2013-11-27 Kugan Vivekanandarajah <kuganv@linaro.org>
[official-gcc.git] / gcc / mode-switching.c
blobed45094c3959aa6a463c34d9b4f8a6191424e1b6
1 /* CPU mode switching
2 Copyright (C) 1998-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "regs.h"
27 #include "hard-reg-set.h"
28 #include "flags.h"
29 #include "insn-config.h"
30 #include "recog.h"
31 #include "basic-block.h"
32 #include "tm_p.h"
33 #include "function.h"
34 #include "tree-pass.h"
35 #include "df.h"
36 #include "emit-rtl.h"
38 /* We want target macros for the mode switching code to be able to refer
39 to instruction attribute values. */
40 #include "insn-attr.h"
42 #ifdef OPTIMIZE_MODE_SWITCHING
44 /* The algorithm for setting the modes consists of scanning the insn list
45 and finding all the insns which require a specific mode. Each insn gets
46 a unique struct seginfo element. These structures are inserted into a list
47 for each basic block. For each entity, there is an array of bb_info over
48 the flow graph basic blocks (local var 'bb_info'), and contains a list
49 of all insns within that basic block, in the order they are encountered.
51 For each entity, any basic block WITHOUT any insns requiring a specific
52 mode are given a single entry, without a mode. (Each basic block
53 in the flow graph must have at least one entry in the segment table.)
55 The LCM algorithm is then run over the flow graph to determine where to
56 place the sets to the highest-priority value in respect of first the first
57 insn in any one block. Any adjustments required to the transparency
58 vectors are made, then the next iteration starts for the next-lower
59 priority mode, till for each entity all modes are exhausted.
61 More details are located in the code for optimize_mode_switching(). */
63 /* This structure contains the information for each insn which requires
64 either single or double mode to be set.
65 MODE is the mode this insn must be executed in.
66 INSN_PTR is the insn to be executed (may be the note that marks the
67 beginning of a basic block).
68 BBNUM is the flow graph basic block this insn occurs in.
69 NEXT is the next insn in the same basic block. */
70 struct seginfo
72 int mode;
73 rtx insn_ptr;
74 int bbnum;
75 struct seginfo *next;
76 HARD_REG_SET regs_live;
79 struct bb_info
81 struct seginfo *seginfo;
82 int computing;
85 /* These bitmaps are used for the LCM algorithm. */
87 static sbitmap *antic;
88 static sbitmap *transp;
89 static sbitmap *comp;
91 static struct seginfo * new_seginfo (int, rtx, int, HARD_REG_SET);
92 static void add_seginfo (struct bb_info *, struct seginfo *);
93 static void reg_dies (rtx, HARD_REG_SET *);
94 static void reg_becomes_live (rtx, const_rtx, void *);
95 static void make_preds_opaque (basic_block, int);
98 /* This function will allocate a new BBINFO structure, initialized
99 with the MODE, INSN, and basic block BB parameters. */
101 static struct seginfo *
102 new_seginfo (int mode, rtx insn, int bb, HARD_REG_SET regs_live)
104 struct seginfo *ptr;
105 ptr = XNEW (struct seginfo);
106 ptr->mode = mode;
107 ptr->insn_ptr = insn;
108 ptr->bbnum = bb;
109 ptr->next = NULL;
110 COPY_HARD_REG_SET (ptr->regs_live, regs_live);
111 return ptr;
114 /* Add a seginfo element to the end of a list.
115 HEAD is a pointer to the list beginning.
116 INFO is the structure to be linked in. */
118 static void
119 add_seginfo (struct bb_info *head, struct seginfo *info)
121 struct seginfo *ptr;
123 if (head->seginfo == NULL)
124 head->seginfo = info;
125 else
127 ptr = head->seginfo;
128 while (ptr->next != NULL)
129 ptr = ptr->next;
130 ptr->next = info;
134 /* Make all predecessors of basic block B opaque, recursively, till we hit
135 some that are already non-transparent, or an edge where aux is set; that
136 denotes that a mode set is to be done on that edge.
137 J is the bit number in the bitmaps that corresponds to the entity that
138 we are currently handling mode-switching for. */
140 static void
141 make_preds_opaque (basic_block b, int j)
143 edge e;
144 edge_iterator ei;
146 FOR_EACH_EDGE (e, ei, b->preds)
148 basic_block pb = e->src;
150 if (e->aux || ! bitmap_bit_p (transp[pb->index], j))
151 continue;
153 bitmap_clear_bit (transp[pb->index], j);
154 make_preds_opaque (pb, j);
158 /* Record in LIVE that register REG died. */
160 static void
161 reg_dies (rtx reg, HARD_REG_SET *live)
163 int regno;
165 if (!REG_P (reg))
166 return;
168 regno = REGNO (reg);
169 if (regno < FIRST_PSEUDO_REGISTER)
170 remove_from_hard_reg_set (live, GET_MODE (reg), regno);
173 /* Record in LIVE that register REG became live.
174 This is called via note_stores. */
176 static void
177 reg_becomes_live (rtx reg, const_rtx setter ATTRIBUTE_UNUSED, void *live)
179 int regno;
181 if (GET_CODE (reg) == SUBREG)
182 reg = SUBREG_REG (reg);
184 if (!REG_P (reg))
185 return;
187 regno = REGNO (reg);
188 if (regno < FIRST_PSEUDO_REGISTER)
189 add_to_hard_reg_set ((HARD_REG_SET *) live, GET_MODE (reg), regno);
192 /* Make sure if MODE_ENTRY is defined the MODE_EXIT is defined
193 and vice versa. */
194 #if defined (MODE_ENTRY) != defined (MODE_EXIT)
195 #error "Both MODE_ENTRY and MODE_EXIT must be defined"
196 #endif
198 #if defined (MODE_ENTRY) && defined (MODE_EXIT)
199 /* Split the fallthrough edge to the exit block, so that we can note
200 that there NORMAL_MODE is required. Return the new block if it's
201 inserted before the exit block. Otherwise return null. */
203 static basic_block
204 create_pre_exit (int n_entities, int *entity_map, const int *num_modes)
206 edge eg;
207 edge_iterator ei;
208 basic_block pre_exit;
210 /* The only non-call predecessor at this stage is a block with a
211 fallthrough edge; there can be at most one, but there could be
212 none at all, e.g. when exit is called. */
213 pre_exit = 0;
214 FOR_EACH_EDGE (eg, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
215 if (eg->flags & EDGE_FALLTHRU)
217 basic_block src_bb = eg->src;
218 rtx last_insn, ret_reg;
220 gcc_assert (!pre_exit);
221 /* If this function returns a value at the end, we have to
222 insert the final mode switch before the return value copy
223 to its hard register. */
224 if (EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) == 1
225 && NONJUMP_INSN_P ((last_insn = BB_END (src_bb)))
226 && GET_CODE (PATTERN (last_insn)) == USE
227 && GET_CODE ((ret_reg = XEXP (PATTERN (last_insn), 0))) == REG)
229 int ret_start = REGNO (ret_reg);
230 int nregs = hard_regno_nregs[ret_start][GET_MODE (ret_reg)];
231 int ret_end = ret_start + nregs;
232 bool short_block = false;
233 bool multi_reg_return = false;
234 bool forced_late_switch = false;
235 rtx before_return_copy;
239 rtx return_copy = PREV_INSN (last_insn);
240 rtx return_copy_pat, copy_reg;
241 int copy_start, copy_num;
242 int j;
244 if (NONDEBUG_INSN_P (return_copy))
246 /* When using SJLJ exceptions, the call to the
247 unregister function is inserted between the
248 clobber of the return value and the copy.
249 We do not want to split the block before this
250 or any other call; if we have not found the
251 copy yet, the copy must have been deleted. */
252 if (CALL_P (return_copy))
254 short_block = true;
255 break;
257 return_copy_pat = PATTERN (return_copy);
258 switch (GET_CODE (return_copy_pat))
260 case USE:
261 /* Skip USEs of multiple return registers.
262 __builtin_apply pattern is also handled here. */
263 if (GET_CODE (XEXP (return_copy_pat, 0)) == REG
264 && (targetm.calls.function_value_regno_p
265 (REGNO (XEXP (return_copy_pat, 0)))))
267 multi_reg_return = true;
268 last_insn = return_copy;
269 continue;
271 break;
273 case ASM_OPERANDS:
274 /* Skip barrier insns. */
275 if (!MEM_VOLATILE_P (return_copy_pat))
276 break;
278 /* Fall through. */
280 case ASM_INPUT:
281 case UNSPEC_VOLATILE:
282 last_insn = return_copy;
283 continue;
285 default:
286 break;
289 /* If the return register is not (in its entirety)
290 likely spilled, the return copy might be
291 partially or completely optimized away. */
292 return_copy_pat = single_set (return_copy);
293 if (!return_copy_pat)
295 return_copy_pat = PATTERN (return_copy);
296 if (GET_CODE (return_copy_pat) != CLOBBER)
297 break;
298 else if (!optimize)
300 /* This might be (clobber (reg [<result>]))
301 when not optimizing. Then check if
302 the previous insn is the clobber for
303 the return register. */
304 copy_reg = SET_DEST (return_copy_pat);
305 if (GET_CODE (copy_reg) == REG
306 && !HARD_REGISTER_NUM_P (REGNO (copy_reg)))
308 if (INSN_P (PREV_INSN (return_copy)))
310 return_copy = PREV_INSN (return_copy);
311 return_copy_pat = PATTERN (return_copy);
312 if (GET_CODE (return_copy_pat) != CLOBBER)
313 break;
318 copy_reg = SET_DEST (return_copy_pat);
319 if (GET_CODE (copy_reg) == REG)
320 copy_start = REGNO (copy_reg);
321 else if (GET_CODE (copy_reg) == SUBREG
322 && GET_CODE (SUBREG_REG (copy_reg)) == REG)
323 copy_start = REGNO (SUBREG_REG (copy_reg));
324 else
326 /* When control reaches end of non-void function,
327 there are no return copy insns at all. This
328 avoids an ice on that invalid function. */
329 if (ret_start + nregs == ret_end)
330 short_block = true;
331 break;
333 if (!targetm.calls.function_value_regno_p (copy_start))
334 copy_num = 0;
335 else
336 copy_num
337 = hard_regno_nregs[copy_start][GET_MODE (copy_reg)];
339 /* If the return register is not likely spilled, - as is
340 the case for floating point on SH4 - then it might
341 be set by an arithmetic operation that needs a
342 different mode than the exit block. */
343 for (j = n_entities - 1; j >= 0; j--)
345 int e = entity_map[j];
346 int mode = MODE_NEEDED (e, return_copy);
348 if (mode != num_modes[e] && mode != MODE_EXIT (e))
349 break;
351 if (j >= 0)
353 /* __builtin_return emits a sequence of loads to all
354 return registers. One of them might require
355 another mode than MODE_EXIT, even if it is
356 unrelated to the return value, so we want to put
357 the final mode switch after it. */
358 if (multi_reg_return
359 && targetm.calls.function_value_regno_p
360 (copy_start))
361 forced_late_switch = true;
363 /* For the SH4, floating point loads depend on fpscr,
364 thus we might need to put the final mode switch
365 after the return value copy. That is still OK,
366 because a floating point return value does not
367 conflict with address reloads. */
368 if (copy_start >= ret_start
369 && copy_start + copy_num <= ret_end
370 && OBJECT_P (SET_SRC (return_copy_pat)))
371 forced_late_switch = true;
372 break;
374 if (copy_num == 0)
376 last_insn = return_copy;
377 continue;
380 if (copy_start >= ret_start
381 && copy_start + copy_num <= ret_end)
382 nregs -= copy_num;
383 else if (!multi_reg_return
384 || !targetm.calls.function_value_regno_p
385 (copy_start))
386 break;
387 last_insn = return_copy;
389 /* ??? Exception handling can lead to the return value
390 copy being already separated from the return value use,
391 as in unwind-dw2.c .
392 Similarly, conditionally returning without a value,
393 and conditionally using builtin_return can lead to an
394 isolated use. */
395 if (return_copy == BB_HEAD (src_bb))
397 short_block = true;
398 break;
400 last_insn = return_copy;
402 while (nregs);
404 /* If we didn't see a full return value copy, verify that there
405 is a plausible reason for this. If some, but not all of the
406 return register is likely spilled, we can expect that there
407 is a copy for the likely spilled part. */
408 gcc_assert (!nregs
409 || forced_late_switch
410 || short_block
411 || !(targetm.class_likely_spilled_p
412 (REGNO_REG_CLASS (ret_start)))
413 || (nregs
414 != hard_regno_nregs[ret_start][GET_MODE (ret_reg)])
415 /* For multi-hard-register floating point
416 values, sometimes the likely-spilled part
417 is ordinarily copied first, then the other
418 part is set with an arithmetic operation.
419 This doesn't actually cause reload
420 failures, so let it pass. */
421 || (GET_MODE_CLASS (GET_MODE (ret_reg)) != MODE_INT
422 && nregs != 1));
424 if (!NOTE_INSN_BASIC_BLOCK_P (last_insn))
426 before_return_copy
427 = emit_note_before (NOTE_INSN_DELETED, last_insn);
428 /* Instructions preceding LAST_INSN in the same block might
429 require a different mode than MODE_EXIT, so if we might
430 have such instructions, keep them in a separate block
431 from pre_exit. */
432 src_bb = split_block (src_bb,
433 PREV_INSN (before_return_copy))->dest;
435 else
436 before_return_copy = last_insn;
437 pre_exit = split_block (src_bb, before_return_copy)->src;
439 else
441 pre_exit = split_edge (eg);
445 return pre_exit;
447 #endif
449 /* Find all insns that need a particular mode setting, and insert the
450 necessary mode switches. Return true if we did work. */
452 static int
453 optimize_mode_switching (void)
455 rtx insn;
456 int e;
457 basic_block bb;
458 int need_commit = 0;
459 sbitmap *kill;
460 struct edge_list *edge_list;
461 static const int num_modes[] = NUM_MODES_FOR_MODE_SWITCHING;
462 #define N_ENTITIES ARRAY_SIZE (num_modes)
463 int entity_map[N_ENTITIES];
464 struct bb_info *bb_info[N_ENTITIES];
465 int i, j;
466 int n_entities;
467 int max_num_modes = 0;
468 bool emitted ATTRIBUTE_UNUSED = false;
469 basic_block post_entry ATTRIBUTE_UNUSED, pre_exit ATTRIBUTE_UNUSED;
471 for (e = N_ENTITIES - 1, n_entities = 0; e >= 0; e--)
472 if (OPTIMIZE_MODE_SWITCHING (e))
474 int entry_exit_extra = 0;
476 /* Create the list of segments within each basic block.
477 If NORMAL_MODE is defined, allow for two extra
478 blocks split from the entry and exit block. */
479 #if defined (MODE_ENTRY) && defined (MODE_EXIT)
480 entry_exit_extra = 3;
481 #endif
482 bb_info[n_entities]
483 = XCNEWVEC (struct bb_info, last_basic_block + entry_exit_extra);
484 entity_map[n_entities++] = e;
485 if (num_modes[e] > max_num_modes)
486 max_num_modes = num_modes[e];
489 if (! n_entities)
490 return 0;
492 #if defined (MODE_ENTRY) && defined (MODE_EXIT)
493 /* Split the edge from the entry block, so that we can note that
494 there NORMAL_MODE is supplied. */
495 post_entry = split_edge (single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
496 pre_exit = create_pre_exit (n_entities, entity_map, num_modes);
497 #endif
499 df_analyze ();
501 /* Create the bitmap vectors. */
503 antic = sbitmap_vector_alloc (last_basic_block, n_entities);
504 transp = sbitmap_vector_alloc (last_basic_block, n_entities);
505 comp = sbitmap_vector_alloc (last_basic_block, n_entities);
507 bitmap_vector_ones (transp, last_basic_block);
509 for (j = n_entities - 1; j >= 0; j--)
511 int e = entity_map[j];
512 int no_mode = num_modes[e];
513 struct bb_info *info = bb_info[j];
515 /* Determine what the first use (if any) need for a mode of entity E is.
516 This will be the mode that is anticipatable for this block.
517 Also compute the initial transparency settings. */
518 FOR_EACH_BB (bb)
520 struct seginfo *ptr;
521 int last_mode = no_mode;
522 bool any_set_required = false;
523 HARD_REG_SET live_now;
525 REG_SET_TO_HARD_REG_SET (live_now, df_get_live_in (bb));
527 /* Pretend the mode is clobbered across abnormal edges. */
529 edge_iterator ei;
530 edge e;
531 FOR_EACH_EDGE (e, ei, bb->preds)
532 if (e->flags & EDGE_COMPLEX)
533 break;
534 if (e)
536 ptr = new_seginfo (no_mode, BB_HEAD (bb), bb->index, live_now);
537 add_seginfo (info + bb->index, ptr);
538 bitmap_clear_bit (transp[bb->index], j);
542 FOR_BB_INSNS (bb, insn)
544 if (INSN_P (insn))
546 int mode = MODE_NEEDED (e, insn);
547 rtx link;
549 if (mode != no_mode && mode != last_mode)
551 any_set_required = true;
552 last_mode = mode;
553 ptr = new_seginfo (mode, insn, bb->index, live_now);
554 add_seginfo (info + bb->index, ptr);
555 bitmap_clear_bit (transp[bb->index], j);
557 #ifdef MODE_AFTER
558 last_mode = MODE_AFTER (e, last_mode, insn);
559 #endif
560 /* Update LIVE_NOW. */
561 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
562 if (REG_NOTE_KIND (link) == REG_DEAD)
563 reg_dies (XEXP (link, 0), &live_now);
565 note_stores (PATTERN (insn), reg_becomes_live, &live_now);
566 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
567 if (REG_NOTE_KIND (link) == REG_UNUSED)
568 reg_dies (XEXP (link, 0), &live_now);
572 info[bb->index].computing = last_mode;
573 /* Check for blocks without ANY mode requirements.
574 N.B. because of MODE_AFTER, last_mode might still
575 be different from no_mode, in which case we need to
576 mark the block as nontransparent. */
577 if (!any_set_required)
579 ptr = new_seginfo (no_mode, BB_END (bb), bb->index, live_now);
580 add_seginfo (info + bb->index, ptr);
581 if (last_mode != no_mode)
582 bitmap_clear_bit (transp[bb->index], j);
585 #if defined (MODE_ENTRY) && defined (MODE_EXIT)
587 int mode = MODE_ENTRY (e);
589 if (mode != no_mode)
591 bb = post_entry;
593 /* By always making this nontransparent, we save
594 an extra check in make_preds_opaque. We also
595 need this to avoid confusing pre_edge_lcm when
596 antic is cleared but transp and comp are set. */
597 bitmap_clear_bit (transp[bb->index], j);
599 /* Insert a fake computing definition of MODE into entry
600 blocks which compute no mode. This represents the mode on
601 entry. */
602 info[bb->index].computing = mode;
604 if (pre_exit)
605 info[pre_exit->index].seginfo->mode = MODE_EXIT (e);
608 #endif /* NORMAL_MODE */
611 kill = sbitmap_vector_alloc (last_basic_block, n_entities);
612 for (i = 0; i < max_num_modes; i++)
614 int current_mode[N_ENTITIES];
615 sbitmap *del;
616 sbitmap *insert;
618 /* Set the anticipatable and computing arrays. */
619 bitmap_vector_clear (antic, last_basic_block);
620 bitmap_vector_clear (comp, last_basic_block);
621 for (j = n_entities - 1; j >= 0; j--)
623 int m = current_mode[j] = MODE_PRIORITY_TO_MODE (entity_map[j], i);
624 struct bb_info *info = bb_info[j];
626 FOR_EACH_BB (bb)
628 if (info[bb->index].seginfo->mode == m)
629 bitmap_set_bit (antic[bb->index], j);
631 if (info[bb->index].computing == m)
632 bitmap_set_bit (comp[bb->index], j);
636 /* Calculate the optimal locations for the
637 placement mode switches to modes with priority I. */
639 FOR_EACH_BB (bb)
640 bitmap_not (kill[bb->index], transp[bb->index]);
641 edge_list = pre_edge_lcm (n_entities, transp, comp, antic,
642 kill, &insert, &del);
644 for (j = n_entities - 1; j >= 0; j--)
646 /* Insert all mode sets that have been inserted by lcm. */
647 int no_mode = num_modes[entity_map[j]];
649 /* Wherever we have moved a mode setting upwards in the flow graph,
650 the blocks between the new setting site and the now redundant
651 computation ceases to be transparent for any lower-priority
652 mode of the same entity. First set the aux field of each
653 insertion site edge non-transparent, then propagate the new
654 non-transparency from the redundant computation upwards till
655 we hit an insertion site or an already non-transparent block. */
656 for (e = NUM_EDGES (edge_list) - 1; e >= 0; e--)
658 edge eg = INDEX_EDGE (edge_list, e);
659 int mode;
660 basic_block src_bb;
661 HARD_REG_SET live_at_edge;
662 rtx mode_set;
664 eg->aux = 0;
666 if (! bitmap_bit_p (insert[e], j))
667 continue;
669 eg->aux = (void *)1;
671 mode = current_mode[j];
672 src_bb = eg->src;
674 REG_SET_TO_HARD_REG_SET (live_at_edge, df_get_live_out (src_bb));
676 rtl_profile_for_edge (eg);
677 start_sequence ();
678 EMIT_MODE_SET (entity_map[j], mode, live_at_edge);
679 mode_set = get_insns ();
680 end_sequence ();
681 default_rtl_profile ();
683 /* Do not bother to insert empty sequence. */
684 if (mode_set == NULL_RTX)
685 continue;
687 /* We should not get an abnormal edge here. */
688 gcc_assert (! (eg->flags & EDGE_ABNORMAL));
690 need_commit = 1;
691 insert_insn_on_edge (mode_set, eg);
694 FOR_EACH_BB_REVERSE (bb)
695 if (bitmap_bit_p (del[bb->index], j))
697 make_preds_opaque (bb, j);
698 /* Cancel the 'deleted' mode set. */
699 bb_info[j][bb->index].seginfo->mode = no_mode;
703 sbitmap_vector_free (del);
704 sbitmap_vector_free (insert);
705 clear_aux_for_edges ();
706 free_edge_list (edge_list);
709 /* Now output the remaining mode sets in all the segments. */
710 for (j = n_entities - 1; j >= 0; j--)
712 int no_mode = num_modes[entity_map[j]];
714 FOR_EACH_BB_REVERSE (bb)
716 struct seginfo *ptr, *next;
717 for (ptr = bb_info[j][bb->index].seginfo; ptr; ptr = next)
719 next = ptr->next;
720 if (ptr->mode != no_mode)
722 rtx mode_set;
724 rtl_profile_for_bb (bb);
725 start_sequence ();
726 EMIT_MODE_SET (entity_map[j], ptr->mode, ptr->regs_live);
727 mode_set = get_insns ();
728 end_sequence ();
730 /* Insert MODE_SET only if it is nonempty. */
731 if (mode_set != NULL_RTX)
733 emitted = true;
734 if (NOTE_INSN_BASIC_BLOCK_P (ptr->insn_ptr))
735 emit_insn_after (mode_set, ptr->insn_ptr);
736 else
737 emit_insn_before (mode_set, ptr->insn_ptr);
740 default_rtl_profile ();
743 free (ptr);
747 free (bb_info[j]);
750 /* Finished. Free up all the things we've allocated. */
751 sbitmap_vector_free (kill);
752 sbitmap_vector_free (antic);
753 sbitmap_vector_free (transp);
754 sbitmap_vector_free (comp);
756 if (need_commit)
757 commit_edge_insertions ();
759 #if defined (MODE_ENTRY) && defined (MODE_EXIT)
760 cleanup_cfg (CLEANUP_NO_INSN_DEL);
761 #else
762 if (!need_commit && !emitted)
763 return 0;
764 #endif
766 return 1;
769 #endif /* OPTIMIZE_MODE_SWITCHING */
771 static bool
772 gate_mode_switching (void)
774 #ifdef OPTIMIZE_MODE_SWITCHING
775 return true;
776 #else
777 return false;
778 #endif
781 static unsigned int
782 rest_of_handle_mode_switching (void)
784 #ifdef OPTIMIZE_MODE_SWITCHING
785 optimize_mode_switching ();
786 #endif /* OPTIMIZE_MODE_SWITCHING */
787 return 0;
791 namespace {
793 const pass_data pass_data_mode_switching =
795 RTL_PASS, /* type */
796 "mode_sw", /* name */
797 OPTGROUP_NONE, /* optinfo_flags */
798 true, /* has_gate */
799 true, /* has_execute */
800 TV_MODE_SWITCH, /* tv_id */
801 0, /* properties_required */
802 0, /* properties_provided */
803 0, /* properties_destroyed */
804 0, /* todo_flags_start */
805 ( TODO_df_finish | TODO_verify_rtl_sharing | 0 ), /* todo_flags_finish */
808 class pass_mode_switching : public rtl_opt_pass
810 public:
811 pass_mode_switching (gcc::context *ctxt)
812 : rtl_opt_pass (pass_data_mode_switching, ctxt)
815 /* opt_pass methods: */
816 /* The epiphany backend creates a second instance of this pass, so we need
817 a clone method. */
818 opt_pass * clone () { return new pass_mode_switching (m_ctxt); }
819 bool gate () { return gate_mode_switching (); }
820 unsigned int execute () { return rest_of_handle_mode_switching (); }
822 }; // class pass_mode_switching
824 } // anon namespace
826 rtl_opt_pass *
827 make_pass_mode_switching (gcc::context *ctxt)
829 return new pass_mode_switching (ctxt);