1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005-2013 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
27 #include "stor-layout.h"
29 #include "basic-block.h"
30 #include "tree-ssa-alias.h"
31 #include "internal-fn.h"
32 #include "gimple-fold.h"
34 #include "gimple-expr.h"
37 #include "gimple-iterator.h"
38 #include "gimple-walk.h"
39 #include "gimple-ssa.h"
41 #include "tree-phinodes.h"
42 #include "ssa-iterators.h"
43 #include "stringpool.h"
44 #include "tree-ssanames.h"
45 #include "tree-ssa-loop-manip.h"
46 #include "tree-ssa-loop-niter.h"
47 #include "tree-ssa-loop.h"
48 #include "tree-into-ssa.h"
50 #include "tree-pass.h"
51 #include "tree-dump.h"
52 #include "gimple-pretty-print.h"
53 #include "diagnostic-core.h"
56 #include "tree-scalar-evolution.h"
57 #include "tree-ssa-propagate.h"
58 #include "tree-chrec.h"
59 #include "tree-ssa-threadupdate.h"
62 #include "tree-ssa-threadedge.h"
66 /* Range of values that can be associated with an SSA_NAME after VRP
70 /* Lattice value represented by this range. */
71 enum value_range_type type
;
73 /* Minimum and maximum values represented by this range. These
74 values should be interpreted as follows:
76 - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
79 - If TYPE == VR_RANGE then MIN holds the minimum value and
80 MAX holds the maximum value of the range [MIN, MAX].
82 - If TYPE == ANTI_RANGE the variable is known to NOT
83 take any values in the range [MIN, MAX]. */
87 /* Set of SSA names whose value ranges are equivalent to this one.
88 This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
92 typedef struct value_range_d value_range_t
;
94 #define VR_INITIALIZER { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL }
96 /* Set of SSA names found live during the RPO traversal of the function
97 for still active basic-blocks. */
100 /* Return true if the SSA name NAME is live on the edge E. */
103 live_on_edge (edge e
, tree name
)
105 return (live
[e
->dest
->index
]
106 && bitmap_bit_p (live
[e
->dest
->index
], SSA_NAME_VERSION (name
)));
109 /* Local functions. */
110 static int compare_values (tree val1
, tree val2
);
111 static int compare_values_warnv (tree val1
, tree val2
, bool *);
112 static void vrp_meet (value_range_t
*, value_range_t
*);
113 static void vrp_intersect_ranges (value_range_t
*, value_range_t
*);
114 static tree
vrp_evaluate_conditional_warnv_with_ops (enum tree_code
,
115 tree
, tree
, bool, bool *,
118 /* Location information for ASSERT_EXPRs. Each instance of this
119 structure describes an ASSERT_EXPR for an SSA name. Since a single
120 SSA name may have more than one assertion associated with it, these
121 locations are kept in a linked list attached to the corresponding
123 struct assert_locus_d
125 /* Basic block where the assertion would be inserted. */
128 /* Some assertions need to be inserted on an edge (e.g., assertions
129 generated by COND_EXPRs). In those cases, BB will be NULL. */
132 /* Pointer to the statement that generated this assertion. */
133 gimple_stmt_iterator si
;
135 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
136 enum tree_code comp_code
;
138 /* Value being compared against. */
141 /* Expression to compare. */
144 /* Next node in the linked list. */
145 struct assert_locus_d
*next
;
148 typedef struct assert_locus_d
*assert_locus_t
;
150 /* If bit I is present, it means that SSA name N_i has a list of
151 assertions that should be inserted in the IL. */
152 static bitmap need_assert_for
;
154 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
155 holds a list of ASSERT_LOCUS_T nodes that describe where
156 ASSERT_EXPRs for SSA name N_I should be inserted. */
157 static assert_locus_t
*asserts_for
;
159 /* Value range array. After propagation, VR_VALUE[I] holds the range
160 of values that SSA name N_I may take. */
161 static unsigned num_vr_values
;
162 static value_range_t
**vr_value
;
163 static bool values_propagated
;
165 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
166 number of executable edges we saw the last time we visited the
168 static int *vr_phi_edge_counts
;
175 static vec
<edge
> to_remove_edges
;
176 static vec
<switch_update
> to_update_switch_stmts
;
179 /* Return the maximum value for TYPE. */
182 vrp_val_max (const_tree type
)
184 if (!INTEGRAL_TYPE_P (type
))
187 return TYPE_MAX_VALUE (type
);
190 /* Return the minimum value for TYPE. */
193 vrp_val_min (const_tree type
)
195 if (!INTEGRAL_TYPE_P (type
))
198 return TYPE_MIN_VALUE (type
);
201 /* Return whether VAL is equal to the maximum value of its type. This
202 will be true for a positive overflow infinity. We can't do a
203 simple equality comparison with TYPE_MAX_VALUE because C typedefs
204 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
205 to the integer constant with the same value in the type. */
208 vrp_val_is_max (const_tree val
)
210 tree type_max
= vrp_val_max (TREE_TYPE (val
));
211 return (val
== type_max
212 || (type_max
!= NULL_TREE
213 && operand_equal_p (val
, type_max
, 0)));
216 /* Return whether VAL is equal to the minimum value of its type. This
217 will be true for a negative overflow infinity. */
220 vrp_val_is_min (const_tree val
)
222 tree type_min
= vrp_val_min (TREE_TYPE (val
));
223 return (val
== type_min
224 || (type_min
!= NULL_TREE
225 && operand_equal_p (val
, type_min
, 0)));
229 /* Return whether TYPE should use an overflow infinity distinct from
230 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
231 represent a signed overflow during VRP computations. An infinity
232 is distinct from a half-range, which will go from some number to
233 TYPE_{MIN,MAX}_VALUE. */
236 needs_overflow_infinity (const_tree type
)
238 return INTEGRAL_TYPE_P (type
) && !TYPE_OVERFLOW_WRAPS (type
);
241 /* Return whether TYPE can support our overflow infinity
242 representation: we use the TREE_OVERFLOW flag, which only exists
243 for constants. If TYPE doesn't support this, we don't optimize
244 cases which would require signed overflow--we drop them to
248 supports_overflow_infinity (const_tree type
)
250 tree min
= vrp_val_min (type
), max
= vrp_val_max (type
);
251 #ifdef ENABLE_CHECKING
252 gcc_assert (needs_overflow_infinity (type
));
254 return (min
!= NULL_TREE
255 && CONSTANT_CLASS_P (min
)
257 && CONSTANT_CLASS_P (max
));
260 /* VAL is the maximum or minimum value of a type. Return a
261 corresponding overflow infinity. */
264 make_overflow_infinity (tree val
)
266 gcc_checking_assert (val
!= NULL_TREE
&& CONSTANT_CLASS_P (val
));
267 val
= copy_node (val
);
268 TREE_OVERFLOW (val
) = 1;
272 /* Return a negative overflow infinity for TYPE. */
275 negative_overflow_infinity (tree type
)
277 gcc_checking_assert (supports_overflow_infinity (type
));
278 return make_overflow_infinity (vrp_val_min (type
));
281 /* Return a positive overflow infinity for TYPE. */
284 positive_overflow_infinity (tree type
)
286 gcc_checking_assert (supports_overflow_infinity (type
));
287 return make_overflow_infinity (vrp_val_max (type
));
290 /* Return whether VAL is a negative overflow infinity. */
293 is_negative_overflow_infinity (const_tree val
)
295 return (needs_overflow_infinity (TREE_TYPE (val
))
296 && CONSTANT_CLASS_P (val
)
297 && TREE_OVERFLOW (val
)
298 && vrp_val_is_min (val
));
301 /* Return whether VAL is a positive overflow infinity. */
304 is_positive_overflow_infinity (const_tree val
)
306 return (needs_overflow_infinity (TREE_TYPE (val
))
307 && CONSTANT_CLASS_P (val
)
308 && TREE_OVERFLOW (val
)
309 && vrp_val_is_max (val
));
312 /* Return whether VAL is a positive or negative overflow infinity. */
315 is_overflow_infinity (const_tree val
)
317 return (needs_overflow_infinity (TREE_TYPE (val
))
318 && CONSTANT_CLASS_P (val
)
319 && TREE_OVERFLOW (val
)
320 && (vrp_val_is_min (val
) || vrp_val_is_max (val
)));
323 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
326 stmt_overflow_infinity (gimple stmt
)
328 if (is_gimple_assign (stmt
)
329 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt
)) ==
331 return is_overflow_infinity (gimple_assign_rhs1 (stmt
));
335 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
336 the same value with TREE_OVERFLOW clear. This can be used to avoid
337 confusing a regular value with an overflow value. */
340 avoid_overflow_infinity (tree val
)
342 if (!is_overflow_infinity (val
))
345 if (vrp_val_is_max (val
))
346 return vrp_val_max (TREE_TYPE (val
));
349 gcc_checking_assert (vrp_val_is_min (val
));
350 return vrp_val_min (TREE_TYPE (val
));
355 /* Return true if ARG is marked with the nonnull attribute in the
356 current function signature. */
359 nonnull_arg_p (const_tree arg
)
361 tree t
, attrs
, fntype
;
362 unsigned HOST_WIDE_INT arg_num
;
364 gcc_assert (TREE_CODE (arg
) == PARM_DECL
&& POINTER_TYPE_P (TREE_TYPE (arg
)));
366 /* The static chain decl is always non null. */
367 if (arg
== cfun
->static_chain_decl
)
370 fntype
= TREE_TYPE (current_function_decl
);
371 for (attrs
= TYPE_ATTRIBUTES (fntype
); attrs
; attrs
= TREE_CHAIN (attrs
))
373 attrs
= lookup_attribute ("nonnull", attrs
);
375 /* If "nonnull" wasn't specified, we know nothing about the argument. */
376 if (attrs
== NULL_TREE
)
379 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
380 if (TREE_VALUE (attrs
) == NULL_TREE
)
383 /* Get the position number for ARG in the function signature. */
384 for (arg_num
= 1, t
= DECL_ARGUMENTS (current_function_decl
);
386 t
= DECL_CHAIN (t
), arg_num
++)
392 gcc_assert (t
== arg
);
394 /* Now see if ARG_NUM is mentioned in the nonnull list. */
395 for (t
= TREE_VALUE (attrs
); t
; t
= TREE_CHAIN (t
))
397 if (compare_tree_int (TREE_VALUE (t
), arg_num
) == 0)
406 /* Set value range VR to VR_UNDEFINED. */
409 set_value_range_to_undefined (value_range_t
*vr
)
411 vr
->type
= VR_UNDEFINED
;
412 vr
->min
= vr
->max
= NULL_TREE
;
414 bitmap_clear (vr
->equiv
);
418 /* Set value range VR to VR_VARYING. */
421 set_value_range_to_varying (value_range_t
*vr
)
423 vr
->type
= VR_VARYING
;
424 vr
->min
= vr
->max
= NULL_TREE
;
426 bitmap_clear (vr
->equiv
);
430 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
433 set_value_range (value_range_t
*vr
, enum value_range_type t
, tree min
,
434 tree max
, bitmap equiv
)
436 #if defined ENABLE_CHECKING
437 /* Check the validity of the range. */
438 if (t
== VR_RANGE
|| t
== VR_ANTI_RANGE
)
442 gcc_assert (min
&& max
);
444 gcc_assert ((!TREE_OVERFLOW_P (min
) || is_overflow_infinity (min
))
445 && (!TREE_OVERFLOW_P (max
) || is_overflow_infinity (max
)));
447 if (INTEGRAL_TYPE_P (TREE_TYPE (min
)) && t
== VR_ANTI_RANGE
)
448 gcc_assert (!vrp_val_is_min (min
) || !vrp_val_is_max (max
));
450 cmp
= compare_values (min
, max
);
451 gcc_assert (cmp
== 0 || cmp
== -1 || cmp
== -2);
453 if (needs_overflow_infinity (TREE_TYPE (min
)))
454 gcc_assert (!is_overflow_infinity (min
)
455 || !is_overflow_infinity (max
));
458 if (t
== VR_UNDEFINED
|| t
== VR_VARYING
)
459 gcc_assert (min
== NULL_TREE
&& max
== NULL_TREE
);
461 if (t
== VR_UNDEFINED
|| t
== VR_VARYING
)
462 gcc_assert (equiv
== NULL
|| bitmap_empty_p (equiv
));
469 /* Since updating the equivalence set involves deep copying the
470 bitmaps, only do it if absolutely necessary. */
471 if (vr
->equiv
== NULL
473 vr
->equiv
= BITMAP_ALLOC (NULL
);
475 if (equiv
!= vr
->equiv
)
477 if (equiv
&& !bitmap_empty_p (equiv
))
478 bitmap_copy (vr
->equiv
, equiv
);
480 bitmap_clear (vr
->equiv
);
485 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
486 This means adjusting T, MIN and MAX representing the case of a
487 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
488 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
489 In corner cases where MAX+1 or MIN-1 wraps this will fall back
491 This routine exists to ease canonicalization in the case where we
492 extract ranges from var + CST op limit. */
495 set_and_canonicalize_value_range (value_range_t
*vr
, enum value_range_type t
,
496 tree min
, tree max
, bitmap equiv
)
498 /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
499 if (t
== VR_UNDEFINED
)
501 set_value_range_to_undefined (vr
);
504 else if (t
== VR_VARYING
)
506 set_value_range_to_varying (vr
);
510 /* Nothing to canonicalize for symbolic ranges. */
511 if (TREE_CODE (min
) != INTEGER_CST
512 || TREE_CODE (max
) != INTEGER_CST
)
514 set_value_range (vr
, t
, min
, max
, equiv
);
518 /* Wrong order for min and max, to swap them and the VR type we need
520 if (tree_int_cst_lt (max
, min
))
524 /* For one bit precision if max < min, then the swapped
525 range covers all values, so for VR_RANGE it is varying and
526 for VR_ANTI_RANGE empty range, so drop to varying as well. */
527 if (TYPE_PRECISION (TREE_TYPE (min
)) == 1)
529 set_value_range_to_varying (vr
);
533 one
= build_int_cst (TREE_TYPE (min
), 1);
534 tmp
= int_const_binop (PLUS_EXPR
, max
, one
);
535 max
= int_const_binop (MINUS_EXPR
, min
, one
);
538 /* There's one corner case, if we had [C+1, C] before we now have
539 that again. But this represents an empty value range, so drop
540 to varying in this case. */
541 if (tree_int_cst_lt (max
, min
))
543 set_value_range_to_varying (vr
);
547 t
= t
== VR_RANGE
? VR_ANTI_RANGE
: VR_RANGE
;
550 /* Anti-ranges that can be represented as ranges should be so. */
551 if (t
== VR_ANTI_RANGE
)
553 bool is_min
= vrp_val_is_min (min
);
554 bool is_max
= vrp_val_is_max (max
);
556 if (is_min
&& is_max
)
558 /* We cannot deal with empty ranges, drop to varying.
559 ??? This could be VR_UNDEFINED instead. */
560 set_value_range_to_varying (vr
);
563 else if (TYPE_PRECISION (TREE_TYPE (min
)) == 1
564 && (is_min
|| is_max
))
566 /* Non-empty boolean ranges can always be represented
567 as a singleton range. */
569 min
= max
= vrp_val_max (TREE_TYPE (min
));
571 min
= max
= vrp_val_min (TREE_TYPE (min
));
575 /* As a special exception preserve non-null ranges. */
576 && !(TYPE_UNSIGNED (TREE_TYPE (min
))
577 && integer_zerop (max
)))
579 tree one
= build_int_cst (TREE_TYPE (max
), 1);
580 min
= int_const_binop (PLUS_EXPR
, max
, one
);
581 max
= vrp_val_max (TREE_TYPE (max
));
586 tree one
= build_int_cst (TREE_TYPE (min
), 1);
587 max
= int_const_binop (MINUS_EXPR
, min
, one
);
588 min
= vrp_val_min (TREE_TYPE (min
));
593 /* Drop [-INF(OVF), +INF(OVF)] to varying. */
594 if (needs_overflow_infinity (TREE_TYPE (min
))
595 && is_overflow_infinity (min
)
596 && is_overflow_infinity (max
))
598 set_value_range_to_varying (vr
);
602 set_value_range (vr
, t
, min
, max
, equiv
);
605 /* Copy value range FROM into value range TO. */
608 copy_value_range (value_range_t
*to
, value_range_t
*from
)
610 set_value_range (to
, from
->type
, from
->min
, from
->max
, from
->equiv
);
613 /* Set value range VR to a single value. This function is only called
614 with values we get from statements, and exists to clear the
615 TREE_OVERFLOW flag so that we don't think we have an overflow
616 infinity when we shouldn't. */
619 set_value_range_to_value (value_range_t
*vr
, tree val
, bitmap equiv
)
621 gcc_assert (is_gimple_min_invariant (val
));
622 if (TREE_OVERFLOW_P (val
))
623 val
= drop_tree_overflow (val
);
624 set_value_range (vr
, VR_RANGE
, val
, val
, equiv
);
627 /* Set value range VR to a non-negative range of type TYPE.
628 OVERFLOW_INFINITY indicates whether to use an overflow infinity
629 rather than TYPE_MAX_VALUE; this should be true if we determine
630 that the range is nonnegative based on the assumption that signed
631 overflow does not occur. */
634 set_value_range_to_nonnegative (value_range_t
*vr
, tree type
,
635 bool overflow_infinity
)
639 if (overflow_infinity
&& !supports_overflow_infinity (type
))
641 set_value_range_to_varying (vr
);
645 zero
= build_int_cst (type
, 0);
646 set_value_range (vr
, VR_RANGE
, zero
,
648 ? positive_overflow_infinity (type
)
649 : TYPE_MAX_VALUE (type
)),
653 /* Set value range VR to a non-NULL range of type TYPE. */
656 set_value_range_to_nonnull (value_range_t
*vr
, tree type
)
658 tree zero
= build_int_cst (type
, 0);
659 set_value_range (vr
, VR_ANTI_RANGE
, zero
, zero
, vr
->equiv
);
663 /* Set value range VR to a NULL range of type TYPE. */
666 set_value_range_to_null (value_range_t
*vr
, tree type
)
668 set_value_range_to_value (vr
, build_int_cst (type
, 0), vr
->equiv
);
672 /* Set value range VR to a range of a truthvalue of type TYPE. */
675 set_value_range_to_truthvalue (value_range_t
*vr
, tree type
)
677 if (TYPE_PRECISION (type
) == 1)
678 set_value_range_to_varying (vr
);
680 set_value_range (vr
, VR_RANGE
,
681 build_int_cst (type
, 0), build_int_cst (type
, 1),
686 /* If abs (min) < abs (max), set VR to [-max, max], if
687 abs (min) >= abs (max), set VR to [-min, min]. */
690 abs_extent_range (value_range_t
*vr
, tree min
, tree max
)
694 gcc_assert (TREE_CODE (min
) == INTEGER_CST
);
695 gcc_assert (TREE_CODE (max
) == INTEGER_CST
);
696 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min
)));
697 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min
)));
698 min
= fold_unary (ABS_EXPR
, TREE_TYPE (min
), min
);
699 max
= fold_unary (ABS_EXPR
, TREE_TYPE (max
), max
);
700 if (TREE_OVERFLOW (min
) || TREE_OVERFLOW (max
))
702 set_value_range_to_varying (vr
);
705 cmp
= compare_values (min
, max
);
707 min
= fold_unary (NEGATE_EXPR
, TREE_TYPE (min
), max
);
708 else if (cmp
== 0 || cmp
== 1)
711 min
= fold_unary (NEGATE_EXPR
, TREE_TYPE (min
), min
);
715 set_value_range_to_varying (vr
);
718 set_and_canonicalize_value_range (vr
, VR_RANGE
, min
, max
, NULL
);
722 /* Return value range information for VAR.
724 If we have no values ranges recorded (ie, VRP is not running), then
725 return NULL. Otherwise create an empty range if none existed for VAR. */
727 static value_range_t
*
728 get_value_range (const_tree var
)
730 static const struct value_range_d vr_const_varying
731 = { VR_VARYING
, NULL_TREE
, NULL_TREE
, NULL
};
734 unsigned ver
= SSA_NAME_VERSION (var
);
736 /* If we have no recorded ranges, then return NULL. */
740 /* If we query the range for a new SSA name return an unmodifiable VARYING.
741 We should get here at most from the substitute-and-fold stage which
742 will never try to change values. */
743 if (ver
>= num_vr_values
)
744 return CONST_CAST (value_range_t
*, &vr_const_varying
);
750 /* After propagation finished do not allocate new value-ranges. */
751 if (values_propagated
)
752 return CONST_CAST (value_range_t
*, &vr_const_varying
);
754 /* Create a default value range. */
755 vr_value
[ver
] = vr
= XCNEW (value_range_t
);
757 /* Defer allocating the equivalence set. */
760 /* If VAR is a default definition of a parameter, the variable can
761 take any value in VAR's type. */
762 if (SSA_NAME_IS_DEFAULT_DEF (var
))
764 sym
= SSA_NAME_VAR (var
);
765 if (TREE_CODE (sym
) == PARM_DECL
)
767 /* Try to use the "nonnull" attribute to create ~[0, 0]
768 anti-ranges for pointers. Note that this is only valid with
769 default definitions of PARM_DECLs. */
770 if (POINTER_TYPE_P (TREE_TYPE (sym
))
771 && nonnull_arg_p (sym
))
772 set_value_range_to_nonnull (vr
, TREE_TYPE (sym
));
774 set_value_range_to_varying (vr
);
776 else if (TREE_CODE (sym
) == RESULT_DECL
777 && DECL_BY_REFERENCE (sym
))
778 set_value_range_to_nonnull (vr
, TREE_TYPE (sym
));
784 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
787 vrp_operand_equal_p (const_tree val1
, const_tree val2
)
791 if (!val1
|| !val2
|| !operand_equal_p (val1
, val2
, 0))
793 if (is_overflow_infinity (val1
))
794 return is_overflow_infinity (val2
);
798 /* Return true, if the bitmaps B1 and B2 are equal. */
801 vrp_bitmap_equal_p (const_bitmap b1
, const_bitmap b2
)
804 || ((!b1
|| bitmap_empty_p (b1
))
805 && (!b2
|| bitmap_empty_p (b2
)))
807 && bitmap_equal_p (b1
, b2
)));
810 /* Update the value range and equivalence set for variable VAR to
811 NEW_VR. Return true if NEW_VR is different from VAR's previous
814 NOTE: This function assumes that NEW_VR is a temporary value range
815 object created for the sole purpose of updating VAR's range. The
816 storage used by the equivalence set from NEW_VR will be freed by
817 this function. Do not call update_value_range when NEW_VR
818 is the range object associated with another SSA name. */
821 update_value_range (const_tree var
, value_range_t
*new_vr
)
823 value_range_t
*old_vr
;
826 /* Update the value range, if necessary. */
827 old_vr
= get_value_range (var
);
828 is_new
= old_vr
->type
!= new_vr
->type
829 || !vrp_operand_equal_p (old_vr
->min
, new_vr
->min
)
830 || !vrp_operand_equal_p (old_vr
->max
, new_vr
->max
)
831 || !vrp_bitmap_equal_p (old_vr
->equiv
, new_vr
->equiv
);
835 /* Do not allow transitions up the lattice. The following
836 is slightly more awkward than just new_vr->type < old_vr->type
837 because VR_RANGE and VR_ANTI_RANGE need to be considered
838 the same. We may not have is_new when transitioning to
839 UNDEFINED or from VARYING. */
840 if (new_vr
->type
== VR_UNDEFINED
841 || old_vr
->type
== VR_VARYING
)
842 set_value_range_to_varying (old_vr
);
844 set_value_range (old_vr
, new_vr
->type
, new_vr
->min
, new_vr
->max
,
848 BITMAP_FREE (new_vr
->equiv
);
854 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
855 point where equivalence processing can be turned on/off. */
858 add_equivalence (bitmap
*equiv
, const_tree var
)
860 unsigned ver
= SSA_NAME_VERSION (var
);
861 value_range_t
*vr
= vr_value
[ver
];
864 *equiv
= BITMAP_ALLOC (NULL
);
865 bitmap_set_bit (*equiv
, ver
);
867 bitmap_ior_into (*equiv
, vr
->equiv
);
871 /* Return true if VR is ~[0, 0]. */
874 range_is_nonnull (value_range_t
*vr
)
876 return vr
->type
== VR_ANTI_RANGE
877 && integer_zerop (vr
->min
)
878 && integer_zerop (vr
->max
);
882 /* Return true if VR is [0, 0]. */
885 range_is_null (value_range_t
*vr
)
887 return vr
->type
== VR_RANGE
888 && integer_zerop (vr
->min
)
889 && integer_zerop (vr
->max
);
892 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
896 range_int_cst_p (value_range_t
*vr
)
898 return (vr
->type
== VR_RANGE
899 && TREE_CODE (vr
->max
) == INTEGER_CST
900 && TREE_CODE (vr
->min
) == INTEGER_CST
);
903 /* Return true if VR is a INTEGER_CST singleton. */
906 range_int_cst_singleton_p (value_range_t
*vr
)
908 return (range_int_cst_p (vr
)
909 && !is_overflow_infinity (vr
->min
)
910 && !is_overflow_infinity (vr
->max
)
911 && tree_int_cst_equal (vr
->min
, vr
->max
));
914 /* Return true if value range VR involves at least one symbol. */
917 symbolic_range_p (value_range_t
*vr
)
919 return (!is_gimple_min_invariant (vr
->min
)
920 || !is_gimple_min_invariant (vr
->max
));
923 /* Return true if value range VR uses an overflow infinity. */
926 overflow_infinity_range_p (value_range_t
*vr
)
928 return (vr
->type
== VR_RANGE
929 && (is_overflow_infinity (vr
->min
)
930 || is_overflow_infinity (vr
->max
)));
933 /* Return false if we can not make a valid comparison based on VR;
934 this will be the case if it uses an overflow infinity and overflow
935 is not undefined (i.e., -fno-strict-overflow is in effect).
936 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
937 uses an overflow infinity. */
940 usable_range_p (value_range_t
*vr
, bool *strict_overflow_p
)
942 gcc_assert (vr
->type
== VR_RANGE
);
943 if (is_overflow_infinity (vr
->min
))
945 *strict_overflow_p
= true;
946 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr
->min
)))
949 if (is_overflow_infinity (vr
->max
))
951 *strict_overflow_p
= true;
952 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr
->max
)))
959 /* Return true if the result of assignment STMT is know to be non-negative.
960 If the return value is based on the assumption that signed overflow is
961 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
962 *STRICT_OVERFLOW_P.*/
965 gimple_assign_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
967 enum tree_code code
= gimple_assign_rhs_code (stmt
);
968 switch (get_gimple_rhs_class (code
))
970 case GIMPLE_UNARY_RHS
:
971 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt
),
972 gimple_expr_type (stmt
),
973 gimple_assign_rhs1 (stmt
),
975 case GIMPLE_BINARY_RHS
:
976 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt
),
977 gimple_expr_type (stmt
),
978 gimple_assign_rhs1 (stmt
),
979 gimple_assign_rhs2 (stmt
),
981 case GIMPLE_TERNARY_RHS
:
983 case GIMPLE_SINGLE_RHS
:
984 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt
),
986 case GIMPLE_INVALID_RHS
:
993 /* Return true if return value of call STMT is know to be non-negative.
994 If the return value is based on the assumption that signed overflow is
995 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
996 *STRICT_OVERFLOW_P.*/
999 gimple_call_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
1001 tree arg0
= gimple_call_num_args (stmt
) > 0 ?
1002 gimple_call_arg (stmt
, 0) : NULL_TREE
;
1003 tree arg1
= gimple_call_num_args (stmt
) > 1 ?
1004 gimple_call_arg (stmt
, 1) : NULL_TREE
;
1006 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt
),
1007 gimple_call_fndecl (stmt
),
1013 /* Return true if STMT is know to to compute a non-negative value.
1014 If the return value is based on the assumption that signed overflow is
1015 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1016 *STRICT_OVERFLOW_P.*/
1019 gimple_stmt_nonnegative_warnv_p (gimple stmt
, bool *strict_overflow_p
)
1021 switch (gimple_code (stmt
))
1024 return gimple_assign_nonnegative_warnv_p (stmt
, strict_overflow_p
);
1026 return gimple_call_nonnegative_warnv_p (stmt
, strict_overflow_p
);
1032 /* Return true if the result of assignment STMT is know to be non-zero.
1033 If the return value is based on the assumption that signed overflow is
1034 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1035 *STRICT_OVERFLOW_P.*/
1038 gimple_assign_nonzero_warnv_p (gimple stmt
, bool *strict_overflow_p
)
1040 enum tree_code code
= gimple_assign_rhs_code (stmt
);
1041 switch (get_gimple_rhs_class (code
))
1043 case GIMPLE_UNARY_RHS
:
1044 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt
),
1045 gimple_expr_type (stmt
),
1046 gimple_assign_rhs1 (stmt
),
1048 case GIMPLE_BINARY_RHS
:
1049 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt
),
1050 gimple_expr_type (stmt
),
1051 gimple_assign_rhs1 (stmt
),
1052 gimple_assign_rhs2 (stmt
),
1054 case GIMPLE_TERNARY_RHS
:
1056 case GIMPLE_SINGLE_RHS
:
1057 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt
),
1059 case GIMPLE_INVALID_RHS
:
1066 /* Return true if STMT is known to compute a non-zero value.
1067 If the return value is based on the assumption that signed overflow is
1068 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1069 *STRICT_OVERFLOW_P.*/
1072 gimple_stmt_nonzero_warnv_p (gimple stmt
, bool *strict_overflow_p
)
1074 switch (gimple_code (stmt
))
1077 return gimple_assign_nonzero_warnv_p (stmt
, strict_overflow_p
);
1080 tree fndecl
= gimple_call_fndecl (stmt
);
1081 if (!fndecl
) return false;
1082 if (flag_delete_null_pointer_checks
&& !flag_check_new
1083 && DECL_IS_OPERATOR_NEW (fndecl
)
1084 && !TREE_NOTHROW (fndecl
))
1086 if (flag_delete_null_pointer_checks
&&
1087 lookup_attribute ("returns_nonnull",
1088 TYPE_ATTRIBUTES (gimple_call_fntype (stmt
))))
1090 return gimple_alloca_call_p (stmt
);
1097 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1101 vrp_stmt_computes_nonzero (gimple stmt
, bool *strict_overflow_p
)
1103 if (gimple_stmt_nonzero_warnv_p (stmt
, strict_overflow_p
))
1106 /* If we have an expression of the form &X->a, then the expression
1107 is nonnull if X is nonnull. */
1108 if (is_gimple_assign (stmt
)
1109 && gimple_assign_rhs_code (stmt
) == ADDR_EXPR
)
1111 tree expr
= gimple_assign_rhs1 (stmt
);
1112 tree base
= get_base_address (TREE_OPERAND (expr
, 0));
1114 if (base
!= NULL_TREE
1115 && TREE_CODE (base
) == MEM_REF
1116 && TREE_CODE (TREE_OPERAND (base
, 0)) == SSA_NAME
)
1118 value_range_t
*vr
= get_value_range (TREE_OPERAND (base
, 0));
1119 if (range_is_nonnull (vr
))
1127 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1128 a gimple invariant, or SSA_NAME +- CST. */
1131 valid_value_p (tree expr
)
1133 if (TREE_CODE (expr
) == SSA_NAME
)
1136 if (TREE_CODE (expr
) == PLUS_EXPR
1137 || TREE_CODE (expr
) == MINUS_EXPR
)
1138 return (TREE_CODE (TREE_OPERAND (expr
, 0)) == SSA_NAME
1139 && TREE_CODE (TREE_OPERAND (expr
, 1)) == INTEGER_CST
);
1141 return is_gimple_min_invariant (expr
);
1147 -2 if those are incomparable. */
1149 operand_less_p (tree val
, tree val2
)
1151 /* LT is folded faster than GE and others. Inline the common case. */
1152 if (TREE_CODE (val
) == INTEGER_CST
&& TREE_CODE (val2
) == INTEGER_CST
)
1154 if (TYPE_UNSIGNED (TREE_TYPE (val
)))
1155 return INT_CST_LT_UNSIGNED (val
, val2
);
1158 if (INT_CST_LT (val
, val2
))
1166 fold_defer_overflow_warnings ();
1168 tcmp
= fold_binary_to_constant (LT_EXPR
, boolean_type_node
, val
, val2
);
1170 fold_undefer_and_ignore_overflow_warnings ();
1173 || TREE_CODE (tcmp
) != INTEGER_CST
)
1176 if (!integer_zerop (tcmp
))
1180 /* val >= val2, not considering overflow infinity. */
1181 if (is_negative_overflow_infinity (val
))
1182 return is_negative_overflow_infinity (val2
) ? 0 : 1;
1183 else if (is_positive_overflow_infinity (val2
))
1184 return is_positive_overflow_infinity (val
) ? 0 : 1;
1189 /* Compare two values VAL1 and VAL2. Return
1191 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1194 +1 if VAL1 > VAL2, and
1197 This is similar to tree_int_cst_compare but supports pointer values
1198 and values that cannot be compared at compile time.
1200 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1201 true if the return value is only valid if we assume that signed
1202 overflow is undefined. */
1205 compare_values_warnv (tree val1
, tree val2
, bool *strict_overflow_p
)
1210 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1212 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1
))
1213 == POINTER_TYPE_P (TREE_TYPE (val2
)));
1214 /* Convert the two values into the same type. This is needed because
1215 sizetype causes sign extension even for unsigned types. */
1216 val2
= fold_convert (TREE_TYPE (val1
), val2
);
1217 STRIP_USELESS_TYPE_CONVERSION (val2
);
1219 if ((TREE_CODE (val1
) == SSA_NAME
1220 || TREE_CODE (val1
) == PLUS_EXPR
1221 || TREE_CODE (val1
) == MINUS_EXPR
)
1222 && (TREE_CODE (val2
) == SSA_NAME
1223 || TREE_CODE (val2
) == PLUS_EXPR
1224 || TREE_CODE (val2
) == MINUS_EXPR
))
1226 tree n1
, c1
, n2
, c2
;
1227 enum tree_code code1
, code2
;
1229 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1230 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1231 same name, return -2. */
1232 if (TREE_CODE (val1
) == SSA_NAME
)
1240 code1
= TREE_CODE (val1
);
1241 n1
= TREE_OPERAND (val1
, 0);
1242 c1
= TREE_OPERAND (val1
, 1);
1243 if (tree_int_cst_sgn (c1
) == -1)
1245 if (is_negative_overflow_infinity (c1
))
1247 c1
= fold_unary_to_constant (NEGATE_EXPR
, TREE_TYPE (c1
), c1
);
1250 code1
= code1
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
;
1254 if (TREE_CODE (val2
) == SSA_NAME
)
1262 code2
= TREE_CODE (val2
);
1263 n2
= TREE_OPERAND (val2
, 0);
1264 c2
= TREE_OPERAND (val2
, 1);
1265 if (tree_int_cst_sgn (c2
) == -1)
1267 if (is_negative_overflow_infinity (c2
))
1269 c2
= fold_unary_to_constant (NEGATE_EXPR
, TREE_TYPE (c2
), c2
);
1272 code2
= code2
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
;
1276 /* Both values must use the same name. */
1280 if (code1
== SSA_NAME
1281 && code2
== SSA_NAME
)
1285 /* If overflow is defined we cannot simplify more. */
1286 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1
)))
1289 if (strict_overflow_p
!= NULL
1290 && (code1
== SSA_NAME
|| !TREE_NO_WARNING (val1
))
1291 && (code2
== SSA_NAME
|| !TREE_NO_WARNING (val2
)))
1292 *strict_overflow_p
= true;
1294 if (code1
== SSA_NAME
)
1296 if (code2
== PLUS_EXPR
)
1297 /* NAME < NAME + CST */
1299 else if (code2
== MINUS_EXPR
)
1300 /* NAME > NAME - CST */
1303 else if (code1
== PLUS_EXPR
)
1305 if (code2
== SSA_NAME
)
1306 /* NAME + CST > NAME */
1308 else if (code2
== PLUS_EXPR
)
1309 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1310 return compare_values_warnv (c1
, c2
, strict_overflow_p
);
1311 else if (code2
== MINUS_EXPR
)
1312 /* NAME + CST1 > NAME - CST2 */
1315 else if (code1
== MINUS_EXPR
)
1317 if (code2
== SSA_NAME
)
1318 /* NAME - CST < NAME */
1320 else if (code2
== PLUS_EXPR
)
1321 /* NAME - CST1 < NAME + CST2 */
1323 else if (code2
== MINUS_EXPR
)
1324 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1325 C1 and C2 are swapped in the call to compare_values. */
1326 return compare_values_warnv (c2
, c1
, strict_overflow_p
);
1332 /* We cannot compare non-constants. */
1333 if (!is_gimple_min_invariant (val1
) || !is_gimple_min_invariant (val2
))
1336 if (!POINTER_TYPE_P (TREE_TYPE (val1
)))
1338 /* We cannot compare overflowed values, except for overflow
1340 if (TREE_OVERFLOW (val1
) || TREE_OVERFLOW (val2
))
1342 if (strict_overflow_p
!= NULL
)
1343 *strict_overflow_p
= true;
1344 if (is_negative_overflow_infinity (val1
))
1345 return is_negative_overflow_infinity (val2
) ? 0 : -1;
1346 else if (is_negative_overflow_infinity (val2
))
1348 else if (is_positive_overflow_infinity (val1
))
1349 return is_positive_overflow_infinity (val2
) ? 0 : 1;
1350 else if (is_positive_overflow_infinity (val2
))
1355 return tree_int_cst_compare (val1
, val2
);
1361 /* First see if VAL1 and VAL2 are not the same. */
1362 if (val1
== val2
|| operand_equal_p (val1
, val2
, 0))
1365 /* If VAL1 is a lower address than VAL2, return -1. */
1366 if (operand_less_p (val1
, val2
) == 1)
1369 /* If VAL1 is a higher address than VAL2, return +1. */
1370 if (operand_less_p (val2
, val1
) == 1)
1373 /* If VAL1 is different than VAL2, return +2.
1374 For integer constants we either have already returned -1 or 1
1375 or they are equivalent. We still might succeed in proving
1376 something about non-trivial operands. */
1377 if (TREE_CODE (val1
) != INTEGER_CST
1378 || TREE_CODE (val2
) != INTEGER_CST
)
1380 t
= fold_binary_to_constant (NE_EXPR
, boolean_type_node
, val1
, val2
);
1381 if (t
&& integer_onep (t
))
1389 /* Compare values like compare_values_warnv, but treat comparisons of
1390 nonconstants which rely on undefined overflow as incomparable. */
1393 compare_values (tree val1
, tree val2
)
1399 ret
= compare_values_warnv (val1
, val2
, &sop
);
1401 && (!is_gimple_min_invariant (val1
) || !is_gimple_min_invariant (val2
)))
1407 /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1408 0 if VAL is not inside [MIN, MAX],
1409 -2 if we cannot tell either way.
1411 Benchmark compile/20001226-1.c compilation time after changing this
1415 value_inside_range (tree val
, tree min
, tree max
)
1419 cmp1
= operand_less_p (val
, min
);
1425 cmp2
= operand_less_p (max
, val
);
1433 /* Return true if value ranges VR0 and VR1 have a non-empty
1436 Benchmark compile/20001226-1.c compilation time after changing this
1441 value_ranges_intersect_p (value_range_t
*vr0
, value_range_t
*vr1
)
1443 /* The value ranges do not intersect if the maximum of the first range is
1444 less than the minimum of the second range or vice versa.
1445 When those relations are unknown, we can't do any better. */
1446 if (operand_less_p (vr0
->max
, vr1
->min
) != 0)
1448 if (operand_less_p (vr1
->max
, vr0
->min
) != 0)
1454 /* Return 1 if [MIN, MAX] includes the value zero, 0 if it does not
1455 include the value zero, -2 if we cannot tell. */
1458 range_includes_zero_p (tree min
, tree max
)
1460 tree zero
= build_int_cst (TREE_TYPE (min
), 0);
1461 return value_inside_range (zero
, min
, max
);
1464 /* Return true if *VR is know to only contain nonnegative values. */
1467 value_range_nonnegative_p (value_range_t
*vr
)
1469 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1470 which would return a useful value should be encoded as a
1472 if (vr
->type
== VR_RANGE
)
1474 int result
= compare_values (vr
->min
, integer_zero_node
);
1475 return (result
== 0 || result
== 1);
1481 /* If *VR has a value rante that is a single constant value return that,
1482 otherwise return NULL_TREE. */
1485 value_range_constant_singleton (value_range_t
*vr
)
1487 if (vr
->type
== VR_RANGE
1488 && operand_equal_p (vr
->min
, vr
->max
, 0)
1489 && is_gimple_min_invariant (vr
->min
))
1495 /* If OP has a value range with a single constant value return that,
1496 otherwise return NULL_TREE. This returns OP itself if OP is a
1500 op_with_constant_singleton_value_range (tree op
)
1502 if (is_gimple_min_invariant (op
))
1505 if (TREE_CODE (op
) != SSA_NAME
)
1508 return value_range_constant_singleton (get_value_range (op
));
1511 /* Return true if op is in a boolean [0, 1] value-range. */
1514 op_with_boolean_value_range_p (tree op
)
1518 if (TYPE_PRECISION (TREE_TYPE (op
)) == 1)
1521 if (integer_zerop (op
)
1522 || integer_onep (op
))
1525 if (TREE_CODE (op
) != SSA_NAME
)
1528 vr
= get_value_range (op
);
1529 return (vr
->type
== VR_RANGE
1530 && integer_zerop (vr
->min
)
1531 && integer_onep (vr
->max
));
1534 /* Extract value range information from an ASSERT_EXPR EXPR and store
1538 extract_range_from_assert (value_range_t
*vr_p
, tree expr
)
1540 tree var
, cond
, limit
, min
, max
, type
;
1541 value_range_t
*limit_vr
;
1542 enum tree_code cond_code
;
1544 var
= ASSERT_EXPR_VAR (expr
);
1545 cond
= ASSERT_EXPR_COND (expr
);
1547 gcc_assert (COMPARISON_CLASS_P (cond
));
1549 /* Find VAR in the ASSERT_EXPR conditional. */
1550 if (var
== TREE_OPERAND (cond
, 0)
1551 || TREE_CODE (TREE_OPERAND (cond
, 0)) == PLUS_EXPR
1552 || TREE_CODE (TREE_OPERAND (cond
, 0)) == NOP_EXPR
)
1554 /* If the predicate is of the form VAR COMP LIMIT, then we just
1555 take LIMIT from the RHS and use the same comparison code. */
1556 cond_code
= TREE_CODE (cond
);
1557 limit
= TREE_OPERAND (cond
, 1);
1558 cond
= TREE_OPERAND (cond
, 0);
1562 /* If the predicate is of the form LIMIT COMP VAR, then we need
1563 to flip around the comparison code to create the proper range
1565 cond_code
= swap_tree_comparison (TREE_CODE (cond
));
1566 limit
= TREE_OPERAND (cond
, 0);
1567 cond
= TREE_OPERAND (cond
, 1);
1570 limit
= avoid_overflow_infinity (limit
);
1572 type
= TREE_TYPE (var
);
1573 gcc_assert (limit
!= var
);
1575 /* For pointer arithmetic, we only keep track of pointer equality
1577 if (POINTER_TYPE_P (type
) && cond_code
!= NE_EXPR
&& cond_code
!= EQ_EXPR
)
1579 set_value_range_to_varying (vr_p
);
1583 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1584 try to use LIMIT's range to avoid creating symbolic ranges
1586 limit_vr
= (TREE_CODE (limit
) == SSA_NAME
) ? get_value_range (limit
) : NULL
;
1588 /* LIMIT's range is only interesting if it has any useful information. */
1590 && (limit_vr
->type
== VR_UNDEFINED
1591 || limit_vr
->type
== VR_VARYING
1592 || symbolic_range_p (limit_vr
)))
1595 /* Initially, the new range has the same set of equivalences of
1596 VAR's range. This will be revised before returning the final
1597 value. Since assertions may be chained via mutually exclusive
1598 predicates, we will need to trim the set of equivalences before
1600 gcc_assert (vr_p
->equiv
== NULL
);
1601 add_equivalence (&vr_p
->equiv
, var
);
1603 /* Extract a new range based on the asserted comparison for VAR and
1604 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1605 will only use it for equality comparisons (EQ_EXPR). For any
1606 other kind of assertion, we cannot derive a range from LIMIT's
1607 anti-range that can be used to describe the new range. For
1608 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1609 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1610 no single range for x_2 that could describe LE_EXPR, so we might
1611 as well build the range [b_4, +INF] for it.
1612 One special case we handle is extracting a range from a
1613 range test encoded as (unsigned)var + CST <= limit. */
1614 if (TREE_CODE (cond
) == NOP_EXPR
1615 || TREE_CODE (cond
) == PLUS_EXPR
)
1617 if (TREE_CODE (cond
) == PLUS_EXPR
)
1619 min
= fold_build1 (NEGATE_EXPR
, TREE_TYPE (TREE_OPERAND (cond
, 1)),
1620 TREE_OPERAND (cond
, 1));
1621 max
= int_const_binop (PLUS_EXPR
, limit
, min
);
1622 cond
= TREE_OPERAND (cond
, 0);
1626 min
= build_int_cst (TREE_TYPE (var
), 0);
1630 /* Make sure to not set TREE_OVERFLOW on the final type
1631 conversion. We are willingly interpreting large positive
1632 unsigned values as negative singed values here. */
1633 min
= force_fit_type_double (TREE_TYPE (var
), tree_to_double_int (min
),
1635 max
= force_fit_type_double (TREE_TYPE (var
), tree_to_double_int (max
),
1638 /* We can transform a max, min range to an anti-range or
1639 vice-versa. Use set_and_canonicalize_value_range which does
1641 if (cond_code
== LE_EXPR
)
1642 set_and_canonicalize_value_range (vr_p
, VR_RANGE
,
1643 min
, max
, vr_p
->equiv
);
1644 else if (cond_code
== GT_EXPR
)
1645 set_and_canonicalize_value_range (vr_p
, VR_ANTI_RANGE
,
1646 min
, max
, vr_p
->equiv
);
1650 else if (cond_code
== EQ_EXPR
)
1652 enum value_range_type range_type
;
1656 range_type
= limit_vr
->type
;
1657 min
= limit_vr
->min
;
1658 max
= limit_vr
->max
;
1662 range_type
= VR_RANGE
;
1667 set_value_range (vr_p
, range_type
, min
, max
, vr_p
->equiv
);
1669 /* When asserting the equality VAR == LIMIT and LIMIT is another
1670 SSA name, the new range will also inherit the equivalence set
1672 if (TREE_CODE (limit
) == SSA_NAME
)
1673 add_equivalence (&vr_p
->equiv
, limit
);
1675 else if (cond_code
== NE_EXPR
)
1677 /* As described above, when LIMIT's range is an anti-range and
1678 this assertion is an inequality (NE_EXPR), then we cannot
1679 derive anything from the anti-range. For instance, if
1680 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1681 not imply that VAR's range is [0, 0]. So, in the case of
1682 anti-ranges, we just assert the inequality using LIMIT and
1685 If LIMIT_VR is a range, we can only use it to build a new
1686 anti-range if LIMIT_VR is a single-valued range. For
1687 instance, if LIMIT_VR is [0, 1], the predicate
1688 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1689 Rather, it means that for value 0 VAR should be ~[0, 0]
1690 and for value 1, VAR should be ~[1, 1]. We cannot
1691 represent these ranges.
1693 The only situation in which we can build a valid
1694 anti-range is when LIMIT_VR is a single-valued range
1695 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1696 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1698 && limit_vr
->type
== VR_RANGE
1699 && compare_values (limit_vr
->min
, limit_vr
->max
) == 0)
1701 min
= limit_vr
->min
;
1702 max
= limit_vr
->max
;
1706 /* In any other case, we cannot use LIMIT's range to build a
1707 valid anti-range. */
1711 /* If MIN and MAX cover the whole range for their type, then
1712 just use the original LIMIT. */
1713 if (INTEGRAL_TYPE_P (type
)
1714 && vrp_val_is_min (min
)
1715 && vrp_val_is_max (max
))
1718 set_and_canonicalize_value_range (vr_p
, VR_ANTI_RANGE
,
1719 min
, max
, vr_p
->equiv
);
1721 else if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
1723 min
= TYPE_MIN_VALUE (type
);
1725 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
1729 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1730 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1732 max
= limit_vr
->max
;
1735 /* If the maximum value forces us to be out of bounds, simply punt.
1736 It would be pointless to try and do anything more since this
1737 all should be optimized away above us. */
1738 if ((cond_code
== LT_EXPR
1739 && compare_values (max
, min
) == 0)
1740 || is_overflow_infinity (max
))
1741 set_value_range_to_varying (vr_p
);
1744 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1745 if (cond_code
== LT_EXPR
)
1747 if (TYPE_PRECISION (TREE_TYPE (max
)) == 1
1748 && !TYPE_UNSIGNED (TREE_TYPE (max
)))
1749 max
= fold_build2 (PLUS_EXPR
, TREE_TYPE (max
), max
,
1750 build_int_cst (TREE_TYPE (max
), -1));
1752 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (max
), max
,
1753 build_int_cst (TREE_TYPE (max
), 1));
1755 TREE_NO_WARNING (max
) = 1;
1758 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1761 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
1763 max
= TYPE_MAX_VALUE (type
);
1765 if (limit_vr
== NULL
|| limit_vr
->type
== VR_ANTI_RANGE
)
1769 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1770 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1772 min
= limit_vr
->min
;
1775 /* If the minimum value forces us to be out of bounds, simply punt.
1776 It would be pointless to try and do anything more since this
1777 all should be optimized away above us. */
1778 if ((cond_code
== GT_EXPR
1779 && compare_values (min
, max
) == 0)
1780 || is_overflow_infinity (min
))
1781 set_value_range_to_varying (vr_p
);
1784 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1785 if (cond_code
== GT_EXPR
)
1787 if (TYPE_PRECISION (TREE_TYPE (min
)) == 1
1788 && !TYPE_UNSIGNED (TREE_TYPE (min
)))
1789 min
= fold_build2 (MINUS_EXPR
, TREE_TYPE (min
), min
,
1790 build_int_cst (TREE_TYPE (min
), -1));
1792 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (min
), min
,
1793 build_int_cst (TREE_TYPE (min
), 1));
1795 TREE_NO_WARNING (min
) = 1;
1798 set_value_range (vr_p
, VR_RANGE
, min
, max
, vr_p
->equiv
);
1804 /* Finally intersect the new range with what we already know about var. */
1805 vrp_intersect_ranges (vr_p
, get_value_range (var
));
1809 /* Extract range information from SSA name VAR and store it in VR. If
1810 VAR has an interesting range, use it. Otherwise, create the
1811 range [VAR, VAR] and return it. This is useful in situations where
1812 we may have conditionals testing values of VARYING names. For
1819 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1823 extract_range_from_ssa_name (value_range_t
*vr
, tree var
)
1825 value_range_t
*var_vr
= get_value_range (var
);
1827 if (var_vr
->type
!= VR_UNDEFINED
&& var_vr
->type
!= VR_VARYING
)
1828 copy_value_range (vr
, var_vr
);
1830 set_value_range (vr
, VR_RANGE
, var
, var
, NULL
);
1832 add_equivalence (&vr
->equiv
, var
);
1836 /* Wrapper around int_const_binop. If the operation overflows and we
1837 are not using wrapping arithmetic, then adjust the result to be
1838 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1839 NULL_TREE if we need to use an overflow infinity representation but
1840 the type does not support it. */
1843 vrp_int_const_binop (enum tree_code code
, tree val1
, tree val2
)
1847 res
= int_const_binop (code
, val1
, val2
);
1849 /* If we are using unsigned arithmetic, operate symbolically
1850 on -INF and +INF as int_const_binop only handles signed overflow. */
1851 if (TYPE_UNSIGNED (TREE_TYPE (val1
)))
1853 int checkz
= compare_values (res
, val1
);
1854 bool overflow
= false;
1856 /* Ensure that res = val1 [+*] val2 >= val1
1857 or that res = val1 - val2 <= val1. */
1858 if ((code
== PLUS_EXPR
1859 && !(checkz
== 1 || checkz
== 0))
1860 || (code
== MINUS_EXPR
1861 && !(checkz
== 0 || checkz
== -1)))
1865 /* Checking for multiplication overflow is done by dividing the
1866 output of the multiplication by the first input of the
1867 multiplication. If the result of that division operation is
1868 not equal to the second input of the multiplication, then the
1869 multiplication overflowed. */
1870 else if (code
== MULT_EXPR
&& !integer_zerop (val1
))
1872 tree tmp
= int_const_binop (TRUNC_DIV_EXPR
,
1875 int check
= compare_values (tmp
, val2
);
1883 res
= copy_node (res
);
1884 TREE_OVERFLOW (res
) = 1;
1888 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1
)))
1889 /* If the singed operation wraps then int_const_binop has done
1890 everything we want. */
1892 else if ((TREE_OVERFLOW (res
)
1893 && !TREE_OVERFLOW (val1
)
1894 && !TREE_OVERFLOW (val2
))
1895 || is_overflow_infinity (val1
)
1896 || is_overflow_infinity (val2
))
1898 /* If the operation overflowed but neither VAL1 nor VAL2 are
1899 overflown, return -INF or +INF depending on the operation
1900 and the combination of signs of the operands. */
1901 int sgn1
= tree_int_cst_sgn (val1
);
1902 int sgn2
= tree_int_cst_sgn (val2
);
1904 if (needs_overflow_infinity (TREE_TYPE (res
))
1905 && !supports_overflow_infinity (TREE_TYPE (res
)))
1908 /* We have to punt on adding infinities of different signs,
1909 since we can't tell what the sign of the result should be.
1910 Likewise for subtracting infinities of the same sign. */
1911 if (((code
== PLUS_EXPR
&& sgn1
!= sgn2
)
1912 || (code
== MINUS_EXPR
&& sgn1
== sgn2
))
1913 && is_overflow_infinity (val1
)
1914 && is_overflow_infinity (val2
))
1917 /* Don't try to handle division or shifting of infinities. */
1918 if ((code
== TRUNC_DIV_EXPR
1919 || code
== FLOOR_DIV_EXPR
1920 || code
== CEIL_DIV_EXPR
1921 || code
== EXACT_DIV_EXPR
1922 || code
== ROUND_DIV_EXPR
1923 || code
== RSHIFT_EXPR
)
1924 && (is_overflow_infinity (val1
)
1925 || is_overflow_infinity (val2
)))
1928 /* Notice that we only need to handle the restricted set of
1929 operations handled by extract_range_from_binary_expr.
1930 Among them, only multiplication, addition and subtraction
1931 can yield overflow without overflown operands because we
1932 are working with integral types only... except in the
1933 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1934 for division too. */
1936 /* For multiplication, the sign of the overflow is given
1937 by the comparison of the signs of the operands. */
1938 if ((code
== MULT_EXPR
&& sgn1
== sgn2
)
1939 /* For addition, the operands must be of the same sign
1940 to yield an overflow. Its sign is therefore that
1941 of one of the operands, for example the first. For
1942 infinite operands X + -INF is negative, not positive. */
1943 || (code
== PLUS_EXPR
1945 ? !is_negative_overflow_infinity (val2
)
1946 : is_positive_overflow_infinity (val2
)))
1947 /* For subtraction, non-infinite operands must be of
1948 different signs to yield an overflow. Its sign is
1949 therefore that of the first operand or the opposite of
1950 that of the second operand. A first operand of 0 counts
1951 as positive here, for the corner case 0 - (-INF), which
1952 overflows, but must yield +INF. For infinite operands 0
1953 - INF is negative, not positive. */
1954 || (code
== MINUS_EXPR
1956 ? !is_positive_overflow_infinity (val2
)
1957 : is_negative_overflow_infinity (val2
)))
1958 /* We only get in here with positive shift count, so the
1959 overflow direction is the same as the sign of val1.
1960 Actually rshift does not overflow at all, but we only
1961 handle the case of shifting overflowed -INF and +INF. */
1962 || (code
== RSHIFT_EXPR
1964 /* For division, the only case is -INF / -1 = +INF. */
1965 || code
== TRUNC_DIV_EXPR
1966 || code
== FLOOR_DIV_EXPR
1967 || code
== CEIL_DIV_EXPR
1968 || code
== EXACT_DIV_EXPR
1969 || code
== ROUND_DIV_EXPR
)
1970 return (needs_overflow_infinity (TREE_TYPE (res
))
1971 ? positive_overflow_infinity (TREE_TYPE (res
))
1972 : TYPE_MAX_VALUE (TREE_TYPE (res
)));
1974 return (needs_overflow_infinity (TREE_TYPE (res
))
1975 ? negative_overflow_infinity (TREE_TYPE (res
))
1976 : TYPE_MIN_VALUE (TREE_TYPE (res
)));
1983 /* For range VR compute two double_int bitmasks. In *MAY_BE_NONZERO
1984 bitmask if some bit is unset, it means for all numbers in the range
1985 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
1986 bitmask if some bit is set, it means for all numbers in the range
1987 the bit is 1, otherwise it might be 0 or 1. */
1990 zero_nonzero_bits_from_vr (value_range_t
*vr
,
1991 double_int
*may_be_nonzero
,
1992 double_int
*must_be_nonzero
)
1994 *may_be_nonzero
= double_int_minus_one
;
1995 *must_be_nonzero
= double_int_zero
;
1996 if (!range_int_cst_p (vr
)
1997 || is_overflow_infinity (vr
->min
)
1998 || is_overflow_infinity (vr
->max
))
2001 if (range_int_cst_singleton_p (vr
))
2003 *may_be_nonzero
= tree_to_double_int (vr
->min
);
2004 *must_be_nonzero
= *may_be_nonzero
;
2006 else if (tree_int_cst_sgn (vr
->min
) >= 0
2007 || tree_int_cst_sgn (vr
->max
) < 0)
2009 double_int dmin
= tree_to_double_int (vr
->min
);
2010 double_int dmax
= tree_to_double_int (vr
->max
);
2011 double_int xor_mask
= dmin
^ dmax
;
2012 *may_be_nonzero
= dmin
| dmax
;
2013 *must_be_nonzero
= dmin
& dmax
;
2014 if (xor_mask
.high
!= 0)
2016 unsigned HOST_WIDE_INT mask
2017 = ((unsigned HOST_WIDE_INT
) 1
2018 << floor_log2 (xor_mask
.high
)) - 1;
2019 may_be_nonzero
->low
= ALL_ONES
;
2020 may_be_nonzero
->high
|= mask
;
2021 must_be_nonzero
->low
= 0;
2022 must_be_nonzero
->high
&= ~mask
;
2024 else if (xor_mask
.low
!= 0)
2026 unsigned HOST_WIDE_INT mask
2027 = ((unsigned HOST_WIDE_INT
) 1
2028 << floor_log2 (xor_mask
.low
)) - 1;
2029 may_be_nonzero
->low
|= mask
;
2030 must_be_nonzero
->low
&= ~mask
;
2037 /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
2038 so that *VR0 U *VR1 == *AR. Returns true if that is possible,
2039 false otherwise. If *AR can be represented with a single range
2040 *VR1 will be VR_UNDEFINED. */
2043 ranges_from_anti_range (value_range_t
*ar
,
2044 value_range_t
*vr0
, value_range_t
*vr1
)
2046 tree type
= TREE_TYPE (ar
->min
);
2048 vr0
->type
= VR_UNDEFINED
;
2049 vr1
->type
= VR_UNDEFINED
;
2051 if (ar
->type
!= VR_ANTI_RANGE
2052 || TREE_CODE (ar
->min
) != INTEGER_CST
2053 || TREE_CODE (ar
->max
) != INTEGER_CST
2054 || !vrp_val_min (type
)
2055 || !vrp_val_max (type
))
2058 if (!vrp_val_is_min (ar
->min
))
2060 vr0
->type
= VR_RANGE
;
2061 vr0
->min
= vrp_val_min (type
);
2063 = double_int_to_tree (type
,
2064 tree_to_double_int (ar
->min
) - double_int_one
);
2066 if (!vrp_val_is_max (ar
->max
))
2068 vr1
->type
= VR_RANGE
;
2070 = double_int_to_tree (type
,
2071 tree_to_double_int (ar
->max
) + double_int_one
);
2072 vr1
->max
= vrp_val_max (type
);
2074 if (vr0
->type
== VR_UNDEFINED
)
2077 vr1
->type
= VR_UNDEFINED
;
2080 return vr0
->type
!= VR_UNDEFINED
;
2083 /* Helper to extract a value-range *VR for a multiplicative operation
2087 extract_range_from_multiplicative_op_1 (value_range_t
*vr
,
2088 enum tree_code code
,
2089 value_range_t
*vr0
, value_range_t
*vr1
)
2091 enum value_range_type type
;
2098 /* Multiplications, divisions and shifts are a bit tricky to handle,
2099 depending on the mix of signs we have in the two ranges, we
2100 need to operate on different values to get the minimum and
2101 maximum values for the new range. One approach is to figure
2102 out all the variations of range combinations and do the
2105 However, this involves several calls to compare_values and it
2106 is pretty convoluted. It's simpler to do the 4 operations
2107 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2108 MAX1) and then figure the smallest and largest values to form
2110 gcc_assert (code
== MULT_EXPR
2111 || code
== TRUNC_DIV_EXPR
2112 || code
== FLOOR_DIV_EXPR
2113 || code
== CEIL_DIV_EXPR
2114 || code
== EXACT_DIV_EXPR
2115 || code
== ROUND_DIV_EXPR
2116 || code
== RSHIFT_EXPR
2117 || code
== LSHIFT_EXPR
);
2118 gcc_assert ((vr0
->type
== VR_RANGE
2119 || (code
== MULT_EXPR
&& vr0
->type
== VR_ANTI_RANGE
))
2120 && vr0
->type
== vr1
->type
);
2124 /* Compute the 4 cross operations. */
2126 val
[0] = vrp_int_const_binop (code
, vr0
->min
, vr1
->min
);
2127 if (val
[0] == NULL_TREE
)
2130 if (vr1
->max
== vr1
->min
)
2134 val
[1] = vrp_int_const_binop (code
, vr0
->min
, vr1
->max
);
2135 if (val
[1] == NULL_TREE
)
2139 if (vr0
->max
== vr0
->min
)
2143 val
[2] = vrp_int_const_binop (code
, vr0
->max
, vr1
->min
);
2144 if (val
[2] == NULL_TREE
)
2148 if (vr0
->min
== vr0
->max
|| vr1
->min
== vr1
->max
)
2152 val
[3] = vrp_int_const_binop (code
, vr0
->max
, vr1
->max
);
2153 if (val
[3] == NULL_TREE
)
2159 set_value_range_to_varying (vr
);
2163 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2167 for (i
= 1; i
< 4; i
++)
2169 if (!is_gimple_min_invariant (min
)
2170 || (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
2171 || !is_gimple_min_invariant (max
)
2172 || (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2177 if (!is_gimple_min_invariant (val
[i
])
2178 || (TREE_OVERFLOW (val
[i
])
2179 && !is_overflow_infinity (val
[i
])))
2181 /* If we found an overflowed value, set MIN and MAX
2182 to it so that we set the resulting range to
2188 if (compare_values (val
[i
], min
) == -1)
2191 if (compare_values (val
[i
], max
) == 1)
2196 /* If either MIN or MAX overflowed, then set the resulting range to
2197 VARYING. But we do accept an overflow infinity
2199 if (min
== NULL_TREE
2200 || !is_gimple_min_invariant (min
)
2201 || (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
2203 || !is_gimple_min_invariant (max
)
2204 || (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
2206 set_value_range_to_varying (vr
);
2212 2) [-INF, +-INF(OVF)]
2213 3) [+-INF(OVF), +INF]
2214 4) [+-INF(OVF), +-INF(OVF)]
2215 We learn nothing when we have INF and INF(OVF) on both sides.
2216 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2218 if ((vrp_val_is_min (min
) || is_overflow_infinity (min
))
2219 && (vrp_val_is_max (max
) || is_overflow_infinity (max
)))
2221 set_value_range_to_varying (vr
);
2225 cmp
= compare_values (min
, max
);
2226 if (cmp
== -2 || cmp
== 1)
2228 /* If the new range has its limits swapped around (MIN > MAX),
2229 then the operation caused one of them to wrap around, mark
2230 the new range VARYING. */
2231 set_value_range_to_varying (vr
);
2234 set_value_range (vr
, type
, min
, max
, NULL
);
2237 /* Some quadruple precision helpers. */
2239 quad_int_cmp (double_int l0
, double_int h0
,
2240 double_int l1
, double_int h1
, bool uns
)
2242 int c
= h0
.cmp (h1
, uns
);
2243 if (c
!= 0) return c
;
2244 return l0
.ucmp (l1
);
2248 quad_int_pair_sort (double_int
*l0
, double_int
*h0
,
2249 double_int
*l1
, double_int
*h1
, bool uns
)
2251 if (quad_int_cmp (*l0
, *h0
, *l1
, *h1
, uns
) > 0)
2254 tmp
= *l0
; *l0
= *l1
; *l1
= tmp
;
2255 tmp
= *h0
; *h0
= *h1
; *h1
= tmp
;
2259 /* Extract range information from a binary operation CODE based on
2260 the ranges of each of its operands, *VR0 and *VR1 with resulting
2261 type EXPR_TYPE. The resulting range is stored in *VR. */
2264 extract_range_from_binary_expr_1 (value_range_t
*vr
,
2265 enum tree_code code
, tree expr_type
,
2266 value_range_t
*vr0_
, value_range_t
*vr1_
)
2268 value_range_t vr0
= *vr0_
, vr1
= *vr1_
;
2269 value_range_t vrtem0
= VR_INITIALIZER
, vrtem1
= VR_INITIALIZER
;
2270 enum value_range_type type
;
2271 tree min
= NULL_TREE
, max
= NULL_TREE
;
2274 if (!INTEGRAL_TYPE_P (expr_type
)
2275 && !POINTER_TYPE_P (expr_type
))
2277 set_value_range_to_varying (vr
);
2281 /* Not all binary expressions can be applied to ranges in a
2282 meaningful way. Handle only arithmetic operations. */
2283 if (code
!= PLUS_EXPR
2284 && code
!= MINUS_EXPR
2285 && code
!= POINTER_PLUS_EXPR
2286 && code
!= MULT_EXPR
2287 && code
!= TRUNC_DIV_EXPR
2288 && code
!= FLOOR_DIV_EXPR
2289 && code
!= CEIL_DIV_EXPR
2290 && code
!= EXACT_DIV_EXPR
2291 && code
!= ROUND_DIV_EXPR
2292 && code
!= TRUNC_MOD_EXPR
2293 && code
!= RSHIFT_EXPR
2294 && code
!= LSHIFT_EXPR
2297 && code
!= BIT_AND_EXPR
2298 && code
!= BIT_IOR_EXPR
2299 && code
!= BIT_XOR_EXPR
)
2301 set_value_range_to_varying (vr
);
2305 /* If both ranges are UNDEFINED, so is the result. */
2306 if (vr0
.type
== VR_UNDEFINED
&& vr1
.type
== VR_UNDEFINED
)
2308 set_value_range_to_undefined (vr
);
2311 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2312 code. At some point we may want to special-case operations that
2313 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2315 else if (vr0
.type
== VR_UNDEFINED
)
2316 set_value_range_to_varying (&vr0
);
2317 else if (vr1
.type
== VR_UNDEFINED
)
2318 set_value_range_to_varying (&vr1
);
2320 /* Now canonicalize anti-ranges to ranges when they are not symbolic
2321 and express ~[] op X as ([]' op X) U ([]'' op X). */
2322 if (vr0
.type
== VR_ANTI_RANGE
2323 && ranges_from_anti_range (&vr0
, &vrtem0
, &vrtem1
))
2325 extract_range_from_binary_expr_1 (vr
, code
, expr_type
, &vrtem0
, vr1_
);
2326 if (vrtem1
.type
!= VR_UNDEFINED
)
2328 value_range_t vrres
= VR_INITIALIZER
;
2329 extract_range_from_binary_expr_1 (&vrres
, code
, expr_type
,
2331 vrp_meet (vr
, &vrres
);
2335 /* Likewise for X op ~[]. */
2336 if (vr1
.type
== VR_ANTI_RANGE
2337 && ranges_from_anti_range (&vr1
, &vrtem0
, &vrtem1
))
2339 extract_range_from_binary_expr_1 (vr
, code
, expr_type
, vr0_
, &vrtem0
);
2340 if (vrtem1
.type
!= VR_UNDEFINED
)
2342 value_range_t vrres
= VR_INITIALIZER
;
2343 extract_range_from_binary_expr_1 (&vrres
, code
, expr_type
,
2345 vrp_meet (vr
, &vrres
);
2350 /* The type of the resulting value range defaults to VR0.TYPE. */
2353 /* Refuse to operate on VARYING ranges, ranges of different kinds
2354 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2355 because we may be able to derive a useful range even if one of
2356 the operands is VR_VARYING or symbolic range. Similarly for
2357 divisions. TODO, we may be able to derive anti-ranges in
2359 if (code
!= BIT_AND_EXPR
2360 && code
!= BIT_IOR_EXPR
2361 && code
!= TRUNC_DIV_EXPR
2362 && code
!= FLOOR_DIV_EXPR
2363 && code
!= CEIL_DIV_EXPR
2364 && code
!= EXACT_DIV_EXPR
2365 && code
!= ROUND_DIV_EXPR
2366 && code
!= TRUNC_MOD_EXPR
2369 && (vr0
.type
== VR_VARYING
2370 || vr1
.type
== VR_VARYING
2371 || vr0
.type
!= vr1
.type
2372 || symbolic_range_p (&vr0
)
2373 || symbolic_range_p (&vr1
)))
2375 set_value_range_to_varying (vr
);
2379 /* Now evaluate the expression to determine the new range. */
2380 if (POINTER_TYPE_P (expr_type
))
2382 if (code
== MIN_EXPR
|| code
== MAX_EXPR
)
2384 /* For MIN/MAX expressions with pointers, we only care about
2385 nullness, if both are non null, then the result is nonnull.
2386 If both are null, then the result is null. Otherwise they
2388 if (range_is_nonnull (&vr0
) && range_is_nonnull (&vr1
))
2389 set_value_range_to_nonnull (vr
, expr_type
);
2390 else if (range_is_null (&vr0
) && range_is_null (&vr1
))
2391 set_value_range_to_null (vr
, expr_type
);
2393 set_value_range_to_varying (vr
);
2395 else if (code
== POINTER_PLUS_EXPR
)
2397 /* For pointer types, we are really only interested in asserting
2398 whether the expression evaluates to non-NULL. */
2399 if (range_is_nonnull (&vr0
) || range_is_nonnull (&vr1
))
2400 set_value_range_to_nonnull (vr
, expr_type
);
2401 else if (range_is_null (&vr0
) && range_is_null (&vr1
))
2402 set_value_range_to_null (vr
, expr_type
);
2404 set_value_range_to_varying (vr
);
2406 else if (code
== BIT_AND_EXPR
)
2408 /* For pointer types, we are really only interested in asserting
2409 whether the expression evaluates to non-NULL. */
2410 if (range_is_nonnull (&vr0
) && range_is_nonnull (&vr1
))
2411 set_value_range_to_nonnull (vr
, expr_type
);
2412 else if (range_is_null (&vr0
) || range_is_null (&vr1
))
2413 set_value_range_to_null (vr
, expr_type
);
2415 set_value_range_to_varying (vr
);
2418 set_value_range_to_varying (vr
);
2423 /* For integer ranges, apply the operation to each end of the
2424 range and see what we end up with. */
2425 if (code
== PLUS_EXPR
|| code
== MINUS_EXPR
)
2427 /* If we have a PLUS_EXPR with two VR_RANGE integer constant
2428 ranges compute the precise range for such case if possible. */
2429 if (range_int_cst_p (&vr0
)
2430 && range_int_cst_p (&vr1
)
2431 /* We need as many bits as the possibly unsigned inputs. */
2432 && TYPE_PRECISION (expr_type
) <= HOST_BITS_PER_DOUBLE_INT
)
2434 double_int min0
= tree_to_double_int (vr0
.min
);
2435 double_int max0
= tree_to_double_int (vr0
.max
);
2436 double_int min1
= tree_to_double_int (vr1
.min
);
2437 double_int max1
= tree_to_double_int (vr1
.max
);
2438 bool uns
= TYPE_UNSIGNED (expr_type
);
2440 = double_int::min_value (TYPE_PRECISION (expr_type
), uns
);
2442 = double_int::max_value (TYPE_PRECISION (expr_type
), uns
);
2443 double_int dmin
, dmax
;
2447 if (code
== PLUS_EXPR
)
2452 /* Check for overflow in double_int. */
2453 if (min1
.cmp (double_int_zero
, uns
) != dmin
.cmp (min0
, uns
))
2454 min_ovf
= min0
.cmp (dmin
, uns
);
2455 if (max1
.cmp (double_int_zero
, uns
) != dmax
.cmp (max0
, uns
))
2456 max_ovf
= max0
.cmp (dmax
, uns
);
2458 else /* if (code == MINUS_EXPR) */
2463 if (double_int_zero
.cmp (max1
, uns
) != dmin
.cmp (min0
, uns
))
2464 min_ovf
= min0
.cmp (max1
, uns
);
2465 if (double_int_zero
.cmp (min1
, uns
) != dmax
.cmp (max0
, uns
))
2466 max_ovf
= max0
.cmp (min1
, uns
);
2469 /* For non-wrapping arithmetic look at possibly smaller
2470 value-ranges of the type. */
2471 if (!TYPE_OVERFLOW_WRAPS (expr_type
))
2473 if (vrp_val_min (expr_type
))
2474 type_min
= tree_to_double_int (vrp_val_min (expr_type
));
2475 if (vrp_val_max (expr_type
))
2476 type_max
= tree_to_double_int (vrp_val_max (expr_type
));
2479 /* Check for type overflow. */
2482 if (dmin
.cmp (type_min
, uns
) == -1)
2484 else if (dmin
.cmp (type_max
, uns
) == 1)
2489 if (dmax
.cmp (type_min
, uns
) == -1)
2491 else if (dmax
.cmp (type_max
, uns
) == 1)
2495 if (TYPE_OVERFLOW_WRAPS (expr_type
))
2497 /* If overflow wraps, truncate the values and adjust the
2498 range kind and bounds appropriately. */
2500 = dmin
.ext (TYPE_PRECISION (expr_type
), uns
);
2502 = dmax
.ext (TYPE_PRECISION (expr_type
), uns
);
2503 if (min_ovf
== max_ovf
)
2505 /* No overflow or both overflow or underflow. The
2506 range kind stays VR_RANGE. */
2507 min
= double_int_to_tree (expr_type
, tmin
);
2508 max
= double_int_to_tree (expr_type
, tmax
);
2510 else if (min_ovf
== -1
2513 /* Underflow and overflow, drop to VR_VARYING. */
2514 set_value_range_to_varying (vr
);
2519 /* Min underflow or max overflow. The range kind
2520 changes to VR_ANTI_RANGE. */
2521 bool covers
= false;
2522 double_int tem
= tmin
;
2523 gcc_assert ((min_ovf
== -1 && max_ovf
== 0)
2524 || (max_ovf
== 1 && min_ovf
== 0));
2525 type
= VR_ANTI_RANGE
;
2526 tmin
= tmax
+ double_int_one
;
2527 if (tmin
.cmp (tmax
, uns
) < 0)
2529 tmax
= tem
+ double_int_minus_one
;
2530 if (tmax
.cmp (tem
, uns
) > 0)
2532 /* If the anti-range would cover nothing, drop to varying.
2533 Likewise if the anti-range bounds are outside of the
2535 if (covers
|| tmin
.cmp (tmax
, uns
) > 0)
2537 set_value_range_to_varying (vr
);
2540 min
= double_int_to_tree (expr_type
, tmin
);
2541 max
= double_int_to_tree (expr_type
, tmax
);
2546 /* If overflow does not wrap, saturate to the types min/max
2550 if (needs_overflow_infinity (expr_type
)
2551 && supports_overflow_infinity (expr_type
))
2552 min
= negative_overflow_infinity (expr_type
);
2554 min
= double_int_to_tree (expr_type
, type_min
);
2556 else if (min_ovf
== 1)
2558 if (needs_overflow_infinity (expr_type
)
2559 && supports_overflow_infinity (expr_type
))
2560 min
= positive_overflow_infinity (expr_type
);
2562 min
= double_int_to_tree (expr_type
, type_max
);
2565 min
= double_int_to_tree (expr_type
, dmin
);
2569 if (needs_overflow_infinity (expr_type
)
2570 && supports_overflow_infinity (expr_type
))
2571 max
= negative_overflow_infinity (expr_type
);
2573 max
= double_int_to_tree (expr_type
, type_min
);
2575 else if (max_ovf
== 1)
2577 if (needs_overflow_infinity (expr_type
)
2578 && supports_overflow_infinity (expr_type
))
2579 max
= positive_overflow_infinity (expr_type
);
2581 max
= double_int_to_tree (expr_type
, type_max
);
2584 max
= double_int_to_tree (expr_type
, dmax
);
2586 if (needs_overflow_infinity (expr_type
)
2587 && supports_overflow_infinity (expr_type
))
2589 if (is_negative_overflow_infinity (vr0
.min
)
2590 || (code
== PLUS_EXPR
2591 ? is_negative_overflow_infinity (vr1
.min
)
2592 : is_positive_overflow_infinity (vr1
.max
)))
2593 min
= negative_overflow_infinity (expr_type
);
2594 if (is_positive_overflow_infinity (vr0
.max
)
2595 || (code
== PLUS_EXPR
2596 ? is_positive_overflow_infinity (vr1
.max
)
2597 : is_negative_overflow_infinity (vr1
.min
)))
2598 max
= positive_overflow_infinity (expr_type
);
2603 /* For other cases, for example if we have a PLUS_EXPR with two
2604 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
2605 to compute a precise range for such a case.
2606 ??? General even mixed range kind operations can be expressed
2607 by for example transforming ~[3, 5] + [1, 2] to range-only
2608 operations and a union primitive:
2609 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
2610 [-INF+1, 4] U [6, +INF(OVF)]
2611 though usually the union is not exactly representable with
2612 a single range or anti-range as the above is
2613 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
2614 but one could use a scheme similar to equivalences for this. */
2615 set_value_range_to_varying (vr
);
2619 else if (code
== MIN_EXPR
2620 || code
== MAX_EXPR
)
2622 if (vr0
.type
== VR_RANGE
2623 && !symbolic_range_p (&vr0
))
2626 if (vr1
.type
== VR_RANGE
2627 && !symbolic_range_p (&vr1
))
2629 /* For operations that make the resulting range directly
2630 proportional to the original ranges, apply the operation to
2631 the same end of each range. */
2632 min
= vrp_int_const_binop (code
, vr0
.min
, vr1
.min
);
2633 max
= vrp_int_const_binop (code
, vr0
.max
, vr1
.max
);
2635 else if (code
== MIN_EXPR
)
2637 min
= vrp_val_min (expr_type
);
2640 else if (code
== MAX_EXPR
)
2643 max
= vrp_val_max (expr_type
);
2646 else if (vr1
.type
== VR_RANGE
2647 && !symbolic_range_p (&vr1
))
2650 if (code
== MIN_EXPR
)
2652 min
= vrp_val_min (expr_type
);
2655 else if (code
== MAX_EXPR
)
2658 max
= vrp_val_max (expr_type
);
2663 set_value_range_to_varying (vr
);
2667 else if (code
== MULT_EXPR
)
2669 /* Fancy code so that with unsigned, [-3,-1]*[-3,-1] does not
2671 if (range_int_cst_p (&vr0
)
2672 && range_int_cst_p (&vr1
)
2673 && TYPE_OVERFLOW_WRAPS (expr_type
))
2675 double_int min0
, max0
, min1
, max1
, sizem1
, size
;
2676 double_int prod0l
, prod0h
, prod1l
, prod1h
,
2677 prod2l
, prod2h
, prod3l
, prod3h
;
2678 bool uns0
, uns1
, uns
;
2680 sizem1
= double_int::max_value (TYPE_PRECISION (expr_type
), true);
2681 size
= sizem1
+ double_int_one
;
2683 min0
= tree_to_double_int (vr0
.min
);
2684 max0
= tree_to_double_int (vr0
.max
);
2685 min1
= tree_to_double_int (vr1
.min
);
2686 max1
= tree_to_double_int (vr1
.max
);
2688 uns0
= TYPE_UNSIGNED (expr_type
);
2691 /* Canonicalize the intervals. */
2692 if (TYPE_UNSIGNED (expr_type
))
2694 double_int min2
= size
- min0
;
2695 if (!min2
.is_zero () && min2
.cmp (max0
, true) < 0)
2703 if (!min2
.is_zero () && min2
.cmp (max1
, true) < 0)
2713 prod0l
= min0
.wide_mul_with_sign (min1
, true, &prod0h
, &overflow
);
2714 if (!uns0
&& min0
.is_negative ())
2716 if (!uns1
&& min1
.is_negative ())
2719 prod1l
= min0
.wide_mul_with_sign (max1
, true, &prod1h
, &overflow
);
2720 if (!uns0
&& min0
.is_negative ())
2722 if (!uns1
&& max1
.is_negative ())
2725 prod2l
= max0
.wide_mul_with_sign (min1
, true, &prod2h
, &overflow
);
2726 if (!uns0
&& max0
.is_negative ())
2728 if (!uns1
&& min1
.is_negative ())
2731 prod3l
= max0
.wide_mul_with_sign (max1
, true, &prod3h
, &overflow
);
2732 if (!uns0
&& max0
.is_negative ())
2734 if (!uns1
&& max1
.is_negative ())
2737 /* Sort the 4 products. */
2738 quad_int_pair_sort (&prod0l
, &prod0h
, &prod3l
, &prod3h
, uns
);
2739 quad_int_pair_sort (&prod1l
, &prod1h
, &prod2l
, &prod2h
, uns
);
2740 quad_int_pair_sort (&prod0l
, &prod0h
, &prod1l
, &prod1h
, uns
);
2741 quad_int_pair_sort (&prod2l
, &prod2h
, &prod3l
, &prod3h
, uns
);
2744 if (prod0l
.is_zero ())
2746 prod1l
= double_int_zero
;
2754 prod2l
= prod3l
+ prod1l
;
2755 prod2h
= prod3h
+ prod1h
;
2756 if (prod2l
.ult (prod3l
))
2757 prod2h
+= double_int_one
; /* carry */
2759 if (!prod2h
.is_zero ()
2760 || prod2l
.cmp (sizem1
, true) >= 0)
2762 /* the range covers all values. */
2763 set_value_range_to_varying (vr
);
2767 /* The following should handle the wrapping and selecting
2768 VR_ANTI_RANGE for us. */
2769 min
= double_int_to_tree (expr_type
, prod0l
);
2770 max
= double_int_to_tree (expr_type
, prod3l
);
2771 set_and_canonicalize_value_range (vr
, VR_RANGE
, min
, max
, NULL
);
2775 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2776 drop to VR_VARYING. It would take more effort to compute a
2777 precise range for such a case. For example, if we have
2778 op0 == 65536 and op1 == 65536 with their ranges both being
2779 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2780 we cannot claim that the product is in ~[0,0]. Note that we
2781 are guaranteed to have vr0.type == vr1.type at this
2783 if (vr0
.type
== VR_ANTI_RANGE
2784 && !TYPE_OVERFLOW_UNDEFINED (expr_type
))
2786 set_value_range_to_varying (vr
);
2790 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
2793 else if (code
== RSHIFT_EXPR
2794 || code
== LSHIFT_EXPR
)
2796 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2797 then drop to VR_VARYING. Outside of this range we get undefined
2798 behavior from the shift operation. We cannot even trust
2799 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2800 shifts, and the operation at the tree level may be widened. */
2801 if (range_int_cst_p (&vr1
)
2802 && compare_tree_int (vr1
.min
, 0) >= 0
2803 && compare_tree_int (vr1
.max
, TYPE_PRECISION (expr_type
)) == -1)
2805 if (code
== RSHIFT_EXPR
)
2807 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
2810 /* We can map lshifts by constants to MULT_EXPR handling. */
2811 else if (code
== LSHIFT_EXPR
2812 && range_int_cst_singleton_p (&vr1
))
2814 bool saved_flag_wrapv
;
2815 value_range_t vr1p
= VR_INITIALIZER
;
2816 vr1p
.type
= VR_RANGE
;
2818 = double_int_to_tree (expr_type
,
2820 .llshift (TREE_INT_CST_LOW (vr1
.min
),
2821 TYPE_PRECISION (expr_type
)));
2822 vr1p
.max
= vr1p
.min
;
2823 /* We have to use a wrapping multiply though as signed overflow
2824 on lshifts is implementation defined in C89. */
2825 saved_flag_wrapv
= flag_wrapv
;
2827 extract_range_from_binary_expr_1 (vr
, MULT_EXPR
, expr_type
,
2829 flag_wrapv
= saved_flag_wrapv
;
2832 else if (code
== LSHIFT_EXPR
2833 && range_int_cst_p (&vr0
))
2835 int prec
= TYPE_PRECISION (expr_type
);
2836 int overflow_pos
= prec
;
2838 double_int bound
, complement
, low_bound
, high_bound
;
2839 bool uns
= TYPE_UNSIGNED (expr_type
);
2840 bool in_bounds
= false;
2845 bound_shift
= overflow_pos
- TREE_INT_CST_LOW (vr1
.max
);
2846 /* If bound_shift == HOST_BITS_PER_DOUBLE_INT, the llshift can
2847 overflow. However, for that to happen, vr1.max needs to be
2848 zero, which means vr1 is a singleton range of zero, which
2849 means it should be handled by the previous LSHIFT_EXPR
2851 bound
= double_int_one
.llshift (bound_shift
, prec
);
2852 complement
= ~(bound
- double_int_one
);
2856 low_bound
= bound
.zext (prec
);
2857 high_bound
= complement
.zext (prec
);
2858 if (tree_to_double_int (vr0
.max
).ult (low_bound
))
2860 /* [5, 6] << [1, 2] == [10, 24]. */
2861 /* We're shifting out only zeroes, the value increases
2865 else if (high_bound
.ult (tree_to_double_int (vr0
.min
)))
2867 /* [0xffffff00, 0xffffffff] << [1, 2]
2868 == [0xfffffc00, 0xfffffffe]. */
2869 /* We're shifting out only ones, the value decreases
2876 /* [-1, 1] << [1, 2] == [-4, 4]. */
2877 low_bound
= complement
.sext (prec
);
2879 if (tree_to_double_int (vr0
.max
).slt (high_bound
)
2880 && low_bound
.slt (tree_to_double_int (vr0
.min
)))
2882 /* For non-negative numbers, we're shifting out only
2883 zeroes, the value increases monotonically.
2884 For negative numbers, we're shifting out only ones, the
2885 value decreases monotomically. */
2892 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
2897 set_value_range_to_varying (vr
);
2900 else if (code
== TRUNC_DIV_EXPR
2901 || code
== FLOOR_DIV_EXPR
2902 || code
== CEIL_DIV_EXPR
2903 || code
== EXACT_DIV_EXPR
2904 || code
== ROUND_DIV_EXPR
)
2906 if (vr0
.type
!= VR_RANGE
|| symbolic_range_p (&vr0
))
2908 /* For division, if op1 has VR_RANGE but op0 does not, something
2909 can be deduced just from that range. Say [min, max] / [4, max]
2910 gives [min / 4, max / 4] range. */
2911 if (vr1
.type
== VR_RANGE
2912 && !symbolic_range_p (&vr1
)
2913 && range_includes_zero_p (vr1
.min
, vr1
.max
) == 0)
2915 vr0
.type
= type
= VR_RANGE
;
2916 vr0
.min
= vrp_val_min (expr_type
);
2917 vr0
.max
= vrp_val_max (expr_type
);
2921 set_value_range_to_varying (vr
);
2926 /* For divisions, if flag_non_call_exceptions is true, we must
2927 not eliminate a division by zero. */
2928 if (cfun
->can_throw_non_call_exceptions
2929 && (vr1
.type
!= VR_RANGE
2930 || range_includes_zero_p (vr1
.min
, vr1
.max
) != 0))
2932 set_value_range_to_varying (vr
);
2936 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2937 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2939 if (vr0
.type
== VR_RANGE
2940 && (vr1
.type
!= VR_RANGE
2941 || range_includes_zero_p (vr1
.min
, vr1
.max
) != 0))
2943 tree zero
= build_int_cst (TREE_TYPE (vr0
.min
), 0);
2948 if (TYPE_UNSIGNED (expr_type
)
2949 || value_range_nonnegative_p (&vr1
))
2951 /* For unsigned division or when divisor is known
2952 to be non-negative, the range has to cover
2953 all numbers from 0 to max for positive max
2954 and all numbers from min to 0 for negative min. */
2955 cmp
= compare_values (vr0
.max
, zero
);
2958 else if (cmp
== 0 || cmp
== 1)
2962 cmp
= compare_values (vr0
.min
, zero
);
2965 else if (cmp
== 0 || cmp
== -1)
2972 /* Otherwise the range is -max .. max or min .. -min
2973 depending on which bound is bigger in absolute value,
2974 as the division can change the sign. */
2975 abs_extent_range (vr
, vr0
.min
, vr0
.max
);
2978 if (type
== VR_VARYING
)
2980 set_value_range_to_varying (vr
);
2986 extract_range_from_multiplicative_op_1 (vr
, code
, &vr0
, &vr1
);
2990 else if (code
== TRUNC_MOD_EXPR
)
2992 if (vr1
.type
!= VR_RANGE
2993 || range_includes_zero_p (vr1
.min
, vr1
.max
) != 0
2994 || vrp_val_is_min (vr1
.min
))
2996 set_value_range_to_varying (vr
);
3000 /* Compute MAX <|vr1.min|, |vr1.max|> - 1. */
3001 max
= fold_unary_to_constant (ABS_EXPR
, expr_type
, vr1
.min
);
3002 if (tree_int_cst_lt (max
, vr1
.max
))
3004 max
= int_const_binop (MINUS_EXPR
, max
, integer_one_node
);
3005 /* If the dividend is non-negative the modulus will be
3006 non-negative as well. */
3007 if (TYPE_UNSIGNED (expr_type
)
3008 || value_range_nonnegative_p (&vr0
))
3009 min
= build_int_cst (TREE_TYPE (max
), 0);
3011 min
= fold_unary_to_constant (NEGATE_EXPR
, expr_type
, max
);
3013 else if (code
== BIT_AND_EXPR
|| code
== BIT_IOR_EXPR
|| code
== BIT_XOR_EXPR
)
3015 bool int_cst_range0
, int_cst_range1
;
3016 double_int may_be_nonzero0
, may_be_nonzero1
;
3017 double_int must_be_nonzero0
, must_be_nonzero1
;
3019 int_cst_range0
= zero_nonzero_bits_from_vr (&vr0
, &may_be_nonzero0
,
3021 int_cst_range1
= zero_nonzero_bits_from_vr (&vr1
, &may_be_nonzero1
,
3025 if (code
== BIT_AND_EXPR
)
3028 min
= double_int_to_tree (expr_type
,
3029 must_be_nonzero0
& must_be_nonzero1
);
3030 dmax
= may_be_nonzero0
& may_be_nonzero1
;
3031 /* If both input ranges contain only negative values we can
3032 truncate the result range maximum to the minimum of the
3033 input range maxima. */
3034 if (int_cst_range0
&& int_cst_range1
3035 && tree_int_cst_sgn (vr0
.max
) < 0
3036 && tree_int_cst_sgn (vr1
.max
) < 0)
3038 dmax
= dmax
.min (tree_to_double_int (vr0
.max
),
3039 TYPE_UNSIGNED (expr_type
));
3040 dmax
= dmax
.min (tree_to_double_int (vr1
.max
),
3041 TYPE_UNSIGNED (expr_type
));
3043 /* If either input range contains only non-negative values
3044 we can truncate the result range maximum to the respective
3045 maximum of the input range. */
3046 if (int_cst_range0
&& tree_int_cst_sgn (vr0
.min
) >= 0)
3047 dmax
= dmax
.min (tree_to_double_int (vr0
.max
),
3048 TYPE_UNSIGNED (expr_type
));
3049 if (int_cst_range1
&& tree_int_cst_sgn (vr1
.min
) >= 0)
3050 dmax
= dmax
.min (tree_to_double_int (vr1
.max
),
3051 TYPE_UNSIGNED (expr_type
));
3052 max
= double_int_to_tree (expr_type
, dmax
);
3054 else if (code
== BIT_IOR_EXPR
)
3057 max
= double_int_to_tree (expr_type
,
3058 may_be_nonzero0
| may_be_nonzero1
);
3059 dmin
= must_be_nonzero0
| must_be_nonzero1
;
3060 /* If the input ranges contain only positive values we can
3061 truncate the minimum of the result range to the maximum
3062 of the input range minima. */
3063 if (int_cst_range0
&& int_cst_range1
3064 && tree_int_cst_sgn (vr0
.min
) >= 0
3065 && tree_int_cst_sgn (vr1
.min
) >= 0)
3067 dmin
= dmin
.max (tree_to_double_int (vr0
.min
),
3068 TYPE_UNSIGNED (expr_type
));
3069 dmin
= dmin
.max (tree_to_double_int (vr1
.min
),
3070 TYPE_UNSIGNED (expr_type
));
3072 /* If either input range contains only negative values
3073 we can truncate the minimum of the result range to the
3074 respective minimum range. */
3075 if (int_cst_range0
&& tree_int_cst_sgn (vr0
.max
) < 0)
3076 dmin
= dmin
.max (tree_to_double_int (vr0
.min
),
3077 TYPE_UNSIGNED (expr_type
));
3078 if (int_cst_range1
&& tree_int_cst_sgn (vr1
.max
) < 0)
3079 dmin
= dmin
.max (tree_to_double_int (vr1
.min
),
3080 TYPE_UNSIGNED (expr_type
));
3081 min
= double_int_to_tree (expr_type
, dmin
);
3083 else if (code
== BIT_XOR_EXPR
)
3085 double_int result_zero_bits
, result_one_bits
;
3086 result_zero_bits
= (must_be_nonzero0
& must_be_nonzero1
)
3087 | ~(may_be_nonzero0
| may_be_nonzero1
);
3088 result_one_bits
= must_be_nonzero0
.and_not (may_be_nonzero1
)
3089 | must_be_nonzero1
.and_not (may_be_nonzero0
);
3090 max
= double_int_to_tree (expr_type
, ~result_zero_bits
);
3091 min
= double_int_to_tree (expr_type
, result_one_bits
);
3092 /* If the range has all positive or all negative values the
3093 result is better than VARYING. */
3094 if (tree_int_cst_sgn (min
) < 0
3095 || tree_int_cst_sgn (max
) >= 0)
3098 max
= min
= NULL_TREE
;
3104 /* If either MIN or MAX overflowed, then set the resulting range to
3105 VARYING. But we do accept an overflow infinity
3107 if (min
== NULL_TREE
3108 || !is_gimple_min_invariant (min
)
3109 || (TREE_OVERFLOW (min
) && !is_overflow_infinity (min
))
3111 || !is_gimple_min_invariant (max
)
3112 || (TREE_OVERFLOW (max
) && !is_overflow_infinity (max
)))
3114 set_value_range_to_varying (vr
);
3120 2) [-INF, +-INF(OVF)]
3121 3) [+-INF(OVF), +INF]
3122 4) [+-INF(OVF), +-INF(OVF)]
3123 We learn nothing when we have INF and INF(OVF) on both sides.
3124 Note that we do accept [-INF, -INF] and [+INF, +INF] without
3126 if ((vrp_val_is_min (min
) || is_overflow_infinity (min
))
3127 && (vrp_val_is_max (max
) || is_overflow_infinity (max
)))
3129 set_value_range_to_varying (vr
);
3133 cmp
= compare_values (min
, max
);
3134 if (cmp
== -2 || cmp
== 1)
3136 /* If the new range has its limits swapped around (MIN > MAX),
3137 then the operation caused one of them to wrap around, mark
3138 the new range VARYING. */
3139 set_value_range_to_varying (vr
);
3142 set_value_range (vr
, type
, min
, max
, NULL
);
3145 /* Extract range information from a binary expression OP0 CODE OP1 based on
3146 the ranges of each of its operands with resulting type EXPR_TYPE.
3147 The resulting range is stored in *VR. */
3150 extract_range_from_binary_expr (value_range_t
*vr
,
3151 enum tree_code code
,
3152 tree expr_type
, tree op0
, tree op1
)
3154 value_range_t vr0
= VR_INITIALIZER
;
3155 value_range_t vr1
= VR_INITIALIZER
;
3157 /* Get value ranges for each operand. For constant operands, create
3158 a new value range with the operand to simplify processing. */
3159 if (TREE_CODE (op0
) == SSA_NAME
)
3160 vr0
= *(get_value_range (op0
));
3161 else if (is_gimple_min_invariant (op0
))
3162 set_value_range_to_value (&vr0
, op0
, NULL
);
3164 set_value_range_to_varying (&vr0
);
3166 if (TREE_CODE (op1
) == SSA_NAME
)
3167 vr1
= *(get_value_range (op1
));
3168 else if (is_gimple_min_invariant (op1
))
3169 set_value_range_to_value (&vr1
, op1
, NULL
);
3171 set_value_range_to_varying (&vr1
);
3173 extract_range_from_binary_expr_1 (vr
, code
, expr_type
, &vr0
, &vr1
);
3176 /* Extract range information from a unary operation CODE based on
3177 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
3178 The The resulting range is stored in *VR. */
3181 extract_range_from_unary_expr_1 (value_range_t
*vr
,
3182 enum tree_code code
, tree type
,
3183 value_range_t
*vr0_
, tree op0_type
)
3185 value_range_t vr0
= *vr0_
, vrtem0
= VR_INITIALIZER
, vrtem1
= VR_INITIALIZER
;
3187 /* VRP only operates on integral and pointer types. */
3188 if (!(INTEGRAL_TYPE_P (op0_type
)
3189 || POINTER_TYPE_P (op0_type
))
3190 || !(INTEGRAL_TYPE_P (type
)
3191 || POINTER_TYPE_P (type
)))
3193 set_value_range_to_varying (vr
);
3197 /* If VR0 is UNDEFINED, so is the result. */
3198 if (vr0
.type
== VR_UNDEFINED
)
3200 set_value_range_to_undefined (vr
);
3204 /* Handle operations that we express in terms of others. */
3205 if (code
== PAREN_EXPR
)
3207 /* PAREN_EXPR is a simple copy. */
3208 copy_value_range (vr
, &vr0
);
3211 else if (code
== NEGATE_EXPR
)
3213 /* -X is simply 0 - X, so re-use existing code that also handles
3214 anti-ranges fine. */
3215 value_range_t zero
= VR_INITIALIZER
;
3216 set_value_range_to_value (&zero
, build_int_cst (type
, 0), NULL
);
3217 extract_range_from_binary_expr_1 (vr
, MINUS_EXPR
, type
, &zero
, &vr0
);
3220 else if (code
== BIT_NOT_EXPR
)
3222 /* ~X is simply -1 - X, so re-use existing code that also handles
3223 anti-ranges fine. */
3224 value_range_t minusone
= VR_INITIALIZER
;
3225 set_value_range_to_value (&minusone
, build_int_cst (type
, -1), NULL
);
3226 extract_range_from_binary_expr_1 (vr
, MINUS_EXPR
,
3227 type
, &minusone
, &vr0
);
3231 /* Now canonicalize anti-ranges to ranges when they are not symbolic
3232 and express op ~[] as (op []') U (op []''). */
3233 if (vr0
.type
== VR_ANTI_RANGE
3234 && ranges_from_anti_range (&vr0
, &vrtem0
, &vrtem1
))
3236 extract_range_from_unary_expr_1 (vr
, code
, type
, &vrtem0
, op0_type
);
3237 if (vrtem1
.type
!= VR_UNDEFINED
)
3239 value_range_t vrres
= VR_INITIALIZER
;
3240 extract_range_from_unary_expr_1 (&vrres
, code
, type
,
3242 vrp_meet (vr
, &vrres
);
3247 if (CONVERT_EXPR_CODE_P (code
))
3249 tree inner_type
= op0_type
;
3250 tree outer_type
= type
;
3252 /* If the expression evaluates to a pointer, we are only interested in
3253 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
3254 if (POINTER_TYPE_P (type
))
3256 if (range_is_nonnull (&vr0
))
3257 set_value_range_to_nonnull (vr
, type
);
3258 else if (range_is_null (&vr0
))
3259 set_value_range_to_null (vr
, type
);
3261 set_value_range_to_varying (vr
);
3265 /* If VR0 is varying and we increase the type precision, assume
3266 a full range for the following transformation. */
3267 if (vr0
.type
== VR_VARYING
3268 && INTEGRAL_TYPE_P (inner_type
)
3269 && TYPE_PRECISION (inner_type
) < TYPE_PRECISION (outer_type
))
3271 vr0
.type
= VR_RANGE
;
3272 vr0
.min
= TYPE_MIN_VALUE (inner_type
);
3273 vr0
.max
= TYPE_MAX_VALUE (inner_type
);
3276 /* If VR0 is a constant range or anti-range and the conversion is
3277 not truncating we can convert the min and max values and
3278 canonicalize the resulting range. Otherwise we can do the
3279 conversion if the size of the range is less than what the
3280 precision of the target type can represent and the range is
3281 not an anti-range. */
3282 if ((vr0
.type
== VR_RANGE
3283 || vr0
.type
== VR_ANTI_RANGE
)
3284 && TREE_CODE (vr0
.min
) == INTEGER_CST
3285 && TREE_CODE (vr0
.max
) == INTEGER_CST
3286 && (!is_overflow_infinity (vr0
.min
)
3287 || (vr0
.type
== VR_RANGE
3288 && TYPE_PRECISION (outer_type
) > TYPE_PRECISION (inner_type
)
3289 && needs_overflow_infinity (outer_type
)
3290 && supports_overflow_infinity (outer_type
)))
3291 && (!is_overflow_infinity (vr0
.max
)
3292 || (vr0
.type
== VR_RANGE
3293 && TYPE_PRECISION (outer_type
) > TYPE_PRECISION (inner_type
)
3294 && needs_overflow_infinity (outer_type
)
3295 && supports_overflow_infinity (outer_type
)))
3296 && (TYPE_PRECISION (outer_type
) >= TYPE_PRECISION (inner_type
)
3297 || (vr0
.type
== VR_RANGE
3298 && integer_zerop (int_const_binop (RSHIFT_EXPR
,
3299 int_const_binop (MINUS_EXPR
, vr0
.max
, vr0
.min
),
3300 size_int (TYPE_PRECISION (outer_type
)))))))
3302 tree new_min
, new_max
;
3303 if (is_overflow_infinity (vr0
.min
))
3304 new_min
= negative_overflow_infinity (outer_type
);
3306 new_min
= force_fit_type_double (outer_type
,
3307 tree_to_double_int (vr0
.min
),
3309 if (is_overflow_infinity (vr0
.max
))
3310 new_max
= positive_overflow_infinity (outer_type
);
3312 new_max
= force_fit_type_double (outer_type
,
3313 tree_to_double_int (vr0
.max
),
3315 set_and_canonicalize_value_range (vr
, vr0
.type
,
3316 new_min
, new_max
, NULL
);
3320 set_value_range_to_varying (vr
);
3323 else if (code
== ABS_EXPR
)
3328 /* Pass through vr0 in the easy cases. */
3329 if (TYPE_UNSIGNED (type
)
3330 || value_range_nonnegative_p (&vr0
))
3332 copy_value_range (vr
, &vr0
);
3336 /* For the remaining varying or symbolic ranges we can't do anything
3338 if (vr0
.type
== VR_VARYING
3339 || symbolic_range_p (&vr0
))
3341 set_value_range_to_varying (vr
);
3345 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3347 if (!TYPE_OVERFLOW_UNDEFINED (type
)
3348 && ((vr0
.type
== VR_RANGE
3349 && vrp_val_is_min (vr0
.min
))
3350 || (vr0
.type
== VR_ANTI_RANGE
3351 && !vrp_val_is_min (vr0
.min
))))
3353 set_value_range_to_varying (vr
);
3357 /* ABS_EXPR may flip the range around, if the original range
3358 included negative values. */
3359 if (is_overflow_infinity (vr0
.min
))
3360 min
= positive_overflow_infinity (type
);
3361 else if (!vrp_val_is_min (vr0
.min
))
3362 min
= fold_unary_to_constant (code
, type
, vr0
.min
);
3363 else if (!needs_overflow_infinity (type
))
3364 min
= TYPE_MAX_VALUE (type
);
3365 else if (supports_overflow_infinity (type
))
3366 min
= positive_overflow_infinity (type
);
3369 set_value_range_to_varying (vr
);
3373 if (is_overflow_infinity (vr0
.max
))
3374 max
= positive_overflow_infinity (type
);
3375 else if (!vrp_val_is_min (vr0
.max
))
3376 max
= fold_unary_to_constant (code
, type
, vr0
.max
);
3377 else if (!needs_overflow_infinity (type
))
3378 max
= TYPE_MAX_VALUE (type
);
3379 else if (supports_overflow_infinity (type
)
3380 /* We shouldn't generate [+INF, +INF] as set_value_range
3381 doesn't like this and ICEs. */
3382 && !is_positive_overflow_infinity (min
))
3383 max
= positive_overflow_infinity (type
);
3386 set_value_range_to_varying (vr
);
3390 cmp
= compare_values (min
, max
);
3392 /* If a VR_ANTI_RANGEs contains zero, then we have
3393 ~[-INF, min(MIN, MAX)]. */
3394 if (vr0
.type
== VR_ANTI_RANGE
)
3396 if (range_includes_zero_p (vr0
.min
, vr0
.max
) == 1)
3398 /* Take the lower of the two values. */
3402 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3403 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3404 flag_wrapv is set and the original anti-range doesn't include
3405 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3406 if (TYPE_OVERFLOW_WRAPS (type
))
3408 tree type_min_value
= TYPE_MIN_VALUE (type
);
3410 min
= (vr0
.min
!= type_min_value
3411 ? int_const_binop (PLUS_EXPR
, type_min_value
,
3417 if (overflow_infinity_range_p (&vr0
))
3418 min
= negative_overflow_infinity (type
);
3420 min
= TYPE_MIN_VALUE (type
);
3425 /* All else has failed, so create the range [0, INF], even for
3426 flag_wrapv since TYPE_MIN_VALUE is in the original
3428 vr0
.type
= VR_RANGE
;
3429 min
= build_int_cst (type
, 0);
3430 if (needs_overflow_infinity (type
))
3432 if (supports_overflow_infinity (type
))
3433 max
= positive_overflow_infinity (type
);
3436 set_value_range_to_varying (vr
);
3441 max
= TYPE_MAX_VALUE (type
);
3445 /* If the range contains zero then we know that the minimum value in the
3446 range will be zero. */
3447 else if (range_includes_zero_p (vr0
.min
, vr0
.max
) == 1)
3451 min
= build_int_cst (type
, 0);
3455 /* If the range was reversed, swap MIN and MAX. */
3464 cmp
= compare_values (min
, max
);
3465 if (cmp
== -2 || cmp
== 1)
3467 /* If the new range has its limits swapped around (MIN > MAX),
3468 then the operation caused one of them to wrap around, mark
3469 the new range VARYING. */
3470 set_value_range_to_varying (vr
);
3473 set_value_range (vr
, vr0
.type
, min
, max
, NULL
);
3477 /* For unhandled operations fall back to varying. */
3478 set_value_range_to_varying (vr
);
3483 /* Extract range information from a unary expression CODE OP0 based on
3484 the range of its operand with resulting type TYPE.
3485 The resulting range is stored in *VR. */
3488 extract_range_from_unary_expr (value_range_t
*vr
, enum tree_code code
,
3489 tree type
, tree op0
)
3491 value_range_t vr0
= VR_INITIALIZER
;
3493 /* Get value ranges for the operand. For constant operands, create
3494 a new value range with the operand to simplify processing. */
3495 if (TREE_CODE (op0
) == SSA_NAME
)
3496 vr0
= *(get_value_range (op0
));
3497 else if (is_gimple_min_invariant (op0
))
3498 set_value_range_to_value (&vr0
, op0
, NULL
);
3500 set_value_range_to_varying (&vr0
);
3502 extract_range_from_unary_expr_1 (vr
, code
, type
, &vr0
, TREE_TYPE (op0
));
3506 /* Extract range information from a conditional expression STMT based on
3507 the ranges of each of its operands and the expression code. */
3510 extract_range_from_cond_expr (value_range_t
*vr
, gimple stmt
)
3513 value_range_t vr0
= VR_INITIALIZER
;
3514 value_range_t vr1
= VR_INITIALIZER
;
3516 /* Get value ranges for each operand. For constant operands, create
3517 a new value range with the operand to simplify processing. */
3518 op0
= gimple_assign_rhs2 (stmt
);
3519 if (TREE_CODE (op0
) == SSA_NAME
)
3520 vr0
= *(get_value_range (op0
));
3521 else if (is_gimple_min_invariant (op0
))
3522 set_value_range_to_value (&vr0
, op0
, NULL
);
3524 set_value_range_to_varying (&vr0
);
3526 op1
= gimple_assign_rhs3 (stmt
);
3527 if (TREE_CODE (op1
) == SSA_NAME
)
3528 vr1
= *(get_value_range (op1
));
3529 else if (is_gimple_min_invariant (op1
))
3530 set_value_range_to_value (&vr1
, op1
, NULL
);
3532 set_value_range_to_varying (&vr1
);
3534 /* The resulting value range is the union of the operand ranges */
3535 copy_value_range (vr
, &vr0
);
3536 vrp_meet (vr
, &vr1
);
3540 /* Extract range information from a comparison expression EXPR based
3541 on the range of its operand and the expression code. */
3544 extract_range_from_comparison (value_range_t
*vr
, enum tree_code code
,
3545 tree type
, tree op0
, tree op1
)
3550 val
= vrp_evaluate_conditional_warnv_with_ops (code
, op0
, op1
, false, &sop
,
3553 /* A disadvantage of using a special infinity as an overflow
3554 representation is that we lose the ability to record overflow
3555 when we don't have an infinity. So we have to ignore a result
3556 which relies on overflow. */
3558 if (val
&& !is_overflow_infinity (val
) && !sop
)
3560 /* Since this expression was found on the RHS of an assignment,
3561 its type may be different from _Bool. Convert VAL to EXPR's
3563 val
= fold_convert (type
, val
);
3564 if (is_gimple_min_invariant (val
))
3565 set_value_range_to_value (vr
, val
, vr
->equiv
);
3567 set_value_range (vr
, VR_RANGE
, val
, val
, vr
->equiv
);
3570 /* The result of a comparison is always true or false. */
3571 set_value_range_to_truthvalue (vr
, type
);
3574 /* Try to derive a nonnegative or nonzero range out of STMT relying
3575 primarily on generic routines in fold in conjunction with range data.
3576 Store the result in *VR */
3579 extract_range_basic (value_range_t
*vr
, gimple stmt
)
3582 tree type
= gimple_expr_type (stmt
);
3584 if (gimple_call_builtin_p (stmt
, BUILT_IN_NORMAL
))
3586 tree fndecl
= gimple_call_fndecl (stmt
), arg
;
3587 int mini
, maxi
, zerov
= 0, prec
;
3589 switch (DECL_FUNCTION_CODE (fndecl
))
3591 case BUILT_IN_CONSTANT_P
:
3592 /* If the call is __builtin_constant_p and the argument is a
3593 function parameter resolve it to false. This avoids bogus
3594 array bound warnings.
3595 ??? We could do this as early as inlining is finished. */
3596 arg
= gimple_call_arg (stmt
, 0);
3597 if (TREE_CODE (arg
) == SSA_NAME
3598 && SSA_NAME_IS_DEFAULT_DEF (arg
)
3599 && TREE_CODE (SSA_NAME_VAR (arg
)) == PARM_DECL
)
3601 set_value_range_to_null (vr
, type
);
3605 /* Both __builtin_ffs* and __builtin_popcount return
3607 CASE_INT_FN (BUILT_IN_FFS
):
3608 CASE_INT_FN (BUILT_IN_POPCOUNT
):
3609 arg
= gimple_call_arg (stmt
, 0);
3610 prec
= TYPE_PRECISION (TREE_TYPE (arg
));
3613 if (TREE_CODE (arg
) == SSA_NAME
)
3615 value_range_t
*vr0
= get_value_range (arg
);
3616 /* If arg is non-zero, then ffs or popcount
3618 if (((vr0
->type
== VR_RANGE
3619 && integer_nonzerop (vr0
->min
))
3620 || (vr0
->type
== VR_ANTI_RANGE
3621 && integer_zerop (vr0
->min
)))
3622 && !is_overflow_infinity (vr0
->min
))
3624 /* If some high bits are known to be zero,
3625 we can decrease the maximum. */
3626 if (vr0
->type
== VR_RANGE
3627 && TREE_CODE (vr0
->max
) == INTEGER_CST
3628 && !is_overflow_infinity (vr0
->max
))
3629 maxi
= tree_floor_log2 (vr0
->max
) + 1;
3632 /* __builtin_parity* returns [0, 1]. */
3633 CASE_INT_FN (BUILT_IN_PARITY
):
3637 /* __builtin_c[lt]z* return [0, prec-1], except for
3638 when the argument is 0, but that is undefined behavior.
3639 On many targets where the CLZ RTL or optab value is defined
3640 for 0 the value is prec, so include that in the range
3642 CASE_INT_FN (BUILT_IN_CLZ
):
3643 arg
= gimple_call_arg (stmt
, 0);
3644 prec
= TYPE_PRECISION (TREE_TYPE (arg
));
3647 if (optab_handler (clz_optab
, TYPE_MODE (TREE_TYPE (arg
)))
3649 && CLZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg
)),
3651 /* Handle only the single common value. */
3653 /* Magic value to give up, unless vr0 proves
3656 if (TREE_CODE (arg
) == SSA_NAME
)
3658 value_range_t
*vr0
= get_value_range (arg
);
3659 /* From clz of VR_RANGE minimum we can compute
3661 if (vr0
->type
== VR_RANGE
3662 && TREE_CODE (vr0
->min
) == INTEGER_CST
3663 && !is_overflow_infinity (vr0
->min
))
3665 maxi
= prec
- 1 - tree_floor_log2 (vr0
->min
);
3669 else if (vr0
->type
== VR_ANTI_RANGE
3670 && integer_zerop (vr0
->min
)
3671 && !is_overflow_infinity (vr0
->min
))
3678 /* From clz of VR_RANGE maximum we can compute
3680 if (vr0
->type
== VR_RANGE
3681 && TREE_CODE (vr0
->max
) == INTEGER_CST
3682 && !is_overflow_infinity (vr0
->max
))
3684 mini
= prec
- 1 - tree_floor_log2 (vr0
->max
);
3692 /* __builtin_ctz* return [0, prec-1], except for
3693 when the argument is 0, but that is undefined behavior.
3694 If there is a ctz optab for this mode and
3695 CTZ_DEFINED_VALUE_AT_ZERO, include that in the range,
3696 otherwise just assume 0 won't be seen. */
3697 CASE_INT_FN (BUILT_IN_CTZ
):
3698 arg
= gimple_call_arg (stmt
, 0);
3699 prec
= TYPE_PRECISION (TREE_TYPE (arg
));
3702 if (optab_handler (ctz_optab
, TYPE_MODE (TREE_TYPE (arg
)))
3704 && CTZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg
)),
3707 /* Handle only the two common values. */
3710 else if (zerov
== prec
)
3713 /* Magic value to give up, unless vr0 proves
3717 if (TREE_CODE (arg
) == SSA_NAME
)
3719 value_range_t
*vr0
= get_value_range (arg
);
3720 /* If arg is non-zero, then use [0, prec - 1]. */
3721 if (((vr0
->type
== VR_RANGE
3722 && integer_nonzerop (vr0
->min
))
3723 || (vr0
->type
== VR_ANTI_RANGE
3724 && integer_zerop (vr0
->min
)))
3725 && !is_overflow_infinity (vr0
->min
))
3730 /* If some high bits are known to be zero,
3731 we can decrease the result maximum. */
3732 if (vr0
->type
== VR_RANGE
3733 && TREE_CODE (vr0
->max
) == INTEGER_CST
3734 && !is_overflow_infinity (vr0
->max
))
3736 maxi
= tree_floor_log2 (vr0
->max
);
3737 /* For vr0 [0, 0] give up. */
3745 /* __builtin_clrsb* returns [0, prec-1]. */
3746 CASE_INT_FN (BUILT_IN_CLRSB
):
3747 arg
= gimple_call_arg (stmt
, 0);
3748 prec
= TYPE_PRECISION (TREE_TYPE (arg
));
3753 set_value_range (vr
, VR_RANGE
, build_int_cst (type
, mini
),
3754 build_int_cst (type
, maxi
), NULL
);
3760 if (INTEGRAL_TYPE_P (type
)
3761 && gimple_stmt_nonnegative_warnv_p (stmt
, &sop
))
3762 set_value_range_to_nonnegative (vr
, type
,
3763 sop
|| stmt_overflow_infinity (stmt
));
3764 else if (vrp_stmt_computes_nonzero (stmt
, &sop
)
3766 set_value_range_to_nonnull (vr
, type
);
3768 set_value_range_to_varying (vr
);
3772 /* Try to compute a useful range out of assignment STMT and store it
3776 extract_range_from_assignment (value_range_t
*vr
, gimple stmt
)
3778 enum tree_code code
= gimple_assign_rhs_code (stmt
);
3780 if (code
== ASSERT_EXPR
)
3781 extract_range_from_assert (vr
, gimple_assign_rhs1 (stmt
));
3782 else if (code
== SSA_NAME
)
3783 extract_range_from_ssa_name (vr
, gimple_assign_rhs1 (stmt
));
3784 else if (TREE_CODE_CLASS (code
) == tcc_binary
)
3785 extract_range_from_binary_expr (vr
, gimple_assign_rhs_code (stmt
),
3786 gimple_expr_type (stmt
),
3787 gimple_assign_rhs1 (stmt
),
3788 gimple_assign_rhs2 (stmt
));
3789 else if (TREE_CODE_CLASS (code
) == tcc_unary
)
3790 extract_range_from_unary_expr (vr
, gimple_assign_rhs_code (stmt
),
3791 gimple_expr_type (stmt
),
3792 gimple_assign_rhs1 (stmt
));
3793 else if (code
== COND_EXPR
)
3794 extract_range_from_cond_expr (vr
, stmt
);
3795 else if (TREE_CODE_CLASS (code
) == tcc_comparison
)
3796 extract_range_from_comparison (vr
, gimple_assign_rhs_code (stmt
),
3797 gimple_expr_type (stmt
),
3798 gimple_assign_rhs1 (stmt
),
3799 gimple_assign_rhs2 (stmt
));
3800 else if (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
3801 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt
)))
3802 set_value_range_to_value (vr
, gimple_assign_rhs1 (stmt
), NULL
);
3804 set_value_range_to_varying (vr
);
3806 if (vr
->type
== VR_VARYING
)
3807 extract_range_basic (vr
, stmt
);
3810 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3811 would be profitable to adjust VR using scalar evolution information
3812 for VAR. If so, update VR with the new limits. */
3815 adjust_range_with_scev (value_range_t
*vr
, struct loop
*loop
,
3816 gimple stmt
, tree var
)
3818 tree init
, step
, chrec
, tmin
, tmax
, min
, max
, type
, tem
;
3819 enum ev_direction dir
;
3821 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3822 better opportunities than a regular range, but I'm not sure. */
3823 if (vr
->type
== VR_ANTI_RANGE
)
3826 chrec
= instantiate_parameters (loop
, analyze_scalar_evolution (loop
, var
));
3828 /* Like in PR19590, scev can return a constant function. */
3829 if (is_gimple_min_invariant (chrec
))
3831 set_value_range_to_value (vr
, chrec
, vr
->equiv
);
3835 if (TREE_CODE (chrec
) != POLYNOMIAL_CHREC
)
3838 init
= initial_condition_in_loop_num (chrec
, loop
->num
);
3839 tem
= op_with_constant_singleton_value_range (init
);
3842 step
= evolution_part_in_loop_num (chrec
, loop
->num
);
3843 tem
= op_with_constant_singleton_value_range (step
);
3847 /* If STEP is symbolic, we can't know whether INIT will be the
3848 minimum or maximum value in the range. Also, unless INIT is
3849 a simple expression, compare_values and possibly other functions
3850 in tree-vrp won't be able to handle it. */
3851 if (step
== NULL_TREE
3852 || !is_gimple_min_invariant (step
)
3853 || !valid_value_p (init
))
3856 dir
= scev_direction (chrec
);
3857 if (/* Do not adjust ranges if we do not know whether the iv increases
3858 or decreases, ... */
3859 dir
== EV_DIR_UNKNOWN
3860 /* ... or if it may wrap. */
3861 || scev_probably_wraps_p (init
, step
, stmt
, get_chrec_loop (chrec
),
3865 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3866 negative_overflow_infinity and positive_overflow_infinity,
3867 because we have concluded that the loop probably does not
3870 type
= TREE_TYPE (var
);
3871 if (POINTER_TYPE_P (type
) || !TYPE_MIN_VALUE (type
))
3872 tmin
= lower_bound_in_type (type
, type
);
3874 tmin
= TYPE_MIN_VALUE (type
);
3875 if (POINTER_TYPE_P (type
) || !TYPE_MAX_VALUE (type
))
3876 tmax
= upper_bound_in_type (type
, type
);
3878 tmax
= TYPE_MAX_VALUE (type
);
3880 /* Try to use estimated number of iterations for the loop to constrain the
3881 final value in the evolution. */
3882 if (TREE_CODE (step
) == INTEGER_CST
3883 && is_gimple_val (init
)
3884 && (TREE_CODE (init
) != SSA_NAME
3885 || get_value_range (init
)->type
== VR_RANGE
))
3889 /* We are only entering here for loop header PHI nodes, so using
3890 the number of latch executions is the correct thing to use. */
3891 if (max_loop_iterations (loop
, &nit
))
3893 value_range_t maxvr
= VR_INITIALIZER
;
3895 bool unsigned_p
= TYPE_UNSIGNED (TREE_TYPE (step
));
3896 bool overflow
= false;
3898 dtmp
= tree_to_double_int (step
)
3899 .mul_with_sign (nit
, unsigned_p
, &overflow
);
3900 /* If the multiplication overflowed we can't do a meaningful
3901 adjustment. Likewise if the result doesn't fit in the type
3902 of the induction variable. For a signed type we have to
3903 check whether the result has the expected signedness which
3904 is that of the step as number of iterations is unsigned. */
3906 && double_int_fits_to_tree_p (TREE_TYPE (init
), dtmp
)
3908 || ((dtmp
.high
^ TREE_INT_CST_HIGH (step
)) >= 0)))
3910 tem
= double_int_to_tree (TREE_TYPE (init
), dtmp
);
3911 extract_range_from_binary_expr (&maxvr
, PLUS_EXPR
,
3912 TREE_TYPE (init
), init
, tem
);
3913 /* Likewise if the addition did. */
3914 if (maxvr
.type
== VR_RANGE
)
3923 if (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
)
3928 /* For VARYING or UNDEFINED ranges, just about anything we get
3929 from scalar evolutions should be better. */
3931 if (dir
== EV_DIR_DECREASES
)
3936 /* If we would create an invalid range, then just assume we
3937 know absolutely nothing. This may be over-conservative,
3938 but it's clearly safe, and should happen only in unreachable
3939 parts of code, or for invalid programs. */
3940 if (compare_values (min
, max
) == 1)
3943 set_value_range (vr
, VR_RANGE
, min
, max
, vr
->equiv
);
3945 else if (vr
->type
== VR_RANGE
)
3950 if (dir
== EV_DIR_DECREASES
)
3952 /* INIT is the maximum value. If INIT is lower than VR->MAX
3953 but no smaller than VR->MIN, set VR->MAX to INIT. */
3954 if (compare_values (init
, max
) == -1)
3957 /* According to the loop information, the variable does not
3958 overflow. If we think it does, probably because of an
3959 overflow due to arithmetic on a different INF value,
3961 if (is_negative_overflow_infinity (min
)
3962 || compare_values (min
, tmin
) == -1)
3968 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
3969 if (compare_values (init
, min
) == 1)
3972 if (is_positive_overflow_infinity (max
)
3973 || compare_values (tmax
, max
) == -1)
3977 /* If we just created an invalid range with the minimum
3978 greater than the maximum, we fail conservatively.
3979 This should happen only in unreachable
3980 parts of code, or for invalid programs. */
3981 if (compare_values (min
, max
) == 1)
3984 set_value_range (vr
, VR_RANGE
, min
, max
, vr
->equiv
);
3988 /* Return true if VAR may overflow at STMT. This checks any available
3989 loop information to see if we can determine that VAR does not
3993 vrp_var_may_overflow (tree var
, gimple stmt
)
3996 tree chrec
, init
, step
;
3998 if (current_loops
== NULL
)
4001 l
= loop_containing_stmt (stmt
);
4006 chrec
= instantiate_parameters (l
, analyze_scalar_evolution (l
, var
));
4007 if (TREE_CODE (chrec
) != POLYNOMIAL_CHREC
)
4010 init
= initial_condition_in_loop_num (chrec
, l
->num
);
4011 step
= evolution_part_in_loop_num (chrec
, l
->num
);
4013 if (step
== NULL_TREE
4014 || !is_gimple_min_invariant (step
)
4015 || !valid_value_p (init
))
4018 /* If we get here, we know something useful about VAR based on the
4019 loop information. If it wraps, it may overflow. */
4021 if (scev_probably_wraps_p (init
, step
, stmt
, get_chrec_loop (chrec
),
4025 if (dump_file
&& (dump_flags
& TDF_DETAILS
) != 0)
4027 print_generic_expr (dump_file
, var
, 0);
4028 fprintf (dump_file
, ": loop information indicates does not overflow\n");
4035 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
4037 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
4038 all the values in the ranges.
4040 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
4042 - Return NULL_TREE if it is not always possible to determine the
4043 value of the comparison.
4045 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
4046 overflow infinity was used in the test. */
4050 compare_ranges (enum tree_code comp
, value_range_t
*vr0
, value_range_t
*vr1
,
4051 bool *strict_overflow_p
)
4053 /* VARYING or UNDEFINED ranges cannot be compared. */
4054 if (vr0
->type
== VR_VARYING
4055 || vr0
->type
== VR_UNDEFINED
4056 || vr1
->type
== VR_VARYING
4057 || vr1
->type
== VR_UNDEFINED
)
4060 /* Anti-ranges need to be handled separately. */
4061 if (vr0
->type
== VR_ANTI_RANGE
|| vr1
->type
== VR_ANTI_RANGE
)
4063 /* If both are anti-ranges, then we cannot compute any
4065 if (vr0
->type
== VR_ANTI_RANGE
&& vr1
->type
== VR_ANTI_RANGE
)
4068 /* These comparisons are never statically computable. */
4075 /* Equality can be computed only between a range and an
4076 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
4077 if (vr0
->type
== VR_RANGE
)
4079 /* To simplify processing, make VR0 the anti-range. */
4080 value_range_t
*tmp
= vr0
;
4085 gcc_assert (comp
== NE_EXPR
|| comp
== EQ_EXPR
);
4087 if (compare_values_warnv (vr0
->min
, vr1
->min
, strict_overflow_p
) == 0
4088 && compare_values_warnv (vr0
->max
, vr1
->max
, strict_overflow_p
) == 0)
4089 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
4094 if (!usable_range_p (vr0
, strict_overflow_p
)
4095 || !usable_range_p (vr1
, strict_overflow_p
))
4098 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
4099 operands around and change the comparison code. */
4100 if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
4103 comp
= (comp
== GT_EXPR
) ? LT_EXPR
: LE_EXPR
;
4109 if (comp
== EQ_EXPR
)
4111 /* Equality may only be computed if both ranges represent
4112 exactly one value. */
4113 if (compare_values_warnv (vr0
->min
, vr0
->max
, strict_overflow_p
) == 0
4114 && compare_values_warnv (vr1
->min
, vr1
->max
, strict_overflow_p
) == 0)
4116 int cmp_min
= compare_values_warnv (vr0
->min
, vr1
->min
,
4118 int cmp_max
= compare_values_warnv (vr0
->max
, vr1
->max
,
4120 if (cmp_min
== 0 && cmp_max
== 0)
4121 return boolean_true_node
;
4122 else if (cmp_min
!= -2 && cmp_max
!= -2)
4123 return boolean_false_node
;
4125 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
4126 else if (compare_values_warnv (vr0
->min
, vr1
->max
,
4127 strict_overflow_p
) == 1
4128 || compare_values_warnv (vr1
->min
, vr0
->max
,
4129 strict_overflow_p
) == 1)
4130 return boolean_false_node
;
4134 else if (comp
== NE_EXPR
)
4138 /* If VR0 is completely to the left or completely to the right
4139 of VR1, they are always different. Notice that we need to
4140 make sure that both comparisons yield similar results to
4141 avoid comparing values that cannot be compared at
4143 cmp1
= compare_values_warnv (vr0
->max
, vr1
->min
, strict_overflow_p
);
4144 cmp2
= compare_values_warnv (vr0
->min
, vr1
->max
, strict_overflow_p
);
4145 if ((cmp1
== -1 && cmp2
== -1) || (cmp1
== 1 && cmp2
== 1))
4146 return boolean_true_node
;
4148 /* If VR0 and VR1 represent a single value and are identical,
4150 else if (compare_values_warnv (vr0
->min
, vr0
->max
,
4151 strict_overflow_p
) == 0
4152 && compare_values_warnv (vr1
->min
, vr1
->max
,
4153 strict_overflow_p
) == 0
4154 && compare_values_warnv (vr0
->min
, vr1
->min
,
4155 strict_overflow_p
) == 0
4156 && compare_values_warnv (vr0
->max
, vr1
->max
,
4157 strict_overflow_p
) == 0)
4158 return boolean_false_node
;
4160 /* Otherwise, they may or may not be different. */
4164 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
4168 /* If VR0 is to the left of VR1, return true. */
4169 tst
= compare_values_warnv (vr0
->max
, vr1
->min
, strict_overflow_p
);
4170 if ((comp
== LT_EXPR
&& tst
== -1)
4171 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
4173 if (overflow_infinity_range_p (vr0
)
4174 || overflow_infinity_range_p (vr1
))
4175 *strict_overflow_p
= true;
4176 return boolean_true_node
;
4179 /* If VR0 is to the right of VR1, return false. */
4180 tst
= compare_values_warnv (vr0
->min
, vr1
->max
, strict_overflow_p
);
4181 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
4182 || (comp
== LE_EXPR
&& tst
== 1))
4184 if (overflow_infinity_range_p (vr0
)
4185 || overflow_infinity_range_p (vr1
))
4186 *strict_overflow_p
= true;
4187 return boolean_false_node
;
4190 /* Otherwise, we don't know. */
4198 /* Given a value range VR, a value VAL and a comparison code COMP, return
4199 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
4200 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
4201 always returns false. Return NULL_TREE if it is not always
4202 possible to determine the value of the comparison. Also set
4203 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
4204 infinity was used in the test. */
4207 compare_range_with_value (enum tree_code comp
, value_range_t
*vr
, tree val
,
4208 bool *strict_overflow_p
)
4210 if (vr
->type
== VR_VARYING
|| vr
->type
== VR_UNDEFINED
)
4213 /* Anti-ranges need to be handled separately. */
4214 if (vr
->type
== VR_ANTI_RANGE
)
4216 /* For anti-ranges, the only predicates that we can compute at
4217 compile time are equality and inequality. */
4224 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
4225 if (value_inside_range (val
, vr
->min
, vr
->max
) == 1)
4226 return (comp
== NE_EXPR
) ? boolean_true_node
: boolean_false_node
;
4231 if (!usable_range_p (vr
, strict_overflow_p
))
4234 if (comp
== EQ_EXPR
)
4236 /* EQ_EXPR may only be computed if VR represents exactly
4238 if (compare_values_warnv (vr
->min
, vr
->max
, strict_overflow_p
) == 0)
4240 int cmp
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
4242 return boolean_true_node
;
4243 else if (cmp
== -1 || cmp
== 1 || cmp
== 2)
4244 return boolean_false_node
;
4246 else if (compare_values_warnv (val
, vr
->min
, strict_overflow_p
) == -1
4247 || compare_values_warnv (vr
->max
, val
, strict_overflow_p
) == -1)
4248 return boolean_false_node
;
4252 else if (comp
== NE_EXPR
)
4254 /* If VAL is not inside VR, then they are always different. */
4255 if (compare_values_warnv (vr
->max
, val
, strict_overflow_p
) == -1
4256 || compare_values_warnv (vr
->min
, val
, strict_overflow_p
) == 1)
4257 return boolean_true_node
;
4259 /* If VR represents exactly one value equal to VAL, then return
4261 if (compare_values_warnv (vr
->min
, vr
->max
, strict_overflow_p
) == 0
4262 && compare_values_warnv (vr
->min
, val
, strict_overflow_p
) == 0)
4263 return boolean_false_node
;
4265 /* Otherwise, they may or may not be different. */
4268 else if (comp
== LT_EXPR
|| comp
== LE_EXPR
)
4272 /* If VR is to the left of VAL, return true. */
4273 tst
= compare_values_warnv (vr
->max
, val
, strict_overflow_p
);
4274 if ((comp
== LT_EXPR
&& tst
== -1)
4275 || (comp
== LE_EXPR
&& (tst
== -1 || tst
== 0)))
4277 if (overflow_infinity_range_p (vr
))
4278 *strict_overflow_p
= true;
4279 return boolean_true_node
;
4282 /* If VR is to the right of VAL, return false. */
4283 tst
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
4284 if ((comp
== LT_EXPR
&& (tst
== 0 || tst
== 1))
4285 || (comp
== LE_EXPR
&& tst
== 1))
4287 if (overflow_infinity_range_p (vr
))
4288 *strict_overflow_p
= true;
4289 return boolean_false_node
;
4292 /* Otherwise, we don't know. */
4295 else if (comp
== GT_EXPR
|| comp
== GE_EXPR
)
4299 /* If VR is to the right of VAL, return true. */
4300 tst
= compare_values_warnv (vr
->min
, val
, strict_overflow_p
);
4301 if ((comp
== GT_EXPR
&& tst
== 1)
4302 || (comp
== GE_EXPR
&& (tst
== 0 || tst
== 1)))
4304 if (overflow_infinity_range_p (vr
))
4305 *strict_overflow_p
= true;
4306 return boolean_true_node
;
4309 /* If VR is to the left of VAL, return false. */
4310 tst
= compare_values_warnv (vr
->max
, val
, strict_overflow_p
);
4311 if ((comp
== GT_EXPR
&& (tst
== -1 || tst
== 0))
4312 || (comp
== GE_EXPR
&& tst
== -1))
4314 if (overflow_infinity_range_p (vr
))
4315 *strict_overflow_p
= true;
4316 return boolean_false_node
;
4319 /* Otherwise, we don't know. */
4327 /* Debugging dumps. */
4329 void dump_value_range (FILE *, value_range_t
*);
4330 void debug_value_range (value_range_t
*);
4331 void dump_all_value_ranges (FILE *);
4332 void debug_all_value_ranges (void);
4333 void dump_vr_equiv (FILE *, bitmap
);
4334 void debug_vr_equiv (bitmap
);
4337 /* Dump value range VR to FILE. */
4340 dump_value_range (FILE *file
, value_range_t
*vr
)
4343 fprintf (file
, "[]");
4344 else if (vr
->type
== VR_UNDEFINED
)
4345 fprintf (file
, "UNDEFINED");
4346 else if (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
)
4348 tree type
= TREE_TYPE (vr
->min
);
4350 fprintf (file
, "%s[", (vr
->type
== VR_ANTI_RANGE
) ? "~" : "");
4352 if (is_negative_overflow_infinity (vr
->min
))
4353 fprintf (file
, "-INF(OVF)");
4354 else if (INTEGRAL_TYPE_P (type
)
4355 && !TYPE_UNSIGNED (type
)
4356 && vrp_val_is_min (vr
->min
))
4357 fprintf (file
, "-INF");
4359 print_generic_expr (file
, vr
->min
, 0);
4361 fprintf (file
, ", ");
4363 if (is_positive_overflow_infinity (vr
->max
))
4364 fprintf (file
, "+INF(OVF)");
4365 else if (INTEGRAL_TYPE_P (type
)
4366 && vrp_val_is_max (vr
->max
))
4367 fprintf (file
, "+INF");
4369 print_generic_expr (file
, vr
->max
, 0);
4371 fprintf (file
, "]");
4378 fprintf (file
, " EQUIVALENCES: { ");
4380 EXECUTE_IF_SET_IN_BITMAP (vr
->equiv
, 0, i
, bi
)
4382 print_generic_expr (file
, ssa_name (i
), 0);
4383 fprintf (file
, " ");
4387 fprintf (file
, "} (%u elements)", c
);
4390 else if (vr
->type
== VR_VARYING
)
4391 fprintf (file
, "VARYING");
4393 fprintf (file
, "INVALID RANGE");
4397 /* Dump value range VR to stderr. */
4400 debug_value_range (value_range_t
*vr
)
4402 dump_value_range (stderr
, vr
);
4403 fprintf (stderr
, "\n");
4407 /* Dump value ranges of all SSA_NAMEs to FILE. */
4410 dump_all_value_ranges (FILE *file
)
4414 for (i
= 0; i
< num_vr_values
; i
++)
4418 print_generic_expr (file
, ssa_name (i
), 0);
4419 fprintf (file
, ": ");
4420 dump_value_range (file
, vr_value
[i
]);
4421 fprintf (file
, "\n");
4425 fprintf (file
, "\n");
4429 /* Dump all value ranges to stderr. */
4432 debug_all_value_ranges (void)
4434 dump_all_value_ranges (stderr
);
4438 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
4439 create a new SSA name N and return the assertion assignment
4440 'V = ASSERT_EXPR <V, V OP W>'. */
4443 build_assert_expr_for (tree cond
, tree v
)
4448 gcc_assert (TREE_CODE (v
) == SSA_NAME
4449 && COMPARISON_CLASS_P (cond
));
4451 a
= build2 (ASSERT_EXPR
, TREE_TYPE (v
), v
, cond
);
4452 assertion
= gimple_build_assign (NULL_TREE
, a
);
4454 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
4455 operand of the ASSERT_EXPR. Create it so the new name and the old one
4456 are registered in the replacement table so that we can fix the SSA web
4457 after adding all the ASSERT_EXPRs. */
4458 create_new_def_for (v
, assertion
, NULL
);
4464 /* Return false if EXPR is a predicate expression involving floating
4468 fp_predicate (gimple stmt
)
4470 GIMPLE_CHECK (stmt
, GIMPLE_COND
);
4472 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt
)));
4475 /* If the range of values taken by OP can be inferred after STMT executes,
4476 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4477 describes the inferred range. Return true if a range could be
4481 infer_value_range (gimple stmt
, tree op
, enum tree_code
*comp_code_p
, tree
*val_p
)
4484 *comp_code_p
= ERROR_MARK
;
4486 /* Do not attempt to infer anything in names that flow through
4488 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op
))
4491 /* Similarly, don't infer anything from statements that may throw
4492 exceptions. ??? Relax this requirement? */
4493 if (stmt_could_throw_p (stmt
))
4496 /* If STMT is the last statement of a basic block with no
4497 successors, there is no point inferring anything about any of its
4498 operands. We would not be able to find a proper insertion point
4499 for the assertion, anyway. */
4500 if (stmt_ends_bb_p (stmt
) && EDGE_COUNT (gimple_bb (stmt
)->succs
) == 0)
4503 if (infer_nonnull_range (stmt
, op
))
4505 *val_p
= build_int_cst (TREE_TYPE (op
), 0);
4506 *comp_code_p
= NE_EXPR
;
4514 void dump_asserts_for (FILE *, tree
);
4515 void debug_asserts_for (tree
);
4516 void dump_all_asserts (FILE *);
4517 void debug_all_asserts (void);
4519 /* Dump all the registered assertions for NAME to FILE. */
4522 dump_asserts_for (FILE *file
, tree name
)
4526 fprintf (file
, "Assertions to be inserted for ");
4527 print_generic_expr (file
, name
, 0);
4528 fprintf (file
, "\n");
4530 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
4533 fprintf (file
, "\t");
4534 print_gimple_stmt (file
, gsi_stmt (loc
->si
), 0, 0);
4535 fprintf (file
, "\n\tBB #%d", loc
->bb
->index
);
4538 fprintf (file
, "\n\tEDGE %d->%d", loc
->e
->src
->index
,
4539 loc
->e
->dest
->index
);
4540 dump_edge_info (file
, loc
->e
, dump_flags
, 0);
4542 fprintf (file
, "\n\tPREDICATE: ");
4543 print_generic_expr (file
, name
, 0);
4544 fprintf (file
, " %s ", get_tree_code_name (loc
->comp_code
));
4545 print_generic_expr (file
, loc
->val
, 0);
4546 fprintf (file
, "\n\n");
4550 fprintf (file
, "\n");
4554 /* Dump all the registered assertions for NAME to stderr. */
4557 debug_asserts_for (tree name
)
4559 dump_asserts_for (stderr
, name
);
4563 /* Dump all the registered assertions for all the names to FILE. */
4566 dump_all_asserts (FILE *file
)
4571 fprintf (file
, "\nASSERT_EXPRs to be inserted\n\n");
4572 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
4573 dump_asserts_for (file
, ssa_name (i
));
4574 fprintf (file
, "\n");
4578 /* Dump all the registered assertions for all the names to stderr. */
4581 debug_all_asserts (void)
4583 dump_all_asserts (stderr
);
4587 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4588 'EXPR COMP_CODE VAL' at a location that dominates block BB or
4589 E->DEST, then register this location as a possible insertion point
4590 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
4592 BB, E and SI provide the exact insertion point for the new
4593 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
4594 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4595 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4596 must not be NULL. */
4599 register_new_assert_for (tree name
, tree expr
,
4600 enum tree_code comp_code
,
4604 gimple_stmt_iterator si
)
4606 assert_locus_t n
, loc
, last_loc
;
4607 basic_block dest_bb
;
4609 gcc_checking_assert (bb
== NULL
|| e
== NULL
);
4612 gcc_checking_assert (gimple_code (gsi_stmt (si
)) != GIMPLE_COND
4613 && gimple_code (gsi_stmt (si
)) != GIMPLE_SWITCH
);
4615 /* Never build an assert comparing against an integer constant with
4616 TREE_OVERFLOW set. This confuses our undefined overflow warning
4618 if (TREE_OVERFLOW_P (val
))
4619 val
= drop_tree_overflow (val
);
4621 /* The new assertion A will be inserted at BB or E. We need to
4622 determine if the new location is dominated by a previously
4623 registered location for A. If we are doing an edge insertion,
4624 assume that A will be inserted at E->DEST. Note that this is not
4627 If E is a critical edge, it will be split. But even if E is
4628 split, the new block will dominate the same set of blocks that
4631 The reverse, however, is not true, blocks dominated by E->DEST
4632 will not be dominated by the new block created to split E. So,
4633 if the insertion location is on a critical edge, we will not use
4634 the new location to move another assertion previously registered
4635 at a block dominated by E->DEST. */
4636 dest_bb
= (bb
) ? bb
: e
->dest
;
4638 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
4639 VAL at a block dominating DEST_BB, then we don't need to insert a new
4640 one. Similarly, if the same assertion already exists at a block
4641 dominated by DEST_BB and the new location is not on a critical
4642 edge, then update the existing location for the assertion (i.e.,
4643 move the assertion up in the dominance tree).
4645 Note, this is implemented as a simple linked list because there
4646 should not be more than a handful of assertions registered per
4647 name. If this becomes a performance problem, a table hashed by
4648 COMP_CODE and VAL could be implemented. */
4649 loc
= asserts_for
[SSA_NAME_VERSION (name
)];
4653 if (loc
->comp_code
== comp_code
4655 || operand_equal_p (loc
->val
, val
, 0))
4656 && (loc
->expr
== expr
4657 || operand_equal_p (loc
->expr
, expr
, 0)))
4659 /* If E is not a critical edge and DEST_BB
4660 dominates the existing location for the assertion, move
4661 the assertion up in the dominance tree by updating its
4662 location information. */
4663 if ((e
== NULL
|| !EDGE_CRITICAL_P (e
))
4664 && dominated_by_p (CDI_DOMINATORS
, loc
->bb
, dest_bb
))
4673 /* Update the last node of the list and move to the next one. */
4678 /* If we didn't find an assertion already registered for
4679 NAME COMP_CODE VAL, add a new one at the end of the list of
4680 assertions associated with NAME. */
4681 n
= XNEW (struct assert_locus_d
);
4685 n
->comp_code
= comp_code
;
4693 asserts_for
[SSA_NAME_VERSION (name
)] = n
;
4695 bitmap_set_bit (need_assert_for
, SSA_NAME_VERSION (name
));
4698 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4699 Extract a suitable test code and value and store them into *CODE_P and
4700 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4702 If no extraction was possible, return FALSE, otherwise return TRUE.
4704 If INVERT is true, then we invert the result stored into *CODE_P. */
4707 extract_code_and_val_from_cond_with_ops (tree name
, enum tree_code cond_code
,
4708 tree cond_op0
, tree cond_op1
,
4709 bool invert
, enum tree_code
*code_p
,
4712 enum tree_code comp_code
;
4715 /* Otherwise, we have a comparison of the form NAME COMP VAL
4716 or VAL COMP NAME. */
4717 if (name
== cond_op1
)
4719 /* If the predicate is of the form VAL COMP NAME, flip
4720 COMP around because we need to register NAME as the
4721 first operand in the predicate. */
4722 comp_code
= swap_tree_comparison (cond_code
);
4727 /* The comparison is of the form NAME COMP VAL, so the
4728 comparison code remains unchanged. */
4729 comp_code
= cond_code
;
4733 /* Invert the comparison code as necessary. */
4735 comp_code
= invert_tree_comparison (comp_code
, 0);
4737 /* VRP does not handle float types. */
4738 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val
)))
4741 /* Do not register always-false predicates.
4742 FIXME: this works around a limitation in fold() when dealing with
4743 enumerations. Given 'enum { N1, N2 } x;', fold will not
4744 fold 'if (x > N2)' to 'if (0)'. */
4745 if ((comp_code
== GT_EXPR
|| comp_code
== LT_EXPR
)
4746 && INTEGRAL_TYPE_P (TREE_TYPE (val
)))
4748 tree min
= TYPE_MIN_VALUE (TREE_TYPE (val
));
4749 tree max
= TYPE_MAX_VALUE (TREE_TYPE (val
));
4751 if (comp_code
== GT_EXPR
4753 || compare_values (val
, max
) == 0))
4756 if (comp_code
== LT_EXPR
4758 || compare_values (val
, min
) == 0))
4761 *code_p
= comp_code
;
4766 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
4767 (otherwise return VAL). VAL and MASK must be zero-extended for
4768 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
4769 (to transform signed values into unsigned) and at the end xor
4773 masked_increment (double_int val
, double_int mask
, double_int sgnbit
,
4776 double_int bit
= double_int_one
, res
;
4780 for (i
= 0; i
< prec
; i
++, bit
+= bit
)
4783 if ((res
& bit
).is_zero ())
4785 res
= bit
- double_int_one
;
4786 res
= (val
+ bit
).and_not (res
);
4789 return res
^ sgnbit
;
4791 return val
^ sgnbit
;
4794 /* Try to register an edge assertion for SSA name NAME on edge E for
4795 the condition COND contributing to the conditional jump pointed to by BSI.
4796 Invert the condition COND if INVERT is true.
4797 Return true if an assertion for NAME could be registered. */
4800 register_edge_assert_for_2 (tree name
, edge e
, gimple_stmt_iterator bsi
,
4801 enum tree_code cond_code
,
4802 tree cond_op0
, tree cond_op1
, bool invert
)
4805 enum tree_code comp_code
;
4806 bool retval
= false;
4808 if (!extract_code_and_val_from_cond_with_ops (name
, cond_code
,
4811 invert
, &comp_code
, &val
))
4814 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4815 reachable from E. */
4816 if (live_on_edge (e
, name
)
4817 && !has_single_use (name
))
4819 register_new_assert_for (name
, name
, comp_code
, val
, NULL
, e
, bsi
);
4823 /* In the case of NAME <= CST and NAME being defined as
4824 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4825 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4826 This catches range and anti-range tests. */
4827 if ((comp_code
== LE_EXPR
4828 || comp_code
== GT_EXPR
)
4829 && TREE_CODE (val
) == INTEGER_CST
4830 && TYPE_UNSIGNED (TREE_TYPE (val
)))
4832 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
4833 tree cst2
= NULL_TREE
, name2
= NULL_TREE
, name3
= NULL_TREE
;
4835 /* Extract CST2 from the (optional) addition. */
4836 if (is_gimple_assign (def_stmt
)
4837 && gimple_assign_rhs_code (def_stmt
) == PLUS_EXPR
)
4839 name2
= gimple_assign_rhs1 (def_stmt
);
4840 cst2
= gimple_assign_rhs2 (def_stmt
);
4841 if (TREE_CODE (name2
) == SSA_NAME
4842 && TREE_CODE (cst2
) == INTEGER_CST
)
4843 def_stmt
= SSA_NAME_DEF_STMT (name2
);
4846 /* Extract NAME2 from the (optional) sign-changing cast. */
4847 if (gimple_assign_cast_p (def_stmt
))
4849 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt
))
4850 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))
4851 && (TYPE_PRECISION (gimple_expr_type (def_stmt
))
4852 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))))
4853 name3
= gimple_assign_rhs1 (def_stmt
);
4856 /* If name3 is used later, create an ASSERT_EXPR for it. */
4857 if (name3
!= NULL_TREE
4858 && TREE_CODE (name3
) == SSA_NAME
4859 && (cst2
== NULL_TREE
4860 || TREE_CODE (cst2
) == INTEGER_CST
)
4861 && INTEGRAL_TYPE_P (TREE_TYPE (name3
))
4862 && live_on_edge (e
, name3
)
4863 && !has_single_use (name3
))
4867 /* Build an expression for the range test. */
4868 tmp
= build1 (NOP_EXPR
, TREE_TYPE (name
), name3
);
4869 if (cst2
!= NULL_TREE
)
4870 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name
), tmp
, cst2
);
4874 fprintf (dump_file
, "Adding assert for ");
4875 print_generic_expr (dump_file
, name3
, 0);
4876 fprintf (dump_file
, " from ");
4877 print_generic_expr (dump_file
, tmp
, 0);
4878 fprintf (dump_file
, "\n");
4881 register_new_assert_for (name3
, tmp
, comp_code
, val
, NULL
, e
, bsi
);
4886 /* If name2 is used later, create an ASSERT_EXPR for it. */
4887 if (name2
!= NULL_TREE
4888 && TREE_CODE (name2
) == SSA_NAME
4889 && TREE_CODE (cst2
) == INTEGER_CST
4890 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
4891 && live_on_edge (e
, name2
)
4892 && !has_single_use (name2
))
4896 /* Build an expression for the range test. */
4898 if (TREE_TYPE (name
) != TREE_TYPE (name2
))
4899 tmp
= build1 (NOP_EXPR
, TREE_TYPE (name
), tmp
);
4900 if (cst2
!= NULL_TREE
)
4901 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name
), tmp
, cst2
);
4905 fprintf (dump_file
, "Adding assert for ");
4906 print_generic_expr (dump_file
, name2
, 0);
4907 fprintf (dump_file
, " from ");
4908 print_generic_expr (dump_file
, tmp
, 0);
4909 fprintf (dump_file
, "\n");
4912 register_new_assert_for (name2
, tmp
, comp_code
, val
, NULL
, e
, bsi
);
4918 /* In the case of post-in/decrement tests like if (i++) ... and uses
4919 of the in/decremented value on the edge the extra name we want to
4920 assert for is not on the def chain of the name compared. Instead
4921 it is in the set of use stmts. */
4922 if ((comp_code
== NE_EXPR
4923 || comp_code
== EQ_EXPR
)
4924 && TREE_CODE (val
) == INTEGER_CST
)
4926 imm_use_iterator ui
;
4928 FOR_EACH_IMM_USE_STMT (use_stmt
, ui
, name
)
4930 /* Cut off to use-stmts that are in the predecessor. */
4931 if (gimple_bb (use_stmt
) != e
->src
)
4934 if (!is_gimple_assign (use_stmt
))
4937 enum tree_code code
= gimple_assign_rhs_code (use_stmt
);
4938 if (code
!= PLUS_EXPR
4939 && code
!= MINUS_EXPR
)
4942 tree cst
= gimple_assign_rhs2 (use_stmt
);
4943 if (TREE_CODE (cst
) != INTEGER_CST
)
4946 tree name2
= gimple_assign_lhs (use_stmt
);
4947 if (live_on_edge (e
, name2
))
4949 cst
= int_const_binop (code
, val
, cst
);
4950 register_new_assert_for (name2
, name2
, comp_code
, cst
,
4957 if (TREE_CODE_CLASS (comp_code
) == tcc_comparison
4958 && TREE_CODE (val
) == INTEGER_CST
)
4960 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
4961 tree name2
= NULL_TREE
, names
[2], cst2
= NULL_TREE
;
4962 tree val2
= NULL_TREE
;
4963 double_int mask
= double_int_zero
;
4964 unsigned int prec
= TYPE_PRECISION (TREE_TYPE (val
));
4965 unsigned int nprec
= prec
;
4966 enum tree_code rhs_code
= ERROR_MARK
;
4968 if (is_gimple_assign (def_stmt
))
4969 rhs_code
= gimple_assign_rhs_code (def_stmt
);
4971 /* Add asserts for NAME cmp CST and NAME being defined
4972 as NAME = (int) NAME2. */
4973 if (!TYPE_UNSIGNED (TREE_TYPE (val
))
4974 && (comp_code
== LE_EXPR
|| comp_code
== LT_EXPR
4975 || comp_code
== GT_EXPR
|| comp_code
== GE_EXPR
)
4976 && gimple_assign_cast_p (def_stmt
))
4978 name2
= gimple_assign_rhs1 (def_stmt
);
4979 if (CONVERT_EXPR_CODE_P (rhs_code
)
4980 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
4981 && TYPE_UNSIGNED (TREE_TYPE (name2
))
4982 && prec
== TYPE_PRECISION (TREE_TYPE (name2
))
4983 && (comp_code
== LE_EXPR
|| comp_code
== GT_EXPR
4984 || !tree_int_cst_equal (val
,
4985 TYPE_MIN_VALUE (TREE_TYPE (val
))))
4986 && live_on_edge (e
, name2
)
4987 && !has_single_use (name2
))
4990 enum tree_code new_comp_code
= comp_code
;
4992 cst
= fold_convert (TREE_TYPE (name2
),
4993 TYPE_MIN_VALUE (TREE_TYPE (val
)));
4994 /* Build an expression for the range test. */
4995 tmp
= build2 (PLUS_EXPR
, TREE_TYPE (name2
), name2
, cst
);
4996 cst
= fold_build2 (PLUS_EXPR
, TREE_TYPE (name2
), cst
,
4997 fold_convert (TREE_TYPE (name2
), val
));
4998 if (comp_code
== LT_EXPR
|| comp_code
== GE_EXPR
)
5000 new_comp_code
= comp_code
== LT_EXPR
? LE_EXPR
: GT_EXPR
;
5001 cst
= fold_build2 (MINUS_EXPR
, TREE_TYPE (name2
), cst
,
5002 build_int_cst (TREE_TYPE (name2
), 1));
5007 fprintf (dump_file
, "Adding assert for ");
5008 print_generic_expr (dump_file
, name2
, 0);
5009 fprintf (dump_file
, " from ");
5010 print_generic_expr (dump_file
, tmp
, 0);
5011 fprintf (dump_file
, "\n");
5014 register_new_assert_for (name2
, tmp
, new_comp_code
, cst
, NULL
,
5021 /* Add asserts for NAME cmp CST and NAME being defined as
5022 NAME = NAME2 >> CST2.
5024 Extract CST2 from the right shift. */
5025 if (rhs_code
== RSHIFT_EXPR
)
5027 name2
= gimple_assign_rhs1 (def_stmt
);
5028 cst2
= gimple_assign_rhs2 (def_stmt
);
5029 if (TREE_CODE (name2
) == SSA_NAME
5030 && tree_fits_uhwi_p (cst2
)
5031 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
5032 && IN_RANGE (tree_to_uhwi (cst2
), 1, prec
- 1)
5033 && prec
<= HOST_BITS_PER_DOUBLE_INT
5034 && prec
== GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (val
)))
5035 && live_on_edge (e
, name2
)
5036 && !has_single_use (name2
))
5038 mask
= double_int::mask (tree_to_uhwi (cst2
));
5039 val2
= fold_binary (LSHIFT_EXPR
, TREE_TYPE (val
), val
, cst2
);
5042 if (val2
!= NULL_TREE
5043 && TREE_CODE (val2
) == INTEGER_CST
5044 && simple_cst_equal (fold_build2 (RSHIFT_EXPR
,
5048 enum tree_code new_comp_code
= comp_code
;
5052 if (comp_code
== EQ_EXPR
|| comp_code
== NE_EXPR
)
5054 if (!TYPE_UNSIGNED (TREE_TYPE (val
)))
5056 tree type
= build_nonstandard_integer_type (prec
, 1);
5057 tmp
= build1 (NOP_EXPR
, type
, name2
);
5058 val2
= fold_convert (type
, val2
);
5060 tmp
= fold_build2 (MINUS_EXPR
, TREE_TYPE (tmp
), tmp
, val2
);
5061 new_val
= double_int_to_tree (TREE_TYPE (tmp
), mask
);
5062 new_comp_code
= comp_code
== EQ_EXPR
? LE_EXPR
: GT_EXPR
;
5064 else if (comp_code
== LT_EXPR
|| comp_code
== GE_EXPR
)
5067 = double_int::min_value (prec
, TYPE_UNSIGNED (TREE_TYPE (val
)));
5069 if (minval
== tree_to_double_int (new_val
))
5070 new_val
= NULL_TREE
;
5075 = double_int::max_value (prec
, TYPE_UNSIGNED (TREE_TYPE (val
)));
5076 mask
|= tree_to_double_int (val2
);
5078 new_val
= NULL_TREE
;
5080 new_val
= double_int_to_tree (TREE_TYPE (val2
), mask
);
5087 fprintf (dump_file
, "Adding assert for ");
5088 print_generic_expr (dump_file
, name2
, 0);
5089 fprintf (dump_file
, " from ");
5090 print_generic_expr (dump_file
, tmp
, 0);
5091 fprintf (dump_file
, "\n");
5094 register_new_assert_for (name2
, tmp
, new_comp_code
, new_val
,
5100 /* Add asserts for NAME cmp CST and NAME being defined as
5101 NAME = NAME2 & CST2.
5103 Extract CST2 from the and.
5106 NAME = (unsigned) NAME2;
5107 casts where NAME's type is unsigned and has smaller precision
5108 than NAME2's type as if it was NAME = NAME2 & MASK. */
5109 names
[0] = NULL_TREE
;
5110 names
[1] = NULL_TREE
;
5112 if (rhs_code
== BIT_AND_EXPR
5113 || (CONVERT_EXPR_CODE_P (rhs_code
)
5114 && TREE_CODE (TREE_TYPE (val
)) == INTEGER_TYPE
5115 && TYPE_UNSIGNED (TREE_TYPE (val
))
5116 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt
)))
5120 name2
= gimple_assign_rhs1 (def_stmt
);
5121 if (rhs_code
== BIT_AND_EXPR
)
5122 cst2
= gimple_assign_rhs2 (def_stmt
);
5125 cst2
= TYPE_MAX_VALUE (TREE_TYPE (val
));
5126 nprec
= TYPE_PRECISION (TREE_TYPE (name2
));
5128 if (TREE_CODE (name2
) == SSA_NAME
5129 && INTEGRAL_TYPE_P (TREE_TYPE (name2
))
5130 && TREE_CODE (cst2
) == INTEGER_CST
5131 && !integer_zerop (cst2
)
5132 && nprec
<= HOST_BITS_PER_DOUBLE_INT
5134 || TYPE_UNSIGNED (TREE_TYPE (val
))))
5136 gimple def_stmt2
= SSA_NAME_DEF_STMT (name2
);
5137 if (gimple_assign_cast_p (def_stmt2
))
5139 names
[1] = gimple_assign_rhs1 (def_stmt2
);
5140 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2
))
5141 || !INTEGRAL_TYPE_P (TREE_TYPE (names
[1]))
5142 || (TYPE_PRECISION (TREE_TYPE (name2
))
5143 != TYPE_PRECISION (TREE_TYPE (names
[1])))
5144 || !live_on_edge (e
, names
[1])
5145 || has_single_use (names
[1]))
5146 names
[1] = NULL_TREE
;
5148 if (live_on_edge (e
, name2
)
5149 && !has_single_use (name2
))
5153 if (names
[0] || names
[1])
5155 double_int minv
, maxv
= double_int_zero
, valv
, cst2v
;
5156 double_int tem
, sgnbit
;
5157 bool valid_p
= false, valn
= false, cst2n
= false;
5158 enum tree_code ccode
= comp_code
;
5160 valv
= tree_to_double_int (val
).zext (nprec
);
5161 cst2v
= tree_to_double_int (cst2
).zext (nprec
);
5162 if (!TYPE_UNSIGNED (TREE_TYPE (val
)))
5164 valn
= valv
.sext (nprec
).is_negative ();
5165 cst2n
= cst2v
.sext (nprec
).is_negative ();
5167 /* If CST2 doesn't have most significant bit set,
5168 but VAL is negative, we have comparison like
5169 if ((x & 0x123) > -4) (always true). Just give up. */
5173 sgnbit
= double_int_one
.llshift (nprec
- 1, nprec
).zext (nprec
);
5175 sgnbit
= double_int_zero
;
5176 minv
= valv
& cst2v
;
5180 /* Minimum unsigned value for equality is VAL & CST2
5181 (should be equal to VAL, otherwise we probably should
5182 have folded the comparison into false) and
5183 maximum unsigned value is VAL | ~CST2. */
5184 maxv
= valv
| ~cst2v
;
5185 maxv
= maxv
.zext (nprec
);
5189 tem
= valv
| ~cst2v
;
5190 tem
= tem
.zext (nprec
);
5191 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
5192 if (valv
.is_zero ())
5195 sgnbit
= double_int_zero
;
5198 /* If (VAL | ~CST2) is all ones, handle it as
5199 (X & CST2) < VAL. */
5200 if (tem
== double_int::mask (nprec
))
5204 sgnbit
= double_int_zero
;
5208 && cst2v
.sext (nprec
).is_negative ())
5210 = double_int_one
.llshift (nprec
- 1, nprec
).zext (nprec
);
5211 if (!sgnbit
.is_zero ())
5219 if (tem
== double_int::mask (nprec
- 1))
5225 sgnbit
= double_int_zero
;
5229 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
5230 is VAL and maximum unsigned value is ~0. For signed
5231 comparison, if CST2 doesn't have most significant bit
5232 set, handle it similarly. If CST2 has MSB set,
5233 the minimum is the same, and maximum is ~0U/2. */
5236 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
5238 minv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
5242 maxv
= double_int::mask (nprec
- (cst2n
? 1 : 0));
5247 /* Find out smallest MINV where MINV > VAL
5248 && (MINV & CST2) == MINV, if any. If VAL is signed and
5249 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
5250 minv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
5253 maxv
= double_int::mask (nprec
- (cst2n
? 1 : 0));
5257 /* Minimum unsigned value for <= is 0 and maximum
5258 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
5259 Otherwise, find smallest VAL2 where VAL2 > VAL
5260 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5262 For signed comparison, if CST2 doesn't have most
5263 significant bit set, handle it similarly. If CST2 has
5264 MSB set, the maximum is the same and minimum is INT_MIN. */
5269 maxv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
5272 maxv
-= double_int_one
;
5275 maxv
= maxv
.zext (nprec
);
5281 /* Minimum unsigned value for < is 0 and maximum
5282 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
5283 Otherwise, find smallest VAL2 where VAL2 > VAL
5284 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5286 For signed comparison, if CST2 doesn't have most
5287 significant bit set, handle it similarly. If CST2 has
5288 MSB set, the maximum is the same and minimum is INT_MIN. */
5297 maxv
= masked_increment (valv
, cst2v
, sgnbit
, nprec
);
5301 maxv
-= double_int_one
;
5303 maxv
= maxv
.zext (nprec
);
5311 && (maxv
- minv
).zext (nprec
) != double_int::mask (nprec
))
5313 tree tmp
, new_val
, type
;
5316 for (i
= 0; i
< 2; i
++)
5319 double_int maxv2
= maxv
;
5321 type
= TREE_TYPE (names
[i
]);
5322 if (!TYPE_UNSIGNED (type
))
5324 type
= build_nonstandard_integer_type (nprec
, 1);
5325 tmp
= build1 (NOP_EXPR
, type
, names
[i
]);
5327 if (!minv
.is_zero ())
5329 tmp
= build2 (PLUS_EXPR
, type
, tmp
,
5330 double_int_to_tree (type
, -minv
));
5331 maxv2
= maxv
- minv
;
5333 new_val
= double_int_to_tree (type
, maxv2
);
5337 fprintf (dump_file
, "Adding assert for ");
5338 print_generic_expr (dump_file
, names
[i
], 0);
5339 fprintf (dump_file
, " from ");
5340 print_generic_expr (dump_file
, tmp
, 0);
5341 fprintf (dump_file
, "\n");
5344 register_new_assert_for (names
[i
], tmp
, LE_EXPR
,
5345 new_val
, NULL
, e
, bsi
);
5355 /* OP is an operand of a truth value expression which is known to have
5356 a particular value. Register any asserts for OP and for any
5357 operands in OP's defining statement.
5359 If CODE is EQ_EXPR, then we want to register OP is zero (false),
5360 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
5363 register_edge_assert_for_1 (tree op
, enum tree_code code
,
5364 edge e
, gimple_stmt_iterator bsi
)
5366 bool retval
= false;
5369 enum tree_code rhs_code
;
5371 /* We only care about SSA_NAMEs. */
5372 if (TREE_CODE (op
) != SSA_NAME
)
5375 /* We know that OP will have a zero or nonzero value. If OP is used
5376 more than once go ahead and register an assert for OP.
5378 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
5379 it will always be set for OP (because OP is used in a COND_EXPR in
5381 if (!has_single_use (op
))
5383 val
= build_int_cst (TREE_TYPE (op
), 0);
5384 register_new_assert_for (op
, op
, code
, val
, NULL
, e
, bsi
);
5388 /* Now look at how OP is set. If it's set from a comparison,
5389 a truth operation or some bit operations, then we may be able
5390 to register information about the operands of that assignment. */
5391 op_def
= SSA_NAME_DEF_STMT (op
);
5392 if (gimple_code (op_def
) != GIMPLE_ASSIGN
)
5395 rhs_code
= gimple_assign_rhs_code (op_def
);
5397 if (TREE_CODE_CLASS (rhs_code
) == tcc_comparison
)
5399 bool invert
= (code
== EQ_EXPR
? true : false);
5400 tree op0
= gimple_assign_rhs1 (op_def
);
5401 tree op1
= gimple_assign_rhs2 (op_def
);
5403 if (TREE_CODE (op0
) == SSA_NAME
)
5404 retval
|= register_edge_assert_for_2 (op0
, e
, bsi
, rhs_code
, op0
, op1
,
5406 if (TREE_CODE (op1
) == SSA_NAME
)
5407 retval
|= register_edge_assert_for_2 (op1
, e
, bsi
, rhs_code
, op0
, op1
,
5410 else if ((code
== NE_EXPR
5411 && gimple_assign_rhs_code (op_def
) == BIT_AND_EXPR
)
5413 && gimple_assign_rhs_code (op_def
) == BIT_IOR_EXPR
))
5415 /* Recurse on each operand. */
5416 tree op0
= gimple_assign_rhs1 (op_def
);
5417 tree op1
= gimple_assign_rhs2 (op_def
);
5418 if (TREE_CODE (op0
) == SSA_NAME
5419 && has_single_use (op0
))
5420 retval
|= register_edge_assert_for_1 (op0
, code
, e
, bsi
);
5421 if (TREE_CODE (op1
) == SSA_NAME
5422 && has_single_use (op1
))
5423 retval
|= register_edge_assert_for_1 (op1
, code
, e
, bsi
);
5425 else if (gimple_assign_rhs_code (op_def
) == BIT_NOT_EXPR
5426 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def
))) == 1)
5428 /* Recurse, flipping CODE. */
5429 code
= invert_tree_comparison (code
, false);
5430 retval
|= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
),
5433 else if (gimple_assign_rhs_code (op_def
) == SSA_NAME
)
5435 /* Recurse through the copy. */
5436 retval
|= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def
),
5439 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def
)))
5441 /* Recurse through the type conversion, unless it is a narrowing
5442 conversion or conversion from non-integral type. */
5443 tree rhs
= gimple_assign_rhs1 (op_def
);
5444 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs
))
5445 && (TYPE_PRECISION (TREE_TYPE (rhs
))
5446 <= TYPE_PRECISION (TREE_TYPE (op
))))
5447 retval
|= register_edge_assert_for_1 (rhs
, code
, e
, bsi
);
5453 /* Try to register an edge assertion for SSA name NAME on edge E for
5454 the condition COND contributing to the conditional jump pointed to by SI.
5455 Return true if an assertion for NAME could be registered. */
5458 register_edge_assert_for (tree name
, edge e
, gimple_stmt_iterator si
,
5459 enum tree_code cond_code
, tree cond_op0
,
5463 enum tree_code comp_code
;
5464 bool retval
= false;
5465 bool is_else_edge
= (e
->flags
& EDGE_FALSE_VALUE
) != 0;
5467 /* Do not attempt to infer anything in names that flow through
5469 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name
))
5472 if (!extract_code_and_val_from_cond_with_ops (name
, cond_code
,
5478 /* Register ASSERT_EXPRs for name. */
5479 retval
|= register_edge_assert_for_2 (name
, e
, si
, cond_code
, cond_op0
,
5480 cond_op1
, is_else_edge
);
5483 /* If COND is effectively an equality test of an SSA_NAME against
5484 the value zero or one, then we may be able to assert values
5485 for SSA_NAMEs which flow into COND. */
5487 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
5488 statement of NAME we can assert both operands of the BIT_AND_EXPR
5489 have nonzero value. */
5490 if (((comp_code
== EQ_EXPR
&& integer_onep (val
))
5491 || (comp_code
== NE_EXPR
&& integer_zerop (val
))))
5493 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
5495 if (is_gimple_assign (def_stmt
)
5496 && gimple_assign_rhs_code (def_stmt
) == BIT_AND_EXPR
)
5498 tree op0
= gimple_assign_rhs1 (def_stmt
);
5499 tree op1
= gimple_assign_rhs2 (def_stmt
);
5500 retval
|= register_edge_assert_for_1 (op0
, NE_EXPR
, e
, si
);
5501 retval
|= register_edge_assert_for_1 (op1
, NE_EXPR
, e
, si
);
5505 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
5506 statement of NAME we can assert both operands of the BIT_IOR_EXPR
5508 if (((comp_code
== EQ_EXPR
&& integer_zerop (val
))
5509 || (comp_code
== NE_EXPR
&& integer_onep (val
))))
5511 gimple def_stmt
= SSA_NAME_DEF_STMT (name
);
5513 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
5514 necessarily zero value, or if type-precision is one. */
5515 if (is_gimple_assign (def_stmt
)
5516 && (gimple_assign_rhs_code (def_stmt
) == BIT_IOR_EXPR
5517 && (TYPE_PRECISION (TREE_TYPE (name
)) == 1
5518 || comp_code
== EQ_EXPR
)))
5520 tree op0
= gimple_assign_rhs1 (def_stmt
);
5521 tree op1
= gimple_assign_rhs2 (def_stmt
);
5522 retval
|= register_edge_assert_for_1 (op0
, EQ_EXPR
, e
, si
);
5523 retval
|= register_edge_assert_for_1 (op1
, EQ_EXPR
, e
, si
);
5531 /* Determine whether the outgoing edges of BB should receive an
5532 ASSERT_EXPR for each of the operands of BB's LAST statement.
5533 The last statement of BB must be a COND_EXPR.
5535 If any of the sub-graphs rooted at BB have an interesting use of
5536 the predicate operands, an assert location node is added to the
5537 list of assertions for the corresponding operands. */
5540 find_conditional_asserts (basic_block bb
, gimple last
)
5543 gimple_stmt_iterator bsi
;
5549 need_assert
= false;
5550 bsi
= gsi_for_stmt (last
);
5552 /* Look for uses of the operands in each of the sub-graphs
5553 rooted at BB. We need to check each of the outgoing edges
5554 separately, so that we know what kind of ASSERT_EXPR to
5556 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5561 /* Register the necessary assertions for each operand in the
5562 conditional predicate. */
5563 FOR_EACH_SSA_TREE_OPERAND (op
, last
, iter
, SSA_OP_USE
)
5565 need_assert
|= register_edge_assert_for (op
, e
, bsi
,
5566 gimple_cond_code (last
),
5567 gimple_cond_lhs (last
),
5568 gimple_cond_rhs (last
));
5581 /* Compare two case labels sorting first by the destination bb index
5582 and then by the case value. */
5585 compare_case_labels (const void *p1
, const void *p2
)
5587 const struct case_info
*ci1
= (const struct case_info
*) p1
;
5588 const struct case_info
*ci2
= (const struct case_info
*) p2
;
5589 int idx1
= ci1
->bb
->index
;
5590 int idx2
= ci2
->bb
->index
;
5594 else if (idx1
== idx2
)
5596 /* Make sure the default label is first in a group. */
5597 if (!CASE_LOW (ci1
->expr
))
5599 else if (!CASE_LOW (ci2
->expr
))
5602 return tree_int_cst_compare (CASE_LOW (ci1
->expr
),
5603 CASE_LOW (ci2
->expr
));
5609 /* Determine whether the outgoing edges of BB should receive an
5610 ASSERT_EXPR for each of the operands of BB's LAST statement.
5611 The last statement of BB must be a SWITCH_EXPR.
5613 If any of the sub-graphs rooted at BB have an interesting use of
5614 the predicate operands, an assert location node is added to the
5615 list of assertions for the corresponding operands. */
5618 find_switch_asserts (basic_block bb
, gimple last
)
5621 gimple_stmt_iterator bsi
;
5624 struct case_info
*ci
;
5625 size_t n
= gimple_switch_num_labels (last
);
5626 #if GCC_VERSION >= 4000
5629 /* Work around GCC 3.4 bug (PR 37086). */
5630 volatile unsigned int idx
;
5633 need_assert
= false;
5634 bsi
= gsi_for_stmt (last
);
5635 op
= gimple_switch_index (last
);
5636 if (TREE_CODE (op
) != SSA_NAME
)
5639 /* Build a vector of case labels sorted by destination label. */
5640 ci
= XNEWVEC (struct case_info
, n
);
5641 for (idx
= 0; idx
< n
; ++idx
)
5643 ci
[idx
].expr
= gimple_switch_label (last
, idx
);
5644 ci
[idx
].bb
= label_to_block (CASE_LABEL (ci
[idx
].expr
));
5646 qsort (ci
, n
, sizeof (struct case_info
), compare_case_labels
);
5648 for (idx
= 0; idx
< n
; ++idx
)
5651 tree cl
= ci
[idx
].expr
;
5652 basic_block cbb
= ci
[idx
].bb
;
5654 min
= CASE_LOW (cl
);
5655 max
= CASE_HIGH (cl
);
5657 /* If there are multiple case labels with the same destination
5658 we need to combine them to a single value range for the edge. */
5659 if (idx
+ 1 < n
&& cbb
== ci
[idx
+ 1].bb
)
5661 /* Skip labels until the last of the group. */
5664 } while (idx
< n
&& cbb
== ci
[idx
].bb
);
5667 /* Pick up the maximum of the case label range. */
5668 if (CASE_HIGH (ci
[idx
].expr
))
5669 max
= CASE_HIGH (ci
[idx
].expr
);
5671 max
= CASE_LOW (ci
[idx
].expr
);
5674 /* Nothing to do if the range includes the default label until we
5675 can register anti-ranges. */
5676 if (min
== NULL_TREE
)
5679 /* Find the edge to register the assert expr on. */
5680 e
= find_edge (bb
, cbb
);
5682 /* Register the necessary assertions for the operand in the
5684 need_assert
|= register_edge_assert_for (op
, e
, bsi
,
5685 max
? GE_EXPR
: EQ_EXPR
,
5687 fold_convert (TREE_TYPE (op
),
5691 need_assert
|= register_edge_assert_for (op
, e
, bsi
, LE_EXPR
,
5693 fold_convert (TREE_TYPE (op
),
5703 /* Traverse all the statements in block BB looking for statements that
5704 may generate useful assertions for the SSA names in their operand.
5705 If a statement produces a useful assertion A for name N_i, then the
5706 list of assertions already generated for N_i is scanned to
5707 determine if A is actually needed.
5709 If N_i already had the assertion A at a location dominating the
5710 current location, then nothing needs to be done. Otherwise, the
5711 new location for A is recorded instead.
5713 1- For every statement S in BB, all the variables used by S are
5714 added to bitmap FOUND_IN_SUBGRAPH.
5716 2- If statement S uses an operand N in a way that exposes a known
5717 value range for N, then if N was not already generated by an
5718 ASSERT_EXPR, create a new assert location for N. For instance,
5719 if N is a pointer and the statement dereferences it, we can
5720 assume that N is not NULL.
5722 3- COND_EXPRs are a special case of #2. We can derive range
5723 information from the predicate but need to insert different
5724 ASSERT_EXPRs for each of the sub-graphs rooted at the
5725 conditional block. If the last statement of BB is a conditional
5726 expression of the form 'X op Y', then
5728 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
5730 b) If the conditional is the only entry point to the sub-graph
5731 corresponding to the THEN_CLAUSE, recurse into it. On
5732 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
5733 an ASSERT_EXPR is added for the corresponding variable.
5735 c) Repeat step (b) on the ELSE_CLAUSE.
5737 d) Mark X and Y in FOUND_IN_SUBGRAPH.
5746 In this case, an assertion on the THEN clause is useful to
5747 determine that 'a' is always 9 on that edge. However, an assertion
5748 on the ELSE clause would be unnecessary.
5750 4- If BB does not end in a conditional expression, then we recurse
5751 into BB's dominator children.
5753 At the end of the recursive traversal, every SSA name will have a
5754 list of locations where ASSERT_EXPRs should be added. When a new
5755 location for name N is found, it is registered by calling
5756 register_new_assert_for. That function keeps track of all the
5757 registered assertions to prevent adding unnecessary assertions.
5758 For instance, if a pointer P_4 is dereferenced more than once in a
5759 dominator tree, only the location dominating all the dereference of
5760 P_4 will receive an ASSERT_EXPR.
5762 If this function returns true, then it means that there are names
5763 for which we need to generate ASSERT_EXPRs. Those assertions are
5764 inserted by process_assert_insertions. */
5767 find_assert_locations_1 (basic_block bb
, sbitmap live
)
5769 gimple_stmt_iterator si
;
5773 need_assert
= false;
5774 last
= last_stmt (bb
);
5776 /* If BB's last statement is a conditional statement involving integer
5777 operands, determine if we need to add ASSERT_EXPRs. */
5779 && gimple_code (last
) == GIMPLE_COND
5780 && !fp_predicate (last
)
5781 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
5782 need_assert
|= find_conditional_asserts (bb
, last
);
5784 /* If BB's last statement is a switch statement involving integer
5785 operands, determine if we need to add ASSERT_EXPRs. */
5787 && gimple_code (last
) == GIMPLE_SWITCH
5788 && !ZERO_SSA_OPERANDS (last
, SSA_OP_USE
))
5789 need_assert
|= find_switch_asserts (bb
, last
);
5791 /* Traverse all the statements in BB marking used names and looking
5792 for statements that may infer assertions for their used operands. */
5793 for (si
= gsi_last_bb (bb
); !gsi_end_p (si
); gsi_prev (&si
))
5799 stmt
= gsi_stmt (si
);
5801 if (is_gimple_debug (stmt
))
5804 /* See if we can derive an assertion for any of STMT's operands. */
5805 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_USE
)
5808 enum tree_code comp_code
;
5810 /* If op is not live beyond this stmt, do not bother to insert
5812 if (!bitmap_bit_p (live
, SSA_NAME_VERSION (op
)))
5815 /* If OP is used in such a way that we can infer a value
5816 range for it, and we don't find a previous assertion for
5817 it, create a new assertion location node for OP. */
5818 if (infer_value_range (stmt
, op
, &comp_code
, &value
))
5820 /* If we are able to infer a nonzero value range for OP,
5821 then walk backwards through the use-def chain to see if OP
5822 was set via a typecast.
5824 If so, then we can also infer a nonzero value range
5825 for the operand of the NOP_EXPR. */
5826 if (comp_code
== NE_EXPR
&& integer_zerop (value
))
5829 gimple def_stmt
= SSA_NAME_DEF_STMT (t
);
5831 while (is_gimple_assign (def_stmt
)
5832 && gimple_assign_rhs_code (def_stmt
) == NOP_EXPR
5834 (gimple_assign_rhs1 (def_stmt
)) == SSA_NAME
5836 (TREE_TYPE (gimple_assign_rhs1 (def_stmt
))))
5838 t
= gimple_assign_rhs1 (def_stmt
);
5839 def_stmt
= SSA_NAME_DEF_STMT (t
);
5841 /* Note we want to register the assert for the
5842 operand of the NOP_EXPR after SI, not after the
5844 if (! has_single_use (t
))
5846 register_new_assert_for (t
, t
, comp_code
, value
,
5853 register_new_assert_for (op
, op
, comp_code
, value
, bb
, NULL
, si
);
5859 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_USE
)
5860 bitmap_set_bit (live
, SSA_NAME_VERSION (op
));
5861 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_DEF
)
5862 bitmap_clear_bit (live
, SSA_NAME_VERSION (op
));
5865 /* Traverse all PHI nodes in BB, updating live. */
5866 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); gsi_next (&si
))
5868 use_operand_p arg_p
;
5870 gimple phi
= gsi_stmt (si
);
5871 tree res
= gimple_phi_result (phi
);
5873 if (virtual_operand_p (res
))
5876 FOR_EACH_PHI_ARG (arg_p
, phi
, i
, SSA_OP_USE
)
5878 tree arg
= USE_FROM_PTR (arg_p
);
5879 if (TREE_CODE (arg
) == SSA_NAME
)
5880 bitmap_set_bit (live
, SSA_NAME_VERSION (arg
));
5883 bitmap_clear_bit (live
, SSA_NAME_VERSION (res
));
5889 /* Do an RPO walk over the function computing SSA name liveness
5890 on-the-fly and deciding on assert expressions to insert.
5891 Returns true if there are assert expressions to be inserted. */
5894 find_assert_locations (void)
5896 int *rpo
= XNEWVEC (int, last_basic_block
);
5897 int *bb_rpo
= XNEWVEC (int, last_basic_block
);
5898 int *last_rpo
= XCNEWVEC (int, last_basic_block
);
5902 live
= XCNEWVEC (sbitmap
, last_basic_block
);
5903 rpo_cnt
= pre_and_rev_post_order_compute (NULL
, rpo
, false);
5904 for (i
= 0; i
< rpo_cnt
; ++i
)
5907 /* Pre-seed loop latch liveness from loop header PHI nodes. Due to
5908 the order we compute liveness and insert asserts we otherwise
5909 fail to insert asserts into the loop latch. */
5911 FOR_EACH_LOOP (loop
, 0)
5913 i
= loop
->latch
->index
;
5914 unsigned int j
= single_succ_edge (loop
->latch
)->dest_idx
;
5915 for (gimple_stmt_iterator gsi
= gsi_start_phis (loop
->header
);
5916 !gsi_end_p (gsi
); gsi_next (&gsi
))
5918 gimple phi
= gsi_stmt (gsi
);
5919 if (virtual_operand_p (gimple_phi_result (phi
)))
5921 tree arg
= gimple_phi_arg_def (phi
, j
);
5922 if (TREE_CODE (arg
) == SSA_NAME
)
5924 if (live
[i
] == NULL
)
5926 live
[i
] = sbitmap_alloc (num_ssa_names
);
5927 bitmap_clear (live
[i
]);
5929 bitmap_set_bit (live
[i
], SSA_NAME_VERSION (arg
));
5934 need_asserts
= false;
5935 for (i
= rpo_cnt
- 1; i
>= 0; --i
)
5937 basic_block bb
= BASIC_BLOCK (rpo
[i
]);
5943 live
[rpo
[i
]] = sbitmap_alloc (num_ssa_names
);
5944 bitmap_clear (live
[rpo
[i
]]);
5947 /* Process BB and update the live information with uses in
5949 need_asserts
|= find_assert_locations_1 (bb
, live
[rpo
[i
]]);
5951 /* Merge liveness into the predecessor blocks and free it. */
5952 if (!bitmap_empty_p (live
[rpo
[i
]]))
5955 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
5957 int pred
= e
->src
->index
;
5958 if ((e
->flags
& EDGE_DFS_BACK
) || pred
== ENTRY_BLOCK
)
5963 live
[pred
] = sbitmap_alloc (num_ssa_names
);
5964 bitmap_clear (live
[pred
]);
5966 bitmap_ior (live
[pred
], live
[pred
], live
[rpo
[i
]]);
5968 if (bb_rpo
[pred
] < pred_rpo
)
5969 pred_rpo
= bb_rpo
[pred
];
5972 /* Record the RPO number of the last visited block that needs
5973 live information from this block. */
5974 last_rpo
[rpo
[i
]] = pred_rpo
;
5978 sbitmap_free (live
[rpo
[i
]]);
5979 live
[rpo
[i
]] = NULL
;
5982 /* We can free all successors live bitmaps if all their
5983 predecessors have been visited already. */
5984 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5985 if (last_rpo
[e
->dest
->index
] == i
5986 && live
[e
->dest
->index
])
5988 sbitmap_free (live
[e
->dest
->index
]);
5989 live
[e
->dest
->index
] = NULL
;
5994 XDELETEVEC (bb_rpo
);
5995 XDELETEVEC (last_rpo
);
5996 for (i
= 0; i
< last_basic_block
; ++i
)
5998 sbitmap_free (live
[i
]);
6001 return need_asserts
;
6004 /* Create an ASSERT_EXPR for NAME and insert it in the location
6005 indicated by LOC. Return true if we made any edge insertions. */
6008 process_assert_insertions_for (tree name
, assert_locus_t loc
)
6010 /* Build the comparison expression NAME_i COMP_CODE VAL. */
6017 /* If we have X <=> X do not insert an assert expr for that. */
6018 if (loc
->expr
== loc
->val
)
6021 cond
= build2 (loc
->comp_code
, boolean_type_node
, loc
->expr
, loc
->val
);
6022 assert_stmt
= build_assert_expr_for (cond
, name
);
6025 /* We have been asked to insert the assertion on an edge. This
6026 is used only by COND_EXPR and SWITCH_EXPR assertions. */
6027 gcc_checking_assert (gimple_code (gsi_stmt (loc
->si
)) == GIMPLE_COND
6028 || (gimple_code (gsi_stmt (loc
->si
))
6031 gsi_insert_on_edge (loc
->e
, assert_stmt
);
6035 /* Otherwise, we can insert right after LOC->SI iff the
6036 statement must not be the last statement in the block. */
6037 stmt
= gsi_stmt (loc
->si
);
6038 if (!stmt_ends_bb_p (stmt
))
6040 gsi_insert_after (&loc
->si
, assert_stmt
, GSI_SAME_STMT
);
6044 /* If STMT must be the last statement in BB, we can only insert new
6045 assertions on the non-abnormal edge out of BB. Note that since
6046 STMT is not control flow, there may only be one non-abnormal edge
6048 FOR_EACH_EDGE (e
, ei
, loc
->bb
->succs
)
6049 if (!(e
->flags
& EDGE_ABNORMAL
))
6051 gsi_insert_on_edge (e
, assert_stmt
);
6059 /* Process all the insertions registered for every name N_i registered
6060 in NEED_ASSERT_FOR. The list of assertions to be inserted are
6061 found in ASSERTS_FOR[i]. */
6064 process_assert_insertions (void)
6068 bool update_edges_p
= false;
6069 int num_asserts
= 0;
6071 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6072 dump_all_asserts (dump_file
);
6074 EXECUTE_IF_SET_IN_BITMAP (need_assert_for
, 0, i
, bi
)
6076 assert_locus_t loc
= asserts_for
[i
];
6081 assert_locus_t next
= loc
->next
;
6082 update_edges_p
|= process_assert_insertions_for (ssa_name (i
), loc
);
6090 gsi_commit_edge_inserts ();
6092 statistics_counter_event (cfun
, "Number of ASSERT_EXPR expressions inserted",
6097 /* Traverse the flowgraph looking for conditional jumps to insert range
6098 expressions. These range expressions are meant to provide information
6099 to optimizations that need to reason in terms of value ranges. They
6100 will not be expanded into RTL. For instance, given:
6109 this pass will transform the code into:
6115 x = ASSERT_EXPR <x, x < y>
6120 y = ASSERT_EXPR <y, x <= y>
6124 The idea is that once copy and constant propagation have run, other
6125 optimizations will be able to determine what ranges of values can 'x'
6126 take in different paths of the code, simply by checking the reaching
6127 definition of 'x'. */
6130 insert_range_assertions (void)
6132 need_assert_for
= BITMAP_ALLOC (NULL
);
6133 asserts_for
= XCNEWVEC (assert_locus_t
, num_ssa_names
);
6135 calculate_dominance_info (CDI_DOMINATORS
);
6137 if (find_assert_locations ())
6139 process_assert_insertions ();
6140 update_ssa (TODO_update_ssa_no_phi
);
6143 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6145 fprintf (dump_file
, "\nSSA form after inserting ASSERT_EXPRs\n");
6146 dump_function_to_file (current_function_decl
, dump_file
, dump_flags
);
6150 BITMAP_FREE (need_assert_for
);
6153 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
6154 and "struct" hacks. If VRP can determine that the
6155 array subscript is a constant, check if it is outside valid
6156 range. If the array subscript is a RANGE, warn if it is
6157 non-overlapping with valid range.
6158 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
6161 check_array_ref (location_t location
, tree ref
, bool ignore_off_by_one
)
6163 value_range_t
* vr
= NULL
;
6164 tree low_sub
, up_sub
;
6165 tree low_bound
, up_bound
, up_bound_p1
;
6168 if (TREE_NO_WARNING (ref
))
6171 low_sub
= up_sub
= TREE_OPERAND (ref
, 1);
6172 up_bound
= array_ref_up_bound (ref
);
6174 /* Can not check flexible arrays. */
6176 || TREE_CODE (up_bound
) != INTEGER_CST
)
6179 /* Accesses to trailing arrays via pointers may access storage
6180 beyond the types array bounds. */
6181 base
= get_base_address (ref
);
6182 if (base
&& TREE_CODE (base
) == MEM_REF
)
6184 tree cref
, next
= NULL_TREE
;
6186 if (TREE_CODE (TREE_OPERAND (ref
, 0)) != COMPONENT_REF
)
6189 cref
= TREE_OPERAND (ref
, 0);
6190 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref
, 0))) == RECORD_TYPE
)
6191 for (next
= DECL_CHAIN (TREE_OPERAND (cref
, 1));
6192 next
&& TREE_CODE (next
) != FIELD_DECL
;
6193 next
= DECL_CHAIN (next
))
6196 /* If this is the last field in a struct type or a field in a
6197 union type do not warn. */
6202 low_bound
= array_ref_low_bound (ref
);
6203 up_bound_p1
= int_const_binop (PLUS_EXPR
, up_bound
, integer_one_node
);
6205 if (TREE_CODE (low_sub
) == SSA_NAME
)
6207 vr
= get_value_range (low_sub
);
6208 if (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
)
6210 low_sub
= vr
->type
== VR_RANGE
? vr
->max
: vr
->min
;
6211 up_sub
= vr
->type
== VR_RANGE
? vr
->min
: vr
->max
;
6215 if (vr
&& vr
->type
== VR_ANTI_RANGE
)
6217 if (TREE_CODE (up_sub
) == INTEGER_CST
6218 && tree_int_cst_lt (up_bound
, up_sub
)
6219 && TREE_CODE (low_sub
) == INTEGER_CST
6220 && tree_int_cst_lt (low_sub
, low_bound
))
6222 warning_at (location
, OPT_Warray_bounds
,
6223 "array subscript is outside array bounds");
6224 TREE_NO_WARNING (ref
) = 1;
6227 else if (TREE_CODE (up_sub
) == INTEGER_CST
6228 && (ignore_off_by_one
6229 ? (tree_int_cst_lt (up_bound
, up_sub
)
6230 && !tree_int_cst_equal (up_bound_p1
, up_sub
))
6231 : (tree_int_cst_lt (up_bound
, up_sub
)
6232 || tree_int_cst_equal (up_bound_p1
, up_sub
))))
6234 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6236 fprintf (dump_file
, "Array bound warning for ");
6237 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, ref
);
6238 fprintf (dump_file
, "\n");
6240 warning_at (location
, OPT_Warray_bounds
,
6241 "array subscript is above array bounds");
6242 TREE_NO_WARNING (ref
) = 1;
6244 else if (TREE_CODE (low_sub
) == INTEGER_CST
6245 && tree_int_cst_lt (low_sub
, low_bound
))
6247 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6249 fprintf (dump_file
, "Array bound warning for ");
6250 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, ref
);
6251 fprintf (dump_file
, "\n");
6253 warning_at (location
, OPT_Warray_bounds
,
6254 "array subscript is below array bounds");
6255 TREE_NO_WARNING (ref
) = 1;
6259 /* Searches if the expr T, located at LOCATION computes
6260 address of an ARRAY_REF, and call check_array_ref on it. */
6263 search_for_addr_array (tree t
, location_t location
)
6265 while (TREE_CODE (t
) == SSA_NAME
)
6267 gimple g
= SSA_NAME_DEF_STMT (t
);
6269 if (gimple_code (g
) != GIMPLE_ASSIGN
)
6272 if (get_gimple_rhs_class (gimple_assign_rhs_code (g
))
6273 != GIMPLE_SINGLE_RHS
)
6276 t
= gimple_assign_rhs1 (g
);
6280 /* We are only interested in addresses of ARRAY_REF's. */
6281 if (TREE_CODE (t
) != ADDR_EXPR
)
6284 /* Check each ARRAY_REFs in the reference chain. */
6287 if (TREE_CODE (t
) == ARRAY_REF
)
6288 check_array_ref (location
, t
, true /*ignore_off_by_one*/);
6290 t
= TREE_OPERAND (t
, 0);
6292 while (handled_component_p (t
));
6294 if (TREE_CODE (t
) == MEM_REF
6295 && TREE_CODE (TREE_OPERAND (t
, 0)) == ADDR_EXPR
6296 && !TREE_NO_WARNING (t
))
6298 tree tem
= TREE_OPERAND (TREE_OPERAND (t
, 0), 0);
6299 tree low_bound
, up_bound
, el_sz
;
6301 if (TREE_CODE (TREE_TYPE (tem
)) != ARRAY_TYPE
6302 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem
))) == ARRAY_TYPE
6303 || !TYPE_DOMAIN (TREE_TYPE (tem
)))
6306 low_bound
= TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem
)));
6307 up_bound
= TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem
)));
6308 el_sz
= TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem
)));
6310 || TREE_CODE (low_bound
) != INTEGER_CST
6312 || TREE_CODE (up_bound
) != INTEGER_CST
6314 || TREE_CODE (el_sz
) != INTEGER_CST
)
6317 idx
= mem_ref_offset (t
);
6318 idx
= idx
.sdiv (tree_to_double_int (el_sz
), TRUNC_DIV_EXPR
);
6319 if (idx
.slt (double_int_zero
))
6321 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6323 fprintf (dump_file
, "Array bound warning for ");
6324 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, t
);
6325 fprintf (dump_file
, "\n");
6327 warning_at (location
, OPT_Warray_bounds
,
6328 "array subscript is below array bounds");
6329 TREE_NO_WARNING (t
) = 1;
6331 else if (idx
.sgt (tree_to_double_int (up_bound
)
6332 - tree_to_double_int (low_bound
)
6335 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6337 fprintf (dump_file
, "Array bound warning for ");
6338 dump_generic_expr (MSG_NOTE
, TDF_SLIM
, t
);
6339 fprintf (dump_file
, "\n");
6341 warning_at (location
, OPT_Warray_bounds
,
6342 "array subscript is above array bounds");
6343 TREE_NO_WARNING (t
) = 1;
6348 /* walk_tree() callback that checks if *TP is
6349 an ARRAY_REF inside an ADDR_EXPR (in which an array
6350 subscript one outside the valid range is allowed). Call
6351 check_array_ref for each ARRAY_REF found. The location is
6355 check_array_bounds (tree
*tp
, int *walk_subtree
, void *data
)
6358 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
6359 location_t location
;
6361 if (EXPR_HAS_LOCATION (t
))
6362 location
= EXPR_LOCATION (t
);
6365 location_t
*locp
= (location_t
*) wi
->info
;
6369 *walk_subtree
= TRUE
;
6371 if (TREE_CODE (t
) == ARRAY_REF
)
6372 check_array_ref (location
, t
, false /*ignore_off_by_one*/);
6374 if (TREE_CODE (t
) == MEM_REF
6375 || (TREE_CODE (t
) == RETURN_EXPR
&& TREE_OPERAND (t
, 0)))
6376 search_for_addr_array (TREE_OPERAND (t
, 0), location
);
6378 if (TREE_CODE (t
) == ADDR_EXPR
)
6379 *walk_subtree
= FALSE
;
6384 /* Walk over all statements of all reachable BBs and call check_array_bounds
6388 check_all_array_refs (void)
6391 gimple_stmt_iterator si
;
6397 bool executable
= false;
6399 /* Skip blocks that were found to be unreachable. */
6400 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
6401 executable
|= !!(e
->flags
& EDGE_EXECUTABLE
);
6405 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
6407 gimple stmt
= gsi_stmt (si
);
6408 struct walk_stmt_info wi
;
6409 if (!gimple_has_location (stmt
))
6412 if (is_gimple_call (stmt
))
6415 size_t n
= gimple_call_num_args (stmt
);
6416 for (i
= 0; i
< n
; i
++)
6418 tree arg
= gimple_call_arg (stmt
, i
);
6419 search_for_addr_array (arg
, gimple_location (stmt
));
6424 memset (&wi
, 0, sizeof (wi
));
6425 wi
.info
= CONST_CAST (void *, (const void *)
6426 gimple_location_ptr (stmt
));
6428 walk_gimple_op (gsi_stmt (si
),
6436 /* Return true if all imm uses of VAR are either in STMT, or
6437 feed (optionally through a chain of single imm uses) GIMPLE_COND
6438 in basic block COND_BB. */
6441 all_imm_uses_in_stmt_or_feed_cond (tree var
, gimple stmt
, basic_block cond_bb
)
6443 use_operand_p use_p
, use2_p
;
6444 imm_use_iterator iter
;
6446 FOR_EACH_IMM_USE_FAST (use_p
, iter
, var
)
6447 if (USE_STMT (use_p
) != stmt
)
6449 gimple use_stmt
= USE_STMT (use_p
), use_stmt2
;
6450 if (is_gimple_debug (use_stmt
))
6452 while (is_gimple_assign (use_stmt
)
6453 && TREE_CODE (gimple_assign_lhs (use_stmt
)) == SSA_NAME
6454 && single_imm_use (gimple_assign_lhs (use_stmt
),
6455 &use2_p
, &use_stmt2
))
6456 use_stmt
= use_stmt2
;
6457 if (gimple_code (use_stmt
) != GIMPLE_COND
6458 || gimple_bb (use_stmt
) != cond_bb
)
6471 __builtin_unreachable ();
6473 x_5 = ASSERT_EXPR <x_3, ...>;
6474 If x_3 has no other immediate uses (checked by caller),
6475 var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits
6476 from the non-zero bitmask. */
6479 maybe_set_nonzero_bits (basic_block bb
, tree var
)
6481 edge e
= single_pred_edge (bb
);
6482 basic_block cond_bb
= e
->src
;
6483 gimple stmt
= last_stmt (cond_bb
);
6487 || gimple_code (stmt
) != GIMPLE_COND
6488 || gimple_cond_code (stmt
) != ((e
->flags
& EDGE_TRUE_VALUE
)
6489 ? EQ_EXPR
: NE_EXPR
)
6490 || TREE_CODE (gimple_cond_lhs (stmt
)) != SSA_NAME
6491 || !integer_zerop (gimple_cond_rhs (stmt
)))
6494 stmt
= SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt
));
6495 if (!is_gimple_assign (stmt
)
6496 || gimple_assign_rhs_code (stmt
) != BIT_AND_EXPR
6497 || TREE_CODE (gimple_assign_rhs2 (stmt
)) != INTEGER_CST
)
6499 if (gimple_assign_rhs1 (stmt
) != var
)
6503 if (TREE_CODE (gimple_assign_rhs1 (stmt
)) != SSA_NAME
)
6505 stmt2
= SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt
));
6506 if (!gimple_assign_cast_p (stmt2
)
6507 || gimple_assign_rhs1 (stmt2
) != var
6508 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2
))
6509 || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt
)))
6510 != TYPE_PRECISION (TREE_TYPE (var
))))
6513 cst
= gimple_assign_rhs2 (stmt
);
6514 set_nonzero_bits (var
, (get_nonzero_bits (var
)
6515 & ~tree_to_double_int (cst
)));
6518 /* Convert range assertion expressions into the implied copies and
6519 copy propagate away the copies. Doing the trivial copy propagation
6520 here avoids the need to run the full copy propagation pass after
6523 FIXME, this will eventually lead to copy propagation removing the
6524 names that had useful range information attached to them. For
6525 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
6526 then N_i will have the range [3, +INF].
6528 However, by converting the assertion into the implied copy
6529 operation N_i = N_j, we will then copy-propagate N_j into the uses
6530 of N_i and lose the range information. We may want to hold on to
6531 ASSERT_EXPRs a little while longer as the ranges could be used in
6532 things like jump threading.
6534 The problem with keeping ASSERT_EXPRs around is that passes after
6535 VRP need to handle them appropriately.
6537 Another approach would be to make the range information a first
6538 class property of the SSA_NAME so that it can be queried from
6539 any pass. This is made somewhat more complex by the need for
6540 multiple ranges to be associated with one SSA_NAME. */
6543 remove_range_assertions (void)
6546 gimple_stmt_iterator si
;
6547 /* 1 if looking at ASSERT_EXPRs immediately at the beginning of
6548 a basic block preceeded by GIMPLE_COND branching to it and
6549 __builtin_trap, -1 if not yet checked, 0 otherwise. */
6552 /* Note that the BSI iterator bump happens at the bottom of the
6553 loop and no bump is necessary if we're removing the statement
6554 referenced by the current BSI. */
6556 for (si
= gsi_after_labels (bb
), is_unreachable
= -1; !gsi_end_p (si
);)
6558 gimple stmt
= gsi_stmt (si
);
6561 if (is_gimple_assign (stmt
)
6562 && gimple_assign_rhs_code (stmt
) == ASSERT_EXPR
)
6564 tree lhs
= gimple_assign_lhs (stmt
);
6565 tree rhs
= gimple_assign_rhs1 (stmt
);
6567 tree cond
= fold (ASSERT_EXPR_COND (rhs
));
6568 use_operand_p use_p
;
6569 imm_use_iterator iter
;
6571 gcc_assert (cond
!= boolean_false_node
);
6573 var
= ASSERT_EXPR_VAR (rhs
);
6574 gcc_assert (TREE_CODE (var
) == SSA_NAME
);
6576 if (!POINTER_TYPE_P (TREE_TYPE (lhs
))
6577 && SSA_NAME_RANGE_INFO (lhs
))
6579 if (is_unreachable
== -1)
6582 if (single_pred_p (bb
)
6583 && assert_unreachable_fallthru_edge_p
6584 (single_pred_edge (bb
)))
6588 if (x_7 >= 10 && x_7 < 20)
6589 __builtin_unreachable ();
6590 x_8 = ASSERT_EXPR <x_7, ...>;
6591 if the only uses of x_7 are in the ASSERT_EXPR and
6592 in the condition. In that case, we can copy the
6593 range info from x_8 computed in this pass also
6596 && all_imm_uses_in_stmt_or_feed_cond (var
, stmt
,
6599 set_range_info (var
, SSA_NAME_RANGE_INFO (lhs
)->min
,
6600 SSA_NAME_RANGE_INFO (lhs
)->max
);
6601 maybe_set_nonzero_bits (bb
, var
);
6605 /* Propagate the RHS into every use of the LHS. */
6606 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, lhs
)
6607 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
6608 SET_USE (use_p
, var
);
6610 /* And finally, remove the copy, it is not needed. */
6611 gsi_remove (&si
, true);
6612 release_defs (stmt
);
6623 /* Return true if STMT is interesting for VRP. */
6626 stmt_interesting_for_vrp (gimple stmt
)
6628 if (gimple_code (stmt
) == GIMPLE_PHI
)
6630 tree res
= gimple_phi_result (stmt
);
6631 return (!virtual_operand_p (res
)
6632 && (INTEGRAL_TYPE_P (TREE_TYPE (res
))
6633 || POINTER_TYPE_P (TREE_TYPE (res
))));
6635 else if (is_gimple_assign (stmt
) || is_gimple_call (stmt
))
6637 tree lhs
= gimple_get_lhs (stmt
);
6639 /* In general, assignments with virtual operands are not useful
6640 for deriving ranges, with the obvious exception of calls to
6641 builtin functions. */
6642 if (lhs
&& TREE_CODE (lhs
) == SSA_NAME
6643 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
6644 || POINTER_TYPE_P (TREE_TYPE (lhs
)))
6645 && (is_gimple_call (stmt
)
6646 || !gimple_vuse (stmt
)))
6649 else if (gimple_code (stmt
) == GIMPLE_COND
6650 || gimple_code (stmt
) == GIMPLE_SWITCH
)
6657 /* Initialize local data structures for VRP. */
6660 vrp_initialize (void)
6664 values_propagated
= false;
6665 num_vr_values
= num_ssa_names
;
6666 vr_value
= XCNEWVEC (value_range_t
*, num_vr_values
);
6667 vr_phi_edge_counts
= XCNEWVEC (int, num_ssa_names
);
6671 gimple_stmt_iterator si
;
6673 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); gsi_next (&si
))
6675 gimple phi
= gsi_stmt (si
);
6676 if (!stmt_interesting_for_vrp (phi
))
6678 tree lhs
= PHI_RESULT (phi
);
6679 set_value_range_to_varying (get_value_range (lhs
));
6680 prop_set_simulate_again (phi
, false);
6683 prop_set_simulate_again (phi
, true);
6686 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
6688 gimple stmt
= gsi_stmt (si
);
6690 /* If the statement is a control insn, then we do not
6691 want to avoid simulating the statement once. Failure
6692 to do so means that those edges will never get added. */
6693 if (stmt_ends_bb_p (stmt
))
6694 prop_set_simulate_again (stmt
, true);
6695 else if (!stmt_interesting_for_vrp (stmt
))
6699 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, i
, SSA_OP_DEF
)
6700 set_value_range_to_varying (get_value_range (def
));
6701 prop_set_simulate_again (stmt
, false);
6704 prop_set_simulate_again (stmt
, true);
6709 /* Return the singleton value-range for NAME or NAME. */
6712 vrp_valueize (tree name
)
6714 if (TREE_CODE (name
) == SSA_NAME
)
6716 value_range_t
*vr
= get_value_range (name
);
6717 if (vr
->type
== VR_RANGE
6718 && (vr
->min
== vr
->max
6719 || operand_equal_p (vr
->min
, vr
->max
, 0)))
6725 /* Visit assignment STMT. If it produces an interesting range, record
6726 the SSA name in *OUTPUT_P. */
6728 static enum ssa_prop_result
6729 vrp_visit_assignment_or_call (gimple stmt
, tree
*output_p
)
6733 enum gimple_code code
= gimple_code (stmt
);
6734 lhs
= gimple_get_lhs (stmt
);
6736 /* We only keep track of ranges in integral and pointer types. */
6737 if (TREE_CODE (lhs
) == SSA_NAME
6738 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
6739 /* It is valid to have NULL MIN/MAX values on a type. See
6740 build_range_type. */
6741 && TYPE_MIN_VALUE (TREE_TYPE (lhs
))
6742 && TYPE_MAX_VALUE (TREE_TYPE (lhs
)))
6743 || POINTER_TYPE_P (TREE_TYPE (lhs
))))
6745 value_range_t new_vr
= VR_INITIALIZER
;
6747 /* Try folding the statement to a constant first. */
6748 tree tem
= gimple_fold_stmt_to_constant (stmt
, vrp_valueize
);
6750 set_value_range_to_value (&new_vr
, tem
, NULL
);
6751 /* Then dispatch to value-range extracting functions. */
6752 else if (code
== GIMPLE_CALL
)
6753 extract_range_basic (&new_vr
, stmt
);
6755 extract_range_from_assignment (&new_vr
, stmt
);
6757 if (update_value_range (lhs
, &new_vr
))
6761 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
6763 fprintf (dump_file
, "Found new range for ");
6764 print_generic_expr (dump_file
, lhs
, 0);
6765 fprintf (dump_file
, ": ");
6766 dump_value_range (dump_file
, &new_vr
);
6767 fprintf (dump_file
, "\n\n");
6770 if (new_vr
.type
== VR_VARYING
)
6771 return SSA_PROP_VARYING
;
6773 return SSA_PROP_INTERESTING
;
6776 return SSA_PROP_NOT_INTERESTING
;
6779 /* Every other statement produces no useful ranges. */
6780 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_DEF
)
6781 set_value_range_to_varying (get_value_range (def
));
6783 return SSA_PROP_VARYING
;
6786 /* Helper that gets the value range of the SSA_NAME with version I
6787 or a symbolic range containing the SSA_NAME only if the value range
6788 is varying or undefined. */
6790 static inline value_range_t
6791 get_vr_for_comparison (int i
)
6793 value_range_t vr
= *get_value_range (ssa_name (i
));
6795 /* If name N_i does not have a valid range, use N_i as its own
6796 range. This allows us to compare against names that may
6797 have N_i in their ranges. */
6798 if (vr
.type
== VR_VARYING
|| vr
.type
== VR_UNDEFINED
)
6801 vr
.min
= ssa_name (i
);
6802 vr
.max
= ssa_name (i
);
6808 /* Compare all the value ranges for names equivalent to VAR with VAL
6809 using comparison code COMP. Return the same value returned by
6810 compare_range_with_value, including the setting of
6811 *STRICT_OVERFLOW_P. */
6814 compare_name_with_value (enum tree_code comp
, tree var
, tree val
,
6815 bool *strict_overflow_p
)
6821 int used_strict_overflow
;
6823 value_range_t equiv_vr
;
6825 /* Get the set of equivalences for VAR. */
6826 e
= get_value_range (var
)->equiv
;
6828 /* Start at -1. Set it to 0 if we do a comparison without relying
6829 on overflow, or 1 if all comparisons rely on overflow. */
6830 used_strict_overflow
= -1;
6832 /* Compare vars' value range with val. */
6833 equiv_vr
= get_vr_for_comparison (SSA_NAME_VERSION (var
));
6835 retval
= compare_range_with_value (comp
, &equiv_vr
, val
, &sop
);
6837 used_strict_overflow
= sop
? 1 : 0;
6839 /* If the equiv set is empty we have done all work we need to do. */
6843 && used_strict_overflow
> 0)
6844 *strict_overflow_p
= true;
6848 EXECUTE_IF_SET_IN_BITMAP (e
, 0, i
, bi
)
6850 equiv_vr
= get_vr_for_comparison (i
);
6852 t
= compare_range_with_value (comp
, &equiv_vr
, val
, &sop
);
6855 /* If we get different answers from different members
6856 of the equivalence set this check must be in a dead
6857 code region. Folding it to a trap representation
6858 would be correct here. For now just return don't-know. */
6868 used_strict_overflow
= 0;
6869 else if (used_strict_overflow
< 0)
6870 used_strict_overflow
= 1;
6875 && used_strict_overflow
> 0)
6876 *strict_overflow_p
= true;
6882 /* Given a comparison code COMP and names N1 and N2, compare all the
6883 ranges equivalent to N1 against all the ranges equivalent to N2
6884 to determine the value of N1 COMP N2. Return the same value
6885 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
6886 whether we relied on an overflow infinity in the comparison. */
6890 compare_names (enum tree_code comp
, tree n1
, tree n2
,
6891 bool *strict_overflow_p
)
6895 bitmap_iterator bi1
, bi2
;
6897 int used_strict_overflow
;
6898 static bitmap_obstack
*s_obstack
= NULL
;
6899 static bitmap s_e1
= NULL
, s_e2
= NULL
;
6901 /* Compare the ranges of every name equivalent to N1 against the
6902 ranges of every name equivalent to N2. */
6903 e1
= get_value_range (n1
)->equiv
;
6904 e2
= get_value_range (n2
)->equiv
;
6906 /* Use the fake bitmaps if e1 or e2 are not available. */
6907 if (s_obstack
== NULL
)
6909 s_obstack
= XNEW (bitmap_obstack
);
6910 bitmap_obstack_initialize (s_obstack
);
6911 s_e1
= BITMAP_ALLOC (s_obstack
);
6912 s_e2
= BITMAP_ALLOC (s_obstack
);
6919 /* Add N1 and N2 to their own set of equivalences to avoid
6920 duplicating the body of the loop just to check N1 and N2
6922 bitmap_set_bit (e1
, SSA_NAME_VERSION (n1
));
6923 bitmap_set_bit (e2
, SSA_NAME_VERSION (n2
));
6925 /* If the equivalence sets have a common intersection, then the two
6926 names can be compared without checking their ranges. */
6927 if (bitmap_intersect_p (e1
, e2
))
6929 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
6930 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
6932 return (comp
== EQ_EXPR
|| comp
== GE_EXPR
|| comp
== LE_EXPR
)
6934 : boolean_false_node
;
6937 /* Start at -1. Set it to 0 if we do a comparison without relying
6938 on overflow, or 1 if all comparisons rely on overflow. */
6939 used_strict_overflow
= -1;
6941 /* Otherwise, compare all the equivalent ranges. First, add N1 and
6942 N2 to their own set of equivalences to avoid duplicating the body
6943 of the loop just to check N1 and N2 ranges. */
6944 EXECUTE_IF_SET_IN_BITMAP (e1
, 0, i1
, bi1
)
6946 value_range_t vr1
= get_vr_for_comparison (i1
);
6948 t
= retval
= NULL_TREE
;
6949 EXECUTE_IF_SET_IN_BITMAP (e2
, 0, i2
, bi2
)
6953 value_range_t vr2
= get_vr_for_comparison (i2
);
6955 t
= compare_ranges (comp
, &vr1
, &vr2
, &sop
);
6958 /* If we get different answers from different members
6959 of the equivalence set this check must be in a dead
6960 code region. Folding it to a trap representation
6961 would be correct here. For now just return don't-know. */
6965 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
6966 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
6972 used_strict_overflow
= 0;
6973 else if (used_strict_overflow
< 0)
6974 used_strict_overflow
= 1;
6980 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
6981 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
6982 if (used_strict_overflow
> 0)
6983 *strict_overflow_p
= true;
6988 /* None of the equivalent ranges are useful in computing this
6990 bitmap_clear_bit (e1
, SSA_NAME_VERSION (n1
));
6991 bitmap_clear_bit (e2
, SSA_NAME_VERSION (n2
));
6995 /* Helper function for vrp_evaluate_conditional_warnv. */
6998 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code
,
7000 bool * strict_overflow_p
)
7002 value_range_t
*vr0
, *vr1
;
7004 vr0
= (TREE_CODE (op0
) == SSA_NAME
) ? get_value_range (op0
) : NULL
;
7005 vr1
= (TREE_CODE (op1
) == SSA_NAME
) ? get_value_range (op1
) : NULL
;
7008 return compare_ranges (code
, vr0
, vr1
, strict_overflow_p
);
7009 else if (vr0
&& vr1
== NULL
)
7010 return compare_range_with_value (code
, vr0
, op1
, strict_overflow_p
);
7011 else if (vr0
== NULL
&& vr1
)
7012 return (compare_range_with_value
7013 (swap_tree_comparison (code
), vr1
, op0
, strict_overflow_p
));
7017 /* Helper function for vrp_evaluate_conditional_warnv. */
7020 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code
, tree op0
,
7021 tree op1
, bool use_equiv_p
,
7022 bool *strict_overflow_p
, bool *only_ranges
)
7026 *only_ranges
= true;
7028 /* We only deal with integral and pointer types. */
7029 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0
))
7030 && !POINTER_TYPE_P (TREE_TYPE (op0
)))
7036 && (ret
= vrp_evaluate_conditional_warnv_with_ops_using_ranges
7037 (code
, op0
, op1
, strict_overflow_p
)))
7039 *only_ranges
= false;
7040 if (TREE_CODE (op0
) == SSA_NAME
&& TREE_CODE (op1
) == SSA_NAME
)
7041 return compare_names (code
, op0
, op1
, strict_overflow_p
);
7042 else if (TREE_CODE (op0
) == SSA_NAME
)
7043 return compare_name_with_value (code
, op0
, op1
, strict_overflow_p
);
7044 else if (TREE_CODE (op1
) == SSA_NAME
)
7045 return (compare_name_with_value
7046 (swap_tree_comparison (code
), op1
, op0
, strict_overflow_p
));
7049 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code
, op0
, op1
,
7054 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
7055 information. Return NULL if the conditional can not be evaluated.
7056 The ranges of all the names equivalent with the operands in COND
7057 will be used when trying to compute the value. If the result is
7058 based on undefined signed overflow, issue a warning if
7062 vrp_evaluate_conditional (enum tree_code code
, tree op0
, tree op1
, gimple stmt
)
7068 /* Some passes and foldings leak constants with overflow flag set
7069 into the IL. Avoid doing wrong things with these and bail out. */
7070 if ((TREE_CODE (op0
) == INTEGER_CST
7071 && TREE_OVERFLOW (op0
))
7072 || (TREE_CODE (op1
) == INTEGER_CST
7073 && TREE_OVERFLOW (op1
)))
7077 ret
= vrp_evaluate_conditional_warnv_with_ops (code
, op0
, op1
, true, &sop
,
7082 enum warn_strict_overflow_code wc
;
7083 const char* warnmsg
;
7085 if (is_gimple_min_invariant (ret
))
7087 wc
= WARN_STRICT_OVERFLOW_CONDITIONAL
;
7088 warnmsg
= G_("assuming signed overflow does not occur when "
7089 "simplifying conditional to constant");
7093 wc
= WARN_STRICT_OVERFLOW_COMPARISON
;
7094 warnmsg
= G_("assuming signed overflow does not occur when "
7095 "simplifying conditional");
7098 if (issue_strict_overflow_warning (wc
))
7100 location_t location
;
7102 if (!gimple_has_location (stmt
))
7103 location
= input_location
;
7105 location
= gimple_location (stmt
);
7106 warning_at (location
, OPT_Wstrict_overflow
, "%s", warnmsg
);
7110 if (warn_type_limits
7111 && ret
&& only_ranges
7112 && TREE_CODE_CLASS (code
) == tcc_comparison
7113 && TREE_CODE (op0
) == SSA_NAME
)
7115 /* If the comparison is being folded and the operand on the LHS
7116 is being compared against a constant value that is outside of
7117 the natural range of OP0's type, then the predicate will
7118 always fold regardless of the value of OP0. If -Wtype-limits
7119 was specified, emit a warning. */
7120 tree type
= TREE_TYPE (op0
);
7121 value_range_t
*vr0
= get_value_range (op0
);
7123 if (vr0
->type
!= VR_VARYING
7124 && INTEGRAL_TYPE_P (type
)
7125 && vrp_val_is_min (vr0
->min
)
7126 && vrp_val_is_max (vr0
->max
)
7127 && is_gimple_min_invariant (op1
))
7129 location_t location
;
7131 if (!gimple_has_location (stmt
))
7132 location
= input_location
;
7134 location
= gimple_location (stmt
);
7136 warning_at (location
, OPT_Wtype_limits
,
7138 ? G_("comparison always false "
7139 "due to limited range of data type")
7140 : G_("comparison always true "
7141 "due to limited range of data type"));
7149 /* Visit conditional statement STMT. If we can determine which edge
7150 will be taken out of STMT's basic block, record it in
7151 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7152 SSA_PROP_VARYING. */
7154 static enum ssa_prop_result
7155 vrp_visit_cond_stmt (gimple stmt
, edge
*taken_edge_p
)
7160 *taken_edge_p
= NULL
;
7162 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7167 fprintf (dump_file
, "\nVisiting conditional with predicate: ");
7168 print_gimple_stmt (dump_file
, stmt
, 0, 0);
7169 fprintf (dump_file
, "\nWith known ranges\n");
7171 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, i
, SSA_OP_USE
)
7173 fprintf (dump_file
, "\t");
7174 print_generic_expr (dump_file
, use
, 0);
7175 fprintf (dump_file
, ": ");
7176 dump_value_range (dump_file
, vr_value
[SSA_NAME_VERSION (use
)]);
7179 fprintf (dump_file
, "\n");
7182 /* Compute the value of the predicate COND by checking the known
7183 ranges of each of its operands.
7185 Note that we cannot evaluate all the equivalent ranges here
7186 because those ranges may not yet be final and with the current
7187 propagation strategy, we cannot determine when the value ranges
7188 of the names in the equivalence set have changed.
7190 For instance, given the following code fragment
7194 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
7198 Assume that on the first visit to i_14, i_5 has the temporary
7199 range [8, 8] because the second argument to the PHI function is
7200 not yet executable. We derive the range ~[0, 0] for i_14 and the
7201 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
7202 the first time, since i_14 is equivalent to the range [8, 8], we
7203 determine that the predicate is always false.
7205 On the next round of propagation, i_13 is determined to be
7206 VARYING, which causes i_5 to drop down to VARYING. So, another
7207 visit to i_14 is scheduled. In this second visit, we compute the
7208 exact same range and equivalence set for i_14, namely ~[0, 0] and
7209 { i_5 }. But we did not have the previous range for i_5
7210 registered, so vrp_visit_assignment thinks that the range for
7211 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
7212 is not visited again, which stops propagation from visiting
7213 statements in the THEN clause of that if().
7215 To properly fix this we would need to keep the previous range
7216 value for the names in the equivalence set. This way we would've
7217 discovered that from one visit to the other i_5 changed from
7218 range [8, 8] to VR_VARYING.
7220 However, fixing this apparent limitation may not be worth the
7221 additional checking. Testing on several code bases (GCC, DLV,
7222 MICO, TRAMP3D and SPEC2000) showed that doing this results in
7223 4 more predicates folded in SPEC. */
7226 val
= vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt
),
7227 gimple_cond_lhs (stmt
),
7228 gimple_cond_rhs (stmt
),
7233 *taken_edge_p
= find_taken_edge (gimple_bb (stmt
), val
);
7236 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7238 "\nIgnoring predicate evaluation because "
7239 "it assumes that signed overflow is undefined");
7244 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7246 fprintf (dump_file
, "\nPredicate evaluates to: ");
7247 if (val
== NULL_TREE
)
7248 fprintf (dump_file
, "DON'T KNOW\n");
7250 print_generic_stmt (dump_file
, val
, 0);
7253 return (*taken_edge_p
) ? SSA_PROP_INTERESTING
: SSA_PROP_VARYING
;
7256 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
7257 that includes the value VAL. The search is restricted to the range
7258 [START_IDX, n - 1] where n is the size of VEC.
7260 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
7263 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
7264 it is placed in IDX and false is returned.
7266 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
7270 find_case_label_index (gimple stmt
, size_t start_idx
, tree val
, size_t *idx
)
7272 size_t n
= gimple_switch_num_labels (stmt
);
7275 /* Find case label for minimum of the value range or the next one.
7276 At each iteration we are searching in [low, high - 1]. */
7278 for (low
= start_idx
, high
= n
; high
!= low
; )
7282 /* Note that i != high, so we never ask for n. */
7283 size_t i
= (high
+ low
) / 2;
7284 t
= gimple_switch_label (stmt
, i
);
7286 /* Cache the result of comparing CASE_LOW and val. */
7287 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
7291 /* Ranges cannot be empty. */
7300 if (CASE_HIGH (t
) != NULL
7301 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
7313 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
7314 for values between MIN and MAX. The first index is placed in MIN_IDX. The
7315 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
7316 then MAX_IDX < MIN_IDX.
7317 Returns true if the default label is not needed. */
7320 find_case_label_range (gimple stmt
, tree min
, tree max
, size_t *min_idx
,
7324 bool min_take_default
= !find_case_label_index (stmt
, 1, min
, &i
);
7325 bool max_take_default
= !find_case_label_index (stmt
, i
, max
, &j
);
7329 && max_take_default
)
7331 /* Only the default case label reached.
7332 Return an empty range. */
7339 bool take_default
= min_take_default
|| max_take_default
;
7343 if (max_take_default
)
7346 /* If the case label range is continuous, we do not need
7347 the default case label. Verify that. */
7348 high
= CASE_LOW (gimple_switch_label (stmt
, i
));
7349 if (CASE_HIGH (gimple_switch_label (stmt
, i
)))
7350 high
= CASE_HIGH (gimple_switch_label (stmt
, i
));
7351 for (k
= i
+ 1; k
<= j
; ++k
)
7353 low
= CASE_LOW (gimple_switch_label (stmt
, k
));
7354 if (!integer_onep (int_const_binop (MINUS_EXPR
, low
, high
)))
7356 take_default
= true;
7360 if (CASE_HIGH (gimple_switch_label (stmt
, k
)))
7361 high
= CASE_HIGH (gimple_switch_label (stmt
, k
));
7366 return !take_default
;
7370 /* Searches the case label vector VEC for the ranges of CASE_LABELs that are
7371 used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
7372 MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
7373 Returns true if the default label is not needed. */
7376 find_case_label_ranges (gimple stmt
, value_range_t
*vr
, size_t *min_idx1
,
7377 size_t *max_idx1
, size_t *min_idx2
,
7381 unsigned int n
= gimple_switch_num_labels (stmt
);
7383 tree case_low
, case_high
;
7384 tree min
= vr
->min
, max
= vr
->max
;
7386 gcc_checking_assert (vr
->type
== VR_RANGE
|| vr
->type
== VR_ANTI_RANGE
);
7388 take_default
= !find_case_label_range (stmt
, min
, max
, &i
, &j
);
7390 /* Set second range to emtpy. */
7394 if (vr
->type
== VR_RANGE
)
7398 return !take_default
;
7401 /* Set first range to all case labels. */
7408 /* Make sure all the values of case labels [i , j] are contained in
7409 range [MIN, MAX]. */
7410 case_low
= CASE_LOW (gimple_switch_label (stmt
, i
));
7411 case_high
= CASE_HIGH (gimple_switch_label (stmt
, j
));
7412 if (tree_int_cst_compare (case_low
, min
) < 0)
7414 if (case_high
!= NULL_TREE
7415 && tree_int_cst_compare (max
, case_high
) < 0)
7421 /* If the range spans case labels [i, j], the corresponding anti-range spans
7422 the labels [1, i - 1] and [j + 1, n - 1]. */
7448 /* Visit switch statement STMT. If we can determine which edge
7449 will be taken out of STMT's basic block, record it in
7450 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7451 SSA_PROP_VARYING. */
7453 static enum ssa_prop_result
7454 vrp_visit_switch_stmt (gimple stmt
, edge
*taken_edge_p
)
7458 size_t i
= 0, j
= 0, k
, l
;
7461 *taken_edge_p
= NULL
;
7462 op
= gimple_switch_index (stmt
);
7463 if (TREE_CODE (op
) != SSA_NAME
)
7464 return SSA_PROP_VARYING
;
7466 vr
= get_value_range (op
);
7467 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7469 fprintf (dump_file
, "\nVisiting switch expression with operand ");
7470 print_generic_expr (dump_file
, op
, 0);
7471 fprintf (dump_file
, " with known range ");
7472 dump_value_range (dump_file
, vr
);
7473 fprintf (dump_file
, "\n");
7476 if ((vr
->type
!= VR_RANGE
7477 && vr
->type
!= VR_ANTI_RANGE
)
7478 || symbolic_range_p (vr
))
7479 return SSA_PROP_VARYING
;
7481 /* Find the single edge that is taken from the switch expression. */
7482 take_default
= !find_case_label_ranges (stmt
, vr
, &i
, &j
, &k
, &l
);
7484 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
7488 gcc_assert (take_default
);
7489 val
= gimple_switch_default_label (stmt
);
7493 /* Check if labels with index i to j and maybe the default label
7494 are all reaching the same label. */
7496 val
= gimple_switch_label (stmt
, i
);
7498 && CASE_LABEL (gimple_switch_default_label (stmt
))
7499 != CASE_LABEL (val
))
7501 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7502 fprintf (dump_file
, " not a single destination for this "
7504 return SSA_PROP_VARYING
;
7506 for (++i
; i
<= j
; ++i
)
7508 if (CASE_LABEL (gimple_switch_label (stmt
, i
)) != CASE_LABEL (val
))
7510 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7511 fprintf (dump_file
, " not a single destination for this "
7513 return SSA_PROP_VARYING
;
7518 if (CASE_LABEL (gimple_switch_label (stmt
, k
)) != CASE_LABEL (val
))
7520 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7521 fprintf (dump_file
, " not a single destination for this "
7523 return SSA_PROP_VARYING
;
7528 *taken_edge_p
= find_edge (gimple_bb (stmt
),
7529 label_to_block (CASE_LABEL (val
)));
7531 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7533 fprintf (dump_file
, " will take edge to ");
7534 print_generic_stmt (dump_file
, CASE_LABEL (val
), 0);
7537 return SSA_PROP_INTERESTING
;
7541 /* Evaluate statement STMT. If the statement produces a useful range,
7542 return SSA_PROP_INTERESTING and record the SSA name with the
7543 interesting range into *OUTPUT_P.
7545 If STMT is a conditional branch and we can determine its truth
7546 value, the taken edge is recorded in *TAKEN_EDGE_P.
7548 If STMT produces a varying value, return SSA_PROP_VARYING. */
7550 static enum ssa_prop_result
7551 vrp_visit_stmt (gimple stmt
, edge
*taken_edge_p
, tree
*output_p
)
7556 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
7558 fprintf (dump_file
, "\nVisiting statement:\n");
7559 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
7560 fprintf (dump_file
, "\n");
7563 if (!stmt_interesting_for_vrp (stmt
))
7564 gcc_assert (stmt_ends_bb_p (stmt
));
7565 else if (is_gimple_assign (stmt
) || is_gimple_call (stmt
))
7566 return vrp_visit_assignment_or_call (stmt
, output_p
);
7567 else if (gimple_code (stmt
) == GIMPLE_COND
)
7568 return vrp_visit_cond_stmt (stmt
, taken_edge_p
);
7569 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
7570 return vrp_visit_switch_stmt (stmt
, taken_edge_p
);
7572 /* All other statements produce nothing of interest for VRP, so mark
7573 their outputs varying and prevent further simulation. */
7574 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_DEF
)
7575 set_value_range_to_varying (get_value_range (def
));
7577 return SSA_PROP_VARYING
;
7580 /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
7581 { VR1TYPE, VR0MIN, VR0MAX } and store the result
7582 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
7583 possible such range. The resulting range is not canonicalized. */
7586 union_ranges (enum value_range_type
*vr0type
,
7587 tree
*vr0min
, tree
*vr0max
,
7588 enum value_range_type vr1type
,
7589 tree vr1min
, tree vr1max
)
7591 bool mineq
= operand_equal_p (*vr0min
, vr1min
, 0);
7592 bool maxeq
= operand_equal_p (*vr0max
, vr1max
, 0);
7594 /* [] is vr0, () is vr1 in the following classification comments. */
7598 if (*vr0type
== vr1type
)
7599 /* Nothing to do for equal ranges. */
7601 else if ((*vr0type
== VR_RANGE
7602 && vr1type
== VR_ANTI_RANGE
)
7603 || (*vr0type
== VR_ANTI_RANGE
7604 && vr1type
== VR_RANGE
))
7606 /* For anti-range with range union the result is varying. */
7612 else if (operand_less_p (*vr0max
, vr1min
) == 1
7613 || operand_less_p (vr1max
, *vr0min
) == 1)
7615 /* [ ] ( ) or ( ) [ ]
7616 If the ranges have an empty intersection, result of the union
7617 operation is the anti-range or if both are anti-ranges
7619 if (*vr0type
== VR_ANTI_RANGE
7620 && vr1type
== VR_ANTI_RANGE
)
7622 else if (*vr0type
== VR_ANTI_RANGE
7623 && vr1type
== VR_RANGE
)
7625 else if (*vr0type
== VR_RANGE
7626 && vr1type
== VR_ANTI_RANGE
)
7632 else if (*vr0type
== VR_RANGE
7633 && vr1type
== VR_RANGE
)
7635 /* The result is the convex hull of both ranges. */
7636 if (operand_less_p (*vr0max
, vr1min
) == 1)
7638 /* If the result can be an anti-range, create one. */
7639 if (TREE_CODE (*vr0max
) == INTEGER_CST
7640 && TREE_CODE (vr1min
) == INTEGER_CST
7641 && vrp_val_is_min (*vr0min
)
7642 && vrp_val_is_max (vr1max
))
7644 tree min
= int_const_binop (PLUS_EXPR
,
7645 *vr0max
, integer_one_node
);
7646 tree max
= int_const_binop (MINUS_EXPR
,
7647 vr1min
, integer_one_node
);
7648 if (!operand_less_p (max
, min
))
7650 *vr0type
= VR_ANTI_RANGE
;
7662 /* If the result can be an anti-range, create one. */
7663 if (TREE_CODE (vr1max
) == INTEGER_CST
7664 && TREE_CODE (*vr0min
) == INTEGER_CST
7665 && vrp_val_is_min (vr1min
)
7666 && vrp_val_is_max (*vr0max
))
7668 tree min
= int_const_binop (PLUS_EXPR
,
7669 vr1max
, integer_one_node
);
7670 tree max
= int_const_binop (MINUS_EXPR
,
7671 *vr0min
, integer_one_node
);
7672 if (!operand_less_p (max
, min
))
7674 *vr0type
= VR_ANTI_RANGE
;
7688 else if ((maxeq
|| operand_less_p (vr1max
, *vr0max
) == 1)
7689 && (mineq
|| operand_less_p (*vr0min
, vr1min
) == 1))
7691 /* [ ( ) ] or [( ) ] or [ ( )] */
7692 if (*vr0type
== VR_RANGE
7693 && vr1type
== VR_RANGE
)
7695 else if (*vr0type
== VR_ANTI_RANGE
7696 && vr1type
== VR_ANTI_RANGE
)
7702 else if (*vr0type
== VR_ANTI_RANGE
7703 && vr1type
== VR_RANGE
)
7705 /* Arbitrarily choose the right or left gap. */
7706 if (!mineq
&& TREE_CODE (vr1min
) == INTEGER_CST
)
7707 *vr0max
= int_const_binop (MINUS_EXPR
, vr1min
, integer_one_node
);
7708 else if (!maxeq
&& TREE_CODE (vr1max
) == INTEGER_CST
)
7709 *vr0min
= int_const_binop (PLUS_EXPR
, vr1max
, integer_one_node
);
7713 else if (*vr0type
== VR_RANGE
7714 && vr1type
== VR_ANTI_RANGE
)
7715 /* The result covers everything. */
7720 else if ((maxeq
|| operand_less_p (*vr0max
, vr1max
) == 1)
7721 && (mineq
|| operand_less_p (vr1min
, *vr0min
) == 1))
7723 /* ( [ ] ) or ([ ] ) or ( [ ]) */
7724 if (*vr0type
== VR_RANGE
7725 && vr1type
== VR_RANGE
)
7731 else if (*vr0type
== VR_ANTI_RANGE
7732 && vr1type
== VR_ANTI_RANGE
)
7734 else if (*vr0type
== VR_RANGE
7735 && vr1type
== VR_ANTI_RANGE
)
7737 *vr0type
= VR_ANTI_RANGE
;
7738 if (!mineq
&& TREE_CODE (*vr0min
) == INTEGER_CST
)
7740 *vr0max
= int_const_binop (MINUS_EXPR
, *vr0min
, integer_one_node
);
7743 else if (!maxeq
&& TREE_CODE (*vr0max
) == INTEGER_CST
)
7745 *vr0min
= int_const_binop (PLUS_EXPR
, *vr0max
, integer_one_node
);
7751 else if (*vr0type
== VR_ANTI_RANGE
7752 && vr1type
== VR_RANGE
)
7753 /* The result covers everything. */
7758 else if ((operand_less_p (vr1min
, *vr0max
) == 1
7759 || operand_equal_p (vr1min
, *vr0max
, 0))
7760 && operand_less_p (*vr0min
, vr1min
) == 1)
7762 /* [ ( ] ) or [ ]( ) */
7763 if (*vr0type
== VR_RANGE
7764 && vr1type
== VR_RANGE
)
7766 else if (*vr0type
== VR_ANTI_RANGE
7767 && vr1type
== VR_ANTI_RANGE
)
7769 else if (*vr0type
== VR_ANTI_RANGE
7770 && vr1type
== VR_RANGE
)
7772 if (TREE_CODE (vr1min
) == INTEGER_CST
)
7773 *vr0max
= int_const_binop (MINUS_EXPR
, vr1min
, integer_one_node
);
7777 else if (*vr0type
== VR_RANGE
7778 && vr1type
== VR_ANTI_RANGE
)
7780 if (TREE_CODE (*vr0max
) == INTEGER_CST
)
7783 *vr0min
= int_const_binop (PLUS_EXPR
, *vr0max
, integer_one_node
);
7792 else if ((operand_less_p (*vr0min
, vr1max
) == 1
7793 || operand_equal_p (*vr0min
, vr1max
, 0))
7794 && operand_less_p (vr1min
, *vr0min
) == 1)
7796 /* ( [ ) ] or ( )[ ] */
7797 if (*vr0type
== VR_RANGE
7798 && vr1type
== VR_RANGE
)
7800 else if (*vr0type
== VR_ANTI_RANGE
7801 && vr1type
== VR_ANTI_RANGE
)
7803 else if (*vr0type
== VR_ANTI_RANGE
7804 && vr1type
== VR_RANGE
)
7806 if (TREE_CODE (vr1max
) == INTEGER_CST
)
7807 *vr0min
= int_const_binop (PLUS_EXPR
, vr1max
, integer_one_node
);
7811 else if (*vr0type
== VR_RANGE
7812 && vr1type
== VR_ANTI_RANGE
)
7814 if (TREE_CODE (*vr0min
) == INTEGER_CST
)
7818 *vr0max
= int_const_binop (MINUS_EXPR
, *vr0min
, integer_one_node
);
7832 *vr0type
= VR_VARYING
;
7833 *vr0min
= NULL_TREE
;
7834 *vr0max
= NULL_TREE
;
7837 /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
7838 { VR1TYPE, VR0MIN, VR0MAX } and store the result
7839 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
7840 possible such range. The resulting range is not canonicalized. */
7843 intersect_ranges (enum value_range_type
*vr0type
,
7844 tree
*vr0min
, tree
*vr0max
,
7845 enum value_range_type vr1type
,
7846 tree vr1min
, tree vr1max
)
7848 bool mineq
= operand_equal_p (*vr0min
, vr1min
, 0);
7849 bool maxeq
= operand_equal_p (*vr0max
, vr1max
, 0);
7851 /* [] is vr0, () is vr1 in the following classification comments. */
7855 if (*vr0type
== vr1type
)
7856 /* Nothing to do for equal ranges. */
7858 else if ((*vr0type
== VR_RANGE
7859 && vr1type
== VR_ANTI_RANGE
)
7860 || (*vr0type
== VR_ANTI_RANGE
7861 && vr1type
== VR_RANGE
))
7863 /* For anti-range with range intersection the result is empty. */
7864 *vr0type
= VR_UNDEFINED
;
7865 *vr0min
= NULL_TREE
;
7866 *vr0max
= NULL_TREE
;
7871 else if (operand_less_p (*vr0max
, vr1min
) == 1
7872 || operand_less_p (vr1max
, *vr0min
) == 1)
7874 /* [ ] ( ) or ( ) [ ]
7875 If the ranges have an empty intersection, the result of the
7876 intersect operation is the range for intersecting an
7877 anti-range with a range or empty when intersecting two ranges. */
7878 if (*vr0type
== VR_RANGE
7879 && vr1type
== VR_ANTI_RANGE
)
7881 else if (*vr0type
== VR_ANTI_RANGE
7882 && vr1type
== VR_RANGE
)
7888 else if (*vr0type
== VR_RANGE
7889 && vr1type
== VR_RANGE
)
7891 *vr0type
= VR_UNDEFINED
;
7892 *vr0min
= NULL_TREE
;
7893 *vr0max
= NULL_TREE
;
7895 else if (*vr0type
== VR_ANTI_RANGE
7896 && vr1type
== VR_ANTI_RANGE
)
7898 /* If the anti-ranges are adjacent to each other merge them. */
7899 if (TREE_CODE (*vr0max
) == INTEGER_CST
7900 && TREE_CODE (vr1min
) == INTEGER_CST
7901 && operand_less_p (*vr0max
, vr1min
) == 1
7902 && integer_onep (int_const_binop (MINUS_EXPR
,
7905 else if (TREE_CODE (vr1max
) == INTEGER_CST
7906 && TREE_CODE (*vr0min
) == INTEGER_CST
7907 && operand_less_p (vr1max
, *vr0min
) == 1
7908 && integer_onep (int_const_binop (MINUS_EXPR
,
7911 /* Else arbitrarily take VR0. */
7914 else if ((maxeq
|| operand_less_p (vr1max
, *vr0max
) == 1)
7915 && (mineq
|| operand_less_p (*vr0min
, vr1min
) == 1))
7917 /* [ ( ) ] or [( ) ] or [ ( )] */
7918 if (*vr0type
== VR_RANGE
7919 && vr1type
== VR_RANGE
)
7921 /* If both are ranges the result is the inner one. */
7926 else if (*vr0type
== VR_RANGE
7927 && vr1type
== VR_ANTI_RANGE
)
7929 /* Choose the right gap if the left one is empty. */
7932 if (TREE_CODE (vr1max
) == INTEGER_CST
)
7933 *vr0min
= int_const_binop (PLUS_EXPR
, vr1max
, integer_one_node
);
7937 /* Choose the left gap if the right one is empty. */
7940 if (TREE_CODE (vr1min
) == INTEGER_CST
)
7941 *vr0max
= int_const_binop (MINUS_EXPR
, vr1min
,
7946 /* Choose the anti-range if the range is effectively varying. */
7947 else if (vrp_val_is_min (*vr0min
)
7948 && vrp_val_is_max (*vr0max
))
7954 /* Else choose the range. */
7956 else if (*vr0type
== VR_ANTI_RANGE
7957 && vr1type
== VR_ANTI_RANGE
)
7958 /* If both are anti-ranges the result is the outer one. */
7960 else if (*vr0type
== VR_ANTI_RANGE
7961 && vr1type
== VR_RANGE
)
7963 /* The intersection is empty. */
7964 *vr0type
= VR_UNDEFINED
;
7965 *vr0min
= NULL_TREE
;
7966 *vr0max
= NULL_TREE
;
7971 else if ((maxeq
|| operand_less_p (*vr0max
, vr1max
) == 1)
7972 && (mineq
|| operand_less_p (vr1min
, *vr0min
) == 1))
7974 /* ( [ ] ) or ([ ] ) or ( [ ]) */
7975 if (*vr0type
== VR_RANGE
7976 && vr1type
== VR_RANGE
)
7977 /* Choose the inner range. */
7979 else if (*vr0type
== VR_ANTI_RANGE
7980 && vr1type
== VR_RANGE
)
7982 /* Choose the right gap if the left is empty. */
7985 *vr0type
= VR_RANGE
;
7986 if (TREE_CODE (*vr0max
) == INTEGER_CST
)
7987 *vr0min
= int_const_binop (PLUS_EXPR
, *vr0max
,
7993 /* Choose the left gap if the right is empty. */
7996 *vr0type
= VR_RANGE
;
7997 if (TREE_CODE (*vr0min
) == INTEGER_CST
)
7998 *vr0max
= int_const_binop (MINUS_EXPR
, *vr0min
,
8004 /* Choose the anti-range if the range is effectively varying. */
8005 else if (vrp_val_is_min (vr1min
)
8006 && vrp_val_is_max (vr1max
))
8008 /* Else choose the range. */
8016 else if (*vr0type
== VR_ANTI_RANGE
8017 && vr1type
== VR_ANTI_RANGE
)
8019 /* If both are anti-ranges the result is the outer one. */
8024 else if (vr1type
== VR_ANTI_RANGE
8025 && *vr0type
== VR_RANGE
)
8027 /* The intersection is empty. */
8028 *vr0type
= VR_UNDEFINED
;
8029 *vr0min
= NULL_TREE
;
8030 *vr0max
= NULL_TREE
;
8035 else if ((operand_less_p (vr1min
, *vr0max
) == 1
8036 || operand_equal_p (vr1min
, *vr0max
, 0))
8037 && operand_less_p (*vr0min
, vr1min
) == 1)
8039 /* [ ( ] ) or [ ]( ) */
8040 if (*vr0type
== VR_ANTI_RANGE
8041 && vr1type
== VR_ANTI_RANGE
)
8043 else if (*vr0type
== VR_RANGE
8044 && vr1type
== VR_RANGE
)
8046 else if (*vr0type
== VR_RANGE
8047 && vr1type
== VR_ANTI_RANGE
)
8049 if (TREE_CODE (vr1min
) == INTEGER_CST
)
8050 *vr0max
= int_const_binop (MINUS_EXPR
, vr1min
,
8055 else if (*vr0type
== VR_ANTI_RANGE
8056 && vr1type
== VR_RANGE
)
8058 *vr0type
= VR_RANGE
;
8059 if (TREE_CODE (*vr0max
) == INTEGER_CST
)
8060 *vr0min
= int_const_binop (PLUS_EXPR
, *vr0max
,
8069 else if ((operand_less_p (*vr0min
, vr1max
) == 1
8070 || operand_equal_p (*vr0min
, vr1max
, 0))
8071 && operand_less_p (vr1min
, *vr0min
) == 1)
8073 /* ( [ ) ] or ( )[ ] */
8074 if (*vr0type
== VR_ANTI_RANGE
8075 && vr1type
== VR_ANTI_RANGE
)
8077 else if (*vr0type
== VR_RANGE
8078 && vr1type
== VR_RANGE
)
8080 else if (*vr0type
== VR_RANGE
8081 && vr1type
== VR_ANTI_RANGE
)
8083 if (TREE_CODE (vr1max
) == INTEGER_CST
)
8084 *vr0min
= int_const_binop (PLUS_EXPR
, vr1max
,
8089 else if (*vr0type
== VR_ANTI_RANGE
8090 && vr1type
== VR_RANGE
)
8092 *vr0type
= VR_RANGE
;
8093 if (TREE_CODE (*vr0min
) == INTEGER_CST
)
8094 *vr0max
= int_const_binop (MINUS_EXPR
, *vr0min
,
8104 /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
8105 result for the intersection. That's always a conservative
8106 correct estimate. */
8112 /* Intersect the two value-ranges *VR0 and *VR1 and store the result
8113 in *VR0. This may not be the smallest possible such range. */
8116 vrp_intersect_ranges_1 (value_range_t
*vr0
, value_range_t
*vr1
)
8118 value_range_t saved
;
8120 /* If either range is VR_VARYING the other one wins. */
8121 if (vr1
->type
== VR_VARYING
)
8123 if (vr0
->type
== VR_VARYING
)
8125 copy_value_range (vr0
, vr1
);
8129 /* When either range is VR_UNDEFINED the resulting range is
8130 VR_UNDEFINED, too. */
8131 if (vr0
->type
== VR_UNDEFINED
)
8133 if (vr1
->type
== VR_UNDEFINED
)
8135 set_value_range_to_undefined (vr0
);
8139 /* Save the original vr0 so we can return it as conservative intersection
8140 result when our worker turns things to varying. */
8142 intersect_ranges (&vr0
->type
, &vr0
->min
, &vr0
->max
,
8143 vr1
->type
, vr1
->min
, vr1
->max
);
8144 /* Make sure to canonicalize the result though as the inversion of a
8145 VR_RANGE can still be a VR_RANGE. */
8146 set_and_canonicalize_value_range (vr0
, vr0
->type
,
8147 vr0
->min
, vr0
->max
, vr0
->equiv
);
8148 /* If that failed, use the saved original VR0. */
8149 if (vr0
->type
== VR_VARYING
)
8154 /* If the result is VR_UNDEFINED there is no need to mess with
8155 the equivalencies. */
8156 if (vr0
->type
== VR_UNDEFINED
)
8159 /* The resulting set of equivalences for range intersection is the union of
8161 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
8162 bitmap_ior_into (vr0
->equiv
, vr1
->equiv
);
8163 else if (vr1
->equiv
&& !vr0
->equiv
)
8164 bitmap_copy (vr0
->equiv
, vr1
->equiv
);
8168 vrp_intersect_ranges (value_range_t
*vr0
, value_range_t
*vr1
)
8170 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8172 fprintf (dump_file
, "Intersecting\n ");
8173 dump_value_range (dump_file
, vr0
);
8174 fprintf (dump_file
, "\nand\n ");
8175 dump_value_range (dump_file
, vr1
);
8176 fprintf (dump_file
, "\n");
8178 vrp_intersect_ranges_1 (vr0
, vr1
);
8179 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8181 fprintf (dump_file
, "to\n ");
8182 dump_value_range (dump_file
, vr0
);
8183 fprintf (dump_file
, "\n");
8187 /* Meet operation for value ranges. Given two value ranges VR0 and
8188 VR1, store in VR0 a range that contains both VR0 and VR1. This
8189 may not be the smallest possible such range. */
8192 vrp_meet_1 (value_range_t
*vr0
, value_range_t
*vr1
)
8194 value_range_t saved
;
8196 if (vr0
->type
== VR_UNDEFINED
)
8198 set_value_range (vr0
, vr1
->type
, vr1
->min
, vr1
->max
, vr1
->equiv
);
8202 if (vr1
->type
== VR_UNDEFINED
)
8204 /* VR0 already has the resulting range. */
8208 if (vr0
->type
== VR_VARYING
)
8210 /* Nothing to do. VR0 already has the resulting range. */
8214 if (vr1
->type
== VR_VARYING
)
8216 set_value_range_to_varying (vr0
);
8221 union_ranges (&vr0
->type
, &vr0
->min
, &vr0
->max
,
8222 vr1
->type
, vr1
->min
, vr1
->max
);
8223 if (vr0
->type
== VR_VARYING
)
8225 /* Failed to find an efficient meet. Before giving up and setting
8226 the result to VARYING, see if we can at least derive a useful
8227 anti-range. FIXME, all this nonsense about distinguishing
8228 anti-ranges from ranges is necessary because of the odd
8229 semantics of range_includes_zero_p and friends. */
8230 if (((saved
.type
== VR_RANGE
8231 && range_includes_zero_p (saved
.min
, saved
.max
) == 0)
8232 || (saved
.type
== VR_ANTI_RANGE
8233 && range_includes_zero_p (saved
.min
, saved
.max
) == 1))
8234 && ((vr1
->type
== VR_RANGE
8235 && range_includes_zero_p (vr1
->min
, vr1
->max
) == 0)
8236 || (vr1
->type
== VR_ANTI_RANGE
8237 && range_includes_zero_p (vr1
->min
, vr1
->max
) == 1)))
8239 set_value_range_to_nonnull (vr0
, TREE_TYPE (saved
.min
));
8241 /* Since this meet operation did not result from the meeting of
8242 two equivalent names, VR0 cannot have any equivalences. */
8244 bitmap_clear (vr0
->equiv
);
8248 set_value_range_to_varying (vr0
);
8251 set_and_canonicalize_value_range (vr0
, vr0
->type
, vr0
->min
, vr0
->max
,
8253 if (vr0
->type
== VR_VARYING
)
8256 /* The resulting set of equivalences is always the intersection of
8258 if (vr0
->equiv
&& vr1
->equiv
&& vr0
->equiv
!= vr1
->equiv
)
8259 bitmap_and_into (vr0
->equiv
, vr1
->equiv
);
8260 else if (vr0
->equiv
&& !vr1
->equiv
)
8261 bitmap_clear (vr0
->equiv
);
8265 vrp_meet (value_range_t
*vr0
, value_range_t
*vr1
)
8267 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8269 fprintf (dump_file
, "Meeting\n ");
8270 dump_value_range (dump_file
, vr0
);
8271 fprintf (dump_file
, "\nand\n ");
8272 dump_value_range (dump_file
, vr1
);
8273 fprintf (dump_file
, "\n");
8275 vrp_meet_1 (vr0
, vr1
);
8276 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8278 fprintf (dump_file
, "to\n ");
8279 dump_value_range (dump_file
, vr0
);
8280 fprintf (dump_file
, "\n");
8285 /* Visit all arguments for PHI node PHI that flow through executable
8286 edges. If a valid value range can be derived from all the incoming
8287 value ranges, set a new range for the LHS of PHI. */
8289 static enum ssa_prop_result
8290 vrp_visit_phi_node (gimple phi
)
8293 tree lhs
= PHI_RESULT (phi
);
8294 value_range_t
*lhs_vr
= get_value_range (lhs
);
8295 value_range_t vr_result
= VR_INITIALIZER
;
8297 int edges
, old_edges
;
8300 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8302 fprintf (dump_file
, "\nVisiting PHI node: ");
8303 print_gimple_stmt (dump_file
, phi
, 0, dump_flags
);
8307 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
8309 edge e
= gimple_phi_arg_edge (phi
, i
);
8311 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8314 "\n Argument #%d (%d -> %d %sexecutable)\n",
8315 (int) i
, e
->src
->index
, e
->dest
->index
,
8316 (e
->flags
& EDGE_EXECUTABLE
) ? "" : "not ");
8319 if (e
->flags
& EDGE_EXECUTABLE
)
8321 tree arg
= PHI_ARG_DEF (phi
, i
);
8322 value_range_t vr_arg
;
8326 if (TREE_CODE (arg
) == SSA_NAME
)
8328 vr_arg
= *(get_value_range (arg
));
8329 /* Do not allow equivalences or symbolic ranges to leak in from
8330 backedges. That creates invalid equivalencies.
8331 See PR53465 and PR54767. */
8332 if (e
->flags
& EDGE_DFS_BACK
8333 && (vr_arg
.type
== VR_RANGE
8334 || vr_arg
.type
== VR_ANTI_RANGE
))
8336 vr_arg
.equiv
= NULL
;
8337 if (symbolic_range_p (&vr_arg
))
8339 vr_arg
.type
= VR_VARYING
;
8340 vr_arg
.min
= NULL_TREE
;
8341 vr_arg
.max
= NULL_TREE
;
8347 if (TREE_OVERFLOW_P (arg
))
8348 arg
= drop_tree_overflow (arg
);
8350 vr_arg
.type
= VR_RANGE
;
8353 vr_arg
.equiv
= NULL
;
8356 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8358 fprintf (dump_file
, "\t");
8359 print_generic_expr (dump_file
, arg
, dump_flags
);
8360 fprintf (dump_file
, "\n\tValue: ");
8361 dump_value_range (dump_file
, &vr_arg
);
8362 fprintf (dump_file
, "\n");
8366 copy_value_range (&vr_result
, &vr_arg
);
8368 vrp_meet (&vr_result
, &vr_arg
);
8371 if (vr_result
.type
== VR_VARYING
)
8376 if (vr_result
.type
== VR_VARYING
)
8378 else if (vr_result
.type
== VR_UNDEFINED
)
8381 old_edges
= vr_phi_edge_counts
[SSA_NAME_VERSION (lhs
)];
8382 vr_phi_edge_counts
[SSA_NAME_VERSION (lhs
)] = edges
;
8384 /* To prevent infinite iterations in the algorithm, derive ranges
8385 when the new value is slightly bigger or smaller than the
8386 previous one. We don't do this if we have seen a new executable
8387 edge; this helps us avoid an overflow infinity for conditionals
8388 which are not in a loop. If the old value-range was VR_UNDEFINED
8389 use the updated range and iterate one more time. */
8391 && gimple_phi_num_args (phi
) > 1
8392 && edges
== old_edges
8393 && lhs_vr
->type
!= VR_UNDEFINED
)
8395 int cmp_min
= compare_values (lhs_vr
->min
, vr_result
.min
);
8396 int cmp_max
= compare_values (lhs_vr
->max
, vr_result
.max
);
8398 /* For non VR_RANGE or for pointers fall back to varying if
8399 the range changed. */
8400 if ((lhs_vr
->type
!= VR_RANGE
|| vr_result
.type
!= VR_RANGE
8401 || POINTER_TYPE_P (TREE_TYPE (lhs
)))
8402 && (cmp_min
!= 0 || cmp_max
!= 0))
8405 /* If the new minimum is smaller or larger than the previous
8406 one, go all the way to -INF. In the first case, to avoid
8407 iterating millions of times to reach -INF, and in the
8408 other case to avoid infinite bouncing between different
8410 if (cmp_min
> 0 || cmp_min
< 0)
8412 if (!needs_overflow_infinity (TREE_TYPE (vr_result
.min
))
8413 || !vrp_var_may_overflow (lhs
, phi
))
8414 vr_result
.min
= TYPE_MIN_VALUE (TREE_TYPE (vr_result
.min
));
8415 else if (supports_overflow_infinity (TREE_TYPE (vr_result
.min
)))
8417 negative_overflow_infinity (TREE_TYPE (vr_result
.min
));
8420 /* Similarly, if the new maximum is smaller or larger than
8421 the previous one, go all the way to +INF. */
8422 if (cmp_max
< 0 || cmp_max
> 0)
8424 if (!needs_overflow_infinity (TREE_TYPE (vr_result
.max
))
8425 || !vrp_var_may_overflow (lhs
, phi
))
8426 vr_result
.max
= TYPE_MAX_VALUE (TREE_TYPE (vr_result
.max
));
8427 else if (supports_overflow_infinity (TREE_TYPE (vr_result
.max
)))
8429 positive_overflow_infinity (TREE_TYPE (vr_result
.max
));
8432 /* If we dropped either bound to +-INF then if this is a loop
8433 PHI node SCEV may known more about its value-range. */
8434 if ((cmp_min
> 0 || cmp_min
< 0
8435 || cmp_max
< 0 || cmp_max
> 0)
8437 && (l
= loop_containing_stmt (phi
))
8438 && l
->header
== gimple_bb (phi
))
8439 adjust_range_with_scev (&vr_result
, l
, phi
, lhs
);
8441 /* If we will end up with a (-INF, +INF) range, set it to
8442 VARYING. Same if the previous max value was invalid for
8443 the type and we end up with vr_result.min > vr_result.max. */
8444 if ((vrp_val_is_max (vr_result
.max
)
8445 && vrp_val_is_min (vr_result
.min
))
8446 || compare_values (vr_result
.min
,
8451 /* If the new range is different than the previous value, keep
8454 if (update_value_range (lhs
, &vr_result
))
8456 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
8458 fprintf (dump_file
, "Found new range for ");
8459 print_generic_expr (dump_file
, lhs
, 0);
8460 fprintf (dump_file
, ": ");
8461 dump_value_range (dump_file
, &vr_result
);
8462 fprintf (dump_file
, "\n\n");
8465 return SSA_PROP_INTERESTING
;
8468 /* Nothing changed, don't add outgoing edges. */
8469 return SSA_PROP_NOT_INTERESTING
;
8471 /* No match found. Set the LHS to VARYING. */
8473 set_value_range_to_varying (lhs_vr
);
8474 return SSA_PROP_VARYING
;
8477 /* Simplify boolean operations if the source is known
8478 to be already a boolean. */
8480 simplify_truth_ops_using_ranges (gimple_stmt_iterator
*gsi
, gimple stmt
)
8482 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
8484 bool need_conversion
;
8486 /* We handle only !=/== case here. */
8487 gcc_assert (rhs_code
== EQ_EXPR
|| rhs_code
== NE_EXPR
);
8489 op0
= gimple_assign_rhs1 (stmt
);
8490 if (!op_with_boolean_value_range_p (op0
))
8493 op1
= gimple_assign_rhs2 (stmt
);
8494 if (!op_with_boolean_value_range_p (op1
))
8497 /* Reduce number of cases to handle to NE_EXPR. As there is no
8498 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
8499 if (rhs_code
== EQ_EXPR
)
8501 if (TREE_CODE (op1
) == INTEGER_CST
)
8502 op1
= int_const_binop (BIT_XOR_EXPR
, op1
, integer_one_node
);
8507 lhs
= gimple_assign_lhs (stmt
);
8509 = !useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (op0
));
8511 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
8513 && !TYPE_UNSIGNED (TREE_TYPE (op0
))
8514 && TYPE_PRECISION (TREE_TYPE (op0
)) == 1
8515 && TYPE_PRECISION (TREE_TYPE (lhs
)) > 1)
8518 /* For A != 0 we can substitute A itself. */
8519 if (integer_zerop (op1
))
8520 gimple_assign_set_rhs_with_ops (gsi
,
8522 ? NOP_EXPR
: TREE_CODE (op0
),
8524 /* For A != B we substitute A ^ B. Either with conversion. */
8525 else if (need_conversion
)
8527 tree tem
= make_ssa_name (TREE_TYPE (op0
), NULL
);
8528 gimple newop
= gimple_build_assign_with_ops (BIT_XOR_EXPR
, tem
, op0
, op1
);
8529 gsi_insert_before (gsi
, newop
, GSI_SAME_STMT
);
8530 gimple_assign_set_rhs_with_ops (gsi
, NOP_EXPR
, tem
, NULL_TREE
);
8534 gimple_assign_set_rhs_with_ops (gsi
, BIT_XOR_EXPR
, op0
, op1
);
8535 update_stmt (gsi_stmt (*gsi
));
8540 /* Simplify a division or modulo operator to a right shift or
8541 bitwise and if the first operand is unsigned or is greater
8542 than zero and the second operand is an exact power of two. */
8545 simplify_div_or_mod_using_ranges (gimple stmt
)
8547 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
8549 tree op0
= gimple_assign_rhs1 (stmt
);
8550 tree op1
= gimple_assign_rhs2 (stmt
);
8551 value_range_t
*vr
= get_value_range (gimple_assign_rhs1 (stmt
));
8553 if (TYPE_UNSIGNED (TREE_TYPE (op0
)))
8555 val
= integer_one_node
;
8561 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
, &sop
);
8565 && integer_onep (val
)
8566 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC
))
8568 location_t location
;
8570 if (!gimple_has_location (stmt
))
8571 location
= input_location
;
8573 location
= gimple_location (stmt
);
8574 warning_at (location
, OPT_Wstrict_overflow
,
8575 "assuming signed overflow does not occur when "
8576 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
8580 if (val
&& integer_onep (val
))
8584 if (rhs_code
== TRUNC_DIV_EXPR
)
8586 t
= build_int_cst (integer_type_node
, tree_log2 (op1
));
8587 gimple_assign_set_rhs_code (stmt
, RSHIFT_EXPR
);
8588 gimple_assign_set_rhs1 (stmt
, op0
);
8589 gimple_assign_set_rhs2 (stmt
, t
);
8593 t
= build_int_cst (TREE_TYPE (op1
), 1);
8594 t
= int_const_binop (MINUS_EXPR
, op1
, t
);
8595 t
= fold_convert (TREE_TYPE (op0
), t
);
8597 gimple_assign_set_rhs_code (stmt
, BIT_AND_EXPR
);
8598 gimple_assign_set_rhs1 (stmt
, op0
);
8599 gimple_assign_set_rhs2 (stmt
, t
);
8609 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
8610 ABS_EXPR. If the operand is <= 0, then simplify the
8611 ABS_EXPR into a NEGATE_EXPR. */
8614 simplify_abs_using_ranges (gimple stmt
)
8617 tree op
= gimple_assign_rhs1 (stmt
);
8618 tree type
= TREE_TYPE (op
);
8619 value_range_t
*vr
= get_value_range (op
);
8621 if (TYPE_UNSIGNED (type
))
8623 val
= integer_zero_node
;
8629 val
= compare_range_with_value (LE_EXPR
, vr
, integer_zero_node
, &sop
);
8633 val
= compare_range_with_value (GE_EXPR
, vr
, integer_zero_node
,
8638 if (integer_zerop (val
))
8639 val
= integer_one_node
;
8640 else if (integer_onep (val
))
8641 val
= integer_zero_node
;
8646 && (integer_onep (val
) || integer_zerop (val
)))
8648 if (sop
&& issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC
))
8650 location_t location
;
8652 if (!gimple_has_location (stmt
))
8653 location
= input_location
;
8655 location
= gimple_location (stmt
);
8656 warning_at (location
, OPT_Wstrict_overflow
,
8657 "assuming signed overflow does not occur when "
8658 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
8661 gimple_assign_set_rhs1 (stmt
, op
);
8662 if (integer_onep (val
))
8663 gimple_assign_set_rhs_code (stmt
, NEGATE_EXPR
);
8665 gimple_assign_set_rhs_code (stmt
, SSA_NAME
);
8674 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
8675 If all the bits that are being cleared by & are already
8676 known to be zero from VR, or all the bits that are being
8677 set by | are already known to be one from VR, the bit
8678 operation is redundant. */
8681 simplify_bit_ops_using_ranges (gimple_stmt_iterator
*gsi
, gimple stmt
)
8683 tree op0
= gimple_assign_rhs1 (stmt
);
8684 tree op1
= gimple_assign_rhs2 (stmt
);
8685 tree op
= NULL_TREE
;
8686 value_range_t vr0
= VR_INITIALIZER
;
8687 value_range_t vr1
= VR_INITIALIZER
;
8688 double_int may_be_nonzero0
, may_be_nonzero1
;
8689 double_int must_be_nonzero0
, must_be_nonzero1
;
8692 if (TREE_CODE (op0
) == SSA_NAME
)
8693 vr0
= *(get_value_range (op0
));
8694 else if (is_gimple_min_invariant (op0
))
8695 set_value_range_to_value (&vr0
, op0
, NULL
);
8699 if (TREE_CODE (op1
) == SSA_NAME
)
8700 vr1
= *(get_value_range (op1
));
8701 else if (is_gimple_min_invariant (op1
))
8702 set_value_range_to_value (&vr1
, op1
, NULL
);
8706 if (!zero_nonzero_bits_from_vr (&vr0
, &may_be_nonzero0
, &must_be_nonzero0
))
8708 if (!zero_nonzero_bits_from_vr (&vr1
, &may_be_nonzero1
, &must_be_nonzero1
))
8711 switch (gimple_assign_rhs_code (stmt
))
8714 mask
= may_be_nonzero0
.and_not (must_be_nonzero1
);
8715 if (mask
.is_zero ())
8720 mask
= may_be_nonzero1
.and_not (must_be_nonzero0
);
8721 if (mask
.is_zero ())
8728 mask
= may_be_nonzero0
.and_not (must_be_nonzero1
);
8729 if (mask
.is_zero ())
8734 mask
= may_be_nonzero1
.and_not (must_be_nonzero0
);
8735 if (mask
.is_zero ())
8745 if (op
== NULL_TREE
)
8748 gimple_assign_set_rhs_with_ops (gsi
, TREE_CODE (op
), op
, NULL
);
8749 update_stmt (gsi_stmt (*gsi
));
8753 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
8754 a known value range VR.
8756 If there is one and only one value which will satisfy the
8757 conditional, then return that value. Else return NULL. */
8760 test_for_singularity (enum tree_code cond_code
, tree op0
,
8761 tree op1
, value_range_t
*vr
)
8766 /* Extract minimum/maximum values which satisfy the
8767 the conditional as it was written. */
8768 if (cond_code
== LE_EXPR
|| cond_code
== LT_EXPR
)
8770 /* This should not be negative infinity; there is no overflow
8772 min
= TYPE_MIN_VALUE (TREE_TYPE (op0
));
8775 if (cond_code
== LT_EXPR
&& !is_overflow_infinity (max
))
8777 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
8778 max
= fold_build2 (MINUS_EXPR
, TREE_TYPE (op0
), max
, one
);
8780 TREE_NO_WARNING (max
) = 1;
8783 else if (cond_code
== GE_EXPR
|| cond_code
== GT_EXPR
)
8785 /* This should not be positive infinity; there is no overflow
8787 max
= TYPE_MAX_VALUE (TREE_TYPE (op0
));
8790 if (cond_code
== GT_EXPR
&& !is_overflow_infinity (min
))
8792 tree one
= build_int_cst (TREE_TYPE (op0
), 1);
8793 min
= fold_build2 (PLUS_EXPR
, TREE_TYPE (op0
), min
, one
);
8795 TREE_NO_WARNING (min
) = 1;
8799 /* Now refine the minimum and maximum values using any
8800 value range information we have for op0. */
8803 if (compare_values (vr
->min
, min
) == 1)
8805 if (compare_values (vr
->max
, max
) == -1)
8808 /* If the new min/max values have converged to a single value,
8809 then there is only one value which can satisfy the condition,
8810 return that value. */
8811 if (operand_equal_p (min
, max
, 0) && is_gimple_min_invariant (min
))
8817 /* Return whether the value range *VR fits in an integer type specified
8818 by PRECISION and UNSIGNED_P. */
8821 range_fits_type_p (value_range_t
*vr
, unsigned precision
, bool unsigned_p
)
8824 unsigned src_precision
;
8827 /* We can only handle integral and pointer types. */
8828 src_type
= TREE_TYPE (vr
->min
);
8829 if (!INTEGRAL_TYPE_P (src_type
)
8830 && !POINTER_TYPE_P (src_type
))
8833 /* An extension is fine unless VR is signed and unsigned_p,
8834 and so is an identity transform. */
8835 src_precision
= TYPE_PRECISION (TREE_TYPE (vr
->min
));
8836 if ((src_precision
< precision
8837 && !(unsigned_p
&& !TYPE_UNSIGNED (src_type
)))
8838 || (src_precision
== precision
8839 && TYPE_UNSIGNED (src_type
) == unsigned_p
))
8842 /* Now we can only handle ranges with constant bounds. */
8843 if (vr
->type
!= VR_RANGE
8844 || TREE_CODE (vr
->min
) != INTEGER_CST
8845 || TREE_CODE (vr
->max
) != INTEGER_CST
)
8848 /* For sign changes, the MSB of the double_int has to be clear.
8849 An unsigned value with its MSB set cannot be represented by
8850 a signed double_int, while a negative value cannot be represented
8851 by an unsigned double_int. */
8852 if (TYPE_UNSIGNED (src_type
) != unsigned_p
8853 && (TREE_INT_CST_HIGH (vr
->min
) | TREE_INT_CST_HIGH (vr
->max
)) < 0)
8856 /* Then we can perform the conversion on both ends and compare
8857 the result for equality. */
8858 tem
= tree_to_double_int (vr
->min
).ext (precision
, unsigned_p
);
8859 if (tree_to_double_int (vr
->min
) != tem
)
8861 tem
= tree_to_double_int (vr
->max
).ext (precision
, unsigned_p
);
8862 if (tree_to_double_int (vr
->max
) != tem
)
8868 /* Simplify a conditional using a relational operator to an equality
8869 test if the range information indicates only one value can satisfy
8870 the original conditional. */
8873 simplify_cond_using_ranges (gimple stmt
)
8875 tree op0
= gimple_cond_lhs (stmt
);
8876 tree op1
= gimple_cond_rhs (stmt
);
8877 enum tree_code cond_code
= gimple_cond_code (stmt
);
8879 if (cond_code
!= NE_EXPR
8880 && cond_code
!= EQ_EXPR
8881 && TREE_CODE (op0
) == SSA_NAME
8882 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
8883 && is_gimple_min_invariant (op1
))
8885 value_range_t
*vr
= get_value_range (op0
);
8887 /* If we have range information for OP0, then we might be
8888 able to simplify this conditional. */
8889 if (vr
->type
== VR_RANGE
)
8891 tree new_tree
= test_for_singularity (cond_code
, op0
, op1
, vr
);
8897 fprintf (dump_file
, "Simplified relational ");
8898 print_gimple_stmt (dump_file
, stmt
, 0, 0);
8899 fprintf (dump_file
, " into ");
8902 gimple_cond_set_code (stmt
, EQ_EXPR
);
8903 gimple_cond_set_lhs (stmt
, op0
);
8904 gimple_cond_set_rhs (stmt
, new_tree
);
8910 print_gimple_stmt (dump_file
, stmt
, 0, 0);
8911 fprintf (dump_file
, "\n");
8917 /* Try again after inverting the condition. We only deal
8918 with integral types here, so no need to worry about
8919 issues with inverting FP comparisons. */
8920 cond_code
= invert_tree_comparison (cond_code
, false);
8921 new_tree
= test_for_singularity (cond_code
, op0
, op1
, vr
);
8927 fprintf (dump_file
, "Simplified relational ");
8928 print_gimple_stmt (dump_file
, stmt
, 0, 0);
8929 fprintf (dump_file
, " into ");
8932 gimple_cond_set_code (stmt
, NE_EXPR
);
8933 gimple_cond_set_lhs (stmt
, op0
);
8934 gimple_cond_set_rhs (stmt
, new_tree
);
8940 print_gimple_stmt (dump_file
, stmt
, 0, 0);
8941 fprintf (dump_file
, "\n");
8949 /* If we have a comparison of an SSA_NAME (OP0) against a constant,
8950 see if OP0 was set by a type conversion where the source of
8951 the conversion is another SSA_NAME with a range that fits
8952 into the range of OP0's type.
8954 If so, the conversion is redundant as the earlier SSA_NAME can be
8955 used for the comparison directly if we just massage the constant in the
8957 if (TREE_CODE (op0
) == SSA_NAME
8958 && TREE_CODE (op1
) == INTEGER_CST
)
8960 gimple def_stmt
= SSA_NAME_DEF_STMT (op0
);
8963 if (!is_gimple_assign (def_stmt
)
8964 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt
)))
8967 innerop
= gimple_assign_rhs1 (def_stmt
);
8969 if (TREE_CODE (innerop
) == SSA_NAME
8970 && !POINTER_TYPE_P (TREE_TYPE (innerop
)))
8972 value_range_t
*vr
= get_value_range (innerop
);
8974 if (range_int_cst_p (vr
)
8975 && range_fits_type_p (vr
,
8976 TYPE_PRECISION (TREE_TYPE (op0
)),
8977 TYPE_UNSIGNED (TREE_TYPE (op0
)))
8978 && int_fits_type_p (op1
, TREE_TYPE (innerop
))
8979 /* The range must not have overflowed, or if it did overflow
8980 we must not be wrapping/trapping overflow and optimizing
8981 with strict overflow semantics. */
8982 && ((!is_negative_overflow_infinity (vr
->min
)
8983 && !is_positive_overflow_infinity (vr
->max
))
8984 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (innerop
))))
8986 /* If the range overflowed and the user has asked for warnings
8987 when strict overflow semantics were used to optimize code,
8988 issue an appropriate warning. */
8989 if ((is_negative_overflow_infinity (vr
->min
)
8990 || is_positive_overflow_infinity (vr
->max
))
8991 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_CONDITIONAL
))
8993 location_t location
;
8995 if (!gimple_has_location (stmt
))
8996 location
= input_location
;
8998 location
= gimple_location (stmt
);
8999 warning_at (location
, OPT_Wstrict_overflow
,
9000 "assuming signed overflow does not occur when "
9001 "simplifying conditional");
9004 tree newconst
= fold_convert (TREE_TYPE (innerop
), op1
);
9005 gimple_cond_set_lhs (stmt
, innerop
);
9006 gimple_cond_set_rhs (stmt
, newconst
);
9015 /* Simplify a switch statement using the value range of the switch
9019 simplify_switch_using_ranges (gimple stmt
)
9021 tree op
= gimple_switch_index (stmt
);
9026 size_t i
= 0, j
= 0, n
, n2
;
9029 size_t k
= 1, l
= 0;
9031 if (TREE_CODE (op
) == SSA_NAME
)
9033 vr
= get_value_range (op
);
9035 /* We can only handle integer ranges. */
9036 if ((vr
->type
!= VR_RANGE
9037 && vr
->type
!= VR_ANTI_RANGE
)
9038 || symbolic_range_p (vr
))
9041 /* Find case label for min/max of the value range. */
9042 take_default
= !find_case_label_ranges (stmt
, vr
, &i
, &j
, &k
, &l
);
9044 else if (TREE_CODE (op
) == INTEGER_CST
)
9046 take_default
= !find_case_label_index (stmt
, 1, op
, &i
);
9060 n
= gimple_switch_num_labels (stmt
);
9062 /* Bail out if this is just all edges taken. */
9068 /* Build a new vector of taken case labels. */
9069 vec2
= make_tree_vec (j
- i
+ 1 + l
- k
+ 1 + (int)take_default
);
9072 /* Add the default edge, if necessary. */
9074 TREE_VEC_ELT (vec2
, n2
++) = gimple_switch_default_label (stmt
);
9076 for (; i
<= j
; ++i
, ++n2
)
9077 TREE_VEC_ELT (vec2
, n2
) = gimple_switch_label (stmt
, i
);
9079 for (; k
<= l
; ++k
, ++n2
)
9080 TREE_VEC_ELT (vec2
, n2
) = gimple_switch_label (stmt
, k
);
9082 /* Mark needed edges. */
9083 for (i
= 0; i
< n2
; ++i
)
9085 e
= find_edge (gimple_bb (stmt
),
9086 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2
, i
))));
9087 e
->aux
= (void *)-1;
9090 /* Queue not needed edges for later removal. */
9091 FOR_EACH_EDGE (e
, ei
, gimple_bb (stmt
)->succs
)
9093 if (e
->aux
== (void *)-1)
9099 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
9101 fprintf (dump_file
, "removing unreachable case label\n");
9103 to_remove_edges
.safe_push (e
);
9104 e
->flags
&= ~EDGE_EXECUTABLE
;
9107 /* And queue an update for the stmt. */
9110 to_update_switch_stmts
.safe_push (su
);
9114 /* Simplify an integral conversion from an SSA name in STMT. */
9117 simplify_conversion_using_ranges (gimple stmt
)
9119 tree innerop
, middleop
, finaltype
;
9121 value_range_t
*innervr
;
9122 bool inner_unsigned_p
, middle_unsigned_p
, final_unsigned_p
;
9123 unsigned inner_prec
, middle_prec
, final_prec
;
9124 double_int innermin
, innermed
, innermax
, middlemin
, middlemed
, middlemax
;
9126 finaltype
= TREE_TYPE (gimple_assign_lhs (stmt
));
9127 if (!INTEGRAL_TYPE_P (finaltype
))
9129 middleop
= gimple_assign_rhs1 (stmt
);
9130 def_stmt
= SSA_NAME_DEF_STMT (middleop
);
9131 if (!is_gimple_assign (def_stmt
)
9132 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt
)))
9134 innerop
= gimple_assign_rhs1 (def_stmt
);
9135 if (TREE_CODE (innerop
) != SSA_NAME
9136 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop
))
9139 /* Get the value-range of the inner operand. */
9140 innervr
= get_value_range (innerop
);
9141 if (innervr
->type
!= VR_RANGE
9142 || TREE_CODE (innervr
->min
) != INTEGER_CST
9143 || TREE_CODE (innervr
->max
) != INTEGER_CST
)
9146 /* Simulate the conversion chain to check if the result is equal if
9147 the middle conversion is removed. */
9148 innermin
= tree_to_double_int (innervr
->min
);
9149 innermax
= tree_to_double_int (innervr
->max
);
9151 inner_prec
= TYPE_PRECISION (TREE_TYPE (innerop
));
9152 middle_prec
= TYPE_PRECISION (TREE_TYPE (middleop
));
9153 final_prec
= TYPE_PRECISION (finaltype
);
9155 /* If the first conversion is not injective, the second must not
9157 if ((innermax
- innermin
).ugt (double_int::mask (middle_prec
))
9158 && middle_prec
< final_prec
)
9160 /* We also want a medium value so that we can track the effect that
9161 narrowing conversions with sign change have. */
9162 inner_unsigned_p
= TYPE_UNSIGNED (TREE_TYPE (innerop
));
9163 if (inner_unsigned_p
)
9164 innermed
= double_int::mask (inner_prec
).lrshift (1, inner_prec
);
9166 innermed
= double_int_zero
;
9167 if (innermin
.cmp (innermed
, inner_unsigned_p
) >= 0
9168 || innermed
.cmp (innermax
, inner_unsigned_p
) >= 0)
9169 innermed
= innermin
;
9171 middle_unsigned_p
= TYPE_UNSIGNED (TREE_TYPE (middleop
));
9172 middlemin
= innermin
.ext (middle_prec
, middle_unsigned_p
);
9173 middlemed
= innermed
.ext (middle_prec
, middle_unsigned_p
);
9174 middlemax
= innermax
.ext (middle_prec
, middle_unsigned_p
);
9176 /* Require that the final conversion applied to both the original
9177 and the intermediate range produces the same result. */
9178 final_unsigned_p
= TYPE_UNSIGNED (finaltype
);
9179 if (middlemin
.ext (final_prec
, final_unsigned_p
)
9180 != innermin
.ext (final_prec
, final_unsigned_p
)
9181 || middlemed
.ext (final_prec
, final_unsigned_p
)
9182 != innermed
.ext (final_prec
, final_unsigned_p
)
9183 || middlemax
.ext (final_prec
, final_unsigned_p
)
9184 != innermax
.ext (final_prec
, final_unsigned_p
))
9187 gimple_assign_set_rhs1 (stmt
, innerop
);
9192 /* Simplify a conversion from integral SSA name to float in STMT. */
9195 simplify_float_conversion_using_ranges (gimple_stmt_iterator
*gsi
, gimple stmt
)
9197 tree rhs1
= gimple_assign_rhs1 (stmt
);
9198 value_range_t
*vr
= get_value_range (rhs1
);
9199 enum machine_mode fltmode
= TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt
)));
9200 enum machine_mode mode
;
9204 /* We can only handle constant ranges. */
9205 if (vr
->type
!= VR_RANGE
9206 || TREE_CODE (vr
->min
) != INTEGER_CST
9207 || TREE_CODE (vr
->max
) != INTEGER_CST
)
9210 /* First check if we can use a signed type in place of an unsigned. */
9211 if (TYPE_UNSIGNED (TREE_TYPE (rhs1
))
9212 && (can_float_p (fltmode
, TYPE_MODE (TREE_TYPE (rhs1
)), 0)
9213 != CODE_FOR_nothing
)
9214 && range_fits_type_p (vr
, GET_MODE_PRECISION
9215 (TYPE_MODE (TREE_TYPE (rhs1
))), 0))
9216 mode
= TYPE_MODE (TREE_TYPE (rhs1
));
9217 /* If we can do the conversion in the current input mode do nothing. */
9218 else if (can_float_p (fltmode
, TYPE_MODE (TREE_TYPE (rhs1
)),
9219 TYPE_UNSIGNED (TREE_TYPE (rhs1
))) != CODE_FOR_nothing
)
9221 /* Otherwise search for a mode we can use, starting from the narrowest
9222 integer mode available. */
9225 mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
9228 /* If we cannot do a signed conversion to float from mode
9229 or if the value-range does not fit in the signed type
9230 try with a wider mode. */
9231 if (can_float_p (fltmode
, mode
, 0) != CODE_FOR_nothing
9232 && range_fits_type_p (vr
, GET_MODE_PRECISION (mode
), 0))
9235 mode
= GET_MODE_WIDER_MODE (mode
);
9236 /* But do not widen the input. Instead leave that to the
9237 optabs expansion code. */
9238 if (GET_MODE_PRECISION (mode
) > TYPE_PRECISION (TREE_TYPE (rhs1
)))
9241 while (mode
!= VOIDmode
);
9242 if (mode
== VOIDmode
)
9246 /* It works, insert a truncation or sign-change before the
9247 float conversion. */
9248 tem
= make_ssa_name (build_nonstandard_integer_type
9249 (GET_MODE_PRECISION (mode
), 0), NULL
);
9250 conv
= gimple_build_assign_with_ops (NOP_EXPR
, tem
, rhs1
, NULL_TREE
);
9251 gsi_insert_before (gsi
, conv
, GSI_SAME_STMT
);
9252 gimple_assign_set_rhs1 (stmt
, tem
);
9258 /* Simplify STMT using ranges if possible. */
9261 simplify_stmt_using_ranges (gimple_stmt_iterator
*gsi
)
9263 gimple stmt
= gsi_stmt (*gsi
);
9264 if (is_gimple_assign (stmt
))
9266 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
9267 tree rhs1
= gimple_assign_rhs1 (stmt
);
9273 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
9274 if the RHS is zero or one, and the LHS are known to be boolean
9276 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
9277 return simplify_truth_ops_using_ranges (gsi
, stmt
);
9280 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
9281 and BIT_AND_EXPR respectively if the first operand is greater
9282 than zero and the second operand is an exact power of two. */
9283 case TRUNC_DIV_EXPR
:
9284 case TRUNC_MOD_EXPR
:
9285 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
9286 && integer_pow2p (gimple_assign_rhs2 (stmt
)))
9287 return simplify_div_or_mod_using_ranges (stmt
);
9290 /* Transform ABS (X) into X or -X as appropriate. */
9292 if (TREE_CODE (rhs1
) == SSA_NAME
9293 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
9294 return simplify_abs_using_ranges (stmt
);
9299 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
9300 if all the bits being cleared are already cleared or
9301 all the bits being set are already set. */
9302 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
9303 return simplify_bit_ops_using_ranges (gsi
, stmt
);
9307 if (TREE_CODE (rhs1
) == SSA_NAME
9308 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
9309 return simplify_conversion_using_ranges (stmt
);
9313 if (TREE_CODE (rhs1
) == SSA_NAME
9314 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1
)))
9315 return simplify_float_conversion_using_ranges (gsi
, stmt
);
9322 else if (gimple_code (stmt
) == GIMPLE_COND
)
9323 return simplify_cond_using_ranges (stmt
);
9324 else if (gimple_code (stmt
) == GIMPLE_SWITCH
)
9325 return simplify_switch_using_ranges (stmt
);
9330 /* If the statement pointed by SI has a predicate whose value can be
9331 computed using the value range information computed by VRP, compute
9332 its value and return true. Otherwise, return false. */
9335 fold_predicate_in (gimple_stmt_iterator
*si
)
9337 bool assignment_p
= false;
9339 gimple stmt
= gsi_stmt (*si
);
9341 if (is_gimple_assign (stmt
)
9342 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt
)) == tcc_comparison
)
9344 assignment_p
= true;
9345 val
= vrp_evaluate_conditional (gimple_assign_rhs_code (stmt
),
9346 gimple_assign_rhs1 (stmt
),
9347 gimple_assign_rhs2 (stmt
),
9350 else if (gimple_code (stmt
) == GIMPLE_COND
)
9351 val
= vrp_evaluate_conditional (gimple_cond_code (stmt
),
9352 gimple_cond_lhs (stmt
),
9353 gimple_cond_rhs (stmt
),
9361 val
= fold_convert (gimple_expr_type (stmt
), val
);
9365 fprintf (dump_file
, "Folding predicate ");
9366 print_gimple_expr (dump_file
, stmt
, 0, 0);
9367 fprintf (dump_file
, " to ");
9368 print_generic_expr (dump_file
, val
, 0);
9369 fprintf (dump_file
, "\n");
9372 if (is_gimple_assign (stmt
))
9373 gimple_assign_set_rhs_from_tree (si
, val
);
9376 gcc_assert (gimple_code (stmt
) == GIMPLE_COND
);
9377 if (integer_zerop (val
))
9378 gimple_cond_make_false (stmt
);
9379 else if (integer_onep (val
))
9380 gimple_cond_make_true (stmt
);
9391 /* Callback for substitute_and_fold folding the stmt at *SI. */
9394 vrp_fold_stmt (gimple_stmt_iterator
*si
)
9396 if (fold_predicate_in (si
))
9399 return simplify_stmt_using_ranges (si
);
9402 /* Stack of dest,src equivalency pairs that need to be restored after
9403 each attempt to thread a block's incoming edge to an outgoing edge.
9405 A NULL entry is used to mark the end of pairs which need to be
9407 static vec
<tree
> equiv_stack
;
9409 /* A trivial wrapper so that we can present the generic jump threading
9410 code with a simple API for simplifying statements. STMT is the
9411 statement we want to simplify, WITHIN_STMT provides the location
9412 for any overflow warnings. */
9415 simplify_stmt_for_jump_threading (gimple stmt
, gimple within_stmt
)
9417 if (gimple_code (stmt
) == GIMPLE_COND
)
9418 return vrp_evaluate_conditional (gimple_cond_code (stmt
),
9419 gimple_cond_lhs (stmt
),
9420 gimple_cond_rhs (stmt
), within_stmt
);
9422 if (gimple_code (stmt
) == GIMPLE_ASSIGN
)
9424 value_range_t new_vr
= VR_INITIALIZER
;
9425 tree lhs
= gimple_assign_lhs (stmt
);
9427 if (TREE_CODE (lhs
) == SSA_NAME
9428 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs
))
9429 || POINTER_TYPE_P (TREE_TYPE (lhs
))))
9431 extract_range_from_assignment (&new_vr
, stmt
);
9432 if (range_int_cst_singleton_p (&new_vr
))
9440 /* Blocks which have more than one predecessor and more than
9441 one successor present jump threading opportunities, i.e.,
9442 when the block is reached from a specific predecessor, we
9443 may be able to determine which of the outgoing edges will
9444 be traversed. When this optimization applies, we are able
9445 to avoid conditionals at runtime and we may expose secondary
9446 optimization opportunities.
9448 This routine is effectively a driver for the generic jump
9449 threading code. It basically just presents the generic code
9450 with edges that may be suitable for jump threading.
9452 Unlike DOM, we do not iterate VRP if jump threading was successful.
9453 While iterating may expose new opportunities for VRP, it is expected
9454 those opportunities would be very limited and the compile time cost
9455 to expose those opportunities would be significant.
9457 As jump threading opportunities are discovered, they are registered
9458 for later realization. */
9461 identify_jump_threads (void)
9468 /* Ugh. When substituting values earlier in this pass we can
9469 wipe the dominance information. So rebuild the dominator
9470 information as we need it within the jump threading code. */
9471 calculate_dominance_info (CDI_DOMINATORS
);
9473 /* We do not allow VRP information to be used for jump threading
9474 across a back edge in the CFG. Otherwise it becomes too
9475 difficult to avoid eliminating loop exit tests. Of course
9476 EDGE_DFS_BACK is not accurate at this time so we have to
9478 mark_dfs_back_edges ();
9480 /* Do not thread across edges we are about to remove. Just marking
9481 them as EDGE_DFS_BACK will do. */
9482 FOR_EACH_VEC_ELT (to_remove_edges
, i
, e
)
9483 e
->flags
|= EDGE_DFS_BACK
;
9485 /* Allocate our unwinder stack to unwind any temporary equivalences
9486 that might be recorded. */
9487 equiv_stack
.create (20);
9489 /* To avoid lots of silly node creation, we create a single
9490 conditional and just modify it in-place when attempting to
9492 dummy
= gimple_build_cond (EQ_EXPR
,
9493 integer_zero_node
, integer_zero_node
,
9496 /* Walk through all the blocks finding those which present a
9497 potential jump threading opportunity. We could set this up
9498 as a dominator walker and record data during the walk, but
9499 I doubt it's worth the effort for the classes of jump
9500 threading opportunities we are trying to identify at this
9501 point in compilation. */
9506 /* If the generic jump threading code does not find this block
9507 interesting, then there is nothing to do. */
9508 if (! potentially_threadable_block (bb
))
9511 /* We only care about blocks ending in a COND_EXPR. While there
9512 may be some value in handling SWITCH_EXPR here, I doubt it's
9513 terribly important. */
9514 last
= gsi_stmt (gsi_last_bb (bb
));
9516 /* We're basically looking for a switch or any kind of conditional with
9517 integral or pointer type arguments. Note the type of the second
9518 argument will be the same as the first argument, so no need to
9519 check it explicitly. */
9520 if (gimple_code (last
) == GIMPLE_SWITCH
9521 || (gimple_code (last
) == GIMPLE_COND
9522 && TREE_CODE (gimple_cond_lhs (last
)) == SSA_NAME
9523 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last
)))
9524 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last
))))
9525 && (TREE_CODE (gimple_cond_rhs (last
)) == SSA_NAME
9526 || is_gimple_min_invariant (gimple_cond_rhs (last
)))))
9530 /* We've got a block with multiple predecessors and multiple
9531 successors which also ends in a suitable conditional or
9532 switch statement. For each predecessor, see if we can thread
9533 it to a specific successor. */
9534 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
9536 /* Do not thread across back edges or abnormal edges
9538 if (e
->flags
& (EDGE_DFS_BACK
| EDGE_COMPLEX
))
9541 thread_across_edge (dummy
, e
, true, &equiv_stack
,
9542 simplify_stmt_for_jump_threading
);
9547 /* We do not actually update the CFG or SSA graphs at this point as
9548 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
9549 handle ASSERT_EXPRs gracefully. */
9552 /* We identified all the jump threading opportunities earlier, but could
9553 not transform the CFG at that time. This routine transforms the
9554 CFG and arranges for the dominator tree to be rebuilt if necessary.
9556 Note the SSA graph update will occur during the normal TODO
9557 processing by the pass manager. */
9559 finalize_jump_threads (void)
9561 thread_through_all_blocks (false);
9562 equiv_stack
.release ();
9566 /* Traverse all the blocks folding conditionals with known ranges. */
9573 values_propagated
= true;
9577 fprintf (dump_file
, "\nValue ranges after VRP:\n\n");
9578 dump_all_value_ranges (dump_file
);
9579 fprintf (dump_file
, "\n");
9582 substitute_and_fold (op_with_constant_singleton_value_range
,
9583 vrp_fold_stmt
, false);
9585 if (warn_array_bounds
)
9586 check_all_array_refs ();
9588 /* We must identify jump threading opportunities before we release
9589 the datastructures built by VRP. */
9590 identify_jump_threads ();
9592 /* Set value range to non pointer SSA_NAMEs. */
9593 for (i
= 0; i
< num_vr_values
; i
++)
9596 tree name
= ssa_name (i
);
9599 || POINTER_TYPE_P (TREE_TYPE (name
))
9600 || (vr_value
[i
]->type
== VR_VARYING
)
9601 || (vr_value
[i
]->type
== VR_UNDEFINED
))
9604 if ((TREE_CODE (vr_value
[i
]->min
) == INTEGER_CST
)
9605 && (TREE_CODE (vr_value
[i
]->max
) == INTEGER_CST
))
9607 if (vr_value
[i
]->type
== VR_RANGE
)
9608 set_range_info (name
,
9609 tree_to_double_int (vr_value
[i
]->min
),
9610 tree_to_double_int (vr_value
[i
]->max
));
9611 else if (vr_value
[i
]->type
== VR_ANTI_RANGE
)
9613 /* VR_ANTI_RANGE ~[min, max] is encoded compactly as
9614 [max + 1, min - 1] without additional attributes.
9615 When min value > max value, we know that it is
9616 VR_ANTI_RANGE; it is VR_RANGE otherwise. */
9618 /* ~[0,0] anti-range is represented as
9620 if (TYPE_UNSIGNED (TREE_TYPE (name
))
9621 && integer_zerop (vr_value
[i
]->min
)
9622 && integer_zerop (vr_value
[i
]->max
))
9623 set_range_info (name
,
9625 double_int::max_value
9626 (TYPE_PRECISION (TREE_TYPE (name
)), true));
9628 set_range_info (name
,
9629 tree_to_double_int (vr_value
[i
]->max
)
9631 tree_to_double_int (vr_value
[i
]->min
)
9637 /* Free allocated memory. */
9638 for (i
= 0; i
< num_vr_values
; i
++)
9641 BITMAP_FREE (vr_value
[i
]->equiv
);
9646 free (vr_phi_edge_counts
);
9648 /* So that we can distinguish between VRP data being available
9649 and not available. */
9651 vr_phi_edge_counts
= NULL
;
9655 /* Main entry point to VRP (Value Range Propagation). This pass is
9656 loosely based on J. R. C. Patterson, ``Accurate Static Branch
9657 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
9658 Programming Language Design and Implementation, pp. 67-78, 1995.
9659 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
9661 This is essentially an SSA-CCP pass modified to deal with ranges
9662 instead of constants.
9664 While propagating ranges, we may find that two or more SSA name
9665 have equivalent, though distinct ranges. For instance,
9668 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
9670 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
9674 In the code above, pointer p_5 has range [q_2, q_2], but from the
9675 code we can also determine that p_5 cannot be NULL and, if q_2 had
9676 a non-varying range, p_5's range should also be compatible with it.
9678 These equivalences are created by two expressions: ASSERT_EXPR and
9679 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
9680 result of another assertion, then we can use the fact that p_5 and
9681 p_4 are equivalent when evaluating p_5's range.
9683 Together with value ranges, we also propagate these equivalences
9684 between names so that we can take advantage of information from
9685 multiple ranges when doing final replacement. Note that this
9686 equivalency relation is transitive but not symmetric.
9688 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
9689 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
9690 in contexts where that assertion does not hold (e.g., in line 6).
9692 TODO, the main difference between this pass and Patterson's is that
9693 we do not propagate edge probabilities. We only compute whether
9694 edges can be taken or not. That is, instead of having a spectrum
9695 of jump probabilities between 0 and 1, we only deal with 0, 1 and
9696 DON'T KNOW. In the future, it may be worthwhile to propagate
9697 probabilities to aid branch prediction. */
9706 loop_optimizer_init (LOOPS_NORMAL
| LOOPS_HAVE_RECORDED_EXITS
);
9707 rewrite_into_loop_closed_ssa (NULL
, TODO_update_ssa
);
9710 /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation.
9711 Inserting assertions may split edges which will invalidate
9713 insert_range_assertions ();
9715 to_remove_edges
.create (10);
9716 to_update_switch_stmts
.create (5);
9717 threadedge_initialize_values ();
9719 /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */
9720 mark_dfs_back_edges ();
9723 ssa_propagate (vrp_visit_stmt
, vrp_visit_phi_node
);
9726 free_numbers_of_iterations_estimates ();
9728 /* ASSERT_EXPRs must be removed before finalizing jump threads
9729 as finalizing jump threads calls the CFG cleanup code which
9730 does not properly handle ASSERT_EXPRs. */
9731 remove_range_assertions ();
9733 /* If we exposed any new variables, go ahead and put them into
9734 SSA form now, before we handle jump threading. This simplifies
9735 interactions between rewriting of _DECL nodes into SSA form
9736 and rewriting SSA_NAME nodes into SSA form after block
9737 duplication and CFG manipulation. */
9738 update_ssa (TODO_update_ssa
);
9740 finalize_jump_threads ();
9742 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
9743 CFG in a broken state and requires a cfg_cleanup run. */
9744 FOR_EACH_VEC_ELT (to_remove_edges
, i
, e
)
9746 /* Update SWITCH_EXPR case label vector. */
9747 FOR_EACH_VEC_ELT (to_update_switch_stmts
, i
, su
)
9750 size_t n
= TREE_VEC_LENGTH (su
->vec
);
9752 gimple_switch_set_num_labels (su
->stmt
, n
);
9753 for (j
= 0; j
< n
; j
++)
9754 gimple_switch_set_label (su
->stmt
, j
, TREE_VEC_ELT (su
->vec
, j
));
9755 /* As we may have replaced the default label with a regular one
9756 make sure to make it a real default label again. This ensures
9757 optimal expansion. */
9758 label
= gimple_switch_label (su
->stmt
, 0);
9759 CASE_LOW (label
) = NULL_TREE
;
9760 CASE_HIGH (label
) = NULL_TREE
;
9763 if (to_remove_edges
.length () > 0)
9765 free_dominance_info (CDI_DOMINATORS
);
9767 loops_state_set (LOOPS_NEED_FIXUP
);
9770 to_remove_edges
.release ();
9771 to_update_switch_stmts
.release ();
9772 threadedge_finalize_values ();
9775 loop_optimizer_finalize ();
9782 return flag_tree_vrp
!= 0;
9787 const pass_data pass_data_vrp
=
9789 GIMPLE_PASS
, /* type */
9791 OPTGROUP_NONE
, /* optinfo_flags */
9792 true, /* has_gate */
9793 true, /* has_execute */
9794 TV_TREE_VRP
, /* tv_id */
9795 PROP_ssa
, /* properties_required */
9796 0, /* properties_provided */
9797 0, /* properties_destroyed */
9798 0, /* todo_flags_start */
9799 ( TODO_cleanup_cfg
| TODO_update_ssa
9801 | TODO_verify_flow
), /* todo_flags_finish */
9804 class pass_vrp
: public gimple_opt_pass
9807 pass_vrp (gcc::context
*ctxt
)
9808 : gimple_opt_pass (pass_data_vrp
, ctxt
)
9811 /* opt_pass methods: */
9812 opt_pass
* clone () { return new pass_vrp (m_ctxt
); }
9813 bool gate () { return gate_vrp (); }
9814 unsigned int execute () { return execute_vrp (); }
9816 }; // class pass_vrp
9821 make_pass_vrp (gcc::context
*ctxt
)
9823 return new pass_vrp (ctxt
);