[RS6000] biarch test fail
[official-gcc.git] / gcc / double-int.c
blobfdbd3253458b2726766b660140cb4539f267861d
1 /* Operations with long integers.
2 Copyright (C) 2006-2020 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h" /* For BITS_PER_UNIT and *_BIG_ENDIAN. */
24 #include "tree.h"
26 static int add_double_with_sign (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
27 unsigned HOST_WIDE_INT, HOST_WIDE_INT,
28 unsigned HOST_WIDE_INT *, HOST_WIDE_INT *,
29 bool);
31 #define add_double(l1,h1,l2,h2,lv,hv) \
32 add_double_with_sign (l1, h1, l2, h2, lv, hv, false)
34 static int neg_double (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
35 unsigned HOST_WIDE_INT *, HOST_WIDE_INT *);
37 static int mul_double_wide_with_sign (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
38 unsigned HOST_WIDE_INT, HOST_WIDE_INT,
39 unsigned HOST_WIDE_INT *, HOST_WIDE_INT *,
40 unsigned HOST_WIDE_INT *, HOST_WIDE_INT *,
41 bool);
43 #define mul_double(l1,h1,l2,h2,lv,hv) \
44 mul_double_wide_with_sign (l1, h1, l2, h2, lv, hv, NULL, NULL, false)
46 static int div_and_round_double (unsigned, int, unsigned HOST_WIDE_INT,
47 HOST_WIDE_INT, unsigned HOST_WIDE_INT,
48 HOST_WIDE_INT, unsigned HOST_WIDE_INT *,
49 HOST_WIDE_INT *, unsigned HOST_WIDE_INT *,
50 HOST_WIDE_INT *);
52 /* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
53 overflow. Suppose A, B and SUM have the same respective signs as A1, B1,
54 and SUM1. Then this yields nonzero if overflow occurred during the
55 addition.
57 Overflow occurs if A and B have the same sign, but A and SUM differ in
58 sign. Use `^' to test whether signs differ, and `< 0' to isolate the
59 sign. */
60 #define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
62 /* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
63 We do that by representing the two-word integer in 4 words, with only
64 HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
65 number. The value of the word is LOWPART + HIGHPART * BASE. */
67 #define LOWPART(x) \
68 ((x) & ((HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
69 #define HIGHPART(x) \
70 ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
71 #define BASE (HOST_WIDE_INT_1U << HOST_BITS_PER_WIDE_INT / 2)
73 /* Unpack a two-word integer into 4 words.
74 LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
75 WORDS points to the array of HOST_WIDE_INTs. */
77 static void
78 encode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
80 words[0] = LOWPART (low);
81 words[1] = HIGHPART (low);
82 words[2] = LOWPART (hi);
83 words[3] = HIGHPART (hi);
86 /* Pack an array of 4 words into a two-word integer.
87 WORDS points to the array of words.
88 The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */
90 static void
91 decode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT *low,
92 HOST_WIDE_INT *hi)
94 *low = words[0] + words[1] * BASE;
95 *hi = words[2] + words[3] * BASE;
98 /* Add two doubleword integers with doubleword result.
99 Return nonzero if the operation overflows according to UNSIGNED_P.
100 Each argument is given as two `HOST_WIDE_INT' pieces.
101 One argument is L1 and H1; the other, L2 and H2.
102 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
104 static int
105 add_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
106 unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
107 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
108 bool unsigned_p)
110 unsigned HOST_WIDE_INT l;
111 HOST_WIDE_INT h;
113 l = l1 + l2;
114 h = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) h1
115 + (unsigned HOST_WIDE_INT) h2
116 + (l < l1));
118 *lv = l;
119 *hv = h;
121 if (unsigned_p)
122 return ((unsigned HOST_WIDE_INT) h < (unsigned HOST_WIDE_INT) h1
123 || (h == h1
124 && l < l1));
125 else
126 return OVERFLOW_SUM_SIGN (h1, h2, h);
129 /* Negate a doubleword integer with doubleword result.
130 Return nonzero if the operation overflows, assuming it's signed.
131 The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
132 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
134 static int
135 neg_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
136 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
138 if (l1 == 0)
140 *lv = 0;
141 *hv = - (unsigned HOST_WIDE_INT) h1;
142 return (*hv & h1) < 0;
144 else
146 *lv = -l1;
147 *hv = ~h1;
148 return 0;
152 /* Multiply two doubleword integers with quadword result.
153 Return nonzero if the operation overflows according to UNSIGNED_P.
154 Each argument is given as two `HOST_WIDE_INT' pieces.
155 One argument is L1 and H1; the other, L2 and H2.
156 The value is stored as four `HOST_WIDE_INT' pieces in *LV and *HV,
157 *LW and *HW.
158 If lw is NULL then only the low part and no overflow is computed. */
160 static int
161 mul_double_wide_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
162 unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
163 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
164 unsigned HOST_WIDE_INT *lw, HOST_WIDE_INT *hw,
165 bool unsigned_p)
167 HOST_WIDE_INT arg1[4];
168 HOST_WIDE_INT arg2[4];
169 HOST_WIDE_INT prod[4 * 2];
170 unsigned HOST_WIDE_INT carry;
171 int i, j, k;
172 unsigned HOST_WIDE_INT neglow;
173 HOST_WIDE_INT neghigh;
175 encode (arg1, l1, h1);
176 encode (arg2, l2, h2);
178 memset (prod, 0, sizeof prod);
180 for (i = 0; i < 4; i++)
182 carry = 0;
183 for (j = 0; j < 4; j++)
185 k = i + j;
186 /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
187 carry += (unsigned HOST_WIDE_INT) arg1[i] * arg2[j];
188 /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
189 carry += prod[k];
190 prod[k] = LOWPART (carry);
191 carry = HIGHPART (carry);
193 prod[i + 4] = carry;
196 decode (prod, lv, hv);
198 /* We are not interested in the wide part nor in overflow. */
199 if (lw == NULL)
200 return 0;
202 decode (prod + 4, lw, hw);
204 /* Unsigned overflow is immediate. */
205 if (unsigned_p)
206 return (*lw | *hw) != 0;
208 /* Check for signed overflow by calculating the signed representation of the
209 top half of the result; it should agree with the low half's sign bit. */
210 if (h1 < 0)
212 neg_double (l2, h2, &neglow, &neghigh);
213 add_double (neglow, neghigh, *lw, *hw, lw, hw);
215 if (h2 < 0)
217 neg_double (l1, h1, &neglow, &neghigh);
218 add_double (neglow, neghigh, *lw, *hw, lw, hw);
220 return (*hv < 0 ? ~(*lw & *hw) : *lw | *hw) != 0;
223 /* Shift the doubleword integer in L1, H1 right by COUNT places
224 keeping only PREC bits of result. ARITH nonzero specifies
225 arithmetic shifting; otherwise use logical shift.
226 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
228 static void
229 rshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
230 unsigned HOST_WIDE_INT count, unsigned int prec,
231 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
232 bool arith)
234 unsigned HOST_WIDE_INT signmask;
236 signmask = (arith
237 ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
238 : 0);
240 if (count >= HOST_BITS_PER_DOUBLE_INT)
242 /* Shifting by the host word size is undefined according to the
243 ANSI standard, so we must handle this as a special case. */
244 *hv = 0;
245 *lv = 0;
247 else if (count >= HOST_BITS_PER_WIDE_INT)
249 *hv = 0;
250 *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
252 else
254 *hv = (unsigned HOST_WIDE_INT) h1 >> count;
255 *lv = ((l1 >> count)
256 | ((unsigned HOST_WIDE_INT) h1
257 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
260 /* Zero / sign extend all bits that are beyond the precision. */
262 if (count >= prec)
264 *hv = signmask;
265 *lv = signmask;
267 else if ((prec - count) >= HOST_BITS_PER_DOUBLE_INT)
269 else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
271 *hv &= ~(HOST_WIDE_INT_M1U << (prec - count - HOST_BITS_PER_WIDE_INT));
272 *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
274 else
276 *hv = signmask;
277 *lv &= ~(HOST_WIDE_INT_M1U << (prec - count));
278 *lv |= signmask << (prec - count);
282 /* Shift the doubleword integer in L1, H1 left by COUNT places
283 keeping only PREC bits of result.
284 Shift right if COUNT is negative.
285 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
286 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
288 static void
289 lshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
290 unsigned HOST_WIDE_INT count, unsigned int prec,
291 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
293 unsigned HOST_WIDE_INT signmask;
295 if (count >= HOST_BITS_PER_DOUBLE_INT)
297 /* Shifting by the host word size is undefined according to the
298 ANSI standard, so we must handle this as a special case. */
299 *hv = 0;
300 *lv = 0;
302 else if (count >= HOST_BITS_PER_WIDE_INT)
304 *hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
305 *lv = 0;
307 else
309 *hv = (((unsigned HOST_WIDE_INT) h1 << count)
310 | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
311 *lv = l1 << count;
314 /* Sign extend all bits that are beyond the precision. */
316 signmask = -((prec > HOST_BITS_PER_WIDE_INT
317 ? ((unsigned HOST_WIDE_INT) *hv
318 >> (prec - HOST_BITS_PER_WIDE_INT - 1))
319 : (*lv >> (prec - 1))) & 1);
321 if (prec >= HOST_BITS_PER_DOUBLE_INT)
323 else if (prec >= HOST_BITS_PER_WIDE_INT)
325 *hv &= ~(HOST_WIDE_INT_M1U << (prec - HOST_BITS_PER_WIDE_INT));
326 *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
328 else
330 *hv = signmask;
331 *lv &= ~(HOST_WIDE_INT_M1U << prec);
332 *lv |= signmask << prec;
336 /* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
337 for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
338 CODE is a tree code for a kind of division, one of
339 TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
340 or EXACT_DIV_EXPR
341 It controls how the quotient is rounded to an integer.
342 Return nonzero if the operation overflows.
343 UNS nonzero says do unsigned division. */
345 static int
346 div_and_round_double (unsigned code, int uns,
347 /* num == numerator == dividend */
348 unsigned HOST_WIDE_INT lnum_orig,
349 HOST_WIDE_INT hnum_orig,
350 /* den == denominator == divisor */
351 unsigned HOST_WIDE_INT lden_orig,
352 HOST_WIDE_INT hden_orig,
353 unsigned HOST_WIDE_INT *lquo,
354 HOST_WIDE_INT *hquo, unsigned HOST_WIDE_INT *lrem,
355 HOST_WIDE_INT *hrem)
357 int quo_neg = 0;
358 HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */
359 HOST_WIDE_INT den[4], quo[4];
360 int i, j;
361 unsigned HOST_WIDE_INT work;
362 unsigned HOST_WIDE_INT carry = 0;
363 unsigned HOST_WIDE_INT lnum = lnum_orig;
364 HOST_WIDE_INT hnum = hnum_orig;
365 unsigned HOST_WIDE_INT lden = lden_orig;
366 HOST_WIDE_INT hden = hden_orig;
367 int overflow = 0;
369 if (hden == 0 && lden == 0)
370 overflow = 1, lden = 1;
372 /* Calculate quotient sign and convert operands to unsigned. */
373 if (!uns)
375 if (hnum < 0)
377 quo_neg = ~ quo_neg;
378 /* (minimum integer) / (-1) is the only overflow case. */
379 if (neg_double (lnum, hnum, &lnum, &hnum)
380 && ((HOST_WIDE_INT) lden & hden) == -1)
381 overflow = 1;
383 if (hden < 0)
385 quo_neg = ~ quo_neg;
386 neg_double (lden, hden, &lden, &hden);
390 if (hnum == 0 && hden == 0)
391 { /* single precision */
392 *hquo = *hrem = 0;
393 /* This unsigned division rounds toward zero. */
394 *lquo = lnum / lden;
395 goto finish_up;
398 if (hnum == 0)
399 { /* trivial case: dividend < divisor */
400 /* hden != 0 already checked. */
401 *hquo = *lquo = 0;
402 *hrem = hnum;
403 *lrem = lnum;
404 goto finish_up;
407 memset (quo, 0, sizeof quo);
409 memset (num, 0, sizeof num); /* to zero 9th element */
410 memset (den, 0, sizeof den);
412 encode (num, lnum, hnum);
413 encode (den, lden, hden);
415 /* Special code for when the divisor < BASE. */
416 if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
418 /* hnum != 0 already checked. */
419 for (i = 4 - 1; i >= 0; i--)
421 work = num[i] + carry * BASE;
422 quo[i] = work / lden;
423 carry = work % lden;
426 else
428 /* Full double precision division,
429 with thanks to Don Knuth's "Seminumerical Algorithms". */
430 int num_hi_sig, den_hi_sig;
431 unsigned HOST_WIDE_INT quo_est, scale;
433 /* Find the highest nonzero divisor digit. */
434 for (i = 4 - 1;; i--)
435 if (den[i] != 0)
437 den_hi_sig = i;
438 break;
441 /* Insure that the first digit of the divisor is at least BASE/2.
442 This is required by the quotient digit estimation algorithm. */
444 scale = BASE / (den[den_hi_sig] + 1);
445 if (scale > 1)
446 { /* scale divisor and dividend */
447 carry = 0;
448 for (i = 0; i <= 4 - 1; i++)
450 work = (num[i] * scale) + carry;
451 num[i] = LOWPART (work);
452 carry = HIGHPART (work);
455 num[4] = carry;
456 carry = 0;
457 for (i = 0; i <= 4 - 1; i++)
459 work = (den[i] * scale) + carry;
460 den[i] = LOWPART (work);
461 carry = HIGHPART (work);
462 if (den[i] != 0) den_hi_sig = i;
466 num_hi_sig = 4;
468 /* Main loop */
469 for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
471 /* Guess the next quotient digit, quo_est, by dividing the first
472 two remaining dividend digits by the high order quotient digit.
473 quo_est is never low and is at most 2 high. */
474 unsigned HOST_WIDE_INT tmp;
476 num_hi_sig = i + den_hi_sig + 1;
477 work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
478 if (num[num_hi_sig] != den[den_hi_sig])
479 quo_est = work / den[den_hi_sig];
480 else
481 quo_est = BASE - 1;
483 /* Refine quo_est so it's usually correct, and at most one high. */
484 tmp = work - quo_est * den[den_hi_sig];
485 if (tmp < BASE
486 && (den[den_hi_sig - 1] * quo_est
487 > (tmp * BASE + num[num_hi_sig - 2])))
488 quo_est--;
490 /* Try QUO_EST as the quotient digit, by multiplying the
491 divisor by QUO_EST and subtracting from the remaining dividend.
492 Keep in mind that QUO_EST is the I - 1st digit. */
494 carry = 0;
495 for (j = 0; j <= den_hi_sig; j++)
497 work = quo_est * den[j] + carry;
498 carry = HIGHPART (work);
499 work = num[i + j] - LOWPART (work);
500 num[i + j] = LOWPART (work);
501 carry += HIGHPART (work) != 0;
504 /* If quo_est was high by one, then num[i] went negative and
505 we need to correct things. */
506 if (num[num_hi_sig] < (HOST_WIDE_INT) carry)
508 quo_est--;
509 carry = 0; /* add divisor back in */
510 for (j = 0; j <= den_hi_sig; j++)
512 work = num[i + j] + den[j] + carry;
513 carry = HIGHPART (work);
514 num[i + j] = LOWPART (work);
517 num [num_hi_sig] += carry;
520 /* Store the quotient digit. */
521 quo[i] = quo_est;
525 decode (quo, lquo, hquo);
527 finish_up:
528 /* If result is negative, make it so. */
529 if (quo_neg)
530 neg_double (*lquo, *hquo, lquo, hquo);
532 /* Compute trial remainder: rem = num - (quo * den) */
533 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
534 neg_double (*lrem, *hrem, lrem, hrem);
535 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
537 switch (code)
539 case TRUNC_DIV_EXPR:
540 case TRUNC_MOD_EXPR: /* round toward zero */
541 case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */
542 return overflow;
544 case FLOOR_DIV_EXPR:
545 case FLOOR_MOD_EXPR: /* round toward negative infinity */
546 if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */
548 /* quo = quo - 1; */
549 add_double (*lquo, *hquo, HOST_WIDE_INT_M1, HOST_WIDE_INT_M1,
550 lquo, hquo);
552 else
553 return overflow;
554 break;
556 case CEIL_DIV_EXPR:
557 case CEIL_MOD_EXPR: /* round toward positive infinity */
558 if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */
560 add_double (*lquo, *hquo, HOST_WIDE_INT_1, HOST_WIDE_INT_0,
561 lquo, hquo);
563 else
564 return overflow;
565 break;
567 case ROUND_DIV_EXPR:
568 case ROUND_MOD_EXPR: /* round to closest integer */
570 unsigned HOST_WIDE_INT labs_rem = *lrem;
571 HOST_WIDE_INT habs_rem = *hrem;
572 unsigned HOST_WIDE_INT labs_den = lden, lnegabs_rem, ldiff;
573 HOST_WIDE_INT habs_den = hden, hnegabs_rem, hdiff;
575 /* Get absolute values. */
576 if (!uns && *hrem < 0)
577 neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
578 if (!uns && hden < 0)
579 neg_double (lden, hden, &labs_den, &habs_den);
581 /* If abs(rem) >= abs(den) - abs(rem), adjust the quotient. */
582 neg_double (labs_rem, habs_rem, &lnegabs_rem, &hnegabs_rem);
583 add_double (labs_den, habs_den, lnegabs_rem, hnegabs_rem,
584 &ldiff, &hdiff);
586 if (((unsigned HOST_WIDE_INT) habs_rem
587 > (unsigned HOST_WIDE_INT) hdiff)
588 || (habs_rem == hdiff && labs_rem >= ldiff))
590 if (quo_neg)
591 /* quo = quo - 1; */
592 add_double (*lquo, *hquo,
593 HOST_WIDE_INT_M1, HOST_WIDE_INT_M1, lquo, hquo);
594 else
595 /* quo = quo + 1; */
596 add_double (*lquo, *hquo, HOST_WIDE_INT_1, HOST_WIDE_INT_0,
597 lquo, hquo);
599 else
600 return overflow;
602 break;
604 default:
605 gcc_unreachable ();
608 /* Compute true remainder: rem = num - (quo * den) */
609 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
610 neg_double (*lrem, *hrem, lrem, hrem);
611 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
612 return overflow;
616 /* Construct from a buffer of length LEN. BUFFER will be read according
617 to byte endianness and word endianness. Only the lower LEN bytes
618 of the result are set; the remaining high bytes are cleared. */
620 double_int
621 double_int::from_buffer (const unsigned char *buffer, int len)
623 double_int result = double_int_zero;
624 int words = len / UNITS_PER_WORD;
626 gcc_assert (len * BITS_PER_UNIT <= HOST_BITS_PER_DOUBLE_INT);
628 for (int byte = 0; byte < len; byte++)
630 int offset;
631 int bitpos = byte * BITS_PER_UNIT;
632 unsigned HOST_WIDE_INT value;
634 if (len > UNITS_PER_WORD)
636 int word = byte / UNITS_PER_WORD;
638 if (WORDS_BIG_ENDIAN)
639 word = (words - 1) - word;
641 offset = word * UNITS_PER_WORD;
643 if (BYTES_BIG_ENDIAN)
644 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
645 else
646 offset += byte % UNITS_PER_WORD;
648 else
649 offset = BYTES_BIG_ENDIAN ? (len - 1) - byte : byte;
651 value = (unsigned HOST_WIDE_INT) buffer[offset];
653 if (bitpos < HOST_BITS_PER_WIDE_INT)
654 result.low |= value << bitpos;
655 else
656 result.high |= value << (bitpos - HOST_BITS_PER_WIDE_INT);
659 return result;
663 /* Returns mask for PREC bits. */
665 double_int
666 double_int::mask (unsigned prec)
668 unsigned HOST_WIDE_INT m;
669 double_int mask;
671 if (prec > HOST_BITS_PER_WIDE_INT)
673 prec -= HOST_BITS_PER_WIDE_INT;
674 m = ((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1;
675 mask.high = (HOST_WIDE_INT) m;
676 mask.low = ALL_ONES;
678 else
680 mask.high = 0;
681 mask.low = prec ? ((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1 : 0;
684 return mask;
687 /* Returns a maximum value for signed or unsigned integer
688 of precision PREC. */
690 double_int
691 double_int::max_value (unsigned int prec, bool uns)
693 return double_int::mask (prec - (uns ? 0 : 1));
696 /* Returns a minimum value for signed or unsigned integer
697 of precision PREC. */
699 double_int
700 double_int::min_value (unsigned int prec, bool uns)
702 if (uns)
703 return double_int_zero;
704 return double_int_one.lshift (prec - 1, prec, false);
707 /* Clears the bits of CST over the precision PREC. If UNS is false, the bits
708 outside of the precision are set to the sign bit (i.e., the PREC-th one),
709 otherwise they are set to zero.
711 This corresponds to returning the value represented by PREC lowermost bits
712 of CST, with the given signedness. */
714 double_int
715 double_int::ext (unsigned prec, bool uns) const
717 if (uns)
718 return this->zext (prec);
719 else
720 return this->sext (prec);
723 /* The same as double_int::ext with UNS = true. */
725 double_int
726 double_int::zext (unsigned prec) const
728 const double_int &cst = *this;
729 double_int mask = double_int::mask (prec);
730 double_int r;
732 r.low = cst.low & mask.low;
733 r.high = cst.high & mask.high;
735 return r;
738 /* The same as double_int::ext with UNS = false. */
740 double_int
741 double_int::sext (unsigned prec) const
743 const double_int &cst = *this;
744 double_int mask = double_int::mask (prec);
745 double_int r;
746 unsigned HOST_WIDE_INT snum;
748 if (prec <= HOST_BITS_PER_WIDE_INT)
749 snum = cst.low;
750 else
752 prec -= HOST_BITS_PER_WIDE_INT;
753 snum = (unsigned HOST_WIDE_INT) cst.high;
755 if (((snum >> (prec - 1)) & 1) == 1)
757 r.low = cst.low | ~mask.low;
758 r.high = cst.high | ~mask.high;
760 else
762 r.low = cst.low & mask.low;
763 r.high = cst.high & mask.high;
766 return r;
769 /* Returns true if CST fits in signed HOST_WIDE_INT. */
771 bool
772 double_int::fits_shwi () const
774 const double_int &cst = *this;
775 if (cst.high == 0)
776 return (HOST_WIDE_INT) cst.low >= 0;
777 else if (cst.high == -1)
778 return (HOST_WIDE_INT) cst.low < 0;
779 else
780 return false;
783 /* Returns true if CST fits in HOST_WIDE_INT if UNS is false, or in
784 unsigned HOST_WIDE_INT if UNS is true. */
786 bool
787 double_int::fits_hwi (bool uns) const
789 if (uns)
790 return this->fits_uhwi ();
791 else
792 return this->fits_shwi ();
795 /* Returns A * B. */
797 double_int
798 double_int::operator * (double_int b) const
800 const double_int &a = *this;
801 double_int ret;
802 mul_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
803 return ret;
806 /* Multiplies *this with B and returns a reference to *this. */
808 double_int &
809 double_int::operator *= (double_int b)
811 mul_double (low, high, b.low, b.high, &low, &high);
812 return *this;
815 /* Returns A * B. If the operation overflows according to UNSIGNED_P,
816 *OVERFLOW is set to nonzero. */
818 double_int
819 double_int::mul_with_sign (double_int b, bool unsigned_p, bool *overflow) const
821 const double_int &a = *this;
822 double_int ret, tem;
823 *overflow = mul_double_wide_with_sign (a.low, a.high, b.low, b.high,
824 &ret.low, &ret.high,
825 &tem.low, &tem.high, unsigned_p);
826 return ret;
829 double_int
830 double_int::wide_mul_with_sign (double_int b, bool unsigned_p,
831 double_int *higher, bool *overflow) const
834 double_int lower;
835 *overflow = mul_double_wide_with_sign (low, high, b.low, b.high,
836 &lower.low, &lower.high,
837 &higher->low, &higher->high,
838 unsigned_p);
839 return lower;
842 /* Returns A + B. */
844 double_int
845 double_int::operator + (double_int b) const
847 const double_int &a = *this;
848 double_int ret;
849 add_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
850 return ret;
853 /* Adds B to *this and returns a reference to *this. */
855 double_int &
856 double_int::operator += (double_int b)
858 add_double (low, high, b.low, b.high, &low, &high);
859 return *this;
863 /* Returns A + B. If the operation overflows according to UNSIGNED_P,
864 *OVERFLOW is set to nonzero. */
866 double_int
867 double_int::add_with_sign (double_int b, bool unsigned_p, bool *overflow) const
869 const double_int &a = *this;
870 double_int ret;
871 *overflow = add_double_with_sign (a.low, a.high, b.low, b.high,
872 &ret.low, &ret.high, unsigned_p);
873 return ret;
876 /* Returns A - B. */
878 double_int
879 double_int::operator - (double_int b) const
881 const double_int &a = *this;
882 double_int ret;
883 neg_double (b.low, b.high, &b.low, &b.high);
884 add_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
885 return ret;
888 /* Subtracts B from *this and returns a reference to *this. */
890 double_int &
891 double_int::operator -= (double_int b)
893 neg_double (b.low, b.high, &b.low, &b.high);
894 add_double (low, high, b.low, b.high, &low, &high);
895 return *this;
899 /* Returns A - B. If the operation overflows via inconsistent sign bits,
900 *OVERFLOW is set to nonzero. */
902 double_int
903 double_int::sub_with_overflow (double_int b, bool *overflow) const
905 double_int ret;
906 neg_double (b.low, b.high, &ret.low, &ret.high);
907 add_double (low, high, ret.low, ret.high, &ret.low, &ret.high);
908 *overflow = OVERFLOW_SUM_SIGN (ret.high, b.high, high);
909 return ret;
912 /* Returns -A. */
914 double_int
915 double_int::operator - () const
917 const double_int &a = *this;
918 double_int ret;
919 neg_double (a.low, a.high, &ret.low, &ret.high);
920 return ret;
923 double_int
924 double_int::neg_with_overflow (bool *overflow) const
926 double_int ret;
927 *overflow = neg_double (low, high, &ret.low, &ret.high);
928 return ret;
931 /* Returns A / B (computed as unsigned depending on UNS, and rounded as
932 specified by CODE). CODE is enum tree_code in fact, but double_int.h
933 must be included before tree.h. The remainder after the division is
934 stored to MOD. */
936 double_int
937 double_int::divmod_with_overflow (double_int b, bool uns, unsigned code,
938 double_int *mod, bool *overflow) const
940 const double_int &a = *this;
941 double_int ret;
943 *overflow = div_and_round_double (code, uns, a.low, a.high,
944 b.low, b.high, &ret.low, &ret.high,
945 &mod->low, &mod->high);
946 return ret;
949 double_int
950 double_int::divmod (double_int b, bool uns, unsigned code,
951 double_int *mod) const
953 const double_int &a = *this;
954 double_int ret;
956 div_and_round_double (code, uns, a.low, a.high,
957 b.low, b.high, &ret.low, &ret.high,
958 &mod->low, &mod->high);
959 return ret;
962 /* The same as double_int::divmod with UNS = false. */
964 double_int
965 double_int::sdivmod (double_int b, unsigned code, double_int *mod) const
967 return this->divmod (b, false, code, mod);
970 /* The same as double_int::divmod with UNS = true. */
972 double_int
973 double_int::udivmod (double_int b, unsigned code, double_int *mod) const
975 return this->divmod (b, true, code, mod);
978 /* Returns A / B (computed as unsigned depending on UNS, and rounded as
979 specified by CODE). CODE is enum tree_code in fact, but double_int.h
980 must be included before tree.h. */
982 double_int
983 double_int::div (double_int b, bool uns, unsigned code) const
985 double_int mod;
987 return this->divmod (b, uns, code, &mod);
990 /* The same as double_int::div with UNS = false. */
992 double_int
993 double_int::sdiv (double_int b, unsigned code) const
995 return this->div (b, false, code);
998 /* The same as double_int::div with UNS = true. */
1000 double_int
1001 double_int::udiv (double_int b, unsigned code) const
1003 return this->div (b, true, code);
1006 /* Returns A % B (computed as unsigned depending on UNS, and rounded as
1007 specified by CODE). CODE is enum tree_code in fact, but double_int.h
1008 must be included before tree.h. */
1010 double_int
1011 double_int::mod (double_int b, bool uns, unsigned code) const
1013 double_int mod;
1015 this->divmod (b, uns, code, &mod);
1016 return mod;
1019 /* The same as double_int::mod with UNS = false. */
1021 double_int
1022 double_int::smod (double_int b, unsigned code) const
1024 return this->mod (b, false, code);
1027 /* The same as double_int::mod with UNS = true. */
1029 double_int
1030 double_int::umod (double_int b, unsigned code) const
1032 return this->mod (b, true, code);
1035 /* Return TRUE iff PRODUCT is an integral multiple of FACTOR, and return
1036 the multiple in *MULTIPLE. Otherwise return FALSE and leave *MULTIPLE
1037 unchanged. */
1039 bool
1040 double_int::multiple_of (double_int factor,
1041 bool unsigned_p, double_int *multiple) const
1043 double_int remainder;
1044 double_int quotient = this->divmod (factor, unsigned_p,
1045 TRUNC_DIV_EXPR, &remainder);
1046 if (remainder.is_zero ())
1048 *multiple = quotient;
1049 return true;
1052 return false;
1055 /* Set BITPOS bit in A. */
1056 double_int
1057 double_int::set_bit (unsigned bitpos) const
1059 double_int a = *this;
1060 if (bitpos < HOST_BITS_PER_WIDE_INT)
1061 a.low |= HOST_WIDE_INT_1U << bitpos;
1062 else
1063 a.high |= HOST_WIDE_INT_1 << (bitpos - HOST_BITS_PER_WIDE_INT);
1065 return a;
1068 /* Count trailing zeros in A. */
1070 double_int::trailing_zeros () const
1072 const double_int &a = *this;
1073 unsigned HOST_WIDE_INT w = a.low ? a.low : (unsigned HOST_WIDE_INT) a.high;
1074 unsigned bits = a.low ? 0 : HOST_BITS_PER_WIDE_INT;
1075 if (!w)
1076 return HOST_BITS_PER_DOUBLE_INT;
1077 bits += ctz_hwi (w);
1078 return bits;
1081 /* Shift A left by COUNT places. */
1083 double_int
1084 double_int::lshift (HOST_WIDE_INT count) const
1086 double_int ret;
1088 gcc_checking_assert (count >= 0);
1090 if (count >= HOST_BITS_PER_DOUBLE_INT)
1092 /* Shifting by the host word size is undefined according to the
1093 ANSI standard, so we must handle this as a special case. */
1094 ret.high = 0;
1095 ret.low = 0;
1097 else if (count >= HOST_BITS_PER_WIDE_INT)
1099 ret.high = low << (count - HOST_BITS_PER_WIDE_INT);
1100 ret.low = 0;
1102 else
1104 ret.high = (((unsigned HOST_WIDE_INT) high << count)
1105 | (low >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
1106 ret.low = low << count;
1109 return ret;
1112 /* Shift A right by COUNT places. */
1114 double_int
1115 double_int::rshift (HOST_WIDE_INT count) const
1117 double_int ret;
1119 gcc_checking_assert (count >= 0);
1121 if (count >= HOST_BITS_PER_DOUBLE_INT)
1123 /* Shifting by the host word size is undefined according to the
1124 ANSI standard, so we must handle this as a special case. */
1125 ret.high = 0;
1126 ret.low = 0;
1128 else if (count >= HOST_BITS_PER_WIDE_INT)
1130 ret.high = 0;
1131 ret.low
1132 = (unsigned HOST_WIDE_INT) (high >> (count - HOST_BITS_PER_WIDE_INT));
1134 else
1136 ret.high = high >> count;
1137 ret.low = ((low >> count)
1138 | ((unsigned HOST_WIDE_INT) high
1139 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
1142 return ret;
1145 /* Shift A left by COUNT places keeping only PREC bits of result. Shift
1146 right if COUNT is negative. ARITH true specifies arithmetic shifting;
1147 otherwise use logical shift. */
1149 double_int
1150 double_int::lshift (HOST_WIDE_INT count, unsigned int prec, bool arith) const
1152 double_int ret;
1153 if (count > 0)
1154 lshift_double (low, high, count, prec, &ret.low, &ret.high);
1155 else
1156 rshift_double (low, high, absu_hwi (count), prec, &ret.low, &ret.high, arith);
1157 return ret;
1160 /* Shift A right by COUNT places keeping only PREC bits of result. Shift
1161 left if COUNT is negative. ARITH true specifies arithmetic shifting;
1162 otherwise use logical shift. */
1164 double_int
1165 double_int::rshift (HOST_WIDE_INT count, unsigned int prec, bool arith) const
1167 double_int ret;
1168 if (count > 0)
1169 rshift_double (low, high, count, prec, &ret.low, &ret.high, arith);
1170 else
1171 lshift_double (low, high, absu_hwi (count), prec, &ret.low, &ret.high);
1172 return ret;
1175 /* Arithmetic shift A left by COUNT places keeping only PREC bits of result.
1176 Shift right if COUNT is negative. */
1178 double_int
1179 double_int::alshift (HOST_WIDE_INT count, unsigned int prec) const
1181 double_int r;
1182 if (count > 0)
1183 lshift_double (low, high, count, prec, &r.low, &r.high);
1184 else
1185 rshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high, true);
1186 return r;
1189 /* Arithmetic shift A right by COUNT places keeping only PREC bits of result.
1190 Shift left if COUNT is negative. */
1192 double_int
1193 double_int::arshift (HOST_WIDE_INT count, unsigned int prec) const
1195 double_int r;
1196 if (count > 0)
1197 rshift_double (low, high, count, prec, &r.low, &r.high, true);
1198 else
1199 lshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high);
1200 return r;
1203 /* Logical shift A left by COUNT places keeping only PREC bits of result.
1204 Shift right if COUNT is negative. */
1206 double_int
1207 double_int::llshift (HOST_WIDE_INT count, unsigned int prec) const
1209 double_int r;
1210 if (count > 0)
1211 lshift_double (low, high, count, prec, &r.low, &r.high);
1212 else
1213 rshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high, false);
1214 return r;
1217 /* Logical shift A right by COUNT places keeping only PREC bits of result.
1218 Shift left if COUNT is negative. */
1220 double_int
1221 double_int::lrshift (HOST_WIDE_INT count, unsigned int prec) const
1223 double_int r;
1224 if (count > 0)
1225 rshift_double (low, high, count, prec, &r.low, &r.high, false);
1226 else
1227 lshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high);
1228 return r;
1231 /* Rotate A left by COUNT places keeping only PREC bits of result.
1232 Rotate right if COUNT is negative. */
1234 double_int
1235 double_int::lrotate (HOST_WIDE_INT count, unsigned int prec) const
1237 double_int t1, t2;
1239 count %= prec;
1240 if (count < 0)
1241 count += prec;
1243 t1 = this->llshift (count, prec);
1244 t2 = this->lrshift (prec - count, prec);
1246 return t1 | t2;
1249 /* Rotate A rigth by COUNT places keeping only PREC bits of result.
1250 Rotate right if COUNT is negative. */
1252 double_int
1253 double_int::rrotate (HOST_WIDE_INT count, unsigned int prec) const
1255 double_int t1, t2;
1257 count %= prec;
1258 if (count < 0)
1259 count += prec;
1261 t1 = this->lrshift (count, prec);
1262 t2 = this->llshift (prec - count, prec);
1264 return t1 | t2;
1267 /* Returns -1 if A < B, 0 if A == B and 1 if A > B. Signedness of the
1268 comparison is given by UNS. */
1271 double_int::cmp (double_int b, bool uns) const
1273 if (uns)
1274 return this->ucmp (b);
1275 else
1276 return this->scmp (b);
1279 /* Compares two unsigned values A and B. Returns -1 if A < B, 0 if A == B,
1280 and 1 if A > B. */
1283 double_int::ucmp (double_int b) const
1285 const double_int &a = *this;
1286 if ((unsigned HOST_WIDE_INT) a.high < (unsigned HOST_WIDE_INT) b.high)
1287 return -1;
1288 if ((unsigned HOST_WIDE_INT) a.high > (unsigned HOST_WIDE_INT) b.high)
1289 return 1;
1290 if (a.low < b.low)
1291 return -1;
1292 if (a.low > b.low)
1293 return 1;
1295 return 0;
1298 /* Compares two signed values A and B. Returns -1 if A < B, 0 if A == B,
1299 and 1 if A > B. */
1302 double_int::scmp (double_int b) const
1304 const double_int &a = *this;
1305 if (a.high < b.high)
1306 return -1;
1307 if (a.high > b.high)
1308 return 1;
1309 if (a.low < b.low)
1310 return -1;
1311 if (a.low > b.low)
1312 return 1;
1314 return 0;
1317 /* Compares two unsigned values A and B for less-than. */
1319 bool
1320 double_int::ult (double_int b) const
1322 if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high)
1323 return true;
1324 if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high)
1325 return false;
1326 if (low < b.low)
1327 return true;
1328 return false;
1331 /* Compares two unsigned values A and B for less-than or equal-to. */
1333 bool
1334 double_int::ule (double_int b) const
1336 if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high)
1337 return true;
1338 if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high)
1339 return false;
1340 if (low <= b.low)
1341 return true;
1342 return false;
1345 /* Compares two unsigned values A and B for greater-than. */
1347 bool
1348 double_int::ugt (double_int b) const
1350 if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high)
1351 return true;
1352 if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high)
1353 return false;
1354 if (low > b.low)
1355 return true;
1356 return false;
1359 /* Compares two signed values A and B for less-than. */
1361 bool
1362 double_int::slt (double_int b) const
1364 if (high < b.high)
1365 return true;
1366 if (high > b.high)
1367 return false;
1368 if (low < b.low)
1369 return true;
1370 return false;
1373 /* Compares two signed values A and B for less-than or equal-to. */
1375 bool
1376 double_int::sle (double_int b) const
1378 if (high < b.high)
1379 return true;
1380 if (high > b.high)
1381 return false;
1382 if (low <= b.low)
1383 return true;
1384 return false;
1387 /* Compares two signed values A and B for greater-than. */
1389 bool
1390 double_int::sgt (double_int b) const
1392 if (high > b.high)
1393 return true;
1394 if (high < b.high)
1395 return false;
1396 if (low > b.low)
1397 return true;
1398 return false;
1402 /* Compares two values A and B. Returns max value. Signedness of the
1403 comparison is given by UNS. */
1405 double_int
1406 double_int::max (double_int b, bool uns)
1408 return (this->cmp (b, uns) == 1) ? *this : b;
1411 /* Compares two signed values A and B. Returns max value. */
1413 double_int
1414 double_int::smax (double_int b)
1416 return (this->scmp (b) == 1) ? *this : b;
1419 /* Compares two unsigned values A and B. Returns max value. */
1421 double_int
1422 double_int::umax (double_int b)
1424 return (this->ucmp (b) == 1) ? *this : b;
1427 /* Compares two values A and B. Returns mix value. Signedness of the
1428 comparison is given by UNS. */
1430 double_int
1431 double_int::min (double_int b, bool uns)
1433 return (this->cmp (b, uns) == -1) ? *this : b;
1436 /* Compares two signed values A and B. Returns min value. */
1438 double_int
1439 double_int::smin (double_int b)
1441 return (this->scmp (b) == -1) ? *this : b;
1444 /* Compares two unsigned values A and B. Returns min value. */
1446 double_int
1447 double_int::umin (double_int b)
1449 return (this->ucmp (b) == -1) ? *this : b;
1452 /* Splits last digit of *CST (taken as unsigned) in BASE and returns it. */
1454 static unsigned
1455 double_int_split_digit (double_int *cst, unsigned base)
1457 unsigned HOST_WIDE_INT resl, reml;
1458 HOST_WIDE_INT resh, remh;
1460 div_and_round_double (FLOOR_DIV_EXPR, true, cst->low, cst->high, base, 0,
1461 &resl, &resh, &reml, &remh);
1462 cst->high = resh;
1463 cst->low = resl;
1465 return reml;
1468 /* Dumps CST to FILE. If UNS is true, CST is considered to be unsigned,
1469 otherwise it is signed. */
1471 void
1472 dump_double_int (FILE *file, double_int cst, bool uns)
1474 unsigned digits[100], n;
1475 int i;
1477 if (cst.is_zero ())
1479 fprintf (file, "0");
1480 return;
1483 if (!uns && cst.is_negative ())
1485 fprintf (file, "-");
1486 cst = -cst;
1489 for (n = 0; !cst.is_zero (); n++)
1490 digits[n] = double_int_split_digit (&cst, 10);
1491 for (i = n - 1; i >= 0; i--)
1492 fprintf (file, "%u", digits[i]);
1496 /* Sets RESULT to VAL, taken unsigned if UNS is true and as signed
1497 otherwise. */
1499 void
1500 mpz_set_double_int (mpz_t result, double_int val, bool uns)
1502 bool negate = false;
1503 unsigned HOST_WIDE_INT vp[2];
1505 if (!uns && val.is_negative ())
1507 negate = true;
1508 val = -val;
1511 vp[0] = val.low;
1512 vp[1] = (unsigned HOST_WIDE_INT) val.high;
1513 mpz_import (result, 2, -1, sizeof (HOST_WIDE_INT), 0, 0, vp);
1515 if (negate)
1516 mpz_neg (result, result);
1519 /* Returns VAL converted to TYPE. If WRAP is true, then out-of-range
1520 values of VAL will be wrapped; otherwise, they will be set to the
1521 appropriate minimum or maximum TYPE bound. */
1523 double_int
1524 mpz_get_double_int (const_tree type, mpz_t val, bool wrap)
1526 unsigned HOST_WIDE_INT *vp;
1527 size_t count, numb;
1528 double_int res;
1530 if (!wrap)
1532 mpz_t min, max;
1534 mpz_init (min);
1535 mpz_init (max);
1536 get_type_static_bounds (type, min, max);
1538 if (mpz_cmp (val, min) < 0)
1539 mpz_set (val, min);
1540 else if (mpz_cmp (val, max) > 0)
1541 mpz_set (val, max);
1543 mpz_clear (min);
1544 mpz_clear (max);
1547 /* Determine the number of unsigned HOST_WIDE_INT that are required
1548 for representing the value. The code to calculate count is
1549 extracted from the GMP manual, section "Integer Import and Export":
1550 http://gmplib.org/manual/Integer-Import-and-Export.html */
1551 numb = 8 * sizeof (HOST_WIDE_INT);
1552 count = (mpz_sizeinbase (val, 2) + numb-1) / numb;
1553 if (count < 2)
1554 count = 2;
1555 vp = (unsigned HOST_WIDE_INT *) alloca (count * sizeof (HOST_WIDE_INT));
1557 vp[0] = 0;
1558 vp[1] = 0;
1559 mpz_export (vp, &count, -1, sizeof (HOST_WIDE_INT), 0, 0, val);
1561 gcc_assert (wrap || count <= 2);
1563 res.low = vp[0];
1564 res.high = (HOST_WIDE_INT) vp[1];
1566 res = res.ext (TYPE_PRECISION (type), TYPE_UNSIGNED (type));
1567 if (mpz_sgn (val) < 0)
1568 res = -res;
1570 return res;