ada/
[official-gcc.git] / gcc / ipa-cp.c
blob38240290423fbdc5e770ef6ef13116c58ea3dd9b
1 /* Interprocedural constant propagation
2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
4 Contributed by Razya Ladelsky <RAZYA@il.ibm.com> and Martin Jambor
5 <mjambor@suse.cz>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* Interprocedural constant propagation (IPA-CP).
25 The goal of this transformation is to
27 1) discover functions which are always invoked with some arguments with the
28 same known constant values and modify the functions so that the
29 subsequent optimizations can take advantage of the knowledge, and
31 2) partial specialization - create specialized versions of functions
32 transformed in this way if some parameters are known constants only in
33 certain contexts but the estimated tradeoff between speedup and cost size
34 is deemed good.
36 The algorithm also propagates types and attempts to perform type based
37 devirtualization. Types are propagated much like constants.
39 The algorithm basically consists of three stages. In the first, functions
40 are analyzed one at a time and jump functions are constructed for all known
41 call-sites. In the second phase, the pass propagates information from the
42 jump functions across the call to reveal what values are available at what
43 call sites, performs estimations of effects of known values on functions and
44 their callees, and finally decides what specialized extra versions should be
45 created. In the third, the special versions materialize and appropriate
46 calls are redirected.
48 The algorithm used is to a certain extent based on "Interprocedural Constant
49 Propagation", by David Callahan, Keith D Cooper, Ken Kennedy, Linda Torczon,
50 Comp86, pg 152-161 and "A Methodology for Procedure Cloning" by Keith D
51 Cooper, Mary W. Hall, and Ken Kennedy.
54 First stage - intraprocedural analysis
55 =======================================
57 This phase computes jump_function and modification flags.
59 A jump function for a call-site represents the values passed as an actual
60 arguments of a given call-site. In principle, there are three types of
61 values:
63 Pass through - the caller's formal parameter is passed as an actual
64 argument, plus an operation on it can be performed.
65 Constant - a constant is passed as an actual argument.
66 Unknown - neither of the above.
68 All jump function types are described in detail in ipa-prop.h, together with
69 the data structures that represent them and methods of accessing them.
71 ipcp_generate_summary() is the main function of the first stage.
73 Second stage - interprocedural analysis
74 ========================================
76 This stage is itself divided into two phases. In the first, we propagate
77 known values over the call graph, in the second, we make cloning decisions.
78 It uses a different algorithm than the original Callahan's paper.
80 First, we traverse the functions topologically from callers to callees and,
81 for each strongly connected component (SCC), we propagate constants
82 according to previously computed jump functions. We also record what known
83 values depend on other known values and estimate local effects. Finally, we
84 propagate cumulative information about these effects from dependent values
85 to those on which they depend.
87 Second, we again traverse the call graph in the same topological order and
88 make clones for functions which we know are called with the same values in
89 all contexts and decide about extra specialized clones of functions just for
90 some contexts - these decisions are based on both local estimates and
91 cumulative estimates propagated from callees.
93 ipcp_propagate_stage() and ipcp_decision_stage() together constitute the
94 third stage.
96 Third phase - materialization of clones, call statement updates.
97 ============================================
99 This stage is currently performed by call graph code (mainly in cgraphunit.c
100 and tree-inline.c) according to instructions inserted to the call graph by
101 the second stage. */
103 #include "config.h"
104 #include "system.h"
105 #include "coretypes.h"
106 #include "hash-set.h"
107 #include "machmode.h"
108 #include "vec.h"
109 #include "hash-map.h"
110 #include "double-int.h"
111 #include "input.h"
112 #include "alias.h"
113 #include "symtab.h"
114 #include "options.h"
115 #include "wide-int.h"
116 #include "inchash.h"
117 #include "tree.h"
118 #include "fold-const.h"
119 #include "gimple-fold.h"
120 #include "gimple-expr.h"
121 #include "target.h"
122 #include "predict.h"
123 #include "basic-block.h"
124 #include "is-a.h"
125 #include "plugin-api.h"
126 #include "tm.h"
127 #include "hard-reg-set.h"
128 #include "input.h"
129 #include "function.h"
130 #include "ipa-ref.h"
131 #include "cgraph.h"
132 #include "alloc-pool.h"
133 #include "symbol-summary.h"
134 #include "ipa-prop.h"
135 #include "bitmap.h"
136 #include "tree-pass.h"
137 #include "flags.h"
138 #include "diagnostic.h"
139 #include "tree-pretty-print.h"
140 #include "tree-inline.h"
141 #include "params.h"
142 #include "ipa-inline.h"
143 #include "ipa-utils.h"
145 template <typename valtype> class ipcp_value;
147 /* Describes a particular source for an IPA-CP value. */
149 template <typename valtype>
150 class ipcp_value_source
152 public:
153 /* Aggregate offset of the source, negative if the source is scalar value of
154 the argument itself. */
155 HOST_WIDE_INT offset;
156 /* The incoming edge that brought the value. */
157 cgraph_edge *cs;
158 /* If the jump function that resulted into his value was a pass-through or an
159 ancestor, this is the ipcp_value of the caller from which the described
160 value has been derived. Otherwise it is NULL. */
161 ipcp_value<valtype> *val;
162 /* Next pointer in a linked list of sources of a value. */
163 ipcp_value_source *next;
164 /* If the jump function that resulted into his value was a pass-through or an
165 ancestor, this is the index of the parameter of the caller the jump
166 function references. */
167 int index;
170 /* Common ancestor for all ipcp_value instantiations. */
172 class ipcp_value_base
174 public:
175 /* Time benefit and size cost that specializing the function for this value
176 would bring about in this function alone. */
177 int local_time_benefit, local_size_cost;
178 /* Time benefit and size cost that specializing the function for this value
179 can bring about in it's callees (transitively). */
180 int prop_time_benefit, prop_size_cost;
183 /* Describes one particular value stored in struct ipcp_lattice. */
185 template <typename valtype>
186 class ipcp_value : public ipcp_value_base
188 public:
189 /* The actual value for the given parameter. */
190 valtype value;
191 /* The list of sources from which this value originates. */
192 ipcp_value_source <valtype> *sources;
193 /* Next pointers in a linked list of all values in a lattice. */
194 ipcp_value *next;
195 /* Next pointers in a linked list of values in a strongly connected component
196 of values. */
197 ipcp_value *scc_next;
198 /* Next pointers in a linked list of SCCs of values sorted topologically
199 according their sources. */
200 ipcp_value *topo_next;
201 /* A specialized node created for this value, NULL if none has been (so far)
202 created. */
203 cgraph_node *spec_node;
204 /* Depth first search number and low link for topological sorting of
205 values. */
206 int dfs, low_link;
207 /* True if this valye is currently on the topo-sort stack. */
208 bool on_stack;
210 void add_source (cgraph_edge *cs, ipcp_value *src_val, int src_idx,
211 HOST_WIDE_INT offset);
214 /* Lattice describing potential values of a formal parameter of a function, or
215 a part of an aggreagate. TOP is represented by a lattice with zero values
216 and with contains_variable and bottom flags cleared. BOTTOM is represented
217 by a lattice with the bottom flag set. In that case, values and
218 contains_variable flag should be disregarded. */
220 template <typename valtype>
221 class ipcp_lattice
223 public:
224 /* The list of known values and types in this lattice. Note that values are
225 not deallocated if a lattice is set to bottom because there may be value
226 sources referencing them. */
227 ipcp_value<valtype> *values;
228 /* Number of known values and types in this lattice. */
229 int values_count;
230 /* The lattice contains a variable component (in addition to values). */
231 bool contains_variable;
232 /* The value of the lattice is bottom (i.e. variable and unusable for any
233 propagation). */
234 bool bottom;
236 inline bool is_single_const ();
237 inline bool set_to_bottom ();
238 inline bool set_contains_variable ();
239 bool add_value (valtype newval, cgraph_edge *cs,
240 ipcp_value<valtype> *src_val = NULL,
241 int src_idx = 0, HOST_WIDE_INT offset = -1);
242 void print (FILE * f, bool dump_sources, bool dump_benefits);
245 /* Lattice of tree values with an offset to describe a part of an
246 aggregate. */
248 class ipcp_agg_lattice : public ipcp_lattice<tree>
250 public:
251 /* Offset that is being described by this lattice. */
252 HOST_WIDE_INT offset;
253 /* Size so that we don't have to re-compute it every time we traverse the
254 list. Must correspond to TYPE_SIZE of all lat values. */
255 HOST_WIDE_INT size;
256 /* Next element of the linked list. */
257 struct ipcp_agg_lattice *next;
260 /* Structure containing lattices for a parameter itself and for pieces of
261 aggregates that are passed in the parameter or by a reference in a parameter
262 plus some other useful flags. */
264 class ipcp_param_lattices
266 public:
267 /* Lattice describing the value of the parameter itself. */
268 ipcp_lattice<tree> itself;
269 /* Lattice describing the the polymorphic contexts of a parameter. */
270 ipcp_lattice<ipa_polymorphic_call_context> ctxlat;
271 /* Lattices describing aggregate parts. */
272 ipcp_agg_lattice *aggs;
273 /* Alignment information. Very basic one value lattice where !known means
274 TOP and zero alignment bottom. */
275 ipa_alignment alignment;
276 /* Number of aggregate lattices */
277 int aggs_count;
278 /* True if aggregate data were passed by reference (as opposed to by
279 value). */
280 bool aggs_by_ref;
281 /* All aggregate lattices contain a variable component (in addition to
282 values). */
283 bool aggs_contain_variable;
284 /* The value of all aggregate lattices is bottom (i.e. variable and unusable
285 for any propagation). */
286 bool aggs_bottom;
288 /* There is a virtual call based on this parameter. */
289 bool virt_call;
292 /* Allocation pools for values and their sources in ipa-cp. */
294 alloc_pool ipcp_cst_values_pool;
295 alloc_pool ipcp_poly_ctx_values_pool;
296 alloc_pool ipcp_sources_pool;
297 alloc_pool ipcp_agg_lattice_pool;
299 /* Maximal count found in program. */
301 static gcov_type max_count;
303 /* Original overall size of the program. */
305 static long overall_size, max_new_size;
307 /* Return the param lattices structure corresponding to the Ith formal
308 parameter of the function described by INFO. */
309 static inline struct ipcp_param_lattices *
310 ipa_get_parm_lattices (struct ipa_node_params *info, int i)
312 gcc_assert (i >= 0 && i < ipa_get_param_count (info));
313 gcc_checking_assert (!info->ipcp_orig_node);
314 gcc_checking_assert (info->lattices);
315 return &(info->lattices[i]);
318 /* Return the lattice corresponding to the scalar value of the Ith formal
319 parameter of the function described by INFO. */
320 static inline ipcp_lattice<tree> *
321 ipa_get_scalar_lat (struct ipa_node_params *info, int i)
323 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
324 return &plats->itself;
327 /* Return the lattice corresponding to the scalar value of the Ith formal
328 parameter of the function described by INFO. */
329 static inline ipcp_lattice<ipa_polymorphic_call_context> *
330 ipa_get_poly_ctx_lat (struct ipa_node_params *info, int i)
332 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
333 return &plats->ctxlat;
336 /* Return whether LAT is a lattice with a single constant and without an
337 undefined value. */
339 template <typename valtype>
340 inline bool
341 ipcp_lattice<valtype>::is_single_const ()
343 if (bottom || contains_variable || values_count != 1)
344 return false;
345 else
346 return true;
349 /* Print V which is extracted from a value in a lattice to F. */
351 static void
352 print_ipcp_constant_value (FILE * f, tree v)
354 if (TREE_CODE (v) == ADDR_EXPR
355 && TREE_CODE (TREE_OPERAND (v, 0)) == CONST_DECL)
357 fprintf (f, "& ");
358 print_generic_expr (f, DECL_INITIAL (TREE_OPERAND (v, 0)), 0);
360 else
361 print_generic_expr (f, v, 0);
364 /* Print V which is extracted from a value in a lattice to F. */
366 static void
367 print_ipcp_constant_value (FILE * f, ipa_polymorphic_call_context v)
369 v.dump(f, false);
372 /* Print a lattice LAT to F. */
374 template <typename valtype>
375 void
376 ipcp_lattice<valtype>::print (FILE * f, bool dump_sources, bool dump_benefits)
378 ipcp_value<valtype> *val;
379 bool prev = false;
381 if (bottom)
383 fprintf (f, "BOTTOM\n");
384 return;
387 if (!values_count && !contains_variable)
389 fprintf (f, "TOP\n");
390 return;
393 if (contains_variable)
395 fprintf (f, "VARIABLE");
396 prev = true;
397 if (dump_benefits)
398 fprintf (f, "\n");
401 for (val = values; val; val = val->next)
403 if (dump_benefits && prev)
404 fprintf (f, " ");
405 else if (!dump_benefits && prev)
406 fprintf (f, ", ");
407 else
408 prev = true;
410 print_ipcp_constant_value (f, val->value);
412 if (dump_sources)
414 ipcp_value_source<valtype> *s;
416 fprintf (f, " [from:");
417 for (s = val->sources; s; s = s->next)
418 fprintf (f, " %i(%i)", s->cs->caller->order,
419 s->cs->frequency);
420 fprintf (f, "]");
423 if (dump_benefits)
424 fprintf (f, " [loc_time: %i, loc_size: %i, "
425 "prop_time: %i, prop_size: %i]\n",
426 val->local_time_benefit, val->local_size_cost,
427 val->prop_time_benefit, val->prop_size_cost);
429 if (!dump_benefits)
430 fprintf (f, "\n");
433 /* Print all ipcp_lattices of all functions to F. */
435 static void
436 print_all_lattices (FILE * f, bool dump_sources, bool dump_benefits)
438 struct cgraph_node *node;
439 int i, count;
441 fprintf (f, "\nLattices:\n");
442 FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
444 struct ipa_node_params *info;
446 info = IPA_NODE_REF (node);
447 fprintf (f, " Node: %s/%i:\n", node->name (),
448 node->order);
449 count = ipa_get_param_count (info);
450 for (i = 0; i < count; i++)
452 struct ipcp_agg_lattice *aglat;
453 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
454 fprintf (f, " param [%d]: ", i);
455 plats->itself.print (f, dump_sources, dump_benefits);
456 fprintf (f, " ctxs: ");
457 plats->ctxlat.print (f, dump_sources, dump_benefits);
458 if (plats->alignment.known && plats->alignment.align > 0)
459 fprintf (f, " Alignment %u, misalignment %u\n",
460 plats->alignment.align, plats->alignment.misalign);
461 else if (plats->alignment.known)
462 fprintf (f, " Alignment unusable\n");
463 else
464 fprintf (f, " Alignment unknown\n");
465 if (plats->virt_call)
466 fprintf (f, " virt_call flag set\n");
468 if (plats->aggs_bottom)
470 fprintf (f, " AGGS BOTTOM\n");
471 continue;
473 if (plats->aggs_contain_variable)
474 fprintf (f, " AGGS VARIABLE\n");
475 for (aglat = plats->aggs; aglat; aglat = aglat->next)
477 fprintf (f, " %soffset " HOST_WIDE_INT_PRINT_DEC ": ",
478 plats->aggs_by_ref ? "ref " : "", aglat->offset);
479 aglat->print (f, dump_sources, dump_benefits);
485 /* Determine whether it is at all technically possible to create clones of NODE
486 and store this information in the ipa_node_params structure associated
487 with NODE. */
489 static void
490 determine_versionability (struct cgraph_node *node)
492 const char *reason = NULL;
494 /* There are a number of generic reasons functions cannot be versioned. We
495 also cannot remove parameters if there are type attributes such as fnspec
496 present. */
497 if (node->alias || node->thunk.thunk_p)
498 reason = "alias or thunk";
499 else if (!node->local.versionable)
500 reason = "not a tree_versionable_function";
501 else if (node->get_availability () <= AVAIL_INTERPOSABLE)
502 reason = "insufficient body availability";
503 else if (!opt_for_fn (node->decl, optimize)
504 || !opt_for_fn (node->decl, flag_ipa_cp))
505 reason = "non-optimized function";
506 else if (lookup_attribute ("omp declare simd", DECL_ATTRIBUTES (node->decl)))
508 /* Ideally we should clone the SIMD clones themselves and create
509 vector copies of them, so IPA-cp and SIMD clones can happily
510 coexist, but that may not be worth the effort. */
511 reason = "function has SIMD clones";
513 /* Don't clone decls local to a comdat group; it breaks and for C++
514 decloned constructors, inlining is always better anyway. */
515 else if (node->comdat_local_p ())
516 reason = "comdat-local function";
518 if (reason && dump_file && !node->alias && !node->thunk.thunk_p)
519 fprintf (dump_file, "Function %s/%i is not versionable, reason: %s.\n",
520 node->name (), node->order, reason);
522 node->local.versionable = (reason == NULL);
525 /* Return true if it is at all technically possible to create clones of a
526 NODE. */
528 static bool
529 ipcp_versionable_function_p (struct cgraph_node *node)
531 return node->local.versionable;
534 /* Structure holding accumulated information about callers of a node. */
536 struct caller_statistics
538 gcov_type count_sum;
539 int n_calls, n_hot_calls, freq_sum;
542 /* Initialize fields of STAT to zeroes. */
544 static inline void
545 init_caller_stats (struct caller_statistics *stats)
547 stats->count_sum = 0;
548 stats->n_calls = 0;
549 stats->n_hot_calls = 0;
550 stats->freq_sum = 0;
553 /* Worker callback of cgraph_for_node_and_aliases accumulating statistics of
554 non-thunk incoming edges to NODE. */
556 static bool
557 gather_caller_stats (struct cgraph_node *node, void *data)
559 struct caller_statistics *stats = (struct caller_statistics *) data;
560 struct cgraph_edge *cs;
562 for (cs = node->callers; cs; cs = cs->next_caller)
563 if (!cs->caller->thunk.thunk_p)
565 stats->count_sum += cs->count;
566 stats->freq_sum += cs->frequency;
567 stats->n_calls++;
568 if (cs->maybe_hot_p ())
569 stats->n_hot_calls ++;
571 return false;
575 /* Return true if this NODE is viable candidate for cloning. */
577 static bool
578 ipcp_cloning_candidate_p (struct cgraph_node *node)
580 struct caller_statistics stats;
582 gcc_checking_assert (node->has_gimple_body_p ());
584 if (!opt_for_fn (node->decl, flag_ipa_cp_clone))
586 if (dump_file)
587 fprintf (dump_file, "Not considering %s for cloning; "
588 "-fipa-cp-clone disabled.\n",
589 node->name ());
590 return false;
593 if (!optimize_function_for_speed_p (DECL_STRUCT_FUNCTION (node->decl)))
595 if (dump_file)
596 fprintf (dump_file, "Not considering %s for cloning; "
597 "optimizing it for size.\n",
598 node->name ());
599 return false;
602 init_caller_stats (&stats);
603 node->call_for_symbol_thunks_and_aliases (gather_caller_stats, &stats, false);
605 if (inline_summaries->get (node)->self_size < stats.n_calls)
607 if (dump_file)
608 fprintf (dump_file, "Considering %s for cloning; code might shrink.\n",
609 node->name ());
610 return true;
613 /* When profile is available and function is hot, propagate into it even if
614 calls seems cold; constant propagation can improve function's speed
615 significantly. */
616 if (max_count)
618 if (stats.count_sum > node->count * 90 / 100)
620 if (dump_file)
621 fprintf (dump_file, "Considering %s for cloning; "
622 "usually called directly.\n",
623 node->name ());
624 return true;
627 if (!stats.n_hot_calls)
629 if (dump_file)
630 fprintf (dump_file, "Not considering %s for cloning; no hot calls.\n",
631 node->name ());
632 return false;
634 if (dump_file)
635 fprintf (dump_file, "Considering %s for cloning.\n",
636 node->name ());
637 return true;
640 template <typename valtype>
641 class value_topo_info
643 public:
644 /* Head of the linked list of topologically sorted values. */
645 ipcp_value<valtype> *values_topo;
646 /* Stack for creating SCCs, represented by a linked list too. */
647 ipcp_value<valtype> *stack;
648 /* Counter driving the algorithm in add_val_to_toposort. */
649 int dfs_counter;
651 value_topo_info () : values_topo (NULL), stack (NULL), dfs_counter (0)
653 void add_val (ipcp_value<valtype> *cur_val);
654 void propagate_effects ();
657 /* Arrays representing a topological ordering of call graph nodes and a stack
658 of nodes used during constant propagation and also data required to perform
659 topological sort of values and propagation of benefits in the determined
660 order. */
662 class ipa_topo_info
664 public:
665 /* Array with obtained topological order of cgraph nodes. */
666 struct cgraph_node **order;
667 /* Stack of cgraph nodes used during propagation within SCC until all values
668 in the SCC stabilize. */
669 struct cgraph_node **stack;
670 int nnodes, stack_top;
672 value_topo_info<tree> constants;
673 value_topo_info<ipa_polymorphic_call_context> contexts;
675 ipa_topo_info () : order(NULL), stack(NULL), nnodes(0), stack_top(0),
676 constants ()
680 /* Allocate the arrays in TOPO and topologically sort the nodes into order. */
682 static void
683 build_toporder_info (struct ipa_topo_info *topo)
685 topo->order = XCNEWVEC (struct cgraph_node *, symtab->cgraph_count);
686 topo->stack = XCNEWVEC (struct cgraph_node *, symtab->cgraph_count);
688 gcc_checking_assert (topo->stack_top == 0);
689 topo->nnodes = ipa_reduced_postorder (topo->order, true, true, NULL);
692 /* Free information about strongly connected components and the arrays in
693 TOPO. */
695 static void
696 free_toporder_info (struct ipa_topo_info *topo)
698 ipa_free_postorder_info ();
699 free (topo->order);
700 free (topo->stack);
703 /* Add NODE to the stack in TOPO, unless it is already there. */
705 static inline void
706 push_node_to_stack (struct ipa_topo_info *topo, struct cgraph_node *node)
708 struct ipa_node_params *info = IPA_NODE_REF (node);
709 if (info->node_enqueued)
710 return;
711 info->node_enqueued = 1;
712 topo->stack[topo->stack_top++] = node;
715 /* Pop a node from the stack in TOPO and return it or return NULL if the stack
716 is empty. */
718 static struct cgraph_node *
719 pop_node_from_stack (struct ipa_topo_info *topo)
721 if (topo->stack_top)
723 struct cgraph_node *node;
724 topo->stack_top--;
725 node = topo->stack[topo->stack_top];
726 IPA_NODE_REF (node)->node_enqueued = 0;
727 return node;
729 else
730 return NULL;
733 /* Set lattice LAT to bottom and return true if it previously was not set as
734 such. */
736 template <typename valtype>
737 inline bool
738 ipcp_lattice<valtype>::set_to_bottom ()
740 bool ret = !bottom;
741 bottom = true;
742 return ret;
745 /* Mark lattice as containing an unknown value and return true if it previously
746 was not marked as such. */
748 template <typename valtype>
749 inline bool
750 ipcp_lattice<valtype>::set_contains_variable ()
752 bool ret = !contains_variable;
753 contains_variable = true;
754 return ret;
757 /* Set all aggegate lattices in PLATS to bottom and return true if they were
758 not previously set as such. */
760 static inline bool
761 set_agg_lats_to_bottom (struct ipcp_param_lattices *plats)
763 bool ret = !plats->aggs_bottom;
764 plats->aggs_bottom = true;
765 return ret;
768 /* Mark all aggegate lattices in PLATS as containing an unknown value and
769 return true if they were not previously marked as such. */
771 static inline bool
772 set_agg_lats_contain_variable (struct ipcp_param_lattices *plats)
774 bool ret = !plats->aggs_contain_variable;
775 plats->aggs_contain_variable = true;
776 return ret;
779 /* Return true if alignment information in PLATS is known to be unusable. */
781 static inline bool
782 alignment_bottom_p (ipcp_param_lattices *plats)
784 return plats->alignment.known && (plats->alignment.align == 0);
787 /* Set alignment information in PLATS to unusable. Return true if it
788 previously was usable or unknown. */
790 static inline bool
791 set_alignment_to_bottom (ipcp_param_lattices *plats)
793 if (alignment_bottom_p (plats))
794 return false;
795 plats->alignment.known = true;
796 plats->alignment.align = 0;
797 return true;
800 /* Mark bot aggregate and scalar lattices as containing an unknown variable,
801 return true is any of them has not been marked as such so far. */
803 static inline bool
804 set_all_contains_variable (struct ipcp_param_lattices *plats)
806 bool ret;
807 ret = plats->itself.set_contains_variable ();
808 ret |= plats->ctxlat.set_contains_variable ();
809 ret |= set_agg_lats_contain_variable (plats);
810 ret |= set_alignment_to_bottom (plats);
811 return ret;
814 /* Worker of call_for_symbol_thunks_and_aliases, increment the integer DATA
815 points to by the number of callers to NODE. */
817 static bool
818 count_callers (cgraph_node *node, void *data)
820 int *caller_count = (int *) data;
822 for (cgraph_edge *cs = node->callers; cs; cs = cs->next_caller)
823 /* Local thunks can be handled transparently, but if the thunk can not
824 be optimized out, count it as a real use. */
825 if (!cs->caller->thunk.thunk_p || !cs->caller->local.local)
826 ++*caller_count;
827 return false;
830 /* Worker of call_for_symbol_thunks_and_aliases, it is supposed to be called on
831 the one caller of some other node. Set the caller's corresponding flag. */
833 static bool
834 set_single_call_flag (cgraph_node *node, void *)
836 cgraph_edge *cs = node->callers;
837 /* Local thunks can be handled transparently, skip them. */
838 while (cs && cs->caller->thunk.thunk_p && cs->caller->local.local)
839 cs = cs->next_caller;
840 if (cs)
842 IPA_NODE_REF (cs->caller)->node_calling_single_call = true;
843 return true;
845 return false;
848 /* Initialize ipcp_lattices. */
850 static void
851 initialize_node_lattices (struct cgraph_node *node)
853 struct ipa_node_params *info = IPA_NODE_REF (node);
854 struct cgraph_edge *ie;
855 bool disable = false, variable = false;
856 int i;
858 gcc_checking_assert (node->has_gimple_body_p ());
859 if (cgraph_local_p (node))
861 int caller_count = 0;
862 node->call_for_symbol_thunks_and_aliases (count_callers, &caller_count,
863 true);
864 gcc_checking_assert (caller_count > 0);
865 if (caller_count == 1)
866 node->call_for_symbol_thunks_and_aliases (set_single_call_flag,
867 NULL, true);
869 else
871 /* When cloning is allowed, we can assume that externally visible
872 functions are not called. We will compensate this by cloning
873 later. */
874 if (ipcp_versionable_function_p (node)
875 && ipcp_cloning_candidate_p (node))
876 variable = true;
877 else
878 disable = true;
881 if (disable || variable)
883 for (i = 0; i < ipa_get_param_count (info) ; i++)
885 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
886 if (disable)
888 plats->itself.set_to_bottom ();
889 plats->ctxlat.set_to_bottom ();
890 set_agg_lats_to_bottom (plats);
891 set_alignment_to_bottom (plats);
893 else
894 set_all_contains_variable (plats);
896 if (dump_file && (dump_flags & TDF_DETAILS)
897 && !node->alias && !node->thunk.thunk_p)
898 fprintf (dump_file, "Marking all lattices of %s/%i as %s\n",
899 node->name (), node->order,
900 disable ? "BOTTOM" : "VARIABLE");
903 for (ie = node->indirect_calls; ie; ie = ie->next_callee)
904 if (ie->indirect_info->polymorphic
905 && ie->indirect_info->param_index >= 0)
907 gcc_checking_assert (ie->indirect_info->param_index >= 0);
908 ipa_get_parm_lattices (info,
909 ie->indirect_info->param_index)->virt_call = 1;
913 /* Return the result of a (possibly arithmetic) pass through jump function
914 JFUNC on the constant value INPUT. Return NULL_TREE if that cannot be
915 determined or be considered an interprocedural invariant. */
917 static tree
918 ipa_get_jf_pass_through_result (struct ipa_jump_func *jfunc, tree input)
920 tree restype, res;
922 gcc_checking_assert (is_gimple_ip_invariant (input));
923 if (ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
924 return input;
926 if (TREE_CODE_CLASS (ipa_get_jf_pass_through_operation (jfunc))
927 == tcc_comparison)
928 restype = boolean_type_node;
929 else
930 restype = TREE_TYPE (input);
931 res = fold_binary (ipa_get_jf_pass_through_operation (jfunc), restype,
932 input, ipa_get_jf_pass_through_operand (jfunc));
934 if (res && !is_gimple_ip_invariant (res))
935 return NULL_TREE;
937 return res;
940 /* Return the result of an ancestor jump function JFUNC on the constant value
941 INPUT. Return NULL_TREE if that cannot be determined. */
943 static tree
944 ipa_get_jf_ancestor_result (struct ipa_jump_func *jfunc, tree input)
946 gcc_checking_assert (TREE_CODE (input) != TREE_BINFO);
947 if (TREE_CODE (input) == ADDR_EXPR)
949 tree t = TREE_OPERAND (input, 0);
950 t = build_ref_for_offset (EXPR_LOCATION (t), t,
951 ipa_get_jf_ancestor_offset (jfunc),
952 ptr_type_node, NULL, false);
953 return build_fold_addr_expr (t);
955 else
956 return NULL_TREE;
959 /* Determine whether JFUNC evaluates to a single known constant value and if
960 so, return it. Otherwise return NULL. INFO describes the caller node or
961 the one it is inlined to, so that pass-through jump functions can be
962 evaluated. */
964 tree
965 ipa_value_from_jfunc (struct ipa_node_params *info, struct ipa_jump_func *jfunc)
967 if (jfunc->type == IPA_JF_CONST)
968 return ipa_get_jf_constant (jfunc);
969 else if (jfunc->type == IPA_JF_PASS_THROUGH
970 || jfunc->type == IPA_JF_ANCESTOR)
972 tree input;
973 int idx;
975 if (jfunc->type == IPA_JF_PASS_THROUGH)
976 idx = ipa_get_jf_pass_through_formal_id (jfunc);
977 else
978 idx = ipa_get_jf_ancestor_formal_id (jfunc);
980 if (info->ipcp_orig_node)
981 input = info->known_csts[idx];
982 else
984 ipcp_lattice<tree> *lat;
986 if (!info->lattices
987 || idx >= ipa_get_param_count (info))
988 return NULL_TREE;
989 lat = ipa_get_scalar_lat (info, idx);
990 if (!lat->is_single_const ())
991 return NULL_TREE;
992 input = lat->values->value;
995 if (!input)
996 return NULL_TREE;
998 if (jfunc->type == IPA_JF_PASS_THROUGH)
999 return ipa_get_jf_pass_through_result (jfunc, input);
1000 else
1001 return ipa_get_jf_ancestor_result (jfunc, input);
1003 else
1004 return NULL_TREE;
1007 /* Determie whether JFUNC evaluates to single known polymorphic context, given
1008 that INFO describes the caller node or the one it is inlined to, CS is the
1009 call graph edge corresponding to JFUNC and CSIDX index of the described
1010 parameter. */
1012 ipa_polymorphic_call_context
1013 ipa_context_from_jfunc (ipa_node_params *info, cgraph_edge *cs, int csidx,
1014 ipa_jump_func *jfunc)
1016 ipa_edge_args *args = IPA_EDGE_REF (cs);
1017 ipa_polymorphic_call_context ctx;
1018 ipa_polymorphic_call_context *edge_ctx
1019 = cs ? ipa_get_ith_polymorhic_call_context (args, csidx) : NULL;
1021 if (edge_ctx && !edge_ctx->useless_p ())
1022 ctx = *edge_ctx;
1024 if (jfunc->type == IPA_JF_PASS_THROUGH
1025 || jfunc->type == IPA_JF_ANCESTOR)
1027 ipa_polymorphic_call_context srcctx;
1028 int srcidx;
1029 bool type_preserved = true;
1030 if (jfunc->type == IPA_JF_PASS_THROUGH)
1032 if (ipa_get_jf_pass_through_operation (jfunc) != NOP_EXPR)
1033 return ctx;
1034 type_preserved = ipa_get_jf_pass_through_type_preserved (jfunc);
1035 srcidx = ipa_get_jf_pass_through_formal_id (jfunc);
1037 else
1039 type_preserved = ipa_get_jf_ancestor_type_preserved (jfunc);
1040 srcidx = ipa_get_jf_ancestor_formal_id (jfunc);
1042 if (info->ipcp_orig_node)
1044 if (info->known_contexts.exists ())
1045 srcctx = info->known_contexts[srcidx];
1047 else
1049 if (!info->lattices
1050 || srcidx >= ipa_get_param_count (info))
1051 return ctx;
1052 ipcp_lattice<ipa_polymorphic_call_context> *lat;
1053 lat = ipa_get_poly_ctx_lat (info, srcidx);
1054 if (!lat->is_single_const ())
1055 return ctx;
1056 srcctx = lat->values->value;
1058 if (srcctx.useless_p ())
1059 return ctx;
1060 if (jfunc->type == IPA_JF_ANCESTOR)
1061 srcctx.offset_by (ipa_get_jf_ancestor_offset (jfunc));
1062 if (!type_preserved)
1063 srcctx.possible_dynamic_type_change (cs->in_polymorphic_cdtor);
1064 srcctx.combine_with (ctx);
1065 return srcctx;
1068 return ctx;
1071 /* If checking is enabled, verify that no lattice is in the TOP state, i.e. not
1072 bottom, not containing a variable component and without any known value at
1073 the same time. */
1075 DEBUG_FUNCTION void
1076 ipcp_verify_propagated_values (void)
1078 struct cgraph_node *node;
1080 FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
1082 struct ipa_node_params *info = IPA_NODE_REF (node);
1083 int i, count = ipa_get_param_count (info);
1085 for (i = 0; i < count; i++)
1087 ipcp_lattice<tree> *lat = ipa_get_scalar_lat (info, i);
1089 if (!lat->bottom
1090 && !lat->contains_variable
1091 && lat->values_count == 0)
1093 if (dump_file)
1095 symtab_node::dump_table (dump_file);
1096 fprintf (dump_file, "\nIPA lattices after constant "
1097 "propagation, before gcc_unreachable:\n");
1098 print_all_lattices (dump_file, true, false);
1101 gcc_unreachable ();
1107 /* Return true iff X and Y should be considered equal values by IPA-CP. */
1109 static bool
1110 values_equal_for_ipcp_p (tree x, tree y)
1112 gcc_checking_assert (x != NULL_TREE && y != NULL_TREE);
1114 if (x == y)
1115 return true;
1117 if (TREE_CODE (x) == ADDR_EXPR
1118 && TREE_CODE (y) == ADDR_EXPR
1119 && TREE_CODE (TREE_OPERAND (x, 0)) == CONST_DECL
1120 && TREE_CODE (TREE_OPERAND (y, 0)) == CONST_DECL)
1121 return operand_equal_p (DECL_INITIAL (TREE_OPERAND (x, 0)),
1122 DECL_INITIAL (TREE_OPERAND (y, 0)), 0);
1123 else
1124 return operand_equal_p (x, y, 0);
1127 /* Return true iff X and Y should be considered equal contexts by IPA-CP. */
1129 static bool
1130 values_equal_for_ipcp_p (ipa_polymorphic_call_context x,
1131 ipa_polymorphic_call_context y)
1133 return x.equal_to (y);
1137 /* Add a new value source to the value represented by THIS, marking that a
1138 value comes from edge CS and (if the underlying jump function is a
1139 pass-through or an ancestor one) from a caller value SRC_VAL of a caller
1140 parameter described by SRC_INDEX. OFFSET is negative if the source was the
1141 scalar value of the parameter itself or the offset within an aggregate. */
1143 template <typename valtype>
1144 void
1145 ipcp_value<valtype>::add_source (cgraph_edge *cs, ipcp_value *src_val,
1146 int src_idx, HOST_WIDE_INT offset)
1148 ipcp_value_source<valtype> *src;
1150 src = new (pool_alloc (ipcp_sources_pool)) ipcp_value_source<valtype>;
1151 src->offset = offset;
1152 src->cs = cs;
1153 src->val = src_val;
1154 src->index = src_idx;
1156 src->next = sources;
1157 sources = src;
1160 /* Allocate a new ipcp_value holding a tree constant, initialize its value to
1161 SOURCE and clear all other fields. */
1163 static ipcp_value<tree> *
1164 allocate_and_init_ipcp_value (tree source)
1166 ipcp_value<tree> *val;
1168 val = new (pool_alloc (ipcp_cst_values_pool)) ipcp_value<tree>;
1169 memset (val, 0, sizeof (*val));
1170 val->value = source;
1171 return val;
1174 /* Allocate a new ipcp_value holding a polymorphic context, initialize its
1175 value to SOURCE and clear all other fields. */
1177 static ipcp_value<ipa_polymorphic_call_context> *
1178 allocate_and_init_ipcp_value (ipa_polymorphic_call_context source)
1180 ipcp_value<ipa_polymorphic_call_context> *val;
1182 val = new (pool_alloc (ipcp_poly_ctx_values_pool))
1183 ipcp_value<ipa_polymorphic_call_context>;
1184 memset (val, 0, sizeof (*val));
1185 val->value = source;
1186 return val;
1189 /* Try to add NEWVAL to LAT, potentially creating a new ipcp_value for it. CS,
1190 SRC_VAL SRC_INDEX and OFFSET are meant for add_source and have the same
1191 meaning. OFFSET -1 means the source is scalar and not a part of an
1192 aggregate. */
1194 template <typename valtype>
1195 bool
1196 ipcp_lattice<valtype>::add_value (valtype newval, cgraph_edge *cs,
1197 ipcp_value<valtype> *src_val,
1198 int src_idx, HOST_WIDE_INT offset)
1200 ipcp_value<valtype> *val;
1202 if (bottom)
1203 return false;
1205 for (val = values; val; val = val->next)
1206 if (values_equal_for_ipcp_p (val->value, newval))
1208 if (ipa_edge_within_scc (cs))
1210 ipcp_value_source<valtype> *s;
1211 for (s = val->sources; s ; s = s->next)
1212 if (s->cs == cs)
1213 break;
1214 if (s)
1215 return false;
1218 val->add_source (cs, src_val, src_idx, offset);
1219 return false;
1222 if (values_count == PARAM_VALUE (PARAM_IPA_CP_VALUE_LIST_SIZE))
1224 /* We can only free sources, not the values themselves, because sources
1225 of other values in this this SCC might point to them. */
1226 for (val = values; val; val = val->next)
1228 while (val->sources)
1230 ipcp_value_source<valtype> *src = val->sources;
1231 val->sources = src->next;
1232 pool_free (ipcp_sources_pool, src);
1236 values = NULL;
1237 return set_to_bottom ();
1240 values_count++;
1241 val = allocate_and_init_ipcp_value (newval);
1242 val->add_source (cs, src_val, src_idx, offset);
1243 val->next = values;
1244 values = val;
1245 return true;
1248 /* Propagate values through a pass-through jump function JFUNC associated with
1249 edge CS, taking values from SRC_LAT and putting them into DEST_LAT. SRC_IDX
1250 is the index of the source parameter. */
1252 static bool
1253 propagate_vals_accross_pass_through (cgraph_edge *cs,
1254 ipa_jump_func *jfunc,
1255 ipcp_lattice<tree> *src_lat,
1256 ipcp_lattice<tree> *dest_lat,
1257 int src_idx)
1259 ipcp_value<tree> *src_val;
1260 bool ret = false;
1262 /* Do not create new values when propagating within an SCC because if there
1263 are arithmetic functions with circular dependencies, there is infinite
1264 number of them and we would just make lattices bottom. */
1265 if ((ipa_get_jf_pass_through_operation (jfunc) != NOP_EXPR)
1266 && ipa_edge_within_scc (cs))
1267 ret = dest_lat->set_contains_variable ();
1268 else
1269 for (src_val = src_lat->values; src_val; src_val = src_val->next)
1271 tree cstval = ipa_get_jf_pass_through_result (jfunc, src_val->value);
1273 if (cstval)
1274 ret |= dest_lat->add_value (cstval, cs, src_val, src_idx);
1275 else
1276 ret |= dest_lat->set_contains_variable ();
1279 return ret;
1282 /* Propagate values through an ancestor jump function JFUNC associated with
1283 edge CS, taking values from SRC_LAT and putting them into DEST_LAT. SRC_IDX
1284 is the index of the source parameter. */
1286 static bool
1287 propagate_vals_accross_ancestor (struct cgraph_edge *cs,
1288 struct ipa_jump_func *jfunc,
1289 ipcp_lattice<tree> *src_lat,
1290 ipcp_lattice<tree> *dest_lat,
1291 int src_idx)
1293 ipcp_value<tree> *src_val;
1294 bool ret = false;
1296 if (ipa_edge_within_scc (cs))
1297 return dest_lat->set_contains_variable ();
1299 for (src_val = src_lat->values; src_val; src_val = src_val->next)
1301 tree t = ipa_get_jf_ancestor_result (jfunc, src_val->value);
1303 if (t)
1304 ret |= dest_lat->add_value (t, cs, src_val, src_idx);
1305 else
1306 ret |= dest_lat->set_contains_variable ();
1309 return ret;
1312 /* Propagate scalar values across jump function JFUNC that is associated with
1313 edge CS and put the values into DEST_LAT. */
1315 static bool
1316 propagate_scalar_accross_jump_function (struct cgraph_edge *cs,
1317 struct ipa_jump_func *jfunc,
1318 ipcp_lattice<tree> *dest_lat)
1320 if (dest_lat->bottom)
1321 return false;
1323 if (jfunc->type == IPA_JF_CONST)
1325 tree val = ipa_get_jf_constant (jfunc);
1326 return dest_lat->add_value (val, cs, NULL, 0);
1328 else if (jfunc->type == IPA_JF_PASS_THROUGH
1329 || jfunc->type == IPA_JF_ANCESTOR)
1331 struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
1332 ipcp_lattice<tree> *src_lat;
1333 int src_idx;
1334 bool ret;
1336 if (jfunc->type == IPA_JF_PASS_THROUGH)
1337 src_idx = ipa_get_jf_pass_through_formal_id (jfunc);
1338 else
1339 src_idx = ipa_get_jf_ancestor_formal_id (jfunc);
1341 src_lat = ipa_get_scalar_lat (caller_info, src_idx);
1342 if (src_lat->bottom)
1343 return dest_lat->set_contains_variable ();
1345 /* If we would need to clone the caller and cannot, do not propagate. */
1346 if (!ipcp_versionable_function_p (cs->caller)
1347 && (src_lat->contains_variable
1348 || (src_lat->values_count > 1)))
1349 return dest_lat->set_contains_variable ();
1351 if (jfunc->type == IPA_JF_PASS_THROUGH)
1352 ret = propagate_vals_accross_pass_through (cs, jfunc, src_lat,
1353 dest_lat, src_idx);
1354 else
1355 ret = propagate_vals_accross_ancestor (cs, jfunc, src_lat, dest_lat,
1356 src_idx);
1358 if (src_lat->contains_variable)
1359 ret |= dest_lat->set_contains_variable ();
1361 return ret;
1364 /* TODO: We currently do not handle member method pointers in IPA-CP (we only
1365 use it for indirect inlining), we should propagate them too. */
1366 return dest_lat->set_contains_variable ();
1369 /* Propagate scalar values across jump function JFUNC that is associated with
1370 edge CS and describes argument IDX and put the values into DEST_LAT. */
1372 static bool
1373 propagate_context_accross_jump_function (cgraph_edge *cs,
1374 ipa_jump_func *jfunc, int idx,
1375 ipcp_lattice<ipa_polymorphic_call_context> *dest_lat)
1377 ipa_edge_args *args = IPA_EDGE_REF (cs);
1378 if (dest_lat->bottom)
1379 return false;
1380 bool ret = false;
1381 bool added_sth = false;
1382 bool type_preserved = true;
1384 ipa_polymorphic_call_context edge_ctx, *edge_ctx_ptr
1385 = ipa_get_ith_polymorhic_call_context (args, idx);
1387 if (edge_ctx_ptr)
1388 edge_ctx = *edge_ctx_ptr;
1390 if (jfunc->type == IPA_JF_PASS_THROUGH
1391 || jfunc->type == IPA_JF_ANCESTOR)
1393 struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
1394 int src_idx;
1395 ipcp_lattice<ipa_polymorphic_call_context> *src_lat;
1397 /* TODO: Once we figure out how to propagate speculations, it will
1398 probably be a good idea to switch to speculation if type_preserved is
1399 not set instead of punting. */
1400 if (jfunc->type == IPA_JF_PASS_THROUGH)
1402 if (ipa_get_jf_pass_through_operation (jfunc) != NOP_EXPR)
1403 goto prop_fail;
1404 type_preserved = ipa_get_jf_pass_through_type_preserved (jfunc);
1405 src_idx = ipa_get_jf_pass_through_formal_id (jfunc);
1407 else
1409 type_preserved = ipa_get_jf_ancestor_type_preserved (jfunc);
1410 src_idx = ipa_get_jf_ancestor_formal_id (jfunc);
1413 src_lat = ipa_get_poly_ctx_lat (caller_info, src_idx);
1414 /* If we would need to clone the caller and cannot, do not propagate. */
1415 if (!ipcp_versionable_function_p (cs->caller)
1416 && (src_lat->contains_variable
1417 || (src_lat->values_count > 1)))
1418 goto prop_fail;
1420 ipcp_value<ipa_polymorphic_call_context> *src_val;
1421 for (src_val = src_lat->values; src_val; src_val = src_val->next)
1423 ipa_polymorphic_call_context cur = src_val->value;
1425 if (!type_preserved)
1426 cur.possible_dynamic_type_change (cs->in_polymorphic_cdtor);
1427 if (jfunc->type == IPA_JF_ANCESTOR)
1428 cur.offset_by (ipa_get_jf_ancestor_offset (jfunc));
1429 /* TODO: In cases we know how the context is going to be used,
1430 we can improve the result by passing proper OTR_TYPE. */
1431 cur.combine_with (edge_ctx);
1432 if (!cur.useless_p ())
1434 if (src_lat->contains_variable
1435 && !edge_ctx.equal_to (cur))
1436 ret |= dest_lat->set_contains_variable ();
1437 ret |= dest_lat->add_value (cur, cs, src_val, src_idx);
1438 added_sth = true;
1444 prop_fail:
1445 if (!added_sth)
1447 if (!edge_ctx.useless_p ())
1448 ret |= dest_lat->add_value (edge_ctx, cs);
1449 else
1450 ret |= dest_lat->set_contains_variable ();
1453 return ret;
1456 /* Propagate alignments across jump function JFUNC that is associated with
1457 edge CS and update DEST_LAT accordingly. */
1459 static bool
1460 propagate_alignment_accross_jump_function (struct cgraph_edge *cs,
1461 struct ipa_jump_func *jfunc,
1462 struct ipcp_param_lattices *dest_lat)
1464 if (alignment_bottom_p (dest_lat))
1465 return false;
1467 ipa_alignment cur;
1468 cur.known = false;
1469 if (jfunc->alignment.known)
1470 cur = jfunc->alignment;
1471 else if (jfunc->type == IPA_JF_PASS_THROUGH
1472 || jfunc->type == IPA_JF_ANCESTOR)
1474 struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
1475 struct ipcp_param_lattices *src_lats;
1476 HOST_WIDE_INT offset = 0;
1477 int src_idx;
1479 if (jfunc->type == IPA_JF_PASS_THROUGH)
1481 enum tree_code op = ipa_get_jf_pass_through_operation (jfunc);
1482 if (op != NOP_EXPR)
1484 if (op != POINTER_PLUS_EXPR
1485 && op != PLUS_EXPR)
1486 goto prop_fail;
1487 tree operand = ipa_get_jf_pass_through_operand (jfunc);
1488 if (!tree_fits_shwi_p (operand))
1489 goto prop_fail;
1490 offset = tree_to_shwi (operand);
1492 src_idx = ipa_get_jf_pass_through_formal_id (jfunc);
1494 else
1496 src_idx = ipa_get_jf_ancestor_formal_id (jfunc);
1497 offset = ipa_get_jf_ancestor_offset (jfunc) / BITS_PER_UNIT;;
1500 src_lats = ipa_get_parm_lattices (caller_info, src_idx);
1501 if (!src_lats->alignment.known
1502 || alignment_bottom_p (src_lats))
1503 goto prop_fail;
1505 cur = src_lats->alignment;
1506 cur.misalign = (cur.misalign + offset) % cur.align;
1509 if (cur.known)
1511 if (!dest_lat->alignment.known)
1513 dest_lat->alignment = cur;
1514 return true;
1516 else if (dest_lat->alignment.align == cur.align
1517 && dest_lat->alignment.misalign == cur.misalign)
1518 return false;
1521 prop_fail:
1522 set_alignment_to_bottom (dest_lat);
1523 return true;
1526 /* If DEST_PLATS already has aggregate items, check that aggs_by_ref matches
1527 NEW_AGGS_BY_REF and if not, mark all aggs as bottoms and return true (in all
1528 other cases, return false). If there are no aggregate items, set
1529 aggs_by_ref to NEW_AGGS_BY_REF. */
1531 static bool
1532 set_check_aggs_by_ref (struct ipcp_param_lattices *dest_plats,
1533 bool new_aggs_by_ref)
1535 if (dest_plats->aggs)
1537 if (dest_plats->aggs_by_ref != new_aggs_by_ref)
1539 set_agg_lats_to_bottom (dest_plats);
1540 return true;
1543 else
1544 dest_plats->aggs_by_ref = new_aggs_by_ref;
1545 return false;
1548 /* Walk aggregate lattices in DEST_PLATS from ***AGLAT on, until ***aglat is an
1549 already existing lattice for the given OFFSET and SIZE, marking all skipped
1550 lattices as containing variable and checking for overlaps. If there is no
1551 already existing lattice for the OFFSET and VAL_SIZE, create one, initialize
1552 it with offset, size and contains_variable to PRE_EXISTING, and return true,
1553 unless there are too many already. If there are two many, return false. If
1554 there are overlaps turn whole DEST_PLATS to bottom and return false. If any
1555 skipped lattices were newly marked as containing variable, set *CHANGE to
1556 true. */
1558 static bool
1559 merge_agg_lats_step (struct ipcp_param_lattices *dest_plats,
1560 HOST_WIDE_INT offset, HOST_WIDE_INT val_size,
1561 struct ipcp_agg_lattice ***aglat,
1562 bool pre_existing, bool *change)
1564 gcc_checking_assert (offset >= 0);
1566 while (**aglat && (**aglat)->offset < offset)
1568 if ((**aglat)->offset + (**aglat)->size > offset)
1570 set_agg_lats_to_bottom (dest_plats);
1571 return false;
1573 *change |= (**aglat)->set_contains_variable ();
1574 *aglat = &(**aglat)->next;
1577 if (**aglat && (**aglat)->offset == offset)
1579 if ((**aglat)->size != val_size
1580 || ((**aglat)->next
1581 && (**aglat)->next->offset < offset + val_size))
1583 set_agg_lats_to_bottom (dest_plats);
1584 return false;
1586 gcc_checking_assert (!(**aglat)->next
1587 || (**aglat)->next->offset >= offset + val_size);
1588 return true;
1590 else
1592 struct ipcp_agg_lattice *new_al;
1594 if (**aglat && (**aglat)->offset < offset + val_size)
1596 set_agg_lats_to_bottom (dest_plats);
1597 return false;
1599 if (dest_plats->aggs_count == PARAM_VALUE (PARAM_IPA_MAX_AGG_ITEMS))
1600 return false;
1601 dest_plats->aggs_count++;
1602 new_al = (struct ipcp_agg_lattice *) pool_alloc (ipcp_agg_lattice_pool);
1603 memset (new_al, 0, sizeof (*new_al));
1605 new_al->offset = offset;
1606 new_al->size = val_size;
1607 new_al->contains_variable = pre_existing;
1609 new_al->next = **aglat;
1610 **aglat = new_al;
1611 return true;
1615 /* Set all AGLAT and all other aggregate lattices reachable by next pointers as
1616 containing an unknown value. */
1618 static bool
1619 set_chain_of_aglats_contains_variable (struct ipcp_agg_lattice *aglat)
1621 bool ret = false;
1622 while (aglat)
1624 ret |= aglat->set_contains_variable ();
1625 aglat = aglat->next;
1627 return ret;
1630 /* Merge existing aggregate lattices in SRC_PLATS to DEST_PLATS, subtracting
1631 DELTA_OFFSET. CS is the call graph edge and SRC_IDX the index of the source
1632 parameter used for lattice value sources. Return true if DEST_PLATS changed
1633 in any way. */
1635 static bool
1636 merge_aggregate_lattices (struct cgraph_edge *cs,
1637 struct ipcp_param_lattices *dest_plats,
1638 struct ipcp_param_lattices *src_plats,
1639 int src_idx, HOST_WIDE_INT offset_delta)
1641 bool pre_existing = dest_plats->aggs != NULL;
1642 struct ipcp_agg_lattice **dst_aglat;
1643 bool ret = false;
1645 if (set_check_aggs_by_ref (dest_plats, src_plats->aggs_by_ref))
1646 return true;
1647 if (src_plats->aggs_bottom)
1648 return set_agg_lats_contain_variable (dest_plats);
1649 if (src_plats->aggs_contain_variable)
1650 ret |= set_agg_lats_contain_variable (dest_plats);
1651 dst_aglat = &dest_plats->aggs;
1653 for (struct ipcp_agg_lattice *src_aglat = src_plats->aggs;
1654 src_aglat;
1655 src_aglat = src_aglat->next)
1657 HOST_WIDE_INT new_offset = src_aglat->offset - offset_delta;
1659 if (new_offset < 0)
1660 continue;
1661 if (merge_agg_lats_step (dest_plats, new_offset, src_aglat->size,
1662 &dst_aglat, pre_existing, &ret))
1664 struct ipcp_agg_lattice *new_al = *dst_aglat;
1666 dst_aglat = &(*dst_aglat)->next;
1667 if (src_aglat->bottom)
1669 ret |= new_al->set_contains_variable ();
1670 continue;
1672 if (src_aglat->contains_variable)
1673 ret |= new_al->set_contains_variable ();
1674 for (ipcp_value<tree> *val = src_aglat->values;
1675 val;
1676 val = val->next)
1677 ret |= new_al->add_value (val->value, cs, val, src_idx,
1678 src_aglat->offset);
1680 else if (dest_plats->aggs_bottom)
1681 return true;
1683 ret |= set_chain_of_aglats_contains_variable (*dst_aglat);
1684 return ret;
1687 /* Determine whether there is anything to propagate FROM SRC_PLATS through a
1688 pass-through JFUNC and if so, whether it has conform and conforms to the
1689 rules about propagating values passed by reference. */
1691 static bool
1692 agg_pass_through_permissible_p (struct ipcp_param_lattices *src_plats,
1693 struct ipa_jump_func *jfunc)
1695 return src_plats->aggs
1696 && (!src_plats->aggs_by_ref
1697 || ipa_get_jf_pass_through_agg_preserved (jfunc));
1700 /* Propagate scalar values across jump function JFUNC that is associated with
1701 edge CS and put the values into DEST_LAT. */
1703 static bool
1704 propagate_aggs_accross_jump_function (struct cgraph_edge *cs,
1705 struct ipa_jump_func *jfunc,
1706 struct ipcp_param_lattices *dest_plats)
1708 bool ret = false;
1710 if (dest_plats->aggs_bottom)
1711 return false;
1713 if (jfunc->type == IPA_JF_PASS_THROUGH
1714 && ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
1716 struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
1717 int src_idx = ipa_get_jf_pass_through_formal_id (jfunc);
1718 struct ipcp_param_lattices *src_plats;
1720 src_plats = ipa_get_parm_lattices (caller_info, src_idx);
1721 if (agg_pass_through_permissible_p (src_plats, jfunc))
1723 /* Currently we do not produce clobber aggregate jump
1724 functions, replace with merging when we do. */
1725 gcc_assert (!jfunc->agg.items);
1726 ret |= merge_aggregate_lattices (cs, dest_plats, src_plats,
1727 src_idx, 0);
1729 else
1730 ret |= set_agg_lats_contain_variable (dest_plats);
1732 else if (jfunc->type == IPA_JF_ANCESTOR
1733 && ipa_get_jf_ancestor_agg_preserved (jfunc))
1735 struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
1736 int src_idx = ipa_get_jf_ancestor_formal_id (jfunc);
1737 struct ipcp_param_lattices *src_plats;
1739 src_plats = ipa_get_parm_lattices (caller_info, src_idx);
1740 if (src_plats->aggs && src_plats->aggs_by_ref)
1742 /* Currently we do not produce clobber aggregate jump
1743 functions, replace with merging when we do. */
1744 gcc_assert (!jfunc->agg.items);
1745 ret |= merge_aggregate_lattices (cs, dest_plats, src_plats, src_idx,
1746 ipa_get_jf_ancestor_offset (jfunc));
1748 else if (!src_plats->aggs_by_ref)
1749 ret |= set_agg_lats_to_bottom (dest_plats);
1750 else
1751 ret |= set_agg_lats_contain_variable (dest_plats);
1753 else if (jfunc->agg.items)
1755 bool pre_existing = dest_plats->aggs != NULL;
1756 struct ipcp_agg_lattice **aglat = &dest_plats->aggs;
1757 struct ipa_agg_jf_item *item;
1758 int i;
1760 if (set_check_aggs_by_ref (dest_plats, jfunc->agg.by_ref))
1761 return true;
1763 FOR_EACH_VEC_ELT (*jfunc->agg.items, i, item)
1765 HOST_WIDE_INT val_size;
1767 if (item->offset < 0)
1768 continue;
1769 gcc_checking_assert (is_gimple_ip_invariant (item->value));
1770 val_size = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (item->value)));
1772 if (merge_agg_lats_step (dest_plats, item->offset, val_size,
1773 &aglat, pre_existing, &ret))
1775 ret |= (*aglat)->add_value (item->value, cs, NULL, 0, 0);
1776 aglat = &(*aglat)->next;
1778 else if (dest_plats->aggs_bottom)
1779 return true;
1782 ret |= set_chain_of_aglats_contains_variable (*aglat);
1784 else
1785 ret |= set_agg_lats_contain_variable (dest_plats);
1787 return ret;
1790 /* Propagate constants from the caller to the callee of CS. INFO describes the
1791 caller. */
1793 static bool
1794 propagate_constants_accross_call (struct cgraph_edge *cs)
1796 struct ipa_node_params *callee_info;
1797 enum availability availability;
1798 struct cgraph_node *callee, *alias_or_thunk;
1799 struct ipa_edge_args *args;
1800 bool ret = false;
1801 int i, args_count, parms_count;
1803 callee = cs->callee->function_symbol (&availability);
1804 if (!callee->definition)
1805 return false;
1806 gcc_checking_assert (callee->has_gimple_body_p ());
1807 callee_info = IPA_NODE_REF (callee);
1809 args = IPA_EDGE_REF (cs);
1810 args_count = ipa_get_cs_argument_count (args);
1811 parms_count = ipa_get_param_count (callee_info);
1812 if (parms_count == 0)
1813 return false;
1815 /* No propagation through instrumentation thunks is available yet.
1816 It should be possible with proper mapping of call args and
1817 instrumented callee params in the propagation loop below. But
1818 this case mostly occurs when legacy code calls instrumented code
1819 and it is not a primary target for optimizations.
1820 We detect instrumentation thunks in aliases and thunks chain by
1821 checking instrumentation_clone flag for chain source and target.
1822 Going through instrumentation thunks we always have it changed
1823 from 0 to 1 and all other nodes do not change it. */
1824 if (!cs->callee->instrumentation_clone
1825 && callee->instrumentation_clone)
1827 for (i = 0; i < parms_count; i++)
1828 ret |= set_all_contains_variable (ipa_get_parm_lattices (callee_info,
1829 i));
1830 return ret;
1833 /* If this call goes through a thunk we must not propagate to the first (0th)
1834 parameter. However, we might need to uncover a thunk from below a series
1835 of aliases first. */
1836 alias_or_thunk = cs->callee;
1837 while (alias_or_thunk->alias)
1838 alias_or_thunk = alias_or_thunk->get_alias_target ();
1839 if (alias_or_thunk->thunk.thunk_p)
1841 ret |= set_all_contains_variable (ipa_get_parm_lattices (callee_info,
1842 0));
1843 i = 1;
1845 else
1846 i = 0;
1848 for (; (i < args_count) && (i < parms_count); i++)
1850 struct ipa_jump_func *jump_func = ipa_get_ith_jump_func (args, i);
1851 struct ipcp_param_lattices *dest_plats;
1853 dest_plats = ipa_get_parm_lattices (callee_info, i);
1854 if (availability == AVAIL_INTERPOSABLE)
1855 ret |= set_all_contains_variable (dest_plats);
1856 else
1858 ret |= propagate_scalar_accross_jump_function (cs, jump_func,
1859 &dest_plats->itself);
1860 ret |= propagate_context_accross_jump_function (cs, jump_func, i,
1861 &dest_plats->ctxlat);
1862 ret |= propagate_alignment_accross_jump_function (cs, jump_func,
1863 dest_plats);
1864 ret |= propagate_aggs_accross_jump_function (cs, jump_func,
1865 dest_plats);
1868 for (; i < parms_count; i++)
1869 ret |= set_all_contains_variable (ipa_get_parm_lattices (callee_info, i));
1871 return ret;
1874 /* If an indirect edge IE can be turned into a direct one based on KNOWN_VALS
1875 KNOWN_CONTEXTS, KNOWN_AGGS or AGG_REPS return the destination. The latter
1876 three can be NULL. If AGG_REPS is not NULL, KNOWN_AGGS is ignored. */
1878 static tree
1879 ipa_get_indirect_edge_target_1 (struct cgraph_edge *ie,
1880 vec<tree> known_csts,
1881 vec<ipa_polymorphic_call_context> known_contexts,
1882 vec<ipa_agg_jump_function_p> known_aggs,
1883 struct ipa_agg_replacement_value *agg_reps,
1884 bool *speculative)
1886 int param_index = ie->indirect_info->param_index;
1887 HOST_WIDE_INT anc_offset;
1888 tree t;
1889 tree target = NULL;
1891 *speculative = false;
1893 if (param_index == -1
1894 || known_csts.length () <= (unsigned int) param_index)
1895 return NULL_TREE;
1897 if (!ie->indirect_info->polymorphic)
1899 tree t;
1901 if (ie->indirect_info->agg_contents)
1903 if (agg_reps)
1905 t = NULL;
1906 while (agg_reps)
1908 if (agg_reps->index == param_index
1909 && agg_reps->offset == ie->indirect_info->offset
1910 && agg_reps->by_ref == ie->indirect_info->by_ref)
1912 t = agg_reps->value;
1913 break;
1915 agg_reps = agg_reps->next;
1918 else if (known_aggs.length () > (unsigned int) param_index)
1920 struct ipa_agg_jump_function *agg;
1921 agg = known_aggs[param_index];
1922 t = ipa_find_agg_cst_for_param (agg, ie->indirect_info->offset,
1923 ie->indirect_info->by_ref);
1925 else
1926 t = NULL;
1928 else
1929 t = known_csts[param_index];
1931 if (t &&
1932 TREE_CODE (t) == ADDR_EXPR
1933 && TREE_CODE (TREE_OPERAND (t, 0)) == FUNCTION_DECL)
1934 return TREE_OPERAND (t, 0);
1935 else
1936 return NULL_TREE;
1939 if (!opt_for_fn (ie->caller->decl, flag_devirtualize))
1940 return NULL_TREE;
1942 gcc_assert (!ie->indirect_info->agg_contents);
1943 anc_offset = ie->indirect_info->offset;
1945 t = NULL;
1947 /* Try to work out value of virtual table pointer value in replacemnets. */
1948 if (!t && agg_reps && !ie->indirect_info->by_ref)
1950 while (agg_reps)
1952 if (agg_reps->index == param_index
1953 && agg_reps->offset == ie->indirect_info->offset
1954 && agg_reps->by_ref)
1956 t = agg_reps->value;
1957 break;
1959 agg_reps = agg_reps->next;
1963 /* Try to work out value of virtual table pointer value in known
1964 aggregate values. */
1965 if (!t && known_aggs.length () > (unsigned int) param_index
1966 && !ie->indirect_info->by_ref)
1968 struct ipa_agg_jump_function *agg;
1969 agg = known_aggs[param_index];
1970 t = ipa_find_agg_cst_for_param (agg, ie->indirect_info->offset,
1971 true);
1974 /* If we found the virtual table pointer, lookup the target. */
1975 if (t)
1977 tree vtable;
1978 unsigned HOST_WIDE_INT offset;
1979 if (vtable_pointer_value_to_vtable (t, &vtable, &offset))
1981 target = gimple_get_virt_method_for_vtable (ie->indirect_info->otr_token,
1982 vtable, offset);
1983 if (target)
1985 if ((TREE_CODE (TREE_TYPE (target)) == FUNCTION_TYPE
1986 && DECL_FUNCTION_CODE (target) == BUILT_IN_UNREACHABLE)
1987 || !possible_polymorphic_call_target_p
1988 (ie, cgraph_node::get (target)))
1989 target = ipa_impossible_devirt_target (ie, target);
1990 *speculative = ie->indirect_info->vptr_changed;
1991 if (!*speculative)
1992 return target;
1997 /* Do we know the constant value of pointer? */
1998 if (!t)
1999 t = known_csts[param_index];
2001 gcc_checking_assert (!t || TREE_CODE (t) != TREE_BINFO);
2003 ipa_polymorphic_call_context context;
2004 if (known_contexts.length () > (unsigned int) param_index)
2006 context = known_contexts[param_index];
2007 context.offset_by (anc_offset);
2008 if (ie->indirect_info->vptr_changed)
2009 context.possible_dynamic_type_change (ie->in_polymorphic_cdtor,
2010 ie->indirect_info->otr_type);
2011 if (t)
2013 ipa_polymorphic_call_context ctx2 = ipa_polymorphic_call_context
2014 (t, ie->indirect_info->otr_type, anc_offset);
2015 if (!ctx2.useless_p ())
2016 context.combine_with (ctx2, ie->indirect_info->otr_type);
2019 else if (t)
2021 context = ipa_polymorphic_call_context (t, ie->indirect_info->otr_type,
2022 anc_offset);
2023 if (ie->indirect_info->vptr_changed)
2024 context.possible_dynamic_type_change (ie->in_polymorphic_cdtor,
2025 ie->indirect_info->otr_type);
2027 else
2028 return NULL_TREE;
2030 vec <cgraph_node *>targets;
2031 bool final;
2033 targets = possible_polymorphic_call_targets
2034 (ie->indirect_info->otr_type,
2035 ie->indirect_info->otr_token,
2036 context, &final);
2037 if (!final || targets.length () > 1)
2039 struct cgraph_node *node;
2040 if (*speculative)
2041 return target;
2042 if (!opt_for_fn (ie->caller->decl, flag_devirtualize_speculatively)
2043 || ie->speculative || !ie->maybe_hot_p ())
2044 return NULL;
2045 node = try_speculative_devirtualization (ie->indirect_info->otr_type,
2046 ie->indirect_info->otr_token,
2047 context);
2048 if (node)
2050 *speculative = true;
2051 target = node->decl;
2053 else
2054 return NULL;
2056 else
2058 *speculative = false;
2059 if (targets.length () == 1)
2060 target = targets[0]->decl;
2061 else
2062 target = ipa_impossible_devirt_target (ie, NULL_TREE);
2065 if (target && !possible_polymorphic_call_target_p (ie,
2066 cgraph_node::get (target)))
2067 target = ipa_impossible_devirt_target (ie, target);
2069 return target;
2073 /* If an indirect edge IE can be turned into a direct one based on KNOWN_CSTS,
2074 KNOWN_CONTEXTS (which can be vNULL) or KNOWN_AGGS (which also can be vNULL)
2075 return the destination. */
2077 tree
2078 ipa_get_indirect_edge_target (struct cgraph_edge *ie,
2079 vec<tree> known_csts,
2080 vec<ipa_polymorphic_call_context> known_contexts,
2081 vec<ipa_agg_jump_function_p> known_aggs,
2082 bool *speculative)
2084 return ipa_get_indirect_edge_target_1 (ie, known_csts, known_contexts,
2085 known_aggs, NULL, speculative);
2088 /* Calculate devirtualization time bonus for NODE, assuming we know KNOWN_CSTS
2089 and KNOWN_CONTEXTS. */
2091 static int
2092 devirtualization_time_bonus (struct cgraph_node *node,
2093 vec<tree> known_csts,
2094 vec<ipa_polymorphic_call_context> known_contexts,
2095 vec<ipa_agg_jump_function_p> known_aggs)
2097 struct cgraph_edge *ie;
2098 int res = 0;
2100 for (ie = node->indirect_calls; ie; ie = ie->next_callee)
2102 struct cgraph_node *callee;
2103 struct inline_summary *isummary;
2104 enum availability avail;
2105 tree target;
2106 bool speculative;
2108 target = ipa_get_indirect_edge_target (ie, known_csts, known_contexts,
2109 known_aggs, &speculative);
2110 if (!target)
2111 continue;
2113 /* Only bare minimum benefit for clearly un-inlineable targets. */
2114 res += 1;
2115 callee = cgraph_node::get (target);
2116 if (!callee || !callee->definition)
2117 continue;
2118 callee = callee->function_symbol (&avail);
2119 if (avail < AVAIL_AVAILABLE)
2120 continue;
2121 isummary = inline_summaries->get (callee);
2122 if (!isummary->inlinable)
2123 continue;
2125 /* FIXME: The values below need re-considering and perhaps also
2126 integrating into the cost metrics, at lest in some very basic way. */
2127 if (isummary->size <= MAX_INLINE_INSNS_AUTO / 4)
2128 res += 31 / ((int)speculative + 1);
2129 else if (isummary->size <= MAX_INLINE_INSNS_AUTO / 2)
2130 res += 15 / ((int)speculative + 1);
2131 else if (isummary->size <= MAX_INLINE_INSNS_AUTO
2132 || DECL_DECLARED_INLINE_P (callee->decl))
2133 res += 7 / ((int)speculative + 1);
2136 return res;
2139 /* Return time bonus incurred because of HINTS. */
2141 static int
2142 hint_time_bonus (inline_hints hints)
2144 int result = 0;
2145 if (hints & (INLINE_HINT_loop_iterations | INLINE_HINT_loop_stride))
2146 result += PARAM_VALUE (PARAM_IPA_CP_LOOP_HINT_BONUS);
2147 if (hints & INLINE_HINT_array_index)
2148 result += PARAM_VALUE (PARAM_IPA_CP_ARRAY_INDEX_HINT_BONUS);
2149 return result;
2152 /* If there is a reason to penalize the function described by INFO in the
2153 cloning goodness evaluation, do so. */
2155 static inline int64_t
2156 incorporate_penalties (ipa_node_params *info, int64_t evaluation)
2158 if (info->node_within_scc)
2159 evaluation = (evaluation
2160 * (100 - PARAM_VALUE (PARAM_IPA_CP_RECURSION_PENALTY))) / 100;
2162 if (info->node_calling_single_call)
2163 evaluation = (evaluation
2164 * (100 - PARAM_VALUE (PARAM_IPA_CP_SINGLE_CALL_PENALTY)))
2165 / 100;
2167 return evaluation;
2170 /* Return true if cloning NODE is a good idea, given the estimated TIME_BENEFIT
2171 and SIZE_COST and with the sum of frequencies of incoming edges to the
2172 potential new clone in FREQUENCIES. */
2174 static bool
2175 good_cloning_opportunity_p (struct cgraph_node *node, int time_benefit,
2176 int freq_sum, gcov_type count_sum, int size_cost)
2178 if (time_benefit == 0
2179 || !opt_for_fn (node->decl, flag_ipa_cp_clone)
2180 || !optimize_function_for_speed_p (DECL_STRUCT_FUNCTION (node->decl)))
2181 return false;
2183 gcc_assert (size_cost > 0);
2185 struct ipa_node_params *info = IPA_NODE_REF (node);
2186 if (max_count)
2188 int factor = (count_sum * 1000) / max_count;
2189 int64_t evaluation = (((int64_t) time_benefit * factor)
2190 / size_cost);
2191 evaluation = incorporate_penalties (info, evaluation);
2193 if (dump_file && (dump_flags & TDF_DETAILS))
2194 fprintf (dump_file, " good_cloning_opportunity_p (time: %i, "
2195 "size: %i, count_sum: " HOST_WIDE_INT_PRINT_DEC
2196 "%s%s) -> evaluation: " "%"PRId64
2197 ", threshold: %i\n",
2198 time_benefit, size_cost, (HOST_WIDE_INT) count_sum,
2199 info->node_within_scc ? ", scc" : "",
2200 info->node_calling_single_call ? ", single_call" : "",
2201 evaluation, PARAM_VALUE (PARAM_IPA_CP_EVAL_THRESHOLD));
2203 return evaluation >= PARAM_VALUE (PARAM_IPA_CP_EVAL_THRESHOLD);
2205 else
2207 int64_t evaluation = (((int64_t) time_benefit * freq_sum)
2208 / size_cost);
2209 evaluation = incorporate_penalties (info, evaluation);
2211 if (dump_file && (dump_flags & TDF_DETAILS))
2212 fprintf (dump_file, " good_cloning_opportunity_p (time: %i, "
2213 "size: %i, freq_sum: %i%s%s) -> evaluation: "
2214 "%"PRId64 ", threshold: %i\n",
2215 time_benefit, size_cost, freq_sum,
2216 info->node_within_scc ? ", scc" : "",
2217 info->node_calling_single_call ? ", single_call" : "",
2218 evaluation, PARAM_VALUE (PARAM_IPA_CP_EVAL_THRESHOLD));
2220 return evaluation >= PARAM_VALUE (PARAM_IPA_CP_EVAL_THRESHOLD);
2224 /* Return all context independent values from aggregate lattices in PLATS in a
2225 vector. Return NULL if there are none. */
2227 static vec<ipa_agg_jf_item, va_gc> *
2228 context_independent_aggregate_values (struct ipcp_param_lattices *plats)
2230 vec<ipa_agg_jf_item, va_gc> *res = NULL;
2232 if (plats->aggs_bottom
2233 || plats->aggs_contain_variable
2234 || plats->aggs_count == 0)
2235 return NULL;
2237 for (struct ipcp_agg_lattice *aglat = plats->aggs;
2238 aglat;
2239 aglat = aglat->next)
2240 if (aglat->is_single_const ())
2242 struct ipa_agg_jf_item item;
2243 item.offset = aglat->offset;
2244 item.value = aglat->values->value;
2245 vec_safe_push (res, item);
2247 return res;
2250 /* Allocate KNOWN_CSTS, KNOWN_CONTEXTS and, if non-NULL, KNOWN_AGGS and
2251 populate them with values of parameters that are known independent of the
2252 context. INFO describes the function. If REMOVABLE_PARAMS_COST is
2253 non-NULL, the movement cost of all removable parameters will be stored in
2254 it. */
2256 static bool
2257 gather_context_independent_values (struct ipa_node_params *info,
2258 vec<tree> *known_csts,
2259 vec<ipa_polymorphic_call_context>
2260 *known_contexts,
2261 vec<ipa_agg_jump_function> *known_aggs,
2262 int *removable_params_cost)
2264 int i, count = ipa_get_param_count (info);
2265 bool ret = false;
2267 known_csts->create (0);
2268 known_contexts->create (0);
2269 known_csts->safe_grow_cleared (count);
2270 known_contexts->safe_grow_cleared (count);
2271 if (known_aggs)
2273 known_aggs->create (0);
2274 known_aggs->safe_grow_cleared (count);
2277 if (removable_params_cost)
2278 *removable_params_cost = 0;
2280 for (i = 0; i < count ; i++)
2282 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
2283 ipcp_lattice<tree> *lat = &plats->itself;
2285 if (lat->is_single_const ())
2287 ipcp_value<tree> *val = lat->values;
2288 gcc_checking_assert (TREE_CODE (val->value) != TREE_BINFO);
2289 (*known_csts)[i] = val->value;
2290 if (removable_params_cost)
2291 *removable_params_cost
2292 += estimate_move_cost (TREE_TYPE (val->value), false);
2293 ret = true;
2295 else if (removable_params_cost
2296 && !ipa_is_param_used (info, i))
2297 *removable_params_cost
2298 += ipa_get_param_move_cost (info, i);
2300 ipcp_lattice<ipa_polymorphic_call_context> *ctxlat = &plats->ctxlat;
2301 if (ctxlat->is_single_const ())
2303 (*known_contexts)[i] = ctxlat->values->value;
2304 ret = true;
2307 if (known_aggs)
2309 vec<ipa_agg_jf_item, va_gc> *agg_items;
2310 struct ipa_agg_jump_function *ajf;
2312 agg_items = context_independent_aggregate_values (plats);
2313 ajf = &(*known_aggs)[i];
2314 ajf->items = agg_items;
2315 ajf->by_ref = plats->aggs_by_ref;
2316 ret |= agg_items != NULL;
2320 return ret;
2323 /* The current interface in ipa-inline-analysis requires a pointer vector.
2324 Create it.
2326 FIXME: That interface should be re-worked, this is slightly silly. Still,
2327 I'd like to discuss how to change it first and this demonstrates the
2328 issue. */
2330 static vec<ipa_agg_jump_function_p>
2331 agg_jmp_p_vec_for_t_vec (vec<ipa_agg_jump_function> known_aggs)
2333 vec<ipa_agg_jump_function_p> ret;
2334 struct ipa_agg_jump_function *ajf;
2335 int i;
2337 ret.create (known_aggs.length ());
2338 FOR_EACH_VEC_ELT (known_aggs, i, ajf)
2339 ret.quick_push (ajf);
2340 return ret;
2343 /* Perform time and size measurement of NODE with the context given in
2344 KNOWN_CSTS, KNOWN_CONTEXTS and KNOWN_AGGS, calculate the benefit and cost
2345 given BASE_TIME of the node without specialization, REMOVABLE_PARAMS_COST of
2346 all context-independent removable parameters and EST_MOVE_COST of estimated
2347 movement of the considered parameter and store it into VAL. */
2349 static void
2350 perform_estimation_of_a_value (cgraph_node *node, vec<tree> known_csts,
2351 vec<ipa_polymorphic_call_context> known_contexts,
2352 vec<ipa_agg_jump_function_p> known_aggs_ptrs,
2353 int base_time, int removable_params_cost,
2354 int est_move_cost, ipcp_value_base *val)
2356 int time, size, time_benefit;
2357 inline_hints hints;
2359 estimate_ipcp_clone_size_and_time (node, known_csts, known_contexts,
2360 known_aggs_ptrs, &size, &time,
2361 &hints);
2362 time_benefit = base_time - time
2363 + devirtualization_time_bonus (node, known_csts, known_contexts,
2364 known_aggs_ptrs)
2365 + hint_time_bonus (hints)
2366 + removable_params_cost + est_move_cost;
2368 gcc_checking_assert (size >=0);
2369 /* The inliner-heuristics based estimates may think that in certain
2370 contexts some functions do not have any size at all but we want
2371 all specializations to have at least a tiny cost, not least not to
2372 divide by zero. */
2373 if (size == 0)
2374 size = 1;
2376 val->local_time_benefit = time_benefit;
2377 val->local_size_cost = size;
2380 /* Iterate over known values of parameters of NODE and estimate the local
2381 effects in terms of time and size they have. */
2383 static void
2384 estimate_local_effects (struct cgraph_node *node)
2386 struct ipa_node_params *info = IPA_NODE_REF (node);
2387 int i, count = ipa_get_param_count (info);
2388 vec<tree> known_csts;
2389 vec<ipa_polymorphic_call_context> known_contexts;
2390 vec<ipa_agg_jump_function> known_aggs;
2391 vec<ipa_agg_jump_function_p> known_aggs_ptrs;
2392 bool always_const;
2393 int base_time = inline_summaries->get (node)->time;
2394 int removable_params_cost;
2396 if (!count || !ipcp_versionable_function_p (node))
2397 return;
2399 if (dump_file && (dump_flags & TDF_DETAILS))
2400 fprintf (dump_file, "\nEstimating effects for %s/%i, base_time: %i.\n",
2401 node->name (), node->order, base_time);
2403 always_const = gather_context_independent_values (info, &known_csts,
2404 &known_contexts, &known_aggs,
2405 &removable_params_cost);
2406 known_aggs_ptrs = agg_jmp_p_vec_for_t_vec (known_aggs);
2407 if (always_const)
2409 struct caller_statistics stats;
2410 inline_hints hints;
2411 int time, size;
2413 init_caller_stats (&stats);
2414 node->call_for_symbol_thunks_and_aliases (gather_caller_stats, &stats,
2415 false);
2416 estimate_ipcp_clone_size_and_time (node, known_csts, known_contexts,
2417 known_aggs_ptrs, &size, &time, &hints);
2418 time -= devirtualization_time_bonus (node, known_csts, known_contexts,
2419 known_aggs_ptrs);
2420 time -= hint_time_bonus (hints);
2421 time -= removable_params_cost;
2422 size -= stats.n_calls * removable_params_cost;
2424 if (dump_file)
2425 fprintf (dump_file, " - context independent values, size: %i, "
2426 "time_benefit: %i\n", size, base_time - time);
2428 if (size <= 0
2429 || node->will_be_removed_from_program_if_no_direct_calls_p ())
2431 info->do_clone_for_all_contexts = true;
2432 base_time = time;
2434 if (dump_file)
2435 fprintf (dump_file, " Decided to specialize for all "
2436 "known contexts, code not going to grow.\n");
2438 else if (good_cloning_opportunity_p (node, base_time - time,
2439 stats.freq_sum, stats.count_sum,
2440 size))
2442 if (size + overall_size <= max_new_size)
2444 info->do_clone_for_all_contexts = true;
2445 base_time = time;
2446 overall_size += size;
2448 if (dump_file)
2449 fprintf (dump_file, " Decided to specialize for all "
2450 "known contexts, growth deemed beneficial.\n");
2452 else if (dump_file && (dump_flags & TDF_DETAILS))
2453 fprintf (dump_file, " Not cloning for all contexts because "
2454 "max_new_size would be reached with %li.\n",
2455 size + overall_size);
2459 for (i = 0; i < count ; i++)
2461 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
2462 ipcp_lattice<tree> *lat = &plats->itself;
2463 ipcp_value<tree> *val;
2465 if (lat->bottom
2466 || !lat->values
2467 || known_csts[i])
2468 continue;
2470 for (val = lat->values; val; val = val->next)
2472 gcc_checking_assert (TREE_CODE (val->value) != TREE_BINFO);
2473 known_csts[i] = val->value;
2475 int emc = estimate_move_cost (TREE_TYPE (val->value), true);
2476 perform_estimation_of_a_value (node, known_csts, known_contexts,
2477 known_aggs_ptrs, base_time,
2478 removable_params_cost, emc, val);
2480 if (dump_file && (dump_flags & TDF_DETAILS))
2482 fprintf (dump_file, " - estimates for value ");
2483 print_ipcp_constant_value (dump_file, val->value);
2484 fprintf (dump_file, " for ");
2485 ipa_dump_param (dump_file, info, i);
2486 fprintf (dump_file, ": time_benefit: %i, size: %i\n",
2487 val->local_time_benefit, val->local_size_cost);
2490 known_csts[i] = NULL_TREE;
2493 for (i = 0; i < count; i++)
2495 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
2497 if (!plats->virt_call)
2498 continue;
2500 ipcp_lattice<ipa_polymorphic_call_context> *ctxlat = &plats->ctxlat;
2501 ipcp_value<ipa_polymorphic_call_context> *val;
2503 if (ctxlat->bottom
2504 || !ctxlat->values
2505 || !known_contexts[i].useless_p ())
2506 continue;
2508 for (val = ctxlat->values; val; val = val->next)
2510 known_contexts[i] = val->value;
2511 perform_estimation_of_a_value (node, known_csts, known_contexts,
2512 known_aggs_ptrs, base_time,
2513 removable_params_cost, 0, val);
2515 if (dump_file && (dump_flags & TDF_DETAILS))
2517 fprintf (dump_file, " - estimates for polymorphic context ");
2518 print_ipcp_constant_value (dump_file, val->value);
2519 fprintf (dump_file, " for ");
2520 ipa_dump_param (dump_file, info, i);
2521 fprintf (dump_file, ": time_benefit: %i, size: %i\n",
2522 val->local_time_benefit, val->local_size_cost);
2525 known_contexts[i] = ipa_polymorphic_call_context ();
2528 for (i = 0; i < count ; i++)
2530 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
2531 struct ipa_agg_jump_function *ajf;
2532 struct ipcp_agg_lattice *aglat;
2534 if (plats->aggs_bottom || !plats->aggs)
2535 continue;
2537 ajf = &known_aggs[i];
2538 for (aglat = plats->aggs; aglat; aglat = aglat->next)
2540 ipcp_value<tree> *val;
2541 if (aglat->bottom || !aglat->values
2542 /* If the following is true, the one value is in known_aggs. */
2543 || (!plats->aggs_contain_variable
2544 && aglat->is_single_const ()))
2545 continue;
2547 for (val = aglat->values; val; val = val->next)
2549 struct ipa_agg_jf_item item;
2551 item.offset = aglat->offset;
2552 item.value = val->value;
2553 vec_safe_push (ajf->items, item);
2555 perform_estimation_of_a_value (node, known_csts, known_contexts,
2556 known_aggs_ptrs, base_time,
2557 removable_params_cost, 0, val);
2559 if (dump_file && (dump_flags & TDF_DETAILS))
2561 fprintf (dump_file, " - estimates for value ");
2562 print_ipcp_constant_value (dump_file, val->value);
2563 fprintf (dump_file, " for ");
2564 ipa_dump_param (dump_file, info, i);
2565 fprintf (dump_file, "[%soffset: " HOST_WIDE_INT_PRINT_DEC
2566 "]: time_benefit: %i, size: %i\n",
2567 plats->aggs_by_ref ? "ref " : "",
2568 aglat->offset,
2569 val->local_time_benefit, val->local_size_cost);
2572 ajf->items->pop ();
2577 for (i = 0; i < count ; i++)
2578 vec_free (known_aggs[i].items);
2580 known_csts.release ();
2581 known_contexts.release ();
2582 known_aggs.release ();
2583 known_aggs_ptrs.release ();
2587 /* Add value CUR_VAL and all yet-unsorted values it is dependent on to the
2588 topological sort of values. */
2590 template <typename valtype>
2591 void
2592 value_topo_info<valtype>::add_val (ipcp_value<valtype> *cur_val)
2594 ipcp_value_source<valtype> *src;
2596 if (cur_val->dfs)
2597 return;
2599 dfs_counter++;
2600 cur_val->dfs = dfs_counter;
2601 cur_val->low_link = dfs_counter;
2603 cur_val->topo_next = stack;
2604 stack = cur_val;
2605 cur_val->on_stack = true;
2607 for (src = cur_val->sources; src; src = src->next)
2608 if (src->val)
2610 if (src->val->dfs == 0)
2612 add_val (src->val);
2613 if (src->val->low_link < cur_val->low_link)
2614 cur_val->low_link = src->val->low_link;
2616 else if (src->val->on_stack
2617 && src->val->dfs < cur_val->low_link)
2618 cur_val->low_link = src->val->dfs;
2621 if (cur_val->dfs == cur_val->low_link)
2623 ipcp_value<valtype> *v, *scc_list = NULL;
2627 v = stack;
2628 stack = v->topo_next;
2629 v->on_stack = false;
2631 v->scc_next = scc_list;
2632 scc_list = v;
2634 while (v != cur_val);
2636 cur_val->topo_next = values_topo;
2637 values_topo = cur_val;
2641 /* Add all values in lattices associated with NODE to the topological sort if
2642 they are not there yet. */
2644 static void
2645 add_all_node_vals_to_toposort (cgraph_node *node, ipa_topo_info *topo)
2647 struct ipa_node_params *info = IPA_NODE_REF (node);
2648 int i, count = ipa_get_param_count (info);
2650 for (i = 0; i < count ; i++)
2652 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
2653 ipcp_lattice<tree> *lat = &plats->itself;
2654 struct ipcp_agg_lattice *aglat;
2656 if (!lat->bottom)
2658 ipcp_value<tree> *val;
2659 for (val = lat->values; val; val = val->next)
2660 topo->constants.add_val (val);
2663 if (!plats->aggs_bottom)
2664 for (aglat = plats->aggs; aglat; aglat = aglat->next)
2665 if (!aglat->bottom)
2667 ipcp_value<tree> *val;
2668 for (val = aglat->values; val; val = val->next)
2669 topo->constants.add_val (val);
2672 ipcp_lattice<ipa_polymorphic_call_context> *ctxlat = &plats->ctxlat;
2673 if (!ctxlat->bottom)
2675 ipcp_value<ipa_polymorphic_call_context> *ctxval;
2676 for (ctxval = ctxlat->values; ctxval; ctxval = ctxval->next)
2677 topo->contexts.add_val (ctxval);
2682 /* One pass of constants propagation along the call graph edges, from callers
2683 to callees (requires topological ordering in TOPO), iterate over strongly
2684 connected components. */
2686 static void
2687 propagate_constants_topo (struct ipa_topo_info *topo)
2689 int i;
2691 for (i = topo->nnodes - 1; i >= 0; i--)
2693 unsigned j;
2694 struct cgraph_node *v, *node = topo->order[i];
2695 vec<cgraph_node *> cycle_nodes = ipa_get_nodes_in_cycle (node);
2697 /* First, iteratively propagate within the strongly connected component
2698 until all lattices stabilize. */
2699 FOR_EACH_VEC_ELT (cycle_nodes, j, v)
2700 if (v->has_gimple_body_p ())
2701 push_node_to_stack (topo, v);
2703 v = pop_node_from_stack (topo);
2704 while (v)
2706 struct cgraph_edge *cs;
2708 for (cs = v->callees; cs; cs = cs->next_callee)
2709 if (ipa_edge_within_scc (cs))
2711 IPA_NODE_REF (v)->node_within_scc = true;
2712 if (propagate_constants_accross_call (cs))
2713 push_node_to_stack (topo, cs->callee->function_symbol ());
2715 v = pop_node_from_stack (topo);
2718 /* Afterwards, propagate along edges leading out of the SCC, calculates
2719 the local effects of the discovered constants and all valid values to
2720 their topological sort. */
2721 FOR_EACH_VEC_ELT (cycle_nodes, j, v)
2722 if (v->has_gimple_body_p ())
2724 struct cgraph_edge *cs;
2726 estimate_local_effects (v);
2727 add_all_node_vals_to_toposort (v, topo);
2728 for (cs = v->callees; cs; cs = cs->next_callee)
2729 if (!ipa_edge_within_scc (cs))
2730 propagate_constants_accross_call (cs);
2732 cycle_nodes.release ();
2737 /* Return the sum of A and B if none of them is bigger than INT_MAX/2, return
2738 the bigger one if otherwise. */
2740 static int
2741 safe_add (int a, int b)
2743 if (a > INT_MAX/2 || b > INT_MAX/2)
2744 return a > b ? a : b;
2745 else
2746 return a + b;
2750 /* Propagate the estimated effects of individual values along the topological
2751 from the dependent values to those they depend on. */
2753 template <typename valtype>
2754 void
2755 value_topo_info<valtype>::propagate_effects ()
2757 ipcp_value<valtype> *base;
2759 for (base = values_topo; base; base = base->topo_next)
2761 ipcp_value_source<valtype> *src;
2762 ipcp_value<valtype> *val;
2763 int time = 0, size = 0;
2765 for (val = base; val; val = val->scc_next)
2767 time = safe_add (time,
2768 val->local_time_benefit + val->prop_time_benefit);
2769 size = safe_add (size, val->local_size_cost + val->prop_size_cost);
2772 for (val = base; val; val = val->scc_next)
2773 for (src = val->sources; src; src = src->next)
2774 if (src->val
2775 && src->cs->maybe_hot_p ())
2777 src->val->prop_time_benefit = safe_add (time,
2778 src->val->prop_time_benefit);
2779 src->val->prop_size_cost = safe_add (size,
2780 src->val->prop_size_cost);
2786 /* Propagate constants, polymorphic contexts and their effects from the
2787 summaries interprocedurally. */
2789 static void
2790 ipcp_propagate_stage (struct ipa_topo_info *topo)
2792 struct cgraph_node *node;
2794 if (dump_file)
2795 fprintf (dump_file, "\n Propagating constants:\n\n");
2797 if (in_lto_p)
2798 ipa_update_after_lto_read ();
2801 FOR_EACH_DEFINED_FUNCTION (node)
2803 struct ipa_node_params *info = IPA_NODE_REF (node);
2805 determine_versionability (node);
2806 if (node->has_gimple_body_p ())
2808 info->lattices = XCNEWVEC (struct ipcp_param_lattices,
2809 ipa_get_param_count (info));
2810 initialize_node_lattices (node);
2812 if (node->definition && !node->alias)
2813 overall_size += inline_summaries->get (node)->self_size;
2814 if (node->count > max_count)
2815 max_count = node->count;
2818 max_new_size = overall_size;
2819 if (max_new_size < PARAM_VALUE (PARAM_LARGE_UNIT_INSNS))
2820 max_new_size = PARAM_VALUE (PARAM_LARGE_UNIT_INSNS);
2821 max_new_size += max_new_size * PARAM_VALUE (PARAM_IPCP_UNIT_GROWTH) / 100 + 1;
2823 if (dump_file)
2824 fprintf (dump_file, "\noverall_size: %li, max_new_size: %li\n",
2825 overall_size, max_new_size);
2827 propagate_constants_topo (topo);
2828 #ifdef ENABLE_CHECKING
2829 ipcp_verify_propagated_values ();
2830 #endif
2831 topo->constants.propagate_effects ();
2832 topo->contexts.propagate_effects ();
2834 if (dump_file)
2836 fprintf (dump_file, "\nIPA lattices after all propagation:\n");
2837 print_all_lattices (dump_file, (dump_flags & TDF_DETAILS), true);
2841 /* Discover newly direct outgoing edges from NODE which is a new clone with
2842 known KNOWN_CSTS and make them direct. */
2844 static void
2845 ipcp_discover_new_direct_edges (struct cgraph_node *node,
2846 vec<tree> known_csts,
2847 vec<ipa_polymorphic_call_context>
2848 known_contexts,
2849 struct ipa_agg_replacement_value *aggvals)
2851 struct cgraph_edge *ie, *next_ie;
2852 bool found = false;
2854 for (ie = node->indirect_calls; ie; ie = next_ie)
2856 tree target;
2857 bool speculative;
2859 next_ie = ie->next_callee;
2860 target = ipa_get_indirect_edge_target_1 (ie, known_csts, known_contexts,
2861 vNULL, aggvals, &speculative);
2862 if (target)
2864 bool agg_contents = ie->indirect_info->agg_contents;
2865 bool polymorphic = ie->indirect_info->polymorphic;
2866 int param_index = ie->indirect_info->param_index;
2867 struct cgraph_edge *cs = ipa_make_edge_direct_to_target (ie, target,
2868 speculative);
2869 found = true;
2871 if (cs && !agg_contents && !polymorphic)
2873 struct ipa_node_params *info = IPA_NODE_REF (node);
2874 int c = ipa_get_controlled_uses (info, param_index);
2875 if (c != IPA_UNDESCRIBED_USE)
2877 struct ipa_ref *to_del;
2879 c--;
2880 ipa_set_controlled_uses (info, param_index, c);
2881 if (dump_file && (dump_flags & TDF_DETAILS))
2882 fprintf (dump_file, " controlled uses count of param "
2883 "%i bumped down to %i\n", param_index, c);
2884 if (c == 0
2885 && (to_del = node->find_reference (cs->callee, NULL, 0)))
2887 if (dump_file && (dump_flags & TDF_DETAILS))
2888 fprintf (dump_file, " and even removing its "
2889 "cloning-created reference\n");
2890 to_del->remove_reference ();
2896 /* Turning calls to direct calls will improve overall summary. */
2897 if (found)
2898 inline_update_overall_summary (node);
2901 /* Vector of pointers which for linked lists of clones of an original crgaph
2902 edge. */
2904 static vec<cgraph_edge *> next_edge_clone;
2905 static vec<cgraph_edge *> prev_edge_clone;
2907 static inline void
2908 grow_edge_clone_vectors (void)
2910 if (next_edge_clone.length ()
2911 <= (unsigned) symtab->edges_max_uid)
2912 next_edge_clone.safe_grow_cleared (symtab->edges_max_uid + 1);
2913 if (prev_edge_clone.length ()
2914 <= (unsigned) symtab->edges_max_uid)
2915 prev_edge_clone.safe_grow_cleared (symtab->edges_max_uid + 1);
2918 /* Edge duplication hook to grow the appropriate linked list in
2919 next_edge_clone. */
2921 static void
2922 ipcp_edge_duplication_hook (struct cgraph_edge *src, struct cgraph_edge *dst,
2923 void *)
2925 grow_edge_clone_vectors ();
2927 struct cgraph_edge *old_next = next_edge_clone[src->uid];
2928 if (old_next)
2929 prev_edge_clone[old_next->uid] = dst;
2930 prev_edge_clone[dst->uid] = src;
2932 next_edge_clone[dst->uid] = old_next;
2933 next_edge_clone[src->uid] = dst;
2936 /* Hook that is called by cgraph.c when an edge is removed. */
2938 static void
2939 ipcp_edge_removal_hook (struct cgraph_edge *cs, void *)
2941 grow_edge_clone_vectors ();
2943 struct cgraph_edge *prev = prev_edge_clone[cs->uid];
2944 struct cgraph_edge *next = next_edge_clone[cs->uid];
2945 if (prev)
2946 next_edge_clone[prev->uid] = next;
2947 if (next)
2948 prev_edge_clone[next->uid] = prev;
2951 /* See if NODE is a clone with a known aggregate value at a given OFFSET of a
2952 parameter with the given INDEX. */
2954 static tree
2955 get_clone_agg_value (struct cgraph_node *node, HOST_WIDE_INT offset,
2956 int index)
2958 struct ipa_agg_replacement_value *aggval;
2960 aggval = ipa_get_agg_replacements_for_node (node);
2961 while (aggval)
2963 if (aggval->offset == offset
2964 && aggval->index == index)
2965 return aggval->value;
2966 aggval = aggval->next;
2968 return NULL_TREE;
2971 /* Return true is NODE is DEST or its clone for all contexts. */
2973 static bool
2974 same_node_or_its_all_contexts_clone_p (cgraph_node *node, cgraph_node *dest)
2976 if (node == dest)
2977 return true;
2979 struct ipa_node_params *info = IPA_NODE_REF (node);
2980 return info->is_all_contexts_clone && info->ipcp_orig_node == dest;
2983 /* Return true if edge CS does bring about the value described by SRC to node
2984 DEST or its clone for all contexts. */
2986 static bool
2987 cgraph_edge_brings_value_p (cgraph_edge *cs, ipcp_value_source<tree> *src,
2988 cgraph_node *dest)
2990 struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
2991 enum availability availability;
2992 cgraph_node *real_dest = cs->callee->function_symbol (&availability);
2994 if (!same_node_or_its_all_contexts_clone_p (real_dest, dest)
2995 || availability <= AVAIL_INTERPOSABLE
2996 || caller_info->node_dead)
2997 return false;
2998 if (!src->val)
2999 return true;
3001 if (caller_info->ipcp_orig_node)
3003 tree t;
3004 if (src->offset == -1)
3005 t = caller_info->known_csts[src->index];
3006 else
3007 t = get_clone_agg_value (cs->caller, src->offset, src->index);
3008 return (t != NULL_TREE
3009 && values_equal_for_ipcp_p (src->val->value, t));
3011 else
3013 struct ipcp_agg_lattice *aglat;
3014 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (caller_info,
3015 src->index);
3016 if (src->offset == -1)
3017 return (plats->itself.is_single_const ()
3018 && values_equal_for_ipcp_p (src->val->value,
3019 plats->itself.values->value));
3020 else
3022 if (plats->aggs_bottom || plats->aggs_contain_variable)
3023 return false;
3024 for (aglat = plats->aggs; aglat; aglat = aglat->next)
3025 if (aglat->offset == src->offset)
3026 return (aglat->is_single_const ()
3027 && values_equal_for_ipcp_p (src->val->value,
3028 aglat->values->value));
3030 return false;
3034 /* Return true if edge CS does bring about the value described by SRC to node
3035 DEST or its clone for all contexts. */
3037 static bool
3038 cgraph_edge_brings_value_p (cgraph_edge *cs,
3039 ipcp_value_source<ipa_polymorphic_call_context> *src,
3040 cgraph_node *dest)
3042 struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
3043 cgraph_node *real_dest = cs->callee->function_symbol ();
3045 if (!same_node_or_its_all_contexts_clone_p (real_dest, dest)
3046 || caller_info->node_dead)
3047 return false;
3048 if (!src->val)
3049 return true;
3051 if (caller_info->ipcp_orig_node)
3052 return (caller_info->known_contexts.length () > (unsigned) src->index)
3053 && values_equal_for_ipcp_p (src->val->value,
3054 caller_info->known_contexts[src->index]);
3056 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (caller_info,
3057 src->index);
3058 return plats->ctxlat.is_single_const ()
3059 && values_equal_for_ipcp_p (src->val->value,
3060 plats->ctxlat.values->value);
3063 /* Get the next clone in the linked list of clones of an edge. */
3065 static inline struct cgraph_edge *
3066 get_next_cgraph_edge_clone (struct cgraph_edge *cs)
3068 return next_edge_clone[cs->uid];
3071 /* Given VAL that is intended for DEST, iterate over all its sources and if
3072 they still hold, add their edge frequency and their number into *FREQUENCY
3073 and *CALLER_COUNT respectively. */
3075 template <typename valtype>
3076 static bool
3077 get_info_about_necessary_edges (ipcp_value<valtype> *val, cgraph_node *dest,
3078 int *freq_sum,
3079 gcov_type *count_sum, int *caller_count)
3081 ipcp_value_source<valtype> *src;
3082 int freq = 0, count = 0;
3083 gcov_type cnt = 0;
3084 bool hot = false;
3086 for (src = val->sources; src; src = src->next)
3088 struct cgraph_edge *cs = src->cs;
3089 while (cs)
3091 if (cgraph_edge_brings_value_p (cs, src, dest))
3093 count++;
3094 freq += cs->frequency;
3095 cnt += cs->count;
3096 hot |= cs->maybe_hot_p ();
3098 cs = get_next_cgraph_edge_clone (cs);
3102 *freq_sum = freq;
3103 *count_sum = cnt;
3104 *caller_count = count;
3105 return hot;
3108 /* Return a vector of incoming edges that do bring value VAL to node DEST. It
3109 is assumed their number is known and equal to CALLER_COUNT. */
3111 template <typename valtype>
3112 static vec<cgraph_edge *>
3113 gather_edges_for_value (ipcp_value<valtype> *val, cgraph_node *dest,
3114 int caller_count)
3116 ipcp_value_source<valtype> *src;
3117 vec<cgraph_edge *> ret;
3119 ret.create (caller_count);
3120 for (src = val->sources; src; src = src->next)
3122 struct cgraph_edge *cs = src->cs;
3123 while (cs)
3125 if (cgraph_edge_brings_value_p (cs, src, dest))
3126 ret.quick_push (cs);
3127 cs = get_next_cgraph_edge_clone (cs);
3131 return ret;
3134 /* Construct a replacement map for a know VALUE for a formal parameter PARAM.
3135 Return it or NULL if for some reason it cannot be created. */
3137 static struct ipa_replace_map *
3138 get_replacement_map (struct ipa_node_params *info, tree value, int parm_num)
3140 struct ipa_replace_map *replace_map;
3143 replace_map = ggc_alloc<ipa_replace_map> ();
3144 if (dump_file)
3146 fprintf (dump_file, " replacing ");
3147 ipa_dump_param (dump_file, info, parm_num);
3149 fprintf (dump_file, " with const ");
3150 print_generic_expr (dump_file, value, 0);
3151 fprintf (dump_file, "\n");
3153 replace_map->old_tree = NULL;
3154 replace_map->parm_num = parm_num;
3155 replace_map->new_tree = value;
3156 replace_map->replace_p = true;
3157 replace_map->ref_p = false;
3159 return replace_map;
3162 /* Dump new profiling counts */
3164 static void
3165 dump_profile_updates (struct cgraph_node *orig_node,
3166 struct cgraph_node *new_node)
3168 struct cgraph_edge *cs;
3170 fprintf (dump_file, " setting count of the specialized node to "
3171 HOST_WIDE_INT_PRINT_DEC "\n", (HOST_WIDE_INT) new_node->count);
3172 for (cs = new_node->callees; cs ; cs = cs->next_callee)
3173 fprintf (dump_file, " edge to %s has count "
3174 HOST_WIDE_INT_PRINT_DEC "\n",
3175 cs->callee->name (), (HOST_WIDE_INT) cs->count);
3177 fprintf (dump_file, " setting count of the original node to "
3178 HOST_WIDE_INT_PRINT_DEC "\n", (HOST_WIDE_INT) orig_node->count);
3179 for (cs = orig_node->callees; cs ; cs = cs->next_callee)
3180 fprintf (dump_file, " edge to %s is left with "
3181 HOST_WIDE_INT_PRINT_DEC "\n",
3182 cs->callee->name (), (HOST_WIDE_INT) cs->count);
3185 /* After a specialized NEW_NODE version of ORIG_NODE has been created, update
3186 their profile information to reflect this. */
3188 static void
3189 update_profiling_info (struct cgraph_node *orig_node,
3190 struct cgraph_node *new_node)
3192 struct cgraph_edge *cs;
3193 struct caller_statistics stats;
3194 gcov_type new_sum, orig_sum;
3195 gcov_type remainder, orig_node_count = orig_node->count;
3197 if (orig_node_count == 0)
3198 return;
3200 init_caller_stats (&stats);
3201 orig_node->call_for_symbol_thunks_and_aliases (gather_caller_stats, &stats,
3202 false);
3203 orig_sum = stats.count_sum;
3204 init_caller_stats (&stats);
3205 new_node->call_for_symbol_thunks_and_aliases (gather_caller_stats, &stats,
3206 false);
3207 new_sum = stats.count_sum;
3209 if (orig_node_count < orig_sum + new_sum)
3211 if (dump_file)
3212 fprintf (dump_file, " Problem: node %s/%i has too low count "
3213 HOST_WIDE_INT_PRINT_DEC " while the sum of incoming "
3214 "counts is " HOST_WIDE_INT_PRINT_DEC "\n",
3215 orig_node->name (), orig_node->order,
3216 (HOST_WIDE_INT) orig_node_count,
3217 (HOST_WIDE_INT) (orig_sum + new_sum));
3219 orig_node_count = (orig_sum + new_sum) * 12 / 10;
3220 if (dump_file)
3221 fprintf (dump_file, " proceeding by pretending it was "
3222 HOST_WIDE_INT_PRINT_DEC "\n",
3223 (HOST_WIDE_INT) orig_node_count);
3226 new_node->count = new_sum;
3227 remainder = orig_node_count - new_sum;
3228 orig_node->count = remainder;
3230 for (cs = new_node->callees; cs ; cs = cs->next_callee)
3231 if (cs->frequency)
3232 cs->count = apply_probability (cs->count,
3233 GCOV_COMPUTE_SCALE (new_sum,
3234 orig_node_count));
3235 else
3236 cs->count = 0;
3238 for (cs = orig_node->callees; cs ; cs = cs->next_callee)
3239 cs->count = apply_probability (cs->count,
3240 GCOV_COMPUTE_SCALE (remainder,
3241 orig_node_count));
3243 if (dump_file)
3244 dump_profile_updates (orig_node, new_node);
3247 /* Update the respective profile of specialized NEW_NODE and the original
3248 ORIG_NODE after additional edges with cumulative count sum REDIRECTED_SUM
3249 have been redirected to the specialized version. */
3251 static void
3252 update_specialized_profile (struct cgraph_node *new_node,
3253 struct cgraph_node *orig_node,
3254 gcov_type redirected_sum)
3256 struct cgraph_edge *cs;
3257 gcov_type new_node_count, orig_node_count = orig_node->count;
3259 if (dump_file)
3260 fprintf (dump_file, " the sum of counts of redirected edges is "
3261 HOST_WIDE_INT_PRINT_DEC "\n", (HOST_WIDE_INT) redirected_sum);
3262 if (orig_node_count == 0)
3263 return;
3265 gcc_assert (orig_node_count >= redirected_sum);
3267 new_node_count = new_node->count;
3268 new_node->count += redirected_sum;
3269 orig_node->count -= redirected_sum;
3271 for (cs = new_node->callees; cs ; cs = cs->next_callee)
3272 if (cs->frequency)
3273 cs->count += apply_probability (cs->count,
3274 GCOV_COMPUTE_SCALE (redirected_sum,
3275 new_node_count));
3276 else
3277 cs->count = 0;
3279 for (cs = orig_node->callees; cs ; cs = cs->next_callee)
3281 gcov_type dec = apply_probability (cs->count,
3282 GCOV_COMPUTE_SCALE (redirected_sum,
3283 orig_node_count));
3284 if (dec < cs->count)
3285 cs->count -= dec;
3286 else
3287 cs->count = 0;
3290 if (dump_file)
3291 dump_profile_updates (orig_node, new_node);
3294 /* Create a specialized version of NODE with known constants in KNOWN_CSTS,
3295 known contexts in KNOWN_CONTEXTS and known aggregate values in AGGVALS and
3296 redirect all edges in CALLERS to it. */
3298 static struct cgraph_node *
3299 create_specialized_node (struct cgraph_node *node,
3300 vec<tree> known_csts,
3301 vec<ipa_polymorphic_call_context> known_contexts,
3302 struct ipa_agg_replacement_value *aggvals,
3303 vec<cgraph_edge *> callers)
3305 struct ipa_node_params *new_info, *info = IPA_NODE_REF (node);
3306 vec<ipa_replace_map *, va_gc> *replace_trees = NULL;
3307 struct ipa_agg_replacement_value *av;
3308 struct cgraph_node *new_node;
3309 int i, count = ipa_get_param_count (info);
3310 bitmap args_to_skip;
3312 gcc_assert (!info->ipcp_orig_node);
3314 if (node->local.can_change_signature)
3316 args_to_skip = BITMAP_GGC_ALLOC ();
3317 for (i = 0; i < count; i++)
3319 tree t = known_csts[i];
3321 if (t || !ipa_is_param_used (info, i))
3322 bitmap_set_bit (args_to_skip, i);
3325 else
3327 args_to_skip = NULL;
3328 if (dump_file && (dump_flags & TDF_DETAILS))
3329 fprintf (dump_file, " cannot change function signature\n");
3332 for (i = 0; i < count ; i++)
3334 tree t = known_csts[i];
3335 if (t)
3337 struct ipa_replace_map *replace_map;
3339 gcc_checking_assert (TREE_CODE (t) != TREE_BINFO);
3340 replace_map = get_replacement_map (info, t, i);
3341 if (replace_map)
3342 vec_safe_push (replace_trees, replace_map);
3346 new_node = node->create_virtual_clone (callers, replace_trees,
3347 args_to_skip, "constprop");
3348 ipa_set_node_agg_value_chain (new_node, aggvals);
3349 for (av = aggvals; av; av = av->next)
3350 new_node->maybe_create_reference (av->value, IPA_REF_ADDR, NULL);
3352 if (dump_file && (dump_flags & TDF_DETAILS))
3354 fprintf (dump_file, " the new node is %s/%i.\n",
3355 new_node->name (), new_node->order);
3356 if (known_contexts.exists ())
3358 for (i = 0; i < count ; i++)
3359 if (!known_contexts[i].useless_p ())
3361 fprintf (dump_file, " known ctx %i is ", i);
3362 known_contexts[i].dump (dump_file);
3365 if (aggvals)
3366 ipa_dump_agg_replacement_values (dump_file, aggvals);
3368 ipa_check_create_node_params ();
3369 update_profiling_info (node, new_node);
3370 new_info = IPA_NODE_REF (new_node);
3371 new_info->ipcp_orig_node = node;
3372 new_info->known_csts = known_csts;
3373 new_info->known_contexts = known_contexts;
3375 ipcp_discover_new_direct_edges (new_node, known_csts, known_contexts, aggvals);
3377 callers.release ();
3378 return new_node;
3381 /* Given a NODE, and a subset of its CALLERS, try to populate blanks slots in
3382 KNOWN_CSTS with constants that are also known for all of the CALLERS. */
3384 static void
3385 find_more_scalar_values_for_callers_subset (struct cgraph_node *node,
3386 vec<tree> known_csts,
3387 vec<cgraph_edge *> callers)
3389 struct ipa_node_params *info = IPA_NODE_REF (node);
3390 int i, count = ipa_get_param_count (info);
3392 for (i = 0; i < count ; i++)
3394 struct cgraph_edge *cs;
3395 tree newval = NULL_TREE;
3396 int j;
3397 bool first = true;
3399 if (ipa_get_scalar_lat (info, i)->bottom || known_csts[i])
3400 continue;
3402 FOR_EACH_VEC_ELT (callers, j, cs)
3404 struct ipa_jump_func *jump_func;
3405 tree t;
3407 if (i >= ipa_get_cs_argument_count (IPA_EDGE_REF (cs)))
3409 newval = NULL_TREE;
3410 break;
3412 jump_func = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), i);
3413 t = ipa_value_from_jfunc (IPA_NODE_REF (cs->caller), jump_func);
3414 if (!t
3415 || (newval
3416 && !values_equal_for_ipcp_p (t, newval))
3417 || (!first && !newval))
3419 newval = NULL_TREE;
3420 break;
3422 else
3423 newval = t;
3424 first = false;
3427 if (newval)
3429 if (dump_file && (dump_flags & TDF_DETAILS))
3431 fprintf (dump_file, " adding an extra known scalar value ");
3432 print_ipcp_constant_value (dump_file, newval);
3433 fprintf (dump_file, " for ");
3434 ipa_dump_param (dump_file, info, i);
3435 fprintf (dump_file, "\n");
3438 known_csts[i] = newval;
3443 /* Given a NODE and a subset of its CALLERS, try to populate plank slots in
3444 KNOWN_CONTEXTS with polymorphic contexts that are also known for all of the
3445 CALLERS. */
3447 static void
3448 find_more_contexts_for_caller_subset (cgraph_node *node,
3449 vec<ipa_polymorphic_call_context>
3450 *known_contexts,
3451 vec<cgraph_edge *> callers)
3453 ipa_node_params *info = IPA_NODE_REF (node);
3454 int i, count = ipa_get_param_count (info);
3456 for (i = 0; i < count ; i++)
3458 cgraph_edge *cs;
3460 if (ipa_get_poly_ctx_lat (info, i)->bottom
3461 || (known_contexts->exists ()
3462 && !(*known_contexts)[i].useless_p ()))
3463 continue;
3465 ipa_polymorphic_call_context newval;
3466 bool first = true;
3467 int j;
3469 FOR_EACH_VEC_ELT (callers, j, cs)
3471 if (i >= ipa_get_cs_argument_count (IPA_EDGE_REF (cs)))
3472 return;
3473 ipa_jump_func *jfunc = ipa_get_ith_jump_func (IPA_EDGE_REF (cs),
3475 ipa_polymorphic_call_context ctx;
3476 ctx = ipa_context_from_jfunc (IPA_NODE_REF (cs->caller), cs, i,
3477 jfunc);
3478 if (first)
3480 newval = ctx;
3481 first = false;
3483 else
3484 newval.meet_with (ctx);
3485 if (newval.useless_p ())
3486 break;
3489 if (!newval.useless_p ())
3491 if (dump_file && (dump_flags & TDF_DETAILS))
3493 fprintf (dump_file, " adding an extra known polymorphic "
3494 "context ");
3495 print_ipcp_constant_value (dump_file, newval);
3496 fprintf (dump_file, " for ");
3497 ipa_dump_param (dump_file, info, i);
3498 fprintf (dump_file, "\n");
3501 if (!known_contexts->exists ())
3502 known_contexts->safe_grow_cleared (ipa_get_param_count (info));
3503 (*known_contexts)[i] = newval;
3509 /* Go through PLATS and create a vector of values consisting of values and
3510 offsets (minus OFFSET) of lattices that contain only a single value. */
3512 static vec<ipa_agg_jf_item>
3513 copy_plats_to_inter (struct ipcp_param_lattices *plats, HOST_WIDE_INT offset)
3515 vec<ipa_agg_jf_item> res = vNULL;
3517 if (!plats->aggs || plats->aggs_contain_variable || plats->aggs_bottom)
3518 return vNULL;
3520 for (struct ipcp_agg_lattice *aglat = plats->aggs; aglat; aglat = aglat->next)
3521 if (aglat->is_single_const ())
3523 struct ipa_agg_jf_item ti;
3524 ti.offset = aglat->offset - offset;
3525 ti.value = aglat->values->value;
3526 res.safe_push (ti);
3528 return res;
3531 /* Intersect all values in INTER with single value lattices in PLATS (while
3532 subtracting OFFSET). */
3534 static void
3535 intersect_with_plats (struct ipcp_param_lattices *plats,
3536 vec<ipa_agg_jf_item> *inter,
3537 HOST_WIDE_INT offset)
3539 struct ipcp_agg_lattice *aglat;
3540 struct ipa_agg_jf_item *item;
3541 int k;
3543 if (!plats->aggs || plats->aggs_contain_variable || plats->aggs_bottom)
3545 inter->release ();
3546 return;
3549 aglat = plats->aggs;
3550 FOR_EACH_VEC_ELT (*inter, k, item)
3552 bool found = false;
3553 if (!item->value)
3554 continue;
3555 while (aglat)
3557 if (aglat->offset - offset > item->offset)
3558 break;
3559 if (aglat->offset - offset == item->offset)
3561 gcc_checking_assert (item->value);
3562 if (values_equal_for_ipcp_p (item->value, aglat->values->value))
3563 found = true;
3564 break;
3566 aglat = aglat->next;
3568 if (!found)
3569 item->value = NULL_TREE;
3573 /* Copy agggregate replacement values of NODE (which is an IPA-CP clone) to the
3574 vector result while subtracting OFFSET from the individual value offsets. */
3576 static vec<ipa_agg_jf_item>
3577 agg_replacements_to_vector (struct cgraph_node *node, int index,
3578 HOST_WIDE_INT offset)
3580 struct ipa_agg_replacement_value *av;
3581 vec<ipa_agg_jf_item> res = vNULL;
3583 for (av = ipa_get_agg_replacements_for_node (node); av; av = av->next)
3584 if (av->index == index
3585 && (av->offset - offset) >= 0)
3587 struct ipa_agg_jf_item item;
3588 gcc_checking_assert (av->value);
3589 item.offset = av->offset - offset;
3590 item.value = av->value;
3591 res.safe_push (item);
3594 return res;
3597 /* Intersect all values in INTER with those that we have already scheduled to
3598 be replaced in parameter number INDEX of NODE, which is an IPA-CP clone
3599 (while subtracting OFFSET). */
3601 static void
3602 intersect_with_agg_replacements (struct cgraph_node *node, int index,
3603 vec<ipa_agg_jf_item> *inter,
3604 HOST_WIDE_INT offset)
3606 struct ipa_agg_replacement_value *srcvals;
3607 struct ipa_agg_jf_item *item;
3608 int i;
3610 srcvals = ipa_get_agg_replacements_for_node (node);
3611 if (!srcvals)
3613 inter->release ();
3614 return;
3617 FOR_EACH_VEC_ELT (*inter, i, item)
3619 struct ipa_agg_replacement_value *av;
3620 bool found = false;
3621 if (!item->value)
3622 continue;
3623 for (av = srcvals; av; av = av->next)
3625 gcc_checking_assert (av->value);
3626 if (av->index == index
3627 && av->offset - offset == item->offset)
3629 if (values_equal_for_ipcp_p (item->value, av->value))
3630 found = true;
3631 break;
3634 if (!found)
3635 item->value = NULL_TREE;
3639 /* Intersect values in INTER with aggregate values that come along edge CS to
3640 parameter number INDEX and return it. If INTER does not actually exist yet,
3641 copy all incoming values to it. If we determine we ended up with no values
3642 whatsoever, return a released vector. */
3644 static vec<ipa_agg_jf_item>
3645 intersect_aggregates_with_edge (struct cgraph_edge *cs, int index,
3646 vec<ipa_agg_jf_item> inter)
3648 struct ipa_jump_func *jfunc;
3649 jfunc = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), index);
3650 if (jfunc->type == IPA_JF_PASS_THROUGH
3651 && ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
3653 struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
3654 int src_idx = ipa_get_jf_pass_through_formal_id (jfunc);
3656 if (caller_info->ipcp_orig_node)
3658 struct cgraph_node *orig_node = caller_info->ipcp_orig_node;
3659 struct ipcp_param_lattices *orig_plats;
3660 orig_plats = ipa_get_parm_lattices (IPA_NODE_REF (orig_node),
3661 src_idx);
3662 if (agg_pass_through_permissible_p (orig_plats, jfunc))
3664 if (!inter.exists ())
3665 inter = agg_replacements_to_vector (cs->caller, src_idx, 0);
3666 else
3667 intersect_with_agg_replacements (cs->caller, src_idx,
3668 &inter, 0);
3670 else
3672 inter.release ();
3673 return vNULL;
3676 else
3678 struct ipcp_param_lattices *src_plats;
3679 src_plats = ipa_get_parm_lattices (caller_info, src_idx);
3680 if (agg_pass_through_permissible_p (src_plats, jfunc))
3682 /* Currently we do not produce clobber aggregate jump
3683 functions, adjust when we do. */
3684 gcc_checking_assert (!jfunc->agg.items);
3685 if (!inter.exists ())
3686 inter = copy_plats_to_inter (src_plats, 0);
3687 else
3688 intersect_with_plats (src_plats, &inter, 0);
3690 else
3692 inter.release ();
3693 return vNULL;
3697 else if (jfunc->type == IPA_JF_ANCESTOR
3698 && ipa_get_jf_ancestor_agg_preserved (jfunc))
3700 struct ipa_node_params *caller_info = IPA_NODE_REF (cs->caller);
3701 int src_idx = ipa_get_jf_ancestor_formal_id (jfunc);
3702 struct ipcp_param_lattices *src_plats;
3703 HOST_WIDE_INT delta = ipa_get_jf_ancestor_offset (jfunc);
3705 if (caller_info->ipcp_orig_node)
3707 if (!inter.exists ())
3708 inter = agg_replacements_to_vector (cs->caller, src_idx, delta);
3709 else
3710 intersect_with_agg_replacements (cs->caller, src_idx, &inter,
3711 delta);
3713 else
3715 src_plats = ipa_get_parm_lattices (caller_info, src_idx);;
3716 /* Currently we do not produce clobber aggregate jump
3717 functions, adjust when we do. */
3718 gcc_checking_assert (!src_plats->aggs || !jfunc->agg.items);
3719 if (!inter.exists ())
3720 inter = copy_plats_to_inter (src_plats, delta);
3721 else
3722 intersect_with_plats (src_plats, &inter, delta);
3725 else if (jfunc->agg.items)
3727 struct ipa_agg_jf_item *item;
3728 int k;
3730 if (!inter.exists ())
3731 for (unsigned i = 0; i < jfunc->agg.items->length (); i++)
3732 inter.safe_push ((*jfunc->agg.items)[i]);
3733 else
3734 FOR_EACH_VEC_ELT (inter, k, item)
3736 int l = 0;
3737 bool found = false;;
3739 if (!item->value)
3740 continue;
3742 while ((unsigned) l < jfunc->agg.items->length ())
3744 struct ipa_agg_jf_item *ti;
3745 ti = &(*jfunc->agg.items)[l];
3746 if (ti->offset > item->offset)
3747 break;
3748 if (ti->offset == item->offset)
3750 gcc_checking_assert (ti->value);
3751 if (values_equal_for_ipcp_p (item->value,
3752 ti->value))
3753 found = true;
3754 break;
3756 l++;
3758 if (!found)
3759 item->value = NULL;
3762 else
3764 inter.release ();
3765 return vec<ipa_agg_jf_item>();
3767 return inter;
3770 /* Look at edges in CALLERS and collect all known aggregate values that arrive
3771 from all of them. */
3773 static struct ipa_agg_replacement_value *
3774 find_aggregate_values_for_callers_subset (struct cgraph_node *node,
3775 vec<cgraph_edge *> callers)
3777 struct ipa_node_params *dest_info = IPA_NODE_REF (node);
3778 struct ipa_agg_replacement_value *res;
3779 struct ipa_agg_replacement_value **tail = &res;
3780 struct cgraph_edge *cs;
3781 int i, j, count = ipa_get_param_count (dest_info);
3783 FOR_EACH_VEC_ELT (callers, j, cs)
3785 int c = ipa_get_cs_argument_count (IPA_EDGE_REF (cs));
3786 if (c < count)
3787 count = c;
3790 for (i = 0; i < count ; i++)
3792 struct cgraph_edge *cs;
3793 vec<ipa_agg_jf_item> inter = vNULL;
3794 struct ipa_agg_jf_item *item;
3795 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (dest_info, i);
3796 int j;
3798 /* Among other things, the following check should deal with all by_ref
3799 mismatches. */
3800 if (plats->aggs_bottom)
3801 continue;
3803 FOR_EACH_VEC_ELT (callers, j, cs)
3805 inter = intersect_aggregates_with_edge (cs, i, inter);
3807 if (!inter.exists ())
3808 goto next_param;
3811 FOR_EACH_VEC_ELT (inter, j, item)
3813 struct ipa_agg_replacement_value *v;
3815 if (!item->value)
3816 continue;
3818 v = ggc_alloc<ipa_agg_replacement_value> ();
3819 v->index = i;
3820 v->offset = item->offset;
3821 v->value = item->value;
3822 v->by_ref = plats->aggs_by_ref;
3823 *tail = v;
3824 tail = &v->next;
3827 next_param:
3828 if (inter.exists ())
3829 inter.release ();
3831 *tail = NULL;
3832 return res;
3835 /* Turn KNOWN_AGGS into a list of aggreate replacement values. */
3837 static struct ipa_agg_replacement_value *
3838 known_aggs_to_agg_replacement_list (vec<ipa_agg_jump_function> known_aggs)
3840 struct ipa_agg_replacement_value *res;
3841 struct ipa_agg_replacement_value **tail = &res;
3842 struct ipa_agg_jump_function *aggjf;
3843 struct ipa_agg_jf_item *item;
3844 int i, j;
3846 FOR_EACH_VEC_ELT (known_aggs, i, aggjf)
3847 FOR_EACH_VEC_SAFE_ELT (aggjf->items, j, item)
3849 struct ipa_agg_replacement_value *v;
3850 v = ggc_alloc<ipa_agg_replacement_value> ();
3851 v->index = i;
3852 v->offset = item->offset;
3853 v->value = item->value;
3854 v->by_ref = aggjf->by_ref;
3855 *tail = v;
3856 tail = &v->next;
3858 *tail = NULL;
3859 return res;
3862 /* Determine whether CS also brings all scalar values that the NODE is
3863 specialized for. */
3865 static bool
3866 cgraph_edge_brings_all_scalars_for_node (struct cgraph_edge *cs,
3867 struct cgraph_node *node)
3869 struct ipa_node_params *dest_info = IPA_NODE_REF (node);
3870 int count = ipa_get_param_count (dest_info);
3871 struct ipa_node_params *caller_info;
3872 struct ipa_edge_args *args;
3873 int i;
3875 caller_info = IPA_NODE_REF (cs->caller);
3876 args = IPA_EDGE_REF (cs);
3877 for (i = 0; i < count; i++)
3879 struct ipa_jump_func *jump_func;
3880 tree val, t;
3882 val = dest_info->known_csts[i];
3883 if (!val)
3884 continue;
3886 if (i >= ipa_get_cs_argument_count (args))
3887 return false;
3888 jump_func = ipa_get_ith_jump_func (args, i);
3889 t = ipa_value_from_jfunc (caller_info, jump_func);
3890 if (!t || !values_equal_for_ipcp_p (val, t))
3891 return false;
3893 return true;
3896 /* Determine whether CS also brings all aggregate values that NODE is
3897 specialized for. */
3898 static bool
3899 cgraph_edge_brings_all_agg_vals_for_node (struct cgraph_edge *cs,
3900 struct cgraph_node *node)
3902 struct ipa_node_params *orig_caller_info = IPA_NODE_REF (cs->caller);
3903 struct ipa_node_params *orig_node_info;
3904 struct ipa_agg_replacement_value *aggval;
3905 int i, ec, count;
3907 aggval = ipa_get_agg_replacements_for_node (node);
3908 if (!aggval)
3909 return true;
3911 count = ipa_get_param_count (IPA_NODE_REF (node));
3912 ec = ipa_get_cs_argument_count (IPA_EDGE_REF (cs));
3913 if (ec < count)
3914 for (struct ipa_agg_replacement_value *av = aggval; av; av = av->next)
3915 if (aggval->index >= ec)
3916 return false;
3918 orig_node_info = IPA_NODE_REF (IPA_NODE_REF (node)->ipcp_orig_node);
3919 if (orig_caller_info->ipcp_orig_node)
3920 orig_caller_info = IPA_NODE_REF (orig_caller_info->ipcp_orig_node);
3922 for (i = 0; i < count; i++)
3924 static vec<ipa_agg_jf_item> values = vec<ipa_agg_jf_item>();
3925 struct ipcp_param_lattices *plats;
3926 bool interesting = false;
3927 for (struct ipa_agg_replacement_value *av = aggval; av; av = av->next)
3928 if (aggval->index == i)
3930 interesting = true;
3931 break;
3933 if (!interesting)
3934 continue;
3936 plats = ipa_get_parm_lattices (orig_node_info, aggval->index);
3937 if (plats->aggs_bottom)
3938 return false;
3940 values = intersect_aggregates_with_edge (cs, i, values);
3941 if (!values.exists ())
3942 return false;
3944 for (struct ipa_agg_replacement_value *av = aggval; av; av = av->next)
3945 if (aggval->index == i)
3947 struct ipa_agg_jf_item *item;
3948 int j;
3949 bool found = false;
3950 FOR_EACH_VEC_ELT (values, j, item)
3951 if (item->value
3952 && item->offset == av->offset
3953 && values_equal_for_ipcp_p (item->value, av->value))
3955 found = true;
3956 break;
3958 if (!found)
3960 values.release ();
3961 return false;
3965 return true;
3968 /* Given an original NODE and a VAL for which we have already created a
3969 specialized clone, look whether there are incoming edges that still lead
3970 into the old node but now also bring the requested value and also conform to
3971 all other criteria such that they can be redirected the the special node.
3972 This function can therefore redirect the final edge in a SCC. */
3974 template <typename valtype>
3975 static void
3976 perhaps_add_new_callers (cgraph_node *node, ipcp_value<valtype> *val)
3978 ipcp_value_source<valtype> *src;
3979 gcov_type redirected_sum = 0;
3981 for (src = val->sources; src; src = src->next)
3983 struct cgraph_edge *cs = src->cs;
3984 while (cs)
3986 if (cgraph_edge_brings_value_p (cs, src, node)
3987 && cgraph_edge_brings_all_scalars_for_node (cs, val->spec_node)
3988 && cgraph_edge_brings_all_agg_vals_for_node (cs, val->spec_node))
3990 if (dump_file)
3991 fprintf (dump_file, " - adding an extra caller %s/%i"
3992 " of %s/%i\n",
3993 xstrdup_for_dump (cs->caller->name ()),
3994 cs->caller->order,
3995 xstrdup_for_dump (val->spec_node->name ()),
3996 val->spec_node->order);
3998 cs->redirect_callee_duplicating_thunks (val->spec_node);
3999 val->spec_node->expand_all_artificial_thunks ();
4000 redirected_sum += cs->count;
4002 cs = get_next_cgraph_edge_clone (cs);
4006 if (redirected_sum)
4007 update_specialized_profile (val->spec_node, node, redirected_sum);
4010 /* Return true if KNOWN_CONTEXTS contain at least one useful context. */
4012 static bool
4013 known_contexts_useful_p (vec<ipa_polymorphic_call_context> known_contexts)
4015 ipa_polymorphic_call_context *ctx;
4016 int i;
4018 FOR_EACH_VEC_ELT (known_contexts, i, ctx)
4019 if (!ctx->useless_p ())
4020 return true;
4021 return false;
4024 /* Return a copy of KNOWN_CSTS if it is not empty, otherwise return vNULL. */
4026 static vec<ipa_polymorphic_call_context>
4027 copy_useful_known_contexts (vec<ipa_polymorphic_call_context> known_contexts)
4029 if (known_contexts_useful_p (known_contexts))
4030 return known_contexts.copy ();
4031 else
4032 return vNULL;
4035 /* Copy KNOWN_CSTS and modify the copy according to VAL and INDEX. If
4036 non-empty, replace KNOWN_CONTEXTS with its copy too. */
4038 static void
4039 modify_known_vectors_with_val (vec<tree> *known_csts,
4040 vec<ipa_polymorphic_call_context> *known_contexts,
4041 ipcp_value<tree> *val,
4042 int index)
4044 *known_csts = known_csts->copy ();
4045 *known_contexts = copy_useful_known_contexts (*known_contexts);
4046 (*known_csts)[index] = val->value;
4049 /* Replace KNOWN_CSTS with its copy. Also copy KNOWN_CONTEXTS and modify the
4050 copy according to VAL and INDEX. */
4052 static void
4053 modify_known_vectors_with_val (vec<tree> *known_csts,
4054 vec<ipa_polymorphic_call_context> *known_contexts,
4055 ipcp_value<ipa_polymorphic_call_context> *val,
4056 int index)
4058 *known_csts = known_csts->copy ();
4059 *known_contexts = known_contexts->copy ();
4060 (*known_contexts)[index] = val->value;
4063 /* Return true if OFFSET indicates this was not an aggregate value or there is
4064 a replacement equivalent to VALUE, INDEX and OFFSET among those in the
4065 AGGVALS list. */
4067 DEBUG_FUNCTION bool
4068 ipcp_val_agg_replacement_ok_p (ipa_agg_replacement_value *aggvals,
4069 int index, HOST_WIDE_INT offset, tree value)
4071 if (offset == -1)
4072 return true;
4074 while (aggvals)
4076 if (aggvals->index == index
4077 && aggvals->offset == offset
4078 && values_equal_for_ipcp_p (aggvals->value, value))
4079 return true;
4080 aggvals = aggvals->next;
4082 return false;
4085 /* Return true if offset is minus one because source of a polymorphic contect
4086 cannot be an aggregate value. */
4088 DEBUG_FUNCTION bool
4089 ipcp_val_agg_replacement_ok_p (ipa_agg_replacement_value *,
4090 int , HOST_WIDE_INT offset,
4091 ipa_polymorphic_call_context)
4093 return offset == -1;
4096 /* Decide wheter to create a special version of NODE for value VAL of parameter
4097 at the given INDEX. If OFFSET is -1, the value is for the parameter itself,
4098 otherwise it is stored at the given OFFSET of the parameter. KNOWN_CSTS,
4099 KNOWN_CONTEXTS and KNOWN_AGGS describe the other already known values. */
4101 template <typename valtype>
4102 static bool
4103 decide_about_value (struct cgraph_node *node, int index, HOST_WIDE_INT offset,
4104 ipcp_value<valtype> *val, vec<tree> known_csts,
4105 vec<ipa_polymorphic_call_context> known_contexts)
4107 struct ipa_agg_replacement_value *aggvals;
4108 int freq_sum, caller_count;
4109 gcov_type count_sum;
4110 vec<cgraph_edge *> callers;
4112 if (val->spec_node)
4114 perhaps_add_new_callers (node, val);
4115 return false;
4117 else if (val->local_size_cost + overall_size > max_new_size)
4119 if (dump_file && (dump_flags & TDF_DETAILS))
4120 fprintf (dump_file, " Ignoring candidate value because "
4121 "max_new_size would be reached with %li.\n",
4122 val->local_size_cost + overall_size);
4123 return false;
4125 else if (!get_info_about_necessary_edges (val, node, &freq_sum, &count_sum,
4126 &caller_count))
4127 return false;
4129 if (dump_file && (dump_flags & TDF_DETAILS))
4131 fprintf (dump_file, " - considering value ");
4132 print_ipcp_constant_value (dump_file, val->value);
4133 fprintf (dump_file, " for ");
4134 ipa_dump_param (dump_file, IPA_NODE_REF (node), index);
4135 if (offset != -1)
4136 fprintf (dump_file, ", offset: " HOST_WIDE_INT_PRINT_DEC, offset);
4137 fprintf (dump_file, " (caller_count: %i)\n", caller_count);
4140 if (!good_cloning_opportunity_p (node, val->local_time_benefit,
4141 freq_sum, count_sum,
4142 val->local_size_cost)
4143 && !good_cloning_opportunity_p (node,
4144 val->local_time_benefit
4145 + val->prop_time_benefit,
4146 freq_sum, count_sum,
4147 val->local_size_cost
4148 + val->prop_size_cost))
4149 return false;
4151 if (dump_file)
4152 fprintf (dump_file, " Creating a specialized node of %s/%i.\n",
4153 node->name (), node->order);
4155 callers = gather_edges_for_value (val, node, caller_count);
4156 if (offset == -1)
4157 modify_known_vectors_with_val (&known_csts, &known_contexts, val, index);
4158 else
4160 known_csts = known_csts.copy ();
4161 known_contexts = copy_useful_known_contexts (known_contexts);
4163 find_more_scalar_values_for_callers_subset (node, known_csts, callers);
4164 find_more_contexts_for_caller_subset (node, &known_contexts, callers);
4165 aggvals = find_aggregate_values_for_callers_subset (node, callers);
4166 gcc_checking_assert (ipcp_val_agg_replacement_ok_p (aggvals, index,
4167 offset, val->value));
4168 val->spec_node = create_specialized_node (node, known_csts, known_contexts,
4169 aggvals, callers);
4170 overall_size += val->local_size_cost;
4172 /* TODO: If for some lattice there is only one other known value
4173 left, make a special node for it too. */
4175 return true;
4178 /* Decide whether and what specialized clones of NODE should be created. */
4180 static bool
4181 decide_whether_version_node (struct cgraph_node *node)
4183 struct ipa_node_params *info = IPA_NODE_REF (node);
4184 int i, count = ipa_get_param_count (info);
4185 vec<tree> known_csts;
4186 vec<ipa_polymorphic_call_context> known_contexts;
4187 vec<ipa_agg_jump_function> known_aggs = vNULL;
4188 bool ret = false;
4190 if (count == 0)
4191 return false;
4193 if (dump_file && (dump_flags & TDF_DETAILS))
4194 fprintf (dump_file, "\nEvaluating opportunities for %s/%i.\n",
4195 node->name (), node->order);
4197 gather_context_independent_values (info, &known_csts, &known_contexts,
4198 info->do_clone_for_all_contexts ? &known_aggs
4199 : NULL, NULL);
4201 for (i = 0; i < count ;i++)
4203 struct ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
4204 ipcp_lattice<tree> *lat = &plats->itself;
4205 ipcp_lattice<ipa_polymorphic_call_context> *ctxlat = &plats->ctxlat;
4207 if (!lat->bottom
4208 && !known_csts[i])
4210 ipcp_value<tree> *val;
4211 for (val = lat->values; val; val = val->next)
4212 ret |= decide_about_value (node, i, -1, val, known_csts,
4213 known_contexts);
4216 if (!plats->aggs_bottom)
4218 struct ipcp_agg_lattice *aglat;
4219 ipcp_value<tree> *val;
4220 for (aglat = plats->aggs; aglat; aglat = aglat->next)
4221 if (!aglat->bottom && aglat->values
4222 /* If the following is false, the one value is in
4223 known_aggs. */
4224 && (plats->aggs_contain_variable
4225 || !aglat->is_single_const ()))
4226 for (val = aglat->values; val; val = val->next)
4227 ret |= decide_about_value (node, i, aglat->offset, val,
4228 known_csts, known_contexts);
4231 if (!ctxlat->bottom
4232 && known_contexts[i].useless_p ())
4234 ipcp_value<ipa_polymorphic_call_context> *val;
4235 for (val = ctxlat->values; val; val = val->next)
4236 ret |= decide_about_value (node, i, -1, val, known_csts,
4237 known_contexts);
4240 info = IPA_NODE_REF (node);
4243 if (info->do_clone_for_all_contexts)
4245 struct cgraph_node *clone;
4246 vec<cgraph_edge *> callers;
4248 if (dump_file)
4249 fprintf (dump_file, " - Creating a specialized node of %s/%i "
4250 "for all known contexts.\n", node->name (),
4251 node->order);
4253 callers = node->collect_callers ();
4255 if (!known_contexts_useful_p (known_contexts))
4257 known_contexts.release ();
4258 known_contexts = vNULL;
4260 clone = create_specialized_node (node, known_csts, known_contexts,
4261 known_aggs_to_agg_replacement_list (known_aggs),
4262 callers);
4263 info = IPA_NODE_REF (node);
4264 info->do_clone_for_all_contexts = false;
4265 IPA_NODE_REF (clone)->is_all_contexts_clone = true;
4266 for (i = 0; i < count ; i++)
4267 vec_free (known_aggs[i].items);
4268 known_aggs.release ();
4269 ret = true;
4271 else
4273 known_csts.release ();
4274 known_contexts.release ();
4277 return ret;
4280 /* Transitively mark all callees of NODE within the same SCC as not dead. */
4282 static void
4283 spread_undeadness (struct cgraph_node *node)
4285 struct cgraph_edge *cs;
4287 for (cs = node->callees; cs; cs = cs->next_callee)
4288 if (ipa_edge_within_scc (cs))
4290 struct cgraph_node *callee;
4291 struct ipa_node_params *info;
4293 callee = cs->callee->function_symbol (NULL);
4294 info = IPA_NODE_REF (callee);
4296 if (info->node_dead)
4298 info->node_dead = 0;
4299 spread_undeadness (callee);
4304 /* Return true if NODE has a caller from outside of its SCC that is not
4305 dead. Worker callback for cgraph_for_node_and_aliases. */
4307 static bool
4308 has_undead_caller_from_outside_scc_p (struct cgraph_node *node,
4309 void *data ATTRIBUTE_UNUSED)
4311 struct cgraph_edge *cs;
4313 for (cs = node->callers; cs; cs = cs->next_caller)
4314 if (cs->caller->thunk.thunk_p
4315 && cs->caller->call_for_symbol_thunks_and_aliases
4316 (has_undead_caller_from_outside_scc_p, NULL, true))
4317 return true;
4318 else if (!ipa_edge_within_scc (cs)
4319 && !IPA_NODE_REF (cs->caller)->node_dead)
4320 return true;
4321 return false;
4325 /* Identify nodes within the same SCC as NODE which are no longer needed
4326 because of new clones and will be removed as unreachable. */
4328 static void
4329 identify_dead_nodes (struct cgraph_node *node)
4331 struct cgraph_node *v;
4332 for (v = node; v ; v = ((struct ipa_dfs_info *) v->aux)->next_cycle)
4333 if (v->will_be_removed_from_program_if_no_direct_calls_p ()
4334 && !v->call_for_symbol_thunks_and_aliases
4335 (has_undead_caller_from_outside_scc_p, NULL, true))
4336 IPA_NODE_REF (v)->node_dead = 1;
4338 for (v = node; v ; v = ((struct ipa_dfs_info *) v->aux)->next_cycle)
4339 if (!IPA_NODE_REF (v)->node_dead)
4340 spread_undeadness (v);
4342 if (dump_file && (dump_flags & TDF_DETAILS))
4344 for (v = node; v ; v = ((struct ipa_dfs_info *) v->aux)->next_cycle)
4345 if (IPA_NODE_REF (v)->node_dead)
4346 fprintf (dump_file, " Marking node as dead: %s/%i.\n",
4347 v->name (), v->order);
4351 /* The decision stage. Iterate over the topological order of call graph nodes
4352 TOPO and make specialized clones if deemed beneficial. */
4354 static void
4355 ipcp_decision_stage (struct ipa_topo_info *topo)
4357 int i;
4359 if (dump_file)
4360 fprintf (dump_file, "\nIPA decision stage:\n\n");
4362 for (i = topo->nnodes - 1; i >= 0; i--)
4364 struct cgraph_node *node = topo->order[i];
4365 bool change = false, iterate = true;
4367 while (iterate)
4369 struct cgraph_node *v;
4370 iterate = false;
4371 for (v = node; v ; v = ((struct ipa_dfs_info *) v->aux)->next_cycle)
4372 if (v->has_gimple_body_p ()
4373 && ipcp_versionable_function_p (v))
4374 iterate |= decide_whether_version_node (v);
4376 change |= iterate;
4378 if (change)
4379 identify_dead_nodes (node);
4383 /* Look up all alignment information that we have discovered and copy it over
4384 to the transformation summary. */
4386 static void
4387 ipcp_store_alignment_results (void)
4389 cgraph_node *node;
4391 FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
4393 ipa_node_params *info = IPA_NODE_REF (node);
4394 bool dumped_sth = false;
4395 bool found_useful_result = false;
4397 if (!opt_for_fn (node->decl, flag_ipa_cp_alignment))
4399 if (dump_file)
4400 fprintf (dump_file, "Not considering %s for alignment discovery "
4401 "and propagate; -fipa-cp-alignment: disabled.\n",
4402 node->name ());
4403 continue;
4406 if (info->ipcp_orig_node)
4407 info = IPA_NODE_REF (info->ipcp_orig_node);
4409 unsigned count = ipa_get_param_count (info);
4410 for (unsigned i = 0; i < count ; i++)
4412 ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
4413 if (plats->alignment.known
4414 && plats->alignment.align > 0)
4416 found_useful_result = true;
4417 break;
4420 if (!found_useful_result)
4421 continue;
4423 ipcp_grow_transformations_if_necessary ();
4424 ipcp_transformation_summary *ts = ipcp_get_transformation_summary (node);
4425 vec_safe_reserve_exact (ts->alignments, count);
4427 for (unsigned i = 0; i < count ; i++)
4429 ipcp_param_lattices *plats = ipa_get_parm_lattices (info, i);
4431 if (plats->alignment.align == 0)
4432 plats->alignment.known = false;
4434 ts->alignments->quick_push (plats->alignment);
4435 if (!dump_file || !plats->alignment.known)
4436 continue;
4437 if (!dumped_sth)
4439 fprintf (dump_file, "Propagated alignment info for function %s/%i:\n",
4440 node->name (), node->order);
4441 dumped_sth = true;
4443 fprintf (dump_file, " param %i: align: %u, misalign: %u\n",
4444 i, plats->alignment.align, plats->alignment.misalign);
4449 /* The IPCP driver. */
4451 static unsigned int
4452 ipcp_driver (void)
4454 struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
4455 struct cgraph_edge_hook_list *edge_removal_hook_holder;
4456 struct ipa_topo_info topo;
4458 ipa_check_create_node_params ();
4459 ipa_check_create_edge_args ();
4460 grow_edge_clone_vectors ();
4461 edge_duplication_hook_holder =
4462 symtab->add_edge_duplication_hook (&ipcp_edge_duplication_hook, NULL);
4463 edge_removal_hook_holder =
4464 symtab->add_edge_removal_hook (&ipcp_edge_removal_hook, NULL);
4466 ipcp_cst_values_pool = create_alloc_pool ("IPA-CP constant values",
4467 sizeof (ipcp_value<tree>), 32);
4468 ipcp_poly_ctx_values_pool = create_alloc_pool
4469 ("IPA-CP polymorphic contexts",
4470 sizeof (ipcp_value<ipa_polymorphic_call_context>), 32);
4471 ipcp_sources_pool = create_alloc_pool ("IPA-CP value sources",
4472 sizeof (ipcp_value_source<tree>), 64);
4473 ipcp_agg_lattice_pool = create_alloc_pool ("IPA_CP aggregate lattices",
4474 sizeof (struct ipcp_agg_lattice),
4475 32);
4476 if (dump_file)
4478 fprintf (dump_file, "\nIPA structures before propagation:\n");
4479 if (dump_flags & TDF_DETAILS)
4480 ipa_print_all_params (dump_file);
4481 ipa_print_all_jump_functions (dump_file);
4484 /* Topological sort. */
4485 build_toporder_info (&topo);
4486 /* Do the interprocedural propagation. */
4487 ipcp_propagate_stage (&topo);
4488 /* Decide what constant propagation and cloning should be performed. */
4489 ipcp_decision_stage (&topo);
4490 /* Store results of alignment propagation. */
4491 ipcp_store_alignment_results ();
4493 /* Free all IPCP structures. */
4494 free_toporder_info (&topo);
4495 next_edge_clone.release ();
4496 prev_edge_clone.release ();
4497 symtab->remove_edge_removal_hook (edge_removal_hook_holder);
4498 symtab->remove_edge_duplication_hook (edge_duplication_hook_holder);
4499 ipa_free_all_structures_after_ipa_cp ();
4500 if (dump_file)
4501 fprintf (dump_file, "\nIPA constant propagation end\n");
4502 return 0;
4505 /* Initialization and computation of IPCP data structures. This is the initial
4506 intraprocedural analysis of functions, which gathers information to be
4507 propagated later on. */
4509 static void
4510 ipcp_generate_summary (void)
4512 struct cgraph_node *node;
4514 if (dump_file)
4515 fprintf (dump_file, "\nIPA constant propagation start:\n");
4516 ipa_register_cgraph_hooks ();
4518 FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
4520 node->local.versionable
4521 = tree_versionable_function_p (node->decl);
4522 ipa_analyze_node (node);
4526 /* Write ipcp summary for nodes in SET. */
4528 static void
4529 ipcp_write_summary (void)
4531 ipa_prop_write_jump_functions ();
4534 /* Read ipcp summary. */
4536 static void
4537 ipcp_read_summary (void)
4539 ipa_prop_read_jump_functions ();
4542 namespace {
4544 const pass_data pass_data_ipa_cp =
4546 IPA_PASS, /* type */
4547 "cp", /* name */
4548 OPTGROUP_NONE, /* optinfo_flags */
4549 TV_IPA_CONSTANT_PROP, /* tv_id */
4550 0, /* properties_required */
4551 0, /* properties_provided */
4552 0, /* properties_destroyed */
4553 0, /* todo_flags_start */
4554 ( TODO_dump_symtab | TODO_remove_functions ), /* todo_flags_finish */
4557 class pass_ipa_cp : public ipa_opt_pass_d
4559 public:
4560 pass_ipa_cp (gcc::context *ctxt)
4561 : ipa_opt_pass_d (pass_data_ipa_cp, ctxt,
4562 ipcp_generate_summary, /* generate_summary */
4563 ipcp_write_summary, /* write_summary */
4564 ipcp_read_summary, /* read_summary */
4565 ipcp_write_transformation_summaries, /*
4566 write_optimization_summary */
4567 ipcp_read_transformation_summaries, /*
4568 read_optimization_summary */
4569 NULL, /* stmt_fixup */
4570 0, /* function_transform_todo_flags_start */
4571 ipcp_transform_function, /* function_transform */
4572 NULL) /* variable_transform */
4575 /* opt_pass methods: */
4576 virtual bool gate (function *)
4578 /* FIXME: We should remove the optimize check after we ensure we never run
4579 IPA passes when not optimizing. */
4580 return (flag_ipa_cp && optimize) || in_lto_p;
4583 virtual unsigned int execute (function *) { return ipcp_driver (); }
4585 }; // class pass_ipa_cp
4587 } // anon namespace
4589 ipa_opt_pass_d *
4590 make_pass_ipa_cp (gcc::context *ctxt)
4592 return new pass_ipa_cp (ctxt);
4595 /* Reset all state within ipa-cp.c so that we can rerun the compiler
4596 within the same process. For use by toplev::finalize. */
4598 void
4599 ipa_cp_c_finalize (void)
4601 max_count = 0;
4602 overall_size = 0;
4603 max_new_size = 0;