1 /* Loop invariant motion.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
27 #include "basic-block.h"
29 #include "tree-pretty-print.h"
30 #include "gimple-pretty-print.h"
31 #include "tree-flow.h"
32 #include "tree-dump.h"
37 #include "tree-pass.h"
40 #include "tree-affine.h"
41 #include "pointer-set.h"
42 #include "tree-ssa-propagate.h"
44 /* TODO: Support for predicated code motion. I.e.
55 Where COND and INV are is invariants, but evaluating INV may trap or be
56 invalid from some other reason if !COND. This may be transformed to
66 /* A type for the list of statements that have to be moved in order to be able
67 to hoist an invariant computation. */
75 /* The auxiliary data kept for each statement. */
79 struct loop
*max_loop
; /* The outermost loop in that the statement
82 struct loop
*tgt_loop
; /* The loop out of that we want to move the
85 struct loop
*always_executed_in
;
86 /* The outermost loop for that we are sure
87 the statement is executed if the loop
90 unsigned cost
; /* Cost of the computation performed by the
93 struct depend
*depends
; /* List of statements that must be also hoisted
94 out of the loop when this statement is
95 hoisted; i.e. those that define the operands
96 of the statement and are inside of the
100 /* Maps statements to their lim_aux_data. */
102 static struct pointer_map_t
*lim_aux_data_map
;
104 /* Description of a memory reference location. */
106 typedef struct mem_ref_loc
108 tree
*ref
; /* The reference itself. */
109 gimple stmt
; /* The statement in that it occurs. */
112 DEF_VEC_P(mem_ref_loc_p
);
113 DEF_VEC_ALLOC_P(mem_ref_loc_p
, heap
);
115 /* The list of memory reference locations in a loop. */
117 typedef struct mem_ref_locs
119 VEC (mem_ref_loc_p
, heap
) *locs
;
122 DEF_VEC_P(mem_ref_locs_p
);
123 DEF_VEC_ALLOC_P(mem_ref_locs_p
, heap
);
125 /* Description of a memory reference. */
127 typedef struct mem_ref
129 tree mem
; /* The memory itself. */
130 unsigned id
; /* ID assigned to the memory reference
131 (its index in memory_accesses.refs_list) */
132 hashval_t hash
; /* Its hash value. */
133 bitmap stored
; /* The set of loops in that this memory location
135 VEC (mem_ref_locs_p
, heap
) *accesses_in_loop
;
136 /* The locations of the accesses. Vector
137 indexed by the loop number. */
139 /* The following sets are computed on demand. We keep both set and
140 its complement, so that we know whether the information was
141 already computed or not. */
142 bitmap indep_loop
; /* The set of loops in that the memory
143 reference is independent, meaning:
144 If it is stored in the loop, this store
145 is independent on all other loads and
147 If it is only loaded, then it is independent
148 on all stores in the loop. */
149 bitmap dep_loop
; /* The complement of INDEP_LOOP. */
151 bitmap indep_ref
; /* The set of memory references on that
152 this reference is independent. */
153 bitmap dep_ref
; /* The complement of DEP_REF. */
156 DEF_VEC_P(mem_ref_p
);
157 DEF_VEC_ALLOC_P(mem_ref_p
, heap
);
160 DEF_VEC_ALLOC_P(bitmap
, heap
);
163 DEF_VEC_ALLOC_P(htab_t
, heap
);
165 /* Description of memory accesses in loops. */
169 /* The hash table of memory references accessed in loops. */
172 /* The list of memory references. */
173 VEC (mem_ref_p
, heap
) *refs_list
;
175 /* The set of memory references accessed in each loop. */
176 VEC (bitmap
, heap
) *refs_in_loop
;
178 /* The set of memory references accessed in each loop, including
180 VEC (bitmap
, heap
) *all_refs_in_loop
;
182 /* The set of memory references stored in each loop, including
184 VEC (bitmap
, heap
) *all_refs_stored_in_loop
;
186 /* Cache for expanding memory addresses. */
187 struct pointer_map_t
*ttae_cache
;
190 static bool ref_indep_loop_p (struct loop
*, mem_ref_p
);
192 /* Minimum cost of an expensive expression. */
193 #define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE))
195 /* The outermost loop for which execution of the header guarantees that the
196 block will be executed. */
197 #define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux)
198 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
200 /* Whether the reference was analyzable. */
201 #define MEM_ANALYZABLE(REF) ((REF)->mem != error_mark_node)
203 static struct lim_aux_data
*
204 init_lim_data (gimple stmt
)
206 void **p
= pointer_map_insert (lim_aux_data_map
, stmt
);
208 *p
= XCNEW (struct lim_aux_data
);
209 return (struct lim_aux_data
*) *p
;
212 static struct lim_aux_data
*
213 get_lim_data (gimple stmt
)
215 void **p
= pointer_map_contains (lim_aux_data_map
, stmt
);
219 return (struct lim_aux_data
*) *p
;
222 /* Releases the memory occupied by DATA. */
225 free_lim_aux_data (struct lim_aux_data
*data
)
227 struct depend
*dep
, *next
;
229 for (dep
= data
->depends
; dep
; dep
= next
)
238 clear_lim_data (gimple stmt
)
240 void **p
= pointer_map_contains (lim_aux_data_map
, stmt
);
244 free_lim_aux_data ((struct lim_aux_data
*) *p
);
248 /* Calls CBCK for each index in memory reference ADDR_P. There are two
249 kinds situations handled; in each of these cases, the memory reference
250 and DATA are passed to the callback:
252 Access to an array: ARRAY_{RANGE_}REF (base, index). In this case we also
253 pass the pointer to the index to the callback.
255 Pointer dereference: INDIRECT_REF (addr). In this case we also pass the
256 pointer to addr to the callback.
258 If the callback returns false, the whole search stops and false is returned.
259 Otherwise the function returns true after traversing through the whole
260 reference *ADDR_P. */
263 for_each_index (tree
*addr_p
, bool (*cbck
) (tree
, tree
*, void *), void *data
)
267 for (; ; addr_p
= nxt
)
269 switch (TREE_CODE (*addr_p
))
272 return cbck (*addr_p
, addr_p
, data
);
275 nxt
= &TREE_OPERAND (*addr_p
, 0);
276 return cbck (*addr_p
, nxt
, data
);
279 case VIEW_CONVERT_EXPR
:
282 nxt
= &TREE_OPERAND (*addr_p
, 0);
286 /* If the component has varying offset, it behaves like index
288 idx
= &TREE_OPERAND (*addr_p
, 2);
290 && !cbck (*addr_p
, idx
, data
))
293 nxt
= &TREE_OPERAND (*addr_p
, 0);
297 case ARRAY_RANGE_REF
:
298 nxt
= &TREE_OPERAND (*addr_p
, 0);
299 if (!cbck (*addr_p
, &TREE_OPERAND (*addr_p
, 1), data
))
316 gcc_assert (is_gimple_min_invariant (*addr_p
));
320 idx
= &TMR_BASE (*addr_p
);
322 && !cbck (*addr_p
, idx
, data
))
324 idx
= &TMR_INDEX (*addr_p
);
326 && !cbck (*addr_p
, idx
, data
))
328 idx
= &TMR_INDEX2 (*addr_p
);
330 && !cbck (*addr_p
, idx
, data
))
340 /* If it is possible to hoist the statement STMT unconditionally,
341 returns MOVE_POSSIBLE.
342 If it is possible to hoist the statement STMT, but we must avoid making
343 it executed if it would not be executed in the original program (e.g.
344 because it may trap), return MOVE_PRESERVE_EXECUTION.
345 Otherwise return MOVE_IMPOSSIBLE. */
348 movement_possibility (gimple stmt
)
351 enum move_pos ret
= MOVE_POSSIBLE
;
353 if (flag_unswitch_loops
354 && gimple_code (stmt
) == GIMPLE_COND
)
356 /* If we perform unswitching, force the operands of the invariant
357 condition to be moved out of the loop. */
358 return MOVE_POSSIBLE
;
361 if (gimple_code (stmt
) == GIMPLE_PHI
362 && gimple_phi_num_args (stmt
) <= 2
363 && is_gimple_reg (gimple_phi_result (stmt
))
364 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt
)))
365 return MOVE_POSSIBLE
;
367 if (gimple_get_lhs (stmt
) == NULL_TREE
)
368 return MOVE_IMPOSSIBLE
;
370 if (gimple_vdef (stmt
))
371 return MOVE_IMPOSSIBLE
;
373 if (stmt_ends_bb_p (stmt
)
374 || gimple_has_volatile_ops (stmt
)
375 || gimple_has_side_effects (stmt
)
376 || stmt_could_throw_p (stmt
))
377 return MOVE_IMPOSSIBLE
;
379 if (is_gimple_call (stmt
))
381 /* While pure or const call is guaranteed to have no side effects, we
382 cannot move it arbitrarily. Consider code like
384 char *s = something ();
394 Here the strlen call cannot be moved out of the loop, even though
395 s is invariant. In addition to possibly creating a call with
396 invalid arguments, moving out a function call that is not executed
397 may cause performance regressions in case the call is costly and
398 not executed at all. */
399 ret
= MOVE_PRESERVE_EXECUTION
;
400 lhs
= gimple_call_lhs (stmt
);
402 else if (is_gimple_assign (stmt
))
403 lhs
= gimple_assign_lhs (stmt
);
405 return MOVE_IMPOSSIBLE
;
407 if (TREE_CODE (lhs
) == SSA_NAME
408 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs
))
409 return MOVE_IMPOSSIBLE
;
411 if (TREE_CODE (lhs
) != SSA_NAME
412 || gimple_could_trap_p (stmt
))
413 return MOVE_PRESERVE_EXECUTION
;
418 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
419 loop to that we could move the expression using DEF if it did not have
420 other operands, i.e. the outermost loop enclosing LOOP in that the value
421 of DEF is invariant. */
424 outermost_invariant_loop (tree def
, struct loop
*loop
)
428 struct loop
*max_loop
;
429 struct lim_aux_data
*lim_data
;
432 return superloop_at_depth (loop
, 1);
434 if (TREE_CODE (def
) != SSA_NAME
)
436 gcc_assert (is_gimple_min_invariant (def
));
437 return superloop_at_depth (loop
, 1);
440 def_stmt
= SSA_NAME_DEF_STMT (def
);
441 def_bb
= gimple_bb (def_stmt
);
443 return superloop_at_depth (loop
, 1);
445 max_loop
= find_common_loop (loop
, def_bb
->loop_father
);
447 lim_data
= get_lim_data (def_stmt
);
448 if (lim_data
!= NULL
&& lim_data
->max_loop
!= NULL
)
449 max_loop
= find_common_loop (max_loop
,
450 loop_outer (lim_data
->max_loop
));
451 if (max_loop
== loop
)
453 max_loop
= superloop_at_depth (loop
, loop_depth (max_loop
) + 1);
458 /* DATA is a structure containing information associated with a statement
459 inside LOOP. DEF is one of the operands of this statement.
461 Find the outermost loop enclosing LOOP in that value of DEF is invariant
462 and record this in DATA->max_loop field. If DEF itself is defined inside
463 this loop as well (i.e. we need to hoist it out of the loop if we want
464 to hoist the statement represented by DATA), record the statement in that
465 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
466 add the cost of the computation of DEF to the DATA->cost.
468 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
471 add_dependency (tree def
, struct lim_aux_data
*data
, struct loop
*loop
,
474 gimple def_stmt
= SSA_NAME_DEF_STMT (def
);
475 basic_block def_bb
= gimple_bb (def_stmt
);
476 struct loop
*max_loop
;
478 struct lim_aux_data
*def_data
;
483 max_loop
= outermost_invariant_loop (def
, loop
);
487 if (flow_loop_nested_p (data
->max_loop
, max_loop
))
488 data
->max_loop
= max_loop
;
490 def_data
= get_lim_data (def_stmt
);
495 /* Only add the cost if the statement defining DEF is inside LOOP,
496 i.e. if it is likely that by moving the invariants dependent
497 on it, we will be able to avoid creating a new register for
498 it (since it will be only used in these dependent invariants). */
499 && def_bb
->loop_father
== loop
)
500 data
->cost
+= def_data
->cost
;
502 dep
= XNEW (struct depend
);
503 dep
->stmt
= def_stmt
;
504 dep
->next
= data
->depends
;
510 /* Returns an estimate for a cost of statement STMT. The values here
511 are just ad-hoc constants, similar to costs for inlining. */
514 stmt_cost (gimple stmt
)
516 /* Always try to create possibilities for unswitching. */
517 if (gimple_code (stmt
) == GIMPLE_COND
518 || gimple_code (stmt
) == GIMPLE_PHI
)
519 return LIM_EXPENSIVE
;
521 /* We should be hoisting calls if possible. */
522 if (is_gimple_call (stmt
))
526 /* Unless the call is a builtin_constant_p; this always folds to a
527 constant, so moving it is useless. */
528 fndecl
= gimple_call_fndecl (stmt
);
530 && DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
531 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_CONSTANT_P
)
534 return LIM_EXPENSIVE
;
537 /* Hoisting memory references out should almost surely be a win. */
538 if (gimple_references_memory_p (stmt
))
539 return LIM_EXPENSIVE
;
541 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
544 switch (gimple_assign_rhs_code (stmt
))
547 case WIDEN_MULT_EXPR
:
548 case WIDEN_MULT_PLUS_EXPR
:
549 case WIDEN_MULT_MINUS_EXPR
:
562 /* Division and multiplication are usually expensive. */
563 return LIM_EXPENSIVE
;
567 case WIDEN_LSHIFT_EXPR
:
570 /* Shifts and rotates are usually expensive. */
571 return LIM_EXPENSIVE
;
574 /* Make vector construction cost proportional to the number
576 return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt
));
580 /* Whether or not something is wrapped inside a PAREN_EXPR
581 should not change move cost. Nor should an intermediate
582 unpropagated SSA name copy. */
590 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
591 REF is independent. If REF is not independent in LOOP, NULL is returned
595 outermost_indep_loop (struct loop
*outer
, struct loop
*loop
, mem_ref_p ref
)
599 if (bitmap_bit_p (ref
->stored
, loop
->num
))
604 aloop
= superloop_at_depth (loop
, loop_depth (aloop
) + 1))
605 if (!bitmap_bit_p (ref
->stored
, aloop
->num
)
606 && ref_indep_loop_p (aloop
, ref
))
609 if (ref_indep_loop_p (loop
, ref
))
615 /* If there is a simple load or store to a memory reference in STMT, returns
616 the location of the memory reference, and sets IS_STORE according to whether
617 it is a store or load. Otherwise, returns NULL. */
620 simple_mem_ref_in_stmt (gimple stmt
, bool *is_store
)
625 /* Recognize MEM = (SSA_NAME | invariant) and SSA_NAME = MEM patterns. */
626 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
629 code
= gimple_assign_rhs_code (stmt
);
631 lhs
= gimple_assign_lhs_ptr (stmt
);
633 if (TREE_CODE (*lhs
) == SSA_NAME
)
635 if (get_gimple_rhs_class (code
) != GIMPLE_SINGLE_RHS
636 || !is_gimple_addressable (gimple_assign_rhs1 (stmt
)))
640 return gimple_assign_rhs1_ptr (stmt
);
642 else if (code
== SSA_NAME
643 || (get_gimple_rhs_class (code
) == GIMPLE_SINGLE_RHS
644 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt
))))
653 /* Returns the memory reference contained in STMT. */
656 mem_ref_in_stmt (gimple stmt
)
659 tree
*mem
= simple_mem_ref_in_stmt (stmt
, &store
);
667 hash
= iterative_hash_expr (*mem
, 0);
668 ref
= (mem_ref_p
) htab_find_with_hash (memory_accesses
.refs
, *mem
, hash
);
670 gcc_assert (ref
!= NULL
);
674 /* From a controlling predicate in DOM determine the arguments from
675 the PHI node PHI that are chosen if the predicate evaluates to
676 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
677 they are non-NULL. Returns true if the arguments can be determined,
678 else return false. */
681 extract_true_false_args_from_phi (basic_block dom
, gimple phi
,
682 tree
*true_arg_p
, tree
*false_arg_p
)
684 basic_block bb
= gimple_bb (phi
);
685 edge true_edge
, false_edge
, tem
;
686 tree arg0
= NULL_TREE
, arg1
= NULL_TREE
;
688 /* We have to verify that one edge into the PHI node is dominated
689 by the true edge of the predicate block and the other edge
690 dominated by the false edge. This ensures that the PHI argument
691 we are going to take is completely determined by the path we
692 take from the predicate block.
693 We can only use BB dominance checks below if the destination of
694 the true/false edges are dominated by their edge, thus only
695 have a single predecessor. */
696 extract_true_false_edges_from_block (dom
, &true_edge
, &false_edge
);
697 tem
= EDGE_PRED (bb
, 0);
699 || (single_pred_p (true_edge
->dest
)
700 && (tem
->src
== true_edge
->dest
701 || dominated_by_p (CDI_DOMINATORS
,
702 tem
->src
, true_edge
->dest
))))
703 arg0
= PHI_ARG_DEF (phi
, tem
->dest_idx
);
704 else if (tem
== false_edge
705 || (single_pred_p (false_edge
->dest
)
706 && (tem
->src
== false_edge
->dest
707 || dominated_by_p (CDI_DOMINATORS
,
708 tem
->src
, false_edge
->dest
))))
709 arg1
= PHI_ARG_DEF (phi
, tem
->dest_idx
);
712 tem
= EDGE_PRED (bb
, 1);
714 || (single_pred_p (true_edge
->dest
)
715 && (tem
->src
== true_edge
->dest
716 || dominated_by_p (CDI_DOMINATORS
,
717 tem
->src
, true_edge
->dest
))))
718 arg0
= PHI_ARG_DEF (phi
, tem
->dest_idx
);
719 else if (tem
== false_edge
720 || (single_pred_p (false_edge
->dest
)
721 && (tem
->src
== false_edge
->dest
722 || dominated_by_p (CDI_DOMINATORS
,
723 tem
->src
, false_edge
->dest
))))
724 arg1
= PHI_ARG_DEF (phi
, tem
->dest_idx
);
738 /* Determine the outermost loop to that it is possible to hoist a statement
739 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
740 the outermost loop in that the value computed by STMT is invariant.
741 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
742 we preserve the fact whether STMT is executed. It also fills other related
743 information to LIM_DATA (STMT).
745 The function returns false if STMT cannot be hoisted outside of the loop it
746 is defined in, and true otherwise. */
749 determine_max_movement (gimple stmt
, bool must_preserve_exec
)
751 basic_block bb
= gimple_bb (stmt
);
752 struct loop
*loop
= bb
->loop_father
;
754 struct lim_aux_data
*lim_data
= get_lim_data (stmt
);
758 if (must_preserve_exec
)
759 level
= ALWAYS_EXECUTED_IN (bb
);
761 level
= superloop_at_depth (loop
, 1);
762 lim_data
->max_loop
= level
;
764 if (gimple_code (stmt
) == GIMPLE_PHI
)
767 unsigned min_cost
= UINT_MAX
;
768 unsigned total_cost
= 0;
769 struct lim_aux_data
*def_data
;
771 /* We will end up promoting dependencies to be unconditionally
772 evaluated. For this reason the PHI cost (and thus the
773 cost we remove from the loop by doing the invariant motion)
774 is that of the cheapest PHI argument dependency chain. */
775 FOR_EACH_PHI_ARG (use_p
, stmt
, iter
, SSA_OP_USE
)
777 val
= USE_FROM_PTR (use_p
);
778 if (TREE_CODE (val
) != SSA_NAME
)
780 if (!add_dependency (val
, lim_data
, loop
, false))
782 def_data
= get_lim_data (SSA_NAME_DEF_STMT (val
));
785 min_cost
= MIN (min_cost
, def_data
->cost
);
786 total_cost
+= def_data
->cost
;
790 lim_data
->cost
+= min_cost
;
792 if (gimple_phi_num_args (stmt
) > 1)
794 basic_block dom
= get_immediate_dominator (CDI_DOMINATORS
, bb
);
796 if (gsi_end_p (gsi_last_bb (dom
)))
798 cond
= gsi_stmt (gsi_last_bb (dom
));
799 if (gimple_code (cond
) != GIMPLE_COND
)
801 /* Verify that this is an extended form of a diamond and
802 the PHI arguments are completely controlled by the
804 if (!extract_true_false_args_from_phi (dom
, stmt
, NULL
, NULL
))
807 /* Fold in dependencies and cost of the condition. */
808 FOR_EACH_SSA_TREE_OPERAND (val
, cond
, iter
, SSA_OP_USE
)
810 if (!add_dependency (val
, lim_data
, loop
, false))
812 def_data
= get_lim_data (SSA_NAME_DEF_STMT (val
));
814 total_cost
+= def_data
->cost
;
817 /* We want to avoid unconditionally executing very expensive
818 operations. As costs for our dependencies cannot be
819 negative just claim we are not invariand for this case.
820 We also are not sure whether the control-flow inside the
822 if (total_cost
- min_cost
>= 2 * LIM_EXPENSIVE
824 && total_cost
/ min_cost
<= 2))
827 /* Assume that the control-flow in the loop will vanish.
828 ??? We should verify this and not artificially increase
829 the cost if that is not the case. */
830 lim_data
->cost
+= stmt_cost (stmt
);
836 FOR_EACH_SSA_TREE_OPERAND (val
, stmt
, iter
, SSA_OP_USE
)
837 if (!add_dependency (val
, lim_data
, loop
, true))
840 if (gimple_vuse (stmt
))
842 mem_ref_p ref
= mem_ref_in_stmt (stmt
);
847 = outermost_indep_loop (lim_data
->max_loop
, loop
, ref
);
848 if (!lim_data
->max_loop
)
853 if ((val
= gimple_vuse (stmt
)) != NULL_TREE
)
855 if (!add_dependency (val
, lim_data
, loop
, false))
861 lim_data
->cost
+= stmt_cost (stmt
);
866 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
867 and that one of the operands of this statement is computed by STMT.
868 Ensure that STMT (together with all the statements that define its
869 operands) is hoisted at least out of the loop LEVEL. */
872 set_level (gimple stmt
, struct loop
*orig_loop
, struct loop
*level
)
874 struct loop
*stmt_loop
= gimple_bb (stmt
)->loop_father
;
876 struct lim_aux_data
*lim_data
;
878 stmt_loop
= find_common_loop (orig_loop
, stmt_loop
);
879 lim_data
= get_lim_data (stmt
);
880 if (lim_data
!= NULL
&& lim_data
->tgt_loop
!= NULL
)
881 stmt_loop
= find_common_loop (stmt_loop
,
882 loop_outer (lim_data
->tgt_loop
));
883 if (flow_loop_nested_p (stmt_loop
, level
))
886 gcc_assert (level
== lim_data
->max_loop
887 || flow_loop_nested_p (lim_data
->max_loop
, level
));
889 lim_data
->tgt_loop
= level
;
890 for (dep
= lim_data
->depends
; dep
; dep
= dep
->next
)
891 set_level (dep
->stmt
, orig_loop
, level
);
894 /* Determines an outermost loop from that we want to hoist the statement STMT.
895 For now we chose the outermost possible loop. TODO -- use profiling
896 information to set it more sanely. */
899 set_profitable_level (gimple stmt
)
901 set_level (stmt
, gimple_bb (stmt
)->loop_father
, get_lim_data (stmt
)->max_loop
);
904 /* Returns true if STMT is a call that has side effects. */
907 nonpure_call_p (gimple stmt
)
909 if (gimple_code (stmt
) != GIMPLE_CALL
)
912 return gimple_has_side_effects (stmt
);
915 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
918 rewrite_reciprocal (gimple_stmt_iterator
*bsi
)
920 gimple stmt
, stmt1
, stmt2
;
921 tree var
, name
, lhs
, type
;
923 gimple_stmt_iterator gsi
;
925 stmt
= gsi_stmt (*bsi
);
926 lhs
= gimple_assign_lhs (stmt
);
927 type
= TREE_TYPE (lhs
);
929 var
= create_tmp_var (type
, "reciptmp");
930 add_referenced_var (var
);
931 DECL_GIMPLE_REG_P (var
) = 1;
933 real_one
= build_one_cst (type
);
935 stmt1
= gimple_build_assign_with_ops (RDIV_EXPR
,
936 var
, real_one
, gimple_assign_rhs2 (stmt
));
937 name
= make_ssa_name (var
, stmt1
);
938 gimple_assign_set_lhs (stmt1
, name
);
940 stmt2
= gimple_build_assign_with_ops (MULT_EXPR
, lhs
, name
,
941 gimple_assign_rhs1 (stmt
));
943 /* Replace division stmt with reciprocal and multiply stmts.
944 The multiply stmt is not invariant, so update iterator
945 and avoid rescanning. */
947 gsi_insert_before (bsi
, stmt1
, GSI_NEW_STMT
);
948 gsi_replace (&gsi
, stmt2
, true);
950 /* Continue processing with invariant reciprocal statement. */
954 /* Check if the pattern at *BSI is a bittest of the form
955 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
958 rewrite_bittest (gimple_stmt_iterator
*bsi
)
960 gimple stmt
, use_stmt
, stmt1
, stmt2
;
961 tree lhs
, var
, name
, t
, a
, b
;
964 stmt
= gsi_stmt (*bsi
);
965 lhs
= gimple_assign_lhs (stmt
);
967 /* Verify that the single use of lhs is a comparison against zero. */
968 if (TREE_CODE (lhs
) != SSA_NAME
969 || !single_imm_use (lhs
, &use
, &use_stmt
)
970 || gimple_code (use_stmt
) != GIMPLE_COND
)
972 if (gimple_cond_lhs (use_stmt
) != lhs
973 || (gimple_cond_code (use_stmt
) != NE_EXPR
974 && gimple_cond_code (use_stmt
) != EQ_EXPR
)
975 || !integer_zerop (gimple_cond_rhs (use_stmt
)))
978 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
979 stmt1
= SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt
));
980 if (gimple_code (stmt1
) != GIMPLE_ASSIGN
)
983 /* There is a conversion in between possibly inserted by fold. */
984 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1
)))
986 t
= gimple_assign_rhs1 (stmt1
);
987 if (TREE_CODE (t
) != SSA_NAME
988 || !has_single_use (t
))
990 stmt1
= SSA_NAME_DEF_STMT (t
);
991 if (gimple_code (stmt1
) != GIMPLE_ASSIGN
)
995 /* Verify that B is loop invariant but A is not. Verify that with
996 all the stmt walking we are still in the same loop. */
997 if (gimple_assign_rhs_code (stmt1
) != RSHIFT_EXPR
998 || loop_containing_stmt (stmt1
) != loop_containing_stmt (stmt
))
1001 a
= gimple_assign_rhs1 (stmt1
);
1002 b
= gimple_assign_rhs2 (stmt1
);
1004 if (outermost_invariant_loop (b
, loop_containing_stmt (stmt1
)) != NULL
1005 && outermost_invariant_loop (a
, loop_containing_stmt (stmt1
)) == NULL
)
1007 gimple_stmt_iterator rsi
;
1010 var
= create_tmp_var (TREE_TYPE (a
), "shifttmp");
1011 add_referenced_var (var
);
1012 t
= fold_build2 (LSHIFT_EXPR
, TREE_TYPE (a
),
1013 build_int_cst (TREE_TYPE (a
), 1), b
);
1014 stmt1
= gimple_build_assign (var
, t
);
1015 name
= make_ssa_name (var
, stmt1
);
1016 gimple_assign_set_lhs (stmt1
, name
);
1019 t
= fold_build2 (BIT_AND_EXPR
, TREE_TYPE (a
), a
, name
);
1020 stmt2
= gimple_build_assign (var
, t
);
1021 name
= make_ssa_name (var
, stmt2
);
1022 gimple_assign_set_lhs (stmt2
, name
);
1024 /* Replace the SSA_NAME we compare against zero. Adjust
1025 the type of zero accordingly. */
1026 SET_USE (use
, name
);
1027 gimple_cond_set_rhs (use_stmt
, build_int_cst_type (TREE_TYPE (name
), 0));
1029 /* Don't use gsi_replace here, none of the new assignments sets
1030 the variable originally set in stmt. Move bsi to stmt1, and
1031 then remove the original stmt, so that we get a chance to
1032 retain debug info for it. */
1034 gsi_insert_before (bsi
, stmt1
, GSI_NEW_STMT
);
1035 gsi_insert_before (&rsi
, stmt2
, GSI_SAME_STMT
);
1036 gsi_remove (&rsi
, true);
1045 /* Determine the outermost loops in that statements in basic block BB are
1046 invariant, and record them to the LIM_DATA associated with the statements.
1047 Callback for walk_dominator_tree. */
1050 determine_invariantness_stmt (struct dom_walk_data
*dw_data ATTRIBUTE_UNUSED
,
1054 gimple_stmt_iterator bsi
;
1056 bool maybe_never
= ALWAYS_EXECUTED_IN (bb
) == NULL
;
1057 struct loop
*outermost
= ALWAYS_EXECUTED_IN (bb
);
1058 struct lim_aux_data
*lim_data
;
1060 if (!loop_outer (bb
->loop_father
))
1063 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1064 fprintf (dump_file
, "Basic block %d (loop %d -- depth %d):\n\n",
1065 bb
->index
, bb
->loop_father
->num
, loop_depth (bb
->loop_father
));
1067 /* Look at PHI nodes, but only if there is at most two.
1068 ??? We could relax this further by post-processing the inserted
1069 code and transforming adjacent cond-exprs with the same predicate
1070 to control flow again. */
1071 bsi
= gsi_start_phis (bb
);
1072 if (!gsi_end_p (bsi
)
1073 && ((gsi_next (&bsi
), gsi_end_p (bsi
))
1074 || (gsi_next (&bsi
), gsi_end_p (bsi
))))
1075 for (bsi
= gsi_start_phis (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
1077 stmt
= gsi_stmt (bsi
);
1079 pos
= movement_possibility (stmt
);
1080 if (pos
== MOVE_IMPOSSIBLE
)
1083 lim_data
= init_lim_data (stmt
);
1084 lim_data
->always_executed_in
= outermost
;
1086 if (!determine_max_movement (stmt
, false))
1088 lim_data
->max_loop
= NULL
;
1092 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1094 print_gimple_stmt (dump_file
, stmt
, 2, 0);
1095 fprintf (dump_file
, " invariant up to level %d, cost %d.\n\n",
1096 loop_depth (lim_data
->max_loop
),
1100 if (lim_data
->cost
>= LIM_EXPENSIVE
)
1101 set_profitable_level (stmt
);
1104 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
1106 stmt
= gsi_stmt (bsi
);
1108 pos
= movement_possibility (stmt
);
1109 if (pos
== MOVE_IMPOSSIBLE
)
1111 if (nonpure_call_p (stmt
))
1116 /* Make sure to note always_executed_in for stores to make
1117 store-motion work. */
1118 else if (stmt_makes_single_store (stmt
))
1120 struct lim_aux_data
*lim_data
= init_lim_data (stmt
);
1121 lim_data
->always_executed_in
= outermost
;
1126 if (is_gimple_assign (stmt
)
1127 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt
))
1128 == GIMPLE_BINARY_RHS
))
1130 tree op0
= gimple_assign_rhs1 (stmt
);
1131 tree op1
= gimple_assign_rhs2 (stmt
);
1132 struct loop
*ol1
= outermost_invariant_loop (op1
,
1133 loop_containing_stmt (stmt
));
1135 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1136 to be hoisted out of loop, saving expensive divide. */
1137 if (pos
== MOVE_POSSIBLE
1138 && gimple_assign_rhs_code (stmt
) == RDIV_EXPR
1139 && flag_unsafe_math_optimizations
1140 && !flag_trapping_math
1142 && outermost_invariant_loop (op0
, ol1
) == NULL
)
1143 stmt
= rewrite_reciprocal (&bsi
);
1145 /* If the shift count is invariant, convert (A >> B) & 1 to
1146 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1147 saving an expensive shift. */
1148 if (pos
== MOVE_POSSIBLE
1149 && gimple_assign_rhs_code (stmt
) == BIT_AND_EXPR
1150 && integer_onep (op1
)
1151 && TREE_CODE (op0
) == SSA_NAME
1152 && has_single_use (op0
))
1153 stmt
= rewrite_bittest (&bsi
);
1156 lim_data
= init_lim_data (stmt
);
1157 lim_data
->always_executed_in
= outermost
;
1159 if (maybe_never
&& pos
== MOVE_PRESERVE_EXECUTION
)
1162 if (!determine_max_movement (stmt
, pos
== MOVE_PRESERVE_EXECUTION
))
1164 lim_data
->max_loop
= NULL
;
1168 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1170 print_gimple_stmt (dump_file
, stmt
, 2, 0);
1171 fprintf (dump_file
, " invariant up to level %d, cost %d.\n\n",
1172 loop_depth (lim_data
->max_loop
),
1176 if (lim_data
->cost
>= LIM_EXPENSIVE
)
1177 set_profitable_level (stmt
);
1181 /* For each statement determines the outermost loop in that it is invariant,
1182 statements on whose motion it depends and the cost of the computation.
1183 This information is stored to the LIM_DATA structure associated with
1187 determine_invariantness (void)
1189 struct dom_walk_data walk_data
;
1191 memset (&walk_data
, 0, sizeof (struct dom_walk_data
));
1192 walk_data
.dom_direction
= CDI_DOMINATORS
;
1193 walk_data
.before_dom_children
= determine_invariantness_stmt
;
1195 init_walk_dominator_tree (&walk_data
);
1196 walk_dominator_tree (&walk_data
, ENTRY_BLOCK_PTR
);
1197 fini_walk_dominator_tree (&walk_data
);
1200 /* Hoist the statements in basic block BB out of the loops prescribed by
1201 data stored in LIM_DATA structures associated with each statement. Callback
1202 for walk_dominator_tree. */
1205 move_computations_stmt (struct dom_walk_data
*dw_data
,
1209 gimple_stmt_iterator bsi
;
1212 struct lim_aux_data
*lim_data
;
1214 if (!loop_outer (bb
->loop_father
))
1217 for (bsi
= gsi_start_phis (bb
); !gsi_end_p (bsi
); )
1220 stmt
= gsi_stmt (bsi
);
1222 lim_data
= get_lim_data (stmt
);
1223 if (lim_data
== NULL
)
1229 cost
= lim_data
->cost
;
1230 level
= lim_data
->tgt_loop
;
1231 clear_lim_data (stmt
);
1239 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1241 fprintf (dump_file
, "Moving PHI node\n");
1242 print_gimple_stmt (dump_file
, stmt
, 0, 0);
1243 fprintf (dump_file
, "(cost %u) out of loop %d.\n\n",
1247 if (gimple_phi_num_args (stmt
) == 1)
1249 tree arg
= PHI_ARG_DEF (stmt
, 0);
1250 new_stmt
= gimple_build_assign_with_ops (TREE_CODE (arg
),
1251 gimple_phi_result (stmt
),
1253 SSA_NAME_DEF_STMT (gimple_phi_result (stmt
)) = new_stmt
;
1257 basic_block dom
= get_immediate_dominator (CDI_DOMINATORS
, bb
);
1258 gimple cond
= gsi_stmt (gsi_last_bb (dom
));
1259 tree arg0
= NULL_TREE
, arg1
= NULL_TREE
, t
;
1260 /* Get the PHI arguments corresponding to the true and false
1262 extract_true_false_args_from_phi (dom
, stmt
, &arg0
, &arg1
);
1263 gcc_assert (arg0
&& arg1
);
1264 t
= build2 (gimple_cond_code (cond
), boolean_type_node
,
1265 gimple_cond_lhs (cond
), gimple_cond_rhs (cond
));
1266 new_stmt
= gimple_build_assign_with_ops3 (COND_EXPR
,
1267 gimple_phi_result (stmt
),
1269 SSA_NAME_DEF_STMT (gimple_phi_result (stmt
)) = new_stmt
;
1270 *((unsigned int *)(dw_data
->global_data
)) |= TODO_cleanup_cfg
;
1272 gsi_insert_on_edge (loop_preheader_edge (level
), new_stmt
);
1273 remove_phi_node (&bsi
, false);
1276 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); )
1278 stmt
= gsi_stmt (bsi
);
1280 lim_data
= get_lim_data (stmt
);
1281 if (lim_data
== NULL
)
1287 cost
= lim_data
->cost
;
1288 level
= lim_data
->tgt_loop
;
1289 clear_lim_data (stmt
);
1297 /* We do not really want to move conditionals out of the loop; we just
1298 placed it here to force its operands to be moved if necessary. */
1299 if (gimple_code (stmt
) == GIMPLE_COND
)
1302 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1304 fprintf (dump_file
, "Moving statement\n");
1305 print_gimple_stmt (dump_file
, stmt
, 0, 0);
1306 fprintf (dump_file
, "(cost %u) out of loop %d.\n\n",
1310 mark_virtual_ops_for_renaming (stmt
);
1311 gsi_insert_on_edge (loop_preheader_edge (level
), stmt
);
1312 gsi_remove (&bsi
, false);
1316 /* Hoist the statements out of the loops prescribed by data stored in
1317 LIM_DATA structures associated with each statement.*/
1320 move_computations (void)
1322 struct dom_walk_data walk_data
;
1323 unsigned int todo
= 0;
1325 memset (&walk_data
, 0, sizeof (struct dom_walk_data
));
1326 walk_data
.global_data
= &todo
;
1327 walk_data
.dom_direction
= CDI_DOMINATORS
;
1328 walk_data
.before_dom_children
= move_computations_stmt
;
1330 init_walk_dominator_tree (&walk_data
);
1331 walk_dominator_tree (&walk_data
, ENTRY_BLOCK_PTR
);
1332 fini_walk_dominator_tree (&walk_data
);
1334 gsi_commit_edge_inserts ();
1335 if (need_ssa_update_p (cfun
))
1336 rewrite_into_loop_closed_ssa (NULL
, TODO_update_ssa
);
1341 /* Checks whether the statement defining variable *INDEX can be hoisted
1342 out of the loop passed in DATA. Callback for for_each_index. */
1345 may_move_till (tree ref
, tree
*index
, void *data
)
1347 struct loop
*loop
= (struct loop
*) data
, *max_loop
;
1349 /* If REF is an array reference, check also that the step and the lower
1350 bound is invariant in LOOP. */
1351 if (TREE_CODE (ref
) == ARRAY_REF
)
1353 tree step
= TREE_OPERAND (ref
, 3);
1354 tree lbound
= TREE_OPERAND (ref
, 2);
1356 max_loop
= outermost_invariant_loop (step
, loop
);
1360 max_loop
= outermost_invariant_loop (lbound
, loop
);
1365 max_loop
= outermost_invariant_loop (*index
, loop
);
1372 /* If OP is SSA NAME, force the statement that defines it to be
1373 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1376 force_move_till_op (tree op
, struct loop
*orig_loop
, struct loop
*loop
)
1381 || is_gimple_min_invariant (op
))
1384 gcc_assert (TREE_CODE (op
) == SSA_NAME
);
1386 stmt
= SSA_NAME_DEF_STMT (op
);
1387 if (gimple_nop_p (stmt
))
1390 set_level (stmt
, orig_loop
, loop
);
1393 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1394 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1400 struct loop
*orig_loop
;
1404 force_move_till (tree ref
, tree
*index
, void *data
)
1406 struct fmt_data
*fmt_data
= (struct fmt_data
*) data
;
1408 if (TREE_CODE (ref
) == ARRAY_REF
)
1410 tree step
= TREE_OPERAND (ref
, 3);
1411 tree lbound
= TREE_OPERAND (ref
, 2);
1413 force_move_till_op (step
, fmt_data
->orig_loop
, fmt_data
->loop
);
1414 force_move_till_op (lbound
, fmt_data
->orig_loop
, fmt_data
->loop
);
1417 force_move_till_op (*index
, fmt_data
->orig_loop
, fmt_data
->loop
);
1422 /* A hash function for struct mem_ref object OBJ. */
1425 memref_hash (const void *obj
)
1427 const struct mem_ref
*const mem
= (const struct mem_ref
*) obj
;
1432 /* An equality function for struct mem_ref object OBJ1 with
1433 memory reference OBJ2. */
1436 memref_eq (const void *obj1
, const void *obj2
)
1438 const struct mem_ref
*const mem1
= (const struct mem_ref
*) obj1
;
1440 return operand_equal_p (mem1
->mem
, (const_tree
) obj2
, 0);
1443 /* Releases list of memory reference locations ACCS. */
1446 free_mem_ref_locs (mem_ref_locs_p accs
)
1454 FOR_EACH_VEC_ELT (mem_ref_loc_p
, accs
->locs
, i
, loc
)
1456 VEC_free (mem_ref_loc_p
, heap
, accs
->locs
);
1460 /* A function to free the mem_ref object OBJ. */
1463 memref_free (void *obj
)
1465 struct mem_ref
*const mem
= (struct mem_ref
*) obj
;
1467 mem_ref_locs_p accs
;
1469 BITMAP_FREE (mem
->stored
);
1470 BITMAP_FREE (mem
->indep_loop
);
1471 BITMAP_FREE (mem
->dep_loop
);
1472 BITMAP_FREE (mem
->indep_ref
);
1473 BITMAP_FREE (mem
->dep_ref
);
1475 FOR_EACH_VEC_ELT (mem_ref_locs_p
, mem
->accesses_in_loop
, i
, accs
)
1476 free_mem_ref_locs (accs
);
1477 VEC_free (mem_ref_locs_p
, heap
, mem
->accesses_in_loop
);
1482 /* Allocates and returns a memory reference description for MEM whose hash
1483 value is HASH and id is ID. */
1486 mem_ref_alloc (tree mem
, unsigned hash
, unsigned id
)
1488 mem_ref_p ref
= XNEW (struct mem_ref
);
1492 ref
->stored
= BITMAP_ALLOC (NULL
);
1493 ref
->indep_loop
= BITMAP_ALLOC (NULL
);
1494 ref
->dep_loop
= BITMAP_ALLOC (NULL
);
1495 ref
->indep_ref
= BITMAP_ALLOC (NULL
);
1496 ref
->dep_ref
= BITMAP_ALLOC (NULL
);
1497 ref
->accesses_in_loop
= NULL
;
1502 /* Allocates and returns the new list of locations. */
1504 static mem_ref_locs_p
1505 mem_ref_locs_alloc (void)
1507 mem_ref_locs_p accs
= XNEW (struct mem_ref_locs
);
1512 /* Records memory reference location *LOC in LOOP to the memory reference
1513 description REF. The reference occurs in statement STMT. */
1516 record_mem_ref_loc (mem_ref_p ref
, struct loop
*loop
, gimple stmt
, tree
*loc
)
1518 mem_ref_loc_p aref
= XNEW (struct mem_ref_loc
);
1519 mem_ref_locs_p accs
;
1520 bitmap ril
= VEC_index (bitmap
, memory_accesses
.refs_in_loop
, loop
->num
);
1522 if (VEC_length (mem_ref_locs_p
, ref
->accesses_in_loop
)
1523 <= (unsigned) loop
->num
)
1524 VEC_safe_grow_cleared (mem_ref_locs_p
, heap
, ref
->accesses_in_loop
,
1526 accs
= VEC_index (mem_ref_locs_p
, ref
->accesses_in_loop
, loop
->num
);
1529 accs
= mem_ref_locs_alloc ();
1530 VEC_replace (mem_ref_locs_p
, ref
->accesses_in_loop
, loop
->num
, accs
);
1536 VEC_safe_push (mem_ref_loc_p
, heap
, accs
->locs
, aref
);
1537 bitmap_set_bit (ril
, ref
->id
);
1540 /* Marks reference REF as stored in LOOP. */
1543 mark_ref_stored (mem_ref_p ref
, struct loop
*loop
)
1546 loop
!= current_loops
->tree_root
1547 && !bitmap_bit_p (ref
->stored
, loop
->num
);
1548 loop
= loop_outer (loop
))
1549 bitmap_set_bit (ref
->stored
, loop
->num
);
1552 /* Gathers memory references in statement STMT in LOOP, storing the
1553 information about them in the memory_accesses structure. Marks
1554 the vops accessed through unrecognized statements there as
1558 gather_mem_refs_stmt (struct loop
*loop
, gimple stmt
)
1567 if (!gimple_vuse (stmt
))
1570 mem
= simple_mem_ref_in_stmt (stmt
, &is_stored
);
1573 id
= VEC_length (mem_ref_p
, memory_accesses
.refs_list
);
1574 ref
= mem_ref_alloc (error_mark_node
, 0, id
);
1575 VEC_safe_push (mem_ref_p
, heap
, memory_accesses
.refs_list
, ref
);
1576 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1578 fprintf (dump_file
, "Unanalyzed memory reference %u: ", id
);
1579 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
1581 if (gimple_vdef (stmt
))
1582 mark_ref_stored (ref
, loop
);
1583 record_mem_ref_loc (ref
, loop
, stmt
, mem
);
1587 hash
= iterative_hash_expr (*mem
, 0);
1588 slot
= htab_find_slot_with_hash (memory_accesses
.refs
, *mem
, hash
, INSERT
);
1592 ref
= (mem_ref_p
) *slot
;
1597 id
= VEC_length (mem_ref_p
, memory_accesses
.refs_list
);
1598 ref
= mem_ref_alloc (*mem
, hash
, id
);
1599 VEC_safe_push (mem_ref_p
, heap
, memory_accesses
.refs_list
, ref
);
1602 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1604 fprintf (dump_file
, "Memory reference %u: ", id
);
1605 print_generic_expr (dump_file
, ref
->mem
, TDF_SLIM
);
1606 fprintf (dump_file
, "\n");
1610 mark_ref_stored (ref
, loop
);
1612 record_mem_ref_loc (ref
, loop
, stmt
, mem
);
1616 /* Gathers memory references in loops. */
1619 gather_mem_refs_in_loops (void)
1621 gimple_stmt_iterator bsi
;
1625 bitmap lrefs
, alrefs
, alrefso
;
1629 loop
= bb
->loop_father
;
1630 if (loop
== current_loops
->tree_root
)
1633 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
1634 gather_mem_refs_stmt (loop
, gsi_stmt (bsi
));
1637 /* Propagate the information about accessed memory references up
1638 the loop hierarchy. */
1639 FOR_EACH_LOOP (li
, loop
, LI_FROM_INNERMOST
)
1641 lrefs
= VEC_index (bitmap
, memory_accesses
.refs_in_loop
, loop
->num
);
1642 alrefs
= VEC_index (bitmap
, memory_accesses
.all_refs_in_loop
, loop
->num
);
1643 bitmap_ior_into (alrefs
, lrefs
);
1645 if (loop_outer (loop
) == current_loops
->tree_root
)
1648 alrefso
= VEC_index (bitmap
, memory_accesses
.all_refs_in_loop
,
1649 loop_outer (loop
)->num
);
1650 bitmap_ior_into (alrefso
, alrefs
);
1654 /* Create a mapping from virtual operands to references that touch them
1658 create_vop_ref_mapping_loop (struct loop
*loop
)
1660 bitmap refs
= VEC_index (bitmap
, memory_accesses
.refs_in_loop
, loop
->num
);
1666 EXECUTE_IF_SET_IN_BITMAP (refs
, 0, i
, bi
)
1668 ref
= VEC_index (mem_ref_p
, memory_accesses
.refs_list
, i
);
1669 for (sloop
= loop
; sloop
!= current_loops
->tree_root
;
1670 sloop
= loop_outer (sloop
))
1671 if (bitmap_bit_p (ref
->stored
, loop
->num
))
1674 = VEC_index (bitmap
, memory_accesses
.all_refs_stored_in_loop
,
1676 bitmap_set_bit (refs_stored
, ref
->id
);
1681 /* For each non-clobbered virtual operand and each loop, record the memory
1682 references in this loop that touch the operand. */
1685 create_vop_ref_mapping (void)
1690 FOR_EACH_LOOP (li
, loop
, 0)
1692 create_vop_ref_mapping_loop (loop
);
1696 /* Gathers information about memory accesses in the loops. */
1699 analyze_memory_references (void)
1704 memory_accesses
.refs
1705 = htab_create (100, memref_hash
, memref_eq
, memref_free
);
1706 memory_accesses
.refs_list
= NULL
;
1707 memory_accesses
.refs_in_loop
= VEC_alloc (bitmap
, heap
,
1708 number_of_loops ());
1709 memory_accesses
.all_refs_in_loop
= VEC_alloc (bitmap
, heap
,
1710 number_of_loops ());
1711 memory_accesses
.all_refs_stored_in_loop
= VEC_alloc (bitmap
, heap
,
1712 number_of_loops ());
1714 for (i
= 0; i
< number_of_loops (); i
++)
1716 empty
= BITMAP_ALLOC (NULL
);
1717 VEC_quick_push (bitmap
, memory_accesses
.refs_in_loop
, empty
);
1718 empty
= BITMAP_ALLOC (NULL
);
1719 VEC_quick_push (bitmap
, memory_accesses
.all_refs_in_loop
, empty
);
1720 empty
= BITMAP_ALLOC (NULL
);
1721 VEC_quick_push (bitmap
, memory_accesses
.all_refs_stored_in_loop
, empty
);
1724 memory_accesses
.ttae_cache
= NULL
;
1726 gather_mem_refs_in_loops ();
1727 create_vop_ref_mapping ();
1730 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1731 tree_to_aff_combination_expand. */
1734 mem_refs_may_alias_p (tree mem1
, tree mem2
, struct pointer_map_t
**ttae_cache
)
1736 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1737 object and their offset differ in such a way that the locations cannot
1738 overlap, then they cannot alias. */
1739 double_int size1
, size2
;
1740 aff_tree off1
, off2
;
1742 /* Perform basic offset and type-based disambiguation. */
1743 if (!refs_may_alias_p (mem1
, mem2
))
1746 /* The expansion of addresses may be a bit expensive, thus we only do
1747 the check at -O2 and higher optimization levels. */
1751 get_inner_reference_aff (mem1
, &off1
, &size1
);
1752 get_inner_reference_aff (mem2
, &off2
, &size2
);
1753 aff_combination_expand (&off1
, ttae_cache
);
1754 aff_combination_expand (&off2
, ttae_cache
);
1755 aff_combination_scale (&off1
, double_int_minus_one
);
1756 aff_combination_add (&off2
, &off1
);
1758 if (aff_comb_cannot_overlap_p (&off2
, size1
, size2
))
1764 /* Rewrites location LOC by TMP_VAR. */
1767 rewrite_mem_ref_loc (mem_ref_loc_p loc
, tree tmp_var
)
1769 mark_virtual_ops_for_renaming (loc
->stmt
);
1770 *loc
->ref
= tmp_var
;
1771 update_stmt (loc
->stmt
);
1774 /* Adds all locations of REF in LOOP and its subloops to LOCS. */
1777 get_all_locs_in_loop (struct loop
*loop
, mem_ref_p ref
,
1778 VEC (mem_ref_loc_p
, heap
) **locs
)
1780 mem_ref_locs_p accs
;
1783 bitmap refs
= VEC_index (bitmap
, memory_accesses
.all_refs_in_loop
,
1785 struct loop
*subloop
;
1787 if (!bitmap_bit_p (refs
, ref
->id
))
1790 if (VEC_length (mem_ref_locs_p
, ref
->accesses_in_loop
)
1791 > (unsigned) loop
->num
)
1793 accs
= VEC_index (mem_ref_locs_p
, ref
->accesses_in_loop
, loop
->num
);
1796 FOR_EACH_VEC_ELT (mem_ref_loc_p
, accs
->locs
, i
, loc
)
1797 VEC_safe_push (mem_ref_loc_p
, heap
, *locs
, loc
);
1801 for (subloop
= loop
->inner
; subloop
!= NULL
; subloop
= subloop
->next
)
1802 get_all_locs_in_loop (subloop
, ref
, locs
);
1805 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1808 rewrite_mem_refs (struct loop
*loop
, mem_ref_p ref
, tree tmp_var
)
1812 VEC (mem_ref_loc_p
, heap
) *locs
= NULL
;
1814 get_all_locs_in_loop (loop
, ref
, &locs
);
1815 FOR_EACH_VEC_ELT (mem_ref_loc_p
, locs
, i
, loc
)
1816 rewrite_mem_ref_loc (loc
, tmp_var
);
1817 VEC_free (mem_ref_loc_p
, heap
, locs
);
1820 /* The name and the length of the currently generated variable
1822 #define MAX_LSM_NAME_LENGTH 40
1823 static char lsm_tmp_name
[MAX_LSM_NAME_LENGTH
+ 1];
1824 static int lsm_tmp_name_length
;
1826 /* Adds S to lsm_tmp_name. */
1829 lsm_tmp_name_add (const char *s
)
1831 int l
= strlen (s
) + lsm_tmp_name_length
;
1832 if (l
> MAX_LSM_NAME_LENGTH
)
1835 strcpy (lsm_tmp_name
+ lsm_tmp_name_length
, s
);
1836 lsm_tmp_name_length
= l
;
1839 /* Stores the name for temporary variable that replaces REF to
1843 gen_lsm_tmp_name (tree ref
)
1847 switch (TREE_CODE (ref
))
1850 case TARGET_MEM_REF
:
1851 gen_lsm_tmp_name (TREE_OPERAND (ref
, 0));
1852 lsm_tmp_name_add ("_");
1856 gen_lsm_tmp_name (TREE_OPERAND (ref
, 0));
1860 case VIEW_CONVERT_EXPR
:
1861 case ARRAY_RANGE_REF
:
1862 gen_lsm_tmp_name (TREE_OPERAND (ref
, 0));
1866 gen_lsm_tmp_name (TREE_OPERAND (ref
, 0));
1867 lsm_tmp_name_add ("_RE");
1871 gen_lsm_tmp_name (TREE_OPERAND (ref
, 0));
1872 lsm_tmp_name_add ("_IM");
1876 gen_lsm_tmp_name (TREE_OPERAND (ref
, 0));
1877 lsm_tmp_name_add ("_");
1878 name
= get_name (TREE_OPERAND (ref
, 1));
1881 lsm_tmp_name_add (name
);
1885 gen_lsm_tmp_name (TREE_OPERAND (ref
, 0));
1886 lsm_tmp_name_add ("_I");
1890 ref
= SSA_NAME_VAR (ref
);
1895 name
= get_name (ref
);
1898 lsm_tmp_name_add (name
);
1902 lsm_tmp_name_add ("S");
1906 lsm_tmp_name_add ("R");
1918 /* Determines name for temporary variable that replaces REF.
1919 The name is accumulated into the lsm_tmp_name variable.
1920 N is added to the name of the temporary. */
1923 get_lsm_tmp_name (tree ref
, unsigned n
)
1927 lsm_tmp_name_length
= 0;
1928 gen_lsm_tmp_name (ref
);
1929 lsm_tmp_name_add ("_lsm");
1934 lsm_tmp_name_add (ns
);
1936 return lsm_tmp_name
;
1939 /* Executes store motion of memory reference REF from LOOP.
1940 Exits from the LOOP are stored in EXITS. The initialization of the
1941 temporary variable is put to the preheader of the loop, and assignments
1942 to the reference from the temporary variable are emitted to exits. */
1945 execute_sm (struct loop
*loop
, VEC (edge
, heap
) *exits
, mem_ref_p ref
)
1950 struct fmt_data fmt_data
;
1952 struct lim_aux_data
*lim_data
;
1954 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1956 fprintf (dump_file
, "Executing store motion of ");
1957 print_generic_expr (dump_file
, ref
->mem
, 0);
1958 fprintf (dump_file
, " from loop %d\n", loop
->num
);
1961 tmp_var
= make_rename_temp (TREE_TYPE (ref
->mem
),
1962 get_lsm_tmp_name (ref
->mem
, ~0));
1964 fmt_data
.loop
= loop
;
1965 fmt_data
.orig_loop
= loop
;
1966 for_each_index (&ref
->mem
, force_move_till
, &fmt_data
);
1968 rewrite_mem_refs (loop
, ref
, tmp_var
);
1970 /* Emit the load & stores. */
1971 load
= gimple_build_assign (tmp_var
, unshare_expr (ref
->mem
));
1972 lim_data
= init_lim_data (load
);
1973 lim_data
->max_loop
= loop
;
1974 lim_data
->tgt_loop
= loop
;
1976 /* Put this into the latch, so that we are sure it will be processed after
1977 all dependencies. */
1978 gsi_insert_on_edge (loop_latch_edge (loop
), load
);
1980 FOR_EACH_VEC_ELT (edge
, exits
, i
, ex
)
1982 store
= gimple_build_assign (unshare_expr (ref
->mem
), tmp_var
);
1983 gsi_insert_on_edge (ex
, store
);
1987 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
1988 edges of the LOOP. */
1991 hoist_memory_references (struct loop
*loop
, bitmap mem_refs
,
1992 VEC (edge
, heap
) *exits
)
1998 EXECUTE_IF_SET_IN_BITMAP (mem_refs
, 0, i
, bi
)
2000 ref
= VEC_index (mem_ref_p
, memory_accesses
.refs_list
, i
);
2001 execute_sm (loop
, exits
, ref
);
2005 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
2006 make sure REF is always stored to in LOOP. */
2009 ref_always_accessed_p (struct loop
*loop
, mem_ref_p ref
, bool stored_p
)
2011 VEC (mem_ref_loc_p
, heap
) *locs
= NULL
;
2015 struct loop
*must_exec
;
2018 base
= get_base_address (ref
->mem
);
2019 if (INDIRECT_REF_P (base
)
2020 || TREE_CODE (base
) == MEM_REF
)
2021 base
= TREE_OPERAND (base
, 0);
2023 get_all_locs_in_loop (loop
, ref
, &locs
);
2024 FOR_EACH_VEC_ELT (mem_ref_loc_p
, locs
, i
, loc
)
2026 if (!get_lim_data (loc
->stmt
))
2029 /* If we require an always executed store make sure the statement
2030 stores to the reference. */
2034 if (!gimple_get_lhs (loc
->stmt
))
2036 lhs
= get_base_address (gimple_get_lhs (loc
->stmt
));
2039 if (INDIRECT_REF_P (lhs
)
2040 || TREE_CODE (lhs
) == MEM_REF
)
2041 lhs
= TREE_OPERAND (lhs
, 0);
2046 must_exec
= get_lim_data (loc
->stmt
)->always_executed_in
;
2050 if (must_exec
== loop
2051 || flow_loop_nested_p (must_exec
, loop
))
2057 VEC_free (mem_ref_loc_p
, heap
, locs
);
2062 /* Returns true if REF1 and REF2 are independent. */
2065 refs_independent_p (mem_ref_p ref1
, mem_ref_p ref2
)
2068 || bitmap_bit_p (ref1
->indep_ref
, ref2
->id
))
2070 if (bitmap_bit_p (ref1
->dep_ref
, ref2
->id
))
2072 if (!MEM_ANALYZABLE (ref1
)
2073 || !MEM_ANALYZABLE (ref2
))
2076 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2077 fprintf (dump_file
, "Querying dependency of refs %u and %u: ",
2078 ref1
->id
, ref2
->id
);
2080 if (mem_refs_may_alias_p (ref1
->mem
, ref2
->mem
,
2081 &memory_accesses
.ttae_cache
))
2083 bitmap_set_bit (ref1
->dep_ref
, ref2
->id
);
2084 bitmap_set_bit (ref2
->dep_ref
, ref1
->id
);
2085 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2086 fprintf (dump_file
, "dependent.\n");
2091 bitmap_set_bit (ref1
->indep_ref
, ref2
->id
);
2092 bitmap_set_bit (ref2
->indep_ref
, ref1
->id
);
2093 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2094 fprintf (dump_file
, "independent.\n");
2099 /* Records the information whether REF is independent in LOOP (according
2103 record_indep_loop (struct loop
*loop
, mem_ref_p ref
, bool indep
)
2106 bitmap_set_bit (ref
->indep_loop
, loop
->num
);
2108 bitmap_set_bit (ref
->dep_loop
, loop
->num
);
2111 /* Returns true if REF is independent on all other memory references in
2115 ref_indep_loop_p_1 (struct loop
*loop
, mem_ref_p ref
)
2117 bitmap refs_to_check
;
2120 bool ret
= true, stored
= bitmap_bit_p (ref
->stored
, loop
->num
);
2124 refs_to_check
= VEC_index (bitmap
,
2125 memory_accesses
.all_refs_in_loop
, loop
->num
);
2127 refs_to_check
= VEC_index (bitmap
,
2128 memory_accesses
.all_refs_stored_in_loop
,
2131 EXECUTE_IF_SET_IN_BITMAP (refs_to_check
, 0, i
, bi
)
2133 aref
= VEC_index (mem_ref_p
, memory_accesses
.refs_list
, i
);
2134 if (!MEM_ANALYZABLE (aref
)
2135 || !refs_independent_p (ref
, aref
))
2138 record_indep_loop (loop
, aref
, false);
2146 /* Returns true if REF is independent on all other memory references in
2147 LOOP. Wrapper over ref_indep_loop_p_1, caching its results. */
2150 ref_indep_loop_p (struct loop
*loop
, mem_ref_p ref
)
2154 if (bitmap_bit_p (ref
->indep_loop
, loop
->num
))
2156 if (bitmap_bit_p (ref
->dep_loop
, loop
->num
))
2159 ret
= ref_indep_loop_p_1 (loop
, ref
);
2161 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2162 fprintf (dump_file
, "Querying dependencies of ref %u in loop %d: %s\n",
2163 ref
->id
, loop
->num
, ret
? "independent" : "dependent");
2165 record_indep_loop (loop
, ref
, ret
);
2170 /* Returns true if we can perform store motion of REF from LOOP. */
2173 can_sm_ref_p (struct loop
*loop
, mem_ref_p ref
)
2177 /* Can't hoist unanalyzable refs. */
2178 if (!MEM_ANALYZABLE (ref
))
2181 /* Unless the reference is stored in the loop, there is nothing to do. */
2182 if (!bitmap_bit_p (ref
->stored
, loop
->num
))
2185 /* It should be movable. */
2186 if (!is_gimple_reg_type (TREE_TYPE (ref
->mem
))
2187 || TREE_THIS_VOLATILE (ref
->mem
)
2188 || !for_each_index (&ref
->mem
, may_move_till
, loop
))
2191 /* If it can throw fail, we do not properly update EH info. */
2192 if (tree_could_throw_p (ref
->mem
))
2195 /* If it can trap, it must be always executed in LOOP.
2196 Readonly memory locations may trap when storing to them, but
2197 tree_could_trap_p is a predicate for rvalues, so check that
2199 base
= get_base_address (ref
->mem
);
2200 if ((tree_could_trap_p (ref
->mem
)
2201 || (DECL_P (base
) && TREE_READONLY (base
)))
2202 && !ref_always_accessed_p (loop
, ref
, true))
2205 /* And it must be independent on all other memory references
2207 if (!ref_indep_loop_p (loop
, ref
))
2213 /* Marks the references in LOOP for that store motion should be performed
2214 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
2215 motion was performed in one of the outer loops. */
2218 find_refs_for_sm (struct loop
*loop
, bitmap sm_executed
, bitmap refs_to_sm
)
2220 bitmap refs
= VEC_index (bitmap
, memory_accesses
.all_refs_in_loop
,
2226 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs
, sm_executed
, 0, i
, bi
)
2228 ref
= VEC_index (mem_ref_p
, memory_accesses
.refs_list
, i
);
2229 if (can_sm_ref_p (loop
, ref
))
2230 bitmap_set_bit (refs_to_sm
, i
);
2234 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
2235 for a store motion optimization (i.e. whether we can insert statement
2239 loop_suitable_for_sm (struct loop
*loop ATTRIBUTE_UNUSED
,
2240 VEC (edge
, heap
) *exits
)
2245 FOR_EACH_VEC_ELT (edge
, exits
, i
, ex
)
2246 if (ex
->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
2252 /* Try to perform store motion for all memory references modified inside
2253 LOOP. SM_EXECUTED is the bitmap of the memory references for that
2254 store motion was executed in one of the outer loops. */
2257 store_motion_loop (struct loop
*loop
, bitmap sm_executed
)
2259 VEC (edge
, heap
) *exits
= get_loop_exit_edges (loop
);
2260 struct loop
*subloop
;
2261 bitmap sm_in_loop
= BITMAP_ALLOC (NULL
);
2263 if (loop_suitable_for_sm (loop
, exits
))
2265 find_refs_for_sm (loop
, sm_executed
, sm_in_loop
);
2266 hoist_memory_references (loop
, sm_in_loop
, exits
);
2268 VEC_free (edge
, heap
, exits
);
2270 bitmap_ior_into (sm_executed
, sm_in_loop
);
2271 for (subloop
= loop
->inner
; subloop
!= NULL
; subloop
= subloop
->next
)
2272 store_motion_loop (subloop
, sm_executed
);
2273 bitmap_and_compl_into (sm_executed
, sm_in_loop
);
2274 BITMAP_FREE (sm_in_loop
);
2277 /* Try to perform store motion for all memory references modified inside
2284 bitmap sm_executed
= BITMAP_ALLOC (NULL
);
2286 for (loop
= current_loops
->tree_root
->inner
; loop
!= NULL
; loop
= loop
->next
)
2287 store_motion_loop (loop
, sm_executed
);
2289 BITMAP_FREE (sm_executed
);
2290 gsi_commit_edge_inserts ();
2293 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
2294 for each such basic block bb records the outermost loop for that execution
2295 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
2296 blocks that contain a nonpure call. */
2299 fill_always_executed_in (struct loop
*loop
, sbitmap contains_call
)
2301 basic_block bb
= NULL
, *bbs
, last
= NULL
;
2304 struct loop
*inn_loop
= loop
;
2306 if (ALWAYS_EXECUTED_IN (loop
->header
) == NULL
)
2308 bbs
= get_loop_body_in_dom_order (loop
);
2310 for (i
= 0; i
< loop
->num_nodes
; i
++)
2315 if (dominated_by_p (CDI_DOMINATORS
, loop
->latch
, bb
))
2318 if (TEST_BIT (contains_call
, bb
->index
))
2321 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2322 if (!flow_bb_inside_loop_p (loop
, e
->dest
))
2327 /* A loop might be infinite (TODO use simple loop analysis
2328 to disprove this if possible). */
2329 if (bb
->flags
& BB_IRREDUCIBLE_LOOP
)
2332 if (!flow_bb_inside_loop_p (inn_loop
, bb
))
2335 if (bb
->loop_father
->header
== bb
)
2337 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, bb
))
2340 /* In a loop that is always entered we may proceed anyway.
2341 But record that we entered it and stop once we leave it. */
2342 inn_loop
= bb
->loop_father
;
2348 SET_ALWAYS_EXECUTED_IN (last
, loop
);
2349 if (last
== loop
->header
)
2351 last
= get_immediate_dominator (CDI_DOMINATORS
, last
);
2357 for (loop
= loop
->inner
; loop
; loop
= loop
->next
)
2358 fill_always_executed_in (loop
, contains_call
);
2361 /* Compute the global information needed by the loop invariant motion pass. */
2364 tree_ssa_lim_initialize (void)
2366 sbitmap contains_call
= sbitmap_alloc (last_basic_block
);
2367 gimple_stmt_iterator bsi
;
2371 sbitmap_zero (contains_call
);
2374 for (bsi
= gsi_start_bb (bb
); !gsi_end_p (bsi
); gsi_next (&bsi
))
2376 if (nonpure_call_p (gsi_stmt (bsi
)))
2380 if (!gsi_end_p (bsi
))
2381 SET_BIT (contains_call
, bb
->index
);
2384 for (loop
= current_loops
->tree_root
->inner
; loop
; loop
= loop
->next
)
2385 fill_always_executed_in (loop
, contains_call
);
2387 sbitmap_free (contains_call
);
2389 lim_aux_data_map
= pointer_map_create ();
2392 /* Cleans up after the invariant motion pass. */
2395 tree_ssa_lim_finalize (void)
2402 SET_ALWAYS_EXECUTED_IN (bb
, NULL
);
2404 pointer_map_destroy (lim_aux_data_map
);
2406 VEC_free (mem_ref_p
, heap
, memory_accesses
.refs_list
);
2407 htab_delete (memory_accesses
.refs
);
2409 FOR_EACH_VEC_ELT (bitmap
, memory_accesses
.refs_in_loop
, i
, b
)
2411 VEC_free (bitmap
, heap
, memory_accesses
.refs_in_loop
);
2413 FOR_EACH_VEC_ELT (bitmap
, memory_accesses
.all_refs_in_loop
, i
, b
)
2415 VEC_free (bitmap
, heap
, memory_accesses
.all_refs_in_loop
);
2417 FOR_EACH_VEC_ELT (bitmap
, memory_accesses
.all_refs_stored_in_loop
, i
, b
)
2419 VEC_free (bitmap
, heap
, memory_accesses
.all_refs_stored_in_loop
);
2421 if (memory_accesses
.ttae_cache
)
2422 pointer_map_destroy (memory_accesses
.ttae_cache
);
2425 /* Moves invariants from loops. Only "expensive" invariants are moved out --
2426 i.e. those that are likely to be win regardless of the register pressure. */
2433 tree_ssa_lim_initialize ();
2435 /* Gathers information about memory accesses in the loops. */
2436 analyze_memory_references ();
2438 /* For each statement determine the outermost loop in that it is
2439 invariant and cost for computing the invariant. */
2440 determine_invariantness ();
2442 /* Execute store motion. Force the necessary invariants to be moved
2443 out of the loops as well. */
2446 /* Move the expressions that are expensive enough. */
2447 todo
= move_computations ();
2449 tree_ssa_lim_finalize ();