Makefile.in (stmp-docobjdir): New target; ensure $docobjdir exists.
[official-gcc.git] / gcc / postreload.c
blob2875dbdffd0e51afea7fd4c1d333dc7b4fee35c2
1 /* Perform simple optimizations to clean up the result of reload.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "machmode.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "obstack.h"
32 #include "insn-config.h"
33 #include "flags.h"
34 #include "function.h"
35 #include "expr.h"
36 #include "optabs.h"
37 #include "regs.h"
38 #include "basic-block.h"
39 #include "reload.h"
40 #include "recog.h"
41 #include "output.h"
42 #include "cselib.h"
43 #include "real.h"
44 #include "toplev.h"
45 #include "except.h"
46 #include "tree.h"
48 static int reload_cse_noop_set_p (rtx);
49 static void reload_cse_simplify (rtx, rtx);
50 static void reload_cse_regs_1 (rtx);
51 static int reload_cse_simplify_set (rtx, rtx);
52 static int reload_cse_simplify_operands (rtx, rtx);
54 static void reload_combine (void);
55 static void reload_combine_note_use (rtx *, rtx);
56 static void reload_combine_note_store (rtx, rtx, void *);
58 static void reload_cse_move2add (rtx);
59 static void move2add_note_store (rtx, rtx, void *);
61 /* Call cse / combine like post-reload optimization phases.
62 FIRST is the first instruction. */
63 void
64 reload_cse_regs (rtx first ATTRIBUTE_UNUSED)
66 reload_cse_regs_1 (first);
67 reload_combine ();
68 reload_cse_move2add (first);
69 if (flag_expensive_optimizations)
70 reload_cse_regs_1 (first);
73 /* See whether a single set SET is a noop. */
74 static int
75 reload_cse_noop_set_p (rtx set)
77 if (cselib_reg_set_mode (SET_DEST (set)) != GET_MODE (SET_DEST (set)))
78 return 0;
80 return rtx_equal_for_cselib_p (SET_DEST (set), SET_SRC (set));
83 /* Try to simplify INSN. */
84 static void
85 reload_cse_simplify (rtx insn, rtx testreg)
87 rtx body = PATTERN (insn);
89 if (GET_CODE (body) == SET)
91 int count = 0;
93 /* Simplify even if we may think it is a no-op.
94 We may think a memory load of a value smaller than WORD_SIZE
95 is redundant because we haven't taken into account possible
96 implicit extension. reload_cse_simplify_set() will bring
97 this out, so it's safer to simplify before we delete. */
98 count += reload_cse_simplify_set (body, insn);
100 if (!count && reload_cse_noop_set_p (body))
102 rtx value = SET_DEST (body);
103 if (REG_P (value)
104 && ! REG_FUNCTION_VALUE_P (value))
105 value = 0;
106 delete_insn_and_edges (insn);
107 return;
110 if (count > 0)
111 apply_change_group ();
112 else
113 reload_cse_simplify_operands (insn, testreg);
115 else if (GET_CODE (body) == PARALLEL)
117 int i;
118 int count = 0;
119 rtx value = NULL_RTX;
121 /* If every action in a PARALLEL is a noop, we can delete
122 the entire PARALLEL. */
123 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
125 rtx part = XVECEXP (body, 0, i);
126 if (GET_CODE (part) == SET)
128 if (! reload_cse_noop_set_p (part))
129 break;
130 if (REG_P (SET_DEST (part))
131 && REG_FUNCTION_VALUE_P (SET_DEST (part)))
133 if (value)
134 break;
135 value = SET_DEST (part);
138 else if (GET_CODE (part) != CLOBBER)
139 break;
142 if (i < 0)
144 delete_insn_and_edges (insn);
145 /* We're done with this insn. */
146 return;
149 /* It's not a no-op, but we can try to simplify it. */
150 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
151 if (GET_CODE (XVECEXP (body, 0, i)) == SET)
152 count += reload_cse_simplify_set (XVECEXP (body, 0, i), insn);
154 if (count > 0)
155 apply_change_group ();
156 else
157 reload_cse_simplify_operands (insn, testreg);
161 /* Do a very simple CSE pass over the hard registers.
163 This function detects no-op moves where we happened to assign two
164 different pseudo-registers to the same hard register, and then
165 copied one to the other. Reload will generate a useless
166 instruction copying a register to itself.
168 This function also detects cases where we load a value from memory
169 into two different registers, and (if memory is more expensive than
170 registers) changes it to simply copy the first register into the
171 second register.
173 Another optimization is performed that scans the operands of each
174 instruction to see whether the value is already available in a
175 hard register. It then replaces the operand with the hard register
176 if possible, much like an optional reload would. */
178 static void
179 reload_cse_regs_1 (rtx first)
181 rtx insn;
182 rtx testreg = gen_rtx_REG (VOIDmode, -1);
184 cselib_init ();
185 init_alias_analysis ();
187 for (insn = first; insn; insn = NEXT_INSN (insn))
189 if (INSN_P (insn))
190 reload_cse_simplify (insn, testreg);
192 cselib_process_insn (insn);
195 /* Clean up. */
196 end_alias_analysis ();
197 cselib_finish ();
200 /* Try to simplify a single SET instruction. SET is the set pattern.
201 INSN is the instruction it came from.
202 This function only handles one case: if we set a register to a value
203 which is not a register, we try to find that value in some other register
204 and change the set into a register copy. */
206 static int
207 reload_cse_simplify_set (rtx set, rtx insn)
209 int did_change = 0;
210 int dreg;
211 rtx src;
212 enum reg_class dclass;
213 int old_cost;
214 cselib_val *val;
215 struct elt_loc_list *l;
216 #ifdef LOAD_EXTEND_OP
217 enum rtx_code extend_op = NIL;
218 #endif
220 dreg = true_regnum (SET_DEST (set));
221 if (dreg < 0)
222 return 0;
224 src = SET_SRC (set);
225 if (side_effects_p (src) || true_regnum (src) >= 0)
226 return 0;
228 dclass = REGNO_REG_CLASS (dreg);
230 #ifdef LOAD_EXTEND_OP
231 /* When replacing a memory with a register, we need to honor assumptions
232 that combine made wrt the contents of sign bits. We'll do this by
233 generating an extend instruction instead of a reg->reg copy. Thus
234 the destination must be a register that we can widen. */
235 if (GET_CODE (src) == MEM
236 && GET_MODE_BITSIZE (GET_MODE (src)) < BITS_PER_WORD
237 && (extend_op = LOAD_EXTEND_OP (GET_MODE (src))) != NIL
238 && GET_CODE (SET_DEST (set)) != REG)
239 return 0;
240 #endif
242 val = cselib_lookup (src, GET_MODE (SET_DEST (set)), 0);
243 if (! val)
244 return 0;
246 /* If memory loads are cheaper than register copies, don't change them. */
247 if (GET_CODE (src) == MEM)
248 old_cost = MEMORY_MOVE_COST (GET_MODE (src), dclass, 1);
249 else if (GET_CODE (src) == REG)
250 old_cost = REGISTER_MOVE_COST (GET_MODE (src),
251 REGNO_REG_CLASS (REGNO (src)), dclass);
252 else
253 old_cost = rtx_cost (src, SET);
255 for (l = val->locs; l; l = l->next)
257 rtx this_rtx = l->loc;
258 int this_cost;
260 if (CONSTANT_P (this_rtx) && ! references_value_p (this_rtx, 0))
262 #ifdef LOAD_EXTEND_OP
263 if (extend_op != NIL)
265 HOST_WIDE_INT this_val;
267 /* ??? I'm lazy and don't wish to handle CONST_DOUBLE. Other
268 constants, such as SYMBOL_REF, cannot be extended. */
269 if (GET_CODE (this_rtx) != CONST_INT)
270 continue;
272 this_val = INTVAL (this_rtx);
273 switch (extend_op)
275 case ZERO_EXTEND:
276 this_val &= GET_MODE_MASK (GET_MODE (src));
277 break;
278 case SIGN_EXTEND:
279 /* ??? In theory we're already extended. */
280 if (this_val == trunc_int_for_mode (this_val, GET_MODE (src)))
281 break;
282 default:
283 abort ();
285 this_rtx = GEN_INT (this_val);
287 #endif
288 this_cost = rtx_cost (this_rtx, SET);
290 else if (GET_CODE (this_rtx) == REG)
292 #ifdef LOAD_EXTEND_OP
293 if (extend_op != NIL)
295 this_rtx = gen_rtx_fmt_e (extend_op, word_mode, this_rtx);
296 this_cost = rtx_cost (this_rtx, SET);
298 else
299 #endif
300 this_cost = REGISTER_MOVE_COST (GET_MODE (this_rtx),
301 REGNO_REG_CLASS (REGNO (this_rtx)),
302 dclass);
304 else
305 continue;
307 /* If equal costs, prefer registers over anything else. That
308 tends to lead to smaller instructions on some machines. */
309 if (this_cost < old_cost
310 || (this_cost == old_cost
311 && GET_CODE (this_rtx) == REG
312 && GET_CODE (SET_SRC (set)) != REG))
314 #ifdef LOAD_EXTEND_OP
315 if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) < BITS_PER_WORD
316 && extend_op != NIL
317 #ifdef CANNOT_CHANGE_MODE_CLASS
318 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SET_DEST (set)),
319 word_mode,
320 REGNO_REG_CLASS (REGNO (SET_DEST (set))))
321 #endif
324 rtx wide_dest = gen_rtx_REG (word_mode, REGNO (SET_DEST (set)));
325 ORIGINAL_REGNO (wide_dest) = ORIGINAL_REGNO (SET_DEST (set));
326 validate_change (insn, &SET_DEST (set), wide_dest, 1);
328 #endif
330 validate_change (insn, &SET_SRC (set), copy_rtx (this_rtx), 1);
331 old_cost = this_cost, did_change = 1;
335 return did_change;
338 /* Try to replace operands in INSN with equivalent values that are already
339 in registers. This can be viewed as optional reloading.
341 For each non-register operand in the insn, see if any hard regs are
342 known to be equivalent to that operand. Record the alternatives which
343 can accept these hard registers. Among all alternatives, select the
344 ones which are better or equal to the one currently matching, where
345 "better" is in terms of '?' and '!' constraints. Among the remaining
346 alternatives, select the one which replaces most operands with
347 hard registers. */
349 static int
350 reload_cse_simplify_operands (rtx insn, rtx testreg)
352 int i, j;
354 /* For each operand, all registers that are equivalent to it. */
355 HARD_REG_SET equiv_regs[MAX_RECOG_OPERANDS];
357 const char *constraints[MAX_RECOG_OPERANDS];
359 /* Vector recording how bad an alternative is. */
360 int *alternative_reject;
361 /* Vector recording how many registers can be introduced by choosing
362 this alternative. */
363 int *alternative_nregs;
364 /* Array of vectors recording, for each operand and each alternative,
365 which hard register to substitute, or -1 if the operand should be
366 left as it is. */
367 int *op_alt_regno[MAX_RECOG_OPERANDS];
368 /* Array of alternatives, sorted in order of decreasing desirability. */
369 int *alternative_order;
371 extract_insn (insn);
373 if (recog_data.n_alternatives == 0 || recog_data.n_operands == 0)
374 return 0;
376 /* Figure out which alternative currently matches. */
377 if (! constrain_operands (1))
378 fatal_insn_not_found (insn);
380 alternative_reject = alloca (recog_data.n_alternatives * sizeof (int));
381 alternative_nregs = alloca (recog_data.n_alternatives * sizeof (int));
382 alternative_order = alloca (recog_data.n_alternatives * sizeof (int));
383 memset (alternative_reject, 0, recog_data.n_alternatives * sizeof (int));
384 memset (alternative_nregs, 0, recog_data.n_alternatives * sizeof (int));
386 /* For each operand, find out which regs are equivalent. */
387 for (i = 0; i < recog_data.n_operands; i++)
389 cselib_val *v;
390 struct elt_loc_list *l;
392 CLEAR_HARD_REG_SET (equiv_regs[i]);
394 /* cselib blows up on CODE_LABELs. Trying to fix that doesn't seem
395 right, so avoid the problem here. Likewise if we have a constant
396 and the insn pattern doesn't tell us the mode we need. */
397 if (GET_CODE (recog_data.operand[i]) == CODE_LABEL
398 || (CONSTANT_P (recog_data.operand[i])
399 && recog_data.operand_mode[i] == VOIDmode))
400 continue;
402 v = cselib_lookup (recog_data.operand[i], recog_data.operand_mode[i], 0);
403 if (! v)
404 continue;
406 for (l = v->locs; l; l = l->next)
407 if (GET_CODE (l->loc) == REG)
408 SET_HARD_REG_BIT (equiv_regs[i], REGNO (l->loc));
411 for (i = 0; i < recog_data.n_operands; i++)
413 enum machine_mode mode;
414 int regno;
415 const char *p;
417 op_alt_regno[i] = alloca (recog_data.n_alternatives * sizeof (int));
418 for (j = 0; j < recog_data.n_alternatives; j++)
419 op_alt_regno[i][j] = -1;
421 p = constraints[i] = recog_data.constraints[i];
422 mode = recog_data.operand_mode[i];
424 /* Add the reject values for each alternative given by the constraints
425 for this operand. */
426 j = 0;
427 while (*p != '\0')
429 char c = *p++;
430 if (c == ',')
431 j++;
432 else if (c == '?')
433 alternative_reject[j] += 3;
434 else if (c == '!')
435 alternative_reject[j] += 300;
438 /* We won't change operands which are already registers. We
439 also don't want to modify output operands. */
440 regno = true_regnum (recog_data.operand[i]);
441 if (regno >= 0
442 || constraints[i][0] == '='
443 || constraints[i][0] == '+')
444 continue;
446 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
448 int class = (int) NO_REGS;
450 if (! TEST_HARD_REG_BIT (equiv_regs[i], regno))
451 continue;
453 REGNO (testreg) = regno;
454 PUT_MODE (testreg, mode);
456 /* We found a register equal to this operand. Now look for all
457 alternatives that can accept this register and have not been
458 assigned a register they can use yet. */
459 j = 0;
460 p = constraints[i];
461 for (;;)
463 char c = *p;
465 switch (c)
467 case '=': case '+': case '?':
468 case '#': case '&': case '!':
469 case '*': case '%':
470 case '0': case '1': case '2': case '3': case '4':
471 case '5': case '6': case '7': case '8': case '9':
472 case 'm': case '<': case '>': case 'V': case 'o':
473 case 'E': case 'F': case 'G': case 'H':
474 case 's': case 'i': case 'n':
475 case 'I': case 'J': case 'K': case 'L':
476 case 'M': case 'N': case 'O': case 'P':
477 case 'p': case 'X':
478 /* These don't say anything we care about. */
479 break;
481 case 'g': case 'r':
482 class = reg_class_subunion[(int) class][(int) GENERAL_REGS];
483 break;
485 default:
486 class
487 = (reg_class_subunion
488 [(int) class]
489 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
490 break;
492 case ',': case '\0':
493 /* See if REGNO fits this alternative, and set it up as the
494 replacement register if we don't have one for this
495 alternative yet and the operand being replaced is not
496 a cheap CONST_INT. */
497 if (op_alt_regno[i][j] == -1
498 && reg_fits_class_p (testreg, class, 0, mode)
499 && (GET_CODE (recog_data.operand[i]) != CONST_INT
500 || (rtx_cost (recog_data.operand[i], SET)
501 > rtx_cost (testreg, SET))))
503 alternative_nregs[j]++;
504 op_alt_regno[i][j] = regno;
506 j++;
507 break;
509 p += CONSTRAINT_LEN (c, p);
511 if (c == '\0')
512 break;
517 /* Record all alternatives which are better or equal to the currently
518 matching one in the alternative_order array. */
519 for (i = j = 0; i < recog_data.n_alternatives; i++)
520 if (alternative_reject[i] <= alternative_reject[which_alternative])
521 alternative_order[j++] = i;
522 recog_data.n_alternatives = j;
524 /* Sort it. Given a small number of alternatives, a dumb algorithm
525 won't hurt too much. */
526 for (i = 0; i < recog_data.n_alternatives - 1; i++)
528 int best = i;
529 int best_reject = alternative_reject[alternative_order[i]];
530 int best_nregs = alternative_nregs[alternative_order[i]];
531 int tmp;
533 for (j = i + 1; j < recog_data.n_alternatives; j++)
535 int this_reject = alternative_reject[alternative_order[j]];
536 int this_nregs = alternative_nregs[alternative_order[j]];
538 if (this_reject < best_reject
539 || (this_reject == best_reject && this_nregs < best_nregs))
541 best = j;
542 best_reject = this_reject;
543 best_nregs = this_nregs;
547 tmp = alternative_order[best];
548 alternative_order[best] = alternative_order[i];
549 alternative_order[i] = tmp;
552 /* Substitute the operands as determined by op_alt_regno for the best
553 alternative. */
554 j = alternative_order[0];
556 for (i = 0; i < recog_data.n_operands; i++)
558 enum machine_mode mode = recog_data.operand_mode[i];
559 if (op_alt_regno[i][j] == -1)
560 continue;
562 validate_change (insn, recog_data.operand_loc[i],
563 gen_rtx_REG (mode, op_alt_regno[i][j]), 1);
566 for (i = recog_data.n_dups - 1; i >= 0; i--)
568 int op = recog_data.dup_num[i];
569 enum machine_mode mode = recog_data.operand_mode[op];
571 if (op_alt_regno[op][j] == -1)
572 continue;
574 validate_change (insn, recog_data.dup_loc[i],
575 gen_rtx_REG (mode, op_alt_regno[op][j]), 1);
578 return apply_change_group ();
581 /* If reload couldn't use reg+reg+offset addressing, try to use reg+reg
582 addressing now.
583 This code might also be useful when reload gave up on reg+reg addressing
584 because of clashes between the return register and INDEX_REG_CLASS. */
586 /* The maximum number of uses of a register we can keep track of to
587 replace them with reg+reg addressing. */
588 #define RELOAD_COMBINE_MAX_USES 6
590 /* INSN is the insn where a register has ben used, and USEP points to the
591 location of the register within the rtl. */
592 struct reg_use { rtx insn, *usep; };
594 /* If the register is used in some unknown fashion, USE_INDEX is negative.
595 If it is dead, USE_INDEX is RELOAD_COMBINE_MAX_USES, and STORE_RUID
596 indicates where it becomes live again.
597 Otherwise, USE_INDEX is the index of the last encountered use of the
598 register (which is first among these we have seen since we scan backwards),
599 OFFSET contains the constant offset that is added to the register in
600 all encountered uses, and USE_RUID indicates the first encountered, i.e.
601 last, of these uses.
602 STORE_RUID is always meaningful if we only want to use a value in a
603 register in a different place: it denotes the next insn in the insn
604 stream (i.e. the last encountered) that sets or clobbers the register. */
605 static struct
607 struct reg_use reg_use[RELOAD_COMBINE_MAX_USES];
608 int use_index;
609 rtx offset;
610 int store_ruid;
611 int use_ruid;
612 } reg_state[FIRST_PSEUDO_REGISTER];
614 /* Reverse linear uid. This is increased in reload_combine while scanning
615 the instructions from last to first. It is used to set last_label_ruid
616 and the store_ruid / use_ruid fields in reg_state. */
617 static int reload_combine_ruid;
619 #define LABEL_LIVE(LABEL) \
620 (label_live[CODE_LABEL_NUMBER (LABEL) - min_labelno])
622 static void
623 reload_combine (void)
625 rtx insn, set;
626 int first_index_reg = -1;
627 int last_index_reg = 0;
628 int i;
629 basic_block bb;
630 unsigned int r;
631 int last_label_ruid;
632 int min_labelno, n_labels;
633 HARD_REG_SET ever_live_at_start, *label_live;
635 /* If reg+reg can be used in offsetable memory addresses, the main chunk of
636 reload has already used it where appropriate, so there is no use in
637 trying to generate it now. */
638 if (double_reg_address_ok && INDEX_REG_CLASS != NO_REGS)
639 return;
641 /* To avoid wasting too much time later searching for an index register,
642 determine the minimum and maximum index register numbers. */
643 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
644 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], r))
646 if (first_index_reg == -1)
647 first_index_reg = r;
649 last_index_reg = r;
652 /* If no index register is available, we can quit now. */
653 if (first_index_reg == -1)
654 return;
656 /* Set up LABEL_LIVE and EVER_LIVE_AT_START. The register lifetime
657 information is a bit fuzzy immediately after reload, but it's
658 still good enough to determine which registers are live at a jump
659 destination. */
660 min_labelno = get_first_label_num ();
661 n_labels = max_label_num () - min_labelno;
662 label_live = xmalloc (n_labels * sizeof (HARD_REG_SET));
663 CLEAR_HARD_REG_SET (ever_live_at_start);
665 FOR_EACH_BB_REVERSE (bb)
667 insn = bb->head;
668 if (GET_CODE (insn) == CODE_LABEL)
670 HARD_REG_SET live;
672 REG_SET_TO_HARD_REG_SET (live,
673 bb->global_live_at_start);
674 compute_use_by_pseudos (&live,
675 bb->global_live_at_start);
676 COPY_HARD_REG_SET (LABEL_LIVE (insn), live);
677 IOR_HARD_REG_SET (ever_live_at_start, live);
681 /* Initialize last_label_ruid, reload_combine_ruid and reg_state. */
682 last_label_ruid = reload_combine_ruid = 0;
683 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
685 reg_state[r].store_ruid = reload_combine_ruid;
686 if (fixed_regs[r])
687 reg_state[r].use_index = -1;
688 else
689 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
692 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
694 rtx note;
696 /* We cannot do our optimization across labels. Invalidating all the use
697 information we have would be costly, so we just note where the label
698 is and then later disable any optimization that would cross it. */
699 if (GET_CODE (insn) == CODE_LABEL)
700 last_label_ruid = reload_combine_ruid;
701 else if (GET_CODE (insn) == BARRIER)
702 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
703 if (! fixed_regs[r])
704 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
706 if (! INSN_P (insn))
707 continue;
709 reload_combine_ruid++;
711 /* Look for (set (REGX) (CONST_INT))
712 (set (REGX) (PLUS (REGX) (REGY)))
714 ... (MEM (REGX)) ...
715 and convert it to
716 (set (REGZ) (CONST_INT))
718 ... (MEM (PLUS (REGZ) (REGY)))... .
720 First, check that we have (set (REGX) (PLUS (REGX) (REGY)))
721 and that we know all uses of REGX before it dies. */
722 set = single_set (insn);
723 if (set != NULL_RTX
724 && GET_CODE (SET_DEST (set)) == REG
725 && (HARD_REGNO_NREGS (REGNO (SET_DEST (set)),
726 GET_MODE (SET_DEST (set)))
727 == 1)
728 && GET_CODE (SET_SRC (set)) == PLUS
729 && GET_CODE (XEXP (SET_SRC (set), 1)) == REG
730 && rtx_equal_p (XEXP (SET_SRC (set), 0), SET_DEST (set))
731 && last_label_ruid < reg_state[REGNO (SET_DEST (set))].use_ruid)
733 rtx reg = SET_DEST (set);
734 rtx plus = SET_SRC (set);
735 rtx base = XEXP (plus, 1);
736 rtx prev = prev_nonnote_insn (insn);
737 rtx prev_set = prev ? single_set (prev) : NULL_RTX;
738 unsigned int regno = REGNO (reg);
739 rtx const_reg = NULL_RTX;
740 rtx reg_sum = NULL_RTX;
742 /* Now, we need an index register.
743 We'll set index_reg to this index register, const_reg to the
744 register that is to be loaded with the constant
745 (denoted as REGZ in the substitution illustration above),
746 and reg_sum to the register-register that we want to use to
747 substitute uses of REG (typically in MEMs) with.
748 First check REG and BASE for being index registers;
749 we can use them even if they are not dead. */
750 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS], regno)
751 || TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
752 REGNO (base)))
754 const_reg = reg;
755 reg_sum = plus;
757 else
759 /* Otherwise, look for a free index register. Since we have
760 checked above that neiter REG nor BASE are index registers,
761 if we find anything at all, it will be different from these
762 two registers. */
763 for (i = first_index_reg; i <= last_index_reg; i++)
765 if (TEST_HARD_REG_BIT (reg_class_contents[INDEX_REG_CLASS],
767 && reg_state[i].use_index == RELOAD_COMBINE_MAX_USES
768 && reg_state[i].store_ruid <= reg_state[regno].use_ruid
769 && HARD_REGNO_NREGS (i, GET_MODE (reg)) == 1)
771 rtx index_reg = gen_rtx_REG (GET_MODE (reg), i);
773 const_reg = index_reg;
774 reg_sum = gen_rtx_PLUS (GET_MODE (reg), index_reg, base);
775 break;
780 /* Check that PREV_SET is indeed (set (REGX) (CONST_INT)) and that
781 (REGY), i.e. BASE, is not clobbered before the last use we'll
782 create. */
783 if (prev_set != 0
784 && GET_CODE (SET_SRC (prev_set)) == CONST_INT
785 && rtx_equal_p (SET_DEST (prev_set), reg)
786 && reg_state[regno].use_index >= 0
787 && (reg_state[REGNO (base)].store_ruid
788 <= reg_state[regno].use_ruid)
789 && reg_sum != 0)
791 int i;
793 /* Change destination register and, if necessary, the
794 constant value in PREV, the constant loading instruction. */
795 validate_change (prev, &SET_DEST (prev_set), const_reg, 1);
796 if (reg_state[regno].offset != const0_rtx)
797 validate_change (prev,
798 &SET_SRC (prev_set),
799 GEN_INT (INTVAL (SET_SRC (prev_set))
800 + INTVAL (reg_state[regno].offset)),
803 /* Now for every use of REG that we have recorded, replace REG
804 with REG_SUM. */
805 for (i = reg_state[regno].use_index;
806 i < RELOAD_COMBINE_MAX_USES; i++)
807 validate_change (reg_state[regno].reg_use[i].insn,
808 reg_state[regno].reg_use[i].usep,
809 /* Each change must have its own
810 replacement. */
811 copy_rtx (reg_sum), 1);
813 if (apply_change_group ())
815 rtx *np;
817 /* Delete the reg-reg addition. */
818 delete_insn (insn);
820 if (reg_state[regno].offset != const0_rtx)
821 /* Previous REG_EQUIV / REG_EQUAL notes for PREV
822 are now invalid. */
823 for (np = &REG_NOTES (prev); *np;)
825 if (REG_NOTE_KIND (*np) == REG_EQUAL
826 || REG_NOTE_KIND (*np) == REG_EQUIV)
827 *np = XEXP (*np, 1);
828 else
829 np = &XEXP (*np, 1);
832 reg_state[regno].use_index = RELOAD_COMBINE_MAX_USES;
833 reg_state[REGNO (const_reg)].store_ruid
834 = reload_combine_ruid;
835 continue;
840 note_stores (PATTERN (insn), reload_combine_note_store, NULL);
842 if (GET_CODE (insn) == CALL_INSN)
844 rtx link;
846 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
847 if (call_used_regs[r])
849 reg_state[r].use_index = RELOAD_COMBINE_MAX_USES;
850 reg_state[r].store_ruid = reload_combine_ruid;
853 for (link = CALL_INSN_FUNCTION_USAGE (insn); link;
854 link = XEXP (link, 1))
856 rtx usage_rtx = XEXP (XEXP (link, 0), 0);
857 if (GET_CODE (usage_rtx) == REG)
859 unsigned int i;
860 unsigned int start_reg = REGNO (usage_rtx);
861 unsigned int num_regs =
862 HARD_REGNO_NREGS (start_reg, GET_MODE (usage_rtx));
863 unsigned int end_reg = start_reg + num_regs - 1;
864 for (i = start_reg; i <= end_reg; i++)
865 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
867 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
868 reg_state[i].store_ruid = reload_combine_ruid;
870 else
871 reg_state[i].use_index = -1;
876 else if (GET_CODE (insn) == JUMP_INSN
877 && GET_CODE (PATTERN (insn)) != RETURN)
879 /* Non-spill registers might be used at the call destination in
880 some unknown fashion, so we have to mark the unknown use. */
881 HARD_REG_SET *live;
883 if ((condjump_p (insn) || condjump_in_parallel_p (insn))
884 && JUMP_LABEL (insn))
885 live = &LABEL_LIVE (JUMP_LABEL (insn));
886 else
887 live = &ever_live_at_start;
889 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; --i)
890 if (TEST_HARD_REG_BIT (*live, i))
891 reg_state[i].use_index = -1;
894 reload_combine_note_use (&PATTERN (insn), insn);
895 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
897 if (REG_NOTE_KIND (note) == REG_INC
898 && GET_CODE (XEXP (note, 0)) == REG)
900 int regno = REGNO (XEXP (note, 0));
902 reg_state[regno].store_ruid = reload_combine_ruid;
903 reg_state[regno].use_index = -1;
908 free (label_live);
911 /* Check if DST is a register or a subreg of a register; if it is,
912 update reg_state[regno].store_ruid and reg_state[regno].use_index
913 accordingly. Called via note_stores from reload_combine. */
915 static void
916 reload_combine_note_store (rtx dst, rtx set, void *data ATTRIBUTE_UNUSED)
918 int regno = 0;
919 int i;
920 enum machine_mode mode = GET_MODE (dst);
922 if (GET_CODE (dst) == SUBREG)
924 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
925 GET_MODE (SUBREG_REG (dst)),
926 SUBREG_BYTE (dst),
927 GET_MODE (dst));
928 dst = SUBREG_REG (dst);
930 if (GET_CODE (dst) != REG)
931 return;
932 regno += REGNO (dst);
934 /* note_stores might have stripped a STRICT_LOW_PART, so we have to be
935 careful with registers / register parts that are not full words.
937 Similarly for ZERO_EXTRACT and SIGN_EXTRACT. */
938 if (GET_CODE (set) != SET
939 || GET_CODE (SET_DEST (set)) == ZERO_EXTRACT
940 || GET_CODE (SET_DEST (set)) == SIGN_EXTRACT
941 || GET_CODE (SET_DEST (set)) == STRICT_LOW_PART)
943 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
945 reg_state[i].use_index = -1;
946 reg_state[i].store_ruid = reload_combine_ruid;
949 else
951 for (i = HARD_REGNO_NREGS (regno, mode) - 1 + regno; i >= regno; i--)
953 reg_state[i].store_ruid = reload_combine_ruid;
954 reg_state[i].use_index = RELOAD_COMBINE_MAX_USES;
959 /* XP points to a piece of rtl that has to be checked for any uses of
960 registers.
961 *XP is the pattern of INSN, or a part of it.
962 Called from reload_combine, and recursively by itself. */
963 static void
964 reload_combine_note_use (rtx *xp, rtx insn)
966 rtx x = *xp;
967 enum rtx_code code = x->code;
968 const char *fmt;
969 int i, j;
970 rtx offset = const0_rtx; /* For the REG case below. */
972 switch (code)
974 case SET:
975 if (GET_CODE (SET_DEST (x)) == REG)
977 reload_combine_note_use (&SET_SRC (x), insn);
978 return;
980 break;
982 case USE:
983 /* If this is the USE of a return value, we can't change it. */
984 if (GET_CODE (XEXP (x, 0)) == REG && REG_FUNCTION_VALUE_P (XEXP (x, 0)))
986 /* Mark the return register as used in an unknown fashion. */
987 rtx reg = XEXP (x, 0);
988 int regno = REGNO (reg);
989 int nregs = HARD_REGNO_NREGS (regno, GET_MODE (reg));
991 while (--nregs >= 0)
992 reg_state[regno + nregs].use_index = -1;
993 return;
995 break;
997 case CLOBBER:
998 if (GET_CODE (SET_DEST (x)) == REG)
1000 /* No spurious CLOBBERs of pseudo registers may remain. */
1001 if (REGNO (SET_DEST (x)) >= FIRST_PSEUDO_REGISTER)
1002 abort ();
1003 return;
1005 break;
1007 case PLUS:
1008 /* We are interested in (plus (reg) (const_int)) . */
1009 if (GET_CODE (XEXP (x, 0)) != REG
1010 || GET_CODE (XEXP (x, 1)) != CONST_INT)
1011 break;
1012 offset = XEXP (x, 1);
1013 x = XEXP (x, 0);
1014 /* Fall through. */
1015 case REG:
1017 int regno = REGNO (x);
1018 int use_index;
1019 int nregs;
1021 /* No spurious USEs of pseudo registers may remain. */
1022 if (regno >= FIRST_PSEUDO_REGISTER)
1023 abort ();
1025 nregs = HARD_REGNO_NREGS (regno, GET_MODE (x));
1027 /* We can't substitute into multi-hard-reg uses. */
1028 if (nregs > 1)
1030 while (--nregs >= 0)
1031 reg_state[regno + nregs].use_index = -1;
1032 return;
1035 /* If this register is already used in some unknown fashion, we
1036 can't do anything.
1037 If we decrement the index from zero to -1, we can't store more
1038 uses, so this register becomes used in an unknown fashion. */
1039 use_index = --reg_state[regno].use_index;
1040 if (use_index < 0)
1041 return;
1043 if (use_index != RELOAD_COMBINE_MAX_USES - 1)
1045 /* We have found another use for a register that is already
1046 used later. Check if the offsets match; if not, mark the
1047 register as used in an unknown fashion. */
1048 if (! rtx_equal_p (offset, reg_state[regno].offset))
1050 reg_state[regno].use_index = -1;
1051 return;
1054 else
1056 /* This is the first use of this register we have seen since we
1057 marked it as dead. */
1058 reg_state[regno].offset = offset;
1059 reg_state[regno].use_ruid = reload_combine_ruid;
1061 reg_state[regno].reg_use[use_index].insn = insn;
1062 reg_state[regno].reg_use[use_index].usep = xp;
1063 return;
1066 default:
1067 break;
1070 /* Recursively process the components of X. */
1071 fmt = GET_RTX_FORMAT (code);
1072 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1074 if (fmt[i] == 'e')
1075 reload_combine_note_use (&XEXP (x, i), insn);
1076 else if (fmt[i] == 'E')
1078 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1079 reload_combine_note_use (&XVECEXP (x, i, j), insn);
1084 /* See if we can reduce the cost of a constant by replacing a move
1085 with an add. We track situations in which a register is set to a
1086 constant or to a register plus a constant. */
1087 /* We cannot do our optimization across labels. Invalidating all the
1088 information about register contents we have would be costly, so we
1089 use move2add_last_label_luid to note where the label is and then
1090 later disable any optimization that would cross it.
1091 reg_offset[n] / reg_base_reg[n] / reg_mode[n] are only valid if
1092 reg_set_luid[n] is greater than move2add_last_label_luid. */
1093 static int reg_set_luid[FIRST_PSEUDO_REGISTER];
1095 /* If reg_base_reg[n] is negative, register n has been set to
1096 reg_offset[n] in mode reg_mode[n] .
1097 If reg_base_reg[n] is non-negative, register n has been set to the
1098 sum of reg_offset[n] and the value of register reg_base_reg[n]
1099 before reg_set_luid[n], calculated in mode reg_mode[n] . */
1100 static HOST_WIDE_INT reg_offset[FIRST_PSEUDO_REGISTER];
1101 static int reg_base_reg[FIRST_PSEUDO_REGISTER];
1102 static enum machine_mode reg_mode[FIRST_PSEUDO_REGISTER];
1104 /* move2add_luid is linearly increased while scanning the instructions
1105 from first to last. It is used to set reg_set_luid in
1106 reload_cse_move2add and move2add_note_store. */
1107 static int move2add_luid;
1109 /* move2add_last_label_luid is set whenever a label is found. Labels
1110 invalidate all previously collected reg_offset data. */
1111 static int move2add_last_label_luid;
1113 /* ??? We don't know how zero / sign extension is handled, hence we
1114 can't go from a narrower to a wider mode. */
1115 #define MODES_OK_FOR_MOVE2ADD(OUTMODE, INMODE) \
1116 (GET_MODE_SIZE (OUTMODE) == GET_MODE_SIZE (INMODE) \
1117 || (GET_MODE_SIZE (OUTMODE) <= GET_MODE_SIZE (INMODE) \
1118 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (OUTMODE), \
1119 GET_MODE_BITSIZE (INMODE))))
1121 static void
1122 reload_cse_move2add (rtx first)
1124 int i;
1125 rtx insn;
1127 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1128 reg_set_luid[i] = 0;
1130 move2add_last_label_luid = 0;
1131 move2add_luid = 2;
1132 for (insn = first; insn; insn = NEXT_INSN (insn), move2add_luid++)
1134 rtx pat, note;
1136 if (GET_CODE (insn) == CODE_LABEL)
1138 move2add_last_label_luid = move2add_luid;
1139 /* We're going to increment move2add_luid twice after a
1140 label, so that we can use move2add_last_label_luid + 1 as
1141 the luid for constants. */
1142 move2add_luid++;
1143 continue;
1145 if (! INSN_P (insn))
1146 continue;
1147 pat = PATTERN (insn);
1148 /* For simplicity, we only perform this optimization on
1149 straightforward SETs. */
1150 if (GET_CODE (pat) == SET
1151 && GET_CODE (SET_DEST (pat)) == REG)
1153 rtx reg = SET_DEST (pat);
1154 int regno = REGNO (reg);
1155 rtx src = SET_SRC (pat);
1157 /* Check if we have valid information on the contents of this
1158 register in the mode of REG. */
1159 if (reg_set_luid[regno] > move2add_last_label_luid
1160 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg), reg_mode[regno]))
1162 /* Try to transform (set (REGX) (CONST_INT A))
1164 (set (REGX) (CONST_INT B))
1166 (set (REGX) (CONST_INT A))
1168 (set (REGX) (plus (REGX) (CONST_INT B-A)))
1170 (set (REGX) (CONST_INT A))
1172 (set (STRICT_LOW_PART (REGX)) (CONST_INT B))
1175 if (GET_CODE (src) == CONST_INT && reg_base_reg[regno] < 0)
1177 rtx new_src =
1178 GEN_INT (trunc_int_for_mode (INTVAL (src)
1179 - reg_offset[regno],
1180 GET_MODE (reg)));
1181 /* (set (reg) (plus (reg) (const_int 0))) is not canonical;
1182 use (set (reg) (reg)) instead.
1183 We don't delete this insn, nor do we convert it into a
1184 note, to avoid losing register notes or the return
1185 value flag. jump2 already knows how to get rid of
1186 no-op moves. */
1187 if (new_src == const0_rtx)
1189 /* If the constants are different, this is a
1190 truncation, that, if turned into (set (reg)
1191 (reg)), would be discarded. Maybe we should
1192 try a truncMN pattern? */
1193 if (INTVAL (src) == reg_offset [regno])
1194 validate_change (insn, &SET_SRC (pat), reg, 0);
1196 else if (rtx_cost (new_src, PLUS) < rtx_cost (src, SET)
1197 && have_add2_insn (reg, new_src))
1199 rtx newpat = gen_add2_insn (reg, new_src);
1200 if (INSN_P (newpat) && NEXT_INSN (newpat) == NULL_RTX)
1201 newpat = PATTERN (newpat);
1202 /* If it was the first insn of a sequence or
1203 some other emitted insn, validate_change will
1204 reject it. */
1205 validate_change (insn, &PATTERN (insn),
1206 newpat, 0);
1208 else
1210 enum machine_mode narrow_mode;
1211 for (narrow_mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1212 narrow_mode != GET_MODE (reg);
1213 narrow_mode = GET_MODE_WIDER_MODE (narrow_mode))
1215 if (have_insn_for (STRICT_LOW_PART, narrow_mode)
1216 && ((reg_offset[regno]
1217 & ~GET_MODE_MASK (narrow_mode))
1218 == (INTVAL (src)
1219 & ~GET_MODE_MASK (narrow_mode))))
1221 rtx narrow_reg = gen_rtx_REG (narrow_mode,
1222 REGNO (reg));
1223 rtx narrow_src =
1224 GEN_INT (trunc_int_for_mode (INTVAL (src),
1225 narrow_mode));
1226 rtx new_set =
1227 gen_rtx_SET (VOIDmode,
1228 gen_rtx_STRICT_LOW_PART (VOIDmode,
1229 narrow_reg),
1230 narrow_src);
1231 if (validate_change (insn, &PATTERN (insn),
1232 new_set, 0))
1233 break;
1237 reg_set_luid[regno] = move2add_luid;
1238 reg_mode[regno] = GET_MODE (reg);
1239 reg_offset[regno] = INTVAL (src);
1240 continue;
1243 /* Try to transform (set (REGX) (REGY))
1244 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1246 (set (REGX) (REGY))
1247 (set (REGX) (PLUS (REGX) (CONST_INT B)))
1249 (set (REGX) (REGY))
1250 (set (REGX) (PLUS (REGX) (CONST_INT A)))
1252 (set (REGX) (plus (REGX) (CONST_INT B-A))) */
1253 else if (GET_CODE (src) == REG
1254 && reg_set_luid[regno] == reg_set_luid[REGNO (src)]
1255 && reg_base_reg[regno] == reg_base_reg[REGNO (src)]
1256 && MODES_OK_FOR_MOVE2ADD (GET_MODE (reg),
1257 reg_mode[REGNO (src)]))
1259 rtx next = next_nonnote_insn (insn);
1260 rtx set = NULL_RTX;
1261 if (next)
1262 set = single_set (next);
1263 if (set
1264 && SET_DEST (set) == reg
1265 && GET_CODE (SET_SRC (set)) == PLUS
1266 && XEXP (SET_SRC (set), 0) == reg
1267 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
1269 rtx src3 = XEXP (SET_SRC (set), 1);
1270 HOST_WIDE_INT added_offset = INTVAL (src3);
1271 HOST_WIDE_INT base_offset = reg_offset[REGNO (src)];
1272 HOST_WIDE_INT regno_offset = reg_offset[regno];
1273 rtx new_src =
1274 GEN_INT (trunc_int_for_mode (added_offset
1275 + base_offset
1276 - regno_offset,
1277 GET_MODE (reg)));
1278 int success = 0;
1280 if (new_src == const0_rtx)
1281 /* See above why we create (set (reg) (reg)) here. */
1282 success
1283 = validate_change (next, &SET_SRC (set), reg, 0);
1284 else if ((rtx_cost (new_src, PLUS)
1285 < COSTS_N_INSNS (1) + rtx_cost (src3, SET))
1286 && have_add2_insn (reg, new_src))
1288 rtx newpat = gen_add2_insn (reg, new_src);
1289 if (INSN_P (newpat)
1290 && NEXT_INSN (newpat) == NULL_RTX)
1291 newpat = PATTERN (newpat);
1292 success
1293 = validate_change (next, &PATTERN (next),
1294 newpat, 0);
1296 if (success)
1297 delete_insn (insn);
1298 insn = next;
1299 reg_mode[regno] = GET_MODE (reg);
1300 reg_offset[regno] =
1301 trunc_int_for_mode (added_offset + base_offset,
1302 GET_MODE (reg));
1303 continue;
1309 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1311 if (REG_NOTE_KIND (note) == REG_INC
1312 && GET_CODE (XEXP (note, 0)) == REG)
1314 /* Reset the information about this register. */
1315 int regno = REGNO (XEXP (note, 0));
1316 if (regno < FIRST_PSEUDO_REGISTER)
1317 reg_set_luid[regno] = 0;
1320 note_stores (PATTERN (insn), move2add_note_store, NULL);
1322 /* If INSN is a conditional branch, we try to extract an
1323 implicit set out of it. */
1324 if (any_condjump_p (insn) && onlyjump_p (insn))
1326 rtx cnd = fis_get_condition (insn);
1328 if (cnd != NULL_RTX
1329 && GET_CODE (cnd) == NE
1330 && GET_CODE (XEXP (cnd, 0)) == REG
1331 /* The following two checks, which are also in
1332 move2add_note_store, are intended to reduce the
1333 number of calls to gen_rtx_SET to avoid memory
1334 allocation if possible. */
1335 && SCALAR_INT_MODE_P (GET_MODE (XEXP (cnd, 0)))
1336 && HARD_REGNO_NREGS (REGNO (XEXP (cnd, 0)), GET_MODE (XEXP (cnd, 0))) == 1
1337 && GET_CODE (XEXP (cnd, 1)) == CONST_INT)
1339 rtx implicit_set =
1340 gen_rtx_SET (VOIDmode, XEXP (cnd, 0), XEXP (cnd, 1));
1341 move2add_note_store (SET_DEST (implicit_set), implicit_set, 0);
1345 /* If this is a CALL_INSN, all call used registers are stored with
1346 unknown values. */
1347 if (GET_CODE (insn) == CALL_INSN)
1349 for (i = FIRST_PSEUDO_REGISTER - 1; i >= 0; i--)
1351 if (call_used_regs[i])
1352 /* Reset the information about this register. */
1353 reg_set_luid[i] = 0;
1359 /* SET is a SET or CLOBBER that sets DST.
1360 Update reg_set_luid, reg_offset and reg_base_reg accordingly.
1361 Called from reload_cse_move2add via note_stores. */
1363 static void
1364 move2add_note_store (rtx dst, rtx set, void *data ATTRIBUTE_UNUSED)
1366 unsigned int regno = 0;
1367 unsigned int i;
1368 enum machine_mode mode = GET_MODE (dst);
1370 if (GET_CODE (dst) == SUBREG)
1372 regno = subreg_regno_offset (REGNO (SUBREG_REG (dst)),
1373 GET_MODE (SUBREG_REG (dst)),
1374 SUBREG_BYTE (dst),
1375 GET_MODE (dst));
1376 dst = SUBREG_REG (dst);
1379 /* Some targets do argument pushes without adding REG_INC notes. */
1381 if (GET_CODE (dst) == MEM)
1383 dst = XEXP (dst, 0);
1384 if (GET_CODE (dst) == PRE_INC || GET_CODE (dst) == POST_INC
1385 || GET_CODE (dst) == PRE_DEC || GET_CODE (dst) == POST_DEC)
1386 reg_set_luid[REGNO (XEXP (dst, 0))] = 0;
1387 return;
1389 if (GET_CODE (dst) != REG)
1390 return;
1392 regno += REGNO (dst);
1394 if (SCALAR_INT_MODE_P (mode)
1395 && HARD_REGNO_NREGS (regno, mode) == 1 && GET_CODE (set) == SET
1396 && GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1397 && GET_CODE (SET_DEST (set)) != SIGN_EXTRACT
1398 && GET_CODE (SET_DEST (set)) != STRICT_LOW_PART)
1400 rtx src = SET_SRC (set);
1401 rtx base_reg;
1402 HOST_WIDE_INT offset;
1403 int base_regno;
1404 /* This may be different from mode, if SET_DEST (set) is a
1405 SUBREG. */
1406 enum machine_mode dst_mode = GET_MODE (dst);
1408 switch (GET_CODE (src))
1410 case PLUS:
1411 if (GET_CODE (XEXP (src, 0)) == REG)
1413 base_reg = XEXP (src, 0);
1415 if (GET_CODE (XEXP (src, 1)) == CONST_INT)
1416 offset = INTVAL (XEXP (src, 1));
1417 else if (GET_CODE (XEXP (src, 1)) == REG
1418 && (reg_set_luid[REGNO (XEXP (src, 1))]
1419 > move2add_last_label_luid)
1420 && (MODES_OK_FOR_MOVE2ADD
1421 (dst_mode, reg_mode[REGNO (XEXP (src, 1))])))
1423 if (reg_base_reg[REGNO (XEXP (src, 1))] < 0)
1424 offset = reg_offset[REGNO (XEXP (src, 1))];
1425 /* Maybe the first register is known to be a
1426 constant. */
1427 else if (reg_set_luid[REGNO (base_reg)]
1428 > move2add_last_label_luid
1429 && (MODES_OK_FOR_MOVE2ADD
1430 (dst_mode, reg_mode[REGNO (XEXP (src, 1))]))
1431 && reg_base_reg[REGNO (base_reg)] < 0)
1433 offset = reg_offset[REGNO (base_reg)];
1434 base_reg = XEXP (src, 1);
1436 else
1437 goto invalidate;
1439 else
1440 goto invalidate;
1442 break;
1445 goto invalidate;
1447 case REG:
1448 base_reg = src;
1449 offset = 0;
1450 break;
1452 case CONST_INT:
1453 /* Start tracking the register as a constant. */
1454 reg_base_reg[regno] = -1;
1455 reg_offset[regno] = INTVAL (SET_SRC (set));
1456 /* We assign the same luid to all registers set to constants. */
1457 reg_set_luid[regno] = move2add_last_label_luid + 1;
1458 reg_mode[regno] = mode;
1459 return;
1461 default:
1462 invalidate:
1463 /* Invalidate the contents of the register. */
1464 reg_set_luid[regno] = 0;
1465 return;
1468 base_regno = REGNO (base_reg);
1469 /* If information about the base register is not valid, set it
1470 up as a new base register, pretending its value is known
1471 starting from the current insn. */
1472 if (reg_set_luid[base_regno] <= move2add_last_label_luid)
1474 reg_base_reg[base_regno] = base_regno;
1475 reg_offset[base_regno] = 0;
1476 reg_set_luid[base_regno] = move2add_luid;
1477 reg_mode[base_regno] = mode;
1479 else if (! MODES_OK_FOR_MOVE2ADD (dst_mode,
1480 reg_mode[base_regno]))
1481 goto invalidate;
1483 reg_mode[regno] = mode;
1485 /* Copy base information from our base register. */
1486 reg_set_luid[regno] = reg_set_luid[base_regno];
1487 reg_base_reg[regno] = reg_base_reg[base_regno];
1489 /* Compute the sum of the offsets or constants. */
1490 reg_offset[regno] = trunc_int_for_mode (offset
1491 + reg_offset[base_regno],
1492 dst_mode);
1494 else
1496 unsigned int endregno = regno + HARD_REGNO_NREGS (regno, mode);
1498 for (i = regno; i < endregno; i++)
1499 /* Reset the information about this register. */
1500 reg_set_luid[i] = 0;