PR c/85696
[official-gcc.git] / libsanitizer / tsan / tsan_rtl.h
blob7dd9779e42bba85dfd979215823d8c07f0c334d3
1 //===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is a part of ThreadSanitizer (TSan), a race detector.
9 //
10 // Main internal TSan header file.
12 // Ground rules:
13 // - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
14 // function-scope locals)
15 // - All functions/classes/etc reside in namespace __tsan, except for those
16 // declared in tsan_interface.h.
17 // - Platform-specific files should be used instead of ifdefs (*).
18 // - No system headers included in header files (*).
19 // - Platform specific headres included only into platform-specific files (*).
21 // (*) Except when inlining is critical for performance.
22 //===----------------------------------------------------------------------===//
24 #ifndef TSAN_RTL_H
25 #define TSAN_RTL_H
27 #include "sanitizer_common/sanitizer_allocator.h"
28 #include "sanitizer_common/sanitizer_allocator_internal.h"
29 #include "sanitizer_common/sanitizer_asm.h"
30 #include "sanitizer_common/sanitizer_common.h"
31 #include "sanitizer_common/sanitizer_deadlock_detector_interface.h"
32 #include "sanitizer_common/sanitizer_libignore.h"
33 #include "sanitizer_common/sanitizer_suppressions.h"
34 #include "sanitizer_common/sanitizer_thread_registry.h"
35 #include "tsan_clock.h"
36 #include "tsan_defs.h"
37 #include "tsan_flags.h"
38 #include "tsan_sync.h"
39 #include "tsan_trace.h"
40 #include "tsan_vector.h"
41 #include "tsan_report.h"
42 #include "tsan_platform.h"
43 #include "tsan_mutexset.h"
44 #include "tsan_ignoreset.h"
45 #include "tsan_stack_trace.h"
47 #if SANITIZER_WORDSIZE != 64
48 # error "ThreadSanitizer is supported only on 64-bit platforms"
49 #endif
51 namespace __tsan {
53 #if !SANITIZER_GO
54 struct MapUnmapCallback;
55 #if defined(__mips64) || defined(__aarch64__) || defined(__powerpc__)
56 static const uptr kAllocatorRegionSizeLog = 20;
57 static const uptr kAllocatorNumRegions =
58 SANITIZER_MMAP_RANGE_SIZE >> kAllocatorRegionSizeLog;
59 typedef TwoLevelByteMap<(kAllocatorNumRegions >> 12), 1 << 12,
60 MapUnmapCallback> ByteMap;
61 struct AP32 {
62 static const uptr kSpaceBeg = 0;
63 static const u64 kSpaceSize = SANITIZER_MMAP_RANGE_SIZE;
64 static const uptr kMetadataSize = 0;
65 typedef __sanitizer::CompactSizeClassMap SizeClassMap;
66 static const uptr kRegionSizeLog = kAllocatorRegionSizeLog;
67 typedef __tsan::ByteMap ByteMap;
68 typedef __tsan::MapUnmapCallback MapUnmapCallback;
69 static const uptr kFlags = 0;
71 typedef SizeClassAllocator32<AP32> PrimaryAllocator;
72 #else
73 struct AP64 { // Allocator64 parameters. Deliberately using a short name.
74 static const uptr kSpaceBeg = Mapping::kHeapMemBeg;
75 static const uptr kSpaceSize = Mapping::kHeapMemEnd - Mapping::kHeapMemBeg;
76 static const uptr kMetadataSize = 0;
77 typedef DefaultSizeClassMap SizeClassMap;
78 typedef __tsan::MapUnmapCallback MapUnmapCallback;
79 static const uptr kFlags = 0;
81 typedef SizeClassAllocator64<AP64> PrimaryAllocator;
82 #endif
83 typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
84 typedef LargeMmapAllocator<MapUnmapCallback> SecondaryAllocator;
85 typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
86 SecondaryAllocator> Allocator;
87 Allocator *allocator();
88 #endif
90 void TsanCheckFailed(const char *file, int line, const char *cond,
91 u64 v1, u64 v2);
93 const u64 kShadowRodata = (u64)-1; // .rodata shadow marker
95 // FastState (from most significant bit):
96 // ignore : 1
97 // tid : kTidBits
98 // unused : -
99 // history_size : 3
100 // epoch : kClkBits
101 class FastState {
102 public:
103 FastState(u64 tid, u64 epoch) {
104 x_ = tid << kTidShift;
105 x_ |= epoch;
106 DCHECK_EQ(tid, this->tid());
107 DCHECK_EQ(epoch, this->epoch());
108 DCHECK_EQ(GetIgnoreBit(), false);
111 explicit FastState(u64 x)
112 : x_(x) {
115 u64 raw() const {
116 return x_;
119 u64 tid() const {
120 u64 res = (x_ & ~kIgnoreBit) >> kTidShift;
121 return res;
124 u64 TidWithIgnore() const {
125 u64 res = x_ >> kTidShift;
126 return res;
129 u64 epoch() const {
130 u64 res = x_ & ((1ull << kClkBits) - 1);
131 return res;
134 void IncrementEpoch() {
135 u64 old_epoch = epoch();
136 x_ += 1;
137 DCHECK_EQ(old_epoch + 1, epoch());
138 (void)old_epoch;
141 void SetIgnoreBit() { x_ |= kIgnoreBit; }
142 void ClearIgnoreBit() { x_ &= ~kIgnoreBit; }
143 bool GetIgnoreBit() const { return (s64)x_ < 0; }
145 void SetHistorySize(int hs) {
146 CHECK_GE(hs, 0);
147 CHECK_LE(hs, 7);
148 x_ = (x_ & ~(kHistoryMask << kHistoryShift)) | (u64(hs) << kHistoryShift);
151 ALWAYS_INLINE
152 int GetHistorySize() const {
153 return (int)((x_ >> kHistoryShift) & kHistoryMask);
156 void ClearHistorySize() {
157 SetHistorySize(0);
160 ALWAYS_INLINE
161 u64 GetTracePos() const {
162 const int hs = GetHistorySize();
163 // When hs == 0, the trace consists of 2 parts.
164 const u64 mask = (1ull << (kTracePartSizeBits + hs + 1)) - 1;
165 return epoch() & mask;
168 private:
169 friend class Shadow;
170 static const int kTidShift = 64 - kTidBits - 1;
171 static const u64 kIgnoreBit = 1ull << 63;
172 static const u64 kFreedBit = 1ull << 63;
173 static const u64 kHistoryShift = kClkBits;
174 static const u64 kHistoryMask = 7;
175 u64 x_;
178 // Shadow (from most significant bit):
179 // freed : 1
180 // tid : kTidBits
181 // is_atomic : 1
182 // is_read : 1
183 // size_log : 2
184 // addr0 : 3
185 // epoch : kClkBits
186 class Shadow : public FastState {
187 public:
188 explicit Shadow(u64 x)
189 : FastState(x) {
192 explicit Shadow(const FastState &s)
193 : FastState(s.x_) {
194 ClearHistorySize();
197 void SetAddr0AndSizeLog(u64 addr0, unsigned kAccessSizeLog) {
198 DCHECK_EQ((x_ >> kClkBits) & 31, 0);
199 DCHECK_LE(addr0, 7);
200 DCHECK_LE(kAccessSizeLog, 3);
201 x_ |= ((kAccessSizeLog << 3) | addr0) << kClkBits;
202 DCHECK_EQ(kAccessSizeLog, size_log());
203 DCHECK_EQ(addr0, this->addr0());
206 void SetWrite(unsigned kAccessIsWrite) {
207 DCHECK_EQ(x_ & kReadBit, 0);
208 if (!kAccessIsWrite)
209 x_ |= kReadBit;
210 DCHECK_EQ(kAccessIsWrite, IsWrite());
213 void SetAtomic(bool kIsAtomic) {
214 DCHECK(!IsAtomic());
215 if (kIsAtomic)
216 x_ |= kAtomicBit;
217 DCHECK_EQ(IsAtomic(), kIsAtomic);
220 bool IsAtomic() const {
221 return x_ & kAtomicBit;
224 bool IsZero() const {
225 return x_ == 0;
228 static inline bool TidsAreEqual(const Shadow s1, const Shadow s2) {
229 u64 shifted_xor = (s1.x_ ^ s2.x_) >> kTidShift;
230 DCHECK_EQ(shifted_xor == 0, s1.TidWithIgnore() == s2.TidWithIgnore());
231 return shifted_xor == 0;
234 static ALWAYS_INLINE
235 bool Addr0AndSizeAreEqual(const Shadow s1, const Shadow s2) {
236 u64 masked_xor = ((s1.x_ ^ s2.x_) >> kClkBits) & 31;
237 return masked_xor == 0;
240 static ALWAYS_INLINE bool TwoRangesIntersect(Shadow s1, Shadow s2,
241 unsigned kS2AccessSize) {
242 bool res = false;
243 u64 diff = s1.addr0() - s2.addr0();
244 if ((s64)diff < 0) { // s1.addr0 < s2.addr0 // NOLINT
245 // if (s1.addr0() + size1) > s2.addr0()) return true;
246 if (s1.size() > -diff)
247 res = true;
248 } else {
249 // if (s2.addr0() + kS2AccessSize > s1.addr0()) return true;
250 if (kS2AccessSize > diff)
251 res = true;
253 DCHECK_EQ(res, TwoRangesIntersectSlow(s1, s2));
254 DCHECK_EQ(res, TwoRangesIntersectSlow(s2, s1));
255 return res;
258 u64 ALWAYS_INLINE addr0() const { return (x_ >> kClkBits) & 7; }
259 u64 ALWAYS_INLINE size() const { return 1ull << size_log(); }
260 bool ALWAYS_INLINE IsWrite() const { return !IsRead(); }
261 bool ALWAYS_INLINE IsRead() const { return x_ & kReadBit; }
263 // The idea behind the freed bit is as follows.
264 // When the memory is freed (or otherwise unaccessible) we write to the shadow
265 // values with tid/epoch related to the free and the freed bit set.
266 // During memory accesses processing the freed bit is considered
267 // as msb of tid. So any access races with shadow with freed bit set
268 // (it is as if write from a thread with which we never synchronized before).
269 // This allows us to detect accesses to freed memory w/o additional
270 // overheads in memory access processing and at the same time restore
271 // tid/epoch of free.
272 void MarkAsFreed() {
273 x_ |= kFreedBit;
276 bool IsFreed() const {
277 return x_ & kFreedBit;
280 bool GetFreedAndReset() {
281 bool res = x_ & kFreedBit;
282 x_ &= ~kFreedBit;
283 return res;
286 bool ALWAYS_INLINE IsBothReadsOrAtomic(bool kIsWrite, bool kIsAtomic) const {
287 bool v = x_ & ((u64(kIsWrite ^ 1) << kReadShift)
288 | (u64(kIsAtomic) << kAtomicShift));
289 DCHECK_EQ(v, (!IsWrite() && !kIsWrite) || (IsAtomic() && kIsAtomic));
290 return v;
293 bool ALWAYS_INLINE IsRWNotWeaker(bool kIsWrite, bool kIsAtomic) const {
294 bool v = ((x_ >> kReadShift) & 3)
295 <= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
296 DCHECK_EQ(v, (IsAtomic() < kIsAtomic) ||
297 (IsAtomic() == kIsAtomic && !IsWrite() <= !kIsWrite));
298 return v;
301 bool ALWAYS_INLINE IsRWWeakerOrEqual(bool kIsWrite, bool kIsAtomic) const {
302 bool v = ((x_ >> kReadShift) & 3)
303 >= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
304 DCHECK_EQ(v, (IsAtomic() > kIsAtomic) ||
305 (IsAtomic() == kIsAtomic && !IsWrite() >= !kIsWrite));
306 return v;
309 private:
310 static const u64 kReadShift = 5 + kClkBits;
311 static const u64 kReadBit = 1ull << kReadShift;
312 static const u64 kAtomicShift = 6 + kClkBits;
313 static const u64 kAtomicBit = 1ull << kAtomicShift;
315 u64 size_log() const { return (x_ >> (3 + kClkBits)) & 3; }
317 static bool TwoRangesIntersectSlow(const Shadow s1, const Shadow s2) {
318 if (s1.addr0() == s2.addr0()) return true;
319 if (s1.addr0() < s2.addr0() && s1.addr0() + s1.size() > s2.addr0())
320 return true;
321 if (s2.addr0() < s1.addr0() && s2.addr0() + s2.size() > s1.addr0())
322 return true;
323 return false;
327 struct ThreadSignalContext;
329 struct JmpBuf {
330 uptr sp;
331 uptr mangled_sp;
332 int int_signal_send;
333 bool in_blocking_func;
334 uptr in_signal_handler;
335 uptr *shadow_stack_pos;
338 // A Processor represents a physical thread, or a P for Go.
339 // It is used to store internal resources like allocate cache, and does not
340 // participate in race-detection logic (invisible to end user).
341 // In C++ it is tied to an OS thread just like ThreadState, however ideally
342 // it should be tied to a CPU (this way we will have fewer allocator caches).
343 // In Go it is tied to a P, so there are significantly fewer Processor's than
344 // ThreadState's (which are tied to Gs).
345 // A ThreadState must be wired with a Processor to handle events.
346 struct Processor {
347 ThreadState *thr; // currently wired thread, or nullptr
348 #if !SANITIZER_GO
349 AllocatorCache alloc_cache;
350 InternalAllocatorCache internal_alloc_cache;
351 #endif
352 DenseSlabAllocCache block_cache;
353 DenseSlabAllocCache sync_cache;
354 DenseSlabAllocCache clock_cache;
355 DDPhysicalThread *dd_pt;
358 #if !SANITIZER_GO
359 // ScopedGlobalProcessor temporary setups a global processor for the current
360 // thread, if it does not have one. Intended for interceptors that can run
361 // at the very thread end, when we already destroyed the thread processor.
362 struct ScopedGlobalProcessor {
363 ScopedGlobalProcessor();
364 ~ScopedGlobalProcessor();
366 #endif
368 // This struct is stored in TLS.
369 struct ThreadState {
370 FastState fast_state;
371 // Synch epoch represents the threads's epoch before the last synchronization
372 // action. It allows to reduce number of shadow state updates.
373 // For example, fast_synch_epoch=100, last write to addr X was at epoch=150,
374 // if we are processing write to X from the same thread at epoch=200,
375 // we do nothing, because both writes happen in the same 'synch epoch'.
376 // That is, if another memory access does not race with the former write,
377 // it does not race with the latter as well.
378 // QUESTION: can we can squeeze this into ThreadState::Fast?
379 // E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are
380 // taken by epoch between synchs.
381 // This way we can save one load from tls.
382 u64 fast_synch_epoch;
383 // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
384 // We do not distinguish beteween ignoring reads and writes
385 // for better performance.
386 int ignore_reads_and_writes;
387 int ignore_sync;
388 int suppress_reports;
389 // Go does not support ignores.
390 #if !SANITIZER_GO
391 IgnoreSet mop_ignore_set;
392 IgnoreSet sync_ignore_set;
393 #endif
394 // C/C++ uses fixed size shadow stack embed into Trace.
395 // Go uses malloc-allocated shadow stack with dynamic size.
396 uptr *shadow_stack;
397 uptr *shadow_stack_end;
398 uptr *shadow_stack_pos;
399 u64 *racy_shadow_addr;
400 u64 racy_state[2];
401 MutexSet mset;
402 ThreadClock clock;
403 #if !SANITIZER_GO
404 Vector<JmpBuf> jmp_bufs;
405 int ignore_interceptors;
406 #endif
407 #if TSAN_COLLECT_STATS
408 u64 stat[StatCnt];
409 #endif
410 const int tid;
411 const int unique_id;
412 bool in_symbolizer;
413 bool in_ignored_lib;
414 bool is_inited;
415 bool is_dead;
416 bool is_freeing;
417 bool is_vptr_access;
418 const uptr stk_addr;
419 const uptr stk_size;
420 const uptr tls_addr;
421 const uptr tls_size;
422 ThreadContext *tctx;
424 #if SANITIZER_DEBUG && !SANITIZER_GO
425 InternalDeadlockDetector internal_deadlock_detector;
426 #endif
427 DDLogicalThread *dd_lt;
429 // Current wired Processor, or nullptr. Required to handle any events.
430 Processor *proc1;
431 #if !SANITIZER_GO
432 Processor *proc() { return proc1; }
433 #else
434 Processor *proc();
435 #endif
437 atomic_uintptr_t in_signal_handler;
438 ThreadSignalContext *signal_ctx;
440 #if !SANITIZER_GO
441 u32 last_sleep_stack_id;
442 ThreadClock last_sleep_clock;
443 #endif
445 // Set in regions of runtime that must be signal-safe and fork-safe.
446 // If set, malloc must not be called.
447 int nomalloc;
449 const ReportDesc *current_report;
451 explicit ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
452 unsigned reuse_count,
453 uptr stk_addr, uptr stk_size,
454 uptr tls_addr, uptr tls_size);
457 #if !SANITIZER_GO
458 #if SANITIZER_MAC || SANITIZER_ANDROID
459 ThreadState *cur_thread();
460 void cur_thread_finalize();
461 #else
462 __attribute__((tls_model("initial-exec")))
463 extern THREADLOCAL char cur_thread_placeholder[];
464 INLINE ThreadState *cur_thread() {
465 return reinterpret_cast<ThreadState *>(&cur_thread_placeholder);
467 INLINE void cur_thread_finalize() { }
468 #endif // SANITIZER_MAC || SANITIZER_ANDROID
469 #endif // SANITIZER_GO
471 class ThreadContext : public ThreadContextBase {
472 public:
473 explicit ThreadContext(int tid);
474 ~ThreadContext();
475 ThreadState *thr;
476 u32 creation_stack_id;
477 SyncClock sync;
478 // Epoch at which the thread had started.
479 // If we see an event from the thread stamped by an older epoch,
480 // the event is from a dead thread that shared tid with this thread.
481 u64 epoch0;
482 u64 epoch1;
484 // Override superclass callbacks.
485 void OnDead() override;
486 void OnJoined(void *arg) override;
487 void OnFinished() override;
488 void OnStarted(void *arg) override;
489 void OnCreated(void *arg) override;
490 void OnReset() override;
491 void OnDetached(void *arg) override;
494 struct RacyStacks {
495 MD5Hash hash[2];
496 bool operator==(const RacyStacks &other) const {
497 if (hash[0] == other.hash[0] && hash[1] == other.hash[1])
498 return true;
499 if (hash[0] == other.hash[1] && hash[1] == other.hash[0])
500 return true;
501 return false;
505 struct RacyAddress {
506 uptr addr_min;
507 uptr addr_max;
510 struct FiredSuppression {
511 ReportType type;
512 uptr pc_or_addr;
513 Suppression *supp;
516 struct Context {
517 Context();
519 bool initialized;
520 bool after_multithreaded_fork;
522 MetaMap metamap;
524 Mutex report_mtx;
525 int nreported;
526 int nmissed_expected;
527 atomic_uint64_t last_symbolize_time_ns;
529 void *background_thread;
530 atomic_uint32_t stop_background_thread;
532 ThreadRegistry *thread_registry;
534 Mutex racy_mtx;
535 Vector<RacyStacks> racy_stacks;
536 Vector<RacyAddress> racy_addresses;
537 // Number of fired suppressions may be large enough.
538 Mutex fired_suppressions_mtx;
539 InternalMmapVector<FiredSuppression> fired_suppressions;
540 DDetector *dd;
542 ClockAlloc clock_alloc;
544 Flags flags;
546 u64 stat[StatCnt];
547 u64 int_alloc_cnt[MBlockTypeCount];
548 u64 int_alloc_siz[MBlockTypeCount];
551 extern Context *ctx; // The one and the only global runtime context.
553 ALWAYS_INLINE Flags *flags() {
554 return &ctx->flags;
557 struct ScopedIgnoreInterceptors {
558 ScopedIgnoreInterceptors() {
559 #if !SANITIZER_GO
560 cur_thread()->ignore_interceptors++;
561 #endif
564 ~ScopedIgnoreInterceptors() {
565 #if !SANITIZER_GO
566 cur_thread()->ignore_interceptors--;
567 #endif
571 const char *GetObjectTypeFromTag(uptr tag);
572 const char *GetReportHeaderFromTag(uptr tag);
573 uptr TagFromShadowStackFrame(uptr pc);
575 class ScopedReport {
576 public:
577 explicit ScopedReport(ReportType typ, uptr tag = kExternalTagNone);
578 ~ScopedReport();
580 void AddMemoryAccess(uptr addr, uptr external_tag, Shadow s, StackTrace stack,
581 const MutexSet *mset);
582 void AddStack(StackTrace stack, bool suppressable = false);
583 void AddThread(const ThreadContext *tctx, bool suppressable = false);
584 void AddThread(int unique_tid, bool suppressable = false);
585 void AddUniqueTid(int unique_tid);
586 void AddMutex(const SyncVar *s);
587 u64 AddMutex(u64 id);
588 void AddLocation(uptr addr, uptr size);
589 void AddSleep(u32 stack_id);
590 void SetCount(int count);
592 const ReportDesc *GetReport() const;
594 private:
595 ReportDesc *rep_;
596 // Symbolizer makes lots of intercepted calls. If we try to process them,
597 // at best it will cause deadlocks on internal mutexes.
598 ScopedIgnoreInterceptors ignore_interceptors_;
600 void AddDeadMutex(u64 id);
602 ScopedReport(const ScopedReport&);
603 void operator = (const ScopedReport&);
606 ThreadContext *IsThreadStackOrTls(uptr addr, bool *is_stack);
607 void RestoreStack(int tid, const u64 epoch, VarSizeStackTrace *stk,
608 MutexSet *mset, uptr *tag = nullptr);
610 // The stack could look like:
611 // <start> | <main> | <foo> | tag | <bar>
612 // This will extract the tag and keep:
613 // <start> | <main> | <foo> | <bar>
614 template<typename StackTraceTy>
615 void ExtractTagFromStack(StackTraceTy *stack, uptr *tag = nullptr) {
616 if (stack->size < 2) return;
617 uptr possible_tag_pc = stack->trace[stack->size - 2];
618 uptr possible_tag = TagFromShadowStackFrame(possible_tag_pc);
619 if (possible_tag == kExternalTagNone) return;
620 stack->trace_buffer[stack->size - 2] = stack->trace_buffer[stack->size - 1];
621 stack->size -= 1;
622 if (tag) *tag = possible_tag;
625 template<typename StackTraceTy>
626 void ObtainCurrentStack(ThreadState *thr, uptr toppc, StackTraceTy *stack,
627 uptr *tag = nullptr) {
628 uptr size = thr->shadow_stack_pos - thr->shadow_stack;
629 uptr start = 0;
630 if (size + !!toppc > kStackTraceMax) {
631 start = size + !!toppc - kStackTraceMax;
632 size = kStackTraceMax - !!toppc;
634 stack->Init(&thr->shadow_stack[start], size, toppc);
635 ExtractTagFromStack(stack, tag);
639 #if TSAN_COLLECT_STATS
640 void StatAggregate(u64 *dst, u64 *src);
641 void StatOutput(u64 *stat);
642 #endif
644 void ALWAYS_INLINE StatInc(ThreadState *thr, StatType typ, u64 n = 1) {
645 #if TSAN_COLLECT_STATS
646 thr->stat[typ] += n;
647 #endif
649 void ALWAYS_INLINE StatSet(ThreadState *thr, StatType typ, u64 n) {
650 #if TSAN_COLLECT_STATS
651 thr->stat[typ] = n;
652 #endif
655 void MapShadow(uptr addr, uptr size);
656 void MapThreadTrace(uptr addr, uptr size, const char *name);
657 void DontNeedShadowFor(uptr addr, uptr size);
658 void InitializeShadowMemory();
659 void InitializeInterceptors();
660 void InitializeLibIgnore();
661 void InitializeDynamicAnnotations();
663 void ForkBefore(ThreadState *thr, uptr pc);
664 void ForkParentAfter(ThreadState *thr, uptr pc);
665 void ForkChildAfter(ThreadState *thr, uptr pc);
667 void ReportRace(ThreadState *thr);
668 bool OutputReport(ThreadState *thr, const ScopedReport &srep);
669 bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace);
670 bool IsExpectedReport(uptr addr, uptr size);
671 void PrintMatchedBenignRaces();
673 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1
674 # define DPrintf Printf
675 #else
676 # define DPrintf(...)
677 #endif
679 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2
680 # define DPrintf2 Printf
681 #else
682 # define DPrintf2(...)
683 #endif
685 u32 CurrentStackId(ThreadState *thr, uptr pc);
686 ReportStack *SymbolizeStackId(u32 stack_id);
687 void PrintCurrentStack(ThreadState *thr, uptr pc);
688 void PrintCurrentStackSlow(uptr pc); // uses libunwind
690 void Initialize(ThreadState *thr);
691 int Finalize(ThreadState *thr);
693 void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write);
694 void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write);
696 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
697 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic);
698 void MemoryAccessImpl(ThreadState *thr, uptr addr,
699 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
700 u64 *shadow_mem, Shadow cur);
701 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
702 uptr size, bool is_write);
703 void MemoryAccessRangeStep(ThreadState *thr, uptr pc, uptr addr,
704 uptr size, uptr step, bool is_write);
705 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
706 int size, bool kAccessIsWrite, bool kIsAtomic);
708 const int kSizeLog1 = 0;
709 const int kSizeLog2 = 1;
710 const int kSizeLog4 = 2;
711 const int kSizeLog8 = 3;
713 void ALWAYS_INLINE MemoryRead(ThreadState *thr, uptr pc,
714 uptr addr, int kAccessSizeLog) {
715 MemoryAccess(thr, pc, addr, kAccessSizeLog, false, false);
718 void ALWAYS_INLINE MemoryWrite(ThreadState *thr, uptr pc,
719 uptr addr, int kAccessSizeLog) {
720 MemoryAccess(thr, pc, addr, kAccessSizeLog, true, false);
723 void ALWAYS_INLINE MemoryReadAtomic(ThreadState *thr, uptr pc,
724 uptr addr, int kAccessSizeLog) {
725 MemoryAccess(thr, pc, addr, kAccessSizeLog, false, true);
728 void ALWAYS_INLINE MemoryWriteAtomic(ThreadState *thr, uptr pc,
729 uptr addr, int kAccessSizeLog) {
730 MemoryAccess(thr, pc, addr, kAccessSizeLog, true, true);
733 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size);
734 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size);
735 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size);
737 void ThreadIgnoreBegin(ThreadState *thr, uptr pc, bool save_stack = true);
738 void ThreadIgnoreEnd(ThreadState *thr, uptr pc);
739 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc, bool save_stack = true);
740 void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc);
742 void FuncEntry(ThreadState *thr, uptr pc);
743 void FuncExit(ThreadState *thr);
745 int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached);
746 void ThreadStart(ThreadState *thr, int tid, tid_t os_id, bool workerthread);
747 void ThreadFinish(ThreadState *thr);
748 int ThreadTid(ThreadState *thr, uptr pc, uptr uid);
749 void ThreadJoin(ThreadState *thr, uptr pc, int tid);
750 void ThreadDetach(ThreadState *thr, uptr pc, int tid);
751 void ThreadFinalize(ThreadState *thr);
752 void ThreadSetName(ThreadState *thr, const char *name);
753 int ThreadCount(ThreadState *thr);
754 void ProcessPendingSignals(ThreadState *thr);
756 Processor *ProcCreate();
757 void ProcDestroy(Processor *proc);
758 void ProcWire(Processor *proc, ThreadState *thr);
759 void ProcUnwire(Processor *proc, ThreadState *thr);
761 // Note: the parameter is called flagz, because flags is already taken
762 // by the global function that returns flags.
763 void MutexCreate(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
764 void MutexDestroy(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
765 void MutexPreLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
766 void MutexPostLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0,
767 int rec = 1);
768 int MutexUnlock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
769 void MutexPreReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
770 void MutexPostReadLock(ThreadState *thr, uptr pc, uptr addr, u32 flagz = 0);
771 void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr);
772 void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr);
773 void MutexRepair(ThreadState *thr, uptr pc, uptr addr); // call on EOWNERDEAD
774 void MutexInvalidAccess(ThreadState *thr, uptr pc, uptr addr);
776 void Acquire(ThreadState *thr, uptr pc, uptr addr);
777 // AcquireGlobal synchronizes the current thread with all other threads.
778 // In terms of happens-before relation, it draws a HB edge from all threads
779 // (where they happen to execute right now) to the current thread. We use it to
780 // handle Go finalizers. Namely, finalizer goroutine executes AcquireGlobal
781 // right before executing finalizers. This provides a coarse, but simple
782 // approximation of the actual required synchronization.
783 void AcquireGlobal(ThreadState *thr, uptr pc);
784 void Release(ThreadState *thr, uptr pc, uptr addr);
785 void ReleaseStore(ThreadState *thr, uptr pc, uptr addr);
786 void AfterSleep(ThreadState *thr, uptr pc);
787 void AcquireImpl(ThreadState *thr, uptr pc, SyncClock *c);
788 void ReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
789 void ReleaseStoreImpl(ThreadState *thr, uptr pc, SyncClock *c);
790 void AcquireReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
792 // The hacky call uses custom calling convention and an assembly thunk.
793 // It is considerably faster that a normal call for the caller
794 // if it is not executed (it is intended for slow paths from hot functions).
795 // The trick is that the call preserves all registers and the compiler
796 // does not treat it as a call.
797 // If it does not work for you, use normal call.
798 #if !SANITIZER_DEBUG && defined(__x86_64__) && !SANITIZER_MAC
799 // The caller may not create the stack frame for itself at all,
800 // so we create a reserve stack frame for it (1024b must be enough).
801 #define HACKY_CALL(f) \
802 __asm__ __volatile__("sub $1024, %%rsp;" \
803 CFI_INL_ADJUST_CFA_OFFSET(1024) \
804 ".hidden " #f "_thunk;" \
805 "call " #f "_thunk;" \
806 "add $1024, %%rsp;" \
807 CFI_INL_ADJUST_CFA_OFFSET(-1024) \
808 ::: "memory", "cc");
809 #else
810 #define HACKY_CALL(f) f()
811 #endif
813 void TraceSwitch(ThreadState *thr);
814 uptr TraceTopPC(ThreadState *thr);
815 uptr TraceSize();
816 uptr TraceParts();
817 Trace *ThreadTrace(int tid);
819 extern "C" void __tsan_trace_switch();
820 void ALWAYS_INLINE TraceAddEvent(ThreadState *thr, FastState fs,
821 EventType typ, u64 addr) {
822 if (!kCollectHistory)
823 return;
824 DCHECK_GE((int)typ, 0);
825 DCHECK_LE((int)typ, 7);
826 DCHECK_EQ(GetLsb(addr, kEventPCBits), addr);
827 StatInc(thr, StatEvents);
828 u64 pos = fs.GetTracePos();
829 if (UNLIKELY((pos % kTracePartSize) == 0)) {
830 #if !SANITIZER_GO
831 HACKY_CALL(__tsan_trace_switch);
832 #else
833 TraceSwitch(thr);
834 #endif
836 Event *trace = (Event*)GetThreadTrace(fs.tid());
837 Event *evp = &trace[pos];
838 Event ev = (u64)addr | ((u64)typ << kEventPCBits);
839 *evp = ev;
842 #if !SANITIZER_GO
843 uptr ALWAYS_INLINE HeapEnd() {
844 return HeapMemEnd() + PrimaryAllocator::AdditionalSize();
846 #endif
848 } // namespace __tsan
850 #endif // TSAN_RTL_H