Daily bump.
[official-gcc.git] / libgfortran / generated / minloc0_8_r10.c
blob72b7ed5f2bfa84782521fcc38a3d5a2ccd54f1be
1 /* Implementation of the MINLOC intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
31 #include "config.h"
32 #include <stdlib.h>
33 #include <assert.h>
34 #include <float.h>
35 #include <limits.h>
36 #include "libgfortran.h"
39 #if defined (HAVE_GFC_REAL_10) && defined (HAVE_GFC_INTEGER_8)
42 extern void minloc0_8_r10 (gfc_array_i8 * const restrict retarray,
43 gfc_array_r10 * const restrict array);
44 export_proto(minloc0_8_r10);
46 void
47 minloc0_8_r10 (gfc_array_i8 * const restrict retarray,
48 gfc_array_r10 * const restrict array)
50 index_type count[GFC_MAX_DIMENSIONS];
51 index_type extent[GFC_MAX_DIMENSIONS];
52 index_type sstride[GFC_MAX_DIMENSIONS];
53 index_type dstride;
54 const GFC_REAL_10 *base;
55 GFC_INTEGER_8 *dest;
56 index_type rank;
57 index_type n;
59 rank = GFC_DESCRIPTOR_RANK (array);
60 if (rank <= 0)
61 runtime_error ("Rank of array needs to be > 0");
63 if (retarray->data == NULL)
65 retarray->dim[0].lbound = 0;
66 retarray->dim[0].ubound = rank-1;
67 retarray->dim[0].stride = 1;
68 retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
69 retarray->offset = 0;
70 retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank);
72 else
74 if (GFC_DESCRIPTOR_RANK (retarray) != 1)
75 runtime_error ("rank of return array does not equal 1");
77 if (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound != rank)
78 runtime_error ("dimension of return array incorrect");
81 dstride = retarray->dim[0].stride;
82 dest = retarray->data;
83 for (n = 0; n < rank; n++)
85 sstride[n] = array->dim[n].stride;
86 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
87 count[n] = 0;
88 if (extent[n] <= 0)
90 /* Set the return value. */
91 for (n = 0; n < rank; n++)
92 dest[n * dstride] = 0;
93 return;
97 base = array->data;
99 /* Initialize the return value. */
100 for (n = 0; n < rank; n++)
101 dest[n * dstride] = 0;
104 GFC_REAL_10 minval;
106 minval = GFC_REAL_10_HUGE;
108 while (base)
111 /* Implementation start. */
113 if (*base < minval || !dest[0])
115 minval = *base;
116 for (n = 0; n < rank; n++)
117 dest[n * dstride] = count[n] + 1;
119 /* Implementation end. */
121 /* Advance to the next element. */
122 count[0]++;
123 base += sstride[0];
124 n = 0;
125 while (count[n] == extent[n])
127 /* When we get to the end of a dimension, reset it and increment
128 the next dimension. */
129 count[n] = 0;
130 /* We could precalculate these products, but this is a less
131 frequently used path so probably not worth it. */
132 base -= sstride[n] * extent[n];
133 n++;
134 if (n == rank)
136 /* Break out of the loop. */
137 base = NULL;
138 break;
140 else
142 count[n]++;
143 base += sstride[n];
151 extern void mminloc0_8_r10 (gfc_array_i8 * const restrict,
152 gfc_array_r10 * const restrict, gfc_array_l4 * const restrict);
153 export_proto(mminloc0_8_r10);
155 void
156 mminloc0_8_r10 (gfc_array_i8 * const restrict retarray,
157 gfc_array_r10 * const restrict array,
158 gfc_array_l4 * const restrict mask)
160 index_type count[GFC_MAX_DIMENSIONS];
161 index_type extent[GFC_MAX_DIMENSIONS];
162 index_type sstride[GFC_MAX_DIMENSIONS];
163 index_type mstride[GFC_MAX_DIMENSIONS];
164 index_type dstride;
165 GFC_INTEGER_8 *dest;
166 const GFC_REAL_10 *base;
167 GFC_LOGICAL_4 *mbase;
168 int rank;
169 index_type n;
171 rank = GFC_DESCRIPTOR_RANK (array);
172 if (rank <= 0)
173 runtime_error ("Rank of array needs to be > 0");
175 if (retarray->data == NULL)
177 retarray->dim[0].lbound = 0;
178 retarray->dim[0].ubound = rank-1;
179 retarray->dim[0].stride = 1;
180 retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
181 retarray->offset = 0;
182 retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank);
184 else
186 if (GFC_DESCRIPTOR_RANK (retarray) != 1)
187 runtime_error ("rank of return array does not equal 1");
189 if (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound != rank)
190 runtime_error ("dimension of return array incorrect");
193 dstride = retarray->dim[0].stride;
194 dest = retarray->data;
195 for (n = 0; n < rank; n++)
197 sstride[n] = array->dim[n].stride;
198 mstride[n] = mask->dim[n].stride;
199 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
200 count[n] = 0;
201 if (extent[n] <= 0)
203 /* Set the return value. */
204 for (n = 0; n < rank; n++)
205 dest[n * dstride] = 0;
206 return;
210 base = array->data;
211 mbase = mask->data;
213 if (GFC_DESCRIPTOR_SIZE (mask) != 4)
215 /* This allows the same loop to be used for all logical types. */
216 assert (GFC_DESCRIPTOR_SIZE (mask) == 8);
217 for (n = 0; n < rank; n++)
218 mstride[n] <<= 1;
219 mbase = (GFOR_POINTER_L8_TO_L4 (mbase));
223 /* Initialize the return value. */
224 for (n = 0; n < rank; n++)
225 dest[n * dstride] = 0;
228 GFC_REAL_10 minval;
230 minval = GFC_REAL_10_HUGE;
232 while (base)
235 /* Implementation start. */
237 if (*mbase && (*base < minval || !dest[0]))
239 minval = *base;
240 for (n = 0; n < rank; n++)
241 dest[n * dstride] = count[n] + 1;
243 /* Implementation end. */
245 /* Advance to the next element. */
246 count[0]++;
247 base += sstride[0];
248 mbase += mstride[0];
249 n = 0;
250 while (count[n] == extent[n])
252 /* When we get to the end of a dimension, reset it and increment
253 the next dimension. */
254 count[n] = 0;
255 /* We could precalculate these products, but this is a less
256 frequently used path so probably not worth it. */
257 base -= sstride[n] * extent[n];
258 mbase -= mstride[n] * extent[n];
259 n++;
260 if (n == rank)
262 /* Break out of the loop. */
263 base = NULL;
264 break;
266 else
268 count[n]++;
269 base += sstride[n];
270 mbase += mstride[n];
278 extern void sminloc0_8_r10 (gfc_array_i8 * const restrict,
279 gfc_array_r10 * const restrict, GFC_LOGICAL_4 *);
280 export_proto(sminloc0_8_r10);
282 void
283 sminloc0_8_r10 (gfc_array_i8 * const restrict retarray,
284 gfc_array_r10 * const restrict array,
285 GFC_LOGICAL_4 * mask)
287 index_type rank;
288 index_type dstride;
289 index_type n;
290 GFC_INTEGER_8 *dest;
292 if (*mask)
294 minloc0_8_r10 (retarray, array);
295 return;
298 rank = GFC_DESCRIPTOR_RANK (array);
300 if (rank <= 0)
301 runtime_error ("Rank of array needs to be > 0");
303 if (retarray->data == NULL)
305 retarray->dim[0].lbound = 0;
306 retarray->dim[0].ubound = rank-1;
307 retarray->dim[0].stride = 1;
308 retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
309 retarray->offset = 0;
310 retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank);
312 else
314 if (GFC_DESCRIPTOR_RANK (retarray) != 1)
315 runtime_error ("rank of return array does not equal 1");
317 if (retarray->dim[0].ubound + 1 - retarray->dim[0].lbound != rank)
318 runtime_error ("dimension of return array incorrect");
321 dstride = retarray->dim[0].stride;
322 dest = retarray->data;
323 for (n = 0; n<rank; n++)
324 dest[n * dstride] = 0 ;
326 #endif