13209 Returns a representation of the constant-expression. */
13211 static tree
13212 cp_parser_constant_initializer (cp_parser* parser)
13214 /* Look for the `=' token. */
13215 if (!cp_parser_require (parser, CPP_EQ, "`='"))
13216 return error_mark_node;
13218 /* It is invalid to write:
13220 struct S { static const int i = { 7 }; };
13223 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_BRACE))
13225 cp_parser_error (parser,
13226 "a brace-enclosed initializer is not allowed here");
13227 /* Consume the opening brace. */
13228 cp_lexer_consume_token (parser->lexer);
13229 /* Skip the initializer. */
13230 cp_parser_skip_to_closing_brace (parser);
13231 /* Look for the trailing `}'. */
13232 cp_parser_require (parser, CPP_CLOSE_BRACE, "`}'");
13234 return error_mark_node;
13237 return cp_parser_constant_expression (parser,
13238 /*allow_non_constant=*/false,
13239 NULL);
13242 /* Derived classes [gram.class.derived] */
13244 /* Parse a base-clause.
13246 base-clause:
13247 : base-specifier-list
13249 base-specifier-list:
13250 base-specifier
13251 base-specifier-list , base-specifier
13253 Returns a TREE_LIST representing the base-classes, in the order in
13254 which they were declared. The representation of each node is as
13255 described by cp_parser_base_specifier.
13257 In the case that no bases are specified, this function will return
13258 NULL_TREE, not ERROR_MARK_NODE. */
13260 static tree
13261 cp_parser_base_clause (cp_parser* parser)
13263 tree bases = NULL_TREE;
13265 /* Look for the `:' that begins the list. */
13266 cp_parser_require (parser, CPP_COLON, "`:'");
13268 /* Scan the base-specifier-list. */
13269 while (true)
13271 cp_token *token;
13272 tree base;
13274 /* Look for the base-specifier. */
13275 base = cp_parser_base_specifier (parser);
13276 /* Add BASE to the front of the list. */
13277 if (base != error_mark_node)
13279 TREE_CHAIN (base) = bases;
13280 bases = base;
13282 /* Peek at the next token. */
13283 token = cp_lexer_peek_token (parser->lexer);
13284 /* If it's not a comma, then the list is complete. */
13285 if (token->type != CPP_COMMA)
13286 break;
13287 /* Consume the `,'. */
13288 cp_lexer_consume_token (parser->lexer);
13291 /* PARSER->SCOPE may still be non-NULL at this point, if the last
13292 base class had a qualified name. However, the next name that
13293 appears is certainly not qualified. */
13294 parser->scope = NULL_TREE;
13295 parser->qualifying_scope = NULL_TREE;
13296 parser->object_scope = NULL_TREE;
13298 return nreverse (bases);
13301 /* Parse a base-specifier.
13303 base-specifier:
13304 :: [opt] nested-name-specifier [opt] class-name
13305 virtual access-specifier [opt] :: [opt] nested-name-specifier
13306 [opt] class-name
13307 access-specifier virtual [opt] :: [opt] nested-name-specifier
13308 [opt] class-name
13310 Returns a TREE_LIST. The TREE_PURPOSE will be one of
13311 ACCESS_{DEFAULT,PUBLIC,PROTECTED,PRIVATE}_[VIRTUAL]_NODE to
13312 indicate the specifiers provided. The TREE_VALUE will be a TYPE
13313 (or the ERROR_MARK_NODE) indicating the type that was specified. */
13315 static tree
13316 cp_parser_base_specifier (cp_parser* parser)
13318 cp_token *token;
13319 bool done = false;
13320 bool virtual_p = false;
13321 bool duplicate_virtual_error_issued_p = false;
13322 bool duplicate_access_error_issued_p = false;
13323 bool class_scope_p, template_p;
13324 tree access = access_default_node;
13325 tree type;
13327 /* Process the optional `virtual' and `access-specifier'. */
13328 while (!done)
13330 /* Peek at the next token. */
13331 token = cp_lexer_peek_token (parser->lexer);
13332 /* Process `virtual'. */
13333 switch (token->keyword)
13335 case RID_VIRTUAL:
13336 /* If `virtual' appears more than once, issue an error. */
13337 if (virtual_p && !duplicate_virtual_error_issued_p)
13339 cp_parser_error (parser,
13340 "%<virtual%> specified more than once in base-specified");
13341 duplicate_virtual_error_issued_p = true;
13344 virtual_p = true;
13346 /* Consume the `virtual' token. */
13347 cp_lexer_consume_token (parser->lexer);
13349 break;
13351 case RID_PUBLIC:
13352 case RID_PROTECTED:
13353 case RID_PRIVATE:
13354 /* If more than one access specifier appears, issue an
13355 error. */
13356 if (access != access_default_node
13357 && !duplicate_access_error_issued_p)
13359 cp_parser_error (parser,
13360 "more than one access specifier in base-specified");
13361 duplicate_access_error_issued_p = true;
13364 access = ridpointers[(int) token->keyword];
13366 /* Consume the access-specifier. */
13367 cp_lexer_consume_token (parser->lexer);
13369 break;
13371 default:
13372 done = true;
13373 break;
13376 /* It is not uncommon to see programs mechanically, erroneously, use
13377 the 'typename' keyword to denote (dependent) qualified types
13378 as base classes. */
13379 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TYPENAME))
13381 if (!processing_template_decl)
13382 error ("keyword %<typename%> not allowed outside of templates");
13383 else
13384 error ("keyword %<typename%> not allowed in this context "
13385 "(the base class is implicitly a type)");
13386 cp_lexer_consume_token (parser->lexer);
13389 /* Look for the optional `::' operator. */
13390 cp_parser_global_scope_opt (parser, /*current_scope_valid_p=*/false);
13391 /* Look for the nested-name-specifier. The simplest way to
13392 implement:
13394 [temp.res]
13396 The keyword `typename' is not permitted in a base-specifier or
13397 mem-initializer; in these contexts a qualified name that
13398 depends on a template-parameter is implicitly assumed to be a
13399 type name.
13401 is to pretend that we have seen the `typename' keyword at this
13402 point. */
13403 cp_parser_nested_name_specifier_opt (parser,
13404 /*typename_keyword_p=*/true,
13405 /*check_dependency_p=*/true,
13406 /*type_p=*/true,
13407 /*is_declaration=*/true);
13408 /* If the base class is given by a qualified name, assume that names
13409 we see are type names or templates, as appropriate. */
13410 class_scope_p = (parser->scope && TYPE_P (parser->scope));
13411 template_p = class_scope_p && cp_parser_optional_template_keyword (parser);
13413 /* Finally, look for the class-name. */
13414 type = cp_parser_class_name (parser,
13415 class_scope_p,
13416 template_p,
13417 /*type_p=*/true,
13418 /*check_dependency_p=*/true,
13419 /*class_head_p=*/false,
13420 /*is_declaration=*/true);
13422 if (type == error_mark_node)
13423 return error_mark_node;
13425 return finish_base_specifier (TREE_TYPE (type), access, virtual_p);
13428 /* Exception handling [gram.exception] */
13430 /* Parse an (optional) exception-specification.
13432 exception-specification:
13433 throw ( type-id-list [opt] )
13435 Returns a TREE_LIST representing the exception-specification. The
13436 TREE_VALUE of each node is a type. */
13438 static tree
13439 cp_parser_exception_specification_opt (cp_parser* parser)
13441 cp_token *token;
13442 tree type_id_list;
13444 /* Peek at the next token. */
13445 token = cp_lexer_peek_token (parser->lexer);
13446 /* If it's not `throw', then there's no exception-specification. */
13447 if (!cp_parser_is_keyword (token, RID_THROW))
13448 return NULL_TREE;
13450 /* Consume the `throw'. */
13451 cp_lexer_consume_token (parser->lexer);
13453 /* Look for the `('. */
13454 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13456 /* Peek at the next token. */
13457 token = cp_lexer_peek_token (parser->lexer);
13458 /* If it's not a `)', then there is a type-id-list. */
13459 if (token->type != CPP_CLOSE_PAREN)
13461 const char *saved_message;
13463 /* Types may not be defined in an exception-specification. */
13464 saved_message = parser->type_definition_forbidden_message;
13465 parser->type_definition_forbidden_message
13466 = "types may not be defined in an exception-specification";
13467 /* Parse the type-id-list. */
13468 type_id_list = cp_parser_type_id_list (parser);
13469 /* Restore the saved message. */
13470 parser->type_definition_forbidden_message = saved_message;
13472 else
13473 type_id_list = empty_except_spec;
13475 /* Look for the `)'. */
13476 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13478 return type_id_list;
13481 /* Parse an (optional) type-id-list.
13483 type-id-list:
13484 type-id
13485 type-id-list , type-id
13487 Returns a TREE_LIST. The TREE_VALUE of each node is a TYPE,
13488 in the order that the types were presented. */
13490 static tree
13491 cp_parser_type_id_list (cp_parser* parser)
13493 tree types = NULL_TREE;
13495 while (true)
13497 cp_token *token;
13498 tree type;
13500 /* Get the next type-id. */
13501 type = cp_parser_type_id (parser);
13502 /* Add it to the list. */
13503 types = add_exception_specifier (types, type, /*complain=*/1);
13504 /* Peek at the next token. */
13505 token = cp_lexer_peek_token (parser->lexer);
13506 /* If it is not a `,', we are done. */
13507 if (token->type != CPP_COMMA)
13508 break;
13509 /* Consume the `,'. */
13510 cp_lexer_consume_token (parser->lexer);
13513 return nreverse (types);
13516 /* Parse a try-block.
13518 try-block:
13519 try compound-statement handler-seq */
13521 static tree
13522 cp_parser_try_block (cp_parser* parser)
13524 tree try_block;
13526 cp_parser_require_keyword (parser, RID_TRY, "`try'");
13527 try_block = begin_try_block ();
13528 cp_parser_compound_statement (parser, NULL, true);
13529 finish_try_block (try_block);
13530 cp_parser_handler_seq (parser);
13531 finish_handler_sequence (try_block);
13533 return try_block;
13536 /* Parse a function-try-block.
13538 function-try-block:
13539 try ctor-initializer [opt] function-body handler-seq */
13541 static bool
13542 cp_parser_function_try_block (cp_parser* parser)
13544 tree try_block;
13545 bool ctor_initializer_p;
13547 /* Look for the `try' keyword. */
13548 if (!cp_parser_require_keyword (parser, RID_TRY, "`try'"))
13549 return false;
13550 /* Let the rest of the front-end know where we are. */
13551 try_block = begin_function_try_block ();
13552 /* Parse the function-body. */
13553 ctor_initializer_p
13554 = cp_parser_ctor_initializer_opt_and_function_body (parser);
13555 /* We're done with the `try' part. */
13556 finish_function_try_block (try_block);
13557 /* Parse the handlers. */
13558 cp_parser_handler_seq (parser);
13559 /* We're done with the handlers. */
13560 finish_function_handler_sequence (try_block);
13562 return ctor_initializer_p;
13565 /* Parse a handler-seq.
13567 handler-seq:
13568 handler handler-seq [opt] */
13570 static void
13571 cp_parser_handler_seq (cp_parser* parser)
13573 while (true)
13575 cp_token *token;
13577 /* Parse the handler. */
13578 cp_parser_handler (parser);
13579 /* Peek at the next token. */
13580 token = cp_lexer_peek_token (parser->lexer);
13581 /* If it's not `catch' then there are no more handlers. */
13582 if (!cp_parser_is_keyword (token, RID_CATCH))
13583 break;
13587 /* Parse a handler.
13589 handler:
13590 catch ( exception-declaration ) compound-statement */
13592 static void
13593 cp_parser_handler (cp_parser* parser)
13595 tree handler;
13596 tree declaration;
13598 cp_parser_require_keyword (parser, RID_CATCH, "`catch'");
13599 handler = begin_handler ();
13600 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13601 declaration = cp_parser_exception_declaration (parser);
13602 finish_handler_parms (declaration, handler);
13603 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13604 cp_parser_compound_statement (parser, NULL, false);
13605 finish_handler (handler);
13608 /* Parse an exception-declaration.
13610 exception-declaration:
13611 type-specifier-seq declarator
13612 type-specifier-seq abstract-declarator
13613 type-specifier-seq
13616 Returns a VAR_DECL for the declaration, or NULL_TREE if the
13617 ellipsis variant is used. */
13619 static tree
13620 cp_parser_exception_declaration (cp_parser* parser)
13622 tree decl;
13623 cp_decl_specifier_seq type_specifiers;
13624 cp_declarator *declarator;
13625 const char *saved_message;
13627 /* If it's an ellipsis, it's easy to handle. */
13628 if (cp_lexer_next_token_is (parser->lexer, CPP_ELLIPSIS))
13630 /* Consume the `...' token. */
13631 cp_lexer_consume_token (parser->lexer);
13632 return NULL_TREE;
13635 /* Types may not be defined in exception-declarations. */
13636 saved_message = parser->type_definition_forbidden_message;
13637 parser->type_definition_forbidden_message
13638 = "types may not be defined in exception-declarations";
13640 /* Parse the type-specifier-seq. */
13641 cp_parser_type_specifier_seq (parser, &type_specifiers);
13642 /* If it's a `)', then there is no declarator. */
13643 if (cp_lexer_next_token_is (parser->lexer, CPP_CLOSE_PAREN))
13644 declarator = NULL;
13645 else
13646 declarator = cp_parser_declarator (parser, CP_PARSER_DECLARATOR_EITHER,
13647 /*ctor_dtor_or_conv_p=*/NULL,
13648 /*parenthesized_p=*/NULL,
13649 /*member_p=*/false);
13651 /* Restore the saved message. */
13652 parser->type_definition_forbidden_message = saved_message;
13654 if (type_specifiers.any_specifiers_p)
13656 decl = grokdeclarator (declarator, &type_specifiers, CATCHPARM, 1, NULL);
13657 if (decl == NULL_TREE)
13658 error ("invalid catch parameter");
13660 else
13661 decl = NULL_TREE;
13663 return decl;
13666 /* Parse a throw-expression.
13668 throw-expression:
13669 throw assignment-expression [opt]
13671 Returns a THROW_EXPR representing the throw-expression. */
13673 static tree
13674 cp_parser_throw_expression (cp_parser* parser)
13676 tree expression;
13677 cp_token* token;
13679 cp_parser_require_keyword (parser, RID_THROW, "`throw'");
13680 token = cp_lexer_peek_token (parser->lexer);
13681 /* Figure out whether or not there is an assignment-expression
13682 following the "throw" keyword. */
13683 if (token->type == CPP_COMMA
13684 || token->type == CPP_SEMICOLON
13685 || token->type == CPP_CLOSE_PAREN
13686 || token->type == CPP_CLOSE_SQUARE
13687 || token->type == CPP_CLOSE_BRACE
13688 || token->type == CPP_COLON)
13689 expression = NULL_TREE;
13690 else
13691 expression = cp_parser_assignment_expression (parser);
13693 return build_throw (expression);
13696 /* GNU Extensions */
13698 /* Parse an (optional) asm-specification.
13700 asm-specification:
13701 asm ( string-literal )
13703 If the asm-specification is present, returns a STRING_CST
13704 corresponding to the string-literal. Otherwise, returns
13705 NULL_TREE. */
13707 static tree
13708 cp_parser_asm_specification_opt (cp_parser* parser)
13710 cp_token *token;
13711 tree asm_specification;
13713 /* Peek at the next token. */
13714 token = cp_lexer_peek_token (parser->lexer);
13715 /* If the next token isn't the `asm' keyword, then there's no
13716 asm-specification. */
13717 if (!cp_parser_is_keyword (token, RID_ASM))
13718 return NULL_TREE;
13720 /* Consume the `asm' token. */
13721 cp_lexer_consume_token (parser->lexer);
13722 /* Look for the `('. */
13723 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13725 /* Look for the string-literal. */
13726 asm_specification = cp_parser_string_literal (parser, false, false);
13728 /* Look for the `)'. */
13729 cp_parser_require (parser, CPP_CLOSE_PAREN, "`('");
13731 return asm_specification;
13734 /* Parse an asm-operand-list.
13736 asm-operand-list:
13737 asm-operand
13738 asm-operand-list , asm-operand
13740 asm-operand:
13741 string-literal ( expression )
13742 [ string-literal ] string-literal ( expression )
13744 Returns a TREE_LIST representing the operands. The TREE_VALUE of
13745 each node is the expression. The TREE_PURPOSE is itself a
13746 TREE_LIST whose TREE_PURPOSE is a STRING_CST for the bracketed
13747 string-literal (or NULL_TREE if not present) and whose TREE_VALUE
13748 is a STRING_CST for the string literal before the parenthesis. */
13750 static tree
13751 cp_parser_asm_operand_list (cp_parser* parser)
13753 tree asm_operands = NULL_TREE;
13755 while (true)
13757 tree string_literal;
13758 tree expression;
13759 tree name;
13761 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_SQUARE))
13763 /* Consume the `[' token. */
13764 cp_lexer_consume_token (parser->lexer);
13765 /* Read the operand name. */
13766 name = cp_parser_identifier (parser);
13767 if (name != error_mark_node)
13768 name = build_string (IDENTIFIER_LENGTH (name),
13769 IDENTIFIER_POINTER (name));
13770 /* Look for the closing `]'. */
13771 cp_parser_require (parser, CPP_CLOSE_SQUARE, "`]'");
13773 else
13774 name = NULL_TREE;
13775 /* Look for the string-literal. */
13776 string_literal = cp_parser_string_literal (parser, false, false);
13778 /* Look for the `('. */
13779 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13780 /* Parse the expression. */
13781 expression = cp_parser_expression (parser);
13782 /* Look for the `)'. */
13783 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13785 /* Add this operand to the list. */
13786 asm_operands = tree_cons (build_tree_list (name, string_literal),
13787 expression,
13788 asm_operands);
13789 /* If the next token is not a `,', there are no more
13790 operands. */
13791 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
13792 break;
13793 /* Consume the `,'. */
13794 cp_lexer_consume_token (parser->lexer);
13797 return nreverse (asm_operands);
13800 /* Parse an asm-clobber-list.
13802 asm-clobber-list:
13803 string-literal
13804 asm-clobber-list , string-literal
13806 Returns a TREE_LIST, indicating the clobbers in the order that they
13807 appeared. The TREE_VALUE of each node is a STRING_CST. */
13809 static tree
13810 cp_parser_asm_clobber_list (cp_parser* parser)
13812 tree clobbers = NULL_TREE;
13814 while (true)
13816 tree string_literal;
13818 /* Look for the string literal. */
13819 string_literal = cp_parser_string_literal (parser, false, false);
13820 /* Add it to the list. */
13821 clobbers = tree_cons (NULL_TREE, string_literal, clobbers);
13822 /* If the next token is not a `,', then the list is
13823 complete. */
13824 if (cp_lexer_next_token_is_not (parser->lexer, CPP_COMMA))
13825 break;
13826 /* Consume the `,' token. */
13827 cp_lexer_consume_token (parser->lexer);
13830 return clobbers;
13833 /* Parse an (optional) series of attributes.
13835 attributes:
13836 attributes attribute
13838 attribute:
13839 __attribute__ (( attribute-list [opt] ))
13841 The return value is as for cp_parser_attribute_list. */
13843 static tree
13844 cp_parser_attributes_opt (cp_parser* parser)
13846 tree attributes = NULL_TREE;
13848 while (true)
13850 cp_token *token;
13851 tree attribute_list;
13853 /* Peek at the next token. */
13854 token = cp_lexer_peek_token (parser->lexer);
13855 /* If it's not `__attribute__', then we're done. */
13856 if (token->keyword != RID_ATTRIBUTE)
13857 break;
13859 /* Consume the `__attribute__' keyword. */
13860 cp_lexer_consume_token (parser->lexer);
13861 /* Look for the two `(' tokens. */
13862 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13863 cp_parser_require (parser, CPP_OPEN_PAREN, "`('");
13865 /* Peek at the next token. */
13866 token = cp_lexer_peek_token (parser->lexer);
13867 if (token->type != CPP_CLOSE_PAREN)
13868 /* Parse the attribute-list. */
13869 attribute_list = cp_parser_attribute_list (parser);
13870 else
13871 /* If the next token is a `)', then there is no attribute
13872 list. */
13873 attribute_list = NULL;
13875 /* Look for the two `)' tokens. */
13876 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13877 cp_parser_require (parser, CPP_CLOSE_PAREN, "`)'");
13879 /* Add these new attributes to the list. */
13880 attributes = chainon (attributes, attribute_list);
13883 return attributes;
13886 /* Parse an attribute-list.
13888 attribute-list:
13889 attribute
13890 attribute-list , attribute
13892 attribute:
13893 identifier
13894 identifier ( identifier )
13895 identifier ( identifier , expression-list )
13896 identifier ( expression-list )
13898 Returns a TREE_LIST. Each node corresponds to an attribute. THe
13899 TREE_PURPOSE of each node is the identifier indicating which
13900 attribute is in use. The TREE_VALUE represents the arguments, if
13901 any. */
13903 static tree
13904 cp_parser_attribute_list (cp_parser* parser)
13906 tree attribute_list = NULL_TREE;
13907 bool save_translate_strings_p = parser->translate_strings_p;
13909 parser->translate_strings_p = false;
13910 while (true)
13912 cp_token *token;
13913 tree identifier;
13914 tree attribute;
13916 /* Look for the identifier. We also allow keywords here; for
13917 example `__attribute__ ((const))' is legal. */
13918 token = cp_lexer_peek_token (parser->lexer);
13919 if (token->type != CPP_NAME
13920 && token->type != CPP_KEYWORD)
13921 return error_mark_node;
13922 /* Consume the token. */
13923 token = cp_lexer_consume_token (parser->lexer);
13925 /* Save away the identifier that indicates which attribute this is. */
13926 identifier = token->value;
13927 attribute = build_tree_list (identifier, NULL_TREE);
13929 /* Peek at the next token. */
13930 token = cp_lexer_peek_token (parser->lexer);
13931 /* If it's an `(', then parse the attribute arguments. */
13932 if (token->type == CPP_OPEN_PAREN)
13934 tree arguments;
13936 arguments = (cp_parser_parenthesized_expression_list
13937 (parser, true, /*non_constant_p=*/NULL));
13938 /* Save the identifier and arguments away. */
13939 TREE_VALUE (attribute) = arguments;
13942 /* Add this attribute to the list. */
13943 TREE_CHAIN (attribute) = attribute_list;
13944 attribute_list = attribute;
13946 /* Now, look for more attributes. */
13947 token = cp_lexer_peek_token (parser->lexer);
13948 /* If the next token isn't a `,', we're done. */
13949 if (token->type != CPP_COMMA)
13950 break;
13952 /* Consume the comma and keep going. */
13953 cp_lexer_consume_token (parser->lexer);
13955 parser->translate_strings_p = save_translate_strings_p;
13957 /* We built up the list in reverse order. */
13958 return nreverse (attribute_list);
13961 /* Parse an optional `__extension__' keyword. Returns TRUE if it is
13962 present, and FALSE otherwise. *SAVED_PEDANTIC is set to the
13963 current value of the PEDANTIC flag, regardless of whether or not
13964 the `__extension__' keyword is present. The caller is responsible
13965 for restoring the value of the PEDANTIC flag. */
13967 static bool
13968 cp_parser_extension_opt (cp_parser* parser, int* saved_pedantic)
13970 /* Save the old value of the PEDANTIC flag. */
13971 *saved_pedantic = pedantic;
13973 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_EXTENSION))
13975 /* Consume the `__extension__' token. */
13976 cp_lexer_consume_token (parser->lexer);
13977 /* We're not being pedantic while the `__extension__' keyword is
13978 in effect. */
13979 pedantic = 0;
13981 return true;
13984 return false;
13987 /* Parse a label declaration.
13989 label-declaration:
13990 __label__ label-declarator-seq ;
13992 label-declarator-seq:
13993 identifier , label-declarator-seq
13994 identifier */
13996 static void
13997 cp_parser_label_declaration (cp_parser* parser)
13999 /* Look for the `__label__' keyword. */
14000 cp_parser_require_keyword (parser, RID_LABEL, "`__label__'");
14002 while (true)
14004 tree identifier;
14006 /* Look for an identifier. */
14007 identifier = cp_parser_identifier (parser);
14008 /* Declare it as a lobel. */
14009 finish_label_decl (identifier);
14010 /* If the next token is a `;', stop. */
14011 if (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
14012 break;
14013 /* Look for the `,' separating the label declarations. */
14014 cp_parser_require (parser, CPP_COMMA, "`,'");
14017 /* Look for the final `;'. */
14018 cp_parser_require (parser, CPP_SEMICOLON, "`;'");
14021 /* Support Functions */
14023 /* Looks up NAME in the current scope, as given by PARSER->SCOPE.
14024 NAME should have one of the representations used for an
14025 id-expression. If NAME is the ERROR_MARK_NODE, the ERROR_MARK_NODE
14026 is returned. If PARSER->SCOPE is a dependent type, then a
14027 SCOPE_REF is returned.
14029 If NAME is a TEMPLATE_ID_EXPR, then it will be immediately
14030 returned; the name was already resolved when the TEMPLATE_ID_EXPR
14031 was formed. Abstractly, such entities should not be passed to this
14032 function, because they do not need to be looked up, but it is
14033 simpler to check for this special case here, rather than at the
14034 call-sites.
14036 In cases not explicitly covered above, this function returns a
14037 DECL, OVERLOAD, or baselink representing the result of the lookup.
14038 If there was no entity with the indicated NAME, the ERROR_MARK_NODE
14039 is returned.
14041 If IS_TYPE is TRUE, bindings that do not refer to types are
14042 ignored.
14044 If IS_TEMPLATE is TRUE, bindings that do not refer to templates are
14045 ignored.
14047 If IS_NAMESPACE is TRUE, bindings that do not refer to namespaces
14048 are ignored.
14050 If CHECK_DEPENDENCY is TRUE, names are not looked up in dependent
14051 types.
14053 If AMBIGUOUS_P is non-NULL, it is set to true if name-lookup
14054 results in an ambiguity, and false otherwise. */
14056 static tree
14057 cp_parser_lookup_name (cp_parser *parser, tree name,
14058 bool is_type, bool is_template, bool is_namespace,
14059 bool check_dependency,
14060 bool *ambiguous_p)
14062 tree decl;
14063 tree object_type = parser->context->object_type;
14065 /* Assume that the lookup will be unambiguous. */
14066 if (ambiguous_p)
14067 *ambiguous_p = false;
14069 /* Now that we have looked up the name, the OBJECT_TYPE (if any) is
14070 no longer valid. Note that if we are parsing tentatively, and
14071 the parse fails, OBJECT_TYPE will be automatically restored. */
14072 parser->context->object_type = NULL_TREE;
14074 if (name == error_mark_node)
14075 return error_mark_node;
14077 /* A template-id has already been resolved; there is no lookup to
14078 do. */
14079 if (TREE_CODE (name) == TEMPLATE_ID_EXPR)
14080 return name;
14081 if (BASELINK_P (name))
14083 gcc_assert (TREE_CODE (BASELINK_FUNCTIONS (name))
14084 == TEMPLATE_ID_EXPR);
14085 return name;
14088 /* A BIT_NOT_EXPR is used to represent a destructor. By this point,
14089 it should already have been checked to make sure that the name
14090 used matches the type being destroyed. */
14091 if (TREE_CODE (name) == BIT_NOT_EXPR)
14093 tree type;
14095 /* Figure out to which type this destructor applies. */
14096 if (parser->scope)
14097 type = parser->scope;
14098 else if (object_type)
14099 type = object_type;
14100 else
14101 type = current_class_type;
14102 /* If that's not a class type, there is no destructor. */
14103 if (!type || !CLASS_TYPE_P (type))
14104 return error_mark_node;
14105 if (!CLASSTYPE_DESTRUCTORS (type))
14106 return error_mark_node;
14107 /* If it was a class type, return the destructor. */
14108 return CLASSTYPE_DESTRUCTORS (type);
14111 /* By this point, the NAME should be an ordinary identifier. If
14112 the id-expression was a qualified name, the qualifying scope is
14113 stored in PARSER->SCOPE at this point. */
14114 gcc_assert (TREE_CODE (name) == IDENTIFIER_NODE);
14116 /* Perform the lookup. */
14117 if (parser->scope)
14119 bool dependent_p;
14121 if (parser->scope == error_mark_node)
14122 return error_mark_node;
14124 /* If the SCOPE is dependent, the lookup must be deferred until
14125 the template is instantiated -- unless we are explicitly
14126 looking up names in uninstantiated templates. Even then, we
14127 cannot look up the name if the scope is not a class type; it
14128 might, for example, be a template type parameter. */
14129 dependent_p = (TYPE_P (parser->scope)
14130 && !(parser->in_declarator_p
14131 && currently_open_class (parser->scope))
14132 && dependent_type_p (parser->scope));
14133 if ((check_dependency || !CLASS_TYPE_P (parser->scope))
14134 && dependent_p)
14136 if (is_type)
14137 /* The resolution to Core Issue 180 says that `struct A::B'
14138 should be considered a type-name, even if `A' is
14139 dependent. */
14140 decl = TYPE_NAME (make_typename_type (parser->scope,
14141 name,
14142 /*complain=*/1));
14143 else if (is_template)
14144 decl = make_unbound_class_template (parser->scope,
14145 name, NULL_TREE,
14146 /*complain=*/1);
14147 else
14148 decl = build_nt (SCOPE_REF, parser->scope, name);
14150 else
14152 bool pop_p = false;
14154 /* If PARSER->SCOPE is a dependent type, then it must be a
14155 class type, and we must not be checking dependencies;
14156 otherwise, we would have processed this lookup above. So
14157 that PARSER->SCOPE is not considered a dependent base by
14158 lookup_member, we must enter the scope here. */
14159 if (dependent_p)
14160 pop_p = push_scope (parser->scope);
14161 /* If the PARSER->SCOPE is a a template specialization, it
14162 may be instantiated during name lookup. In that case,
14163 errors may be issued. Even if we rollback the current
14164 tentative parse, those errors are valid. */
14165 decl = lookup_qualified_name (parser->scope, name, is_type,
14166 /*complain=*/true);
14167 if (pop_p)
14168 pop_scope (parser->scope);
14170 parser->qualifying_scope = parser->scope;
14171 parser->object_scope = NULL_TREE;
14173 else if (object_type)
14175 tree object_decl = NULL_TREE;
14176 /* Look up the name in the scope of the OBJECT_TYPE, unless the
14177 OBJECT_TYPE is not a class. */
14178 if (CLASS_TYPE_P (object_type))
14179 /* If the OBJECT_TYPE is a template specialization, it may
14180 be instantiated during name lookup. In that case, errors
14181 may be issued. Even if we rollback the current tentative
14182 parse, those errors are valid. */
14183 object_decl = lookup_member (object_type,
14184 name,
14185 /*protect=*/0, is_type);
14186 /* Look it up in the enclosing context, too. */
14187 decl = lookup_name_real (name, is_type, /*nonclass=*/0,
14188 /*block_p=*/true, is_namespace,
14189 /*flags=*/0);
14190 parser->object_scope = object_type;
14191 parser->qualifying_scope = NULL_TREE;
14192 if (object_decl)
14193 decl = object_decl;
14195 else
14197 decl = lookup_name_real (name, is_type, /*nonclass=*/0,
14198 /*block_p=*/true, is_namespace,
14199 /*flags=*/0);
14200 parser->qualifying_scope = NULL_TREE;
14201 parser->object_scope = NULL_TREE;
14204 /* If the lookup failed, let our caller know. */
14205 if (!decl
14206 || decl == error_mark_node
14207 || (TREE_CODE (decl) == FUNCTION_DECL
14208 && DECL_ANTICIPATED (decl)))
14209 return error_mark_node;
14211 /* If it's a TREE_LIST, the result of the lookup was ambiguous. */
14212 if (TREE_CODE (decl) == TREE_LIST)
14214 if (ambiguous_p)
14215 *ambiguous_p = true;
14216 /* The error message we have to print is too complicated for
14217 cp_parser_error, so we incorporate its actions directly. */
14218 if (!cp_parser_simulate_error (parser))
14220 error ("reference to %qD is ambiguous", name);
14221 print_candidates (decl);
14223 return error_mark_node;
14226 gcc_assert (DECL_P (decl)
14227 || TREE_CODE (decl) == OVERLOAD
14228 || TREE_CODE (decl) == SCOPE_REF
14229 || TREE_CODE (decl) == UNBOUND_CLASS_TEMPLATE
14230 || BASELINK_P (decl));
14232 /* If we have resolved the name of a member declaration, check to
14233 see if the declaration is accessible. When the name resolves to
14234 set of overloaded functions, accessibility is checked when
14235 overload resolution is done.
14237 During an explicit instantiation, access is not checked at all,
14238 as per [temp.explicit]. */
14239 if (DECL_P (decl))
14240 check_accessibility_of_qualified_id (decl, object_type, parser->scope);
14242 return decl;
14245 /* Like cp_parser_lookup_name, but for use in the typical case where
14246 CHECK_ACCESS is TRUE, IS_TYPE is FALSE, IS_TEMPLATE is FALSE,
14247 IS_NAMESPACE is FALSE, and CHECK_DEPENDENCY is TRUE. */
14249 static tree
14250 cp_parser_lookup_name_simple (cp_parser* parser, tree name)
14252 return cp_parser_lookup_name (parser, name,
14253 /*is_type=*/false,
14254 /*is_template=*/false,
14255 /*is_namespace=*/false,
14256 /*check_dependency=*/true,
14257 /*ambiguous_p=*/NULL);
14260 /* If DECL is a TEMPLATE_DECL that can be treated like a TYPE_DECL in
14261 the current context, return the TYPE_DECL. If TAG_NAME_P is
14262 true, the DECL indicates the class being defined in a class-head,
14263 or declared in an elaborated-type-specifier.
14265 Otherwise, return DECL. */
14267 static tree
14268 cp_parser_maybe_treat_template_as_class (tree decl, bool tag_name_p)
14270 /* If the TEMPLATE_DECL is being declared as part of a class-head,
14271 the translation from TEMPLATE_DECL to TYPE_DECL occurs:
14273 struct A {
14274 template <typename T> struct B;
14277 template <typename T> struct A::B {};
14279 Similarly, in a elaborated-type-specifier:
14281 namespace N { struct X{}; }
14283 struct A {
14284 template <typename T> friend struct N::X;
14287 However, if the DECL refers to a class type, and we are in
14288 the scope of the class, then the name lookup automatically
14289 finds the TYPE_DECL created by build_self_reference rather
14290 than a TEMPLATE_DECL. For example, in:
14292 template <class T> struct S {
14293 S s;
14296 there is no need to handle such case. */
14298 if (DECL_CLASS_TEMPLATE_P (decl) && tag_name_p)
14299 return DECL_TEMPLATE_RESULT (decl);
14301 return decl;
14304 /* If too many, or too few, template-parameter lists apply to the
14305 declarator, issue an error message. Returns TRUE if all went well,
14306 and FALSE otherwise. */
14308 static bool
14309 cp_parser_check_declarator_template_parameters (cp_parser* parser,
14310 cp_declarator *declarator)
14312 unsigned num_templates;
14314 /* We haven't seen any classes that involve template parameters yet. */
14315 num_templates = 0;
14317 switch (declarator->kind)
14319 case cdk_id:
14320 if (TREE_CODE (declarator->u.id.name) == SCOPE_REF)
14322 tree scope;
14323 tree member;
14325 scope = TREE_OPERAND (declarator->u.id.name, 0);
14326 member = TREE_OPERAND (declarator->u.id.name, 1);
14328 while (scope && CLASS_TYPE_P (scope))
14330 /* You're supposed to have one `template <...>'
14331 for every template class, but you don't need one
14332 for a full specialization. For example:
14334 template <class T> struct S{};
14335 template <> struct S<int> { void f(); };
14336 void S<int>::f () {}
14338 is correct; there shouldn't be a `template <>' for
14339 the definition of `S<int>::f'. */
14340 if (CLASSTYPE_TEMPLATE_INFO (scope)
14341 && (CLASSTYPE_TEMPLATE_INSTANTIATION (scope)
14342 || uses_template_parms (CLASSTYPE_TI_ARGS (scope)))
14343 && PRIMARY_TEMPLATE_P (CLASSTYPE_TI_TEMPLATE (scope)))
14344 ++num_templates;
14346 scope = TYPE_CONTEXT (scope);
14350 /* If the DECLARATOR has the form `X<y>' then it uses one
14351 additional level of template parameters. */
14352 if (TREE_CODE (declarator->u.id.name) == TEMPLATE_ID_EXPR)
14353 ++num_templates;
14355 return cp_parser_check_template_parameters (parser,
14356 num_templates);
14358 case cdk_function:
14359 case cdk_array:
14360 case cdk_pointer:
14361 case cdk_reference:
14362 case cdk_ptrmem:
14363 return (cp_parser_check_declarator_template_parameters
14364 (parser, declarator->declarator));
14366 case cdk_error:
14367 return true;
14369 default:
14370 gcc_unreachable ();
14372 return false;
14375 /* NUM_TEMPLATES were used in the current declaration. If that is
14376 invalid, return FALSE and issue an error messages. Otherwise,
14377 return TRUE. */
14379 static bool
14380 cp_parser_check_template_parameters (cp_parser* parser,
14381 unsigned num_templates)
14383 /* If there are more template classes than parameter lists, we have
14384 something like:
14386 template <class T> void S<T>::R<T>::f (); */
14387 if (parser->num_template_parameter_lists < num_templates)
14389 error ("too few template-parameter-lists");
14390 return false;
14392 /* If there are the same number of template classes and parameter
14393 lists, that's OK. */
14394 if (parser->num_template_parameter_lists == num_templates)
14395 return true;
14396 /* If there are more, but only one more, then we are referring to a
14397 member template. That's OK too. */
14398 if (parser->num_template_parameter_lists == num_templates + 1)
14399 return true;
14400 /* Otherwise, there are too many template parameter lists. We have
14401 something like:
14403 template <class T> template <class U> void S::f(); */
14404 error ("too many template-parameter-lists");
14405 return false;
14408 /* Parse an optional `::' token indicating that the following name is
14409 from the global namespace. If so, PARSER->SCOPE is set to the
14410 GLOBAL_NAMESPACE. Otherwise, PARSER->SCOPE is set to NULL_TREE,
14411 unless CURRENT_SCOPE_VALID_P is TRUE, in which case it is left alone.
14412 Returns the new value of PARSER->SCOPE, if the `::' token is
14413 present, and NULL_TREE otherwise. */
14415 static tree
14416 cp_parser_global_scope_opt (cp_parser* parser, bool current_scope_valid_p)
14418 cp_token *token;
14420 /* Peek at the next token. */
14421 token = cp_lexer_peek_token (parser->lexer);
14422 /* If we're looking at a `::' token then we're starting from the
14423 global namespace, not our current location. */
14424 if (token->type == CPP_SCOPE)
14426 /* Consume the `::' token. */
14427 cp_lexer_consume_token (parser->lexer);
14428 /* Set the SCOPE so that we know where to start the lookup. */
14429 parser->scope = global_namespace;
14430 parser->qualifying_scope = global_namespace;
14431 parser->object_scope = NULL_TREE;
14433 return parser->scope;
14435 else if (!current_scope_valid_p)
14437 parser->scope = NULL_TREE;
14438 parser->qualifying_scope = NULL_TREE;
14439 parser->object_scope = NULL_TREE;
14442 return NULL_TREE;
14445 /* Returns TRUE if the upcoming token sequence is the start of a
14446 constructor declarator. If FRIEND_P is true, the declarator is
14447 preceded by the `friend' specifier. */
14449 static bool
14450 cp_parser_constructor_declarator_p (cp_parser *parser, bool friend_p)
14452 bool constructor_p;
14453 tree type_decl = NULL_TREE;
14454 bool nested_name_p;
14455 cp_token *next_token;
14457 /* The common case is that this is not a constructor declarator, so
14458 try to avoid doing lots of work if at all possible. It's not
14459 valid declare a constructor at function scope. */
14460 if (at_function_scope_p ())
14461 return false;
14462 /* And only certain tokens can begin a constructor declarator. */
14463 next_token = cp_lexer_peek_token (parser->lexer);
14464 if (next_token->type != CPP_NAME
14465 && next_token->type != CPP_SCOPE
14466 && next_token->type != CPP_NESTED_NAME_SPECIFIER
14467 && next_token->type != CPP_TEMPLATE_ID)
14468 return false;
14470 /* Parse tentatively; we are going to roll back all of the tokens
14471 consumed here. */
14472 cp_parser_parse_tentatively (parser);
14473 /* Assume that we are looking at a constructor declarator. */
14474 constructor_p = true;
14476 /* Look for the optional `::' operator. */
14477 cp_parser_global_scope_opt (parser,
14478 /*current_scope_valid_p=*/false);
14479 /* Look for the nested-name-specifier. */
14480 nested_name_p
14481 = (cp_parser_nested_name_specifier_opt (parser,
14482 /*typename_keyword_p=*/false,
14483 /*check_dependency_p=*/false,
14484 /*type_p=*/false,
14485 /*is_declaration=*/false)
14486 != NULL_TREE);
14487 /* Outside of a class-specifier, there must be a
14488 nested-name-specifier. */
14489 if (!nested_name_p &&
14490 (!at_class_scope_p () || !TYPE_BEING_DEFINED (current_class_type)
14491 || friend_p))
14492 constructor_p = false;
14493 /* If we still think that this might be a constructor-declarator,
14494 look for a class-name. */
14495 if (constructor_p)
14497 /* If we have:
14499 template <typename T> struct S { S(); };
14500 template <typename T> S<T>::S ();
14502 we must recognize that the nested `S' names a class.
14503 Similarly, for:
14505 template <typename T> S<T>::S<T> ();
14507 we must recognize that the nested `S' names a template. */
14508 type_decl = cp_parser_class_name (parser,
14509 /*typename_keyword_p=*/false,
14510 /*template_keyword_p=*/false,
14511 /*type_p=*/false,
14512 /*check_dependency_p=*/false,
14513 /*class_head_p=*/false,
14514 /*is_declaration=*/false);
14515 /* If there was no class-name, then this is not a constructor. */
14516 constructor_p = !cp_parser_error_occurred (parser);
14519 /* If we're still considering a constructor, we have to see a `(',
14520 to begin the parameter-declaration-clause, followed by either a
14521 `)', an `...', or a decl-specifier. We need to check for a
14522 type-specifier to avoid being fooled into thinking that:
14524 S::S (f) (int);
14526 is a constructor. (It is actually a function named `f' that
14527 takes one parameter (of type `int') and returns a value of type
14528 `S::S'. */
14529 if (constructor_p
14530 && cp_parser_require (parser, CPP_OPEN_PAREN, "`('"))
14532 if (cp_lexer_next_token_is_not (parser->lexer, CPP_CLOSE_PAREN)
14533 && cp_lexer_next_token_is_not (parser->lexer, CPP_ELLIPSIS)
14534 /* A parameter declaration begins with a decl-specifier,
14535 which is either the "attribute" keyword, a storage class
14536 specifier, or (usually) a type-specifier. */
14537 && !cp_lexer_next_token_is_keyword (parser->lexer, RID_ATTRIBUTE)
14538 && !cp_parser_storage_class_specifier_opt (parser))
14540 tree type;
14541 bool pop_p = false;
14542 unsigned saved_num_template_parameter_lists;
14544 /* Names appearing in the type-specifier should be looked up
14545 in the scope of the class. */
14546 if (current_class_type)
14547 type = NULL_TREE;
14548 else
14550 type = TREE_TYPE (type_decl);
14551 if (TREE_CODE (type) == TYPENAME_TYPE)
14553 type = resolve_typename_type (type,
14554 /*only_current_p=*/false);
14555 if (type == error_mark_node)
14557 cp_parser_abort_tentative_parse (parser);
14558 return false;
14561 pop_p = push_scope (type);
14564 /* Inside the constructor parameter list, surrounding
14565 template-parameter-lists do not apply. */
14566 saved_num_template_parameter_lists
14567 = parser->num_template_parameter_lists;
14568 parser->num_template_parameter_lists = 0;
14570 /* Look for the type-specifier. */
14571 cp_parser_type_specifier (parser,
14572 CP_PARSER_FLAGS_NONE,
14573 /*decl_specs=*/NULL,
14574 /*is_declarator=*/true,
14575 /*declares_class_or_enum=*/NULL,
14576 /*is_cv_qualifier=*/NULL);
14578 parser->num_template_parameter_lists
14579 = saved_num_template_parameter_lists;
14581 /* Leave the scope of the class. */
14582 if (pop_p)
14583 pop_scope (type);
14585 constructor_p = !cp_parser_error_occurred (parser);
14588 else
14589 constructor_p = false;
14590 /* We did not really want to consume any tokens. */
14591 cp_parser_abort_tentative_parse (parser);
14593 return constructor_p;
14596 /* Parse the definition of the function given by the DECL_SPECIFIERS,
14597 ATTRIBUTES, and DECLARATOR. The access checks have been deferred;
14598 they must be performed once we are in the scope of the function.
14600 Returns the function defined. */
14602 static tree
14603 cp_parser_function_definition_from_specifiers_and_declarator
14604 (cp_parser* parser,
14605 cp_decl_specifier_seq *decl_specifiers,
14606 tree attributes,
14607 const cp_declarator *declarator)
14609 tree fn;
14610 bool success_p;
14612 /* Begin the function-definition. */
14613 success_p = start_function (decl_specifiers, declarator, attributes);
14615 /* The things we're about to see are not directly qualified by any
14616 template headers we've seen thus far. */
14617 reset_specialization ();
14619 /* If there were names looked up in the decl-specifier-seq that we
14620 did not check, check them now. We must wait until we are in the
14621 scope of the function to perform the checks, since the function
14622 might be a friend. */
14623 perform_deferred_access_checks ();
14625 if (!success_p)
14627 /* Skip the entire function. */
14628 error ("invalid function declaration");
14629 cp_parser_skip_to_end_of_block_or_statement (parser);
14630 fn = error_mark_node;
14632 else
14633 fn = cp_parser_function_definition_after_declarator (parser,
14634 /*inline_p=*/false);
14636 return fn;
14639 /* Parse the part of a function-definition that follows the
14640 declarator. INLINE_P is TRUE iff this function is an inline
14641 function defined with a class-specifier.
14643 Returns the function defined. */
14645 static tree
14646 cp_parser_function_definition_after_declarator (cp_parser* parser,
14647 bool inline_p)
14649 tree fn;
14650 bool ctor_initializer_p = false;
14651 bool saved_in_unbraced_linkage_specification_p;
14652 unsigned saved_num_template_parameter_lists;
14654 /* If the next token is `return', then the code may be trying to
14655 make use of the "named return value" extension that G++ used to
14656 support. */
14657 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_RETURN))
14659 /* Consume the `return' keyword. */
14660 cp_lexer_consume_token (parser->lexer);
14661 /* Look for the identifier that indicates what value is to be
14662 returned. */
14663 cp_parser_identifier (parser);
14664 /* Issue an error message. */
14665 error ("named return values are no longer supported");
14666 /* Skip tokens until we reach the start of the function body. */
14667 while (cp_lexer_next_token_is_not (parser->lexer, CPP_OPEN_BRACE)
14668 && cp_lexer_next_token_is_not (parser->lexer, CPP_EOF))
14669 cp_lexer_consume_token (parser->lexer);
14671 /* The `extern' in `extern "C" void f () { ... }' does not apply to
14672 anything declared inside `f'. */
14673 saved_in_unbraced_linkage_specification_p
14674 = parser->in_unbraced_linkage_specification_p;
14675 parser->in_unbraced_linkage_specification_p = false;
14676 /* Inside the function, surrounding template-parameter-lists do not
14677 apply. */
14678 saved_num_template_parameter_lists
14679 = parser->num_template_parameter_lists;
14680 parser->num_template_parameter_lists = 0;
14681 /* If the next token is `try', then we are looking at a
14682 function-try-block. */
14683 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TRY))
14684 ctor_initializer_p = cp_parser_function_try_block (parser);
14685 /* A function-try-block includes the function-body, so we only do
14686 this next part if we're not processing a function-try-block. */
14687 else
14688 ctor_initializer_p
14689 = cp_parser_ctor_initializer_opt_and_function_body (parser);
14691 /* Finish the function. */
14692 fn = finish_function ((ctor_initializer_p ? 1 : 0) |
14693 (inline_p ? 2 : 0));
14694 /* Generate code for it, if necessary. */
14695 expand_or_defer_fn (fn);
14696 /* Restore the saved values. */
14697 parser->in_unbraced_linkage_specification_p
14698 = saved_in_unbraced_linkage_specification_p;
14699 parser->num_template_parameter_lists
14700 = saved_num_template_parameter_lists;
14702 return fn;
14705 /* Parse a template-declaration, assuming that the `export' (and
14706 `extern') keywords, if present, has already been scanned. MEMBER_P
14707 is as for cp_parser_template_declaration. */
14709 static void
14710 cp_parser_template_declaration_after_export (cp_parser* parser, bool member_p)
14712 tree decl = NULL_TREE;
14713 tree parameter_list;
14714 bool friend_p = false;
14716 /* Look for the `template' keyword. */
14717 if (!cp_parser_require_keyword (parser, RID_TEMPLATE, "`template'"))
14718 return;
14720 /* And the `<'. */
14721 if (!cp_parser_require (parser, CPP_LESS, "`<'"))
14722 return;
14724 /* If the next token is `>', then we have an invalid
14725 specialization. Rather than complain about an invalid template
14726 parameter, issue an error message here. */
14727 if (cp_lexer_next_token_is (parser->lexer, CPP_GREATER))
14729 cp_parser_error (parser, "invalid explicit specialization");
14730 begin_specialization ();
14731 parameter_list = NULL_TREE;
14733 else
14735 /* Parse the template parameters. */
14736 begin_template_parm_list ();
14737 parameter_list = cp_parser_template_parameter_list (parser);
14738 parameter_list = end_template_parm_list (parameter_list);
14741 /* Look for the `>'. */
14742 cp_parser_skip_until_found (parser, CPP_GREATER, "`>'");
14743 /* We just processed one more parameter list. */
14744 ++parser->num_template_parameter_lists;
14745 /* If the next token is `template', there are more template
14746 parameters. */
14747 if (cp_lexer_next_token_is_keyword (parser->lexer,
14748 RID_TEMPLATE))
14749 cp_parser_template_declaration_after_export (parser, member_p);
14750 else
14752 /* There are no access checks when parsing a template, as we do not
14753 know if a specialization will be a friend. */
14754 push_deferring_access_checks (dk_no_check);
14756 decl = cp_parser_single_declaration (parser,
14757 member_p,
14758 &friend_p);
14760 pop_deferring_access_checks ();
14762 /* If this is a member template declaration, let the front
14763 end know. */
14764 if (member_p && !friend_p && decl)
14766 if (TREE_CODE (decl) == TYPE_DECL)
14767 cp_parser_check_access_in_redeclaration (decl);
14769 decl = finish_member_template_decl (decl);
14771 else if (friend_p && decl && TREE_CODE (decl) == TYPE_DECL)
14772 make_friend_class (current_class_type, TREE_TYPE (decl),
14773 /*complain=*/true);
14775 /* We are done with the current parameter list. */
14776 --parser->num_template_parameter_lists;
14778 /* Finish up. */
14779 finish_template_decl (parameter_list);
14781 /* Register member declarations. */
14782 if (member_p && !friend_p && decl && !DECL_CLASS_TEMPLATE_P (decl))
14783 finish_member_declaration (decl);
14785 /* If DECL is a function template, we must return to parse it later.
14786 (Even though there is no definition, there might be default
14787 arguments that need handling.) */
14788 if (member_p && decl
14789 && (TREE_CODE (decl) == FUNCTION_DECL
14790 || DECL_FUNCTION_TEMPLATE_P (decl)))
14791 TREE_VALUE (parser->unparsed_functions_queues)
14792 = tree_cons (NULL_TREE, decl,
14793 TREE_VALUE (parser->unparsed_functions_queues));
14796 /* Parse a `decl-specifier-seq [opt] init-declarator [opt] ;' or
14797 `function-definition' sequence. MEMBER_P is true, this declaration
14798 appears in a class scope.
14800 Returns the DECL for the declared entity. If FRIEND_P is non-NULL,
14801 *FRIEND_P is set to TRUE iff the declaration is a friend. */
14803 static tree
14804 cp_parser_single_declaration (cp_parser* parser,
14805 bool member_p,
14806 bool* friend_p)
14808 int declares_class_or_enum;
14809 tree decl = NULL_TREE;
14810 cp_decl_specifier_seq decl_specifiers;
14811 bool function_definition_p = false;
14813 /* This function is only used when processing a template
14814 declaration. */
14815 gcc_assert (innermost_scope_kind () == sk_template_parms
14816 || innermost_scope_kind () == sk_template_spec);
14818 /* Defer access checks until we know what is being declared. */
14819 push_deferring_access_checks (dk_deferred);
14821 /* Try the `decl-specifier-seq [opt] init-declarator [opt]'
14822 alternative. */
14823 cp_parser_decl_specifier_seq (parser,
14824 CP_PARSER_FLAGS_OPTIONAL,
14825 &decl_specifiers,
14826 &declares_class_or_enum);
14827 if (friend_p)
14828 *friend_p = cp_parser_friend_p (&decl_specifiers);
14830 /* There are no template typedefs. */
14831 if (decl_specifiers.specs[(int) ds_typedef])
14833 error ("template declaration of %qs", "typedef");
14834 decl = error_mark_node;
14837 /* Gather up the access checks that occurred the
14838 decl-specifier-seq. */
14839 stop_deferring_access_checks ();
14841 /* Check for the declaration of a template class. */
14842 if (declares_class_or_enum)
14844 if (cp_parser_declares_only_class_p (parser))
14846 decl = shadow_tag (&decl_specifiers);
14848 /* In this case:
14850 struct C {
14851 friend template <typename T> struct A<T>::B;
14854 A<T>::B will be represented by a TYPENAME_TYPE, and
14855 therefore not recognized by shadow_tag. */
14856 if (friend_p && *friend_p
14857 && !decl
14858 && decl_specifiers.type
14859 && TYPE_P (decl_specifiers.type))
14860 decl = decl_specifiers.type;
14862 if (decl && decl != error_mark_node)
14863 decl = TYPE_NAME (decl);
14864 else
14865 decl = error_mark_node;
14868 /* If it's not a template class, try for a template function. If
14869 the next token is a `;', then this declaration does not declare
14870 anything. But, if there were errors in the decl-specifiers, then
14871 the error might well have come from an attempted class-specifier.
14872 In that case, there's no need to warn about a missing declarator. */
14873 if (!decl
14874 && (cp_lexer_next_token_is_not (parser->lexer, CPP_SEMICOLON)
14875 || decl_specifiers.type != error_mark_node))
14876 decl = cp_parser_init_declarator (parser,
14877 &decl_specifiers,
14878 /*function_definition_allowed_p=*/true,
14879 member_p,
14880 declares_class_or_enum,
14881 &function_definition_p);
14883 pop_deferring_access_checks ();
14885 /* Clear any current qualification; whatever comes next is the start
14886 of something new. */
14887 parser->scope = NULL_TREE;
14888 parser->qualifying_scope = NULL_TREE;
14889 parser->object_scope = NULL_TREE;
14890 /* Look for a trailing `;' after the declaration. */
14891 if (!function_definition_p
14892 && (decl == error_mark_node
14893 || !cp_parser_require (parser, CPP_SEMICOLON, "`;'")))
14894 cp_parser_skip_to_end_of_block_or_statement (parser);
14896 return decl;
14899 /* Parse a cast-expression that is not the operand of a unary "&". */
14901 static tree
14902 cp_parser_simple_cast_expression (cp_parser *parser)
14904 return cp_parser_cast_expression (parser, /*address_p=*/false);
14907 /* Parse a functional cast to TYPE. Returns an expression
14908 representing the cast. */
14910 static tree
14911 cp_parser_functional_cast (cp_parser* parser, tree type)
14913 tree expression_list;
14914 tree cast;
14916 expression_list
14917 = cp_parser_parenthesized_expression_list (parser, false,
14918 /*non_constant_p=*/NULL);
14920 cast = build_functional_cast (type, expression_list);
14921 /* [expr.const]/1: In an integral constant expression "only type
14922 conversions to integral or enumeration type can be used". */
14923 if (cast != error_mark_node && !type_dependent_expression_p (type)
14924 && !INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (type)))
14926 if (cp_parser_non_integral_constant_expression
14927 (parser, "a call to a constructor"))
14928 return error_mark_node;
14930 return cast;
14933 /* Save the tokens that make up the body of a member function defined
14934 in a class-specifier. The DECL_SPECIFIERS and DECLARATOR have
14935 already been parsed. The ATTRIBUTES are any GNU "__attribute__"
14936 specifiers applied to the declaration. Returns the FUNCTION_DECL
14937 for the member function. */
14939 static tree
14940 cp_parser_save_member_function_body (cp_parser* parser,
14941 cp_decl_specifier_seq *decl_specifiers,
14942 cp_declarator *declarator,
14943 tree attributes)
14945 cp_token *first;
14946 cp_token *last;
14947 tree fn;
14949 /* Create the function-declaration. */
14950 fn = start_method (decl_specifiers, declarator, attributes);
14951 /* If something went badly wrong, bail out now. */
14952 if (fn == error_mark_node)
14954 /* If there's a function-body, skip it. */
14955 if (cp_parser_token_starts_function_definition_p
14956 (cp_lexer_peek_token (parser->lexer)))
14957 cp_parser_skip_to_end_of_block_or_statement (parser);
14958 return error_mark_node;
14961 /* Remember it, if there default args to post process. */
14962 cp_parser_save_default_args (parser, fn);
14964 /* Save away the tokens that make up the body of the
14965 function. */
14966 first = parser->lexer->next_token;
14967 cp_parser_cache_group (parser, CPP_CLOSE_BRACE, /*depth=*/0);
14968 /* Handle function try blocks. */
14969 while (cp_lexer_next_token_is_keyword (parser->lexer, RID_CATCH))
14970 cp_parser_cache_group (parser, CPP_CLOSE_BRACE, /*depth=*/0);
14971 last = parser->lexer->next_token;
14973 /* Save away the inline definition; we will process it when the
14974 class is complete. */
14975 DECL_PENDING_INLINE_INFO (fn) = cp_token_cache_new (first, last);
14976 DECL_PENDING_INLINE_P (fn) = 1;
14978 /* We need to know that this was defined in the class, so that
14979 friend templates are handled correctly. */
14980 DECL_INITIALIZED_IN_CLASS_P (fn) = 1;
14982 /* We're done with the inline definition. */
14983 finish_method (fn);
14985 /* Add FN to the queue of functions to be parsed later. */
14986 TREE_VALUE (parser->unparsed_functions_queues)
14987 = tree_cons (NULL_TREE, fn,
14988 TREE_VALUE (parser->unparsed_functions_queues));
14990 return fn;
14993 /* Parse a template-argument-list, as well as the trailing ">" (but
14994 not the opening ">"). See cp_parser_template_argument_list for the
14995 return value. */
14997 static tree
14998 cp_parser_enclosed_template_argument_list (cp_parser* parser)
15000 tree arguments;
15001 tree saved_scope;
15002 tree saved_qualifying_scope;
15003 tree saved_object_scope;
15004 bool saved_greater_than_is_operator_p;
15006 /* [temp.names]
15008 When parsing a template-id, the first non-nested `>' is taken as
15009 the end of the template-argument-list rather than a greater-than
15010 operator. */
15011 saved_greater_than_is_operator_p
15012 = parser->greater_than_is_operator_p;
15013 parser->greater_than_is_operator_p = false;
15014 /* Parsing the argument list may modify SCOPE, so we save it
15015 here. */
15016 saved_scope = parser->scope;
15017 saved_qualifying_scope = parser->qualifying_scope;
15018 saved_object_scope = parser->object_scope;
15019 /* Parse the template-argument-list itself. */
15020 if (cp_lexer_next_token_is (parser->lexer, CPP_GREATER))
15021 arguments = NULL_TREE;
15022 else
15023 arguments = cp_parser_template_argument_list (parser);
15024 /* Look for the `>' that ends the template-argument-list. If we find
15025 a '>>' instead, it's probably just a typo. */
15026 if (cp_lexer_next_token_is (parser->lexer, CPP_RSHIFT))
15028 if (!saved_greater_than_is_operator_p)
15030 /* If we're in a nested template argument list, the '>>' has
15031 to be a typo for '> >'. We emit the error message, but we
15032 continue parsing and we push a '>' as next token, so that
15033 the argument list will be parsed correctly. Note that the
15034 global source location is still on the token before the
15035 '>>', so we need to say explicitly where we want it. */
15036 cp_token *token = cp_lexer_peek_token (parser->lexer);
15037 error ("%H%<>>%> should be %<> >%> "
15038 "within a nested template argument list",
15039 &token->location);
15041 /* ??? Proper recovery should terminate two levels of
15042 template argument list here. */
15043 token->type = CPP_GREATER;
15045 else
15047 /* If this is not a nested template argument list, the '>>'
15048 is a typo for '>'. Emit an error message and continue.
15049 Same deal about the token location, but here we can get it
15050 right by consuming the '>>' before issuing the diagnostic. */
15051 cp_lexer_consume_token (parser->lexer);
15052 error ("spurious %<>>%>, use %<>%> to terminate "
15053 "a template argument list");
15056 else if (!cp_lexer_next_token_is (parser->lexer, CPP_GREATER))
15057 error ("missing %<>%> to terminate the template argument list");
15058 else
15059 /* It's what we want, a '>'; consume it. */
15060 cp_lexer_consume_token (parser->lexer);
15061 /* The `>' token might be a greater-than operator again now. */
15062 parser->greater_than_is_operator_p
15063 = saved_greater_than_is_operator_p;
15064 /* Restore the SAVED_SCOPE. */
15065 parser->scope = saved_scope;
15066 parser->qualifying_scope = saved_qualifying_scope;
15067 parser->object_scope = saved_object_scope;
15069 return arguments;
15072 /* MEMBER_FUNCTION is a member function, or a friend. If default
15073 arguments, or the body of the function have not yet been parsed,
15074 parse them now. */
15076 static void
15077 cp_parser_late_parsing_for_member (cp_parser* parser, tree member_function)
15079 /* If this member is a template, get the underlying
15080 FUNCTION_DECL. */
15081 if (DECL_FUNCTION_TEMPLATE_P (member_function))
15082 member_function = DECL_TEMPLATE_RESULT (member_function);
15084 /* There should not be any class definitions in progress at this
15085 point; the bodies of members are only parsed outside of all class
15086 definitions. */
15087 gcc_assert (parser->num_classes_being_defined == 0);
15088 /* While we're parsing the member functions we might encounter more
15089 classes. We want to handle them right away, but we don't want
15090 them getting mixed up with functions that are currently in the
15091 queue. */
15092 parser->unparsed_functions_queues
15093 = tree_cons (NULL_TREE, NULL_TREE, parser->unparsed_functions_queues);
15095 /* Make sure that any template parameters are in scope. */
15096 maybe_begin_member_template_processing (member_function);
15098 /* If the body of the function has not yet been parsed, parse it
15099 now. */
15100 if (DECL_PENDING_INLINE_P (member_function))
15102 tree function_scope;
15103 cp_token_cache *tokens;
15105 /* The function is no longer pending; we are processing it. */
15106 tokens = DECL_PENDING_INLINE_INFO (member_function);
15107 DECL_PENDING_INLINE_INFO (member_function) = NULL;
15108 DECL_PENDING_INLINE_P (member_function) = 0;
15109 /* If this was an inline function in a local class, enter the scope
15110 of the containing function. */
15111 function_scope = decl_function_context (member_function);
15112 if (function_scope)
15113 push_function_context_to (function_scope);
15115 /* Push the body of the function onto the lexer stack. */
15116 cp_parser_push_lexer_for_tokens (parser, tokens);
15118 /* Let the front end know that we going to be defining this
15119 function. */
15120 start_preparsed_function (member_function, NULL_TREE,
15121 SF_PRE_PARSED | SF_INCLASS_INLINE);
15123 /* Now, parse the body of the function. */
15124 cp_parser_function_definition_after_declarator (parser,
15125 /*inline_p=*/true);
15127 /* Leave the scope of the containing function. */
15128 if (function_scope)
15129 pop_function_context_from (function_scope);
15130 cp_parser_pop_lexer (parser);
15133 /* Remove any template parameters from the symbol table. */
15134 maybe_end_member_template_processing ();
15136 /* Restore the queue. */
15137 parser->unparsed_functions_queues
15138 = TREE_CHAIN (parser->unparsed_functions_queues);
15141 /* If DECL contains any default args, remember it on the unparsed
15142 functions queue. */
15144 static void
15145 cp_parser_save_default_args (cp_parser* parser, tree decl)
15147 tree probe;
15149 for (probe = TYPE_ARG_TYPES (TREE_TYPE (decl));
15150 probe;
15151 probe = TREE_CHAIN (probe))
15152 if (TREE_PURPOSE (probe))
15154 TREE_PURPOSE (parser->unparsed_functions_queues)
15155 = tree_cons (current_class_type, decl,
15156 TREE_PURPOSE (parser->unparsed_functions_queues));
15157 break;
15159 return;
15162 /* FN is a FUNCTION_DECL which may contains a parameter with an
15163 unparsed DEFAULT_ARG. Parse the default args now. This function
15164 assumes that the current scope is the scope in which the default
15165 argument should be processed. */
15167 static void
15168 cp_parser_late_parsing_default_args (cp_parser *parser, tree fn)
15170 bool saved_local_variables_forbidden_p;
15171 tree parm;
15173 /* While we're parsing the default args, we might (due to the
15174 statement expression extension) encounter more classes. We want
15175 to handle them right away, but we don't want them getting mixed
15176 up with default args that are currently in the queue. */
15177 parser->unparsed_functions_queues
15178 = tree_cons (NULL_TREE, NULL_TREE, parser->unparsed_functions_queues);
15180 /* Local variable names (and the `this' keyword) may not appear
15181 in a default argument. */
15182 saved_local_variables_forbidden_p = parser->local_variables_forbidden_p;
15183 parser->local_variables_forbidden_p = true;
15185 for (parm = TYPE_ARG_TYPES (TREE_TYPE (fn));
15186 parm;
15187 parm = TREE_CHAIN (parm))
15189 cp_token_cache *tokens;
15191 if (!TREE_PURPOSE (parm)
15192 || TREE_CODE (TREE_PURPOSE (parm)) != DEFAULT_ARG)
15193 continue;
15195 /* Push the saved tokens for the default argument onto the parser's
15196 lexer stack. */
15197 tokens = DEFARG_TOKENS (TREE_PURPOSE (parm));
15198 cp_parser_push_lexer_for_tokens (parser, tokens);
15200 /* Parse the assignment-expression. */
15201 TREE_PURPOSE (parm) = cp_parser_assignment_expression (parser);
15203 /* If the token stream has not been completely used up, then
15204 there was extra junk after the end of the default
15205 argument. */
15206 if (!cp_lexer_next_token_is (parser->lexer, CPP_EOF))
15207 cp_parser_error (parser, "expected %<,%>");
15209 /* Revert to the main lexer. */
15210 cp_parser_pop_lexer (parser);
15213 /* Restore the state of local_variables_forbidden_p. */
15214 parser->local_variables_forbidden_p = saved_local_variables_forbidden_p;
15216 /* Restore the queue. */
15217 parser->unparsed_functions_queues
15218 = TREE_CHAIN (parser->unparsed_functions_queues);
15221 /* Parse the operand of `sizeof' (or a similar operator). Returns
15222 either a TYPE or an expression, depending on the form of the
15223 input. The KEYWORD indicates which kind of expression we have
15224 encountered. */
15226 static tree
15227 cp_parser_sizeof_operand (cp_parser* parser, enum rid keyword)
15229 static const char *format;
15230 tree expr = NULL_TREE;
15231 const char *saved_message;
15232 bool saved_integral_constant_expression_p;
15234 /* Initialize FORMAT the first time we get here. */
15235 if (!format)
15236 format = "types may not be defined in '%s' expressions";
15238 /* Types cannot be defined in a `sizeof' expression. Save away the
15239 old message. */
15240 saved_message = parser->type_definition_forbidden_message;
15241 /* And create the new one. */
15242 parser->type_definition_forbidden_message
15243 = xmalloc (strlen (format)
15244 + strlen (IDENTIFIER_POINTER (ridpointers[keyword]))
15245 + 1 /* `\0' */);
15246 sprintf ((char *) parser->type_definition_forbidden_message,
15247 format, IDENTIFIER_POINTER (ridpointers[keyword]));
15249 /* The restrictions on constant-expressions do not apply inside
15250 sizeof expressions. */
15251 saved_integral_constant_expression_p = parser->integral_constant_expression_p;
15252 parser->integral_constant_expression_p = false;
15254 /* Do not actually evaluate the expression. */
15255 ++skip_evaluation;
15256 /* If it's a `(', then we might be looking at the type-id
15257 construction. */
15258 if (cp_lexer_next_token_is (parser->lexer, CPP_OPEN_PAREN))
15260 tree type;
15261 bool saved_in_type_id_in_expr_p;
15263 /* We can't be sure yet whether we're looking at a type-id or an
15264 expression. */
15265 cp_parser_parse_tentatively (parser);
15266 /* Consume the `('. */
15267 cp_lexer_consume_token (parser->lexer);
15268 /* Parse the type-id. */
15269 saved_in_type_id_in_expr_p = parser->in_type_id_in_expr_p;
15270 parser->in_type_id_in_expr_p = true;
15271 type = cp_parser_type_id (parser);
15272 parser->in_type_id_in_expr_p = saved_in_type_id_in_expr_p;
15273 /* Now, look for the trailing `)'. */
15274 cp_parser_require (parser, CPP_CLOSE_PAREN, "%<)%>");
15275 /* If all went well, then we're done. */
15276 if (cp_parser_parse_definitely (parser))
15278 cp_decl_specifier_seq decl_specs;
15280 /* Build a trivial decl-specifier-seq. */
15281 clear_decl_specs (&decl_specs);
15282 decl_specs.type = type;
15284 /* Call grokdeclarator to figure out what type this is. */
15285 expr = grokdeclarator (NULL,
15286 &decl_specs,
15287 TYPENAME,
15288 /*initialized=*/0,
15289 /*attrlist=*/NULL);
15293 /* If the type-id production did not work out, then we must be
15294 looking at the unary-expression production. */
15295 if (!expr)
15296 expr = cp_parser_unary_expression (parser, /*address_p=*/false);
15297 /* Go back to evaluating expressions. */
15298 --skip_evaluation;
15300 /* Free the message we created. */
15301 free ((char *) parser->type_definition_forbidden_message);
15302 /* And restore the old one. */
15303 parser->type_definition_forbidden_message = saved_message;
15304 parser->integral_constant_expression_p = saved_integral_constant_expression_p;
15306 return expr;
15309 /* If the current declaration has no declarator, return true. */
15311 static bool
15312 cp_parser_declares_only_class_p (cp_parser *parser)
15314 /* If the next token is a `;' or a `,' then there is no
15315 declarator. */
15316 return (cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON)
15317 || cp_lexer_next_token_is (parser->lexer, CPP_COMMA));
15320 /* Update the DECL_SPECS to reflect the STORAGE_CLASS. */
15322 static void
15323 cp_parser_set_storage_class (cp_decl_specifier_seq *decl_specs,
15324 cp_storage_class storage_class)
15326 if (decl_specs->storage_class != sc_none)
15327 decl_specs->multiple_storage_classes_p = true;
15328 else
15329 decl_specs->storage_class = storage_class;
15332 /* Update the DECL_SPECS to reflect the TYPE_SPEC. If USER_DEFINED_P
15333 is true, the type is a user-defined type; otherwise it is a
15334 built-in type specified by a keyword. */
15336 static void
15337 cp_parser_set_decl_spec_type (cp_decl_specifier_seq *decl_specs,
15338 tree type_spec,
15339 bool user_defined_p)
15341 decl_specs->any_specifiers_p = true;
15343 /* If the user tries to redeclare a built-in type (with, for example,
15344 in "typedef int wchar_t;") we remember that this is what
15345 happened. In system headers, we ignore these declarations so
15346 that G++ can work with system headers that are not C++-safe. */
15347 if (decl_specs->specs[(int) ds_typedef]
15348 && !user_defined_p
15349 && (decl_specs->type
15350 || decl_specs->specs[(int) ds_long]
15351 || decl_specs->specs[(int) ds_short]
15352 || decl_specs->specs[(int) ds_unsigned]
15353 || decl_specs->specs[(int) ds_signed]))
15355 decl_specs->redefined_builtin_type = type_spec;
15356 if (!decl_specs->type)
15358 decl_specs->type = type_spec;
15359 decl_specs->user_defined_type_p = false;
15362 else if (decl_specs->type)
15363 decl_specs->multiple_types_p = true;
15364 else
15366 decl_specs->type = type_spec;
15367 decl_specs->user_defined_type_p = user_defined_p;
15368 decl_specs->redefined_builtin_type = NULL_TREE;
15372 /* DECL_SPECIFIERS is the representation of a decl-specifier-seq.
15373 Returns TRUE iff `friend' appears among the DECL_SPECIFIERS. */
15375 static bool
15376 cp_parser_friend_p (const cp_decl_specifier_seq *decl_specifiers)
15378 return decl_specifiers->specs[(int) ds_friend] != 0;
15381 /* If the next token is of the indicated TYPE, consume it. Otherwise,
15382 issue an error message indicating that TOKEN_DESC was expected.
15384 Returns the token consumed, if the token had the appropriate type.
15385 Otherwise, returns NULL. */
15387 static cp_token *
15388 cp_parser_require (cp_parser* parser,
15389 enum cpp_ttype type,
15390 const char* token_desc)
15392 if (cp_lexer_next_token_is (parser->lexer, type))
15393 return cp_lexer_consume_token (parser->lexer);
15394 else
15396 /* Output the MESSAGE -- unless we're parsing tentatively. */
15397 if (!cp_parser_simulate_error (parser))
15399 char *message = concat ("expected ", token_desc, NULL);
15400 cp_parser_error (parser, message);
15401 free (message);
15403 return NULL;
15407 /* Like cp_parser_require, except that tokens will be skipped until
15408 the desired token is found. An error message is still produced if
15409 the next token is not as expected. */
15411 static void
15412 cp_parser_skip_until_found (cp_parser* parser,
15413 enum cpp_ttype type,
15414 const char* token_desc)
15416 cp_token *token;
15417 unsigned nesting_depth = 0;
15419 if (cp_parser_require (parser, type, token_desc))
15420 return;
15422 /* Skip tokens until the desired token is found. */
15423 while (true)
15425 /* Peek at the next token. */
15426 token = cp_lexer_peek_token (parser->lexer);
15427 /* If we've reached the token we want, consume it and
15428 stop. */
15429 if (token->type == type && !nesting_depth)
15431 cp_lexer_consume_token (parser->lexer);
15432 return;
15434 /* If we've run out of tokens, stop. */
15435 if (token->type == CPP_EOF)
15436 return;
15437 if (token->type == CPP_OPEN_BRACE
15438 || token->type == CPP_OPEN_PAREN
15439 || token->type == CPP_OPEN_SQUARE)
15440 ++nesting_depth;
15441 else if (token->type == CPP_CLOSE_BRACE
15442 || token->type == CPP_CLOSE_PAREN
15443 || token->type == CPP_CLOSE_SQUARE)
15445 if (nesting_depth-- == 0)
15446 return;
15448 /* Consume this token. */
15449 cp_lexer_consume_token (parser->lexer);
15453 /* If the next token is the indicated keyword, consume it. Otherwise,
15454 issue an error message indicating that TOKEN_DESC was expected.
15456 Returns the token consumed, if the token had the appropriate type.
15457 Otherwise, returns NULL. */
15459 static cp_token *
15460 cp_parser_require_keyword (cp_parser* parser,
15461 enum rid keyword,
15462 const char* token_desc)
15464 cp_token *token = cp_parser_require (parser, CPP_KEYWORD, token_desc);
15466 if (token && token->keyword != keyword)
15468 dyn_string_t error_msg;
15470 /* Format the error message. */
15471 error_msg = dyn_string_new (0);
15472 dyn_string_append_cstr (error_msg, "expected ");
15473 dyn_string_append_cstr (error_msg, token_desc);
15474 cp_parser_error (parser, error_msg->s);
15475 dyn_string_delete (error_msg);
15476 return NULL;
15479 return token;
15482 /* Returns TRUE iff TOKEN is a token that can begin the body of a
15483 function-definition. */
15485 static bool
15486 cp_parser_token_starts_function_definition_p (cp_token* token)
15488 return (/* An ordinary function-body begins with an `{'. */
15489 token->type == CPP_OPEN_BRACE
15490 /* A ctor-initializer begins with a `:'. */
15491 || token->type == CPP_COLON
15492 /* A function-try-block begins with `try'. */
15493 || token->keyword == RID_TRY
15494 /* The named return value extension begins with `return'. */
15495 || token->keyword == RID_RETURN);
15498 /* Returns TRUE iff the next token is the ":" or "{" beginning a class
15499 definition. */
15501 static bool
15502 cp_parser_next_token_starts_class_definition_p (cp_parser *parser)
15504 cp_token *token;
15506 token = cp_lexer_peek_token (parser->lexer);
15507 return (token->type == CPP_OPEN_BRACE || token->type == CPP_COLON);
15510 /* Returns TRUE iff the next token is the "," or ">" ending a
15511 template-argument. */
15513 static bool
15514 cp_parser_next_token_ends_template_argument_p (cp_parser *parser)
15516 cp_token *token;
15518 token = cp_lexer_peek_token (parser->lexer);
15519 return (token->type == CPP_COMMA || token->type == CPP_GREATER);
15522 /* Returns TRUE iff the n-th token is a ">", or the n-th is a "[" and the
15523 (n+1)-th is a ":" (which is a possible digraph typo for "< ::"). */
15525 static bool
15526 cp_parser_nth_token_starts_template_argument_list_p (cp_parser * parser,
15527 size_t n)
15529 cp_token *token;
15531 token = cp_lexer_peek_nth_token (parser->lexer, n);
15532 if (token->type == CPP_LESS)
15533 return true;
15534 /* Check for the sequence `<::' in the original code. It would be lexed as
15535 `[:', where `[' is a digraph, and there is no whitespace before
15536 `:'. */
15537 if (token->type == CPP_OPEN_SQUARE && token->flags & DIGRAPH)
15539 cp_token *token2;
15540 token2 = cp_lexer_peek_nth_token (parser->lexer, n+1);
15541 if (token2->type == CPP_COLON && !(token2->flags & PREV_WHITE))
15542 return true;
15544 return false;
15547 /* Returns the kind of tag indicated by TOKEN, if it is a class-key,
15548 or none_type otherwise. */
15550 static enum tag_types
15551 cp_parser_token_is_class_key (cp_token* token)
15553 switch (token->keyword)
15555 case RID_CLASS:
15556 return class_type;
15557 case RID_STRUCT:
15558 return record_type;
15559 case RID_UNION:
15560 return union_type;
15562 default:
15563 return none_type;
15567 /* Issue an error message if the CLASS_KEY does not match the TYPE. */
15569 static void
15570 cp_parser_check_class_key (enum tag_types class_key, tree type)
15572 if ((TREE_CODE (type) == UNION_TYPE) != (class_key == union_type))
15573 pedwarn ("%qs tag used in naming %q#T",
15574 class_key == union_type ? "union"
15575 : class_key == record_type ? "struct" : "class",
15576 type);
15579 /* Issue an error message if DECL is redeclared with different
15580 access than its original declaration [class.access.spec/3].
15581 This applies to nested classes and nested class templates.
15582 [class.mem/1]. */
15584 static void
15585 cp_parser_check_access_in_redeclaration (tree decl)
15587 if (!CLASS_TYPE_P (TREE_TYPE (decl)))
15588 return;
15590 if ((TREE_PRIVATE (decl)
15591 != (current_access_specifier == access_private_node))
15592 || (TREE_PROTECTED (decl)
15593 != (current_access_specifier == access_protected_node)))
15594 error ("%qD redeclared with different access", decl);
15597 /* Look for the `template' keyword, as a syntactic disambiguator.
15598 Return TRUE iff it is present, in which case it will be
15599 consumed. */
15601 static bool
15602 cp_parser_optional_template_keyword (cp_parser *parser)
15604 if (cp_lexer_next_token_is_keyword (parser->lexer, RID_TEMPLATE))
15606 /* The `template' keyword can only be used within templates;
15607 outside templates the parser can always figure out what is a
15608 template and what is not. */
15609 if (!processing_template_decl)
15611 error ("%<template%> (as a disambiguator) is only allowed "
15612 "within templates");
15613 /* If this part of the token stream is rescanned, the same
15614 error message would be generated. So, we purge the token
15615 from the stream. */
15616 cp_lexer_purge_token (parser->lexer);
15617 return false;
15619 else
15621 /* Consume the `template' keyword. */
15622 cp_lexer_consume_token (parser->lexer);
15623 return true;
15627 return false;
15630 /* The next token is a CPP_NESTED_NAME_SPECIFIER. Consume the token,
15631 set PARSER->SCOPE, and perform other related actions. */
15633 static void
15634 cp_parser_pre_parsed_nested_name_specifier (cp_parser *parser)
15636 tree value;
15637 tree check;
15639 /* Get the stored value. */
15640 value = cp_lexer_consume_token (parser->lexer)->value;
15641 /* Perform any access checks that were deferred. */
15642 for (check = TREE_PURPOSE (value); check; check = TREE_CHAIN (check))
15643 perform_or_defer_access_check (TREE_PURPOSE (check), TREE_VALUE (check));
15644 /* Set the scope from the stored value. */
15645 parser->scope = TREE_VALUE (value);
15646 parser->qualifying_scope = TREE_TYPE (value);
15647 parser->object_scope = NULL_TREE;
15650 /* Consume tokens up through a non-nested END token. */
15652 static void
15653 cp_parser_cache_group (cp_parser *parser,
15654 enum cpp_ttype end,
15655 unsigned depth)
15657 while (true)
15659 cp_token *token;
15661 /* Abort a parenthesized expression if we encounter a brace. */
15662 if ((end == CPP_CLOSE_PAREN || depth == 0)
15663 && cp_lexer_next_token_is (parser->lexer, CPP_SEMICOLON))
15664 return;
15665 /* If we've reached the end of the file, stop. */
15666 if (cp_lexer_next_token_is (parser->lexer, CPP_EOF))
15667 return;
15668 /* Consume the next token. */
15669 token = cp_lexer_consume_token (parser->lexer);
15670 /* See if it starts a new group. */
15671 if (token->type == CPP_OPEN_BRACE)
15673 cp_parser_cache_group (parser, CPP_CLOSE_BRACE, depth + 1);
15674 if (depth == 0)
15675 return;
15677 else if (token->type == CPP_OPEN_PAREN)
15678 cp_parser_cache_group (parser, CPP_CLOSE_PAREN, depth + 1);
15679 else if (token->type == end)
15680 return;
15684 /* Begin parsing tentatively. We always save tokens while parsing
15685 tentatively so that if the tentative parsing fails we can restore the
15686 tokens. */
15688 static void
15689 cp_parser_parse_tentatively (cp_parser* parser)
15691 /* Enter a new parsing context. */
15692 parser->context = cp_parser_context_new (parser->context);
15693 /* Begin saving tokens. */
15694 cp_lexer_save_tokens (parser->lexer);
15695 /* In order to avoid repetitive access control error messages,
15696 access checks are queued up until we are no longer parsing
15697 tentatively. */
15698 push_deferring_access_checks (dk_deferred);
15701 /* Commit to the currently active tentative parse. */
15703 static void
15704 cp_parser_commit_to_tentative_parse (cp_parser* parser)
15706 cp_parser_context *context;
15707 cp_lexer *lexer;
15709 /* Mark all of the levels as committed. */
15710 lexer = parser->lexer;
15711 for (context = parser->context; context->next; context = context->next)
15713 if (context->status == CP_PARSER_STATUS_KIND_COMMITTED)
15714 break;
15715 context->status = CP_PARSER_STATUS_KIND_COMMITTED;
15716 while (!cp_lexer_saving_tokens (lexer))
15717 lexer = lexer->next;
15718 cp_lexer_commit_tokens (lexer);
15722 /* Abort the currently active tentative parse. All consumed tokens
15723 will be rolled back, and no diagnostics will be issued. */
15725 static void
15726 cp_parser_abort_tentative_parse (cp_parser* parser)
15728 cp_parser_simulate_error (parser);
15729 /* Now, pretend that we want to see if the construct was
15730 successfully parsed. */
15731 cp_parser_parse_definitely (parser);
15734 /* Stop parsing tentatively. If a parse error has occurred, restore the
15735 token stream. Otherwise, commit to the tokens we have consumed.
15736 Returns true if no error occurred; false otherwise. */
15738 static bool
15739 cp_parser_parse_definitely (cp_parser* parser)
15741 bool error_occurred;
15742 cp_parser_context *context;
15744 /* Remember whether or not an error occurred, since we are about to
15745 destroy that information. */
15746 error_occurred = cp_parser_error_occurred (parser);
15747 /* Remove the topmost context from the stack. */
15748 context = parser->context;
15749 parser->context = context->next;
15750 /* If no parse errors occurred, commit to the tentative parse. */
15751 if (!error_occurred)
15753 /* Commit to the tokens read tentatively, unless that was
15754 already done. */
15755 if (context->status != CP_PARSER_STATUS_KIND_COMMITTED)
15756 cp_lexer_commit_tokens (parser->lexer);
15758 pop_to_parent_deferring_access_checks ();
15760 /* Otherwise, if errors occurred, roll back our state so that things
15761 are just as they were before we began the tentative parse. */
15762 else
15764 cp_lexer_rollback_tokens (parser->lexer);
15765 pop_deferring_access_checks ();
15767 /* Add the context to the front of the free list. */
15768 context->next = cp_parser_context_free_list;
15769 cp_parser_context_free_list = context;
15771 return !error_occurred;
15774 /* Returns true if we are parsing tentatively -- but have decided that
15775 we will stick with this tentative parse, even if errors occur. */
15777 static bool
15778 cp_parser_committed_to_tentative_parse (cp_parser* parser)
15780 return (cp_parser_parsing_tentatively (parser)
15781 && parser->context->status == CP_PARSER_STATUS_KIND_COMMITTED);
15784 /* Returns nonzero iff an error has occurred during the most recent
15785 tentative parse. */
15787 static bool
15788 cp_parser_error_occurred (cp_parser* parser)
15790 return (cp_parser_parsing_tentatively (parser)
15791 && parser->context->status == CP_PARSER_STATUS_KIND_ERROR);
15794 /* Returns nonzero if GNU extensions are allowed. */
15796 static bool
15797 cp_parser_allow_gnu_extensions_p (cp_parser* parser)
15799 return parser->allow_gnu_extensions_p;
15803 /* The parser. */
15805 static GTY (()) cp_parser *the_parser;
15807 /* External interface. */
15809 /* Parse one entire translation unit. */
15811 void
15812 c_parse_file (void)
15814 bool error_occurred;
15815 static bool already_called = false;
15817 if (already_called)
15819 sorry ("inter-module optimizations not implemented for C++");
15820 return;
15822 already_called = true;
15824 the_parser = cp_parser_new ();
15825 push_deferring_access_checks (flag_access_control
15826 ? dk_no_deferred : dk_no_check);
15827 error_occurred = cp_parser_translation_unit (the_parser);
15828 the_parser = NULL;
15831 /* This variable must be provided by every front end. */
15833 int yydebug;
15835 #include "gt-cp-parser.h"