1 /* Integrated Register Allocator (IRA) intercommunication header file.
2 Copyright (C) 2006-2017 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
26 /* To provide consistency in naming, all IRA external variables,
27 functions, common typedefs start with prefix ira_. */
30 #define ENABLE_IRA_CHECKING
33 #ifdef ENABLE_IRA_CHECKING
34 #define ira_assert(c) gcc_assert (c)
36 /* Always define and include C, so that warnings for empty body in an
37 'if' statement and unused variable do not occur. */
38 #define ira_assert(c) ((void)(0 && (c)))
41 /* Compute register frequency from edge frequency FREQ. It is
42 analogous to REG_FREQ_FROM_BB. When optimizing for size, or
43 profile driven feedback is available and the function is never
44 executed, frequency is always equivalent. Otherwise rescale the
46 #define REG_FREQ_FROM_EDGE_FREQ(freq) \
47 (optimize_function_for_size_p (cfun) \
48 ? REG_FREQ_MAX : (freq * REG_FREQ_MAX / BB_FREQ_MAX) \
49 ? (freq * REG_FREQ_MAX / BB_FREQ_MAX) : 1)
51 /* A modified value of flag `-fira-verbose' used internally. */
52 extern int internal_flag_ira_verbose
;
54 /* Dump file of the allocator if it is not NULL. */
55 extern FILE *ira_dump_file
;
57 /* Typedefs for pointers to allocno live range, allocno, and copy of
59 typedef struct live_range
*live_range_t
;
60 typedef struct ira_allocno
*ira_allocno_t
;
61 typedef struct ira_allocno_pref
*ira_pref_t
;
62 typedef struct ira_allocno_copy
*ira_copy_t
;
63 typedef struct ira_object
*ira_object_t
;
65 /* Definition of vector of allocnos and copies. */
67 /* Typedef for pointer to the subsequent structure. */
68 typedef struct ira_loop_tree_node
*ira_loop_tree_node_t
;
70 typedef unsigned short move_table
[N_REG_CLASSES
];
72 /* In general case, IRA is a regional allocator. The regions are
73 nested and form a tree. Currently regions are natural loops. The
74 following structure describes loop tree node (representing basic
75 block or loop). We need such tree because the loop tree from
76 cfgloop.h is not convenient for the optimization: basic blocks are
77 not a part of the tree from cfgloop.h. We also use the nodes for
78 storing additional information about basic blocks/loops for the
79 register allocation purposes. */
80 struct ira_loop_tree_node
82 /* The node represents basic block if children == NULL. */
83 basic_block bb
; /* NULL for loop. */
84 /* NULL for BB or for loop tree root if we did not build CFG loop tree. */
86 /* NEXT/SUBLOOP_NEXT is the next node/loop-node of the same parent.
87 SUBLOOP_NEXT is always NULL for BBs. */
88 ira_loop_tree_node_t subloop_next
, next
;
89 /* CHILDREN/SUBLOOPS is the first node/loop-node immediately inside
90 the node. They are NULL for BBs. */
91 ira_loop_tree_node_t subloops
, children
;
92 /* The node immediately containing given node. */
93 ira_loop_tree_node_t parent
;
95 /* Loop level in range [0, ira_loop_tree_height). */
98 /* All the following members are defined only for nodes representing
101 /* The loop number from CFG loop tree. The root number is 0. */
104 /* True if the loop was marked for removal from the register
108 /* Allocnos in the loop corresponding to their regnos. If it is
109 NULL the loop does not form a separate register allocation region
110 (e.g. because it has abnormal enter/exit edges and we can not put
111 code for register shuffling on the edges if a different
112 allocation is used for a pseudo-register on different sides of
113 the edges). Caps are not in the map (remember we can have more
114 one cap with the same regno in a region). */
115 ira_allocno_t
*regno_allocno_map
;
117 /* True if there is an entry to given loop not from its parent (or
118 grandparent) basic block. For example, it is possible for two
119 adjacent loops inside another loop. */
120 bool entered_from_non_parent_p
;
122 /* Maximal register pressure inside loop for given register class
123 (defined only for the pressure classes). */
124 int reg_pressure
[N_REG_CLASSES
];
126 /* Numbers of allocnos referred or living in the loop node (except
127 for its subloops). */
130 /* Numbers of allocnos living at the loop borders. */
131 bitmap border_allocnos
;
133 /* Regnos of pseudos modified in the loop node (including its
135 bitmap modified_regnos
;
137 /* Numbers of copies referred in the corresponding loop. */
141 /* The root of the loop tree corresponding to the all function. */
142 extern ira_loop_tree_node_t ira_loop_tree_root
;
144 /* Height of the loop tree. */
145 extern int ira_loop_tree_height
;
147 /* All nodes representing basic blocks are referred through the
148 following array. We can not use basic block member `aux' for this
149 because it is used for insertion of insns on edges. */
150 extern ira_loop_tree_node_t ira_bb_nodes
;
152 /* Two access macros to the nodes representing basic blocks. */
153 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
154 #define IRA_BB_NODE_BY_INDEX(index) __extension__ \
155 (({ ira_loop_tree_node_t _node = (&ira_bb_nodes[index]); \
156 if (_node->children != NULL || _node->loop != NULL || _node->bb == NULL)\
159 "\n%s: %d: error in %s: it is not a block node\n", \
160 __FILE__, __LINE__, __FUNCTION__); \
161 gcc_unreachable (); \
165 #define IRA_BB_NODE_BY_INDEX(index) (&ira_bb_nodes[index])
168 #define IRA_BB_NODE(bb) IRA_BB_NODE_BY_INDEX ((bb)->index)
170 /* All nodes representing loops are referred through the following
172 extern ira_loop_tree_node_t ira_loop_nodes
;
174 /* Two access macros to the nodes representing loops. */
175 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
176 #define IRA_LOOP_NODE_BY_INDEX(index) __extension__ \
177 (({ ira_loop_tree_node_t const _node = (&ira_loop_nodes[index]); \
178 if (_node->children == NULL || _node->bb != NULL \
179 || (_node->loop == NULL && current_loops != NULL)) \
182 "\n%s: %d: error in %s: it is not a loop node\n", \
183 __FILE__, __LINE__, __FUNCTION__); \
184 gcc_unreachable (); \
188 #define IRA_LOOP_NODE_BY_INDEX(index) (&ira_loop_nodes[index])
191 #define IRA_LOOP_NODE(loop) IRA_LOOP_NODE_BY_INDEX ((loop)->num)
194 /* The structure describes program points where a given allocno lives.
195 If the live ranges of two allocnos are intersected, the allocnos
199 /* Object whose live range is described by given structure. */
201 /* Program point range. */
203 /* Next structure describing program points where the allocno
206 /* Pointer to structures with the same start/finish. */
207 live_range_t start_next
, finish_next
;
210 /* Program points are enumerated by numbers from range
211 0..IRA_MAX_POINT-1. There are approximately two times more program
212 points than insns. Program points are places in the program where
213 liveness info can be changed. In most general case (there are more
214 complicated cases too) some program points correspond to places
215 where input operand dies and other ones correspond to places where
216 output operands are born. */
217 extern int ira_max_point
;
219 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
220 live ranges with given start/finish point. */
221 extern live_range_t
*ira_start_point_ranges
, *ira_finish_point_ranges
;
223 /* A structure representing conflict information for an allocno
224 (or one of its subwords). */
227 /* The allocno associated with this record. */
228 ira_allocno_t allocno
;
229 /* Vector of accumulated conflicting conflict_redords with NULL end
230 marker (if OBJECT_CONFLICT_VEC_P is true) or conflict bit vector
232 void *conflicts_array
;
233 /* Pointer to structures describing at what program point the
234 object lives. We always maintain the list in such way that *the
235 ranges in the list are not intersected and ordered by decreasing
236 their program points*. */
237 live_range_t live_ranges
;
238 /* The subword within ALLOCNO which is represented by this object.
239 Zero means the lowest-order subword (or the entire allocno in case
240 it is not being tracked in subwords). */
242 /* Allocated size of the conflicts array. */
243 unsigned int conflicts_array_size
;
244 /* A unique number for every instance of this structure, which is used
245 to represent it in conflict bit vectors. */
247 /* Before building conflicts, MIN and MAX are initialized to
248 correspondingly minimal and maximal points of the accumulated
249 live ranges. Afterwards, they hold the minimal and maximal ids
250 of other ira_objects that this one can conflict with. */
252 /* Initial and accumulated hard registers conflicting with this
253 object and as a consequences can not be assigned to the allocno.
254 All non-allocatable hard regs and hard regs of register classes
255 different from given allocno one are included in the sets. */
256 HARD_REG_SET conflict_hard_regs
, total_conflict_hard_regs
;
257 /* Number of accumulated conflicts in the vector of conflicting
259 int num_accumulated_conflicts
;
260 /* TRUE if conflicts are represented by a vector of pointers to
261 ira_object structures. Otherwise, we use a bit vector indexed
262 by conflict ID numbers. */
263 unsigned int conflict_vec_p
: 1;
266 /* A structure representing an allocno (allocation entity). Allocno
267 represents a pseudo-register in an allocation region. If
268 pseudo-register does not live in a region but it lives in the
269 nested regions, it is represented in the region by special allocno
270 called *cap*. There may be more one cap representing the same
271 pseudo-register in region. It means that the corresponding
272 pseudo-register lives in more one non-intersected subregion. */
275 /* The allocno order number starting with 0. Each allocno has an
276 unique number and the number is never changed for the
279 /* Regno for allocno or cap. */
281 /* Mode of the allocno which is the mode of the corresponding
283 ENUM_BITFIELD (machine_mode
) mode
: 8;
284 /* Widest mode of the allocno which in at least one case could be
285 for paradoxical subregs where wmode > mode. */
286 ENUM_BITFIELD (machine_mode
) wmode
: 8;
287 /* Register class which should be used for allocation for given
288 allocno. NO_REGS means that we should use memory. */
289 ENUM_BITFIELD (reg_class
) aclass
: 16;
290 /* During the reload, value TRUE means that we should not reassign a
291 hard register to the allocno got memory earlier. It is set up
292 when we removed memory-memory move insn before each iteration of
294 unsigned int dont_reassign_p
: 1;
296 /* Set to TRUE if allocno can't be assigned to the stack hard
297 register correspondingly in this region and area including the
298 region and all its subregions recursively. */
299 unsigned int no_stack_reg_p
: 1, total_no_stack_reg_p
: 1;
301 /* TRUE value means that there is no sense to spill the allocno
302 during coloring because the spill will result in additional
303 reloads in reload pass. */
304 unsigned int bad_spill_p
: 1;
305 /* TRUE if a hard register or memory has been assigned to the
307 unsigned int assigned_p
: 1;
308 /* TRUE if conflicts for given allocno are represented by vector of
309 pointers to the conflicting allocnos. Otherwise, we use a bit
310 vector where a bit with given index represents allocno with the
312 unsigned int conflict_vec_p
: 1;
313 /* Hard register assigned to given allocno. Negative value means
314 that memory was allocated to the allocno. During the reload,
315 spilled allocno has value equal to the corresponding stack slot
316 number (0, ...) - 2. Value -1 is used for allocnos spilled by the
317 reload (at this point pseudo-register has only one allocno) which
318 did not get stack slot yet. */
319 signed int hard_regno
: 16;
320 /* Allocnos with the same regno are linked by the following member.
321 Allocnos corresponding to inner loops are first in the list (it
322 corresponds to depth-first traverse of the loops). */
323 ira_allocno_t next_regno_allocno
;
324 /* There may be different allocnos with the same regno in different
325 regions. Allocnos are bound to the corresponding loop tree node.
326 Pseudo-register may have only one regular allocno with given loop
327 tree node but more than one cap (see comments above). */
328 ira_loop_tree_node_t loop_tree_node
;
329 /* Accumulated usage references of the allocno. Here and below,
330 word 'accumulated' means info for given region and all nested
331 subregions. In this case, 'accumulated' means sum of references
332 of the corresponding pseudo-register in this region and in all
333 nested subregions recursively. */
335 /* Accumulated frequency of usage of the allocno. */
337 /* Minimal accumulated and updated costs of usage register of the
339 int class_cost
, updated_class_cost
;
340 /* Minimal accumulated, and updated costs of memory for the allocno.
341 At the allocation start, the original and updated costs are
342 equal. The updated cost may be changed after finishing
343 allocation in a region and starting allocation in a subregion.
344 The change reflects the cost of spill/restore code on the
345 subregion border if we assign memory to the pseudo in the
347 int memory_cost
, updated_memory_cost
;
348 /* Accumulated number of points where the allocno lives and there is
349 excess pressure for its class. Excess pressure for a register
350 class at some point means that there are more allocnos of given
351 register class living at the point than number of hard-registers
352 of the class available for the allocation. */
353 int excess_pressure_points_num
;
354 /* Allocno hard reg preferences. */
355 ira_pref_t allocno_prefs
;
356 /* Copies to other non-conflicting allocnos. The copies can
357 represent move insn or potential move insn usually because of two
358 operand insn constraints. */
359 ira_copy_t allocno_copies
;
360 /* It is a allocno (cap) representing given allocno on upper loop tree
363 /* It is a link to allocno (cap) on lower loop level represented by
364 given cap. Null if given allocno is not a cap. */
365 ira_allocno_t cap_member
;
366 /* The number of objects tracked in the following array. */
368 /* An array of structures describing conflict information and live
369 ranges for each object associated with the allocno. There may be
370 more than one such object in cases where the allocno represents a
371 multi-word register. */
372 ira_object_t objects
[2];
373 /* Accumulated frequency of calls which given allocno
376 /* Accumulated number of the intersected calls. */
377 int calls_crossed_num
;
378 /* The number of calls across which it is live, but which should not
379 affect register preferences. */
380 int cheap_calls_crossed_num
;
381 /* Registers clobbered by intersected calls. */
382 HARD_REG_SET crossed_calls_clobbered_regs
;
383 /* Array of usage costs (accumulated and the one updated during
384 coloring) for each hard register of the allocno class. The
385 member value can be NULL if all costs are the same and equal to
386 CLASS_COST. For example, the costs of two different hard
387 registers can be different if one hard register is callee-saved
388 and another one is callee-used and the allocno lives through
389 calls. Another example can be case when for some insn the
390 corresponding pseudo-register value should be put in specific
391 register class (e.g. AREG for x86) which is a strict subset of
392 the allocno class (GENERAL_REGS for x86). We have updated costs
393 to reflect the situation when the usage cost of a hard register
394 is decreased because the allocno is connected to another allocno
395 by a copy and the another allocno has been assigned to the hard
397 int *hard_reg_costs
, *updated_hard_reg_costs
;
398 /* Array of decreasing costs (accumulated and the one updated during
399 coloring) for allocnos conflicting with given allocno for hard
400 regno of the allocno class. The member value can be NULL if all
401 costs are the same. These costs are used to reflect preferences
402 of other allocnos not assigned yet during assigning to given
404 int *conflict_hard_reg_costs
, *updated_conflict_hard_reg_costs
;
405 /* Different additional data. It is used to decrease size of
406 allocno data footprint. */
411 /* All members of the allocno structures should be accessed only
412 through the following macros. */
413 #define ALLOCNO_NUM(A) ((A)->num)
414 #define ALLOCNO_REGNO(A) ((A)->regno)
415 #define ALLOCNO_REG(A) ((A)->reg)
416 #define ALLOCNO_NEXT_REGNO_ALLOCNO(A) ((A)->next_regno_allocno)
417 #define ALLOCNO_LOOP_TREE_NODE(A) ((A)->loop_tree_node)
418 #define ALLOCNO_CAP(A) ((A)->cap)
419 #define ALLOCNO_CAP_MEMBER(A) ((A)->cap_member)
420 #define ALLOCNO_NREFS(A) ((A)->nrefs)
421 #define ALLOCNO_FREQ(A) ((A)->freq)
422 #define ALLOCNO_HARD_REGNO(A) ((A)->hard_regno)
423 #define ALLOCNO_CALL_FREQ(A) ((A)->call_freq)
424 #define ALLOCNO_CALLS_CROSSED_NUM(A) ((A)->calls_crossed_num)
425 #define ALLOCNO_CHEAP_CALLS_CROSSED_NUM(A) ((A)->cheap_calls_crossed_num)
426 #define ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS(A) \
427 ((A)->crossed_calls_clobbered_regs)
428 #define ALLOCNO_MEM_OPTIMIZED_DEST(A) ((A)->mem_optimized_dest)
429 #define ALLOCNO_MEM_OPTIMIZED_DEST_P(A) ((A)->mem_optimized_dest_p)
430 #define ALLOCNO_SOMEWHERE_RENAMED_P(A) ((A)->somewhere_renamed_p)
431 #define ALLOCNO_CHILD_RENAMED_P(A) ((A)->child_renamed_p)
432 #define ALLOCNO_DONT_REASSIGN_P(A) ((A)->dont_reassign_p)
434 #define ALLOCNO_NO_STACK_REG_P(A) ((A)->no_stack_reg_p)
435 #define ALLOCNO_TOTAL_NO_STACK_REG_P(A) ((A)->total_no_stack_reg_p)
437 #define ALLOCNO_BAD_SPILL_P(A) ((A)->bad_spill_p)
438 #define ALLOCNO_ASSIGNED_P(A) ((A)->assigned_p)
439 #define ALLOCNO_MODE(A) ((A)->mode)
440 #define ALLOCNO_WMODE(A) ((A)->wmode)
441 #define ALLOCNO_PREFS(A) ((A)->allocno_prefs)
442 #define ALLOCNO_COPIES(A) ((A)->allocno_copies)
443 #define ALLOCNO_HARD_REG_COSTS(A) ((A)->hard_reg_costs)
444 #define ALLOCNO_UPDATED_HARD_REG_COSTS(A) ((A)->updated_hard_reg_costs)
445 #define ALLOCNO_CONFLICT_HARD_REG_COSTS(A) \
446 ((A)->conflict_hard_reg_costs)
447 #define ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS(A) \
448 ((A)->updated_conflict_hard_reg_costs)
449 #define ALLOCNO_CLASS(A) ((A)->aclass)
450 #define ALLOCNO_CLASS_COST(A) ((A)->class_cost)
451 #define ALLOCNO_UPDATED_CLASS_COST(A) ((A)->updated_class_cost)
452 #define ALLOCNO_MEMORY_COST(A) ((A)->memory_cost)
453 #define ALLOCNO_UPDATED_MEMORY_COST(A) ((A)->updated_memory_cost)
454 #define ALLOCNO_EXCESS_PRESSURE_POINTS_NUM(A) \
455 ((A)->excess_pressure_points_num)
456 #define ALLOCNO_OBJECT(A,N) ((A)->objects[N])
457 #define ALLOCNO_NUM_OBJECTS(A) ((A)->num_objects)
458 #define ALLOCNO_ADD_DATA(A) ((A)->add_data)
460 /* Typedef for pointer to the subsequent structure. */
461 typedef struct ira_emit_data
*ira_emit_data_t
;
463 /* Allocno bound data used for emit pseudo live range split insns and
467 /* TRUE if the allocno assigned to memory was a destination of
468 removed move (see ira-emit.c) at loop exit because the value of
469 the corresponding pseudo-register is not changed inside the
471 unsigned int mem_optimized_dest_p
: 1;
472 /* TRUE if the corresponding pseudo-register has disjoint live
473 ranges and the other allocnos of the pseudo-register except this
475 unsigned int somewhere_renamed_p
: 1;
476 /* TRUE if allocno with the same REGNO in a subregion has been
477 renamed, in other words, got a new pseudo-register. */
478 unsigned int child_renamed_p
: 1;
479 /* Final rtx representation of the allocno. */
481 /* Non NULL if we remove restoring value from given allocno to
482 MEM_OPTIMIZED_DEST at loop exit (see ira-emit.c) because the
483 allocno value is not changed inside the loop. */
484 ira_allocno_t mem_optimized_dest
;
487 #define ALLOCNO_EMIT_DATA(a) ((ira_emit_data_t) ALLOCNO_ADD_DATA (a))
489 /* Data used to emit live range split insns and to flattening IR. */
490 extern ira_emit_data_t ira_allocno_emit_data
;
492 /* Abbreviation for frequent emit data access. */
494 allocno_emit_reg (ira_allocno_t a
)
496 return ALLOCNO_EMIT_DATA (a
)->reg
;
499 #define OBJECT_ALLOCNO(O) ((O)->allocno)
500 #define OBJECT_SUBWORD(O) ((O)->subword)
501 #define OBJECT_CONFLICT_ARRAY(O) ((O)->conflicts_array)
502 #define OBJECT_CONFLICT_VEC(O) ((ira_object_t *)(O)->conflicts_array)
503 #define OBJECT_CONFLICT_BITVEC(O) ((IRA_INT_TYPE *)(O)->conflicts_array)
504 #define OBJECT_CONFLICT_ARRAY_SIZE(O) ((O)->conflicts_array_size)
505 #define OBJECT_CONFLICT_VEC_P(O) ((O)->conflict_vec_p)
506 #define OBJECT_NUM_CONFLICTS(O) ((O)->num_accumulated_conflicts)
507 #define OBJECT_CONFLICT_HARD_REGS(O) ((O)->conflict_hard_regs)
508 #define OBJECT_TOTAL_CONFLICT_HARD_REGS(O) ((O)->total_conflict_hard_regs)
509 #define OBJECT_MIN(O) ((O)->min)
510 #define OBJECT_MAX(O) ((O)->max)
511 #define OBJECT_CONFLICT_ID(O) ((O)->id)
512 #define OBJECT_LIVE_RANGES(O) ((O)->live_ranges)
514 /* Map regno -> allocnos with given regno (see comments for
515 allocno member `next_regno_allocno'). */
516 extern ira_allocno_t
*ira_regno_allocno_map
;
518 /* Array of references to all allocnos. The order number of the
519 allocno corresponds to the index in the array. Removed allocnos
520 have NULL element value. */
521 extern ira_allocno_t
*ira_allocnos
;
523 /* The size of the previous array. */
524 extern int ira_allocnos_num
;
526 /* Map a conflict id to its corresponding ira_object structure. */
527 extern ira_object_t
*ira_object_id_map
;
529 /* The size of the previous array. */
530 extern int ira_objects_num
;
532 /* The following structure represents a hard register preference of
533 allocno. The preference represent move insns or potential move
534 insns usually because of two operand insn constraints. One move
535 operand is a hard register. */
536 struct ira_allocno_pref
538 /* The unique order number of the preference node starting with 0. */
540 /* Preferred hard register. */
542 /* Accumulated execution frequency of insns from which the
543 preference created. */
546 ira_allocno_t allocno
;
547 /* All preferences with the same allocno are linked by the following
549 ira_pref_t next_pref
;
552 /* Array of references to all allocno preferences. The order number
553 of the preference corresponds to the index in the array. */
554 extern ira_pref_t
*ira_prefs
;
556 /* Size of the previous array. */
557 extern int ira_prefs_num
;
559 /* The following structure represents a copy of two allocnos. The
560 copies represent move insns or potential move insns usually because
561 of two operand insn constraints. To remove register shuffle, we
562 also create copies between allocno which is output of an insn and
563 allocno becoming dead in the insn. */
564 struct ira_allocno_copy
566 /* The unique order number of the copy node starting with 0. */
568 /* Allocnos connected by the copy. The first allocno should have
569 smaller order number than the second one. */
570 ira_allocno_t first
, second
;
571 /* Execution frequency of the copy. */
574 /* It is a move insn which is an origin of the copy. The member
575 value for the copy representing two operand insn constraints or
576 for the copy created to remove register shuffle is NULL. In last
577 case the copy frequency is smaller than the corresponding insn
578 execution frequency. */
580 /* All copies with the same allocno as FIRST are linked by the two
581 following members. */
582 ira_copy_t prev_first_allocno_copy
, next_first_allocno_copy
;
583 /* All copies with the same allocno as SECOND are linked by the two
584 following members. */
585 ira_copy_t prev_second_allocno_copy
, next_second_allocno_copy
;
586 /* Region from which given copy is originated. */
587 ira_loop_tree_node_t loop_tree_node
;
590 /* Array of references to all copies. The order number of the copy
591 corresponds to the index in the array. Removed copies have NULL
593 extern ira_copy_t
*ira_copies
;
595 /* Size of the previous array. */
596 extern int ira_copies_num
;
598 /* The following structure describes a stack slot used for spilled
600 struct ira_spilled_reg_stack_slot
602 /* pseudo-registers assigned to the stack slot. */
603 bitmap_head spilled_regs
;
604 /* RTL representation of the stack slot. */
606 /* Size of the stack slot. */
607 poly_uint64_pod width
;
610 /* The number of elements in the following array. */
611 extern int ira_spilled_reg_stack_slots_num
;
613 /* The following array contains info about spilled pseudo-registers
614 stack slots used in current function so far. */
615 extern struct ira_spilled_reg_stack_slot
*ira_spilled_reg_stack_slots
;
617 /* Correspondingly overall cost of the allocation, cost of the
618 allocnos assigned to hard-registers, cost of the allocnos assigned
619 to memory, cost of loads, stores and register move insns generated
620 for pseudo-register live range splitting (see ira-emit.c). */
621 extern int64_t ira_overall_cost
;
622 extern int64_t ira_reg_cost
, ira_mem_cost
;
623 extern int64_t ira_load_cost
, ira_store_cost
, ira_shuffle_cost
;
624 extern int ira_move_loops_num
, ira_additional_jumps_num
;
627 /* This page contains a bitset implementation called 'min/max sets' used to
628 record conflicts in IRA.
629 They are named min/maxs set since we keep track of a minimum and a maximum
630 bit number for each set representing the bounds of valid elements. Otherwise,
631 the implementation resembles sbitmaps in that we store an array of integers
632 whose bits directly represent the members of the set. */
634 /* The type used as elements in the array, and the number of bits in
637 #define IRA_INT_BITS HOST_BITS_PER_WIDE_INT
638 #define IRA_INT_TYPE HOST_WIDE_INT
640 /* Set, clear or test bit number I in R, a bit vector of elements with
641 minimal index and maximal index equal correspondingly to MIN and
643 #if defined ENABLE_IRA_CHECKING && (GCC_VERSION >= 2007)
645 #define SET_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
646 (({ int _min = (MIN), _max = (MAX), _i = (I); \
647 if (_i < _min || _i > _max) \
650 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
651 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
652 gcc_unreachable (); \
654 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
655 |= ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
658 #define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
659 (({ int _min = (MIN), _max = (MAX), _i = (I); \
660 if (_i < _min || _i > _max) \
663 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
664 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
665 gcc_unreachable (); \
667 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
668 &= ~((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
670 #define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) __extension__ \
671 (({ int _min = (MIN), _max = (MAX), _i = (I); \
672 if (_i < _min || _i > _max) \
675 "\n%s: %d: error in %s: %d not in range [%d,%d]\n", \
676 __FILE__, __LINE__, __FUNCTION__, _i, _min, _max); \
677 gcc_unreachable (); \
679 ((R)[(unsigned) (_i - _min) / IRA_INT_BITS] \
680 & ((IRA_INT_TYPE) 1 << ((unsigned) (_i - _min) % IRA_INT_BITS))); }))
684 #define SET_MINMAX_SET_BIT(R, I, MIN, MAX) \
685 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
686 |= ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
688 #define CLEAR_MINMAX_SET_BIT(R, I, MIN, MAX) \
689 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
690 &= ~((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
692 #define TEST_MINMAX_SET_BIT(R, I, MIN, MAX) \
693 ((R)[(unsigned) ((I) - (MIN)) / IRA_INT_BITS] \
694 & ((IRA_INT_TYPE) 1 << ((unsigned) ((I) - (MIN)) % IRA_INT_BITS)))
698 /* The iterator for min/max sets. */
699 struct minmax_set_iterator
{
701 /* Array containing the bit vector. */
704 /* The number of the current element in the vector. */
705 unsigned int word_num
;
707 /* The number of bits in the bit vector. */
710 /* The current bit index of the bit vector. */
711 unsigned int bit_num
;
713 /* Index corresponding to the 1st bit of the bit vector. */
716 /* The word of the bit vector currently visited. */
717 unsigned IRA_INT_TYPE word
;
720 /* Initialize the iterator I for bit vector VEC containing minimal and
721 maximal values MIN and MAX. */
723 minmax_set_iter_init (minmax_set_iterator
*i
, IRA_INT_TYPE
*vec
, int min
,
728 i
->nel
= max
< min
? 0 : max
- min
+ 1;
731 i
->word
= i
->nel
== 0 ? 0 : vec
[0];
734 /* Return TRUE if we have more allocnos to visit, in which case *N is
735 set to the number of the element to be visited. Otherwise, return
738 minmax_set_iter_cond (minmax_set_iterator
*i
, int *n
)
740 /* Skip words that are zeros. */
741 for (; i
->word
== 0; i
->word
= i
->vec
[i
->word_num
])
744 i
->bit_num
= i
->word_num
* IRA_INT_BITS
;
746 /* If we have reached the end, break. */
747 if (i
->bit_num
>= i
->nel
)
751 /* Skip bits that are zero. */
752 for (; (i
->word
& 1) == 0; i
->word
>>= 1)
755 *n
= (int) i
->bit_num
+ i
->start_val
;
760 /* Advance to the next element in the set. */
762 minmax_set_iter_next (minmax_set_iterator
*i
)
768 /* Loop over all elements of a min/max set given by bit vector VEC and
769 their minimal and maximal values MIN and MAX. In each iteration, N
770 is set to the number of next allocno. ITER is an instance of
771 minmax_set_iterator used to iterate over the set. */
772 #define FOR_EACH_BIT_IN_MINMAX_SET(VEC, MIN, MAX, N, ITER) \
773 for (minmax_set_iter_init (&(ITER), (VEC), (MIN), (MAX)); \
774 minmax_set_iter_cond (&(ITER), &(N)); \
775 minmax_set_iter_next (&(ITER)))
777 struct target_ira_int
{
780 void free_ira_costs ();
781 void free_register_move_costs ();
783 /* Initialized once. It is a maximal possible size of the allocated
785 size_t x_max_struct_costs_size
;
787 /* Allocated and initialized once, and used to initialize cost values
789 struct costs
*x_init_cost
;
791 /* Allocated once, and used for temporary purposes. */
792 struct costs
*x_temp_costs
;
794 /* Allocated once, and used for the cost calculation. */
795 struct costs
*x_op_costs
[MAX_RECOG_OPERANDS
];
796 struct costs
*x_this_op_costs
[MAX_RECOG_OPERANDS
];
798 /* Hard registers that can not be used for the register allocator for
799 all functions of the current compilation unit. */
800 HARD_REG_SET x_no_unit_alloc_regs
;
802 /* Map: hard regs X modes -> set of hard registers for storing value
803 of given mode starting with given hard register. */
804 HARD_REG_SET (x_ira_reg_mode_hard_regset
805 [FIRST_PSEUDO_REGISTER
][NUM_MACHINE_MODES
]);
807 /* Maximum cost of moving from a register in one class to a register
808 in another class. Based on TARGET_REGISTER_MOVE_COST. */
809 move_table
*x_ira_register_move_cost
[MAX_MACHINE_MODE
];
811 /* Similar, but here we don't have to move if the first index is a
812 subset of the second so in that case the cost is zero. */
813 move_table
*x_ira_may_move_in_cost
[MAX_MACHINE_MODE
];
815 /* Similar, but here we don't have to move if the first index is a
816 superset of the second so in that case the cost is zero. */
817 move_table
*x_ira_may_move_out_cost
[MAX_MACHINE_MODE
];
819 /* Keep track of the last mode we initialized move costs for. */
820 int x_last_mode_for_init_move_cost
;
822 /* Array analog of the macro MEMORY_MOVE_COST but they contain maximal
824 short int x_ira_max_memory_move_cost
[MAX_MACHINE_MODE
][N_REG_CLASSES
][2];
826 /* Map class->true if class is a possible allocno class, false
828 bool x_ira_reg_allocno_class_p
[N_REG_CLASSES
];
830 /* Map class->true if class is a pressure class, false otherwise. */
831 bool x_ira_reg_pressure_class_p
[N_REG_CLASSES
];
833 /* Array of the number of hard registers of given class which are
834 available for allocation. The order is defined by the hard
836 short x_ira_non_ordered_class_hard_regs
[N_REG_CLASSES
][FIRST_PSEUDO_REGISTER
];
838 /* Index (in ira_class_hard_regs; for given register class and hard
839 register (in general case a hard register can belong to several
840 register classes;. The index is negative for hard registers
841 unavailable for the allocation. */
842 short x_ira_class_hard_reg_index
[N_REG_CLASSES
][FIRST_PSEUDO_REGISTER
];
844 /* Index [CL][M] contains R if R appears somewhere in a register of the form:
846 (reg:M R'), R' not in x_ira_prohibited_class_mode_regs[CL][M]
850 - (reg:M 2) is valid and occupies two registers;
851 - register 2 belongs to CL; and
852 - register 3 belongs to the same pressure class as CL
854 then (reg:M 2) contributes to [CL][M] and registers 2 and 3 will be
856 HARD_REG_SET x_ira_useful_class_mode_regs
[N_REG_CLASSES
][NUM_MACHINE_MODES
];
858 /* The value is number of elements in the subsequent array. */
859 int x_ira_important_classes_num
;
861 /* The array containing all non-empty classes. Such classes is
862 important for calculation of the hard register usage costs. */
863 enum reg_class x_ira_important_classes
[N_REG_CLASSES
];
865 /* The array containing indexes of important classes in the previous
866 array. The array elements are defined only for important
868 int x_ira_important_class_nums
[N_REG_CLASSES
];
870 /* Map class->true if class is an uniform class, false otherwise. */
871 bool x_ira_uniform_class_p
[N_REG_CLASSES
];
873 /* The biggest important class inside of intersection of the two
874 classes (that is calculated taking only hard registers available
875 for allocation into account;. If the both classes contain no hard
876 registers available for allocation, the value is calculated with
877 taking all hard-registers including fixed ones into account. */
878 enum reg_class x_ira_reg_class_intersect
[N_REG_CLASSES
][N_REG_CLASSES
];
880 /* Classes with end marker LIM_REG_CLASSES which are intersected with
881 given class (the first index). That includes given class itself.
882 This is calculated taking only hard registers available for
883 allocation into account. */
884 enum reg_class x_ira_reg_class_super_classes
[N_REG_CLASSES
][N_REG_CLASSES
];
886 /* The biggest (smallest) important class inside of (covering) union
887 of the two classes (that is calculated taking only hard registers
888 available for allocation into account). If the both classes
889 contain no hard registers available for allocation, the value is
890 calculated with taking all hard-registers including fixed ones
891 into account. In other words, the value is the corresponding
892 reg_class_subunion (reg_class_superunion) value. */
893 enum reg_class x_ira_reg_class_subunion
[N_REG_CLASSES
][N_REG_CLASSES
];
894 enum reg_class x_ira_reg_class_superunion
[N_REG_CLASSES
][N_REG_CLASSES
];
896 /* For each reg class, table listing all the classes contained in it
897 (excluding the class itself. Non-allocatable registers are
898 excluded from the consideration). */
899 enum reg_class x_alloc_reg_class_subclasses
[N_REG_CLASSES
][N_REG_CLASSES
];
901 /* Array whose values are hard regset of hard registers for which
902 move of the hard register in given mode into itself is
904 HARD_REG_SET x_ira_prohibited_mode_move_regs
[NUM_MACHINE_MODES
];
906 /* Flag of that the above array has been initialized. */
907 bool x_ira_prohibited_mode_move_regs_initialized_p
;
910 extern struct target_ira_int default_target_ira_int
;
911 #if SWITCHABLE_TARGET
912 extern struct target_ira_int
*this_target_ira_int
;
914 #define this_target_ira_int (&default_target_ira_int)
917 #define ira_reg_mode_hard_regset \
918 (this_target_ira_int->x_ira_reg_mode_hard_regset)
919 #define ira_register_move_cost \
920 (this_target_ira_int->x_ira_register_move_cost)
921 #define ira_max_memory_move_cost \
922 (this_target_ira_int->x_ira_max_memory_move_cost)
923 #define ira_may_move_in_cost \
924 (this_target_ira_int->x_ira_may_move_in_cost)
925 #define ira_may_move_out_cost \
926 (this_target_ira_int->x_ira_may_move_out_cost)
927 #define ira_reg_allocno_class_p \
928 (this_target_ira_int->x_ira_reg_allocno_class_p)
929 #define ira_reg_pressure_class_p \
930 (this_target_ira_int->x_ira_reg_pressure_class_p)
931 #define ira_non_ordered_class_hard_regs \
932 (this_target_ira_int->x_ira_non_ordered_class_hard_regs)
933 #define ira_class_hard_reg_index \
934 (this_target_ira_int->x_ira_class_hard_reg_index)
935 #define ira_useful_class_mode_regs \
936 (this_target_ira_int->x_ira_useful_class_mode_regs)
937 #define ira_important_classes_num \
938 (this_target_ira_int->x_ira_important_classes_num)
939 #define ira_important_classes \
940 (this_target_ira_int->x_ira_important_classes)
941 #define ira_important_class_nums \
942 (this_target_ira_int->x_ira_important_class_nums)
943 #define ira_uniform_class_p \
944 (this_target_ira_int->x_ira_uniform_class_p)
945 #define ira_reg_class_intersect \
946 (this_target_ira_int->x_ira_reg_class_intersect)
947 #define ira_reg_class_super_classes \
948 (this_target_ira_int->x_ira_reg_class_super_classes)
949 #define ira_reg_class_subunion \
950 (this_target_ira_int->x_ira_reg_class_subunion)
951 #define ira_reg_class_superunion \
952 (this_target_ira_int->x_ira_reg_class_superunion)
953 #define ira_prohibited_mode_move_regs \
954 (this_target_ira_int->x_ira_prohibited_mode_move_regs)
958 extern void *ira_allocate (size_t);
959 extern void ira_free (void *addr
);
960 extern bitmap
ira_allocate_bitmap (void);
961 extern void ira_free_bitmap (bitmap
);
962 extern void ira_print_disposition (FILE *);
963 extern void ira_debug_disposition (void);
964 extern void ira_debug_allocno_classes (void);
965 extern void ira_init_register_move_cost (machine_mode
);
966 extern void ira_setup_alts (rtx_insn
*insn
, HARD_REG_SET
&alts
);
967 extern int ira_get_dup_out_num (int op_num
, HARD_REG_SET
&alts
);
971 /* The current loop tree node and its regno allocno map. */
972 extern ira_loop_tree_node_t ira_curr_loop_tree_node
;
973 extern ira_allocno_t
*ira_curr_regno_allocno_map
;
975 extern void ira_debug_pref (ira_pref_t
);
976 extern void ira_debug_prefs (void);
977 extern void ira_debug_allocno_prefs (ira_allocno_t
);
979 extern void ira_debug_copy (ira_copy_t
);
980 extern void debug (ira_allocno_copy
&ref
);
981 extern void debug (ira_allocno_copy
*ptr
);
983 extern void ira_debug_copies (void);
984 extern void ira_debug_allocno_copies (ira_allocno_t
);
985 extern void debug (ira_allocno
&ref
);
986 extern void debug (ira_allocno
*ptr
);
988 extern void ira_traverse_loop_tree (bool, ira_loop_tree_node_t
,
989 void (*) (ira_loop_tree_node_t
),
990 void (*) (ira_loop_tree_node_t
));
991 extern ira_allocno_t
ira_parent_allocno (ira_allocno_t
);
992 extern ira_allocno_t
ira_parent_or_cap_allocno (ira_allocno_t
);
993 extern ira_allocno_t
ira_create_allocno (int, bool, ira_loop_tree_node_t
);
994 extern void ira_create_allocno_objects (ira_allocno_t
);
995 extern void ira_set_allocno_class (ira_allocno_t
, enum reg_class
);
996 extern bool ira_conflict_vector_profitable_p (ira_object_t
, int);
997 extern void ira_allocate_conflict_vec (ira_object_t
, int);
998 extern void ira_allocate_object_conflicts (ira_object_t
, int);
999 extern void ior_hard_reg_conflicts (ira_allocno_t
, HARD_REG_SET
*);
1000 extern void ira_print_expanded_allocno (ira_allocno_t
);
1001 extern void ira_add_live_range_to_object (ira_object_t
, int, int);
1002 extern live_range_t
ira_create_live_range (ira_object_t
, int, int,
1004 extern live_range_t
ira_copy_live_range_list (live_range_t
);
1005 extern live_range_t
ira_merge_live_ranges (live_range_t
, live_range_t
);
1006 extern bool ira_live_ranges_intersect_p (live_range_t
, live_range_t
);
1007 extern void ira_finish_live_range (live_range_t
);
1008 extern void ira_finish_live_range_list (live_range_t
);
1009 extern void ira_free_allocno_updated_costs (ira_allocno_t
);
1010 extern ira_pref_t
ira_create_pref (ira_allocno_t
, int, int);
1011 extern void ira_add_allocno_pref (ira_allocno_t
, int, int);
1012 extern void ira_remove_pref (ira_pref_t
);
1013 extern void ira_remove_allocno_prefs (ira_allocno_t
);
1014 extern ira_copy_t
ira_create_copy (ira_allocno_t
, ira_allocno_t
,
1015 int, bool, rtx_insn
*,
1016 ira_loop_tree_node_t
);
1017 extern ira_copy_t
ira_add_allocno_copy (ira_allocno_t
, ira_allocno_t
, int,
1019 ira_loop_tree_node_t
);
1021 extern int *ira_allocate_cost_vector (reg_class_t
);
1022 extern void ira_free_cost_vector (int *, reg_class_t
);
1024 extern void ira_flattening (int, int);
1025 extern bool ira_build (void);
1026 extern void ira_destroy (void);
1029 extern void ira_init_costs_once (void);
1030 extern void ira_init_costs (void);
1031 extern void ira_costs (void);
1032 extern void ira_tune_allocno_costs (void);
1036 extern void ira_rebuild_start_finish_chains (void);
1037 extern void ira_print_live_range_list (FILE *, live_range_t
);
1038 extern void debug (live_range
&ref
);
1039 extern void debug (live_range
*ptr
);
1040 extern void ira_debug_live_range_list (live_range_t
);
1041 extern void ira_debug_allocno_live_ranges (ira_allocno_t
);
1042 extern void ira_debug_live_ranges (void);
1043 extern void ira_create_allocno_live_ranges (void);
1044 extern void ira_compress_allocno_live_ranges (void);
1045 extern void ira_finish_allocno_live_ranges (void);
1046 extern void ira_implicitly_set_insn_hard_regs (HARD_REG_SET
*,
1049 /* ira-conflicts.c */
1050 extern void ira_debug_conflicts (bool);
1051 extern void ira_build_conflicts (void);
1054 extern void ira_debug_hard_regs_forest (void);
1055 extern int ira_loop_edge_freq (ira_loop_tree_node_t
, int, bool);
1056 extern void ira_reassign_conflict_allocnos (int);
1057 extern void ira_initiate_assign (void);
1058 extern void ira_finish_assign (void);
1059 extern void ira_color (void);
1062 extern void ira_initiate_emit_data (void);
1063 extern void ira_finish_emit_data (void);
1064 extern void ira_emit (bool);
1068 /* Return true if equivalence of pseudo REGNO is not a lvalue. */
1070 ira_equiv_no_lvalue_p (int regno
)
1072 if (regno
>= ira_reg_equiv_len
)
1074 return (ira_reg_equiv
[regno
].constant
!= NULL_RTX
1075 || ira_reg_equiv
[regno
].invariant
!= NULL_RTX
1076 || (ira_reg_equiv
[regno
].memory
!= NULL_RTX
1077 && MEM_READONLY_P (ira_reg_equiv
[regno
].memory
)));
1082 /* Initialize register costs for MODE if necessary. */
1084 ira_init_register_move_cost_if_necessary (machine_mode mode
)
1086 if (ira_register_move_cost
[mode
] == NULL
)
1087 ira_init_register_move_cost (mode
);
1092 /* The iterator for all allocnos. */
1093 struct ira_allocno_iterator
{
1094 /* The number of the current element in IRA_ALLOCNOS. */
1098 /* Initialize the iterator I. */
1100 ira_allocno_iter_init (ira_allocno_iterator
*i
)
1105 /* Return TRUE if we have more allocnos to visit, in which case *A is
1106 set to the allocno to be visited. Otherwise, return FALSE. */
1108 ira_allocno_iter_cond (ira_allocno_iterator
*i
, ira_allocno_t
*a
)
1112 for (n
= i
->n
; n
< ira_allocnos_num
; n
++)
1113 if (ira_allocnos
[n
] != NULL
)
1115 *a
= ira_allocnos
[n
];
1122 /* Loop over all allocnos. In each iteration, A is set to the next
1123 allocno. ITER is an instance of ira_allocno_iterator used to iterate
1125 #define FOR_EACH_ALLOCNO(A, ITER) \
1126 for (ira_allocno_iter_init (&(ITER)); \
1127 ira_allocno_iter_cond (&(ITER), &(A));)
1129 /* The iterator for all objects. */
1130 struct ira_object_iterator
{
1131 /* The number of the current element in ira_object_id_map. */
1135 /* Initialize the iterator I. */
1137 ira_object_iter_init (ira_object_iterator
*i
)
1142 /* Return TRUE if we have more objects to visit, in which case *OBJ is
1143 set to the object to be visited. Otherwise, return FALSE. */
1145 ira_object_iter_cond (ira_object_iterator
*i
, ira_object_t
*obj
)
1149 for (n
= i
->n
; n
< ira_objects_num
; n
++)
1150 if (ira_object_id_map
[n
] != NULL
)
1152 *obj
= ira_object_id_map
[n
];
1159 /* Loop over all objects. In each iteration, OBJ is set to the next
1160 object. ITER is an instance of ira_object_iterator used to iterate
1162 #define FOR_EACH_OBJECT(OBJ, ITER) \
1163 for (ira_object_iter_init (&(ITER)); \
1164 ira_object_iter_cond (&(ITER), &(OBJ));)
1166 /* The iterator for objects associated with an allocno. */
1167 struct ira_allocno_object_iterator
{
1168 /* The number of the element the allocno's object array. */
1172 /* Initialize the iterator I. */
1174 ira_allocno_object_iter_init (ira_allocno_object_iterator
*i
)
1179 /* Return TRUE if we have more objects to visit in allocno A, in which
1180 case *O is set to the object to be visited. Otherwise, return
1183 ira_allocno_object_iter_cond (ira_allocno_object_iterator
*i
, ira_allocno_t a
,
1187 if (n
< ALLOCNO_NUM_OBJECTS (a
))
1189 *o
= ALLOCNO_OBJECT (a
, n
);
1195 /* Loop over all objects associated with allocno A. In each
1196 iteration, O is set to the next object. ITER is an instance of
1197 ira_allocno_object_iterator used to iterate the conflicts. */
1198 #define FOR_EACH_ALLOCNO_OBJECT(A, O, ITER) \
1199 for (ira_allocno_object_iter_init (&(ITER)); \
1200 ira_allocno_object_iter_cond (&(ITER), (A), &(O));)
1203 /* The iterator for prefs. */
1204 struct ira_pref_iterator
{
1205 /* The number of the current element in IRA_PREFS. */
1209 /* Initialize the iterator I. */
1211 ira_pref_iter_init (ira_pref_iterator
*i
)
1216 /* Return TRUE if we have more prefs to visit, in which case *PREF is
1217 set to the pref to be visited. Otherwise, return FALSE. */
1219 ira_pref_iter_cond (ira_pref_iterator
*i
, ira_pref_t
*pref
)
1223 for (n
= i
->n
; n
< ira_prefs_num
; n
++)
1224 if (ira_prefs
[n
] != NULL
)
1226 *pref
= ira_prefs
[n
];
1233 /* Loop over all prefs. In each iteration, P is set to the next
1234 pref. ITER is an instance of ira_pref_iterator used to iterate
1236 #define FOR_EACH_PREF(P, ITER) \
1237 for (ira_pref_iter_init (&(ITER)); \
1238 ira_pref_iter_cond (&(ITER), &(P));)
1241 /* The iterator for copies. */
1242 struct ira_copy_iterator
{
1243 /* The number of the current element in IRA_COPIES. */
1247 /* Initialize the iterator I. */
1249 ira_copy_iter_init (ira_copy_iterator
*i
)
1254 /* Return TRUE if we have more copies to visit, in which case *CP is
1255 set to the copy to be visited. Otherwise, return FALSE. */
1257 ira_copy_iter_cond (ira_copy_iterator
*i
, ira_copy_t
*cp
)
1261 for (n
= i
->n
; n
< ira_copies_num
; n
++)
1262 if (ira_copies
[n
] != NULL
)
1264 *cp
= ira_copies
[n
];
1271 /* Loop over all copies. In each iteration, C is set to the next
1272 copy. ITER is an instance of ira_copy_iterator used to iterate
1274 #define FOR_EACH_COPY(C, ITER) \
1275 for (ira_copy_iter_init (&(ITER)); \
1276 ira_copy_iter_cond (&(ITER), &(C));)
1278 /* The iterator for object conflicts. */
1279 struct ira_object_conflict_iterator
{
1281 /* TRUE if the conflicts are represented by vector of allocnos. */
1282 bool conflict_vec_p
;
1284 /* The conflict vector or conflict bit vector. */
1287 /* The number of the current element in the vector (of type
1288 ira_object_t or IRA_INT_TYPE). */
1289 unsigned int word_num
;
1291 /* The bit vector size. It is defined only if
1292 OBJECT_CONFLICT_VEC_P is FALSE. */
1295 /* The current bit index of bit vector. It is defined only if
1296 OBJECT_CONFLICT_VEC_P is FALSE. */
1297 unsigned int bit_num
;
1299 /* The object id corresponding to the 1st bit of the bit vector. It
1300 is defined only if OBJECT_CONFLICT_VEC_P is FALSE. */
1301 int base_conflict_id
;
1303 /* The word of bit vector currently visited. It is defined only if
1304 OBJECT_CONFLICT_VEC_P is FALSE. */
1305 unsigned IRA_INT_TYPE word
;
1308 /* Initialize the iterator I with ALLOCNO conflicts. */
1310 ira_object_conflict_iter_init (ira_object_conflict_iterator
*i
,
1313 i
->conflict_vec_p
= OBJECT_CONFLICT_VEC_P (obj
);
1314 i
->vec
= OBJECT_CONFLICT_ARRAY (obj
);
1316 if (i
->conflict_vec_p
)
1317 i
->size
= i
->bit_num
= i
->base_conflict_id
= i
->word
= 0;
1320 if (OBJECT_MIN (obj
) > OBJECT_MAX (obj
))
1323 i
->size
= ((OBJECT_MAX (obj
) - OBJECT_MIN (obj
)
1325 / IRA_INT_BITS
) * sizeof (IRA_INT_TYPE
);
1327 i
->base_conflict_id
= OBJECT_MIN (obj
);
1328 i
->word
= (i
->size
== 0 ? 0 : ((IRA_INT_TYPE
*) i
->vec
)[0]);
1332 /* Return TRUE if we have more conflicting allocnos to visit, in which
1333 case *A is set to the allocno to be visited. Otherwise, return
1336 ira_object_conflict_iter_cond (ira_object_conflict_iterator
*i
,
1341 if (i
->conflict_vec_p
)
1343 obj
= ((ira_object_t
*) i
->vec
)[i
->word_num
++];
1349 unsigned IRA_INT_TYPE word
= i
->word
;
1350 unsigned int bit_num
= i
->bit_num
;
1352 /* Skip words that are zeros. */
1353 for (; word
== 0; word
= ((IRA_INT_TYPE
*) i
->vec
)[i
->word_num
])
1357 /* If we have reached the end, break. */
1358 if (i
->word_num
* sizeof (IRA_INT_TYPE
) >= i
->size
)
1361 bit_num
= i
->word_num
* IRA_INT_BITS
;
1364 /* Skip bits that are zero. */
1365 for (; (word
& 1) == 0; word
>>= 1)
1368 obj
= ira_object_id_map
[bit_num
+ i
->base_conflict_id
];
1369 i
->bit_num
= bit_num
+ 1;
1370 i
->word
= word
>> 1;
1377 /* Loop over all objects conflicting with OBJ. In each iteration,
1378 CONF is set to the next conflicting object. ITER is an instance
1379 of ira_object_conflict_iterator used to iterate the conflicts. */
1380 #define FOR_EACH_OBJECT_CONFLICT(OBJ, CONF, ITER) \
1381 for (ira_object_conflict_iter_init (&(ITER), (OBJ)); \
1382 ira_object_conflict_iter_cond (&(ITER), &(CONF));)
1386 /* The function returns TRUE if at least one hard register from ones
1387 starting with HARD_REGNO and containing value of MODE are in set
1390 ira_hard_reg_set_intersection_p (int hard_regno
, machine_mode mode
,
1391 HARD_REG_SET hard_regset
)
1395 gcc_assert (hard_regno
>= 0);
1396 for (i
= hard_regno_nregs (hard_regno
, mode
) - 1; i
>= 0; i
--)
1397 if (TEST_HARD_REG_BIT (hard_regset
, hard_regno
+ i
))
1402 /* Return number of hard registers in hard register SET. */
1404 hard_reg_set_size (HARD_REG_SET set
)
1408 for (size
= i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1409 if (TEST_HARD_REG_BIT (set
, i
))
1414 /* The function returns TRUE if hard registers starting with
1415 HARD_REGNO and containing value of MODE are fully in set
1418 ira_hard_reg_in_set_p (int hard_regno
, machine_mode mode
,
1419 HARD_REG_SET hard_regset
)
1423 ira_assert (hard_regno
>= 0);
1424 for (i
= hard_regno_nregs (hard_regno
, mode
) - 1; i
>= 0; i
--)
1425 if (!TEST_HARD_REG_BIT (hard_regset
, hard_regno
+ i
))
1432 /* To save memory we use a lazy approach for allocation and
1433 initialization of the cost vectors. We do this only when it is
1434 really necessary. */
1436 /* Allocate cost vector *VEC for hard registers of ACLASS and
1437 initialize the elements by VAL if it is necessary */
1439 ira_allocate_and_set_costs (int **vec
, reg_class_t aclass
, int val
)
1446 *vec
= reg_costs
= ira_allocate_cost_vector (aclass
);
1447 len
= ira_class_hard_regs_num
[(int) aclass
];
1448 for (i
= 0; i
< len
; i
++)
1452 /* Allocate cost vector *VEC for hard registers of ACLASS and copy
1453 values of vector SRC into the vector if it is necessary */
1455 ira_allocate_and_copy_costs (int **vec
, enum reg_class aclass
, int *src
)
1459 if (*vec
!= NULL
|| src
== NULL
)
1461 *vec
= ira_allocate_cost_vector (aclass
);
1462 len
= ira_class_hard_regs_num
[aclass
];
1463 memcpy (*vec
, src
, sizeof (int) * len
);
1466 /* Allocate cost vector *VEC for hard registers of ACLASS and add
1467 values of vector SRC into the vector if it is necessary */
1469 ira_allocate_and_accumulate_costs (int **vec
, enum reg_class aclass
, int *src
)
1475 len
= ira_class_hard_regs_num
[aclass
];
1478 *vec
= ira_allocate_cost_vector (aclass
);
1479 memset (*vec
, 0, sizeof (int) * len
);
1481 for (i
= 0; i
< len
; i
++)
1482 (*vec
)[i
] += src
[i
];
1485 /* Allocate cost vector *VEC for hard registers of ACLASS and copy
1486 values of vector SRC into the vector or initialize it by VAL (if
1489 ira_allocate_and_set_or_copy_costs (int **vec
, enum reg_class aclass
,
1497 *vec
= reg_costs
= ira_allocate_cost_vector (aclass
);
1498 len
= ira_class_hard_regs_num
[aclass
];
1500 memcpy (reg_costs
, src
, sizeof (int) * len
);
1503 for (i
= 0; i
< len
; i
++)
1508 extern rtx
ira_create_new_reg (rtx
);
1509 extern int first_moveable_pseudo
, last_moveable_pseudo
;
1511 #endif /* GCC_IRA_INT_H */