* reload1.c (spill_failure): Dump failed reload data to dump file.
[official-gcc.git] / gcc / df.c
blobf2f5749918b0bbeee944f2c822d8982601ecf896
1 /* Dataflow support routines.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Contributed by Michael P. Hayes (m.hayes@elec.canterbury.ac.nz,
5 mhayes@redhat.com)
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
22 02110-1301, USA.
25 OVERVIEW:
27 This file provides some dataflow routines for computing reaching defs,
28 upward exposed uses, live variables, def-use chains, and use-def
29 chains. The global dataflow is performed using simple iterative
30 methods with a worklist and could be sped up by ordering the blocks
31 with a depth first search order.
33 A `struct ref' data structure (ref) is allocated for every register
34 reference (def or use) and this records the insn and bb the ref is
35 found within. The refs are linked together in chains of uses and defs
36 for each insn and for each register. Each ref also has a chain field
37 that links all the use refs for a def or all the def refs for a use.
38 This is used to create use-def or def-use chains.
41 USAGE:
43 Here's an example of using the dataflow routines.
45 struct df *df;
47 df = df_init ();
49 df_analyze (df, 0, DF_ALL);
51 df_dump (df, DF_ALL, stderr);
53 df_finish (df);
56 df_init simply creates a poor man's object (df) that needs to be
57 passed to all the dataflow routines. df_finish destroys this
58 object and frees up any allocated memory. DF_ALL says to analyze
59 everything.
61 df_analyze performs the following:
63 1. Records defs and uses by scanning the insns in each basic block
64 or by scanning the insns queued by df_insn_modify.
65 2. Links defs and uses into insn-def and insn-use chains.
66 3. Links defs and uses into reg-def and reg-use chains.
67 4. Assigns LUIDs to each insn (for modified blocks).
68 5. Calculates local reaching definitions.
69 6. Calculates global reaching definitions.
70 7. Creates use-def chains.
71 8. Calculates local reaching uses (upwards exposed uses).
72 9. Calculates global reaching uses.
73 10. Creates def-use chains.
74 11. Calculates local live registers.
75 12. Calculates global live registers.
76 13. Calculates register lifetimes and determines local registers.
79 PHILOSOPHY:
81 Note that the dataflow information is not updated for every newly
82 deleted or created insn. If the dataflow information requires
83 updating then all the changed, new, or deleted insns needs to be
84 marked with df_insn_modify (or df_insns_modify) either directly or
85 indirectly (say through calling df_insn_delete). df_insn_modify
86 marks all the modified insns to get processed the next time df_analyze
87 is called.
89 Beware that tinkering with insns may invalidate the dataflow information.
90 The philosophy behind these routines is that once the dataflow
91 information has been gathered, the user should store what they require
92 before they tinker with any insn. Once a reg is replaced, for example,
93 then the reg-def/reg-use chains will point to the wrong place. Once a
94 whole lot of changes have been made, df_analyze can be called again
95 to update the dataflow information. Currently, this is not very smart
96 with regard to propagating changes to the dataflow so it should not
97 be called very often.
100 DATA STRUCTURES:
102 The basic object is a REF (reference) and this may either be a DEF
103 (definition) or a USE of a register.
105 These are linked into a variety of lists; namely reg-def, reg-use,
106 insn-def, insn-use, def-use, and use-def lists. For example,
107 the reg-def lists contain all the refs that define a given register
108 while the insn-use lists contain all the refs used by an insn.
110 Note that the reg-def and reg-use chains are generally short (except for
111 the hard registers) and thus it is much faster to search these chains
112 rather than searching the def or use bitmaps.
114 If the insns are in SSA form then the reg-def and use-def lists
115 should only contain the single defining ref.
118 TODO:
120 1) Incremental dataflow analysis.
122 Note that if a loop invariant insn is hoisted (or sunk), we do not
123 need to change the def-use or use-def chains. All we have to do is to
124 change the bb field for all the associated defs and uses and to
125 renumber the LUIDs for the original and new basic blocks of the insn.
127 When shadowing loop mems we create new uses and defs for new pseudos
128 so we do not affect the existing dataflow information.
130 My current strategy is to queue up all modified, created, or deleted
131 insns so when df_analyze is called we can easily determine all the new
132 or deleted refs. Currently the global dataflow information is
133 recomputed from scratch but this could be propagated more efficiently.
135 2) Reduced memory requirements.
137 We could operate a pool of ref structures. When a ref is deleted it
138 gets returned to the pool (say by linking on to a chain of free refs).
139 This will require a pair of bitmaps for defs and uses so that we can
140 tell which ones have been changed. Alternatively, we could
141 periodically squeeze the def and use tables and associated bitmaps and
142 renumber the def and use ids.
144 3) Ordering of reg-def and reg-use lists.
146 Should the first entry in the def list be the first def (within a BB)?
147 Similarly, should the first entry in the use list be the last use
148 (within a BB)?
150 4) Working with a sub-CFG.
152 Often the whole CFG does not need to be analyzed, for example,
153 when optimizing a loop, only certain registers are of interest.
154 Perhaps there should be a bitmap argument to df_analyze to specify
155 which registers should be analyzed?
158 NOTES:
160 Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
161 both a use and a def. These are both marked read/write to show that they
162 are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
163 will generate a use of reg 42 followed by a def of reg 42 (both marked
164 read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
165 generates a use of reg 41 then a def of reg 41 (both marked read/write),
166 even though reg 41 is decremented before it is used for the memory
167 address in this second example.
169 A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
170 for which the number of word_mode units covered by the outer mode is
171 smaller than that covered by the inner mode, invokes a read-modify-write.
172 operation. We generate both a use and a def and again mark them
173 read/write.
174 Paradoxical subreg writes don't leave a trace of the old content, so they
175 are write-only operations. */
177 #include "config.h"
178 #include "system.h"
179 #include "coretypes.h"
180 #include "tm.h"
181 #include "rtl.h"
182 #include "tm_p.h"
183 #include "insn-config.h"
184 #include "recog.h"
185 #include "function.h"
186 #include "regs.h"
187 #include "alloc-pool.h"
188 #include "hard-reg-set.h"
189 #include "basic-block.h"
190 #include "sbitmap.h"
191 #include "bitmap.h"
192 #include "df.h"
194 #define FOR_EACH_BB_IN_BITMAP(BITMAP, MIN, BB, CODE) \
195 do \
197 unsigned int node_; \
198 bitmap_iterator bi; \
199 EXECUTE_IF_SET_IN_BITMAP (BITMAP, MIN, node_, bi) \
201 (BB) = BASIC_BLOCK (node_); \
202 CODE; \
205 while (0)
207 static alloc_pool df_ref_pool;
208 static alloc_pool df_link_pool;
209 static struct df *ddf;
211 static void df_reg_table_realloc (struct df *, int);
212 static void df_insn_table_realloc (struct df *, unsigned int);
213 static void df_bb_table_realloc (struct df *, unsigned int);
214 static void df_bitmaps_alloc (struct df *, bitmap, int);
215 static void df_bitmaps_free (struct df *, int);
216 static void df_free (struct df *);
217 static void df_alloc (struct df *, int);
219 static rtx df_reg_use_gen (unsigned int);
221 static inline struct df_link *df_link_create (struct ref *, struct df_link *);
222 static struct df_link *df_ref_unlink (struct df_link **, struct ref *);
223 static void df_def_unlink (struct df *, struct ref *);
224 static void df_use_unlink (struct df *, struct ref *);
225 static void df_insn_refs_unlink (struct df *, basic_block, rtx);
226 #if 0
227 static void df_bb_refs_unlink (struct df *, basic_block);
228 static void df_refs_unlink (struct df *, bitmap);
229 #endif
231 static struct ref *df_ref_create (struct df *, rtx, rtx *, rtx,
232 enum df_ref_type, enum df_ref_flags);
233 static void df_ref_record_1 (struct df *, rtx, rtx *, rtx, enum df_ref_type,
234 enum df_ref_flags);
235 static void df_ref_record (struct df *, rtx, rtx *, rtx, enum df_ref_type,
236 enum df_ref_flags);
237 static void df_def_record_1 (struct df *, rtx, basic_block, rtx);
238 static void df_defs_record (struct df *, rtx, basic_block, rtx);
239 static void df_uses_record (struct df *, rtx *, enum df_ref_type,
240 basic_block, rtx, enum df_ref_flags);
241 static void df_insn_refs_record (struct df *, basic_block, rtx);
242 static void df_bb_refs_record (struct df *, basic_block);
243 static void df_refs_record (struct df *, bitmap);
245 static void df_bb_reg_def_chain_create (struct df *, basic_block);
246 static void df_reg_def_chain_create (struct df *, bitmap, bool);
247 static void df_bb_reg_use_chain_create (struct df *, basic_block);
248 static void df_reg_use_chain_create (struct df *, bitmap, bool);
249 static void df_bb_du_chain_create (struct df *, basic_block, bitmap);
250 static void df_du_chain_create (struct df *, bitmap);
251 static void df_bb_ud_chain_create (struct df *, basic_block);
252 static void df_ud_chain_create (struct df *, bitmap);
253 static void df_bb_rd_local_compute (struct df *, basic_block, bitmap);
254 static void df_rd_local_compute (struct df *, bitmap);
255 static void df_bb_ru_local_compute (struct df *, basic_block);
256 static void df_ru_local_compute (struct df *, bitmap);
257 static void df_bb_lr_local_compute (struct df *, basic_block);
258 static void df_lr_local_compute (struct df *, bitmap);
259 static void df_bb_reg_info_compute (struct df *, basic_block, bitmap);
260 static void df_reg_info_compute (struct df *, bitmap);
262 static int df_bb_luids_set (struct df *df, basic_block);
263 static int df_luids_set (struct df *df, bitmap);
265 static int df_modified_p (struct df *, bitmap);
266 static int df_refs_queue (struct df *);
267 static int df_refs_process (struct df *);
268 static int df_bb_refs_update (struct df *, basic_block);
269 static int df_refs_update (struct df *, bitmap);
270 static void df_analyze_1 (struct df *, bitmap, int, int);
272 static void df_insns_modify (struct df *, basic_block, rtx, rtx);
273 static int df_rtx_mem_replace (rtx *, void *);
274 static int df_rtx_reg_replace (rtx *, void *);
275 void df_refs_reg_replace (struct df *, bitmap, struct df_link *, rtx, rtx);
277 static int df_def_dominates_all_uses_p (struct df *, struct ref *def);
278 static int df_def_dominates_uses_p (struct df *, struct ref *def, bitmap);
279 static struct ref *df_bb_insn_regno_last_use_find (struct df *, basic_block,
280 rtx, unsigned int);
281 static struct ref *df_bb_insn_regno_first_def_find (struct df *, basic_block,
282 rtx, unsigned int);
284 static void df_chain_dump (struct df_link *, FILE *file);
285 static void df_chain_dump_regno (struct df_link *, FILE *file);
286 static void df_regno_debug (struct df *, unsigned int, FILE *);
287 static void df_ref_debug (struct df *, struct ref *, FILE *);
288 static void df_rd_transfer_function (int, int *, void *, void *, void *,
289 void *, void *);
290 static void df_ru_transfer_function (int, int *, void *, void *, void *,
291 void *, void *);
292 static void df_lr_transfer_function (int, int *, void *, void *, void *,
293 void *, void *);
294 static void hybrid_search (basic_block, struct dataflow *,
295 sbitmap, sbitmap, sbitmap);
298 /* Local memory allocation/deallocation routines. */
301 /* Increase the insn info table to have space for at least SIZE + 1
302 elements. */
303 static void
304 df_insn_table_realloc (struct df *df, unsigned int size)
306 size++;
307 if (size <= df->insn_size)
308 return;
310 /* Make the table a little larger than requested, so we do not need
311 to enlarge it so often. */
312 size += df->insn_size / 4;
314 df->insns = xrealloc (df->insns, size * sizeof (struct insn_info));
316 memset (df->insns + df->insn_size, 0,
317 (size - df->insn_size) * sizeof (struct insn_info));
319 df->insn_size = size;
321 if (! df->insns_modified)
323 df->insns_modified = BITMAP_ALLOC (NULL);
324 bitmap_zero (df->insns_modified);
328 /* Increase the bb info table to have space for at least SIZE + 1
329 elements. */
331 static void
332 df_bb_table_realloc (struct df *df, unsigned int size)
334 size++;
335 if (size <= df->n_bbs)
336 return;
338 /* Make the table a little larger than requested, so we do not need
339 to enlarge it so often. */
340 size += df->n_bbs / 4;
342 df->bbs = xrealloc (df->bbs, size * sizeof (struct bb_info));
344 memset (df->bbs + df->n_bbs, 0, (size - df->n_bbs) * sizeof (struct bb_info));
346 df->n_bbs = size;
349 /* Increase the reg info table by SIZE more elements. */
350 static void
351 df_reg_table_realloc (struct df *df, int size)
353 /* Make table 25 percent larger by default. */
354 if (! size)
355 size = df->reg_size / 4;
357 size += df->reg_size;
358 if (size < max_reg_num ())
359 size = max_reg_num ();
361 df->regs = xrealloc (df->regs, size * sizeof (struct reg_info));
362 df->reg_def_last = xrealloc (df->reg_def_last,
363 size * sizeof (struct ref *));
365 /* Zero the new entries. */
366 memset (df->regs + df->reg_size, 0,
367 (size - df->reg_size) * sizeof (struct reg_info));
369 df->reg_size = size;
373 /* Allocate bitmaps for each basic block. */
375 static void
376 df_bitmaps_alloc (struct df *df, bitmap blocks, int flags)
378 basic_block bb;
380 df->n_defs = df->def_id;
381 df->n_uses = df->use_id;
383 if (!blocks)
384 blocks = df->all_blocks;
386 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
388 struct bb_info *bb_info = DF_BB_INFO (df, bb);
390 if (flags & DF_RD)
392 if (!bb_info->rd_in)
394 /* Allocate bitmaps for reaching definitions. */
395 bb_info->rd_kill = BITMAP_ALLOC (NULL);
396 bb_info->rd_gen = BITMAP_ALLOC (NULL);
397 bb_info->rd_in = BITMAP_ALLOC (NULL);
398 bb_info->rd_out = BITMAP_ALLOC (NULL);
400 else
402 bitmap_clear (bb_info->rd_kill);
403 bitmap_clear (bb_info->rd_gen);
404 bitmap_clear (bb_info->rd_in);
405 bitmap_clear (bb_info->rd_out);
409 if (flags & DF_RU)
411 if (!bb_info->ru_in)
413 /* Allocate bitmaps for upward exposed uses. */
414 bb_info->ru_kill = BITMAP_ALLOC (NULL);
415 bb_info->ru_gen = BITMAP_ALLOC (NULL);
416 bb_info->ru_in = BITMAP_ALLOC (NULL);
417 bb_info->ru_out = BITMAP_ALLOC (NULL);
419 else
421 bitmap_clear (bb_info->ru_kill);
422 bitmap_clear (bb_info->ru_gen);
423 bitmap_clear (bb_info->ru_in);
424 bitmap_clear (bb_info->ru_out);
428 if (flags & DF_LR)
430 if (!bb_info->lr_in)
432 /* Allocate bitmaps for live variables. */
433 bb_info->lr_def = BITMAP_ALLOC (NULL);
434 bb_info->lr_use = BITMAP_ALLOC (NULL);
435 bb_info->lr_in = BITMAP_ALLOC (NULL);
436 bb_info->lr_out = BITMAP_ALLOC (NULL);
438 else
440 bitmap_clear (bb_info->lr_def);
441 bitmap_clear (bb_info->lr_use);
442 bitmap_clear (bb_info->lr_in);
443 bitmap_clear (bb_info->lr_out);
450 /* Free bitmaps for each basic block. */
451 static void
452 df_bitmaps_free (struct df *df, int flags)
454 basic_block bb;
456 FOR_EACH_BB (bb)
458 struct bb_info *bb_info = DF_BB_INFO (df, bb);
460 if (!bb_info)
461 continue;
463 if ((flags & DF_RD) && bb_info->rd_in)
465 /* Free bitmaps for reaching definitions. */
466 BITMAP_FREE (bb_info->rd_kill);
467 bb_info->rd_kill = NULL;
468 BITMAP_FREE (bb_info->rd_gen);
469 bb_info->rd_gen = NULL;
470 BITMAP_FREE (bb_info->rd_in);
471 bb_info->rd_in = NULL;
472 BITMAP_FREE (bb_info->rd_out);
473 bb_info->rd_out = NULL;
476 if ((flags & DF_RU) && bb_info->ru_in)
478 /* Free bitmaps for upward exposed uses. */
479 BITMAP_FREE (bb_info->ru_kill);
480 bb_info->ru_kill = NULL;
481 BITMAP_FREE (bb_info->ru_gen);
482 bb_info->ru_gen = NULL;
483 BITMAP_FREE (bb_info->ru_in);
484 bb_info->ru_in = NULL;
485 BITMAP_FREE (bb_info->ru_out);
486 bb_info->ru_out = NULL;
489 if ((flags & DF_LR) && bb_info->lr_in)
491 /* Free bitmaps for live variables. */
492 BITMAP_FREE (bb_info->lr_def);
493 bb_info->lr_def = NULL;
494 BITMAP_FREE (bb_info->lr_use);
495 bb_info->lr_use = NULL;
496 BITMAP_FREE (bb_info->lr_in);
497 bb_info->lr_in = NULL;
498 BITMAP_FREE (bb_info->lr_out);
499 bb_info->lr_out = NULL;
502 df->flags &= ~(flags & (DF_RD | DF_RU | DF_LR));
506 /* Allocate and initialize dataflow memory. */
507 static void
508 df_alloc (struct df *df, int n_regs)
510 int n_insns;
511 basic_block bb;
513 df_link_pool = create_alloc_pool ("df_link pool", sizeof (struct df_link),
514 100);
515 df_ref_pool = create_alloc_pool ("df_ref pool", sizeof (struct ref), 100);
517 /* Perhaps we should use LUIDs to save memory for the insn_refs
518 table. This is only a small saving; a few pointers. */
519 n_insns = get_max_uid () + 1;
521 df->def_id = 0;
522 df->n_defs = 0;
523 /* Approximate number of defs by number of insns. */
524 df->def_size = n_insns;
525 df->defs = xmalloc (df->def_size * sizeof (*df->defs));
527 df->use_id = 0;
528 df->n_uses = 0;
529 /* Approximate number of uses by twice number of insns. */
530 df->use_size = n_insns * 2;
531 df->uses = xmalloc (df->use_size * sizeof (*df->uses));
533 df->n_regs = n_regs;
534 df->n_bbs = last_basic_block;
536 /* Allocate temporary working array used during local dataflow analysis. */
537 df_insn_table_realloc (df, n_insns);
539 df_reg_table_realloc (df, df->n_regs);
541 df->bbs_modified = BITMAP_ALLOC (NULL);
542 bitmap_zero (df->bbs_modified);
544 df->flags = 0;
546 df->bbs = xcalloc (last_basic_block, sizeof (struct bb_info));
548 df->all_blocks = BITMAP_ALLOC (NULL);
549 FOR_EACH_BB (bb)
550 bitmap_set_bit (df->all_blocks, bb->index);
554 /* Free all the dataflow info. */
555 static void
556 df_free (struct df *df)
558 df_bitmaps_free (df, DF_ALL);
560 if (df->bbs)
561 free (df->bbs);
562 df->bbs = 0;
564 if (df->insns)
565 free (df->insns);
566 df->insns = 0;
567 df->insn_size = 0;
569 if (df->defs)
570 free (df->defs);
571 df->defs = 0;
572 df->def_size = 0;
573 df->def_id = 0;
575 if (df->uses)
576 free (df->uses);
577 df->uses = 0;
578 df->use_size = 0;
579 df->use_id = 0;
581 if (df->regs)
582 free (df->regs);
583 df->regs = 0;
584 df->reg_size = 0;
586 BITMAP_FREE (df->bbs_modified);
587 df->bbs_modified = 0;
589 BITMAP_FREE (df->insns_modified);
590 df->insns_modified = 0;
592 BITMAP_FREE (df->all_blocks);
593 df->all_blocks = 0;
595 free_alloc_pool (df_ref_pool);
596 free_alloc_pool (df_link_pool);
599 /* Local miscellaneous routines. */
601 /* Return a USE for register REGNO. */
602 static rtx df_reg_use_gen (unsigned int regno)
604 rtx reg;
605 rtx use;
607 reg = regno_reg_rtx[regno];
609 use = gen_rtx_USE (GET_MODE (reg), reg);
610 return use;
613 /* Local chain manipulation routines. */
615 /* Create a link in a def-use or use-def chain. */
616 static inline struct df_link *
617 df_link_create (struct ref *ref, struct df_link *next)
619 struct df_link *link;
621 link = pool_alloc (df_link_pool);
622 link->next = next;
623 link->ref = ref;
624 return link;
627 /* Releases members of the CHAIN. */
629 static void
630 free_reg_ref_chain (struct df_link **chain)
632 struct df_link *act, *next;
634 for (act = *chain; act; act = next)
636 next = act->next;
637 pool_free (df_link_pool, act);
640 *chain = NULL;
643 /* Add REF to chain head pointed to by PHEAD. */
644 static struct df_link *
645 df_ref_unlink (struct df_link **phead, struct ref *ref)
647 struct df_link *link = *phead;
649 if (link)
651 if (! link->next)
653 /* Only a single ref. It must be the one we want.
654 If not, the def-use and use-def chains are likely to
655 be inconsistent. */
656 gcc_assert (link->ref == ref);
658 /* Now have an empty chain. */
659 *phead = NULL;
661 else
663 /* Multiple refs. One of them must be us. */
664 if (link->ref == ref)
665 *phead = link->next;
666 else
668 /* Follow chain. */
669 for (; link->next; link = link->next)
671 if (link->next->ref == ref)
673 /* Unlink from list. */
674 link->next = link->next->next;
675 return link->next;
681 return link;
685 /* Unlink REF from all def-use/use-def chains, etc. */
687 df_ref_remove (struct df *df, struct ref *ref)
689 if (DF_REF_REG_DEF_P (ref))
691 df_def_unlink (df, ref);
692 df_ref_unlink (&df->insns[DF_REF_INSN_UID (ref)].defs, ref);
694 else
696 df_use_unlink (df, ref);
697 df_ref_unlink (&df->insns[DF_REF_INSN_UID (ref)].uses, ref);
699 return 1;
703 /* Unlink DEF from use-def and reg-def chains. */
704 static void
705 df_def_unlink (struct df *df ATTRIBUTE_UNUSED, struct ref *def)
707 struct df_link *du_link;
708 unsigned int dregno = DF_REF_REGNO (def);
710 /* Follow def-use chain to find all the uses of this def. */
711 for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
713 struct ref *use = du_link->ref;
715 /* Unlink this def from the use-def chain. */
716 df_ref_unlink (&DF_REF_CHAIN (use), def);
718 DF_REF_CHAIN (def) = 0;
720 /* Unlink def from reg-def chain. */
721 df_ref_unlink (&df->regs[dregno].defs, def);
723 df->defs[DF_REF_ID (def)] = 0;
727 /* Unlink use from def-use and reg-use chains. */
728 static void
729 df_use_unlink (struct df *df ATTRIBUTE_UNUSED, struct ref *use)
731 struct df_link *ud_link;
732 unsigned int uregno = DF_REF_REGNO (use);
734 /* Follow use-def chain to find all the defs of this use. */
735 for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
737 struct ref *def = ud_link->ref;
739 /* Unlink this use from the def-use chain. */
740 df_ref_unlink (&DF_REF_CHAIN (def), use);
742 DF_REF_CHAIN (use) = 0;
744 /* Unlink use from reg-use chain. */
745 df_ref_unlink (&df->regs[uregno].uses, use);
747 df->uses[DF_REF_ID (use)] = 0;
750 /* Local routines for recording refs. */
753 /* Create a new ref of type DF_REF_TYPE for register REG at address
754 LOC within INSN of BB. */
755 static struct ref *
756 df_ref_create (struct df *df, rtx reg, rtx *loc, rtx insn,
757 enum df_ref_type ref_type, enum df_ref_flags ref_flags)
759 struct ref *this_ref;
761 this_ref = pool_alloc (df_ref_pool);
762 DF_REF_REG (this_ref) = reg;
763 DF_REF_LOC (this_ref) = loc;
764 DF_REF_INSN (this_ref) = insn;
765 DF_REF_CHAIN (this_ref) = 0;
766 DF_REF_TYPE (this_ref) = ref_type;
767 DF_REF_FLAGS (this_ref) = ref_flags;
768 DF_REF_DATA (this_ref) = NULL;
770 if (ref_type == DF_REF_REG_DEF)
772 if (df->def_id >= df->def_size)
774 /* Make table 25 percent larger. */
775 df->def_size += (df->def_size / 4);
776 df->defs = xrealloc (df->defs,
777 df->def_size * sizeof (*df->defs));
779 DF_REF_ID (this_ref) = df->def_id;
780 df->defs[df->def_id++] = this_ref;
782 else
784 if (df->use_id >= df->use_size)
786 /* Make table 25 percent larger. */
787 df->use_size += (df->use_size / 4);
788 df->uses = xrealloc (df->uses,
789 df->use_size * sizeof (*df->uses));
791 DF_REF_ID (this_ref) = df->use_id;
792 df->uses[df->use_id++] = this_ref;
794 return this_ref;
798 /* Create a new reference of type DF_REF_TYPE for a single register REG,
799 used inside the LOC rtx of INSN. */
800 static void
801 df_ref_record_1 (struct df *df, rtx reg, rtx *loc, rtx insn,
802 enum df_ref_type ref_type, enum df_ref_flags ref_flags)
804 df_ref_create (df, reg, loc, insn, ref_type, ref_flags);
808 /* Create new references of type DF_REF_TYPE for each part of register REG
809 at address LOC within INSN of BB. */
810 static void
811 df_ref_record (struct df *df, rtx reg, rtx *loc, rtx insn,
812 enum df_ref_type ref_type, enum df_ref_flags ref_flags)
814 unsigned int regno;
816 gcc_assert (REG_P (reg) || GET_CODE (reg) == SUBREG);
818 /* For the reg allocator we are interested in some SUBREG rtx's, but not
819 all. Notably only those representing a word extraction from a multi-word
820 reg. As written in the docu those should have the form
821 (subreg:SI (reg:M A) N), with size(SImode) > size(Mmode).
822 XXX Is that true? We could also use the global word_mode variable. */
823 if ((df->flags & DF_SUBREGS) == 0
824 && GET_CODE (reg) == SUBREG
825 && (GET_MODE_SIZE (GET_MODE (reg)) < GET_MODE_SIZE (word_mode)
826 || GET_MODE_SIZE (GET_MODE (reg))
827 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (reg)))))
829 loc = &SUBREG_REG (reg);
830 reg = *loc;
831 ref_flags |= DF_REF_STRIPPED;
834 regno = REGNO (GET_CODE (reg) == SUBREG ? SUBREG_REG (reg) : reg);
835 if (regno < FIRST_PSEUDO_REGISTER)
837 int i;
838 int endregno;
840 if (! (df->flags & DF_HARD_REGS))
841 return;
843 /* GET_MODE (reg) is correct here. We do not want to go into a SUBREG
844 for the mode, because we only want to add references to regs, which
845 are really referenced. E.g., a (subreg:SI (reg:DI 0) 0) does _not_
846 reference the whole reg 0 in DI mode (which would also include
847 reg 1, at least, if 0 and 1 are SImode registers). */
848 endregno = hard_regno_nregs[regno][GET_MODE (reg)];
849 if (GET_CODE (reg) == SUBREG)
850 regno += subreg_regno_offset (regno, GET_MODE (SUBREG_REG (reg)),
851 SUBREG_BYTE (reg), GET_MODE (reg));
852 endregno += regno;
854 for (i = regno; i < endregno; i++)
855 df_ref_record_1 (df, regno_reg_rtx[i],
856 loc, insn, ref_type, ref_flags);
858 else
860 df_ref_record_1 (df, reg, loc, insn, ref_type, ref_flags);
865 /* A set to a non-paradoxical SUBREG for which the number of word_mode units
866 covered by the outer mode is smaller than that covered by the inner mode,
867 is a read-modify-write operation.
868 This function returns true iff the SUBREG X is such a SUBREG. */
869 bool
870 read_modify_subreg_p (rtx x)
872 unsigned int isize, osize;
873 if (GET_CODE (x) != SUBREG)
874 return false;
875 isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
876 osize = GET_MODE_SIZE (GET_MODE (x));
877 return (isize > osize && isize > UNITS_PER_WORD);
881 /* Process all the registers defined in the rtx, X. */
882 static void
883 df_def_record_1 (struct df *df, rtx x, basic_block bb, rtx insn)
885 rtx *loc;
886 rtx dst;
887 enum df_ref_flags flags = 0;
889 /* We may recursively call ourselves on EXPR_LIST when dealing with PARALLEL
890 construct. */
891 if (GET_CODE (x) == EXPR_LIST || GET_CODE (x) == CLOBBER)
892 loc = &XEXP (x, 0);
893 else
894 loc = &SET_DEST (x);
895 dst = *loc;
897 /* Some targets place small structures in registers for
898 return values of functions. */
899 if (GET_CODE (dst) == PARALLEL && GET_MODE (dst) == BLKmode)
901 int i;
903 for (i = XVECLEN (dst, 0) - 1; i >= 0; i--)
905 rtx temp = XVECEXP (dst, 0, i);
906 if (GET_CODE (temp) == EXPR_LIST || GET_CODE (temp) == CLOBBER
907 || GET_CODE (temp) == SET)
908 df_def_record_1 (df, temp, bb, insn);
910 return;
913 /* Maybe, we should flag the use of STRICT_LOW_PART somehow. It might
914 be handy for the reg allocator. */
915 while (GET_CODE (dst) == STRICT_LOW_PART
916 || GET_CODE (dst) == ZERO_EXTRACT
917 || read_modify_subreg_p (dst))
919 /* Strict low part always contains SUBREG, but we do not want to make
920 it appear outside, as whole register is always considered. */
921 if (GET_CODE (dst) == STRICT_LOW_PART)
923 loc = &XEXP (dst, 0);
924 dst = *loc;
926 loc = &XEXP (dst, 0);
927 dst = *loc;
928 flags |= DF_REF_READ_WRITE;
931 if (REG_P (dst)
932 || (GET_CODE (dst) == SUBREG && REG_P (SUBREG_REG (dst))))
933 df_ref_record (df, dst, loc, insn, DF_REF_REG_DEF, flags);
937 /* Process all the registers defined in the pattern rtx, X. */
938 static void
939 df_defs_record (struct df *df, rtx x, basic_block bb, rtx insn)
941 RTX_CODE code = GET_CODE (x);
943 if (code == SET || code == CLOBBER)
945 /* Mark the single def within the pattern. */
946 df_def_record_1 (df, x, bb, insn);
948 else if (code == PARALLEL)
950 int i;
952 /* Mark the multiple defs within the pattern. */
953 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
955 code = GET_CODE (XVECEXP (x, 0, i));
956 if (code == SET || code == CLOBBER)
957 df_def_record_1 (df, XVECEXP (x, 0, i), bb, insn);
963 /* Process all the registers used in the rtx at address LOC. */
964 static void
965 df_uses_record (struct df *df, rtx *loc, enum df_ref_type ref_type,
966 basic_block bb, rtx insn, enum df_ref_flags flags)
968 RTX_CODE code;
969 rtx x;
970 retry:
971 x = *loc;
972 if (!x)
973 return;
974 code = GET_CODE (x);
975 switch (code)
977 case LABEL_REF:
978 case SYMBOL_REF:
979 case CONST_INT:
980 case CONST:
981 case CONST_DOUBLE:
982 case CONST_VECTOR:
983 case PC:
984 case CC0:
985 case ADDR_VEC:
986 case ADDR_DIFF_VEC:
987 return;
989 case CLOBBER:
990 /* If we are clobbering a MEM, mark any registers inside the address
991 as being used. */
992 if (MEM_P (XEXP (x, 0)))
993 df_uses_record (df, &XEXP (XEXP (x, 0), 0),
994 DF_REF_REG_MEM_STORE, bb, insn, flags);
996 /* If we're clobbering a REG then we have a def so ignore. */
997 return;
999 case MEM:
1000 df_uses_record (df, &XEXP (x, 0), DF_REF_REG_MEM_LOAD, bb, insn, 0);
1001 return;
1003 case SUBREG:
1004 /* While we're here, optimize this case. */
1006 /* In case the SUBREG is not of a REG, do not optimize. */
1007 if (!REG_P (SUBREG_REG (x)))
1009 loc = &SUBREG_REG (x);
1010 df_uses_record (df, loc, ref_type, bb, insn, flags);
1011 return;
1013 /* ... Fall through ... */
1015 case REG:
1016 df_ref_record (df, x, loc, insn, ref_type, flags);
1017 return;
1019 case SET:
1021 rtx dst = SET_DEST (x);
1023 df_uses_record (df, &SET_SRC (x), DF_REF_REG_USE, bb, insn, 0);
1025 switch (GET_CODE (dst))
1027 case SUBREG:
1028 if (read_modify_subreg_p (dst))
1030 df_uses_record (df, &SUBREG_REG (dst), DF_REF_REG_USE, bb,
1031 insn, DF_REF_READ_WRITE);
1032 break;
1034 /* Fall through. */
1035 case REG:
1036 case PARALLEL:
1037 case SCRATCH:
1038 case PC:
1039 case CC0:
1040 break;
1041 case MEM:
1042 df_uses_record (df, &XEXP (dst, 0),
1043 DF_REF_REG_MEM_STORE,
1044 bb, insn, 0);
1045 break;
1046 case STRICT_LOW_PART:
1047 /* A strict_low_part uses the whole REG and not just the
1048 SUBREG. */
1049 dst = XEXP (dst, 0);
1050 gcc_assert (GET_CODE (dst) == SUBREG);
1051 df_uses_record (df, &SUBREG_REG (dst), DF_REF_REG_USE, bb,
1052 insn, DF_REF_READ_WRITE);
1053 break;
1054 case ZERO_EXTRACT:
1055 case SIGN_EXTRACT:
1056 df_uses_record (df, &XEXP (dst, 0), DF_REF_REG_USE, bb, insn,
1057 DF_REF_READ_WRITE);
1058 df_uses_record (df, &XEXP (dst, 1), DF_REF_REG_USE, bb, insn, 0);
1059 df_uses_record (df, &XEXP (dst, 2), DF_REF_REG_USE, bb, insn, 0);
1060 dst = XEXP (dst, 0);
1061 break;
1062 default:
1063 gcc_unreachable ();
1065 return;
1068 case RETURN:
1069 break;
1071 case ASM_OPERANDS:
1072 case UNSPEC_VOLATILE:
1073 case TRAP_IF:
1074 case ASM_INPUT:
1076 /* Traditional and volatile asm instructions must be considered to use
1077 and clobber all hard registers, all pseudo-registers and all of
1078 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
1080 Consider for instance a volatile asm that changes the fpu rounding
1081 mode. An insn should not be moved across this even if it only uses
1082 pseudo-regs because it might give an incorrectly rounded result.
1084 For now, just mark any regs we can find in ASM_OPERANDS as
1085 used. */
1087 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
1088 We can not just fall through here since then we would be confused
1089 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
1090 traditional asms unlike their normal usage. */
1091 if (code == ASM_OPERANDS)
1093 int j;
1095 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
1096 df_uses_record (df, &ASM_OPERANDS_INPUT (x, j),
1097 DF_REF_REG_USE, bb, insn, 0);
1098 return;
1100 break;
1103 case PRE_DEC:
1104 case POST_DEC:
1105 case PRE_INC:
1106 case POST_INC:
1107 case PRE_MODIFY:
1108 case POST_MODIFY:
1109 /* Catch the def of the register being modified. */
1110 df_ref_record (df, XEXP (x, 0), &XEXP (x, 0), insn, DF_REF_REG_DEF, DF_REF_READ_WRITE);
1112 /* ... Fall through to handle uses ... */
1114 default:
1115 break;
1118 /* Recursively scan the operands of this expression. */
1120 const char *fmt = GET_RTX_FORMAT (code);
1121 int i;
1123 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1125 if (fmt[i] == 'e')
1127 /* Tail recursive case: save a function call level. */
1128 if (i == 0)
1130 loc = &XEXP (x, 0);
1131 goto retry;
1133 df_uses_record (df, &XEXP (x, i), ref_type, bb, insn, flags);
1135 else if (fmt[i] == 'E')
1137 int j;
1138 for (j = 0; j < XVECLEN (x, i); j++)
1139 df_uses_record (df, &XVECEXP (x, i, j), ref_type,
1140 bb, insn, flags);
1147 /* Record all the df within INSN of basic block BB. */
1148 static void
1149 df_insn_refs_record (struct df *df, basic_block bb, rtx insn)
1151 int i;
1153 if (INSN_P (insn))
1155 rtx note;
1157 /* Record register defs. */
1158 df_defs_record (df, PATTERN (insn), bb, insn);
1160 if (df->flags & DF_EQUIV_NOTES)
1161 for (note = REG_NOTES (insn); note;
1162 note = XEXP (note, 1))
1164 switch (REG_NOTE_KIND (note))
1166 case REG_EQUIV:
1167 case REG_EQUAL:
1168 df_uses_record (df, &XEXP (note, 0), DF_REF_REG_USE,
1169 bb, insn, 0);
1170 default:
1171 break;
1175 if (CALL_P (insn))
1177 rtx note;
1178 rtx x;
1180 /* Record the registers used to pass arguments. */
1181 for (note = CALL_INSN_FUNCTION_USAGE (insn); note;
1182 note = XEXP (note, 1))
1184 if (GET_CODE (XEXP (note, 0)) == USE)
1185 df_uses_record (df, &XEXP (XEXP (note, 0), 0), DF_REF_REG_USE,
1186 bb, insn, 0);
1189 /* The stack ptr is used (honorarily) by a CALL insn. */
1190 x = df_reg_use_gen (STACK_POINTER_REGNUM);
1191 df_uses_record (df, &XEXP (x, 0), DF_REF_REG_USE, bb, insn, 0);
1193 if (df->flags & DF_HARD_REGS)
1195 /* Calls may also reference any of the global registers,
1196 so they are recorded as used. */
1197 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1198 if (global_regs[i])
1200 x = df_reg_use_gen (i);
1201 df_uses_record (df, &XEXP (x, 0),
1202 DF_REF_REG_USE, bb, insn, 0);
1207 /* Record the register uses. */
1208 df_uses_record (df, &PATTERN (insn),
1209 DF_REF_REG_USE, bb, insn, 0);
1211 if (CALL_P (insn))
1213 rtx note;
1215 /* We do not record hard registers clobbered by the call,
1216 since there are awfully many of them and "defs" created
1217 through them are not interesting (since no use can be legally
1218 reached by them). So we must just make sure we include them when
1219 computing kill bitmaps. */
1221 /* There may be extra registers to be clobbered. */
1222 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1223 note;
1224 note = XEXP (note, 1))
1225 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1226 df_defs_record (df, XEXP (note, 0), bb, insn);
1232 /* Record all the refs within the basic block BB. */
1233 static void
1234 df_bb_refs_record (struct df *df, basic_block bb)
1236 rtx insn;
1238 /* Scan the block an insn at a time from beginning to end. */
1239 FOR_BB_INSNS (bb, insn)
1241 if (INSN_P (insn))
1243 /* Record defs within INSN. */
1244 df_insn_refs_record (df, bb, insn);
1250 /* Record all the refs in the basic blocks specified by BLOCKS. */
1251 static void
1252 df_refs_record (struct df *df, bitmap blocks)
1254 basic_block bb;
1256 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1258 df_bb_refs_record (df, bb);
1262 /* Dataflow analysis routines. */
1264 /* Create reg-def chains for basic block BB. These are a list of
1265 definitions for each register. */
1267 static void
1268 df_bb_reg_def_chain_create (struct df *df, basic_block bb)
1270 rtx insn;
1272 /* Perhaps the defs should be sorted using a depth first search
1273 of the CFG (or possibly a breadth first search). */
1275 FOR_BB_INSNS_REVERSE (bb, insn)
1277 struct df_link *link;
1278 unsigned int uid = INSN_UID (insn);
1280 if (! INSN_P (insn))
1281 continue;
1283 for (link = df->insns[uid].defs; link; link = link->next)
1285 struct ref *def = link->ref;
1286 unsigned int dregno = DF_REF_REGNO (def);
1288 /* Do not add ref's to the chain twice, i.e., only add new
1289 refs. XXX the same could be done by testing if the
1290 current insn is a modified (or a new) one. This would be
1291 faster. */
1292 if (DF_REF_ID (def) < df->def_id_save)
1293 continue;
1295 df->regs[dregno].defs = df_link_create (def, df->regs[dregno].defs);
1301 /* Create reg-def chains for each basic block within BLOCKS. These
1302 are a list of definitions for each register. If REDO is true, add
1303 all defs, otherwise just add the new defs. */
1305 static void
1306 df_reg_def_chain_create (struct df *df, bitmap blocks, bool redo)
1308 basic_block bb;
1309 #ifdef ENABLE_CHECKING
1310 unsigned regno;
1311 #endif
1312 unsigned old_def_id_save = df->def_id_save;
1314 if (redo)
1316 #ifdef ENABLE_CHECKING
1317 for (regno = 0; regno < df->n_regs; regno++)
1318 gcc_assert (!df->regs[regno].defs);
1319 #endif
1321 /* Pretend that all defs are new. */
1322 df->def_id_save = 0;
1325 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1327 df_bb_reg_def_chain_create (df, bb);
1330 df->def_id_save = old_def_id_save;
1333 /* Remove all reg-def chains stored in the dataflow object DF. */
1335 static void
1336 df_reg_def_chain_clean (struct df *df)
1338 unsigned regno;
1340 for (regno = 0; regno < df->n_regs; regno++)
1341 free_reg_ref_chain (&df->regs[regno].defs);
1344 /* Create reg-use chains for basic block BB. These are a list of uses
1345 for each register. */
1347 static void
1348 df_bb_reg_use_chain_create (struct df *df, basic_block bb)
1350 rtx insn;
1352 /* Scan in forward order so that the last uses appear at the start
1353 of the chain. */
1355 FOR_BB_INSNS (bb, insn)
1357 struct df_link *link;
1358 unsigned int uid = INSN_UID (insn);
1360 if (! INSN_P (insn))
1361 continue;
1363 for (link = df->insns[uid].uses; link; link = link->next)
1365 struct ref *use = link->ref;
1366 unsigned int uregno = DF_REF_REGNO (use);
1368 /* Do not add ref's to the chain twice, i.e., only add new
1369 refs. XXX the same could be done by testing if the
1370 current insn is a modified (or a new) one. This would be
1371 faster. */
1372 if (DF_REF_ID (use) < df->use_id_save)
1373 continue;
1375 df->regs[uregno].uses
1376 = df_link_create (use, df->regs[uregno].uses);
1382 /* Create reg-use chains for each basic block within BLOCKS. These
1383 are a list of uses for each register. If REDO is true, remove the
1384 old reg-use chains first, otherwise just add new uses to them. */
1386 static void
1387 df_reg_use_chain_create (struct df *df, bitmap blocks, bool redo)
1389 basic_block bb;
1390 #ifdef ENABLE_CHECKING
1391 unsigned regno;
1392 #endif
1393 unsigned old_use_id_save = df->use_id_save;
1395 if (redo)
1397 #ifdef ENABLE_CHECKING
1398 for (regno = 0; regno < df->n_regs; regno++)
1399 gcc_assert (!df->regs[regno].uses);
1400 #endif
1402 /* Pretend that all uses are new. */
1403 df->use_id_save = 0;
1406 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1408 df_bb_reg_use_chain_create (df, bb);
1411 df->use_id_save = old_use_id_save;
1414 /* Remove all reg-use chains stored in the dataflow object DF. */
1416 static void
1417 df_reg_use_chain_clean (struct df *df)
1419 unsigned regno;
1421 for (regno = 0; regno < df->n_regs; regno++)
1422 free_reg_ref_chain (&df->regs[regno].uses);
1425 /* Create def-use chains from reaching use bitmaps for basic block BB. */
1426 static void
1427 df_bb_du_chain_create (struct df *df, basic_block bb, bitmap ru)
1429 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1430 rtx insn;
1432 bitmap_copy (ru, bb_info->ru_out);
1434 /* For each def in BB create a linked list (chain) of uses
1435 reached from the def. */
1436 FOR_BB_INSNS_REVERSE (bb, insn)
1438 struct df_link *def_link;
1439 struct df_link *use_link;
1440 unsigned int uid = INSN_UID (insn);
1442 if (! INSN_P (insn))
1443 continue;
1445 /* For each def in insn... */
1446 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1448 struct ref *def = def_link->ref;
1449 unsigned int dregno = DF_REF_REGNO (def);
1451 DF_REF_CHAIN (def) = 0;
1453 /* While the reg-use chains are not essential, it
1454 is _much_ faster to search these short lists rather
1455 than all the reaching uses, especially for large functions. */
1456 for (use_link = df->regs[dregno].uses; use_link;
1457 use_link = use_link->next)
1459 struct ref *use = use_link->ref;
1461 if (bitmap_bit_p (ru, DF_REF_ID (use)))
1463 DF_REF_CHAIN (def)
1464 = df_link_create (use, DF_REF_CHAIN (def));
1466 bitmap_clear_bit (ru, DF_REF_ID (use));
1471 /* For each use in insn... */
1472 for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
1474 struct ref *use = use_link->ref;
1475 bitmap_set_bit (ru, DF_REF_ID (use));
1481 /* Create def-use chains from reaching use bitmaps for basic blocks
1482 in BLOCKS. */
1483 static void
1484 df_du_chain_create (struct df *df, bitmap blocks)
1486 bitmap ru;
1487 basic_block bb;
1489 ru = BITMAP_ALLOC (NULL);
1491 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1493 df_bb_du_chain_create (df, bb, ru);
1496 BITMAP_FREE (ru);
1500 /* Create use-def chains from reaching def bitmaps for basic block BB. */
1501 static void
1502 df_bb_ud_chain_create (struct df *df, basic_block bb)
1504 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1505 struct ref **reg_def_last = df->reg_def_last;
1506 rtx insn;
1508 memset (reg_def_last, 0, df->n_regs * sizeof (struct ref *));
1510 /* For each use in BB create a linked list (chain) of defs
1511 that reach the use. */
1512 FOR_BB_INSNS (bb, insn)
1514 unsigned int uid = INSN_UID (insn);
1515 struct df_link *use_link;
1516 struct df_link *def_link;
1518 if (! INSN_P (insn))
1519 continue;
1521 /* For each use in insn... */
1522 for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
1524 struct ref *use = use_link->ref;
1525 unsigned int regno = DF_REF_REGNO (use);
1527 DF_REF_CHAIN (use) = 0;
1529 /* Has regno been defined in this BB yet? If so, use
1530 the last def as the single entry for the use-def
1531 chain for this use. Otherwise, we need to add all
1532 the defs using this regno that reach the start of
1533 this BB. */
1534 if (reg_def_last[regno])
1536 DF_REF_CHAIN (use)
1537 = df_link_create (reg_def_last[regno], 0);
1539 else
1541 /* While the reg-def chains are not essential, it is
1542 _much_ faster to search these short lists rather than
1543 all the reaching defs, especially for large
1544 functions. */
1545 for (def_link = df->regs[regno].defs; def_link;
1546 def_link = def_link->next)
1548 struct ref *def = def_link->ref;
1550 if (bitmap_bit_p (bb_info->rd_in, DF_REF_ID (def)))
1552 DF_REF_CHAIN (use)
1553 = df_link_create (def, DF_REF_CHAIN (use));
1560 /* For each def in insn... record the last def of each reg. */
1561 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1563 struct ref *def = def_link->ref;
1564 int dregno = DF_REF_REGNO (def);
1566 reg_def_last[dregno] = def;
1572 /* Create use-def chains from reaching def bitmaps for basic blocks
1573 within BLOCKS. */
1574 static void
1575 df_ud_chain_create (struct df *df, bitmap blocks)
1577 basic_block bb;
1579 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1581 df_bb_ud_chain_create (df, bb);
1587 static void
1588 df_rd_transfer_function (int bb ATTRIBUTE_UNUSED, int *changed, void *in,
1589 void *out, void *gen, void *kill,
1590 void *data ATTRIBUTE_UNUSED)
1592 *changed = bitmap_ior_and_compl (out, gen, in, kill);
1596 static void
1597 df_ru_transfer_function (int bb ATTRIBUTE_UNUSED, int *changed, void *in,
1598 void *out, void *gen, void *kill,
1599 void *data ATTRIBUTE_UNUSED)
1601 *changed = bitmap_ior_and_compl (in, gen, out, kill);
1605 static void
1606 df_lr_transfer_function (int bb ATTRIBUTE_UNUSED, int *changed, void *in,
1607 void *out, void *use, void *def,
1608 void *data ATTRIBUTE_UNUSED)
1610 *changed = bitmap_ior_and_compl (in, use, out, def);
1614 /* Compute local reaching def info for basic block BB. */
1615 static void
1616 df_bb_rd_local_compute (struct df *df, basic_block bb, bitmap call_killed_defs)
1618 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1619 rtx insn;
1620 bitmap seen = BITMAP_ALLOC (NULL);
1621 bool call_seen = false;
1623 FOR_BB_INSNS_REVERSE (bb, insn)
1625 unsigned int uid = INSN_UID (insn);
1626 struct df_link *def_link;
1628 if (! INSN_P (insn))
1629 continue;
1631 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1633 struct ref *def = def_link->ref;
1634 unsigned int regno = DF_REF_REGNO (def);
1635 struct df_link *def2_link;
1637 if (bitmap_bit_p (seen, regno)
1638 || (call_seen
1639 && regno < FIRST_PSEUDO_REGISTER
1640 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)))
1641 continue;
1643 for (def2_link = df->regs[regno].defs; def2_link;
1644 def2_link = def2_link->next)
1646 struct ref *def2 = def2_link->ref;
1648 /* Add all defs of this reg to the set of kills. This
1649 is greedy since many of these defs will not actually
1650 be killed by this BB but it keeps things a lot
1651 simpler. */
1652 bitmap_set_bit (bb_info->rd_kill, DF_REF_ID (def2));
1655 bitmap_set_bit (bb_info->rd_gen, DF_REF_ID (def));
1656 bitmap_set_bit (seen, regno);
1659 if (CALL_P (insn) && (df->flags & DF_HARD_REGS))
1661 bitmap_ior_into (bb_info->rd_kill, call_killed_defs);
1662 call_seen = 1;
1666 BITMAP_FREE (seen);
1670 /* Compute local reaching def info for each basic block within BLOCKS. */
1671 static void
1672 df_rd_local_compute (struct df *df, bitmap blocks)
1674 basic_block bb;
1675 bitmap killed_by_call = NULL;
1676 unsigned regno;
1677 struct df_link *def_link;
1679 if (df->flags & DF_HARD_REGS)
1681 killed_by_call = BITMAP_ALLOC (NULL);
1682 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1684 if (!TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
1685 continue;
1687 for (def_link = df->regs[regno].defs;
1688 def_link;
1689 def_link = def_link->next)
1690 bitmap_set_bit (killed_by_call, DF_REF_ID (def_link->ref));
1694 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1696 df_bb_rd_local_compute (df, bb, killed_by_call);
1699 if (df->flags & DF_HARD_REGS)
1700 BITMAP_FREE (killed_by_call);
1704 /* Compute local reaching use (upward exposed use) info for basic
1705 block BB. */
1706 static void
1707 df_bb_ru_local_compute (struct df *df, basic_block bb)
1709 /* This is much more tricky than computing reaching defs. With
1710 reaching defs, defs get killed by other defs. With upwards
1711 exposed uses, these get killed by defs with the same regno. */
1713 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1714 rtx insn;
1717 FOR_BB_INSNS_REVERSE (bb, insn)
1719 unsigned int uid = INSN_UID (insn);
1720 struct df_link *def_link;
1721 struct df_link *use_link;
1723 if (! INSN_P (insn))
1724 continue;
1726 for (def_link = df->insns[uid].defs; def_link; def_link = def_link->next)
1728 struct ref *def = def_link->ref;
1729 unsigned int dregno = DF_REF_REGNO (def);
1731 for (use_link = df->regs[dregno].uses; use_link;
1732 use_link = use_link->next)
1734 struct ref *use = use_link->ref;
1736 /* Add all uses of this reg to the set of kills. This
1737 is greedy since many of these uses will not actually
1738 be killed by this BB but it keeps things a lot
1739 simpler. */
1740 bitmap_set_bit (bb_info->ru_kill, DF_REF_ID (use));
1742 /* Zap from the set of gens for this BB. */
1743 bitmap_clear_bit (bb_info->ru_gen, DF_REF_ID (use));
1747 for (use_link = df->insns[uid].uses; use_link; use_link = use_link->next)
1749 struct ref *use = use_link->ref;
1750 /* Add use to set of gens in this BB. */
1751 bitmap_set_bit (bb_info->ru_gen, DF_REF_ID (use));
1757 /* Compute local reaching use (upward exposed use) info for each basic
1758 block within BLOCKS. */
1759 static void
1760 df_ru_local_compute (struct df *df, bitmap blocks)
1762 basic_block bb;
1764 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1766 df_bb_ru_local_compute (df, bb);
1771 /* Compute local live variable info for basic block BB. */
1772 static void
1773 df_bb_lr_local_compute (struct df *df, basic_block bb)
1775 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1776 rtx insn;
1778 FOR_BB_INSNS_REVERSE (bb, insn)
1780 unsigned int uid = INSN_UID (insn);
1781 struct df_link *link;
1783 if (! INSN_P (insn))
1784 continue;
1786 for (link = df->insns[uid].defs; link; link = link->next)
1788 struct ref *def = link->ref;
1789 unsigned int dregno = DF_REF_REGNO (def);
1791 /* Add def to set of defs in this BB. */
1792 bitmap_set_bit (bb_info->lr_def, dregno);
1794 bitmap_clear_bit (bb_info->lr_use, dregno);
1797 for (link = df->insns[uid].uses; link; link = link->next)
1799 struct ref *use = link->ref;
1800 /* Add use to set of uses in this BB. */
1801 bitmap_set_bit (bb_info->lr_use, DF_REF_REGNO (use));
1807 /* Compute local live variable info for each basic block within BLOCKS. */
1808 static void
1809 df_lr_local_compute (struct df *df, bitmap blocks)
1811 basic_block bb;
1813 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1815 df_bb_lr_local_compute (df, bb);
1820 /* Compute register info: lifetime, bb, and number of defs and uses
1821 for basic block BB. */
1822 static void
1823 df_bb_reg_info_compute (struct df *df, basic_block bb, bitmap live)
1825 struct reg_info *reg_info = df->regs;
1826 struct bb_info *bb_info = DF_BB_INFO (df, bb);
1827 rtx insn;
1829 bitmap_copy (live, bb_info->lr_out);
1831 FOR_BB_INSNS_REVERSE (bb, insn)
1833 unsigned int uid = INSN_UID (insn);
1834 unsigned int regno;
1835 struct df_link *link;
1836 bitmap_iterator bi;
1838 if (! INSN_P (insn))
1839 continue;
1841 for (link = df->insns[uid].defs; link; link = link->next)
1843 struct ref *def = link->ref;
1844 unsigned int dregno = DF_REF_REGNO (def);
1846 /* Kill this register. */
1847 bitmap_clear_bit (live, dregno);
1848 reg_info[dregno].n_defs++;
1851 for (link = df->insns[uid].uses; link; link = link->next)
1853 struct ref *use = link->ref;
1854 unsigned int uregno = DF_REF_REGNO (use);
1856 /* This register is now live. */
1857 bitmap_set_bit (live, uregno);
1858 reg_info[uregno].n_uses++;
1861 /* Increment lifetimes of all live registers. */
1862 EXECUTE_IF_SET_IN_BITMAP (live, 0, regno, bi)
1864 reg_info[regno].lifetime++;
1870 /* Compute register info: lifetime, bb, and number of defs and uses. */
1871 static void
1872 df_reg_info_compute (struct df *df, bitmap blocks)
1874 basic_block bb;
1875 bitmap live;
1877 live = BITMAP_ALLOC (NULL);
1879 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1881 df_bb_reg_info_compute (df, bb, live);
1884 BITMAP_FREE (live);
1888 /* Assign LUIDs for BB. */
1889 static int
1890 df_bb_luids_set (struct df *df, basic_block bb)
1892 rtx insn;
1893 int luid = 0;
1895 /* The LUIDs are monotonically increasing for each basic block. */
1897 FOR_BB_INSNS (bb, insn)
1899 if (INSN_P (insn))
1900 DF_INSN_LUID (df, insn) = luid++;
1901 DF_INSN_LUID (df, insn) = luid;
1903 return luid;
1907 /* Assign LUIDs for each basic block within BLOCKS. */
1908 static int
1909 df_luids_set (struct df *df, bitmap blocks)
1911 basic_block bb;
1912 int total = 0;
1914 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
1916 total += df_bb_luids_set (df, bb);
1918 return total;
1922 /* Perform dataflow analysis using existing DF structure for blocks
1923 within BLOCKS. If BLOCKS is zero, use all basic blocks in the CFG. */
1924 static void
1925 df_analyze_1 (struct df *df, bitmap blocks, int flags, int update)
1927 int aflags;
1928 int dflags;
1929 basic_block bb;
1930 struct dataflow dflow;
1932 dflags = 0;
1933 aflags = flags;
1934 if (flags & DF_UD_CHAIN)
1935 aflags |= DF_RD | DF_RD_CHAIN;
1937 if (flags & DF_DU_CHAIN)
1938 aflags |= DF_RU;
1940 if (flags & DF_RU)
1941 aflags |= DF_RU_CHAIN;
1943 if (flags & DF_REG_INFO)
1944 aflags |= DF_LR;
1946 if (! blocks)
1947 blocks = df->all_blocks;
1949 df->flags = flags;
1950 if (update)
1952 df_refs_update (df, NULL);
1953 /* More fine grained incremental dataflow analysis would be
1954 nice. For now recompute the whole shebang for the
1955 modified blocks. */
1956 #if 0
1957 df_refs_unlink (df, blocks);
1958 #endif
1959 /* All the def-use, use-def chains can be potentially
1960 modified by changes in one block. The size of the
1961 bitmaps can also change. */
1963 else
1965 /* Scan the function for all register defs and uses. */
1966 df_refs_queue (df);
1967 df_refs_record (df, blocks);
1969 /* Link all the new defs and uses to the insns. */
1970 df_refs_process (df);
1973 /* Allocate the bitmaps now the total number of defs and uses are
1974 known. If the number of defs or uses have changed, then
1975 these bitmaps need to be reallocated. */
1976 df_bitmaps_alloc (df, NULL, aflags);
1978 /* Set the LUIDs for each specified basic block. */
1979 df_luids_set (df, blocks);
1981 /* Recreate reg-def and reg-use chains from scratch so that first
1982 def is at the head of the reg-def chain and the last use is at
1983 the head of the reg-use chain. This is only important for
1984 regs local to a basic block as it speeds up searching. */
1985 if (aflags & DF_RD_CHAIN)
1987 df_reg_def_chain_create (df, blocks, false);
1990 if (aflags & DF_RU_CHAIN)
1992 df_reg_use_chain_create (df, blocks, false);
1995 df->dfs_order = xmalloc (sizeof (int) * n_basic_blocks - NUM_FIXED_BLOCKS);
1996 df->rc_order = xmalloc (sizeof (int) * n_basic_blocks - NUM_FIXED_BLOCKS);
1997 df->rts_order = xmalloc (sizeof (int) * n_basic_blocks - NUM_FIXED_BLOCKS);
1999 flow_depth_first_order_compute (df->dfs_order, df->rc_order);
2000 flow_reverse_top_sort_order_compute (df->rts_order);
2001 if (aflags & DF_RD)
2003 /* Compute the sets of gens and kills for the defs of each bb. */
2004 dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
2005 dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
2006 dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
2007 dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);
2009 df_rd_local_compute (df, df->flags & DF_RD ? blocks : df->all_blocks);
2010 FOR_EACH_BB (bb)
2012 dflow.in[bb->index] = DF_BB_INFO (df, bb)->rd_in;
2013 dflow.out[bb->index] = DF_BB_INFO (df, bb)->rd_out;
2014 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->rd_gen;
2015 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->rd_kill;
2018 dflow.repr = SR_BITMAP;
2019 dflow.dir = DF_FORWARD;
2020 dflow.conf_op = DF_UNION;
2021 dflow.transfun = df_rd_transfer_function;
2022 dflow.n_blocks = n_basic_blocks - NUM_FIXED_BLOCKS;
2023 dflow.order = df->rc_order;
2024 dflow.data = NULL;
2026 iterative_dataflow (&dflow);
2027 free (dflow.in);
2028 free (dflow.out);
2029 free (dflow.gen);
2030 free (dflow.kill);
2033 if (aflags & DF_UD_CHAIN)
2035 /* Create use-def chains. */
2036 df_ud_chain_create (df, df->all_blocks);
2038 if (! (flags & DF_RD))
2039 dflags |= DF_RD;
2042 if (aflags & DF_RU)
2044 /* Compute the sets of gens and kills for the upwards exposed
2045 uses in each bb. */
2046 dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
2047 dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
2048 dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
2049 dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);
2051 df_ru_local_compute (df, df->flags & DF_RU ? blocks : df->all_blocks);
2053 FOR_EACH_BB (bb)
2055 dflow.in[bb->index] = DF_BB_INFO (df, bb)->ru_in;
2056 dflow.out[bb->index] = DF_BB_INFO (df, bb)->ru_out;
2057 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->ru_gen;
2058 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->ru_kill;
2061 dflow.repr = SR_BITMAP;
2062 dflow.dir = DF_BACKWARD;
2063 dflow.conf_op = DF_UNION;
2064 dflow.transfun = df_ru_transfer_function;
2065 dflow.n_blocks = n_basic_blocks - NUM_FIXED_BLOCKS;
2066 dflow.order = df->rts_order;
2067 dflow.data = NULL;
2069 iterative_dataflow (&dflow);
2070 free (dflow.in);
2071 free (dflow.out);
2072 free (dflow.gen);
2073 free (dflow.kill);
2076 if (aflags & DF_DU_CHAIN)
2078 /* Create def-use chains. */
2079 df_du_chain_create (df, df->all_blocks);
2081 if (! (flags & DF_RU))
2082 dflags |= DF_RU;
2085 /* Free up bitmaps that are no longer required. */
2086 if (dflags)
2087 df_bitmaps_free (df, dflags);
2089 if (aflags & DF_LR)
2091 /* Compute the sets of defs and uses of live variables. */
2092 dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
2093 dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
2094 dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
2095 dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);
2097 df_lr_local_compute (df, df->flags & DF_LR ? blocks : df->all_blocks);
2099 FOR_EACH_BB (bb)
2101 dflow.in[bb->index] = DF_BB_INFO (df, bb)->lr_in;
2102 dflow.out[bb->index] = DF_BB_INFO (df, bb)->lr_out;
2103 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->lr_use;
2104 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->lr_def;
2107 dflow.repr = SR_BITMAP;
2108 dflow.dir = DF_BACKWARD;
2109 dflow.conf_op = DF_UNION;
2110 dflow.transfun = df_lr_transfer_function;
2111 dflow.n_blocks = n_basic_blocks - NUM_FIXED_BLOCKS;
2112 dflow.order = df->rts_order;
2113 dflow.data = NULL;
2115 iterative_dataflow (&dflow);
2116 free (dflow.in);
2117 free (dflow.out);
2118 free (dflow.gen);
2119 free (dflow.kill);
2122 if (aflags & DF_REG_INFO)
2124 df_reg_info_compute (df, df->all_blocks);
2127 free (df->dfs_order);
2128 free (df->rc_order);
2129 free (df->rts_order);
2133 /* Initialize dataflow analysis. */
2134 struct df *
2135 df_init (void)
2137 struct df *df;
2139 df = xcalloc (1, sizeof (struct df));
2141 /* Squirrel away a global for debugging. */
2142 ddf = df;
2144 return df;
2148 /* Start queuing refs. */
2149 static int
2150 df_refs_queue (struct df *df)
2152 df->def_id_save = df->def_id;
2153 df->use_id_save = df->use_id;
2154 /* ???? Perhaps we should save current obstack state so that we can
2155 unwind it. */
2156 return 0;
2160 /* Process queued refs. */
2161 static int
2162 df_refs_process (struct df *df)
2164 unsigned int i;
2166 /* Build new insn-def chains. */
2167 for (i = df->def_id_save; i != df->def_id; i++)
2169 struct ref *def = df->defs[i];
2170 unsigned int uid = DF_REF_INSN_UID (def);
2172 /* Add def to head of def list for INSN. */
2173 df->insns[uid].defs
2174 = df_link_create (def, df->insns[uid].defs);
2177 /* Build new insn-use chains. */
2178 for (i = df->use_id_save; i != df->use_id; i++)
2180 struct ref *use = df->uses[i];
2181 unsigned int uid = DF_REF_INSN_UID (use);
2183 /* Add use to head of use list for INSN. */
2184 df->insns[uid].uses
2185 = df_link_create (use, df->insns[uid].uses);
2187 return 0;
2191 /* Update refs for basic block BB. */
2192 static int
2193 df_bb_refs_update (struct df *df, basic_block bb)
2195 rtx insn;
2196 int count = 0;
2198 /* While we have to scan the chain of insns for this BB, we do not
2199 need to allocate and queue a long chain of BB/INSN pairs. Using
2200 a bitmap for insns_modified saves memory and avoids queuing
2201 duplicates. */
2203 FOR_BB_INSNS (bb, insn)
2205 unsigned int uid;
2207 uid = INSN_UID (insn);
2209 if (bitmap_bit_p (df->insns_modified, uid))
2211 /* Delete any allocated refs of this insn. MPH, FIXME. */
2212 df_insn_refs_unlink (df, bb, insn);
2214 /* Scan the insn for refs. */
2215 df_insn_refs_record (df, bb, insn);
2217 count++;
2220 return count;
2224 /* Process all the modified/deleted insns that were queued. */
2225 static int
2226 df_refs_update (struct df *df, bitmap blocks)
2228 basic_block bb;
2229 unsigned count = 0, bbno;
2231 df->n_regs = max_reg_num ();
2232 if (df->n_regs >= df->reg_size)
2233 df_reg_table_realloc (df, 0);
2235 df_refs_queue (df);
2237 if (!blocks)
2239 FOR_EACH_BB_IN_BITMAP (df->bbs_modified, 0, bb,
2241 count += df_bb_refs_update (df, bb);
2244 else
2246 bitmap_iterator bi;
2248 EXECUTE_IF_AND_IN_BITMAP (df->bbs_modified, blocks, 0, bbno, bi)
2250 count += df_bb_refs_update (df, BASIC_BLOCK (bbno));
2254 df_refs_process (df);
2255 return count;
2259 /* Return nonzero if any of the requested blocks in the bitmap
2260 BLOCKS have been modified. */
2261 static int
2262 df_modified_p (struct df *df, bitmap blocks)
2264 int update = 0;
2265 basic_block bb;
2267 if (!df->n_bbs)
2268 return 0;
2270 FOR_EACH_BB (bb)
2271 if (bitmap_bit_p (df->bbs_modified, bb->index)
2272 && (! blocks || (blocks == (bitmap) -1) || bitmap_bit_p (blocks, bb->index)))
2274 update = 1;
2275 break;
2278 return update;
2281 /* Analyze dataflow info for the basic blocks specified by the bitmap
2282 BLOCKS, or for the whole CFG if BLOCKS is zero, or just for the
2283 modified blocks if BLOCKS is -1. */
2286 df_analyze (struct df *df, bitmap blocks, int flags)
2288 int update;
2290 /* We could deal with additional basic blocks being created by
2291 rescanning everything again. */
2292 gcc_assert (!df->n_bbs || df->n_bbs == (unsigned int) last_basic_block);
2294 update = df_modified_p (df, blocks);
2295 if (update || (flags != df->flags))
2297 if (! blocks)
2299 if (df->n_bbs)
2301 /* Recompute everything from scratch. */
2302 df_free (df);
2304 /* Allocate and initialize data structures. */
2305 df_alloc (df, max_reg_num ());
2306 df_analyze_1 (df, 0, flags, 0);
2307 update = 1;
2309 else
2311 if (blocks == (bitmap) -1)
2312 blocks = df->bbs_modified;
2314 gcc_assert (df->n_bbs);
2316 df_analyze_1 (df, blocks, flags, 1);
2317 bitmap_zero (df->bbs_modified);
2318 bitmap_zero (df->insns_modified);
2321 return update;
2324 /* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
2325 the order of the remaining entries. Returns the length of the resulting
2326 list. */
2328 static unsigned
2329 prune_to_subcfg (int list[], unsigned len, bitmap blocks)
2331 unsigned act, last;
2333 for (act = 0, last = 0; act < len; act++)
2334 if (bitmap_bit_p (blocks, list[act]))
2335 list[last++] = list[act];
2337 return last;
2340 /* Alternative entry point to the analysis. Analyze just the part of the cfg
2341 graph induced by BLOCKS.
2343 TODO I am not quite sure how to avoid code duplication with df_analyze_1
2344 here, and simultaneously not make even greater chaos in it. We behave
2345 slightly differently in some details, especially in handling modified
2346 insns. */
2348 void
2349 df_analyze_subcfg (struct df *df, bitmap blocks, int flags)
2351 rtx insn;
2352 basic_block bb;
2353 struct dataflow dflow;
2354 unsigned n_blocks;
2356 if (flags & DF_UD_CHAIN)
2357 flags |= DF_RD | DF_RD_CHAIN;
2358 if (flags & DF_DU_CHAIN)
2359 flags |= DF_RU;
2360 if (flags & DF_RU)
2361 flags |= DF_RU_CHAIN;
2362 if (flags & DF_REG_INFO)
2363 flags |= DF_LR;
2365 if (!df->n_bbs)
2367 df_alloc (df, max_reg_num ());
2369 /* Mark all insns as modified. */
2371 FOR_EACH_BB (bb)
2373 FOR_BB_INSNS (bb, insn)
2375 df_insn_modify (df, bb, insn);
2380 df->flags = flags;
2382 df_reg_def_chain_clean (df);
2383 df_reg_use_chain_clean (df);
2385 df_refs_update (df, blocks);
2387 /* Clear the updated stuff from ``modified'' bitmaps. */
2388 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
2390 if (bitmap_bit_p (df->bbs_modified, bb->index))
2392 FOR_BB_INSNS (bb, insn)
2394 bitmap_clear_bit (df->insns_modified, INSN_UID (insn));
2397 bitmap_clear_bit (df->bbs_modified, bb->index);
2401 /* Allocate the bitmaps now the total number of defs and uses are
2402 known. If the number of defs or uses have changed, then
2403 these bitmaps need to be reallocated. */
2404 df_bitmaps_alloc (df, blocks, flags);
2406 /* Set the LUIDs for each specified basic block. */
2407 df_luids_set (df, blocks);
2409 /* Recreate reg-def and reg-use chains from scratch so that first
2410 def is at the head of the reg-def chain and the last use is at
2411 the head of the reg-use chain. This is only important for
2412 regs local to a basic block as it speeds up searching. */
2413 if (flags & DF_RD_CHAIN)
2415 df_reg_def_chain_create (df, blocks, true);
2418 if (flags & DF_RU_CHAIN)
2420 df_reg_use_chain_create (df, blocks, true);
2423 df->dfs_order = xmalloc (sizeof (int) * n_basic_blocks - NUM_FIXED_BLOCKS);
2424 df->rc_order = xmalloc (sizeof (int) * n_basic_blocks - NUM_FIXED_BLOCKS);
2425 df->rts_order = xmalloc (sizeof (int) * n_basic_blocks - NUM_FIXED_BLOCKS);
2427 flow_depth_first_order_compute (df->dfs_order, df->rc_order);
2428 flow_reverse_top_sort_order_compute (df->rts_order);
2430 n_blocks = prune_to_subcfg (df->dfs_order, n_basic_blocks - NUM_FIXED_BLOCKS, blocks);
2431 prune_to_subcfg (df->rc_order, n_basic_blocks - NUM_FIXED_BLOCKS, blocks);
2432 prune_to_subcfg (df->rts_order, n_basic_blocks - NUM_FIXED_BLOCKS, blocks);
2434 dflow.in = xmalloc (sizeof (bitmap) * last_basic_block);
2435 dflow.out = xmalloc (sizeof (bitmap) * last_basic_block);
2436 dflow.gen = xmalloc (sizeof (bitmap) * last_basic_block);
2437 dflow.kill = xmalloc (sizeof (bitmap) * last_basic_block);
2439 if (flags & DF_RD)
2441 /* Compute the sets of gens and kills for the defs of each bb. */
2442 df_rd_local_compute (df, blocks);
2444 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
2446 dflow.in[bb->index] = DF_BB_INFO (df, bb)->rd_in;
2447 dflow.out[bb->index] = DF_BB_INFO (df, bb)->rd_out;
2448 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->rd_gen;
2449 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->rd_kill;
2452 dflow.repr = SR_BITMAP;
2453 dflow.dir = DF_FORWARD;
2454 dflow.conf_op = DF_UNION;
2455 dflow.transfun = df_rd_transfer_function;
2456 dflow.n_blocks = n_blocks;
2457 dflow.order = df->rc_order;
2458 dflow.data = NULL;
2460 iterative_dataflow (&dflow);
2463 if (flags & DF_UD_CHAIN)
2465 /* Create use-def chains. */
2466 df_ud_chain_create (df, blocks);
2469 if (flags & DF_RU)
2471 /* Compute the sets of gens and kills for the upwards exposed
2472 uses in each bb. */
2473 df_ru_local_compute (df, blocks);
2475 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
2477 dflow.in[bb->index] = DF_BB_INFO (df, bb)->ru_in;
2478 dflow.out[bb->index] = DF_BB_INFO (df, bb)->ru_out;
2479 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->ru_gen;
2480 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->ru_kill;
2483 dflow.repr = SR_BITMAP;
2484 dflow.dir = DF_BACKWARD;
2485 dflow.conf_op = DF_UNION;
2486 dflow.transfun = df_ru_transfer_function;
2487 dflow.n_blocks = n_blocks;
2488 dflow.order = df->rts_order;
2489 dflow.data = NULL;
2491 iterative_dataflow (&dflow);
2494 if (flags & DF_DU_CHAIN)
2496 /* Create def-use chains. */
2497 df_du_chain_create (df, blocks);
2500 if (flags & DF_LR)
2502 /* Compute the sets of defs and uses of live variables. */
2503 df_lr_local_compute (df, blocks);
2505 FOR_EACH_BB (bb)
2507 dflow.in[bb->index] = DF_BB_INFO (df, bb)->lr_in;
2508 dflow.out[bb->index] = DF_BB_INFO (df, bb)->lr_out;
2509 dflow.gen[bb->index] = DF_BB_INFO (df, bb)->lr_use;
2510 dflow.kill[bb->index] = DF_BB_INFO (df, bb)->lr_def;
2513 dflow.repr = SR_BITMAP;
2514 dflow.dir = DF_BACKWARD;
2515 dflow.conf_op = DF_UNION;
2516 dflow.transfun = df_lr_transfer_function;
2517 dflow.n_blocks = n_blocks;
2518 dflow.order = df->rts_order;
2519 dflow.data = NULL;
2521 iterative_dataflow (&dflow);
2524 if (flags & DF_REG_INFO)
2526 df_reg_info_compute (df, blocks);
2529 free (dflow.in);
2530 free (dflow.out);
2531 free (dflow.gen);
2532 free (dflow.kill);
2534 free (df->dfs_order);
2535 free (df->rc_order);
2536 free (df->rts_order);
2539 /* Free all the dataflow info and the DF structure. */
2540 void
2541 df_finish (struct df *df)
2543 df_free (df);
2544 free (df);
2547 /* Unlink INSN from its reference information. */
2548 static void
2549 df_insn_refs_unlink (struct df *df, basic_block bb ATTRIBUTE_UNUSED, rtx insn)
2551 struct df_link *link;
2552 unsigned int uid;
2554 uid = INSN_UID (insn);
2556 /* Unlink all refs defined by this insn. */
2557 for (link = df->insns[uid].defs; link; link = link->next)
2558 df_def_unlink (df, link->ref);
2560 /* Unlink all refs used by this insn. */
2561 for (link = df->insns[uid].uses; link; link = link->next)
2562 df_use_unlink (df, link->ref);
2564 df->insns[uid].defs = 0;
2565 df->insns[uid].uses = 0;
2569 #if 0
2570 /* Unlink all the insns within BB from their reference information. */
2571 static void
2572 df_bb_refs_unlink (struct df *df, basic_block bb)
2574 rtx insn;
2576 /* Scan the block an insn at a time from beginning to end. */
2577 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
2579 if (INSN_P (insn))
2581 /* Unlink refs for INSN. */
2582 df_insn_refs_unlink (df, bb, insn);
2584 if (insn == BB_END (bb))
2585 break;
2590 /* Unlink all the refs in the basic blocks specified by BLOCKS.
2591 Not currently used. */
2592 static void
2593 df_refs_unlink (struct df *df, bitmap blocks)
2595 basic_block bb;
2597 if (blocks)
2599 FOR_EACH_BB_IN_BITMAP (blocks, 0, bb,
2601 df_bb_refs_unlink (df, bb);
2604 else
2606 FOR_EACH_BB (bb)
2607 df_bb_refs_unlink (df, bb);
2610 #endif
2612 /* Functions to modify insns. */
2615 /* Delete INSN and all its reference information. */
2617 df_insn_delete (struct df *df, basic_block bb ATTRIBUTE_UNUSED, rtx insn)
2619 /* If the insn is a jump, we should perhaps call delete_insn to
2620 handle the JUMP_LABEL? */
2622 /* We should not be deleting the NOTE_INSN_BASIC_BLOCK or label. */
2623 gcc_assert (insn != BB_HEAD (bb));
2625 /* Delete the insn. */
2626 delete_insn (insn);
2628 df_insn_modify (df, bb, insn);
2630 return NEXT_INSN (insn);
2633 /* Mark that basic block BB was modified. */
2635 static void
2636 df_bb_modify (struct df *df, basic_block bb)
2638 if ((unsigned) bb->index >= df->n_bbs)
2639 df_bb_table_realloc (df, df->n_bbs);
2641 bitmap_set_bit (df->bbs_modified, bb->index);
2644 /* Mark that INSN within BB may have changed (created/modified/deleted).
2645 This may be called multiple times for the same insn. There is no
2646 harm calling this function if the insn wasn't changed; it will just
2647 slow down the rescanning of refs. */
2648 void
2649 df_insn_modify (struct df *df, basic_block bb, rtx insn)
2651 unsigned int uid;
2653 uid = INSN_UID (insn);
2654 if (uid >= df->insn_size)
2655 df_insn_table_realloc (df, uid);
2657 df_bb_modify (df, bb);
2658 bitmap_set_bit (df->insns_modified, uid);
2660 /* For incremental updating on the fly, perhaps we could make a copy
2661 of all the refs of the original insn and turn them into
2662 anti-refs. When df_refs_update finds these anti-refs, it annihilates
2663 the original refs. If validate_change fails then these anti-refs
2664 will just get ignored. */
2667 /* Check if INSN was marked as changed. Of course the correctness of
2668 the information depends on whether the instruction was really modified
2669 at the time df_insn_modify was called. */
2670 bool
2671 df_insn_modified_p (struct df *df, rtx insn)
2673 unsigned int uid;
2675 uid = INSN_UID (insn);
2676 return (df->insns_modified
2677 && uid < df->insn_size
2678 && bitmap_bit_p (df->insns_modified, uid));
2681 typedef struct replace_args
2683 rtx match;
2684 rtx replacement;
2685 rtx insn;
2686 int modified;
2687 } replace_args;
2690 /* Replace mem pointed to by PX with its associated pseudo register.
2691 DATA is actually a pointer to a structure describing the
2692 instruction currently being scanned and the MEM we are currently
2693 replacing. */
2694 static int
2695 df_rtx_mem_replace (rtx *px, void *data)
2697 replace_args *args = (replace_args *) data;
2698 rtx mem = *px;
2700 if (mem == NULL_RTX)
2701 return 0;
2703 switch (GET_CODE (mem))
2705 case MEM:
2706 break;
2708 case CONST_DOUBLE:
2709 /* We're not interested in the MEM associated with a
2710 CONST_DOUBLE, so there's no need to traverse into one. */
2711 return -1;
2713 default:
2714 /* This is not a MEM. */
2715 return 0;
2718 if (!rtx_equal_p (args->match, mem))
2719 /* This is not the MEM we are currently replacing. */
2720 return 0;
2722 /* Actually replace the MEM. */
2723 validate_change (args->insn, px, args->replacement, 1);
2724 args->modified++;
2726 return 0;
2731 df_insn_mem_replace (struct df *df, basic_block bb, rtx insn, rtx mem, rtx reg)
2733 replace_args args;
2735 args.insn = insn;
2736 args.match = mem;
2737 args.replacement = reg;
2738 args.modified = 0;
2740 /* Search and replace all matching mems within insn. */
2741 for_each_rtx (&insn, df_rtx_mem_replace, &args);
2743 if (args.modified)
2744 df_insn_modify (df, bb, insn);
2746 /* ???? FIXME. We may have a new def or one or more new uses of REG
2747 in INSN. REG should be a new pseudo so it won't affect the
2748 dataflow information that we currently have. We should add
2749 the new uses and defs to INSN and then recreate the chains
2750 when df_analyze is called. */
2751 return args.modified;
2755 /* Replace one register with another. Called through for_each_rtx; PX
2756 points to the rtx being scanned. DATA is actually a pointer to a
2757 structure of arguments. */
2758 static int
2759 df_rtx_reg_replace (rtx *px, void *data)
2761 rtx x = *px;
2762 replace_args *args = (replace_args *) data;
2764 if (x == NULL_RTX)
2765 return 0;
2767 if (x == args->match)
2769 validate_change (args->insn, px, args->replacement, 1);
2770 args->modified++;
2773 return 0;
2777 /* Replace the reg within every ref on CHAIN that is within the set
2778 BLOCKS of basic blocks with NEWREG. Also update the regs within
2779 REG_NOTES. */
2780 void
2781 df_refs_reg_replace (struct df *df, bitmap blocks, struct df_link *chain, rtx oldreg, rtx newreg)
2783 struct df_link *link;
2784 replace_args args;
2786 if (! blocks)
2787 blocks = df->all_blocks;
2789 args.match = oldreg;
2790 args.replacement = newreg;
2791 args.modified = 0;
2793 for (link = chain; link; link = link->next)
2795 struct ref *ref = link->ref;
2796 rtx insn = DF_REF_INSN (ref);
2798 if (! INSN_P (insn))
2799 continue;
2801 gcc_assert (bitmap_bit_p (blocks, DF_REF_BBNO (ref)));
2803 df_ref_reg_replace (df, ref, oldreg, newreg);
2805 /* Replace occurrences of the reg within the REG_NOTES. */
2806 if ((! link->next || DF_REF_INSN (ref)
2807 != DF_REF_INSN (link->next->ref))
2808 && REG_NOTES (insn))
2810 args.insn = insn;
2811 for_each_rtx (&REG_NOTES (insn), df_rtx_reg_replace, &args);
2817 /* Replace all occurrences of register OLDREG with register NEWREG in
2818 blocks defined by bitmap BLOCKS. This also replaces occurrences of
2819 OLDREG in the REG_NOTES but only for insns containing OLDREG. This
2820 routine expects the reg-use and reg-def chains to be valid. */
2822 df_reg_replace (struct df *df, bitmap blocks, rtx oldreg, rtx newreg)
2824 unsigned int oldregno = REGNO (oldreg);
2826 df_refs_reg_replace (df, blocks, df->regs[oldregno].defs, oldreg, newreg);
2827 df_refs_reg_replace (df, blocks, df->regs[oldregno].uses, oldreg, newreg);
2828 return 1;
2832 /* Try replacing the reg within REF with NEWREG. Do not modify
2833 def-use/use-def chains. */
2835 df_ref_reg_replace (struct df *df, struct ref *ref, rtx oldreg, rtx newreg)
2837 /* Check that insn was deleted by being converted into a NOTE. If
2838 so ignore this insn. */
2839 if (! INSN_P (DF_REF_INSN (ref)))
2840 return 0;
2842 gcc_assert (!oldreg || oldreg == DF_REF_REG (ref));
2844 if (! validate_change (DF_REF_INSN (ref), DF_REF_LOC (ref), newreg, 1))
2845 return 0;
2847 df_insn_modify (df, DF_REF_BB (ref), DF_REF_INSN (ref));
2848 return 1;
2852 struct ref*
2853 df_bb_def_use_swap (struct df *df, basic_block bb, rtx def_insn, rtx use_insn, unsigned int regno)
2855 struct ref *def;
2856 struct ref *use;
2857 int def_uid;
2858 int use_uid;
2859 struct df_link *link;
2861 def = df_bb_insn_regno_first_def_find (df, bb, def_insn, regno);
2862 if (! def)
2863 return 0;
2865 use = df_bb_insn_regno_last_use_find (df, bb, use_insn, regno);
2866 if (! use)
2867 return 0;
2869 /* The USE no longer exists. */
2870 use_uid = INSN_UID (use_insn);
2871 df_use_unlink (df, use);
2872 df_ref_unlink (&df->insns[use_uid].uses, use);
2874 /* The DEF requires shifting so remove it from DEF_INSN
2875 and add it to USE_INSN by reusing LINK. */
2876 def_uid = INSN_UID (def_insn);
2877 link = df_ref_unlink (&df->insns[def_uid].defs, def);
2878 link->ref = def;
2879 link->next = df->insns[use_uid].defs;
2880 df->insns[use_uid].defs = link;
2882 #if 0
2883 link = df_ref_unlink (&df->regs[regno].defs, def);
2884 link->ref = def;
2885 link->next = df->regs[regno].defs;
2886 df->insns[regno].defs = link;
2887 #endif
2889 DF_REF_INSN (def) = use_insn;
2890 return def;
2894 /* Record df between FIRST_INSN and LAST_INSN inclusive. All new
2895 insns must be processed by this routine. */
2896 static void
2897 df_insns_modify (struct df *df, basic_block bb, rtx first_insn, rtx last_insn)
2899 rtx insn;
2901 for (insn = first_insn; ; insn = NEXT_INSN (insn))
2903 unsigned int uid;
2905 /* A non-const call should not have slipped through the net. If
2906 it does, we need to create a new basic block. Ouch. The
2907 same applies for a label. */
2908 gcc_assert ((!CALL_P (insn) || CONST_OR_PURE_CALL_P (insn))
2909 && !LABEL_P (insn));
2911 uid = INSN_UID (insn);
2913 if (uid >= df->insn_size)
2914 df_insn_table_realloc (df, uid);
2916 df_insn_modify (df, bb, insn);
2918 if (insn == last_insn)
2919 break;
2924 /* Emit PATTERN before INSN within BB. */
2926 df_pattern_emit_before (struct df *df, rtx pattern, basic_block bb, rtx insn)
2928 rtx ret_insn;
2929 rtx prev_insn = PREV_INSN (insn);
2931 /* We should not be inserting before the start of the block. */
2932 gcc_assert (insn != BB_HEAD (bb));
2933 ret_insn = emit_insn_before (pattern, insn);
2934 if (ret_insn == insn)
2935 return ret_insn;
2937 df_insns_modify (df, bb, NEXT_INSN (prev_insn), ret_insn);
2938 return ret_insn;
2942 /* Emit PATTERN after INSN within BB. */
2944 df_pattern_emit_after (struct df *df, rtx pattern, basic_block bb, rtx insn)
2946 rtx ret_insn;
2948 ret_insn = emit_insn_after (pattern, insn);
2949 if (ret_insn == insn)
2950 return ret_insn;
2952 df_insns_modify (df, bb, NEXT_INSN (insn), ret_insn);
2953 return ret_insn;
2957 /* Emit jump PATTERN after INSN within BB. */
2959 df_jump_pattern_emit_after (struct df *df, rtx pattern, basic_block bb, rtx insn)
2961 rtx ret_insn;
2963 ret_insn = emit_jump_insn_after (pattern, insn);
2964 if (ret_insn == insn)
2965 return ret_insn;
2967 df_insns_modify (df, bb, NEXT_INSN (insn), ret_insn);
2968 return ret_insn;
2972 /* Move INSN within BB before BEFORE_INSN within BEFORE_BB.
2974 This function should only be used to move loop invariant insns
2975 out of a loop where it has been proven that the def-use info
2976 will still be valid. */
2978 df_insn_move_before (struct df *df, basic_block bb, rtx insn, basic_block before_bb, rtx before_insn)
2980 struct df_link *link;
2981 unsigned int uid;
2983 if (! bb)
2984 return df_pattern_emit_before (df, insn, before_bb, before_insn);
2986 uid = INSN_UID (insn);
2988 /* Change bb for all df defined and used by this insn. */
2989 for (link = df->insns[uid].defs; link; link = link->next)
2990 DF_REF_BB (link->ref) = before_bb;
2991 for (link = df->insns[uid].uses; link; link = link->next)
2992 DF_REF_BB (link->ref) = before_bb;
2994 /* The lifetimes of the registers used in this insn will be reduced
2995 while the lifetimes of the registers defined in this insn
2996 are likely to be increased. */
2998 /* ???? Perhaps all the insns moved should be stored on a list
2999 which df_analyze removes when it recalculates data flow. */
3001 return emit_insn_before (insn, before_insn);
3004 /* Functions to query dataflow information. */
3008 df_insn_regno_def_p (struct df *df, basic_block bb ATTRIBUTE_UNUSED,
3009 rtx insn, unsigned int regno)
3011 unsigned int uid;
3012 struct df_link *link;
3014 uid = INSN_UID (insn);
3016 for (link = df->insns[uid].defs; link; link = link->next)
3018 struct ref *def = link->ref;
3020 if (DF_REF_REGNO (def) == regno)
3021 return 1;
3024 return 0;
3027 /* Finds the reference corresponding to the definition of REG in INSN.
3028 DF is the dataflow object. */
3030 struct ref *
3031 df_find_def (struct df *df, rtx insn, rtx reg)
3033 struct df_link *defs;
3035 for (defs = DF_INSN_DEFS (df, insn); defs; defs = defs->next)
3036 if (rtx_equal_p (DF_REF_REG (defs->ref), reg))
3037 return defs->ref;
3039 return NULL;
3042 /* Return 1 if REG is referenced in INSN, zero otherwise. */
3045 df_reg_used (struct df *df, rtx insn, rtx reg)
3047 struct df_link *uses;
3049 for (uses = DF_INSN_USES (df, insn); uses; uses = uses->next)
3050 if (rtx_equal_p (DF_REF_REG (uses->ref), reg))
3051 return 1;
3053 return 0;
3056 static int
3057 df_def_dominates_all_uses_p (struct df *df ATTRIBUTE_UNUSED, struct ref *def)
3059 struct df_link *du_link;
3061 /* Follow def-use chain to find all the uses of this def. */
3062 for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
3064 struct ref *use = du_link->ref;
3065 struct df_link *ud_link;
3067 /* Follow use-def chain to check all the defs for this use. */
3068 for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
3069 if (ud_link->ref != def)
3070 return 0;
3072 return 1;
3077 df_insn_dominates_all_uses_p (struct df *df, basic_block bb ATTRIBUTE_UNUSED,
3078 rtx insn)
3080 unsigned int uid;
3081 struct df_link *link;
3083 uid = INSN_UID (insn);
3085 for (link = df->insns[uid].defs; link; link = link->next)
3087 struct ref *def = link->ref;
3089 if (! df_def_dominates_all_uses_p (df, def))
3090 return 0;
3093 return 1;
3097 /* Return nonzero if all DF dominates all the uses within the bitmap
3098 BLOCKS. */
3099 static int
3100 df_def_dominates_uses_p (struct df *df ATTRIBUTE_UNUSED, struct ref *def,
3101 bitmap blocks)
3103 struct df_link *du_link;
3105 /* Follow def-use chain to find all the uses of this def. */
3106 for (du_link = DF_REF_CHAIN (def); du_link; du_link = du_link->next)
3108 struct ref *use = du_link->ref;
3109 struct df_link *ud_link;
3111 /* Only worry about the uses within BLOCKS. For example,
3112 consider a register defined within a loop that is live at the
3113 loop exits. */
3114 if (bitmap_bit_p (blocks, DF_REF_BBNO (use)))
3116 /* Follow use-def chain to check all the defs for this use. */
3117 for (ud_link = DF_REF_CHAIN (use); ud_link; ud_link = ud_link->next)
3118 if (ud_link->ref != def)
3119 return 0;
3122 return 1;
3126 /* Return nonzero if all the defs of INSN within BB dominates
3127 all the corresponding uses. */
3129 df_insn_dominates_uses_p (struct df *df, basic_block bb ATTRIBUTE_UNUSED,
3130 rtx insn, bitmap blocks)
3132 unsigned int uid;
3133 struct df_link *link;
3135 uid = INSN_UID (insn);
3137 for (link = df->insns[uid].defs; link; link = link->next)
3139 struct ref *def = link->ref;
3141 /* Only consider the defs within BLOCKS. */
3142 if (bitmap_bit_p (blocks, DF_REF_BBNO (def))
3143 && ! df_def_dominates_uses_p (df, def, blocks))
3144 return 0;
3146 return 1;
3150 /* Return the basic block that REG referenced in or NULL if referenced
3151 in multiple basic blocks. */
3152 basic_block
3153 df_regno_bb (struct df *df, unsigned int regno)
3155 struct df_link *defs = df->regs[regno].defs;
3156 struct df_link *uses = df->regs[regno].uses;
3157 struct ref *def = defs ? defs->ref : 0;
3158 struct ref *use = uses ? uses->ref : 0;
3159 basic_block bb_def = def ? DF_REF_BB (def) : 0;
3160 basic_block bb_use = use ? DF_REF_BB (use) : 0;
3162 /* Compare blocks of first def and last use. ???? FIXME. What if
3163 the reg-def and reg-use lists are not correctly ordered. */
3164 return bb_def == bb_use ? bb_def : 0;
3168 /* Return nonzero if REG used in multiple basic blocks. */
3170 df_reg_global_p (struct df *df, rtx reg)
3172 return df_regno_bb (df, REGNO (reg)) != 0;
3176 /* Return total lifetime (in insns) of REG. */
3178 df_reg_lifetime (struct df *df, rtx reg)
3180 return df->regs[REGNO (reg)].lifetime;
3184 /* Return nonzero if REG live at start of BB. */
3186 df_bb_reg_live_start_p (struct df *df, basic_block bb, rtx reg)
3188 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3190 gcc_assert (bb_info->lr_in);
3192 return bitmap_bit_p (bb_info->lr_in, REGNO (reg));
3196 /* Return nonzero if REG live at end of BB. */
3198 df_bb_reg_live_end_p (struct df *df, basic_block bb, rtx reg)
3200 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3202 gcc_assert (bb_info->lr_in);
3204 return bitmap_bit_p (bb_info->lr_out, REGNO (reg));
3208 /* Return -1 if life of REG1 before life of REG2, 1 if life of REG1
3209 after life of REG2, or 0, if the lives overlap. */
3211 df_bb_regs_lives_compare (struct df *df, basic_block bb, rtx reg1, rtx reg2)
3213 unsigned int regno1 = REGNO (reg1);
3214 unsigned int regno2 = REGNO (reg2);
3215 struct ref *def1;
3216 struct ref *use1;
3217 struct ref *def2;
3218 struct ref *use2;
3221 /* The regs must be local to BB. */
3222 gcc_assert (df_regno_bb (df, regno1) == bb
3223 && df_regno_bb (df, regno2) == bb);
3225 def2 = df_bb_regno_first_def_find (df, bb, regno2);
3226 use1 = df_bb_regno_last_use_find (df, bb, regno1);
3228 if (DF_INSN_LUID (df, DF_REF_INSN (def2))
3229 > DF_INSN_LUID (df, DF_REF_INSN (use1)))
3230 return -1;
3232 def1 = df_bb_regno_first_def_find (df, bb, regno1);
3233 use2 = df_bb_regno_last_use_find (df, bb, regno2);
3235 if (DF_INSN_LUID (df, DF_REF_INSN (def1))
3236 > DF_INSN_LUID (df, DF_REF_INSN (use2)))
3237 return 1;
3239 return 0;
3243 /* Return true if the definition DEF, which is in the same basic
3244 block as USE, is available at USE. So DEF may as well be
3245 dead, in which case using it will extend its live range. */
3246 bool
3247 df_local_def_available_p (struct df *df, struct ref *def, struct ref *use)
3249 struct df_link *link;
3250 int def_luid = DF_INSN_LUID (df, DF_REF_INSN (def));
3251 int in_bb = 0;
3252 unsigned int regno = REGNO (def->reg);
3253 basic_block bb;
3255 /* The regs must be local to BB. */
3256 gcc_assert (DF_REF_BB (def) == DF_REF_BB (use));
3257 bb = DF_REF_BB (def);
3259 /* This assumes that the reg-def list is ordered such that for any
3260 BB, the first def is found first. However, since the BBs are not
3261 ordered, the first def in the chain is not necessarily the first
3262 def in the function. */
3263 for (link = df->regs[regno].defs; link; link = link->next)
3265 struct ref *this_def = link->ref;
3266 if (DF_REF_BB (this_def) == bb)
3268 int this_luid = DF_INSN_LUID (df, DF_REF_INSN (this_def));
3269 /* Do nothing with defs coming before DEF. */
3270 if (this_luid > def_luid)
3271 return this_luid > DF_INSN_LUID (df, DF_REF_INSN (use));
3273 in_bb = 1;
3275 else if (in_bb)
3276 /* DEF was the last in its basic block. */
3277 return 1;
3280 /* DEF was the last in the function. */
3281 return 1;
3285 /* Return last use of REGNO within BB. */
3286 struct ref *
3287 df_bb_regno_last_use_find (struct df *df, basic_block bb, unsigned int regno)
3289 struct df_link *link;
3291 /* This assumes that the reg-use list is ordered such that for any
3292 BB, the last use is found first. However, since the BBs are not
3293 ordered, the first use in the chain is not necessarily the last
3294 use in the function. */
3295 for (link = df->regs[regno].uses; link; link = link->next)
3297 struct ref *use = link->ref;
3299 if (DF_REF_BB (use) == bb)
3300 return use;
3302 return 0;
3306 /* Return first def of REGNO within BB. */
3307 struct ref *
3308 df_bb_regno_first_def_find (struct df *df, basic_block bb, unsigned int regno)
3310 struct df_link *link;
3312 /* This assumes that the reg-def list is ordered such that for any
3313 BB, the first def is found first. However, since the BBs are not
3314 ordered, the first def in the chain is not necessarily the first
3315 def in the function. */
3316 for (link = df->regs[regno].defs; link; link = link->next)
3318 struct ref *def = link->ref;
3320 if (DF_REF_BB (def) == bb)
3321 return def;
3323 return 0;
3326 /* Return last def of REGNO within BB. */
3327 struct ref *
3328 df_bb_regno_last_def_find (struct df *df, basic_block bb, unsigned int regno)
3330 struct df_link *link;
3331 struct ref *last_def = NULL;
3332 int in_bb = 0;
3334 /* This assumes that the reg-def list is ordered such that for any
3335 BB, the first def is found first. However, since the BBs are not
3336 ordered, the first def in the chain is not necessarily the first
3337 def in the function. */
3338 for (link = df->regs[regno].defs; link; link = link->next)
3340 struct ref *def = link->ref;
3341 /* The first time in the desired block. */
3342 if (DF_REF_BB (def) == bb)
3343 in_bb = 1;
3344 /* The last def in the desired block. */
3345 else if (in_bb)
3346 return last_def;
3347 last_def = def;
3349 return last_def;
3352 /* Return last use of REGNO inside INSN within BB. */
3353 static struct ref *
3354 df_bb_insn_regno_last_use_find (struct df *df,
3355 basic_block bb ATTRIBUTE_UNUSED, rtx insn,
3356 unsigned int regno)
3358 unsigned int uid;
3359 struct df_link *link;
3361 uid = INSN_UID (insn);
3363 for (link = df->insns[uid].uses; link; link = link->next)
3365 struct ref *use = link->ref;
3367 if (DF_REF_REGNO (use) == regno)
3368 return use;
3371 return 0;
3375 /* Return first def of REGNO inside INSN within BB. */
3376 static struct ref *
3377 df_bb_insn_regno_first_def_find (struct df *df,
3378 basic_block bb ATTRIBUTE_UNUSED, rtx insn,
3379 unsigned int regno)
3381 unsigned int uid;
3382 struct df_link *link;
3384 uid = INSN_UID (insn);
3386 for (link = df->insns[uid].defs; link; link = link->next)
3388 struct ref *def = link->ref;
3390 if (DF_REF_REGNO (def) == regno)
3391 return def;
3394 return 0;
3398 /* Return insn using REG if the BB contains only a single
3399 use and def of REG. */
3401 df_bb_single_def_use_insn_find (struct df *df, basic_block bb, rtx insn, rtx reg)
3403 struct ref *def;
3404 struct ref *use;
3405 struct df_link *du_link;
3407 def = df_bb_insn_regno_first_def_find (df, bb, insn, REGNO (reg));
3409 gcc_assert (def);
3411 du_link = DF_REF_CHAIN (def);
3413 if (! du_link)
3414 return NULL_RTX;
3416 use = du_link->ref;
3418 /* Check if def is dead. */
3419 if (! use)
3420 return NULL_RTX;
3422 /* Check for multiple uses. */
3423 if (du_link->next)
3424 return NULL_RTX;
3426 return DF_REF_INSN (use);
3429 /* Functions for debugging/dumping dataflow information. */
3432 /* Dump a def-use or use-def chain for REF to FILE. */
3433 static void
3434 df_chain_dump (struct df_link *link, FILE *file)
3436 fprintf (file, "{ ");
3437 for (; link; link = link->next)
3439 fprintf (file, "%c%d ",
3440 DF_REF_REG_DEF_P (link->ref) ? 'd' : 'u',
3441 DF_REF_ID (link->ref));
3443 fprintf (file, "}");
3447 /* Dump a chain of refs with the associated regno. */
3448 static void
3449 df_chain_dump_regno (struct df_link *link, FILE *file)
3451 fprintf (file, "{ ");
3452 for (; link; link = link->next)
3454 fprintf (file, "%c%d(%d) ",
3455 DF_REF_REG_DEF_P (link->ref) ? 'd' : 'u',
3456 DF_REF_ID (link->ref),
3457 DF_REF_REGNO (link->ref));
3459 fprintf (file, "}");
3463 /* Dump dataflow info. */
3464 void
3465 df_dump (struct df *df, int flags, FILE *file)
3467 unsigned int j;
3468 basic_block bb;
3470 if (! df || ! file)
3471 return;
3473 fprintf (file, "\nDataflow summary:\n");
3474 fprintf (file, "n_regs = %d, n_defs = %d, n_uses = %d, n_bbs = %d\n",
3475 df->n_regs, df->n_defs, df->n_uses, df->n_bbs);
3477 if (flags & DF_RD)
3479 basic_block bb;
3481 fprintf (file, "Reaching defs:\n");
3482 FOR_EACH_BB (bb)
3484 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3486 if (! bb_info->rd_in)
3487 continue;
3489 fprintf (file, "bb %d in \t", bb->index);
3490 dump_bitmap (file, bb_info->rd_in);
3491 fprintf (file, "bb %d gen \t", bb->index);
3492 dump_bitmap (file, bb_info->rd_gen);
3493 fprintf (file, "bb %d kill\t", bb->index);
3494 dump_bitmap (file, bb_info->rd_kill);
3495 fprintf (file, "bb %d out \t", bb->index);
3496 dump_bitmap (file, bb_info->rd_out);
3500 if (flags & DF_UD_CHAIN)
3502 fprintf (file, "Use-def chains:\n");
3503 for (j = 0; j < df->n_defs; j++)
3505 if (df->defs[j])
3507 fprintf (file, "d%d bb %d luid %d insn %d reg %d ",
3508 j, DF_REF_BBNO (df->defs[j]),
3509 DF_INSN_LUID (df, DF_REF_INSN (df->defs[j])),
3510 DF_REF_INSN_UID (df->defs[j]),
3511 DF_REF_REGNO (df->defs[j]));
3512 if (df->defs[j]->flags & DF_REF_READ_WRITE)
3513 fprintf (file, "read/write ");
3514 df_chain_dump (DF_REF_CHAIN (df->defs[j]), file);
3515 fprintf (file, "\n");
3520 if (flags & DF_RU)
3522 fprintf (file, "Reaching uses:\n");
3523 FOR_EACH_BB (bb)
3525 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3527 if (! bb_info->ru_in)
3528 continue;
3530 fprintf (file, "bb %d in \t", bb->index);
3531 dump_bitmap (file, bb_info->ru_in);
3532 fprintf (file, "bb %d gen \t", bb->index);
3533 dump_bitmap (file, bb_info->ru_gen);
3534 fprintf (file, "bb %d kill\t", bb->index);
3535 dump_bitmap (file, bb_info->ru_kill);
3536 fprintf (file, "bb %d out \t", bb->index);
3537 dump_bitmap (file, bb_info->ru_out);
3541 if (flags & DF_DU_CHAIN)
3543 fprintf (file, "Def-use chains:\n");
3544 for (j = 0; j < df->n_uses; j++)
3546 if (df->uses[j])
3548 fprintf (file, "u%d bb %d luid %d insn %d reg %d ",
3549 j, DF_REF_BBNO (df->uses[j]),
3550 DF_INSN_LUID (df, DF_REF_INSN (df->uses[j])),
3551 DF_REF_INSN_UID (df->uses[j]),
3552 DF_REF_REGNO (df->uses[j]));
3553 if (df->uses[j]->flags & DF_REF_READ_WRITE)
3554 fprintf (file, "read/write ");
3555 df_chain_dump (DF_REF_CHAIN (df->uses[j]), file);
3556 fprintf (file, "\n");
3561 if (flags & DF_LR)
3563 fprintf (file, "Live regs:\n");
3564 FOR_EACH_BB (bb)
3566 struct bb_info *bb_info = DF_BB_INFO (df, bb);
3568 if (! bb_info->lr_in)
3569 continue;
3571 fprintf (file, "bb %d in \t", bb->index);
3572 dump_bitmap (file, bb_info->lr_in);
3573 fprintf (file, "bb %d use \t", bb->index);
3574 dump_bitmap (file, bb_info->lr_use);
3575 fprintf (file, "bb %d def \t", bb->index);
3576 dump_bitmap (file, bb_info->lr_def);
3577 fprintf (file, "bb %d out \t", bb->index);
3578 dump_bitmap (file, bb_info->lr_out);
3582 if (flags & (DF_REG_INFO | DF_RD_CHAIN | DF_RU_CHAIN))
3584 struct reg_info *reg_info = df->regs;
3586 fprintf (file, "Register info:\n");
3587 for (j = 0; j < df->n_regs; j++)
3589 if (((flags & DF_REG_INFO)
3590 && (reg_info[j].n_uses || reg_info[j].n_defs))
3591 || ((flags & DF_RD_CHAIN) && reg_info[j].defs)
3592 || ((flags & DF_RU_CHAIN) && reg_info[j].uses))
3594 fprintf (file, "reg %d", j);
3595 if ((flags & DF_RD_CHAIN) && (flags & DF_RU_CHAIN))
3597 basic_block bb = df_regno_bb (df, j);
3599 if (bb)
3600 fprintf (file, " bb %d", bb->index);
3601 else
3602 fprintf (file, " bb ?");
3604 if (flags & DF_REG_INFO)
3606 fprintf (file, " life %d", reg_info[j].lifetime);
3609 if ((flags & DF_REG_INFO) || (flags & DF_RD_CHAIN))
3611 fprintf (file, " defs ");
3612 if (flags & DF_REG_INFO)
3613 fprintf (file, "%d ", reg_info[j].n_defs);
3614 if (flags & DF_RD_CHAIN)
3615 df_chain_dump (reg_info[j].defs, file);
3618 if ((flags & DF_REG_INFO) || (flags & DF_RU_CHAIN))
3620 fprintf (file, " uses ");
3621 if (flags & DF_REG_INFO)
3622 fprintf (file, "%d ", reg_info[j].n_uses);
3623 if (flags & DF_RU_CHAIN)
3624 df_chain_dump (reg_info[j].uses, file);
3627 fprintf (file, "\n");
3631 fprintf (file, "\n");
3635 void
3636 df_insn_debug (struct df *df, rtx insn, FILE *file)
3638 unsigned int uid;
3639 int bbi;
3641 uid = INSN_UID (insn);
3642 if (uid >= df->insn_size)
3643 return;
3645 if (df->insns[uid].defs)
3646 bbi = DF_REF_BBNO (df->insns[uid].defs->ref);
3647 else if (df->insns[uid].uses)
3648 bbi = DF_REF_BBNO (df->insns[uid].uses->ref);
3649 else
3650 bbi = -1;
3652 fprintf (file, "insn %d bb %d luid %d defs ",
3653 uid, bbi, DF_INSN_LUID (df, insn));
3654 df_chain_dump (df->insns[uid].defs, file);
3655 fprintf (file, " uses ");
3656 df_chain_dump (df->insns[uid].uses, file);
3657 fprintf (file, "\n");
3661 void
3662 df_insn_debug_regno (struct df *df, rtx insn, FILE *file)
3664 unsigned int uid;
3665 int bbi;
3667 uid = INSN_UID (insn);
3668 if (uid >= df->insn_size)
3669 return;
3671 if (df->insns[uid].defs)
3672 bbi = DF_REF_BBNO (df->insns[uid].defs->ref);
3673 else if (df->insns[uid].uses)
3674 bbi = DF_REF_BBNO (df->insns[uid].uses->ref);
3675 else
3676 bbi = -1;
3678 fprintf (file, "insn %d bb %d luid %d defs ",
3679 uid, bbi, DF_INSN_LUID (df, insn));
3680 df_chain_dump_regno (df->insns[uid].defs, file);
3681 fprintf (file, " uses ");
3682 df_chain_dump_regno (df->insns[uid].uses, file);
3683 fprintf (file, "\n");
3687 static void
3688 df_regno_debug (struct df *df, unsigned int regno, FILE *file)
3690 if (regno >= df->reg_size)
3691 return;
3693 fprintf (file, "reg %d life %d defs ",
3694 regno, df->regs[regno].lifetime);
3695 df_chain_dump (df->regs[regno].defs, file);
3696 fprintf (file, " uses ");
3697 df_chain_dump (df->regs[regno].uses, file);
3698 fprintf (file, "\n");
3702 static void
3703 df_ref_debug (struct df *df, struct ref *ref, FILE *file)
3705 fprintf (file, "%c%d ",
3706 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
3707 DF_REF_ID (ref));
3708 fprintf (file, "reg %d bb %d luid %d insn %d chain ",
3709 DF_REF_REGNO (ref),
3710 DF_REF_BBNO (ref),
3711 DF_INSN_LUID (df, DF_REF_INSN (ref)),
3712 INSN_UID (DF_REF_INSN (ref)));
3713 df_chain_dump (DF_REF_CHAIN (ref), file);
3714 fprintf (file, "\n");
3717 /* Functions for debugging from GDB. */
3719 void
3720 debug_df_insn (rtx insn)
3722 df_insn_debug (ddf, insn, stderr);
3723 debug_rtx (insn);
3727 void
3728 debug_df_reg (rtx reg)
3730 df_regno_debug (ddf, REGNO (reg), stderr);
3734 void
3735 debug_df_regno (unsigned int regno)
3737 df_regno_debug (ddf, regno, stderr);
3741 void
3742 debug_df_ref (struct ref *ref)
3744 df_ref_debug (ddf, ref, stderr);
3748 void
3749 debug_df_defno (unsigned int defno)
3751 df_ref_debug (ddf, ddf->defs[defno], stderr);
3755 void
3756 debug_df_useno (unsigned int defno)
3758 df_ref_debug (ddf, ddf->uses[defno], stderr);
3762 void
3763 debug_df_chain (struct df_link *link)
3765 df_chain_dump (link, stderr);
3766 fputc ('\n', stderr);
3770 /* Perform the set operation OP1 OP OP2, using set representation REPR, and
3771 storing the result in OP1. */
3773 static void
3774 dataflow_set_a_op_b (enum set_representation repr,
3775 enum df_confluence_op op,
3776 void *op1, void *op2)
3778 switch (repr)
3780 case SR_SBITMAP:
3781 switch (op)
3783 case DF_UNION:
3784 sbitmap_a_or_b (op1, op1, op2);
3785 break;
3787 case DF_INTERSECTION:
3788 sbitmap_a_and_b (op1, op1, op2);
3789 break;
3791 default:
3792 gcc_unreachable ();
3794 break;
3796 case SR_BITMAP:
3797 switch (op)
3799 case DF_UNION:
3800 bitmap_ior_into (op1, op2);
3801 break;
3803 case DF_INTERSECTION:
3804 bitmap_and_into (op1, op2);
3805 break;
3807 default:
3808 gcc_unreachable ();
3810 break;
3812 default:
3813 gcc_unreachable ();
3817 static void
3818 dataflow_set_copy (enum set_representation repr, void *dest, void *src)
3820 switch (repr)
3822 case SR_SBITMAP:
3823 sbitmap_copy (dest, src);
3824 break;
3826 case SR_BITMAP:
3827 bitmap_copy (dest, src);
3828 break;
3830 default:
3831 gcc_unreachable ();
3835 /* Hybrid search algorithm from "Implementation Techniques for
3836 Efficient Data-Flow Analysis of Large Programs". */
3838 static void
3839 hybrid_search (basic_block bb, struct dataflow *dataflow,
3840 sbitmap visited, sbitmap pending, sbitmap considered)
3842 int changed;
3843 int i = bb->index;
3844 edge e;
3845 edge_iterator ei;
3847 SET_BIT (visited, bb->index);
3848 gcc_assert (TEST_BIT (pending, bb->index));
3849 RESET_BIT (pending, i);
3851 #define HS(E_ANTI, E_ANTI_BB, E_ANTI_START_BB, IN_SET, \
3852 E, E_BB, E_START_BB, OUT_SET) \
3853 do \
3855 /* Calculate <conf_op> of predecessor_outs. */ \
3856 bitmap_zero (IN_SET[i]); \
3857 FOR_EACH_EDGE (e, ei, bb->E_ANTI) \
3859 if (e->E_ANTI_BB == E_ANTI_START_BB) \
3860 continue; \
3861 if (!TEST_BIT (considered, e->E_ANTI_BB->index)) \
3862 continue; \
3864 dataflow_set_a_op_b (dataflow->repr, dataflow->conf_op, \
3865 IN_SET[i], \
3866 OUT_SET[e->E_ANTI_BB->index]); \
3869 (*dataflow->transfun)(i, &changed, \
3870 dataflow->in[i], dataflow->out[i], \
3871 dataflow->gen[i], dataflow->kill[i], \
3872 dataflow->data); \
3874 if (!changed) \
3875 break; \
3877 FOR_EACH_EDGE (e, ei, bb->E) \
3879 if (e->E_BB == E_START_BB || e->E_BB->index == i) \
3880 continue; \
3882 if (!TEST_BIT (considered, e->E_BB->index)) \
3883 continue; \
3885 SET_BIT (pending, e->E_BB->index); \
3888 FOR_EACH_EDGE (e, ei, bb->E) \
3890 if (e->E_BB == E_START_BB || e->E_BB->index == i) \
3891 continue; \
3893 if (!TEST_BIT (considered, e->E_BB->index)) \
3894 continue; \
3896 if (!TEST_BIT (visited, e->E_BB->index)) \
3897 hybrid_search (e->E_BB, dataflow, visited, pending, considered); \
3899 } while (0)
3901 if (dataflow->dir == DF_FORWARD)
3902 HS (preds, src, ENTRY_BLOCK_PTR, dataflow->in,
3903 succs, dest, EXIT_BLOCK_PTR, dataflow->out);
3904 else
3905 HS (succs, dest, EXIT_BLOCK_PTR, dataflow->out,
3906 preds, src, ENTRY_BLOCK_PTR, dataflow->in);
3909 /* This function will perform iterative bitvector dataflow described by
3910 DATAFLOW, producing the in and out sets. Only the part of the cfg
3911 induced by blocks in DATAFLOW->order is taken into account.
3913 For forward problems, you probably want to pass in rc_order. */
3915 void
3916 iterative_dataflow (struct dataflow *dataflow)
3918 unsigned i, idx;
3919 sbitmap visited, pending, considered;
3921 pending = sbitmap_alloc (last_basic_block);
3922 visited = sbitmap_alloc (last_basic_block);
3923 considered = sbitmap_alloc (last_basic_block);
3924 sbitmap_zero (pending);
3925 sbitmap_zero (visited);
3926 sbitmap_zero (considered);
3928 for (i = 0; i < dataflow->n_blocks; i++)
3930 idx = dataflow->order[i];
3931 SET_BIT (pending, idx);
3932 SET_BIT (considered, idx);
3933 if (dataflow->dir == DF_FORWARD)
3934 dataflow_set_copy (dataflow->repr,
3935 dataflow->out[idx], dataflow->gen[idx]);
3936 else
3937 dataflow_set_copy (dataflow->repr,
3938 dataflow->in[idx], dataflow->gen[idx]);
3941 while (1)
3943 for (i = 0; i < dataflow->n_blocks; i++)
3945 idx = dataflow->order[i];
3947 if (TEST_BIT (pending, idx) && !TEST_BIT (visited, idx))
3948 hybrid_search (BASIC_BLOCK (idx), dataflow,
3949 visited, pending, considered);
3952 if (sbitmap_first_set_bit (pending) == -1)
3953 break;
3955 sbitmap_zero (visited);
3958 sbitmap_free (pending);
3959 sbitmap_free (visited);
3960 sbitmap_free (considered);