1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987, 1988, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
25 #include "coretypes.h"
27 #include "rtl-error.h"
29 #include "insn-config.h"
30 #include "insn-attr.h"
31 #include "hard-reg-set.h"
34 #include "addresses.h"
38 #include "basic-block.h"
43 #include "tree-pass.h"
46 #ifndef STACK_PUSH_CODE
47 #ifdef STACK_GROWS_DOWNWARD
48 #define STACK_PUSH_CODE PRE_DEC
50 #define STACK_PUSH_CODE PRE_INC
54 #ifndef STACK_POP_CODE
55 #ifdef STACK_GROWS_DOWNWARD
56 #define STACK_POP_CODE POST_INC
58 #define STACK_POP_CODE POST_DEC
62 #ifndef HAVE_ATTR_enabled
64 get_attr_enabled (rtx insn ATTRIBUTE_UNUSED
)
70 static void validate_replace_rtx_1 (rtx
*, rtx
, rtx
, rtx
, bool);
71 static void validate_replace_src_1 (rtx
*, void *);
72 static rtx
split_insn (rtx
);
74 /* Nonzero means allow operands to be volatile.
75 This should be 0 if you are generating rtl, such as if you are calling
76 the functions in optabs.c and expmed.c (most of the time).
77 This should be 1 if all valid insns need to be recognized,
78 such as in reginfo.c and final.c and reload.c.
80 init_recog and init_recog_no_volatile are responsible for setting this. */
84 struct recog_data recog_data
;
86 /* Contains a vector of operand_alternative structures for every operand.
87 Set up by preprocess_constraints. */
88 struct operand_alternative recog_op_alt
[MAX_RECOG_OPERANDS
][MAX_RECOG_ALTERNATIVES
];
90 /* On return from `constrain_operands', indicate which alternative
93 int which_alternative
;
95 /* Nonzero after end of reload pass.
96 Set to 1 or 0 by toplev.c.
97 Controls the significance of (SUBREG (MEM)). */
101 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
102 int epilogue_completed
;
104 /* Initialize data used by the function `recog'.
105 This must be called once in the compilation of a function
106 before any insn recognition may be done in the function. */
109 init_recog_no_volatile (void)
121 /* Return true if labels in asm operands BODY are LABEL_REFs. */
124 asm_labels_ok (rtx body
)
129 asmop
= extract_asm_operands (body
);
130 if (asmop
== NULL_RTX
)
133 for (i
= 0; i
< ASM_OPERANDS_LABEL_LENGTH (asmop
); i
++)
134 if (GET_CODE (ASM_OPERANDS_LABEL (asmop
, i
)) != LABEL_REF
)
140 /* Check that X is an insn-body for an `asm' with operands
141 and that the operands mentioned in it are legitimate. */
144 check_asm_operands (rtx x
)
148 const char **constraints
;
151 if (!asm_labels_ok (x
))
154 /* Post-reload, be more strict with things. */
155 if (reload_completed
)
157 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
158 extract_insn (make_insn_raw (x
));
159 constrain_operands (1);
160 return which_alternative
>= 0;
163 noperands
= asm_noperands (x
);
169 operands
= XALLOCAVEC (rtx
, noperands
);
170 constraints
= XALLOCAVEC (const char *, noperands
);
172 decode_asm_operands (x
, operands
, NULL
, constraints
, NULL
, NULL
);
174 for (i
= 0; i
< noperands
; i
++)
176 const char *c
= constraints
[i
];
179 if (! asm_operand_ok (operands
[i
], c
, constraints
))
186 /* Static data for the next two routines. */
188 typedef struct change_t
197 static change_t
*changes
;
198 static int changes_allocated
;
200 static int num_changes
= 0;
202 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
203 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
204 the change is simply made.
206 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
207 will be called with the address and mode as parameters. If OBJECT is
208 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
211 IN_GROUP is nonzero if this is part of a group of changes that must be
212 performed as a group. In that case, the changes will be stored. The
213 function `apply_change_group' will validate and apply the changes.
215 If IN_GROUP is zero, this is a single change. Try to recognize the insn
216 or validate the memory reference with the change applied. If the result
217 is not valid for the machine, suppress the change and return zero.
218 Otherwise, perform the change and return 1. */
221 validate_change_1 (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
, bool unshare
)
225 if (old
== new_rtx
|| rtx_equal_p (old
, new_rtx
))
228 gcc_assert (in_group
!= 0 || num_changes
== 0);
232 /* Save the information describing this change. */
233 if (num_changes
>= changes_allocated
)
235 if (changes_allocated
== 0)
236 /* This value allows for repeated substitutions inside complex
237 indexed addresses, or changes in up to 5 insns. */
238 changes_allocated
= MAX_RECOG_OPERANDS
* 5;
240 changes_allocated
*= 2;
242 changes
= XRESIZEVEC (change_t
, changes
, changes_allocated
);
245 changes
[num_changes
].object
= object
;
246 changes
[num_changes
].loc
= loc
;
247 changes
[num_changes
].old
= old
;
248 changes
[num_changes
].unshare
= unshare
;
250 if (object
&& !MEM_P (object
))
252 /* Set INSN_CODE to force rerecognition of insn. Save old code in
254 changes
[num_changes
].old_code
= INSN_CODE (object
);
255 INSN_CODE (object
) = -1;
260 /* If we are making a group of changes, return 1. Otherwise, validate the
261 change group we made. */
266 return apply_change_group ();
269 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
273 validate_change (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
)
275 return validate_change_1 (object
, loc
, new_rtx
, in_group
, false);
278 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
282 validate_unshare_change (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
)
284 return validate_change_1 (object
, loc
, new_rtx
, in_group
, true);
288 /* Keep X canonicalized if some changes have made it non-canonical; only
289 modifies the operands of X, not (for example) its code. Simplifications
290 are not the job of this routine.
292 Return true if anything was changed. */
294 canonicalize_change_group (rtx insn
, rtx x
)
296 if (COMMUTATIVE_P (x
)
297 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
299 /* Oops, the caller has made X no longer canonical.
300 Let's redo the changes in the correct order. */
301 rtx tem
= XEXP (x
, 0);
302 validate_unshare_change (insn
, &XEXP (x
, 0), XEXP (x
, 1), 1);
303 validate_unshare_change (insn
, &XEXP (x
, 1), tem
, 1);
311 /* This subroutine of apply_change_group verifies whether the changes to INSN
312 were valid; i.e. whether INSN can still be recognized. */
315 insn_invalid_p (rtx insn
)
317 rtx pat
= PATTERN (insn
);
318 int num_clobbers
= 0;
319 /* If we are before reload and the pattern is a SET, see if we can add
321 int icode
= recog (pat
, insn
,
322 (GET_CODE (pat
) == SET
323 && ! reload_completed
&& ! reload_in_progress
)
324 ? &num_clobbers
: 0);
325 int is_asm
= icode
< 0 && asm_noperands (PATTERN (insn
)) >= 0;
328 /* If this is an asm and the operand aren't legal, then fail. Likewise if
329 this is not an asm and the insn wasn't recognized. */
330 if ((is_asm
&& ! check_asm_operands (PATTERN (insn
)))
331 || (!is_asm
&& icode
< 0))
334 /* If we have to add CLOBBERs, fail if we have to add ones that reference
335 hard registers since our callers can't know if they are live or not.
336 Otherwise, add them. */
337 if (num_clobbers
> 0)
341 if (added_clobbers_hard_reg_p (icode
))
344 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (num_clobbers
+ 1));
345 XVECEXP (newpat
, 0, 0) = pat
;
346 add_clobbers (newpat
, icode
);
347 PATTERN (insn
) = pat
= newpat
;
350 /* After reload, verify that all constraints are satisfied. */
351 if (reload_completed
)
355 if (! constrain_operands (1))
359 INSN_CODE (insn
) = icode
;
363 /* Return number of changes made and not validated yet. */
365 num_changes_pending (void)
370 /* Tentatively apply the changes numbered NUM and up.
371 Return 1 if all changes are valid, zero otherwise. */
374 verify_changes (int num
)
377 rtx last_validated
= NULL_RTX
;
379 /* The changes have been applied and all INSN_CODEs have been reset to force
382 The changes are valid if we aren't given an object, or if we are
383 given a MEM and it still is a valid address, or if this is in insn
384 and it is recognized. In the latter case, if reload has completed,
385 we also require that the operands meet the constraints for
388 for (i
= num
; i
< num_changes
; i
++)
390 rtx object
= changes
[i
].object
;
392 /* If there is no object to test or if it is the same as the one we
393 already tested, ignore it. */
394 if (object
== 0 || object
== last_validated
)
399 if (! memory_address_addr_space_p (GET_MODE (object
),
401 MEM_ADDR_SPACE (object
)))
404 else if (REG_P (changes
[i
].old
)
405 && asm_noperands (PATTERN (object
)) > 0
406 && REG_EXPR (changes
[i
].old
) != NULL_TREE
407 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes
[i
].old
))
408 && DECL_REGISTER (REG_EXPR (changes
[i
].old
)))
410 /* Don't allow changes of hard register operands to inline
411 assemblies if they have been defined as register asm ("x"). */
414 else if (DEBUG_INSN_P (object
))
416 else if (insn_invalid_p (object
))
418 rtx pat
= PATTERN (object
);
420 /* Perhaps we couldn't recognize the insn because there were
421 extra CLOBBERs at the end. If so, try to re-recognize
422 without the last CLOBBER (later iterations will cause each of
423 them to be eliminated, in turn). But don't do this if we
424 have an ASM_OPERAND. */
425 if (GET_CODE (pat
) == PARALLEL
426 && GET_CODE (XVECEXP (pat
, 0, XVECLEN (pat
, 0) - 1)) == CLOBBER
427 && asm_noperands (PATTERN (object
)) < 0)
431 if (XVECLEN (pat
, 0) == 2)
432 newpat
= XVECEXP (pat
, 0, 0);
438 = gen_rtx_PARALLEL (VOIDmode
,
439 rtvec_alloc (XVECLEN (pat
, 0) - 1));
440 for (j
= 0; j
< XVECLEN (newpat
, 0); j
++)
441 XVECEXP (newpat
, 0, j
) = XVECEXP (pat
, 0, j
);
444 /* Add a new change to this group to replace the pattern
445 with this new pattern. Then consider this change
446 as having succeeded. The change we added will
447 cause the entire call to fail if things remain invalid.
449 Note that this can lose if a later change than the one
450 we are processing specified &XVECEXP (PATTERN (object), 0, X)
451 but this shouldn't occur. */
453 validate_change (object
, &PATTERN (object
), newpat
, 1);
456 else if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
457 || GET_CODE (pat
) == VAR_LOCATION
)
458 /* If this insn is a CLOBBER or USE, it is always valid, but is
464 last_validated
= object
;
467 return (i
== num_changes
);
470 /* A group of changes has previously been issued with validate_change
471 and verified with verify_changes. Call df_insn_rescan for each of
472 the insn changed and clear num_changes. */
475 confirm_change_group (void)
478 rtx last_object
= NULL
;
480 for (i
= 0; i
< num_changes
; i
++)
482 rtx object
= changes
[i
].object
;
484 if (changes
[i
].unshare
)
485 *changes
[i
].loc
= copy_rtx (*changes
[i
].loc
);
487 /* Avoid unnecessary rescanning when multiple changes to same instruction
491 if (object
!= last_object
&& last_object
&& INSN_P (last_object
))
492 df_insn_rescan (last_object
);
493 last_object
= object
;
497 if (last_object
&& INSN_P (last_object
))
498 df_insn_rescan (last_object
);
502 /* Apply a group of changes previously issued with `validate_change'.
503 If all changes are valid, call confirm_change_group and return 1,
504 otherwise, call cancel_changes and return 0. */
507 apply_change_group (void)
509 if (verify_changes (0))
511 confirm_change_group ();
522 /* Return the number of changes so far in the current group. */
525 num_validated_changes (void)
530 /* Retract the changes numbered NUM and up. */
533 cancel_changes (int num
)
537 /* Back out all the changes. Do this in the opposite order in which
539 for (i
= num_changes
- 1; i
>= num
; i
--)
541 *changes
[i
].loc
= changes
[i
].old
;
542 if (changes
[i
].object
&& !MEM_P (changes
[i
].object
))
543 INSN_CODE (changes
[i
].object
) = changes
[i
].old_code
;
548 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
552 simplify_while_replacing (rtx
*loc
, rtx to
, rtx object
,
553 enum machine_mode op0_mode
)
556 enum rtx_code code
= GET_CODE (x
);
559 if (SWAPPABLE_OPERANDS_P (x
)
560 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
562 validate_unshare_change (object
, loc
,
563 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x
) ? code
564 : swap_condition (code
),
565 GET_MODE (x
), XEXP (x
, 1),
574 /* If we have a PLUS whose second operand is now a CONST_INT, use
575 simplify_gen_binary to try to simplify it.
576 ??? We may want later to remove this, once simplification is
577 separated from this function. */
578 if (CONST_INT_P (XEXP (x
, 1)) && XEXP (x
, 1) == to
)
579 validate_change (object
, loc
,
581 (PLUS
, GET_MODE (x
), XEXP (x
, 0), XEXP (x
, 1)), 1);
584 if (CONST_INT_P (XEXP (x
, 1))
585 || GET_CODE (XEXP (x
, 1)) == CONST_DOUBLE
)
586 validate_change (object
, loc
,
588 (PLUS
, GET_MODE (x
), XEXP (x
, 0),
589 simplify_gen_unary (NEG
,
590 GET_MODE (x
), XEXP (x
, 1),
595 if (GET_MODE (XEXP (x
, 0)) == VOIDmode
)
597 new_rtx
= simplify_gen_unary (code
, GET_MODE (x
), XEXP (x
, 0),
599 /* If any of the above failed, substitute in something that
600 we know won't be recognized. */
602 new_rtx
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
603 validate_change (object
, loc
, new_rtx
, 1);
607 /* All subregs possible to simplify should be simplified. */
608 new_rtx
= simplify_subreg (GET_MODE (x
), SUBREG_REG (x
), op0_mode
,
611 /* Subregs of VOIDmode operands are incorrect. */
612 if (!new_rtx
&& GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
613 new_rtx
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
615 validate_change (object
, loc
, new_rtx
, 1);
619 /* If we are replacing a register with memory, try to change the memory
620 to be the mode required for memory in extract operations (this isn't
621 likely to be an insertion operation; if it was, nothing bad will
622 happen, we might just fail in some cases). */
624 if (MEM_P (XEXP (x
, 0))
625 && CONST_INT_P (XEXP (x
, 1))
626 && CONST_INT_P (XEXP (x
, 2))
627 && !mode_dependent_address_p (XEXP (XEXP (x
, 0), 0))
628 && !MEM_VOLATILE_P (XEXP (x
, 0)))
630 enum machine_mode wanted_mode
= VOIDmode
;
631 enum machine_mode is_mode
= GET_MODE (XEXP (x
, 0));
632 int pos
= INTVAL (XEXP (x
, 2));
634 if (GET_CODE (x
) == ZERO_EXTRACT
)
636 enum machine_mode new_mode
637 = mode_for_extraction (EP_extzv
, 1);
638 if (new_mode
!= MAX_MACHINE_MODE
)
639 wanted_mode
= new_mode
;
641 else if (GET_CODE (x
) == SIGN_EXTRACT
)
643 enum machine_mode new_mode
644 = mode_for_extraction (EP_extv
, 1);
645 if (new_mode
!= MAX_MACHINE_MODE
)
646 wanted_mode
= new_mode
;
649 /* If we have a narrower mode, we can do something. */
650 if (wanted_mode
!= VOIDmode
651 && GET_MODE_SIZE (wanted_mode
) < GET_MODE_SIZE (is_mode
))
653 int offset
= pos
/ BITS_PER_UNIT
;
656 /* If the bytes and bits are counted differently, we
657 must adjust the offset. */
658 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
)
660 (GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (wanted_mode
) -
663 gcc_assert (GET_MODE_PRECISION (wanted_mode
)
664 == GET_MODE_BITSIZE (wanted_mode
));
665 pos
%= GET_MODE_BITSIZE (wanted_mode
);
667 newmem
= adjust_address_nv (XEXP (x
, 0), wanted_mode
, offset
);
669 validate_change (object
, &XEXP (x
, 2), GEN_INT (pos
), 1);
670 validate_change (object
, &XEXP (x
, 0), newmem
, 1);
681 /* Replace every occurrence of FROM in X with TO. Mark each change with
682 validate_change passing OBJECT. */
685 validate_replace_rtx_1 (rtx
*loc
, rtx from
, rtx to
, rtx object
,
692 enum machine_mode op0_mode
= VOIDmode
;
693 int prev_changes
= num_changes
;
699 fmt
= GET_RTX_FORMAT (code
);
701 op0_mode
= GET_MODE (XEXP (x
, 0));
703 /* X matches FROM if it is the same rtx or they are both referring to the
704 same register in the same mode. Avoid calling rtx_equal_p unless the
705 operands look similar. */
708 || (REG_P (x
) && REG_P (from
)
709 && GET_MODE (x
) == GET_MODE (from
)
710 && REGNO (x
) == REGNO (from
))
711 || (GET_CODE (x
) == GET_CODE (from
) && GET_MODE (x
) == GET_MODE (from
)
712 && rtx_equal_p (x
, from
)))
714 validate_unshare_change (object
, loc
, to
, 1);
718 /* Call ourself recursively to perform the replacements.
719 We must not replace inside already replaced expression, otherwise we
720 get infinite recursion for replacements like (reg X)->(subreg (reg X))
721 done by regmove, so we must special case shared ASM_OPERANDS. */
723 if (GET_CODE (x
) == PARALLEL
)
725 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
727 if (j
&& GET_CODE (XVECEXP (x
, 0, j
)) == SET
728 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == ASM_OPERANDS
)
730 /* Verify that operands are really shared. */
731 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x
, 0, 0)))
732 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
734 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x
, 0, j
)),
735 from
, to
, object
, simplify
);
738 validate_replace_rtx_1 (&XVECEXP (x
, 0, j
), from
, to
, object
,
743 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
746 validate_replace_rtx_1 (&XEXP (x
, i
), from
, to
, object
, simplify
);
747 else if (fmt
[i
] == 'E')
748 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
749 validate_replace_rtx_1 (&XVECEXP (x
, i
, j
), from
, to
, object
,
753 /* If we didn't substitute, there is nothing more to do. */
754 if (num_changes
== prev_changes
)
757 /* Allow substituted expression to have different mode. This is used by
758 regmove to change mode of pseudo register. */
759 if (fmt
[0] == 'e' && GET_MODE (XEXP (x
, 0)) != VOIDmode
)
760 op0_mode
= GET_MODE (XEXP (x
, 0));
762 /* Do changes needed to keep rtx consistent. Don't do any other
763 simplifications, as it is not our job. */
765 simplify_while_replacing (loc
, to
, object
, op0_mode
);
768 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
769 with TO. After all changes have been made, validate by seeing
770 if INSN is still valid. */
773 validate_replace_rtx_subexp (rtx from
, rtx to
, rtx insn
, rtx
*loc
)
775 validate_replace_rtx_1 (loc
, from
, to
, insn
, true);
776 return apply_change_group ();
779 /* Try replacing every occurrence of FROM in INSN with TO. After all
780 changes have been made, validate by seeing if INSN is still valid. */
783 validate_replace_rtx (rtx from
, rtx to
, rtx insn
)
785 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
, true);
786 return apply_change_group ();
789 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
790 is a part of INSN. After all changes have been made, validate by seeing if
792 validate_replace_rtx (from, to, insn) is equivalent to
793 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
796 validate_replace_rtx_part (rtx from
, rtx to
, rtx
*where
, rtx insn
)
798 validate_replace_rtx_1 (where
, from
, to
, insn
, true);
799 return apply_change_group ();
802 /* Same as above, but do not simplify rtx afterwards. */
804 validate_replace_rtx_part_nosimplify (rtx from
, rtx to
, rtx
*where
,
807 validate_replace_rtx_1 (where
, from
, to
, insn
, false);
808 return apply_change_group ();
812 /* Try replacing every occurrence of FROM in INSN with TO. This also
813 will replace in REG_EQUAL and REG_EQUIV notes. */
816 validate_replace_rtx_group (rtx from
, rtx to
, rtx insn
)
819 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
, true);
820 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
821 if (REG_NOTE_KIND (note
) == REG_EQUAL
822 || REG_NOTE_KIND (note
) == REG_EQUIV
)
823 validate_replace_rtx_1 (&XEXP (note
, 0), from
, to
, insn
, true);
826 /* Function called by note_uses to replace used subexpressions. */
827 struct validate_replace_src_data
829 rtx from
; /* Old RTX */
830 rtx to
; /* New RTX */
831 rtx insn
; /* Insn in which substitution is occurring. */
835 validate_replace_src_1 (rtx
*x
, void *data
)
837 struct validate_replace_src_data
*d
838 = (struct validate_replace_src_data
*) data
;
840 validate_replace_rtx_1 (x
, d
->from
, d
->to
, d
->insn
, true);
843 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
847 validate_replace_src_group (rtx from
, rtx to
, rtx insn
)
849 struct validate_replace_src_data d
;
854 note_uses (&PATTERN (insn
), validate_replace_src_1
, &d
);
857 /* Try simplify INSN.
858 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
859 pattern and return true if something was simplified. */
862 validate_simplify_insn (rtx insn
)
868 pat
= PATTERN (insn
);
870 if (GET_CODE (pat
) == SET
)
872 newpat
= simplify_rtx (SET_SRC (pat
));
873 if (newpat
&& !rtx_equal_p (SET_SRC (pat
), newpat
))
874 validate_change (insn
, &SET_SRC (pat
), newpat
, 1);
875 newpat
= simplify_rtx (SET_DEST (pat
));
876 if (newpat
&& !rtx_equal_p (SET_DEST (pat
), newpat
))
877 validate_change (insn
, &SET_DEST (pat
), newpat
, 1);
879 else if (GET_CODE (pat
) == PARALLEL
)
880 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
882 rtx s
= XVECEXP (pat
, 0, i
);
884 if (GET_CODE (XVECEXP (pat
, 0, i
)) == SET
)
886 newpat
= simplify_rtx (SET_SRC (s
));
887 if (newpat
&& !rtx_equal_p (SET_SRC (s
), newpat
))
888 validate_change (insn
, &SET_SRC (s
), newpat
, 1);
889 newpat
= simplify_rtx (SET_DEST (s
));
890 if (newpat
&& !rtx_equal_p (SET_DEST (s
), newpat
))
891 validate_change (insn
, &SET_DEST (s
), newpat
, 1);
894 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
898 /* Return 1 if the insn using CC0 set by INSN does not contain
899 any ordered tests applied to the condition codes.
900 EQ and NE tests do not count. */
903 next_insn_tests_no_inequality (rtx insn
)
905 rtx next
= next_cc0_user (insn
);
907 /* If there is no next insn, we have to take the conservative choice. */
911 return (INSN_P (next
)
912 && ! inequality_comparisons_p (PATTERN (next
)));
916 /* Return 1 if OP is a valid general operand for machine mode MODE.
917 This is either a register reference, a memory reference,
918 or a constant. In the case of a memory reference, the address
919 is checked for general validity for the target machine.
921 Register and memory references must have mode MODE in order to be valid,
922 but some constants have no machine mode and are valid for any mode.
924 If MODE is VOIDmode, OP is checked for validity for whatever mode
927 The main use of this function is as a predicate in match_operand
928 expressions in the machine description. */
931 general_operand (rtx op
, enum machine_mode mode
)
933 enum rtx_code code
= GET_CODE (op
);
935 if (mode
== VOIDmode
)
936 mode
= GET_MODE (op
);
938 /* Don't accept CONST_INT or anything similar
939 if the caller wants something floating. */
940 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
941 && GET_MODE_CLASS (mode
) != MODE_INT
942 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
947 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
951 return ((GET_MODE (op
) == VOIDmode
|| GET_MODE (op
) == mode
953 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
954 && targetm
.legitimate_constant_p (mode
== VOIDmode
958 /* Except for certain constants with VOIDmode, already checked for,
959 OP's mode must match MODE if MODE specifies a mode. */
961 if (GET_MODE (op
) != mode
)
966 rtx sub
= SUBREG_REG (op
);
968 #ifdef INSN_SCHEDULING
969 /* On machines that have insn scheduling, we want all memory
970 reference to be explicit, so outlaw paradoxical SUBREGs.
971 However, we must allow them after reload so that they can
972 get cleaned up by cleanup_subreg_operands. */
973 if (!reload_completed
&& MEM_P (sub
)
974 && GET_MODE_SIZE (mode
) > GET_MODE_SIZE (GET_MODE (sub
)))
977 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
978 may result in incorrect reference. We should simplify all valid
979 subregs of MEM anyway. But allow this after reload because we
980 might be called from cleanup_subreg_operands.
982 ??? This is a kludge. */
983 if (!reload_completed
&& SUBREG_BYTE (op
) != 0
987 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
988 create such rtl, and we must reject it. */
989 if (SCALAR_FLOAT_MODE_P (GET_MODE (op
))
990 && GET_MODE_SIZE (GET_MODE (op
)) > GET_MODE_SIZE (GET_MODE (sub
)))
994 code
= GET_CODE (op
);
998 return (REGNO (op
) >= FIRST_PSEUDO_REGISTER
999 || in_hard_reg_set_p (operand_reg_set
, GET_MODE (op
), REGNO (op
)));
1003 rtx y
= XEXP (op
, 0);
1005 if (! volatile_ok
&& MEM_VOLATILE_P (op
))
1008 /* Use the mem's mode, since it will be reloaded thus. */
1009 if (memory_address_addr_space_p (GET_MODE (op
), y
, MEM_ADDR_SPACE (op
)))
1016 /* Return 1 if OP is a valid memory address for a memory reference
1019 The main use of this function is as a predicate in match_operand
1020 expressions in the machine description. */
1023 address_operand (rtx op
, enum machine_mode mode
)
1025 return memory_address_p (mode
, op
);
1028 /* Return 1 if OP is a register reference of mode MODE.
1029 If MODE is VOIDmode, accept a register in any mode.
1031 The main use of this function is as a predicate in match_operand
1032 expressions in the machine description. */
1035 register_operand (rtx op
, enum machine_mode mode
)
1037 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1040 if (GET_CODE (op
) == SUBREG
)
1042 rtx sub
= SUBREG_REG (op
);
1044 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1045 because it is guaranteed to be reloaded into one.
1046 Just make sure the MEM is valid in itself.
1047 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1048 but currently it does result from (SUBREG (REG)...) where the
1049 reg went on the stack.) */
1050 if (! reload_completed
&& MEM_P (sub
))
1051 return general_operand (op
, mode
);
1053 #ifdef CANNOT_CHANGE_MODE_CLASS
1055 && REGNO (sub
) < FIRST_PSEUDO_REGISTER
1056 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub
), GET_MODE (sub
), mode
)
1057 && GET_MODE_CLASS (GET_MODE (sub
)) != MODE_COMPLEX_INT
1058 && GET_MODE_CLASS (GET_MODE (sub
)) != MODE_COMPLEX_FLOAT
)
1062 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1063 create such rtl, and we must reject it. */
1064 if (SCALAR_FLOAT_MODE_P (GET_MODE (op
))
1065 && GET_MODE_SIZE (GET_MODE (op
)) > GET_MODE_SIZE (GET_MODE (sub
)))
1072 && (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1073 || in_hard_reg_set_p (operand_reg_set
,
1074 GET_MODE (op
), REGNO (op
))));
1077 /* Return 1 for a register in Pmode; ignore the tested mode. */
1080 pmode_register_operand (rtx op
, enum machine_mode mode ATTRIBUTE_UNUSED
)
1082 return register_operand (op
, Pmode
);
1085 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1086 or a hard register. */
1089 scratch_operand (rtx op
, enum machine_mode mode
)
1091 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1094 return (GET_CODE (op
) == SCRATCH
1096 && REGNO (op
) < FIRST_PSEUDO_REGISTER
));
1099 /* Return 1 if OP is a valid immediate operand for mode MODE.
1101 The main use of this function is as a predicate in match_operand
1102 expressions in the machine description. */
1105 immediate_operand (rtx op
, enum machine_mode mode
)
1107 /* Don't accept CONST_INT or anything similar
1108 if the caller wants something floating. */
1109 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1110 && GET_MODE_CLASS (mode
) != MODE_INT
1111 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1114 if (CONST_INT_P (op
)
1116 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1119 return (CONSTANT_P (op
)
1120 && (GET_MODE (op
) == mode
|| mode
== VOIDmode
1121 || GET_MODE (op
) == VOIDmode
)
1122 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1123 && targetm
.legitimate_constant_p (mode
== VOIDmode
1128 /* Returns 1 if OP is an operand that is a CONST_INT. */
1131 const_int_operand (rtx op
, enum machine_mode mode
)
1133 if (!CONST_INT_P (op
))
1136 if (mode
!= VOIDmode
1137 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1143 /* Returns 1 if OP is an operand that is a constant integer or constant
1144 floating-point number. */
1147 const_double_operand (rtx op
, enum machine_mode mode
)
1149 /* Don't accept CONST_INT or anything similar
1150 if the caller wants something floating. */
1151 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1152 && GET_MODE_CLASS (mode
) != MODE_INT
1153 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1156 return ((GET_CODE (op
) == CONST_DOUBLE
|| CONST_INT_P (op
))
1157 && (mode
== VOIDmode
|| GET_MODE (op
) == mode
1158 || GET_MODE (op
) == VOIDmode
));
1161 /* Return 1 if OP is a general operand that is not an immediate operand. */
1164 nonimmediate_operand (rtx op
, enum machine_mode mode
)
1166 return (general_operand (op
, mode
) && ! CONSTANT_P (op
));
1169 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1172 nonmemory_operand (rtx op
, enum machine_mode mode
)
1174 if (CONSTANT_P (op
))
1175 return immediate_operand (op
, mode
);
1177 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1180 if (GET_CODE (op
) == SUBREG
)
1182 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1183 because it is guaranteed to be reloaded into one.
1184 Just make sure the MEM is valid in itself.
1185 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1186 but currently it does result from (SUBREG (REG)...) where the
1187 reg went on the stack.) */
1188 if (! reload_completed
&& MEM_P (SUBREG_REG (op
)))
1189 return general_operand (op
, mode
);
1190 op
= SUBREG_REG (op
);
1194 && (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1195 || in_hard_reg_set_p (operand_reg_set
,
1196 GET_MODE (op
), REGNO (op
))));
1199 /* Return 1 if OP is a valid operand that stands for pushing a
1200 value of mode MODE onto the stack.
1202 The main use of this function is as a predicate in match_operand
1203 expressions in the machine description. */
1206 push_operand (rtx op
, enum machine_mode mode
)
1208 unsigned int rounded_size
= GET_MODE_SIZE (mode
);
1210 #ifdef PUSH_ROUNDING
1211 rounded_size
= PUSH_ROUNDING (rounded_size
);
1217 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1222 if (rounded_size
== GET_MODE_SIZE (mode
))
1224 if (GET_CODE (op
) != STACK_PUSH_CODE
)
1229 if (GET_CODE (op
) != PRE_MODIFY
1230 || GET_CODE (XEXP (op
, 1)) != PLUS
1231 || XEXP (XEXP (op
, 1), 0) != XEXP (op
, 0)
1232 || !CONST_INT_P (XEXP (XEXP (op
, 1), 1))
1233 #ifdef STACK_GROWS_DOWNWARD
1234 || INTVAL (XEXP (XEXP (op
, 1), 1)) != - (int) rounded_size
1236 || INTVAL (XEXP (XEXP (op
, 1), 1)) != (int) rounded_size
1242 return XEXP (op
, 0) == stack_pointer_rtx
;
1245 /* Return 1 if OP is a valid operand that stands for popping a
1246 value of mode MODE off the stack.
1248 The main use of this function is as a predicate in match_operand
1249 expressions in the machine description. */
1252 pop_operand (rtx op
, enum machine_mode mode
)
1257 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1262 if (GET_CODE (op
) != STACK_POP_CODE
)
1265 return XEXP (op
, 0) == stack_pointer_rtx
;
1268 /* Return 1 if ADDR is a valid memory address
1269 for mode MODE in address space AS. */
1272 memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED
,
1273 rtx addr
, addr_space_t as
)
1275 #ifdef GO_IF_LEGITIMATE_ADDRESS
1276 gcc_assert (ADDR_SPACE_GENERIC_P (as
));
1277 GO_IF_LEGITIMATE_ADDRESS (mode
, addr
, win
);
1283 return targetm
.addr_space
.legitimate_address_p (mode
, addr
, 0, as
);
1287 /* Return 1 if OP is a valid memory reference with mode MODE,
1288 including a valid address.
1290 The main use of this function is as a predicate in match_operand
1291 expressions in the machine description. */
1294 memory_operand (rtx op
, enum machine_mode mode
)
1298 if (! reload_completed
)
1299 /* Note that no SUBREG is a memory operand before end of reload pass,
1300 because (SUBREG (MEM...)) forces reloading into a register. */
1301 return MEM_P (op
) && general_operand (op
, mode
);
1303 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1307 if (GET_CODE (inner
) == SUBREG
)
1308 inner
= SUBREG_REG (inner
);
1310 return (MEM_P (inner
) && general_operand (op
, mode
));
1313 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1314 that is, a memory reference whose address is a general_operand. */
1317 indirect_operand (rtx op
, enum machine_mode mode
)
1319 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1320 if (! reload_completed
1321 && GET_CODE (op
) == SUBREG
&& MEM_P (SUBREG_REG (op
)))
1323 int offset
= SUBREG_BYTE (op
);
1324 rtx inner
= SUBREG_REG (op
);
1326 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1329 /* The only way that we can have a general_operand as the resulting
1330 address is if OFFSET is zero and the address already is an operand
1331 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1334 return ((offset
== 0 && general_operand (XEXP (inner
, 0), Pmode
))
1335 || (GET_CODE (XEXP (inner
, 0)) == PLUS
1336 && CONST_INT_P (XEXP (XEXP (inner
, 0), 1))
1337 && INTVAL (XEXP (XEXP (inner
, 0), 1)) == -offset
1338 && general_operand (XEXP (XEXP (inner
, 0), 0), Pmode
)));
1342 && memory_operand (op
, mode
)
1343 && general_operand (XEXP (op
, 0), Pmode
));
1346 /* Return 1 if this is an ordered comparison operator (not including
1347 ORDERED and UNORDERED). */
1350 ordered_comparison_operator (rtx op
, enum machine_mode mode
)
1352 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1354 switch (GET_CODE (op
))
1372 /* Return 1 if this is a comparison operator. This allows the use of
1373 MATCH_OPERATOR to recognize all the branch insns. */
1376 comparison_operator (rtx op
, enum machine_mode mode
)
1378 return ((mode
== VOIDmode
|| GET_MODE (op
) == mode
)
1379 && COMPARISON_P (op
));
1382 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1385 extract_asm_operands (rtx body
)
1388 switch (GET_CODE (body
))
1394 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1395 tmp
= SET_SRC (body
);
1396 if (GET_CODE (tmp
) == ASM_OPERANDS
)
1401 tmp
= XVECEXP (body
, 0, 0);
1402 if (GET_CODE (tmp
) == ASM_OPERANDS
)
1404 if (GET_CODE (tmp
) == SET
)
1406 tmp
= SET_SRC (tmp
);
1407 if (GET_CODE (tmp
) == ASM_OPERANDS
)
1418 /* If BODY is an insn body that uses ASM_OPERANDS,
1419 return the number of operands (both input and output) in the insn.
1420 Otherwise return -1. */
1423 asm_noperands (const_rtx body
)
1425 rtx asm_op
= extract_asm_operands (CONST_CAST_RTX (body
));
1431 if (GET_CODE (body
) == SET
)
1433 else if (GET_CODE (body
) == PARALLEL
)
1436 if (GET_CODE (XVECEXP (body
, 0, 0)) == SET
)
1438 /* Multiple output operands, or 1 output plus some clobbers:
1440 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1441 /* Count backwards through CLOBBERs to determine number of SETs. */
1442 for (i
= XVECLEN (body
, 0); i
> 0; i
--)
1444 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) == SET
)
1446 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) != CLOBBER
)
1450 /* N_SETS is now number of output operands. */
1453 /* Verify that all the SETs we have
1454 came from a single original asm_operands insn
1455 (so that invalid combinations are blocked). */
1456 for (i
= 0; i
< n_sets
; i
++)
1458 rtx elt
= XVECEXP (body
, 0, i
);
1459 if (GET_CODE (elt
) != SET
)
1461 if (GET_CODE (SET_SRC (elt
)) != ASM_OPERANDS
)
1463 /* If these ASM_OPERANDS rtx's came from different original insns
1464 then they aren't allowed together. */
1465 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt
))
1466 != ASM_OPERANDS_INPUT_VEC (asm_op
))
1472 /* 0 outputs, but some clobbers:
1473 body is [(asm_operands ...) (clobber (reg ...))...]. */
1474 /* Make sure all the other parallel things really are clobbers. */
1475 for (i
= XVECLEN (body
, 0) - 1; i
> 0; i
--)
1476 if (GET_CODE (XVECEXP (body
, 0, i
)) != CLOBBER
)
1481 return (ASM_OPERANDS_INPUT_LENGTH (asm_op
)
1482 + ASM_OPERANDS_LABEL_LENGTH (asm_op
) + n_sets
);
1485 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1486 copy its operands (both input and output) into the vector OPERANDS,
1487 the locations of the operands within the insn into the vector OPERAND_LOCS,
1488 and the constraints for the operands into CONSTRAINTS.
1489 Write the modes of the operands into MODES.
1490 Return the assembler-template.
1492 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1493 we don't store that info. */
1496 decode_asm_operands (rtx body
, rtx
*operands
, rtx
**operand_locs
,
1497 const char **constraints
, enum machine_mode
*modes
,
1500 int nbase
= 0, n
, i
;
1503 switch (GET_CODE (body
))
1506 /* Zero output asm: BODY is (asm_operands ...). */
1511 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1512 asmop
= SET_SRC (body
);
1514 /* The output is in the SET.
1515 Its constraint is in the ASM_OPERANDS itself. */
1517 operands
[0] = SET_DEST (body
);
1519 operand_locs
[0] = &SET_DEST (body
);
1521 constraints
[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop
);
1523 modes
[0] = GET_MODE (SET_DEST (body
));
1529 int nparallel
= XVECLEN (body
, 0); /* Includes CLOBBERs. */
1531 asmop
= XVECEXP (body
, 0, 0);
1532 if (GET_CODE (asmop
) == SET
)
1534 asmop
= SET_SRC (asmop
);
1536 /* At least one output, plus some CLOBBERs. The outputs are in
1537 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1538 for (i
= 0; i
< nparallel
; i
++)
1540 if (GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
1541 break; /* Past last SET */
1543 operands
[i
] = SET_DEST (XVECEXP (body
, 0, i
));
1545 operand_locs
[i
] = &SET_DEST (XVECEXP (body
, 0, i
));
1547 constraints
[i
] = XSTR (SET_SRC (XVECEXP (body
, 0, i
)), 1);
1549 modes
[i
] = GET_MODE (SET_DEST (XVECEXP (body
, 0, i
)));
1560 n
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
1561 for (i
= 0; i
< n
; i
++)
1564 operand_locs
[nbase
+ i
] = &ASM_OPERANDS_INPUT (asmop
, i
);
1566 operands
[nbase
+ i
] = ASM_OPERANDS_INPUT (asmop
, i
);
1568 constraints
[nbase
+ i
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
);
1570 modes
[nbase
+ i
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
);
1574 n
= ASM_OPERANDS_LABEL_LENGTH (asmop
);
1575 for (i
= 0; i
< n
; i
++)
1578 operand_locs
[nbase
+ i
] = &ASM_OPERANDS_LABEL (asmop
, i
);
1580 operands
[nbase
+ i
] = ASM_OPERANDS_LABEL (asmop
, i
);
1582 constraints
[nbase
+ i
] = "";
1584 modes
[nbase
+ i
] = Pmode
;
1588 *loc
= ASM_OPERANDS_SOURCE_LOCATION (asmop
);
1590 return ASM_OPERANDS_TEMPLATE (asmop
);
1593 /* Check if an asm_operand matches its constraints.
1594 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1597 asm_operand_ok (rtx op
, const char *constraint
, const char **constraints
)
1601 bool incdec_ok
= false;
1604 /* Use constrain_operands after reload. */
1605 gcc_assert (!reload_completed
);
1607 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1608 many alternatives as required to match the other operands. */
1609 if (*constraint
== '\0')
1614 char c
= *constraint
;
1631 case '0': case '1': case '2': case '3': case '4':
1632 case '5': case '6': case '7': case '8': case '9':
1633 /* If caller provided constraints pointer, look up
1634 the maching constraint. Otherwise, our caller should have
1635 given us the proper matching constraint, but we can't
1636 actually fail the check if they didn't. Indicate that
1637 results are inconclusive. */
1641 unsigned long match
;
1643 match
= strtoul (constraint
, &end
, 10);
1645 result
= asm_operand_ok (op
, constraints
[match
], NULL
);
1646 constraint
= (const char *) end
;
1652 while (ISDIGIT (*constraint
));
1659 if (address_operand (op
, VOIDmode
))
1663 case TARGET_MEM_CONSTRAINT
:
1664 case 'V': /* non-offsettable */
1665 if (memory_operand (op
, VOIDmode
))
1669 case 'o': /* offsettable */
1670 if (offsettable_nonstrict_memref_p (op
))
1675 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed to exist,
1676 excepting those that expand_call created. Further, on some
1677 machines which do not have generalized auto inc/dec, an inc/dec
1678 is not a memory_operand.
1680 Match any memory and hope things are resolved after reload. */
1684 || GET_CODE (XEXP (op
, 0)) == PRE_DEC
1685 || GET_CODE (XEXP (op
, 0)) == POST_DEC
))
1695 || GET_CODE (XEXP (op
, 0)) == PRE_INC
1696 || GET_CODE (XEXP (op
, 0)) == POST_INC
))
1705 if (GET_CODE (op
) == CONST_DOUBLE
1706 || (GET_CODE (op
) == CONST_VECTOR
1707 && GET_MODE_CLASS (GET_MODE (op
)) == MODE_VECTOR_FLOAT
))
1712 if (GET_CODE (op
) == CONST_DOUBLE
1713 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, 'G', constraint
))
1717 if (GET_CODE (op
) == CONST_DOUBLE
1718 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, 'H', constraint
))
1723 if (CONST_INT_P (op
)
1724 || (GET_CODE (op
) == CONST_DOUBLE
1725 && GET_MODE (op
) == VOIDmode
))
1730 if (CONSTANT_P (op
) && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
)))
1735 if (CONST_INT_P (op
)
1736 || (GET_CODE (op
) == CONST_DOUBLE
1737 && GET_MODE (op
) == VOIDmode
))
1742 if (CONST_INT_P (op
)
1743 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'I', constraint
))
1747 if (CONST_INT_P (op
)
1748 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'J', constraint
))
1752 if (CONST_INT_P (op
)
1753 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'K', constraint
))
1757 if (CONST_INT_P (op
)
1758 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'L', constraint
))
1762 if (CONST_INT_P (op
)
1763 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'M', constraint
))
1767 if (CONST_INT_P (op
)
1768 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'N', constraint
))
1772 if (CONST_INT_P (op
)
1773 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'O', constraint
))
1777 if (CONST_INT_P (op
)
1778 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'P', constraint
))
1787 if (general_operand (op
, VOIDmode
))
1792 /* For all other letters, we first check for a register class,
1793 otherwise it is an EXTRA_CONSTRAINT. */
1794 if (REG_CLASS_FROM_CONSTRAINT (c
, constraint
) != NO_REGS
)
1797 if (GET_MODE (op
) == BLKmode
)
1799 if (register_operand (op
, VOIDmode
))
1802 #ifdef EXTRA_CONSTRAINT_STR
1803 else if (EXTRA_MEMORY_CONSTRAINT (c
, constraint
))
1804 /* Every memory operand can be reloaded to fit. */
1805 result
= result
|| memory_operand (op
, VOIDmode
);
1806 else if (EXTRA_ADDRESS_CONSTRAINT (c
, constraint
))
1807 /* Every address operand can be reloaded to fit. */
1808 result
= result
|| address_operand (op
, VOIDmode
);
1809 else if (EXTRA_CONSTRAINT_STR (op
, c
, constraint
))
1814 len
= CONSTRAINT_LEN (c
, constraint
);
1817 while (--len
&& *constraint
);
1823 /* For operands without < or > constraints reject side-effects. */
1824 if (!incdec_ok
&& result
&& MEM_P (op
))
1825 switch (GET_CODE (XEXP (op
, 0)))
1842 /* Given an rtx *P, if it is a sum containing an integer constant term,
1843 return the location (type rtx *) of the pointer to that constant term.
1844 Otherwise, return a null pointer. */
1847 find_constant_term_loc (rtx
*p
)
1850 enum rtx_code code
= GET_CODE (*p
);
1852 /* If *P IS such a constant term, P is its location. */
1854 if (code
== CONST_INT
|| code
== SYMBOL_REF
|| code
== LABEL_REF
1858 /* Otherwise, if not a sum, it has no constant term. */
1860 if (GET_CODE (*p
) != PLUS
)
1863 /* If one of the summands is constant, return its location. */
1865 if (XEXP (*p
, 0) && CONSTANT_P (XEXP (*p
, 0))
1866 && XEXP (*p
, 1) && CONSTANT_P (XEXP (*p
, 1)))
1869 /* Otherwise, check each summand for containing a constant term. */
1871 if (XEXP (*p
, 0) != 0)
1873 tem
= find_constant_term_loc (&XEXP (*p
, 0));
1878 if (XEXP (*p
, 1) != 0)
1880 tem
= find_constant_term_loc (&XEXP (*p
, 1));
1888 /* Return 1 if OP is a memory reference
1889 whose address contains no side effects
1890 and remains valid after the addition
1891 of a positive integer less than the
1892 size of the object being referenced.
1894 We assume that the original address is valid and do not check it.
1896 This uses strict_memory_address_p as a subroutine, so
1897 don't use it before reload. */
1900 offsettable_memref_p (rtx op
)
1902 return ((MEM_P (op
))
1903 && offsettable_address_addr_space_p (1, GET_MODE (op
), XEXP (op
, 0),
1904 MEM_ADDR_SPACE (op
)));
1907 /* Similar, but don't require a strictly valid mem ref:
1908 consider pseudo-regs valid as index or base regs. */
1911 offsettable_nonstrict_memref_p (rtx op
)
1913 return ((MEM_P (op
))
1914 && offsettable_address_addr_space_p (0, GET_MODE (op
), XEXP (op
, 0),
1915 MEM_ADDR_SPACE (op
)));
1918 /* Return 1 if Y is a memory address which contains no side effects
1919 and would remain valid for address space AS after the addition of
1920 a positive integer less than the size of that mode.
1922 We assume that the original address is valid and do not check it.
1923 We do check that it is valid for narrower modes.
1925 If STRICTP is nonzero, we require a strictly valid address,
1926 for the sake of use in reload.c. */
1929 offsettable_address_addr_space_p (int strictp
, enum machine_mode mode
, rtx y
,
1932 enum rtx_code ycode
= GET_CODE (y
);
1936 int (*addressp
) (enum machine_mode
, rtx
, addr_space_t
) =
1937 (strictp
? strict_memory_address_addr_space_p
1938 : memory_address_addr_space_p
);
1939 unsigned int mode_sz
= GET_MODE_SIZE (mode
);
1941 if (CONSTANT_ADDRESS_P (y
))
1944 /* Adjusting an offsettable address involves changing to a narrower mode.
1945 Make sure that's OK. */
1947 if (mode_dependent_address_p (y
))
1950 /* ??? How much offset does an offsettable BLKmode reference need?
1951 Clearly that depends on the situation in which it's being used.
1952 However, the current situation in which we test 0xffffffff is
1953 less than ideal. Caveat user. */
1955 mode_sz
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
1957 /* If the expression contains a constant term,
1958 see if it remains valid when max possible offset is added. */
1960 if ((ycode
== PLUS
) && (y2
= find_constant_term_loc (&y1
)))
1965 *y2
= plus_constant (*y2
, mode_sz
- 1);
1966 /* Use QImode because an odd displacement may be automatically invalid
1967 for any wider mode. But it should be valid for a single byte. */
1968 good
= (*addressp
) (QImode
, y
, as
);
1970 /* In any case, restore old contents of memory. */
1975 if (GET_RTX_CLASS (ycode
) == RTX_AUTOINC
)
1978 /* The offset added here is chosen as the maximum offset that
1979 any instruction could need to add when operating on something
1980 of the specified mode. We assume that if Y and Y+c are
1981 valid addresses then so is Y+d for all 0<d<c. adjust_address will
1982 go inside a LO_SUM here, so we do so as well. */
1983 if (GET_CODE (y
) == LO_SUM
1985 && mode_sz
<= GET_MODE_ALIGNMENT (mode
) / BITS_PER_UNIT
)
1986 z
= gen_rtx_LO_SUM (GET_MODE (y
), XEXP (y
, 0),
1987 plus_constant (XEXP (y
, 1), mode_sz
- 1));
1989 z
= plus_constant (y
, mode_sz
- 1);
1991 /* Use QImode because an odd displacement may be automatically invalid
1992 for any wider mode. But it should be valid for a single byte. */
1993 return (*addressp
) (QImode
, z
, as
);
1996 /* Return 1 if ADDR is an address-expression whose effect depends
1997 on the mode of the memory reference it is used in.
1999 Autoincrement addressing is a typical example of mode-dependence
2000 because the amount of the increment depends on the mode. */
2003 mode_dependent_address_p (rtx addr
)
2005 /* Auto-increment addressing with anything other than post_modify
2006 or pre_modify always introduces a mode dependency. Catch such
2007 cases now instead of deferring to the target. */
2008 if (GET_CODE (addr
) == PRE_INC
2009 || GET_CODE (addr
) == POST_INC
2010 || GET_CODE (addr
) == PRE_DEC
2011 || GET_CODE (addr
) == POST_DEC
)
2014 return targetm
.mode_dependent_address_p (addr
);
2017 /* Like extract_insn, but save insn extracted and don't extract again, when
2018 called again for the same insn expecting that recog_data still contain the
2019 valid information. This is used primary by gen_attr infrastructure that
2020 often does extract insn again and again. */
2022 extract_insn_cached (rtx insn
)
2024 if (recog_data
.insn
== insn
&& INSN_CODE (insn
) >= 0)
2026 extract_insn (insn
);
2027 recog_data
.insn
= insn
;
2030 /* Do cached extract_insn, constrain_operands and complain about failures.
2031 Used by insn_attrtab. */
2033 extract_constrain_insn_cached (rtx insn
)
2035 extract_insn_cached (insn
);
2036 if (which_alternative
== -1
2037 && !constrain_operands (reload_completed
))
2038 fatal_insn_not_found (insn
);
2041 /* Do cached constrain_operands and complain about failures. */
2043 constrain_operands_cached (int strict
)
2045 if (which_alternative
== -1)
2046 return constrain_operands (strict
);
2051 /* Analyze INSN and fill in recog_data. */
2054 extract_insn (rtx insn
)
2059 rtx body
= PATTERN (insn
);
2061 recog_data
.n_operands
= 0;
2062 recog_data
.n_alternatives
= 0;
2063 recog_data
.n_dups
= 0;
2064 recog_data
.is_asm
= false;
2066 switch (GET_CODE (body
))
2077 if (GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
2082 if ((GET_CODE (XVECEXP (body
, 0, 0)) == SET
2083 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) == ASM_OPERANDS
)
2084 || GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
)
2090 recog_data
.n_operands
= noperands
= asm_noperands (body
);
2093 /* This insn is an `asm' with operands. */
2095 /* expand_asm_operands makes sure there aren't too many operands. */
2096 gcc_assert (noperands
<= MAX_RECOG_OPERANDS
);
2098 /* Now get the operand values and constraints out of the insn. */
2099 decode_asm_operands (body
, recog_data
.operand
,
2100 recog_data
.operand_loc
,
2101 recog_data
.constraints
,
2102 recog_data
.operand_mode
, NULL
);
2103 memset (recog_data
.is_operator
, 0, sizeof recog_data
.is_operator
);
2106 const char *p
= recog_data
.constraints
[0];
2107 recog_data
.n_alternatives
= 1;
2109 recog_data
.n_alternatives
+= (*p
++ == ',');
2111 recog_data
.is_asm
= true;
2114 fatal_insn_not_found (insn
);
2118 /* Ordinary insn: recognize it, get the operands via insn_extract
2119 and get the constraints. */
2121 icode
= recog_memoized (insn
);
2123 fatal_insn_not_found (insn
);
2125 recog_data
.n_operands
= noperands
= insn_data
[icode
].n_operands
;
2126 recog_data
.n_alternatives
= insn_data
[icode
].n_alternatives
;
2127 recog_data
.n_dups
= insn_data
[icode
].n_dups
;
2129 insn_extract (insn
);
2131 for (i
= 0; i
< noperands
; i
++)
2133 recog_data
.constraints
[i
] = insn_data
[icode
].operand
[i
].constraint
;
2134 recog_data
.is_operator
[i
] = insn_data
[icode
].operand
[i
].is_operator
;
2135 recog_data
.operand_mode
[i
] = insn_data
[icode
].operand
[i
].mode
;
2136 /* VOIDmode match_operands gets mode from their real operand. */
2137 if (recog_data
.operand_mode
[i
] == VOIDmode
)
2138 recog_data
.operand_mode
[i
] = GET_MODE (recog_data
.operand
[i
]);
2141 for (i
= 0; i
< noperands
; i
++)
2142 recog_data
.operand_type
[i
]
2143 = (recog_data
.constraints
[i
][0] == '=' ? OP_OUT
2144 : recog_data
.constraints
[i
][0] == '+' ? OP_INOUT
2147 gcc_assert (recog_data
.n_alternatives
<= MAX_RECOG_ALTERNATIVES
);
2149 if (INSN_CODE (insn
) < 0)
2150 for (i
= 0; i
< recog_data
.n_alternatives
; i
++)
2151 recog_data
.alternative_enabled_p
[i
] = true;
2154 recog_data
.insn
= insn
;
2155 for (i
= 0; i
< recog_data
.n_alternatives
; i
++)
2157 which_alternative
= i
;
2158 recog_data
.alternative_enabled_p
[i
] = get_attr_enabled (insn
);
2162 recog_data
.insn
= NULL
;
2163 which_alternative
= -1;
2166 /* After calling extract_insn, you can use this function to extract some
2167 information from the constraint strings into a more usable form.
2168 The collected data is stored in recog_op_alt. */
2170 preprocess_constraints (void)
2174 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2175 memset (recog_op_alt
[i
], 0, (recog_data
.n_alternatives
2176 * sizeof (struct operand_alternative
)));
2178 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2181 struct operand_alternative
*op_alt
;
2182 const char *p
= recog_data
.constraints
[i
];
2184 op_alt
= recog_op_alt
[i
];
2186 for (j
= 0; j
< recog_data
.n_alternatives
; j
++)
2188 op_alt
[j
].cl
= NO_REGS
;
2189 op_alt
[j
].constraint
= p
;
2190 op_alt
[j
].matches
= -1;
2191 op_alt
[j
].matched
= -1;
2193 if (!recog_data
.alternative_enabled_p
[j
])
2195 p
= skip_alternative (p
);
2199 if (*p
== '\0' || *p
== ',')
2201 op_alt
[j
].anything_ok
= 1;
2211 while (c
!= ',' && c
!= '\0');
2212 if (c
== ',' || c
== '\0')
2220 case '=': case '+': case '*': case '%':
2221 case 'E': case 'F': case 'G': case 'H':
2222 case 's': case 'i': case 'n':
2223 case 'I': case 'J': case 'K': case 'L':
2224 case 'M': case 'N': case 'O': case 'P':
2225 /* These don't say anything we care about. */
2229 op_alt
[j
].reject
+= 6;
2232 op_alt
[j
].reject
+= 600;
2235 op_alt
[j
].earlyclobber
= 1;
2238 case '0': case '1': case '2': case '3': case '4':
2239 case '5': case '6': case '7': case '8': case '9':
2242 op_alt
[j
].matches
= strtoul (p
, &end
, 10);
2243 recog_op_alt
[op_alt
[j
].matches
][j
].matched
= i
;
2248 case TARGET_MEM_CONSTRAINT
:
2249 op_alt
[j
].memory_ok
= 1;
2252 op_alt
[j
].decmem_ok
= 1;
2255 op_alt
[j
].incmem_ok
= 1;
2258 op_alt
[j
].nonoffmem_ok
= 1;
2261 op_alt
[j
].offmem_ok
= 1;
2264 op_alt
[j
].anything_ok
= 1;
2268 op_alt
[j
].is_address
= 1;
2269 op_alt
[j
].cl
= reg_class_subunion
[(int) op_alt
[j
].cl
]
2270 [(int) base_reg_class (VOIDmode
, ADDR_SPACE_GENERIC
,
2277 reg_class_subunion
[(int) op_alt
[j
].cl
][(int) GENERAL_REGS
];
2281 if (EXTRA_MEMORY_CONSTRAINT (c
, p
))
2283 op_alt
[j
].memory_ok
= 1;
2286 if (EXTRA_ADDRESS_CONSTRAINT (c
, p
))
2288 op_alt
[j
].is_address
= 1;
2290 = (reg_class_subunion
2291 [(int) op_alt
[j
].cl
]
2292 [(int) base_reg_class (VOIDmode
, ADDR_SPACE_GENERIC
,
2293 ADDRESS
, SCRATCH
)]);
2298 = (reg_class_subunion
2299 [(int) op_alt
[j
].cl
]
2300 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c
, p
)]);
2303 p
+= CONSTRAINT_LEN (c
, p
);
2309 /* Check the operands of an insn against the insn's operand constraints
2310 and return 1 if they are valid.
2311 The information about the insn's operands, constraints, operand modes
2312 etc. is obtained from the global variables set up by extract_insn.
2314 WHICH_ALTERNATIVE is set to a number which indicates which
2315 alternative of constraints was matched: 0 for the first alternative,
2316 1 for the next, etc.
2318 In addition, when two operands are required to match
2319 and it happens that the output operand is (reg) while the
2320 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2321 make the output operand look like the input.
2322 This is because the output operand is the one the template will print.
2324 This is used in final, just before printing the assembler code and by
2325 the routines that determine an insn's attribute.
2327 If STRICT is a positive nonzero value, it means that we have been
2328 called after reload has been completed. In that case, we must
2329 do all checks strictly. If it is zero, it means that we have been called
2330 before reload has completed. In that case, we first try to see if we can
2331 find an alternative that matches strictly. If not, we try again, this
2332 time assuming that reload will fix up the insn. This provides a "best
2333 guess" for the alternative and is used to compute attributes of insns prior
2334 to reload. A negative value of STRICT is used for this internal call. */
2342 constrain_operands (int strict
)
2344 const char *constraints
[MAX_RECOG_OPERANDS
];
2345 int matching_operands
[MAX_RECOG_OPERANDS
];
2346 int earlyclobber
[MAX_RECOG_OPERANDS
];
2349 struct funny_match funny_match
[MAX_RECOG_OPERANDS
];
2350 int funny_match_index
;
2352 which_alternative
= 0;
2353 if (recog_data
.n_operands
== 0 || recog_data
.n_alternatives
== 0)
2356 for (c
= 0; c
< recog_data
.n_operands
; c
++)
2358 constraints
[c
] = recog_data
.constraints
[c
];
2359 matching_operands
[c
] = -1;
2364 int seen_earlyclobber_at
= -1;
2367 funny_match_index
= 0;
2369 if (!recog_data
.alternative_enabled_p
[which_alternative
])
2373 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2374 constraints
[i
] = skip_alternative (constraints
[i
]);
2376 which_alternative
++;
2380 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2382 rtx op
= recog_data
.operand
[opno
];
2383 enum machine_mode mode
= GET_MODE (op
);
2384 const char *p
= constraints
[opno
];
2390 earlyclobber
[opno
] = 0;
2392 /* A unary operator may be accepted by the predicate, but it
2393 is irrelevant for matching constraints. */
2397 if (GET_CODE (op
) == SUBREG
)
2399 if (REG_P (SUBREG_REG (op
))
2400 && REGNO (SUBREG_REG (op
)) < FIRST_PSEUDO_REGISTER
)
2401 offset
= subreg_regno_offset (REGNO (SUBREG_REG (op
)),
2402 GET_MODE (SUBREG_REG (op
)),
2405 op
= SUBREG_REG (op
);
2408 /* An empty constraint or empty alternative
2409 allows anything which matched the pattern. */
2410 if (*p
== 0 || *p
== ',')
2414 switch (c
= *p
, len
= CONSTRAINT_LEN (c
, p
), c
)
2423 case '?': case '!': case '*': case '%':
2428 /* Ignore rest of this alternative as far as
2429 constraint checking is concerned. */
2432 while (*p
&& *p
!= ',');
2437 earlyclobber
[opno
] = 1;
2438 if (seen_earlyclobber_at
< 0)
2439 seen_earlyclobber_at
= opno
;
2442 case '0': case '1': case '2': case '3': case '4':
2443 case '5': case '6': case '7': case '8': case '9':
2445 /* This operand must be the same as a previous one.
2446 This kind of constraint is used for instructions such
2447 as add when they take only two operands.
2449 Note that the lower-numbered operand is passed first.
2451 If we are not testing strictly, assume that this
2452 constraint will be satisfied. */
2457 match
= strtoul (p
, &end
, 10);
2464 rtx op1
= recog_data
.operand
[match
];
2465 rtx op2
= recog_data
.operand
[opno
];
2467 /* A unary operator may be accepted by the predicate,
2468 but it is irrelevant for matching constraints. */
2470 op1
= XEXP (op1
, 0);
2472 op2
= XEXP (op2
, 0);
2474 val
= operands_match_p (op1
, op2
);
2477 matching_operands
[opno
] = match
;
2478 matching_operands
[match
] = opno
;
2483 /* If output is *x and input is *--x, arrange later
2484 to change the output to *--x as well, since the
2485 output op is the one that will be printed. */
2486 if (val
== 2 && strict
> 0)
2488 funny_match
[funny_match_index
].this_op
= opno
;
2489 funny_match
[funny_match_index
++].other
= match
;
2496 /* p is used for address_operands. When we are called by
2497 gen_reload, no one will have checked that the address is
2498 strictly valid, i.e., that all pseudos requiring hard regs
2499 have gotten them. */
2501 || (strict_memory_address_p (recog_data
.operand_mode
[opno
],
2506 /* No need to check general_operand again;
2507 it was done in insn-recog.c. Well, except that reload
2508 doesn't check the validity of its replacements, but
2509 that should only matter when there's a bug. */
2511 /* Anything goes unless it is a REG and really has a hard reg
2512 but the hard reg is not in the class GENERAL_REGS. */
2516 || GENERAL_REGS
== ALL_REGS
2517 || (reload_in_progress
2518 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2519 || reg_fits_class_p (op
, GENERAL_REGS
, offset
, mode
))
2522 else if (strict
< 0 || general_operand (op
, mode
))
2527 /* This is used for a MATCH_SCRATCH in the cases when
2528 we don't actually need anything. So anything goes
2533 case TARGET_MEM_CONSTRAINT
:
2534 /* Memory operands must be valid, to the extent
2535 required by STRICT. */
2539 && !strict_memory_address_addr_space_p
2540 (GET_MODE (op
), XEXP (op
, 0),
2541 MEM_ADDR_SPACE (op
)))
2544 && !memory_address_addr_space_p
2545 (GET_MODE (op
), XEXP (op
, 0),
2546 MEM_ADDR_SPACE (op
)))
2550 /* Before reload, accept what reload can turn into mem. */
2551 else if (strict
< 0 && CONSTANT_P (op
))
2553 /* During reload, accept a pseudo */
2554 else if (reload_in_progress
&& REG_P (op
)
2555 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2561 && (GET_CODE (XEXP (op
, 0)) == PRE_DEC
2562 || GET_CODE (XEXP (op
, 0)) == POST_DEC
))
2568 && (GET_CODE (XEXP (op
, 0)) == PRE_INC
2569 || GET_CODE (XEXP (op
, 0)) == POST_INC
))
2575 if (GET_CODE (op
) == CONST_DOUBLE
2576 || (GET_CODE (op
) == CONST_VECTOR
2577 && GET_MODE_CLASS (GET_MODE (op
)) == MODE_VECTOR_FLOAT
))
2583 if (GET_CODE (op
) == CONST_DOUBLE
2584 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, c
, p
))
2589 if (CONST_INT_P (op
)
2590 || (GET_CODE (op
) == CONST_DOUBLE
2591 && GET_MODE (op
) == VOIDmode
))
2594 if (CONSTANT_P (op
))
2599 if (CONST_INT_P (op
)
2600 || (GET_CODE (op
) == CONST_DOUBLE
2601 && GET_MODE (op
) == VOIDmode
))
2613 if (CONST_INT_P (op
)
2614 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), c
, p
))
2620 && ((strict
> 0 && ! offsettable_memref_p (op
))
2622 && !(CONSTANT_P (op
) || MEM_P (op
)))
2623 || (reload_in_progress
2625 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
))))
2630 if ((strict
> 0 && offsettable_memref_p (op
))
2631 || (strict
== 0 && offsettable_nonstrict_memref_p (op
))
2632 /* Before reload, accept what reload can handle. */
2634 && (CONSTANT_P (op
) || MEM_P (op
)))
2635 /* During reload, accept a pseudo */
2636 || (reload_in_progress
&& REG_P (op
)
2637 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
))
2646 ? GENERAL_REGS
: REG_CLASS_FROM_CONSTRAINT (c
, p
));
2652 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2653 || (strict
== 0 && GET_CODE (op
) == SCRATCH
)
2655 && reg_fits_class_p (op
, cl
, offset
, mode
)))
2658 #ifdef EXTRA_CONSTRAINT_STR
2659 else if (EXTRA_CONSTRAINT_STR (op
, c
, p
))
2662 else if (EXTRA_MEMORY_CONSTRAINT (c
, p
)
2663 /* Every memory operand can be reloaded to fit. */
2664 && ((strict
< 0 && MEM_P (op
))
2665 /* Before reload, accept what reload can turn
2667 || (strict
< 0 && CONSTANT_P (op
))
2668 /* During reload, accept a pseudo */
2669 || (reload_in_progress
&& REG_P (op
)
2670 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)))
2672 else if (EXTRA_ADDRESS_CONSTRAINT (c
, p
)
2673 /* Every address operand can be reloaded to fit. */
2680 while (p
+= len
, c
);
2682 constraints
[opno
] = p
;
2683 /* If this operand did not win somehow,
2684 this alternative loses. */
2688 /* This alternative won; the operands are ok.
2689 Change whichever operands this alternative says to change. */
2694 /* See if any earlyclobber operand conflicts with some other
2697 if (strict
> 0 && seen_earlyclobber_at
>= 0)
2698 for (eopno
= seen_earlyclobber_at
;
2699 eopno
< recog_data
.n_operands
;
2701 /* Ignore earlyclobber operands now in memory,
2702 because we would often report failure when we have
2703 two memory operands, one of which was formerly a REG. */
2704 if (earlyclobber
[eopno
]
2705 && REG_P (recog_data
.operand
[eopno
]))
2706 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2707 if ((MEM_P (recog_data
.operand
[opno
])
2708 || recog_data
.operand_type
[opno
] != OP_OUT
)
2710 /* Ignore things like match_operator operands. */
2711 && *recog_data
.constraints
[opno
] != 0
2712 && ! (matching_operands
[opno
] == eopno
2713 && operands_match_p (recog_data
.operand
[opno
],
2714 recog_data
.operand
[eopno
]))
2715 && ! safe_from_earlyclobber (recog_data
.operand
[opno
],
2716 recog_data
.operand
[eopno
]))
2721 while (--funny_match_index
>= 0)
2723 recog_data
.operand
[funny_match
[funny_match_index
].other
]
2724 = recog_data
.operand
[funny_match
[funny_match_index
].this_op
];
2728 /* For operands without < or > constraints reject side-effects. */
2729 if (recog_data
.is_asm
)
2731 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2732 if (MEM_P (recog_data
.operand
[opno
]))
2733 switch (GET_CODE (XEXP (recog_data
.operand
[opno
], 0)))
2741 if (strchr (recog_data
.constraints
[opno
], '<') == NULL
2742 && strchr (recog_data
.constraints
[opno
], '>')
2755 which_alternative
++;
2757 while (which_alternative
< recog_data
.n_alternatives
);
2759 which_alternative
= -1;
2760 /* If we are about to reject this, but we are not to test strictly,
2761 try a very loose test. Only return failure if it fails also. */
2763 return constrain_operands (-1);
2768 /* Return true iff OPERAND (assumed to be a REG rtx)
2769 is a hard reg in class CLASS when its regno is offset by OFFSET
2770 and changed to mode MODE.
2771 If REG occupies multiple hard regs, all of them must be in CLASS. */
2774 reg_fits_class_p (const_rtx operand
, reg_class_t cl
, int offset
,
2775 enum machine_mode mode
)
2777 int regno
= REGNO (operand
);
2782 return (HARD_REGISTER_NUM_P (regno
)
2783 && in_hard_reg_set_p (reg_class_contents
[(int) cl
],
2784 mode
, regno
+ offset
));
2787 /* Split single instruction. Helper function for split_all_insns and
2788 split_all_insns_noflow. Return last insn in the sequence if successful,
2789 or NULL if unsuccessful. */
2792 split_insn (rtx insn
)
2794 /* Split insns here to get max fine-grain parallelism. */
2795 rtx first
= PREV_INSN (insn
);
2796 rtx last
= try_split (PATTERN (insn
), insn
, 1);
2797 rtx insn_set
, last_set
, note
;
2802 /* If the original instruction was a single set that was known to be
2803 equivalent to a constant, see if we can say the same about the last
2804 instruction in the split sequence. The two instructions must set
2805 the same destination. */
2806 insn_set
= single_set (insn
);
2809 last_set
= single_set (last
);
2810 if (last_set
&& rtx_equal_p (SET_DEST (last_set
), SET_DEST (insn_set
)))
2812 note
= find_reg_equal_equiv_note (insn
);
2813 if (note
&& CONSTANT_P (XEXP (note
, 0)))
2814 set_unique_reg_note (last
, REG_EQUAL
, XEXP (note
, 0));
2815 else if (CONSTANT_P (SET_SRC (insn_set
)))
2816 set_unique_reg_note (last
, REG_EQUAL
, SET_SRC (insn_set
));
2820 /* try_split returns the NOTE that INSN became. */
2821 SET_INSN_DELETED (insn
);
2823 /* ??? Coddle to md files that generate subregs in post-reload
2824 splitters instead of computing the proper hard register. */
2825 if (reload_completed
&& first
!= last
)
2827 first
= NEXT_INSN (first
);
2831 cleanup_subreg_operands (first
);
2834 first
= NEXT_INSN (first
);
2841 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2844 split_all_insns (void)
2850 blocks
= sbitmap_alloc (last_basic_block
);
2851 sbitmap_zero (blocks
);
2854 FOR_EACH_BB_REVERSE (bb
)
2857 bool finish
= false;
2859 rtl_profile_for_bb (bb
);
2860 for (insn
= BB_HEAD (bb
); !finish
; insn
= next
)
2862 /* Can't use `next_real_insn' because that might go across
2863 CODE_LABELS and short-out basic blocks. */
2864 next
= NEXT_INSN (insn
);
2865 finish
= (insn
== BB_END (bb
));
2868 rtx set
= single_set (insn
);
2870 /* Don't split no-op move insns. These should silently
2871 disappear later in final. Splitting such insns would
2872 break the code that handles LIBCALL blocks. */
2873 if (set
&& set_noop_p (set
))
2875 /* Nops get in the way while scheduling, so delete them
2876 now if register allocation has already been done. It
2877 is too risky to try to do this before register
2878 allocation, and there are unlikely to be very many
2879 nops then anyways. */
2880 if (reload_completed
)
2881 delete_insn_and_edges (insn
);
2885 if (split_insn (insn
))
2887 SET_BIT (blocks
, bb
->index
);
2895 default_rtl_profile ();
2897 find_many_sub_basic_blocks (blocks
);
2899 #ifdef ENABLE_CHECKING
2900 verify_flow_info ();
2903 sbitmap_free (blocks
);
2906 /* Same as split_all_insns, but do not expect CFG to be available.
2907 Used by machine dependent reorg passes. */
2910 split_all_insns_noflow (void)
2914 for (insn
= get_insns (); insn
; insn
= next
)
2916 next
= NEXT_INSN (insn
);
2919 /* Don't split no-op move insns. These should silently
2920 disappear later in final. Splitting such insns would
2921 break the code that handles LIBCALL blocks. */
2922 rtx set
= single_set (insn
);
2923 if (set
&& set_noop_p (set
))
2925 /* Nops get in the way while scheduling, so delete them
2926 now if register allocation has already been done. It
2927 is too risky to try to do this before register
2928 allocation, and there are unlikely to be very many
2931 ??? Should we use delete_insn when the CFG isn't valid? */
2932 if (reload_completed
)
2933 delete_insn_and_edges (insn
);
2942 #ifdef HAVE_peephole2
2943 struct peep2_insn_data
2949 static struct peep2_insn_data peep2_insn_data
[MAX_INSNS_PER_PEEP2
+ 1];
2950 static int peep2_current
;
2952 static bool peep2_do_rebuild_jump_labels
;
2953 static bool peep2_do_cleanup_cfg
;
2955 /* The number of instructions available to match a peep2. */
2956 int peep2_current_count
;
2958 /* A non-insn marker indicating the last insn of the block.
2959 The live_before regset for this element is correct, indicating
2960 DF_LIVE_OUT for the block. */
2961 #define PEEP2_EOB pc_rtx
2963 /* Wrap N to fit into the peep2_insn_data buffer. */
2966 peep2_buf_position (int n
)
2968 if (n
>= MAX_INSNS_PER_PEEP2
+ 1)
2969 n
-= MAX_INSNS_PER_PEEP2
+ 1;
2973 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
2974 does not exist. Used by the recognizer to find the next insn to match
2975 in a multi-insn pattern. */
2978 peep2_next_insn (int n
)
2980 gcc_assert (n
<= peep2_current_count
);
2982 n
= peep2_buf_position (peep2_current
+ n
);
2984 return peep2_insn_data
[n
].insn
;
2987 /* Return true if REGNO is dead before the Nth non-note insn
2991 peep2_regno_dead_p (int ofs
, int regno
)
2993 gcc_assert (ofs
< MAX_INSNS_PER_PEEP2
+ 1);
2995 ofs
= peep2_buf_position (peep2_current
+ ofs
);
2997 gcc_assert (peep2_insn_data
[ofs
].insn
!= NULL_RTX
);
2999 return ! REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
);
3002 /* Similarly for a REG. */
3005 peep2_reg_dead_p (int ofs
, rtx reg
)
3009 gcc_assert (ofs
< MAX_INSNS_PER_PEEP2
+ 1);
3011 ofs
= peep2_buf_position (peep2_current
+ ofs
);
3013 gcc_assert (peep2_insn_data
[ofs
].insn
!= NULL_RTX
);
3015 regno
= REGNO (reg
);
3016 n
= hard_regno_nregs
[regno
][GET_MODE (reg
)];
3018 if (REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
+ n
))
3023 /* Try to find a hard register of mode MODE, matching the register class in
3024 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3025 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3026 in which case the only condition is that the register must be available
3027 before CURRENT_INSN.
3028 Registers that already have bits set in REG_SET will not be considered.
3030 If an appropriate register is available, it will be returned and the
3031 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3035 peep2_find_free_register (int from
, int to
, const char *class_str
,
3036 enum machine_mode mode
, HARD_REG_SET
*reg_set
)
3038 static int search_ofs
;
3044 gcc_assert (from
< MAX_INSNS_PER_PEEP2
+ 1);
3045 gcc_assert (to
< MAX_INSNS_PER_PEEP2
+ 1);
3047 from
= peep2_buf_position (peep2_current
+ from
);
3048 to
= peep2_buf_position (peep2_current
+ to
);
3050 gcc_assert (peep2_insn_data
[from
].insn
!= NULL_RTX
);
3051 REG_SET_TO_HARD_REG_SET (live
, peep2_insn_data
[from
].live_before
);
3055 gcc_assert (peep2_insn_data
[from
].insn
!= NULL_RTX
);
3057 /* Don't use registers set or clobbered by the insn. */
3058 for (def_rec
= DF_INSN_DEFS (peep2_insn_data
[from
].insn
);
3059 *def_rec
; def_rec
++)
3060 SET_HARD_REG_BIT (live
, DF_REF_REGNO (*def_rec
));
3062 from
= peep2_buf_position (from
+ 1);
3065 cl
= (class_str
[0] == 'r' ? GENERAL_REGS
3066 : REG_CLASS_FROM_CONSTRAINT (class_str
[0], class_str
));
3068 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3070 int raw_regno
, regno
, success
, j
;
3072 /* Distribute the free registers as much as possible. */
3073 raw_regno
= search_ofs
+ i
;
3074 if (raw_regno
>= FIRST_PSEUDO_REGISTER
)
3075 raw_regno
-= FIRST_PSEUDO_REGISTER
;
3076 #ifdef REG_ALLOC_ORDER
3077 regno
= reg_alloc_order
[raw_regno
];
3082 /* Don't allocate fixed registers. */
3083 if (fixed_regs
[regno
])
3085 /* Don't allocate global registers. */
3086 if (global_regs
[regno
])
3088 /* Make sure the register is of the right class. */
3089 if (! TEST_HARD_REG_BIT (reg_class_contents
[cl
], regno
))
3091 /* And can support the mode we need. */
3092 if (! HARD_REGNO_MODE_OK (regno
, mode
))
3094 /* And that we don't create an extra save/restore. */
3095 if (! call_used_regs
[regno
] && ! df_regs_ever_live_p (regno
))
3097 if (! targetm
.hard_regno_scratch_ok (regno
))
3100 /* And we don't clobber traceback for noreturn functions. */
3101 if ((regno
== FRAME_POINTER_REGNUM
|| regno
== HARD_FRAME_POINTER_REGNUM
)
3102 && (! reload_completed
|| frame_pointer_needed
))
3106 for (j
= hard_regno_nregs
[regno
][mode
] - 1; j
>= 0; j
--)
3108 if (TEST_HARD_REG_BIT (*reg_set
, regno
+ j
)
3109 || TEST_HARD_REG_BIT (live
, regno
+ j
))
3117 add_to_hard_reg_set (reg_set
, mode
, regno
);
3119 /* Start the next search with the next register. */
3120 if (++raw_regno
>= FIRST_PSEUDO_REGISTER
)
3122 search_ofs
= raw_regno
;
3124 return gen_rtx_REG (mode
, regno
);
3132 /* Forget all currently tracked instructions, only remember current
3136 peep2_reinit_state (regset live
)
3140 /* Indicate that all slots except the last holds invalid data. */
3141 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
; ++i
)
3142 peep2_insn_data
[i
].insn
= NULL_RTX
;
3143 peep2_current_count
= 0;
3145 /* Indicate that the last slot contains live_after data. */
3146 peep2_insn_data
[MAX_INSNS_PER_PEEP2
].insn
= PEEP2_EOB
;
3147 peep2_current
= MAX_INSNS_PER_PEEP2
;
3149 COPY_REG_SET (peep2_insn_data
[MAX_INSNS_PER_PEEP2
].live_before
, live
);
3152 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3153 starting at INSN. Perform the replacement, removing the old insns and
3154 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3155 if the replacement is rejected. */
3158 peep2_attempt (basic_block bb
, rtx insn
, int match_len
, rtx attempt
)
3161 rtx last
, eh_note
, as_note
, before_try
, x
;
3162 rtx old_insn
, new_insn
;
3163 bool was_call
= false;
3165 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3166 match more than one insn, or to be split into more than one insn. */
3167 old_insn
= peep2_insn_data
[peep2_current
].insn
;
3168 if (RTX_FRAME_RELATED_P (old_insn
))
3170 bool any_note
= false;
3176 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3177 may be in the stream for the purpose of register allocation. */
3178 if (active_insn_p (attempt
))
3181 new_insn
= next_active_insn (attempt
);
3182 if (next_active_insn (new_insn
))
3185 /* We have a 1-1 replacement. Copy over any frame-related info. */
3186 RTX_FRAME_RELATED_P (new_insn
) = 1;
3188 /* Allow the backend to fill in a note during the split. */
3189 for (note
= REG_NOTES (new_insn
); note
; note
= XEXP (note
, 1))
3190 switch (REG_NOTE_KIND (note
))
3192 case REG_FRAME_RELATED_EXPR
:
3193 case REG_CFA_DEF_CFA
:
3194 case REG_CFA_ADJUST_CFA
:
3195 case REG_CFA_OFFSET
:
3196 case REG_CFA_REGISTER
:
3197 case REG_CFA_EXPRESSION
:
3198 case REG_CFA_RESTORE
:
3199 case REG_CFA_SET_VDRAP
:
3206 /* If the backend didn't supply a note, copy one over. */
3208 for (note
= REG_NOTES (old_insn
); note
; note
= XEXP (note
, 1))
3209 switch (REG_NOTE_KIND (note
))
3211 case REG_FRAME_RELATED_EXPR
:
3212 case REG_CFA_DEF_CFA
:
3213 case REG_CFA_ADJUST_CFA
:
3214 case REG_CFA_OFFSET
:
3215 case REG_CFA_REGISTER
:
3216 case REG_CFA_EXPRESSION
:
3217 case REG_CFA_RESTORE
:
3218 case REG_CFA_SET_VDRAP
:
3219 add_reg_note (new_insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3226 /* If there still isn't a note, make sure the unwind info sees the
3227 same expression as before the split. */
3230 rtx old_set
, new_set
;
3232 /* The old insn had better have been simple, or annotated. */
3233 old_set
= single_set (old_insn
);
3234 gcc_assert (old_set
!= NULL
);
3236 new_set
= single_set (new_insn
);
3237 if (!new_set
|| !rtx_equal_p (new_set
, old_set
))
3238 add_reg_note (new_insn
, REG_FRAME_RELATED_EXPR
, old_set
);
3241 /* Copy prologue/epilogue status. This is required in order to keep
3242 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3243 maybe_copy_prologue_epilogue_insn (old_insn
, new_insn
);
3246 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3247 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3248 cfg-related call notes. */
3249 for (i
= 0; i
<= match_len
; ++i
)
3254 j
= peep2_buf_position (peep2_current
+ i
);
3255 old_insn
= peep2_insn_data
[j
].insn
;
3256 if (!CALL_P (old_insn
))
3261 while (new_insn
!= NULL_RTX
)
3263 if (CALL_P (new_insn
))
3265 new_insn
= NEXT_INSN (new_insn
);
3268 gcc_assert (new_insn
!= NULL_RTX
);
3270 CALL_INSN_FUNCTION_USAGE (new_insn
)
3271 = CALL_INSN_FUNCTION_USAGE (old_insn
);
3273 for (note
= REG_NOTES (old_insn
);
3275 note
= XEXP (note
, 1))
3276 switch (REG_NOTE_KIND (note
))
3281 add_reg_note (new_insn
, REG_NOTE_KIND (note
),
3285 /* Discard all other reg notes. */
3289 /* Croak if there is another call in the sequence. */
3290 while (++i
<= match_len
)
3292 j
= peep2_buf_position (peep2_current
+ i
);
3293 old_insn
= peep2_insn_data
[j
].insn
;
3294 gcc_assert (!CALL_P (old_insn
));
3299 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3300 move those notes over to the new sequence. */
3302 for (i
= match_len
; i
>= 0; --i
)
3304 int j
= peep2_buf_position (peep2_current
+ i
);
3305 old_insn
= peep2_insn_data
[j
].insn
;
3307 as_note
= find_reg_note (old_insn
, REG_ARGS_SIZE
, NULL
);
3312 i
= peep2_buf_position (peep2_current
+ match_len
);
3313 eh_note
= find_reg_note (peep2_insn_data
[i
].insn
, REG_EH_REGION
, NULL_RTX
);
3315 /* Replace the old sequence with the new. */
3316 last
= emit_insn_after_setloc (attempt
,
3317 peep2_insn_data
[i
].insn
,
3318 INSN_LOCATOR (peep2_insn_data
[i
].insn
));
3319 before_try
= PREV_INSN (insn
);
3320 delete_insn_chain (insn
, peep2_insn_data
[i
].insn
, false);
3322 /* Re-insert the EH_REGION notes. */
3323 if (eh_note
|| (was_call
&& nonlocal_goto_handler_labels
))
3328 FOR_EACH_EDGE (eh_edge
, ei
, bb
->succs
)
3329 if (eh_edge
->flags
& (EDGE_EH
| EDGE_ABNORMAL_CALL
))
3333 copy_reg_eh_region_note_backward (eh_note
, last
, before_try
);
3336 for (x
= last
; x
!= before_try
; x
= PREV_INSN (x
))
3337 if (x
!= BB_END (bb
)
3338 && (can_throw_internal (x
)
3339 || can_nonlocal_goto (x
)))
3344 nfte
= split_block (bb
, x
);
3345 flags
= (eh_edge
->flags
3346 & (EDGE_EH
| EDGE_ABNORMAL
));
3348 flags
|= EDGE_ABNORMAL_CALL
;
3349 nehe
= make_edge (nfte
->src
, eh_edge
->dest
,
3352 nehe
->probability
= eh_edge
->probability
;
3354 = REG_BR_PROB_BASE
- nehe
->probability
;
3356 peep2_do_cleanup_cfg
|= purge_dead_edges (nfte
->dest
);
3361 /* Converting possibly trapping insn to non-trapping is
3362 possible. Zap dummy outgoing edges. */
3363 peep2_do_cleanup_cfg
|= purge_dead_edges (bb
);
3366 /* Re-insert the ARGS_SIZE notes. */
3368 fixup_args_size_notes (before_try
, last
, INTVAL (XEXP (as_note
, 0)));
3370 /* If we generated a jump instruction, it won't have
3371 JUMP_LABEL set. Recompute after we're done. */
3372 for (x
= last
; x
!= before_try
; x
= PREV_INSN (x
))
3375 peep2_do_rebuild_jump_labels
= true;
3382 /* After performing a replacement in basic block BB, fix up the life
3383 information in our buffer. LAST is the last of the insns that we
3384 emitted as a replacement. PREV is the insn before the start of
3385 the replacement. MATCH_LEN is the number of instructions that were
3386 matched, and which now need to be replaced in the buffer. */
3389 peep2_update_life (basic_block bb
, int match_len
, rtx last
, rtx prev
)
3391 int i
= peep2_buf_position (peep2_current
+ match_len
+ 1);
3395 INIT_REG_SET (&live
);
3396 COPY_REG_SET (&live
, peep2_insn_data
[i
].live_before
);
3398 gcc_assert (peep2_current_count
>= match_len
+ 1);
3399 peep2_current_count
-= match_len
+ 1;
3407 if (peep2_current_count
< MAX_INSNS_PER_PEEP2
)
3409 peep2_current_count
++;
3411 i
= MAX_INSNS_PER_PEEP2
;
3412 peep2_insn_data
[i
].insn
= x
;
3413 df_simulate_one_insn_backwards (bb
, x
, &live
);
3414 COPY_REG_SET (peep2_insn_data
[i
].live_before
, &live
);
3420 CLEAR_REG_SET (&live
);
3425 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3426 Return true if we added it, false otherwise. The caller will try to match
3427 peepholes against the buffer if we return false; otherwise it will try to
3428 add more instructions to the buffer. */
3431 peep2_fill_buffer (basic_block bb
, rtx insn
, regset live
)
3435 /* Once we have filled the maximum number of insns the buffer can hold,
3436 allow the caller to match the insns against peepholes. We wait until
3437 the buffer is full in case the target has similar peepholes of different
3438 length; we always want to match the longest if possible. */
3439 if (peep2_current_count
== MAX_INSNS_PER_PEEP2
)
3442 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3443 any other pattern, lest it change the semantics of the frame info. */
3444 if (RTX_FRAME_RELATED_P (insn
))
3446 /* Let the buffer drain first. */
3447 if (peep2_current_count
> 0)
3449 /* Now the insn will be the only thing in the buffer. */
3452 pos
= peep2_buf_position (peep2_current
+ peep2_current_count
);
3453 peep2_insn_data
[pos
].insn
= insn
;
3454 COPY_REG_SET (peep2_insn_data
[pos
].live_before
, live
);
3455 peep2_current_count
++;
3457 df_simulate_one_insn_forwards (bb
, insn
, live
);
3461 /* Perform the peephole2 optimization pass. */
3464 peephole2_optimize (void)
3471 peep2_do_cleanup_cfg
= false;
3472 peep2_do_rebuild_jump_labels
= false;
3474 df_set_flags (DF_LR_RUN_DCE
);
3475 df_note_add_problem ();
3478 /* Initialize the regsets we're going to use. */
3479 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3480 peep2_insn_data
[i
].live_before
= BITMAP_ALLOC (®_obstack
);
3481 live
= BITMAP_ALLOC (®_obstack
);
3483 FOR_EACH_BB_REVERSE (bb
)
3485 bool past_end
= false;
3488 rtl_profile_for_bb (bb
);
3490 /* Start up propagation. */
3491 bitmap_copy (live
, DF_LR_IN (bb
));
3492 df_simulate_initialize_forwards (bb
, live
);
3493 peep2_reinit_state (live
);
3495 insn
= BB_HEAD (bb
);
3501 if (!past_end
&& !NONDEBUG_INSN_P (insn
))
3504 insn
= NEXT_INSN (insn
);
3505 if (insn
== NEXT_INSN (BB_END (bb
)))
3509 if (!past_end
&& peep2_fill_buffer (bb
, insn
, live
))
3512 /* If we did not fill an empty buffer, it signals the end of the
3514 if (peep2_current_count
== 0)
3517 /* The buffer filled to the current maximum, so try to match. */
3519 pos
= peep2_buf_position (peep2_current
+ peep2_current_count
);
3520 peep2_insn_data
[pos
].insn
= PEEP2_EOB
;
3521 COPY_REG_SET (peep2_insn_data
[pos
].live_before
, live
);
3523 /* Match the peephole. */
3524 head
= peep2_insn_data
[peep2_current
].insn
;
3525 attempt
= peephole2_insns (PATTERN (head
), head
, &match_len
);
3526 if (attempt
!= NULL
)
3528 rtx last
= peep2_attempt (bb
, head
, match_len
, attempt
);
3531 peep2_update_life (bb
, match_len
, last
, PREV_INSN (attempt
));
3536 /* No match: advance the buffer by one insn. */
3537 peep2_current
= peep2_buf_position (peep2_current
+ 1);
3538 peep2_current_count
--;
3542 default_rtl_profile ();
3543 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3544 BITMAP_FREE (peep2_insn_data
[i
].live_before
);
3546 if (peep2_do_rebuild_jump_labels
)
3547 rebuild_jump_labels (get_insns ());
3549 #endif /* HAVE_peephole2 */
3551 /* Common predicates for use with define_bypass. */
3553 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3554 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3555 must be either a single_set or a PARALLEL with SETs inside. */
3558 store_data_bypass_p (rtx out_insn
, rtx in_insn
)
3560 rtx out_set
, in_set
;
3561 rtx out_pat
, in_pat
;
3562 rtx out_exp
, in_exp
;
3565 in_set
= single_set (in_insn
);
3568 if (!MEM_P (SET_DEST (in_set
)))
3571 out_set
= single_set (out_insn
);
3574 if (reg_mentioned_p (SET_DEST (out_set
), SET_DEST (in_set
)))
3579 out_pat
= PATTERN (out_insn
);
3581 if (GET_CODE (out_pat
) != PARALLEL
)
3584 for (i
= 0; i
< XVECLEN (out_pat
, 0); i
++)
3586 out_exp
= XVECEXP (out_pat
, 0, i
);
3588 if (GET_CODE (out_exp
) == CLOBBER
)
3591 gcc_assert (GET_CODE (out_exp
) == SET
);
3593 if (reg_mentioned_p (SET_DEST (out_exp
), SET_DEST (in_set
)))
3600 in_pat
= PATTERN (in_insn
);
3601 gcc_assert (GET_CODE (in_pat
) == PARALLEL
);
3603 for (i
= 0; i
< XVECLEN (in_pat
, 0); i
++)
3605 in_exp
= XVECEXP (in_pat
, 0, i
);
3607 if (GET_CODE (in_exp
) == CLOBBER
)
3610 gcc_assert (GET_CODE (in_exp
) == SET
);
3612 if (!MEM_P (SET_DEST (in_exp
)))
3615 out_set
= single_set (out_insn
);
3618 if (reg_mentioned_p (SET_DEST (out_set
), SET_DEST (in_exp
)))
3623 out_pat
= PATTERN (out_insn
);
3624 gcc_assert (GET_CODE (out_pat
) == PARALLEL
);
3626 for (j
= 0; j
< XVECLEN (out_pat
, 0); j
++)
3628 out_exp
= XVECEXP (out_pat
, 0, j
);
3630 if (GET_CODE (out_exp
) == CLOBBER
)
3633 gcc_assert (GET_CODE (out_exp
) == SET
);
3635 if (reg_mentioned_p (SET_DEST (out_exp
), SET_DEST (in_exp
)))
3645 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3646 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3647 or multiple set; IN_INSN should be single_set for truth, but for convenience
3648 of insn categorization may be any JUMP or CALL insn. */
3651 if_test_bypass_p (rtx out_insn
, rtx in_insn
)
3653 rtx out_set
, in_set
;
3655 in_set
= single_set (in_insn
);
3658 gcc_assert (JUMP_P (in_insn
) || CALL_P (in_insn
));
3662 if (GET_CODE (SET_SRC (in_set
)) != IF_THEN_ELSE
)
3664 in_set
= SET_SRC (in_set
);
3666 out_set
= single_set (out_insn
);
3669 if (reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 1))
3670 || reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 2)))
3678 out_pat
= PATTERN (out_insn
);
3679 gcc_assert (GET_CODE (out_pat
) == PARALLEL
);
3681 for (i
= 0; i
< XVECLEN (out_pat
, 0); i
++)
3683 rtx exp
= XVECEXP (out_pat
, 0, i
);
3685 if (GET_CODE (exp
) == CLOBBER
)
3688 gcc_assert (GET_CODE (exp
) == SET
);
3690 if (reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 1))
3691 || reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 2)))
3700 gate_handle_peephole2 (void)
3702 return (optimize
> 0 && flag_peephole2
);
3706 rest_of_handle_peephole2 (void)
3708 #ifdef HAVE_peephole2
3709 peephole2_optimize ();
3714 struct rtl_opt_pass pass_peephole2
=
3718 "peephole2", /* name */
3719 gate_handle_peephole2
, /* gate */
3720 rest_of_handle_peephole2
, /* execute */
3723 0, /* static_pass_number */
3724 TV_PEEPHOLE2
, /* tv_id */
3725 0, /* properties_required */
3726 0, /* properties_provided */
3727 0, /* properties_destroyed */
3728 0, /* todo_flags_start */
3729 TODO_df_finish
| TODO_verify_rtl_sharing
|
3730 0 /* todo_flags_finish */
3735 rest_of_handle_split_all_insns (void)
3741 struct rtl_opt_pass pass_split_all_insns
=
3745 "split1", /* name */
3747 rest_of_handle_split_all_insns
, /* execute */
3750 0, /* static_pass_number */
3751 TV_NONE
, /* tv_id */
3752 0, /* properties_required */
3753 0, /* properties_provided */
3754 0, /* properties_destroyed */
3755 0, /* todo_flags_start */
3756 0 /* todo_flags_finish */
3761 rest_of_handle_split_after_reload (void)
3763 /* If optimizing, then go ahead and split insns now. */
3771 struct rtl_opt_pass pass_split_after_reload
=
3775 "split2", /* name */
3777 rest_of_handle_split_after_reload
, /* execute */
3780 0, /* static_pass_number */
3781 TV_NONE
, /* tv_id */
3782 0, /* properties_required */
3783 0, /* properties_provided */
3784 0, /* properties_destroyed */
3785 0, /* todo_flags_start */
3786 0 /* todo_flags_finish */
3791 gate_handle_split_before_regstack (void)
3793 #if defined (HAVE_ATTR_length) && defined (STACK_REGS)
3794 /* If flow2 creates new instructions which need splitting
3795 and scheduling after reload is not done, they might not be
3796 split until final which doesn't allow splitting
3797 if HAVE_ATTR_length. */
3798 # ifdef INSN_SCHEDULING
3799 return (optimize
&& !flag_schedule_insns_after_reload
);
3809 rest_of_handle_split_before_regstack (void)
3815 struct rtl_opt_pass pass_split_before_regstack
=
3819 "split3", /* name */
3820 gate_handle_split_before_regstack
, /* gate */
3821 rest_of_handle_split_before_regstack
, /* execute */
3824 0, /* static_pass_number */
3825 TV_NONE
, /* tv_id */
3826 0, /* properties_required */
3827 0, /* properties_provided */
3828 0, /* properties_destroyed */
3829 0, /* todo_flags_start */
3830 0 /* todo_flags_finish */
3835 gate_handle_split_before_sched2 (void)
3837 #ifdef INSN_SCHEDULING
3838 return optimize
> 0 && flag_schedule_insns_after_reload
;
3845 rest_of_handle_split_before_sched2 (void)
3847 #ifdef INSN_SCHEDULING
3853 struct rtl_opt_pass pass_split_before_sched2
=
3857 "split4", /* name */
3858 gate_handle_split_before_sched2
, /* gate */
3859 rest_of_handle_split_before_sched2
, /* execute */
3862 0, /* static_pass_number */
3863 TV_NONE
, /* tv_id */
3864 0, /* properties_required */
3865 0, /* properties_provided */
3866 0, /* properties_destroyed */
3867 0, /* todo_flags_start */
3868 TODO_verify_flow
/* todo_flags_finish */
3872 /* The placement of the splitting that we do for shorten_branches
3873 depends on whether regstack is used by the target or not. */
3875 gate_do_final_split (void)
3877 #if defined (HAVE_ATTR_length) && !defined (STACK_REGS)
3884 struct rtl_opt_pass pass_split_for_shorten_branches
=
3888 "split5", /* name */
3889 gate_do_final_split
, /* gate */
3890 split_all_insns_noflow
, /* execute */
3893 0, /* static_pass_number */
3894 TV_NONE
, /* tv_id */
3895 0, /* properties_required */
3896 0, /* properties_provided */
3897 0, /* properties_destroyed */
3898 0, /* todo_flags_start */
3899 TODO_verify_rtl_sharing
/* todo_flags_finish */