* config/mn10300/mn10300.h (PREDICATE_CODES): Define.
[official-gcc.git] / gcc / config / mn10300 / mn10300.h
blob75d4183af74a44c8d0c4747cf7d0e4e7dd5eb267
1 /* Definitions of target machine for GNU compiler.
2 Matsushita MN10300 series
3 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
4 Free Software Foundation, Inc.
5 Contributed by Jeff Law (law@cygnus.com).
7 This file is part of GNU CC.
9 GNU CC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
14 GNU CC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GNU CC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
25 #undef ASM_SPEC
26 #undef LIB_SPEC
27 #undef ENDFILE_SPEC
28 #undef LINK_SPEC
29 #define LINK_SPEC "%{mrelax:--relax}"
30 #undef STARTFILE_SPEC
31 #define STARTFILE_SPEC "%{!mno-crt0:%{!shared:%{pg:gcrt0%O%s}%{!pg:%{p:mcrt0%O%s}%{!p:crt0%O%s}}}}"
33 /* Names to predefine in the preprocessor for this target machine. */
35 #define TARGET_CPU_CPP_BUILTINS() \
36 do \
37 { \
38 builtin_define ("__mn10300__"); \
39 builtin_define ("__MN10300__"); \
40 } \
41 while (0)
43 #define CPP_SPEC "%{mam33:-D__AM33__} %{mam33-2:-D__AM33__=2 -D__AM33_2__}"
45 /* Run-time compilation parameters selecting different hardware subsets. */
47 extern int target_flags;
49 /* Macros used in the machine description to test the flags. */
51 /* Macro to define tables used to set the flags.
52 This is a list in braces of pairs in braces,
53 each pair being { "NAME", VALUE }
54 where VALUE is the bits to set or minus the bits to clear.
55 An empty string NAME is used to identify the default VALUE. */
57 /* Generate code to work around mul/mulq bugs on the mn10300. */
58 #define TARGET_MULT_BUG (target_flags & 0x1)
60 /* Generate code for the AM33 processor. */
61 #define TARGET_AM33 (target_flags & 0x2)
63 /* Generate code for the AM33/2.0 processor. */
64 #define TARGET_AM33_2 (target_flags & 0x4)
66 #define TARGET_SWITCHES \
67 {{ "mult-bug", 0x1, N_("Work around hardware multiply bug")}, \
68 { "no-mult-bug", -0x1, N_("Do not work around hardware multiply bug")},\
69 { "am33", 0x2, N_("Target the AM33 processor")}, \
70 { "am33", -(0x1), ""},\
71 { "no-am33", -0x2, ""}, \
72 { "no-crt0", 0, N_("No default crt0.o") }, \
73 { "am33-2", 0x6, N_("Target the AM33/2.0 processor")}, \
74 { "am33-2", -(0x1), ""},\
75 { "no-am33-2", -0x4, ""}, \
76 { "relax", 0, N_("Enable linker relaxations") }, \
77 { "", TARGET_DEFAULT, NULL}}
79 #ifndef TARGET_DEFAULT
80 #define TARGET_DEFAULT 0x1
81 #endif
83 /* Print subsidiary information on the compiler version in use. */
85 #define TARGET_VERSION fprintf (stderr, " (MN10300)");
88 /* Target machine storage layout */
90 /* Define this if most significant bit is lowest numbered
91 in instructions that operate on numbered bit-fields.
92 This is not true on the Matsushita MN1003. */
93 #define BITS_BIG_ENDIAN 0
95 /* Define this if most significant byte of a word is the lowest numbered. */
96 /* This is not true on the Matsushita MN10300. */
97 #define BYTES_BIG_ENDIAN 0
99 /* Define this if most significant word of a multiword number is lowest
100 numbered.
101 This is not true on the Matsushita MN10300. */
102 #define WORDS_BIG_ENDIAN 0
104 /* Width of a word, in units (bytes). */
105 #define UNITS_PER_WORD 4
107 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
108 #define PARM_BOUNDARY 32
110 /* The stack goes in 32 bit lumps. */
111 #define STACK_BOUNDARY 32
113 /* Allocation boundary (in *bits*) for the code of a function.
114 8 is the minimum boundary; it's unclear if bigger alignments
115 would improve performance. */
116 #define FUNCTION_BOUNDARY 8
118 /* No data type wants to be aligned rounder than this. */
119 #define BIGGEST_ALIGNMENT 32
121 /* Alignment of field after `int : 0' in a structure. */
122 #define EMPTY_FIELD_BOUNDARY 32
124 /* Define this if move instructions will actually fail to work
125 when given unaligned data. */
126 #define STRICT_ALIGNMENT 1
128 /* Define this as 1 if `char' should by default be signed; else as 0. */
129 #define DEFAULT_SIGNED_CHAR 0
131 /* Standard register usage. */
133 /* Number of actual hardware registers.
134 The hardware registers are assigned numbers for the compiler
135 from 0 to just below FIRST_PSEUDO_REGISTER.
137 All registers that the compiler knows about must be given numbers,
138 even those that are not normally considered general registers. */
140 #define FIRST_PSEUDO_REGISTER 50
142 /* Specify machine-specific register numbers. */
143 #define FIRST_DATA_REGNUM 0
144 #define LAST_DATA_REGNUM 3
145 #define FIRST_ADDRESS_REGNUM 4
146 #define LAST_ADDRESS_REGNUM 8
147 #define FIRST_EXTENDED_REGNUM 10
148 #define LAST_EXTENDED_REGNUM 17
149 #define FIRST_FP_REGNUM 18
150 #define LAST_FP_REGNUM 49
152 /* Specify the registers used for certain standard purposes.
153 The values of these macros are register numbers. */
155 /* Register to use for pushing function arguments. */
156 #define STACK_POINTER_REGNUM (LAST_ADDRESS_REGNUM+1)
158 /* Base register for access to local variables of the function. */
159 #define FRAME_POINTER_REGNUM (LAST_ADDRESS_REGNUM-1)
161 /* Base register for access to arguments of the function. This
162 is a fake register and will be eliminated into either the frame
163 pointer or stack pointer. */
164 #define ARG_POINTER_REGNUM LAST_ADDRESS_REGNUM
166 /* Register in which static-chain is passed to a function. */
167 #define STATIC_CHAIN_REGNUM (FIRST_ADDRESS_REGNUM+1)
169 /* 1 for registers that have pervasive standard uses
170 and are not available for the register allocator. */
172 #define FIXED_REGISTERS \
173 { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 \
174 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
175 , 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
178 /* 1 for registers not available across function calls.
179 These must include the FIXED_REGISTERS and also any
180 registers that can be used without being saved.
181 The latter must include the registers where values are returned
182 and the register where structure-value addresses are passed.
183 Aside from that, you can include as many other registers as you
184 like. */
186 #define CALL_USED_REGISTERS \
187 { 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 \
188 , 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \
189 , 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 \
192 #define REG_ALLOC_ORDER \
193 { 0, 1, 4, 5, 2, 3, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 8, 9 \
194 , 42, 43, 44, 45, 46, 47, 48, 49, 34, 35, 36, 37, 38, 39, 40, 41 \
195 , 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33 \
198 #define CONDITIONAL_REGISTER_USAGE \
200 unsigned int i; \
202 if (!TARGET_AM33) \
204 for (i = FIRST_EXTENDED_REGNUM; \
205 i <= LAST_EXTENDED_REGNUM; i++) \
206 fixed_regs[i] = call_used_regs[i] = 1; \
208 if (!TARGET_AM33_2) \
210 for (i = FIRST_FP_REGNUM; \
211 i <= LAST_FP_REGNUM; \
212 i++) \
213 fixed_regs[i] = call_used_regs[i] = 1; \
217 /* Return number of consecutive hard regs needed starting at reg REGNO
218 to hold something of mode MODE.
220 This is ordinarily the length in words of a value of mode MODE
221 but can be less for certain modes in special long registers. */
223 #define HARD_REGNO_NREGS(REGNO, MODE) \
224 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
226 /* Value is 1 if hard register REGNO can hold a value of machine-mode
227 MODE. */
229 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
230 ((REGNO_REG_CLASS (REGNO) == DATA_REGS \
231 || (TARGET_AM33 && REGNO_REG_CLASS (REGNO) == ADDRESS_REGS) \
232 || REGNO_REG_CLASS (REGNO) == EXTENDED_REGS) \
233 ? ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) <= 4 \
234 : ((REGNO) & 1) == 0 || GET_MODE_SIZE (MODE) == 4)
236 /* Value is 1 if it is a good idea to tie two pseudo registers
237 when one has mode MODE1 and one has mode MODE2.
238 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
239 for any hard reg, then this must be 0 for correct output. */
240 #define MODES_TIEABLE_P(MODE1, MODE2) \
241 (TARGET_AM33 \
242 || MODE1 == MODE2 \
243 || (GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4))
245 /* 4 data, and effectively 3 address registers is small as far as I'm
246 concerned. */
247 #define SMALL_REGISTER_CLASSES 1
249 /* Define the classes of registers for register constraints in the
250 machine description. Also define ranges of constants.
252 One of the classes must always be named ALL_REGS and include all hard regs.
253 If there is more than one class, another class must be named NO_REGS
254 and contain no registers.
256 The name GENERAL_REGS must be the name of a class (or an alias for
257 another name such as ALL_REGS). This is the class of registers
258 that is allowed by "g" or "r" in a register constraint.
259 Also, registers outside this class are allocated only when
260 instructions express preferences for them.
262 The classes must be numbered in nondecreasing order; that is,
263 a larger-numbered class must never be contained completely
264 in a smaller-numbered class.
266 For any two classes, it is very desirable that there be another
267 class that represents their union. */
269 enum reg_class {
270 NO_REGS, DATA_REGS, ADDRESS_REGS, SP_REGS,
271 DATA_OR_ADDRESS_REGS, SP_OR_ADDRESS_REGS,
272 EXTENDED_REGS, DATA_OR_EXTENDED_REGS, ADDRESS_OR_EXTENDED_REGS,
273 SP_OR_EXTENDED_REGS, SP_OR_ADDRESS_OR_EXTENDED_REGS,
274 FP_REGS, FP_ACC_REGS,
275 GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
278 #define N_REG_CLASSES (int) LIM_REG_CLASSES
280 /* Give names of register classes as strings for dump file. */
282 #define REG_CLASS_NAMES \
283 { "NO_REGS", "DATA_REGS", "ADDRESS_REGS", \
284 "SP_REGS", "DATA_OR_ADDRESS_REGS", "SP_OR_ADDRESS_REGS", \
285 "EXTENDED_REGS", \
286 "DATA_OR_EXTENDED_REGS", "ADDRESS_OR_EXTENDED_REGS", \
287 "SP_OR_EXTENDED_REGS", "SP_OR_ADDRESS_OR_EXTENDED_REGS", \
288 "FP_REGS", "FP_ACC_REGS", \
289 "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
291 /* Define which registers fit in which classes.
292 This is an initializer for a vector of HARD_REG_SET
293 of length N_REG_CLASSES. */
295 #define REG_CLASS_CONTENTS \
296 { { 0, 0 }, /* No regs */ \
297 { 0x0000f, 0 }, /* DATA_REGS */ \
298 { 0x001f0, 0 }, /* ADDRESS_REGS */ \
299 { 0x00200, 0 }, /* SP_REGS */ \
300 { 0x001ff, 0 }, /* DATA_OR_ADDRESS_REGS */\
301 { 0x003f0, 0 }, /* SP_OR_ADDRESS_REGS */\
302 { 0x3fc00, 0 }, /* EXTENDED_REGS */ \
303 { 0x3fc0f, 0 }, /* DATA_OR_EXTENDED_REGS */ \
304 { 0x3fdf0, 0 }, /* ADDRESS_OR_EXTENDED_REGS */ \
305 { 0x3fe00, 0 }, /* SP_OR_EXTENDED_REGS */ \
306 { 0x3fff0, 0 }, /* SP_OR_ADDRESS_OR_EXTENDED_REGS */ \
307 { 0xfffc0000, 0x3ffff }, /* FP_REGS */ \
308 { 0x03fc0000, 0 }, /* FP_ACC_REGS */ \
309 { 0x3fdff, 0 }, /* GENERAL_REGS */ \
310 { 0xffffffff, 0x3ffff } /* ALL_REGS */ \
313 /* The same information, inverted:
314 Return the class number of the smallest class containing
315 reg number REGNO. This could be a conditional expression
316 or could index an array. */
318 #define REGNO_REG_CLASS(REGNO) \
319 ((REGNO) <= LAST_DATA_REGNUM ? DATA_REGS : \
320 (REGNO) <= LAST_ADDRESS_REGNUM ? ADDRESS_REGS : \
321 (REGNO) == STACK_POINTER_REGNUM ? SP_REGS : \
322 (REGNO) <= LAST_EXTENDED_REGNUM ? EXTENDED_REGS : \
323 (REGNO) <= LAST_FP_REGNUM ? FP_REGS : \
324 NO_REGS)
326 /* The class value for index registers, and the one for base regs. */
327 #define INDEX_REG_CLASS DATA_OR_EXTENDED_REGS
328 #define BASE_REG_CLASS SP_OR_ADDRESS_REGS
330 /* Get reg_class from a letter such as appears in the machine description. */
332 #define REG_CLASS_FROM_LETTER(C) \
333 ((C) == 'd' ? DATA_REGS : \
334 (C) == 'a' ? ADDRESS_REGS : \
335 (C) == 'y' ? SP_REGS : \
336 ! TARGET_AM33 ? NO_REGS : \
337 (C) == 'x' ? EXTENDED_REGS : \
338 ! TARGET_AM33_2 ? NO_REGS : \
339 (C) == 'f' ? FP_REGS : \
340 (C) == 'A' ? FP_ACC_REGS : \
341 NO_REGS)
343 /* Macros to check register numbers against specific register classes. */
345 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
346 and check its validity for a certain class.
347 We have two alternate definitions for each of them.
348 The usual definition accepts all pseudo regs; the other rejects
349 them unless they have been allocated suitable hard regs.
350 The symbol REG_OK_STRICT causes the latter definition to be used.
352 Most source files want to accept pseudo regs in the hope that
353 they will get allocated to the class that the insn wants them to be in.
354 Source files for reload pass need to be strict.
355 After reload, it makes no difference, since pseudo regs have
356 been eliminated by then. */
358 /* These assume that REGNO is a hard or pseudo reg number.
359 They give nonzero only if REGNO is a hard reg of the suitable class
360 or a pseudo reg currently allocated to a suitable hard reg.
361 Since they use reg_renumber, they are safe only once reg_renumber
362 has been allocated, which happens in local-alloc.c. */
364 #ifndef REG_OK_STRICT
365 # define REGNO_IN_RANGE_P(regno,min,max) \
366 (IN_RANGE ((regno), (min), (max)) || (regno) >= FIRST_PSEUDO_REGISTER)
367 #else
368 # define REGNO_IN_RANGE_P(regno,min,max) \
369 (IN_RANGE ((regno), (min), (max)) \
370 || (reg_renumber \
371 && reg_renumber[(regno)] >= (min) && reg_renumber[(regno)] <= (max)))
372 #endif
374 #define REGNO_DATA_P(regno) \
375 REGNO_IN_RANGE_P ((regno), FIRST_DATA_REGNUM, LAST_DATA_REGNUM)
376 #define REGNO_ADDRESS_P(regno) \
377 REGNO_IN_RANGE_P ((regno), FIRST_ADDRESS_REGNUM, LAST_ADDRESS_REGNUM)
378 #define REGNO_SP_P(regno) \
379 REGNO_IN_RANGE_P ((regno), STACK_POINTER_REGNUM, STACK_POINTER_REGNUM)
380 #define REGNO_EXTENDED_P(regno) \
381 REGNO_IN_RANGE_P ((regno), FIRST_EXTENDED_REGNUM, LAST_EXTENDED_REGNUM)
382 #define REGNO_AM33_P(regno) \
383 (REGNO_DATA_P ((regno)) || REGNO_ADDRESS_P ((regno)) \
384 || REGNO_EXTENDED_P ((regno)))
385 #define REGNO_FP_P(regno) \
386 REGNO_IN_RANGE_P ((regno), FIRST_FP_REGNUM, LAST_FP_REGNUM)
388 #define REGNO_OK_FOR_BASE_P(regno) \
389 (REGNO_SP_P ((regno)) \
390 || REGNO_ADDRESS_P ((regno)) || REGNO_EXTENDED_P ((regno)))
391 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
393 #define REGNO_OK_FOR_BIT_BASE_P(regno) \
394 (REGNO_SP_P ((regno)) || REGNO_ADDRESS_P ((regno)))
395 #define REG_OK_FOR_BIT_BASE_P(X) REGNO_OK_FOR_BIT_BASE_P (REGNO (X))
397 #define REGNO_OK_FOR_INDEX_P(regno) \
398 (REGNO_DATA_P ((regno)) || REGNO_EXTENDED_P ((regno)))
399 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
401 /* Given an rtx X being reloaded into a reg required to be
402 in class CLASS, return the class of reg to actually use.
403 In general this is just CLASS; but on some machines
404 in some cases it is preferable to use a more restrictive class. */
406 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
407 ((X) == stack_pointer_rtx && (CLASS) != SP_REGS \
408 ? ADDRESS_OR_EXTENDED_REGS \
409 : (GET_CODE (X) == MEM \
410 || (GET_CODE (X) == REG \
411 && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
412 || (GET_CODE (X) == SUBREG \
413 && GET_CODE (SUBREG_REG (X)) == REG \
414 && REGNO (SUBREG_REG (X)) >= FIRST_PSEUDO_REGISTER) \
415 ? LIMIT_RELOAD_CLASS (GET_MODE (X), CLASS) \
416 : (CLASS)))
418 #define PREFERRED_OUTPUT_RELOAD_CLASS(X,CLASS) \
419 (X == stack_pointer_rtx && CLASS != SP_REGS \
420 ? ADDRESS_OR_EXTENDED_REGS : CLASS)
422 #define LIMIT_RELOAD_CLASS(MODE, CLASS) \
423 (!TARGET_AM33 && (MODE == QImode || MODE == HImode) ? DATA_REGS : CLASS)
425 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
426 secondary_reload_class(CLASS,MODE,IN)
428 /* Return the maximum number of consecutive registers
429 needed to represent mode MODE in a register of class CLASS. */
431 #define CLASS_MAX_NREGS(CLASS, MODE) \
432 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
434 /* A class that contains registers which the compiler must always
435 access in a mode that is the same size as the mode in which it
436 loaded the register. */
437 #define CLASS_CANNOT_CHANGE_SIZE FP_REGS
439 /* The letters I, J, K, L, M, N, O, P in a register constraint string
440 can be used to stand for particular ranges of immediate operands.
441 This macro defines what the ranges are.
442 C is the letter, and VALUE is a constant value.
443 Return 1 if VALUE is in the range specified by C. */
445 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
446 #define INT_16_BITS(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
448 #define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
449 #define CONST_OK_FOR_J(VALUE) ((VALUE) == 1)
450 #define CONST_OK_FOR_K(VALUE) ((VALUE) == 2)
451 #define CONST_OK_FOR_L(VALUE) ((VALUE) == 4)
452 #define CONST_OK_FOR_M(VALUE) ((VALUE) == 3)
453 #define CONST_OK_FOR_N(VALUE) ((VALUE) == 255 || (VALUE) == 65535)
455 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
456 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
457 (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
458 (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
459 (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
460 (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
461 (C) == 'N' ? CONST_OK_FOR_N (VALUE) : 0)
464 /* Similar, but for floating constants, and defining letters G and H.
465 Here VALUE is the CONST_DOUBLE rtx itself.
467 `G' is a floating-point zero. */
469 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
470 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
471 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) : 0)
474 /* Stack layout; function entry, exit and calling. */
476 /* Define this if pushing a word on the stack
477 makes the stack pointer a smaller address. */
479 #define STACK_GROWS_DOWNWARD
481 /* Define this if the nominal address of the stack frame
482 is at the high-address end of the local variables;
483 that is, each additional local variable allocated
484 goes at a more negative offset in the frame. */
486 #define FRAME_GROWS_DOWNWARD
488 /* Offset within stack frame to start allocating local variables at.
489 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
490 first local allocated. Otherwise, it is the offset to the BEGINNING
491 of the first local allocated. */
493 #define STARTING_FRAME_OFFSET 0
495 /* Offset of first parameter from the argument pointer register value. */
496 /* Is equal to the size of the saved fp + pc, even if an fp isn't
497 saved since the value is used before we know. */
499 #define FIRST_PARM_OFFSET(FNDECL) 4
501 #define ELIMINABLE_REGS \
502 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
503 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
504 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
506 #define CAN_ELIMINATE(FROM, TO) 1
508 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
509 OFFSET = initial_offset (FROM, TO)
511 /* We can debug without frame pointers on the mn10300, so eliminate
512 them whenever possible. */
513 #define FRAME_POINTER_REQUIRED 0
514 #define CAN_DEBUG_WITHOUT_FP
516 /* A guess for the MN10300. */
517 #define PROMOTE_PROTOTYPES 1
519 /* Value is the number of bytes of arguments automatically
520 popped when returning from a subroutine call.
521 FUNDECL is the declaration node of the function (as a tree),
522 FUNTYPE is the data type of the function (as a tree),
523 or for a library call it is an identifier node for the subroutine name.
524 SIZE is the number of bytes of arguments passed on the stack. */
526 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
528 /* We use d0/d1 for passing parameters, so allocate 8 bytes of space
529 for a register flushback area. */
530 #define REG_PARM_STACK_SPACE(DECL) 8
531 #define OUTGOING_REG_PARM_STACK_SPACE
532 #define ACCUMULATE_OUTGOING_ARGS 1
534 /* So we can allocate space for return pointers once for the function
535 instead of around every call. */
536 #define STACK_POINTER_OFFSET 4
538 /* 1 if N is a possible register number for function argument passing.
539 On the MN10300, no registers are used in this way. */
541 #define FUNCTION_ARG_REGNO_P(N) ((N) <= 1)
544 /* Define a data type for recording info about an argument list
545 during the scan of that argument list. This data type should
546 hold all necessary information about the function itself
547 and about the args processed so far, enough to enable macros
548 such as FUNCTION_ARG to determine where the next arg should go.
550 On the MN10300, this is a single integer, which is a number of bytes
551 of arguments scanned so far. */
553 #define CUMULATIVE_ARGS struct cum_arg
554 struct cum_arg {int nbytes; };
556 /* Initialize a variable CUM of type CUMULATIVE_ARGS
557 for a call to a function whose data type is FNTYPE.
558 For a library call, FNTYPE is 0.
560 On the MN10300, the offset starts at 0. */
562 #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,INDIRECT) \
563 ((CUM).nbytes = 0)
565 /* Update the data in CUM to advance over an argument
566 of mode MODE and data type TYPE.
567 (TYPE is null for libcalls where that information may not be available.) */
569 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
570 ((CUM).nbytes += ((MODE) != BLKmode \
571 ? (GET_MODE_SIZE (MODE) + 3) & ~3 \
572 : (int_size_in_bytes (TYPE) + 3) & ~3))
574 /* Define where to put the arguments to a function.
575 Value is zero to push the argument on the stack,
576 or a hard register in which to store the argument.
578 MODE is the argument's machine mode.
579 TYPE is the data type of the argument (as a tree).
580 This is null for libcalls where that information may
581 not be available.
582 CUM is a variable of type CUMULATIVE_ARGS which gives info about
583 the preceding args and about the function being called.
584 NAMED is nonzero if this argument is a named parameter
585 (otherwise it is an extra parameter matching an ellipsis). */
587 /* On the MN10300 all args are pushed. */
589 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
590 function_arg (&CUM, MODE, TYPE, NAMED)
592 #define FUNCTION_ARG_PARTIAL_NREGS(CUM, MODE, TYPE, NAMED) \
593 function_arg_partial_nregs (&CUM, MODE, TYPE, NAMED)
595 #define FUNCTION_ARG_PASS_BY_REFERENCE(CUM, MODE, TYPE, NAMED) \
596 ((TYPE) && int_size_in_bytes (TYPE) > 8)
598 #define FUNCTION_ARG_CALLEE_COPIES(CUM, MODE, TYPE, NAMED) \
599 ((TYPE) && int_size_in_bytes (TYPE) > 8)
601 /* Define how to find the value returned by a function.
602 VALTYPE is the data type of the value (as a tree).
603 If the precise function being called is known, FUNC is its FUNCTION_DECL;
604 otherwise, FUNC is 0. */
606 #define FUNCTION_VALUE(VALTYPE, FUNC) \
607 gen_rtx_REG (TYPE_MODE (VALTYPE), POINTER_TYPE_P (VALTYPE) \
608 ? FIRST_ADDRESS_REGNUM : FIRST_DATA_REGNUM)
610 /* Define how to find the value returned by a library function
611 assuming the value has mode MODE. */
613 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, FIRST_DATA_REGNUM)
615 /* 1 if N is a possible register number for a function value. */
617 #define FUNCTION_VALUE_REGNO_P(N) \
618 ((N) == FIRST_DATA_REGNUM || (N) == FIRST_ADDRESS_REGNUM)
620 /* Return values > 8 bytes in length in memory. */
621 #define DEFAULT_PCC_STRUCT_RETURN 0
622 #define RETURN_IN_MEMORY(TYPE) \
623 (int_size_in_bytes (TYPE) > 8 || TYPE_MODE (TYPE) == BLKmode)
625 /* Register in which address to store a structure value
626 is passed to a function. On the MN10300 it's passed as
627 the first parameter. */
629 #define STRUCT_VALUE FIRST_DATA_REGNUM
631 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
632 the stack pointer does not matter. The value is tested only in
633 functions that have frame pointers.
634 No definition is equivalent to always zero. */
636 #define EXIT_IGNORE_STACK 1
638 /* Output assembler code to FILE to increment profiler label # LABELNO
639 for profiling a function entry. */
641 #define FUNCTION_PROFILER(FILE, LABELNO) ;
643 #define TRAMPOLINE_TEMPLATE(FILE) \
644 do { \
645 fprintf (FILE, "\tadd -4,sp\n"); \
646 fprintf (FILE, "\t.long 0x0004fffa\n"); \
647 fprintf (FILE, "\tmov (0,sp),a0\n"); \
648 fprintf (FILE, "\tadd 4,sp\n"); \
649 fprintf (FILE, "\tmov (13,a0),a1\n"); \
650 fprintf (FILE, "\tmov (17,a0),a0\n"); \
651 fprintf (FILE, "\tjmp (a0)\n"); \
652 fprintf (FILE, "\t.long 0\n"); \
653 fprintf (FILE, "\t.long 0\n"); \
654 } while (0)
656 /* Length in units of the trampoline for entering a nested function. */
658 #define TRAMPOLINE_SIZE 0x1b
660 #define TRAMPOLINE_ALIGNMENT 32
662 /* Emit RTL insns to initialize the variable parts of a trampoline.
663 FNADDR is an RTX for the address of the function's pure code.
664 CXT is an RTX for the static chain value for the function. */
666 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
668 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x14)), \
669 (CXT)); \
670 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 0x18)), \
671 (FNADDR)); \
673 /* A C expression whose value is RTL representing the value of the return
674 address for the frame COUNT steps up from the current frame.
676 On the mn10300, the return address is not at a constant location
677 due to the frame layout. Luckily, it is at a constant offset from
678 the argument pointer, so we define RETURN_ADDR_RTX to return a
679 MEM using arg_pointer_rtx. Reload will replace arg_pointer_rtx
680 with a reference to the stack/frame pointer + an appropriate offset. */
682 #define RETURN_ADDR_RTX(COUNT, FRAME) \
683 ((COUNT == 0) \
684 ? gen_rtx_MEM (Pmode, arg_pointer_rtx) \
685 : (rtx) 0)
687 /* Emit code for a call to builtin_saveregs. We must emit USE insns which
688 reference the 2 integer arg registers.
689 Ordinarily they are not call used registers, but they are for
690 _builtin_saveregs, so we must make this explicit. */
692 #define EXPAND_BUILTIN_SAVEREGS() mn10300_builtin_saveregs ()
694 /* Implement `va_start' for varargs and stdarg. */
695 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
696 mn10300_va_start (valist, nextarg)
698 /* Implement `va_arg'. */
699 #define EXPAND_BUILTIN_VA_ARG(valist, type) \
700 mn10300_va_arg (valist, type)
702 /* Addressing modes, and classification of registers for them. */
705 /* 1 if X is an rtx for a constant that is a valid address. */
707 #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
709 /* Extra constraints. */
711 #define OK_FOR_Q(OP) \
712 (GET_CODE (OP) == MEM && ! CONSTANT_ADDRESS_P (XEXP (OP, 0)))
714 #define OK_FOR_R(OP) \
715 (GET_CODE (OP) == MEM \
716 && GET_MODE (OP) == QImode \
717 && (CONSTANT_ADDRESS_P (XEXP (OP, 0)) \
718 || (GET_CODE (XEXP (OP, 0)) == REG \
719 && REG_OK_FOR_BIT_BASE_P (XEXP (OP, 0)) \
720 && XEXP (OP, 0) != stack_pointer_rtx) \
721 || (GET_CODE (XEXP (OP, 0)) == PLUS \
722 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == REG \
723 && REG_OK_FOR_BIT_BASE_P (XEXP (XEXP (OP, 0), 0)) \
724 && XEXP (XEXP (OP, 0), 0) != stack_pointer_rtx \
725 && GET_CODE (XEXP (XEXP (OP, 0), 1)) == CONST_INT \
726 && INT_8_BITS (INTVAL (XEXP (XEXP (OP, 0), 1))))))
728 #define OK_FOR_T(OP) \
729 (GET_CODE (OP) == MEM \
730 && GET_MODE (OP) == QImode \
731 && (GET_CODE (XEXP (OP, 0)) == REG \
732 && REG_OK_FOR_BIT_BASE_P (XEXP (OP, 0)) \
733 && XEXP (OP, 0) != stack_pointer_rtx))
735 #define EXTRA_CONSTRAINT(OP, C) \
736 ((C) == 'R' ? OK_FOR_R (OP) \
737 : (C) == 'Q' ? OK_FOR_Q (OP) \
738 : (C) == 'S' ? GET_CODE (OP) == SYMBOL_REF \
739 : (C) == 'T' ? OK_FOR_T (OP) \
740 : 0)
742 /* Maximum number of registers that can appear in a valid memory address. */
744 #define MAX_REGS_PER_ADDRESS 2
747 #define HAVE_POST_INCREMENT (TARGET_AM33)
749 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
750 that is a valid memory address for an instruction.
751 The MODE argument is the machine mode for the MEM expression
752 that wants to use this address.
754 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
755 except for CONSTANT_ADDRESS_P which is actually
756 machine-independent.
758 On the mn10300, the value in the address register must be
759 in the same memory space/segment as the effective address.
761 This is problematical for reload since it does not understand
762 that base+index != index+base in a memory reference.
764 Note it is still possible to use reg+reg addressing modes,
765 it's just much more difficult. For a discussion of a possible
766 workaround and solution, see the comments in pa.c before the
767 function record_unscaled_index_insn_codes. */
769 /* Accept either REG or SUBREG where a register is valid. */
771 #define RTX_OK_FOR_BASE_P(X) \
772 ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
773 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
774 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
776 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
778 if (CONSTANT_ADDRESS_P (X)) \
779 goto ADDR; \
780 if (RTX_OK_FOR_BASE_P (X)) \
781 goto ADDR; \
782 if (TARGET_AM33 \
783 && GET_CODE (X) == POST_INC \
784 && RTX_OK_FOR_BASE_P (XEXP (X, 0)) \
785 && (MODE == SImode || MODE == SFmode || MODE == HImode))\
786 goto ADDR; \
787 if (GET_CODE (X) == PLUS) \
789 rtx base = 0, index = 0; \
790 if (REG_P (XEXP (X, 0)) \
791 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
792 base = XEXP (X, 0), index = XEXP (X, 1); \
793 if (REG_P (XEXP (X, 1)) \
794 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
795 base = XEXP (X, 1), index = XEXP (X, 0); \
796 if (base != 0 && index != 0) \
798 if (GET_CODE (index) == CONST_INT) \
799 goto ADDR; \
805 /* Try machine-dependent ways of modifying an illegitimate address
806 to be legitimate. If we find one, return the new, valid address.
807 This macro is used in only one place: `memory_address' in explow.c.
809 OLDX is the address as it was before break_out_memory_refs was called.
810 In some cases it is useful to look at this to decide what needs to be done.
812 MODE and WIN are passed so that this macro can use
813 GO_IF_LEGITIMATE_ADDRESS.
815 It is always safe for this macro to do nothing. It exists to recognize
816 opportunities to optimize the output. */
818 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
819 { rtx orig_x = (X); \
820 (X) = legitimize_address (X, OLDX, MODE); \
821 if ((X) != orig_x && memory_address_p (MODE, X)) \
822 goto WIN; }
824 /* Go to LABEL if ADDR (a legitimate address expression)
825 has an effect that depends on the machine mode it is used for. */
827 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
828 if (GET_CODE (ADDR) == POST_INC) \
829 goto LABEL
831 /* Nonzero if the constant value X is a legitimate general operand.
832 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
834 #define LEGITIMATE_CONSTANT_P(X) 1
837 /* Tell final.c how to eliminate redundant test instructions. */
839 /* Here we define machine-dependent flags and fields in cc_status
840 (see `conditions.h'). No extra ones are needed for the VAX. */
842 /* Store in cc_status the expressions
843 that the condition codes will describe
844 after execution of an instruction whose pattern is EXP.
845 Do not alter them if the instruction would not alter the cc's. */
847 #define CC_OVERFLOW_UNUSABLE 0x200
848 #define CC_NO_CARRY CC_NO_OVERFLOW
849 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
851 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
852 ((CLASS1 == CLASS2 && (CLASS1 == ADDRESS_REGS || CLASS1 == DATA_REGS)) ? 2 :\
853 ((CLASS1 == ADDRESS_REGS || CLASS1 == DATA_REGS) && \
854 (CLASS2 == ADDRESS_REGS || CLASS2 == DATA_REGS)) ? 4 : \
855 (CLASS1 == SP_REGS && CLASS2 == ADDRESS_REGS) ? 2 : \
856 (CLASS1 == ADDRESS_REGS && CLASS2 == SP_REGS) ? 4 : \
857 ! TARGET_AM33 ? 6 : \
858 (CLASS1 == SP_REGS || CLASS2 == SP_REGS) ? 6 : \
859 (CLASS1 == CLASS2 && CLASS1 == EXTENDED_REGS) ? 6 : \
860 (CLASS1 == FP_REGS || CLASS2 == FP_REGS) ? 6 : \
861 (CLASS1 == EXTENDED_REGS || CLASS2 == EXTENDED_REGS) ? 4 : \
864 /* Nonzero if access to memory by bytes or half words is no faster
865 than accessing full words. */
866 #define SLOW_BYTE_ACCESS 1
868 /* Dispatch tables on the mn10300 are extremely expensive in terms of code
869 and readonly data size. So we crank up the case threshold value to
870 encourage a series of if/else comparisons to implement many small switch
871 statements. In theory, this value could be increased much more if we
872 were solely optimizing for space, but we keep it "reasonable" to avoid
873 serious code efficiency lossage. */
874 #define CASE_VALUES_THRESHOLD 6
876 #define NO_FUNCTION_CSE
878 /* According expr.c, a value of around 6 should minimize code size, and
879 for the MN10300 series, that's our primary concern. */
880 #define MOVE_RATIO 6
882 #define TEXT_SECTION_ASM_OP "\t.section .text"
883 #define DATA_SECTION_ASM_OP "\t.section .data"
884 #define BSS_SECTION_ASM_OP "\t.section .bss"
886 #define ASM_COMMENT_START "#"
888 /* Output to assembler file text saying following lines
889 may contain character constants, extra white space, comments, etc. */
891 #define ASM_APP_ON "#APP\n"
893 /* Output to assembler file text saying following lines
894 no longer contain unusual constructs. */
896 #define ASM_APP_OFF "#NO_APP\n"
898 /* This says how to output the assembler to define a global
899 uninitialized but not common symbol.
900 Try to use asm_output_bss to implement this macro. */
902 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
903 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
905 /* Globalizing directive for a label. */
906 #define GLOBAL_ASM_OP "\t.global "
908 /* This is how to output a reference to a user-level label named NAME.
909 `assemble_name' uses this. */
911 #undef ASM_OUTPUT_LABELREF
912 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
913 fprintf (FILE, "_%s", (*targetm.strip_name_encoding) (NAME))
915 #define ASM_PN_FORMAT "%s___%lu"
917 /* This is how we tell the assembler that two symbols have the same value. */
919 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
920 do { assemble_name(FILE, NAME1); \
921 fputs(" = ", FILE); \
922 assemble_name(FILE, NAME2); \
923 fputc('\n', FILE); } while (0)
926 /* How to refer to registers in assembler output.
927 This sequence is indexed by compiler's hard-register-number (see above). */
929 #define REGISTER_NAMES \
930 { "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3", "ap", "sp", \
931 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7" \
932 , "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7" \
933 , "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15" \
934 , "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23" \
935 , "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31" \
938 #define ADDITIONAL_REGISTER_NAMES \
939 { {"r8", 4}, {"r9", 5}, {"r10", 6}, {"r11", 7}, \
940 {"r12", 0}, {"r13", 1}, {"r14", 2}, {"r15", 3}, \
941 {"e0", 10}, {"e1", 11}, {"e2", 12}, {"e3", 13}, \
942 {"e4", 14}, {"e5", 15}, {"e6", 16}, {"e7", 17} \
943 , {"fd0", 18}, {"fd2", 20}, {"fd4", 22}, {"fd6", 24} \
944 , {"fd8", 26}, {"fd10", 28}, {"fd12", 30}, {"fd14", 32} \
945 , {"fd16", 34}, {"fd18", 36}, {"fd20", 38}, {"fd22", 40} \
946 , {"fd24", 42}, {"fd26", 44}, {"fd28", 46}, {"fd30", 48} \
949 /* Print an instruction operand X on file FILE.
950 look in mn10300.c for details */
952 #define PRINT_OPERAND(FILE, X, CODE) print_operand(FILE,X,CODE)
954 /* Print a memory operand whose address is X, on file FILE.
955 This uses a function in output-vax.c. */
957 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
959 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
960 #define ASM_OUTPUT_REG_POP(FILE,REGNO)
962 /* This is how to output an element of a case-vector that is absolute. */
964 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
965 fprintf (FILE, "\t%s .L%d\n", ".long", VALUE)
967 /* This is how to output an element of a case-vector that is relative. */
969 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
970 fprintf (FILE, "\t%s .L%d-.L%d\n", ".long", VALUE, REL)
972 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
973 if ((LOG) != 0) \
974 fprintf (FILE, "\t.align %d\n", (LOG))
976 /* We don't have to worry about dbx compatibility for the mn10300. */
977 #define DEFAULT_GDB_EXTENSIONS 1
979 /* Use dwarf2 debugging info by default. */
980 #undef PREFERRED_DEBUGGING_TYPE
981 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
983 #define DWARF2_ASM_LINE_DEBUG_INFO 1
985 /* GDB always assumes the current function's frame begins at the value
986 of the stack pointer upon entry to the current function. Accessing
987 local variables and parameters passed on the stack is done using the
988 base of the frame + an offset provided by GCC.
990 For functions which have frame pointers this method works fine;
991 the (frame pointer) == (stack pointer at function entry) and GCC provides
992 an offset relative to the frame pointer.
994 This loses for functions without a frame pointer; GCC provides an offset
995 which is relative to the stack pointer after adjusting for the function's
996 frame size. GDB would prefer the offset to be relative to the value of
997 the stack pointer at the function's entry. Yuk! */
998 #define DEBUGGER_AUTO_OFFSET(X) \
999 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
1000 + (frame_pointer_needed \
1001 ? 0 : -initial_offset (FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM)))
1003 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
1004 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
1005 + (frame_pointer_needed \
1006 ? 0 : -initial_offset (ARG_POINTER_REGNUM, STACK_POINTER_REGNUM)))
1008 /* Specify the machine mode that this machine uses
1009 for the index in the tablejump instruction. */
1010 #define CASE_VECTOR_MODE Pmode
1012 /* Define if operations between registers always perform the operation
1013 on the full register even if a narrower mode is specified. */
1014 #define WORD_REGISTER_OPERATIONS
1016 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1018 /* This flag, if defined, says the same insns that convert to a signed fixnum
1019 also convert validly to an unsigned one. */
1020 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1022 /* Max number of bytes we can move from memory to memory
1023 in one reasonably fast instruction. */
1024 #define MOVE_MAX 4
1026 /* Define if shifts truncate the shift count
1027 which implies one can omit a sign-extension or zero-extension
1028 of a shift count. */
1029 #define SHIFT_COUNT_TRUNCATED 1
1031 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1032 is done just by pretending it is already truncated. */
1033 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1035 /* Specify the machine mode that pointers have.
1036 After generation of rtl, the compiler makes no further distinction
1037 between pointers and any other objects of this machine mode. */
1038 #define Pmode SImode
1040 /* A function address in a call instruction
1041 is a byte address (for indexing purposes)
1042 so give the MEM rtx a byte's mode. */
1043 #define FUNCTION_MODE QImode
1045 /* The assembler op to get a word. */
1047 #define FILE_ASM_OP "\t.file\n"
1049 #define PREDICATE_CODES \
1050 {"const_1f_operand", {CONST_INT, CONST_DOUBLE}},
1052 typedef struct mn10300_cc_status_mdep
1054 int fpCC;
1056 cc_status_mdep;
1058 #define CC_STATUS_MDEP cc_status_mdep
1060 #define CC_STATUS_MDEP_INIT (cc_status.mdep.fpCC = 0)