* cp-tree.h (note_decl_for_pch): New function.
[official-gcc.git] / gcc / postreload-gcse.c
blob24c233caea378bd9506efff67150c46e62b1e15f
1 /* Post reload partially redundant load elimination
2 Copyright (C) 2004
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "toplev.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "tm_p.h"
31 #include "regs.h"
32 #include "hard-reg-set.h"
33 #include "flags.h"
34 #include "real.h"
35 #include "insn-config.h"
36 #include "recog.h"
37 #include "basic-block.h"
38 #include "output.h"
39 #include "function.h"
40 #include "expr.h"
41 #include "except.h"
42 #include "intl.h"
43 #include "obstack.h"
44 #include "hashtab.h"
45 #include "params.h"
47 /* The following code implements gcse after reload, the purpose of this
48 pass is to cleanup redundant loads generated by reload and other
49 optimizations that come after gcse. It searches for simple inter-block
50 redundancies and tries to eliminate them by adding moves and loads
51 in cold places.
53 Perform partially redundant load elimination, try to eliminate redundant
54 loads created by the reload pass. We try to look for full or partial
55 redundant loads fed by one or more loads/stores in predecessor BBs,
56 and try adding loads to make them fully redundant. We also check if
57 it's worth adding loads to be able to delete the redundant load.
59 Algorithm:
60 1. Build available expressions hash table:
61 For each load/store instruction, if the loaded/stored memory didn't
62 change until the end of the basic block add this memory expression to
63 the hash table.
64 2. Perform Redundancy elimination:
65 For each load instruction do the following:
66 perform partial redundancy elimination, check if it's worth adding
67 loads to make the load fully redundant. If so add loads and
68 register copies and delete the load.
69 3. Delete instructions made redundant in step 2.
71 Future enhancement:
72 If the loaded register is used/defined between load and some store,
73 look for some other free register between load and all its stores,
74 and replace the load with a copy from this register to the loaded
75 register.
79 /* Keep statistics of this pass. */
80 static struct
82 int moves_inserted;
83 int copies_inserted;
84 int insns_deleted;
85 } stats;
87 /* We need to keep a hash table of expressions. The table entries are of
88 type 'struct expr', and for each expression there is a single linked
89 list of occurrences. */
91 /* The table itself. */
92 static htab_t expr_table;
94 /* Expression elements in the hash table. */
95 struct expr
97 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
98 rtx expr;
100 /* The same hash for this entry. */
101 hashval_t hash;
103 /* List of available occurrence in basic blocks in the function. */
104 struct occr *avail_occr;
107 static struct obstack expr_obstack;
109 /* Occurrence of an expression.
110 There is at most one occurrence per basic block. If a pattern appears
111 more than once, the last appearance is used. */
113 struct occr
115 /* Next occurrence of this expression. */
116 struct occr *next;
117 /* The insn that computes the expression. */
118 rtx insn;
119 /* Nonzero if this [anticipatable] occurrence has been deleted. */
120 char deleted_p;
123 static struct obstack occr_obstack;
125 /* The following structure holds the information about the occurrences of
126 the redundant instructions. */
127 struct unoccr
129 struct unoccr *next;
130 edge pred;
131 rtx insn;
134 static struct obstack unoccr_obstack;
136 /* Array where each element is the CUID if the insn that last set the hard
137 register with the number of the element, since the start of the current
138 basic block.
140 This array is used during the building of the hash table (step 1) to
141 determine if a reg is killed before the end of a basic block.
143 It is also used when eliminating partial redundancies (step 2) to see
144 if a reg was modified since the start of a basic block. */
145 static int *reg_avail_info;
147 /* A list of insns that may modify memory within the current basic block. */
148 struct modifies_mem
150 rtx insn;
151 struct modifies_mem *next;
153 static struct modifies_mem *modifies_mem_list;
155 /* The modifies_mem structs also go on an obstack, only this obstack is
156 freed each time after completing the analysis or transformations on
157 a basic block. So we allocate a dummy modifies_mem_obstack_bottom
158 object on the obstack to keep track of the bottom of the obstack. */
159 static struct obstack modifies_mem_obstack;
160 static struct modifies_mem *modifies_mem_obstack_bottom;
162 /* Mapping of insn UIDs to CUIDs.
163 CUIDs are like UIDs except they increase monotonically in each basic
164 block, have no gaps, and only apply to real insns. */
165 static int *uid_cuid;
166 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
169 /* Helpers for memory allocation/freeing. */
170 static void alloc_mem (void);
171 static void free_mem (void);
173 /* Support for hash table construction and transformations. */
174 static bool oprs_unchanged_p (rtx, rtx, bool);
175 static void record_last_reg_set_info (rtx, int);
176 static void record_last_mem_set_info (rtx);
177 static void record_last_set_info (rtx, rtx, void *);
178 static void record_opr_changes (rtx);
180 static void find_mem_conflicts (rtx, rtx, void *);
181 static int load_killed_in_block_p (int, rtx, bool);
182 static void reset_opr_set_tables (void);
184 /* Hash table support. */
185 static hashval_t hash_expr (rtx, int *);
186 static hashval_t hash_expr_for_htab (const void *);
187 static int expr_equiv_p (const void *, const void *);
188 static void insert_expr_in_table (rtx, rtx);
189 static struct expr *lookup_expr_in_table (rtx);
190 static int dump_hash_table_entry (void **, void *);
191 static void dump_hash_table (FILE *);
193 /* Helpers for eliminate_partially_redundant_load. */
194 static bool reg_killed_on_edge (rtx, edge);
195 static bool reg_used_on_edge (rtx, edge);
197 static rtx reg_set_between_after_reload_p (rtx, rtx, rtx);
198 static rtx reg_used_between_after_reload_p (rtx, rtx, rtx);
199 static rtx get_avail_load_store_reg (rtx);
201 static bool bb_has_well_behaved_predecessors (basic_block);
202 static struct occr* get_bb_avail_insn (basic_block, struct occr *);
203 static void hash_scan_set (rtx);
204 static void compute_hash_table (void);
206 /* The work horses of this pass. */
207 static void eliminate_partially_redundant_load (basic_block,
208 rtx,
209 struct expr *);
210 static void eliminate_partially_redundant_loads (void);
213 /* Allocate memory for the CUID mapping array and register/memory
214 tracking tables. */
216 static void
217 alloc_mem (void)
219 int i;
220 basic_block bb;
221 rtx insn;
223 /* Find the largest UID and create a mapping from UIDs to CUIDs. */
224 uid_cuid = xcalloc (get_max_uid () + 1, sizeof (int));
225 i = 0;
226 FOR_EACH_BB (bb)
227 FOR_BB_INSNS (bb, insn)
229 if (INSN_P (insn))
230 uid_cuid[INSN_UID (insn)] = i++;
231 else
232 uid_cuid[INSN_UID (insn)] = i;
235 /* Allocate the available expressions hash table. We don't want to
236 make the hash table too small, but unnecessarily making it too large
237 also doesn't help. The i/4 is a gcse.c relic, and seems like a
238 reasonable choice. */
239 expr_table = htab_create (MAX (i / 4, 13),
240 hash_expr_for_htab, expr_equiv_p, NULL);
242 /* We allocate everything on obstacks because we often can roll back
243 the whole obstack to some point. Freeing obstacks is very fast. */
244 gcc_obstack_init (&expr_obstack);
245 gcc_obstack_init (&occr_obstack);
246 gcc_obstack_init (&unoccr_obstack);
247 gcc_obstack_init (&modifies_mem_obstack);
249 /* Working array used to track the last set for each register
250 in the current block. */
251 reg_avail_info = (int *) xmalloc (FIRST_PSEUDO_REGISTER * sizeof (int));
253 /* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
254 can roll it back in reset_opr_set_tables. */
255 modifies_mem_obstack_bottom =
256 (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
257 sizeof (struct modifies_mem));
260 /* Free memory allocated by alloc_mem. */
262 static void
263 free_mem (void)
265 free (uid_cuid);
267 htab_delete (expr_table);
269 obstack_free (&expr_obstack, NULL);
270 obstack_free (&occr_obstack, NULL);
271 obstack_free (&unoccr_obstack, NULL);
272 obstack_free (&modifies_mem_obstack, NULL);
274 free (reg_avail_info);
278 /* Hash expression X.
279 DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
280 or if the expression contains something we don't want to insert in the
281 table. */
283 static hashval_t
284 hash_expr (rtx x, int *do_not_record_p)
286 *do_not_record_p = 0;
287 return hash_rtx (x, GET_MODE (x), do_not_record_p,
288 NULL, /*have_reg_qty=*/false);
291 /* Callback for hashtab.
292 Return the hash value for expression EXP. We don't actually hash
293 here, we just return the cached hash value. */
295 static hashval_t
296 hash_expr_for_htab (const void *expp)
298 struct expr *exp = (struct expr *) expp;
299 return exp->hash;
302 /* Callbach for hashtab.
303 Return nonzero if exp1 is equivalent to exp2. */
305 static int
306 expr_equiv_p (const void *exp1p, const void *exp2p)
308 struct expr *exp1 = (struct expr *) exp1p;
309 struct expr *exp2 = (struct expr *) exp2p;
310 int equiv_p = exp_equiv_p (exp1->expr, exp2->expr, 0, true);
311 if (equiv_p
312 && exp1->hash != exp2->hash)
313 abort ();
314 return equiv_p;
318 /* Insert expression X in INSN in the hash TABLE.
319 If it is already present, record it as the last occurrence in INSN's
320 basic block. */
322 static void
323 insert_expr_in_table (rtx x, rtx insn)
325 int do_not_record_p;
326 hashval_t hash;
327 struct expr *cur_expr, **slot;
328 struct occr *avail_occr, *last_occr = NULL;
330 hash = hash_expr (x, &do_not_record_p);
332 /* Do not insert expression in the table if it contains volatile operands,
333 or if hash_expr determines the expression is something we don't want
334 to or can't handle. */
335 if (do_not_record_p)
336 return;
338 /* We anticipate that redundant expressions are rare, so for convenience
339 allocate a new hash table element here already and set its fields.
340 If we don't do this, we need a hack with a static struct expr. Anyway,
341 obstack_free is really fast and one more obstack_alloc doesn't hurt if
342 we're going to see more expressions later on. */
343 cur_expr = (struct expr *) obstack_alloc (&expr_obstack,
344 sizeof (struct expr));
345 cur_expr->expr = x;
346 cur_expr->hash = hash;
347 cur_expr->avail_occr = NULL;
349 slot = (struct expr **) htab_find_slot_with_hash (expr_table, cur_expr,
350 hash, INSERT);
352 if (! (*slot))
353 /* The expression isn't found, so insert it. */
354 *slot = cur_expr;
355 else
357 /* The expression is already in the table, so roll back the
358 obstack and use the existing table entry. */
359 obstack_free (&expr_obstack, cur_expr);
360 cur_expr = *slot;
363 /* Search for another occurrence in the same basic block. */
364 avail_occr = cur_expr->avail_occr;
365 while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
367 /* If an occurrence isn't found, save a pointer to the end of
368 the list. */
369 last_occr = avail_occr;
370 avail_occr = avail_occr->next;
373 if (avail_occr)
374 /* Found another instance of the expression in the same basic block.
375 Prefer this occurrence to the currently recorded one. We want
376 the last one in the block and the block is scanned from start
377 to end. */
378 avail_occr->insn = insn;
379 else
381 /* First occurrence of this expression in this basic block. */
382 avail_occr = (struct occr *) obstack_alloc (&occr_obstack,
383 sizeof (struct occr));
385 /* First occurrence of this expression in any block? */
386 if (cur_expr->avail_occr == NULL)
387 cur_expr->avail_occr = avail_occr;
388 else
389 last_occr->next = avail_occr;
391 avail_occr->insn = insn;
392 avail_occr->next = NULL;
393 avail_occr->deleted_p = 0;
398 /* Lookup pattern PAT in the expression hash table.
399 The result is a pointer to the table entry, or NULL if not found. */
401 static struct expr *
402 lookup_expr_in_table (rtx pat)
404 int do_not_record_p;
405 struct expr **slot, *tmp_expr;
406 hashval_t hash = hash_expr (pat, &do_not_record_p);
408 if (do_not_record_p)
409 return NULL;
411 tmp_expr = (struct expr *) obstack_alloc (&expr_obstack,
412 sizeof (struct expr));
413 tmp_expr->expr = pat;
414 tmp_expr->hash = hash;
415 tmp_expr->avail_occr = NULL;
417 slot = (struct expr **) htab_find_slot_with_hash (expr_table, tmp_expr,
418 hash, INSERT);
419 obstack_free (&expr_obstack, tmp_expr);
421 if (!slot)
422 return NULL;
423 else
424 return (*slot);
428 /* Dump all expressions and occurrences that are currently in the
429 expression hash table to FILE. */
431 /* This helper is called via htab_traverse. */
432 static int
433 dump_hash_table_entry (void **slot, void *filep)
435 struct expr *expr = (struct expr *) *slot;
436 FILE *file = (FILE *) filep;
437 struct occr *occr;
439 fprintf (file, "expr: ");
440 print_rtl (file, expr->expr);
441 fprintf (file,"\nhashcode: %u\n", expr->hash);
442 fprintf (file,"list of occurences:\n");
443 occr = expr->avail_occr;
444 while (occr)
446 rtx insn = occr->insn;
447 print_rtl_single (file, insn);
448 fprintf (file, "\n");
449 occr = occr->next;
451 fprintf (file, "\n");
452 return 1;
455 static void
456 dump_hash_table (FILE *file)
458 fprintf (file, "\n\nexpression hash table\n");
459 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
460 (long) htab_size (expr_table),
461 (long) htab_elements (expr_table),
462 htab_collisions (expr_table));
463 if (htab_elements (expr_table) > 0)
465 fprintf (file, "\n\ntable entries:\n");
466 htab_traverse (expr_table, dump_hash_table_entry, file);
468 fprintf (file, "\n");
472 /* Return nonzero if the operands of expression X are unchanged
473 1) from the start of INSN's basic block up to but not including INSN
474 if AFTER_INSN is false, or
475 2) from INSN to the end of INSN's basic block if AFTER_INSN is true. */
477 static bool
478 oprs_unchanged_p (rtx x, rtx insn, bool after_insn)
480 int i, j;
481 enum rtx_code code;
482 const char *fmt;
484 if (x == 0)
485 return 1;
487 code = GET_CODE (x);
488 switch (code)
490 case REG:
491 #ifdef ENABLE_CHECKING
492 /* We are called after register allocation. */
493 if (REGNO (x) >= FIRST_PSEUDO_REGISTER)
494 abort ();
495 #endif
496 if (after_insn)
497 /* If the last CUID setting the insn is less than the CUID of
498 INSN, then reg X is not changed in or after INSN. */
499 return reg_avail_info[REGNO (x)] < INSN_CUID (insn);
500 else
501 /* Reg X is not set before INSN in the current basic block if
502 we have not yet recorded the CUID of an insn that touches
503 the reg. */
504 return reg_avail_info[REGNO (x)] == 0;
506 case MEM:
507 if (load_killed_in_block_p (INSN_CUID (insn), x, after_insn))
508 return 0;
509 else
510 return oprs_unchanged_p (XEXP (x, 0), insn, after_insn);
512 case PC:
513 case CC0: /*FIXME*/
514 case CONST:
515 case CONST_INT:
516 case CONST_DOUBLE:
517 case CONST_VECTOR:
518 case SYMBOL_REF:
519 case LABEL_REF:
520 case ADDR_VEC:
521 case ADDR_DIFF_VEC:
522 return 1;
524 case PRE_DEC:
525 case PRE_INC:
526 case POST_DEC:
527 case POST_INC:
528 case PRE_MODIFY:
529 case POST_MODIFY:
530 if (after_insn)
531 return 0;
532 break;
534 default:
535 break;
538 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
540 if (fmt[i] == 'e')
542 if (! oprs_unchanged_p (XEXP (x, i), insn, after_insn))
543 return 0;
545 else if (fmt[i] == 'E')
546 for (j = 0; j < XVECLEN (x, i); j++)
547 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, after_insn))
548 return 0;
551 return 1;
555 /* Used for communication between find_mem_conflicts and
556 load_killed_in_block_p. Nonzero if find_mem_conflicts finds a
557 conflict between two memory references.
558 This is a bit of a hack to work around the limitations of note_stores. */
559 static int mems_conflict_p;
561 /* DEST is the output of an instruction. If it is a memory reference, and
562 possibly conflicts with the load found in DATA, then set mems_conflict_p
563 to a nonzero value. */
565 static void
566 find_mem_conflicts (rtx dest, rtx setter ATTRIBUTE_UNUSED,
567 void *data)
569 rtx mem_op = (rtx) data;
571 while (GET_CODE (dest) == SUBREG
572 || GET_CODE (dest) == ZERO_EXTRACT
573 || GET_CODE (dest) == SIGN_EXTRACT
574 || GET_CODE (dest) == STRICT_LOW_PART)
575 dest = XEXP (dest, 0);
577 /* If DEST is not a MEM, then it will not conflict with the load. Note
578 that function calls are assumed to clobber memory, but are handled
579 elsewhere. */
580 if (! MEM_P (dest))
581 return;
583 if (true_dependence (dest, GET_MODE (dest), mem_op,
584 rtx_addr_varies_p))
585 mems_conflict_p = 1;
589 /* Return nonzero if the expression in X (a memory reference) is killed
590 in the current basic block before (if AFTER_INSN is false) or after
591 (if AFTER_INSN is true) the insn with the CUID in UID_LIMIT.
593 This function assumes that the modifies_mem table is flushed when
594 the hash table construction or redundancy elimination phases start
595 processing a new basic block. */
597 static int
598 load_killed_in_block_p (int uid_limit, rtx x, bool after_insn)
600 struct modifies_mem *list_entry = modifies_mem_list;
602 while (list_entry)
604 rtx setter = list_entry->insn;
606 /* Ignore entries in the list that do not apply. */
607 if ((after_insn
608 && INSN_CUID (setter) < uid_limit)
609 || (! after_insn
610 && INSN_CUID (setter) > uid_limit))
612 list_entry = list_entry->next;
613 continue;
616 /* If SETTER is a call everything is clobbered. Note that calls
617 to pure functions are never put on the list, so we need not
618 worry about them. */
619 if (CALL_P (setter))
620 return 1;
622 /* SETTER must be an insn of some kind that sets memory. Call
623 note_stores to examine each hunk of memory that is modified.
624 It will set mems_conflict_p to nonzero if there may be a
625 conflict between X and SETTER. */
626 mems_conflict_p = 0;
627 note_stores (PATTERN (setter), find_mem_conflicts, x);
628 if (mems_conflict_p)
629 return 1;
631 list_entry = list_entry->next;
633 return 0;
637 /* Record register first/last/block set information for REGNO in INSN. */
639 static inline void
640 record_last_reg_set_info (rtx insn, int regno)
642 reg_avail_info[regno] = INSN_CUID (insn);
646 /* Record memory modification information for INSN. We do not actually care
647 about the memory location(s) that are set, or even how they are set (consider
648 a CALL_INSN). We merely need to record which insns modify memory. */
650 static void
651 record_last_mem_set_info (rtx insn)
653 struct modifies_mem *list_entry;
655 list_entry = (struct modifies_mem *) obstack_alloc (&modifies_mem_obstack,
656 sizeof (struct modifies_mem));
657 list_entry->insn = insn;
658 list_entry->next = modifies_mem_list;
659 modifies_mem_list = list_entry;
662 /* Called from compute_hash_table via note_stores to handle one
663 SET or CLOBBER in an insn. DATA is really the instruction in which
664 the SET is taking place. */
666 static void
667 record_last_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
669 rtx last_set_insn = (rtx) data;
671 if (GET_CODE (dest) == SUBREG)
672 dest = SUBREG_REG (dest);
674 if (REG_P (dest))
675 record_last_reg_set_info (last_set_insn, REGNO (dest));
676 else if (MEM_P (dest)
677 /* Ignore pushes, they clobber nothing. */
678 && ! push_operand (dest, GET_MODE (dest)))
679 record_last_mem_set_info (last_set_insn);
683 /* Reset tables used to keep track of what's still available since the
684 start of the block. */
686 static void
687 reset_opr_set_tables (void)
689 memset (reg_avail_info, 0, FIRST_PSEUDO_REGISTER * sizeof (int));
690 obstack_free (&modifies_mem_obstack, modifies_mem_obstack_bottom);
691 modifies_mem_list = NULL;
695 /* Record things set by INSN.
696 This data is used by oprs_unchanged_p. */
698 static void
699 record_opr_changes (rtx insn)
701 rtx note;
703 /* Find all stores and record them. */
704 note_stores (PATTERN (insn), record_last_set_info, insn);
706 /* Also record autoincremented REGs for this insn as changed. */
707 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
708 if (REG_NOTE_KIND (note) == REG_INC)
709 record_last_reg_set_info (insn, REGNO (XEXP (note, 0)));
711 /* Finally, if this is a call, record all call clobbers. */
712 if (CALL_P (insn))
714 unsigned int regno;
716 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
717 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
718 record_last_reg_set_info (insn, regno);
720 if (! CONST_OR_PURE_CALL_P (insn))
721 record_last_mem_set_info (insn);
726 /* Scan the pattern of INSN and add an entry to the hash TABLE.
727 After reload we are interested in loads/stores only. */
729 static void
730 hash_scan_set (rtx insn)
732 rtx pat = PATTERN (insn);
733 rtx src = SET_SRC (pat);
734 rtx dest = SET_DEST (pat);
736 /* We are only interested in loads and stores. */
737 if (! MEM_P (src) && ! MEM_P (dest))
738 return;
740 /* Don't mess with jumps and nops. */
741 if (JUMP_P (insn) || set_noop_p (pat))
742 return;
744 #ifdef ENABLE_CHEKCING
745 /* We shouldn't have any EH_REGION notes post reload. */
746 if (find_reg_note (insn, REG_EH_REGION, NULL_RTX))
747 abort ();
748 #endif
750 if (REG_P (dest))
752 if (/* Don't CSE something if we can't do a reg/reg copy. */
753 can_copy_p (GET_MODE (dest))
754 /* Is SET_SRC something we want to gcse? */
755 && general_operand (src, GET_MODE (src))
756 /* An expression is not available if its operands are
757 subsequently modified, including this insn. */
758 && oprs_unchanged_p (src, insn, true))
760 insert_expr_in_table (src, insn);
763 else if (REG_P (src))
765 /* Only record sets of pseudo-regs in the hash table. */
766 if (/* Don't CSE something if we can't do a reg/reg copy. */
767 can_copy_p (GET_MODE (src))
768 /* Is SET_DEST something we want to gcse? */
769 && general_operand (dest, GET_MODE (dest))
770 && ! (flag_float_store && FLOAT_MODE_P (GET_MODE (dest)))
771 /* Check if the memory expression is killed after insn. */
772 && ! load_killed_in_block_p (INSN_CUID (insn) + 1, dest, true)
773 && oprs_unchanged_p (XEXP (dest, 0), insn, true))
775 insert_expr_in_table (dest, insn);
781 /* Create hash table of memory expressions available at end of basic
782 blocks. Basically you should think of this hash table as the
783 representation of AVAIL_OUT. This is the set of expressions that
784 is generated in a basic block and not killed before the end of the
785 same basic block. Notice that this is really a local computation. */
787 static void
788 compute_hash_table (void)
790 basic_block bb;
792 FOR_EACH_BB (bb)
794 rtx insn;
796 /* First pass over the instructions records information used to
797 determine when registers and memory are last set.
798 Since we compute a "local" AVAIL_OUT, reset the tables that
799 help us keep track of what has been modified since the start
800 of the block. */
801 reset_opr_set_tables ();
802 FOR_BB_INSNS (bb, insn)
804 if (INSN_P (insn))
805 record_opr_changes (insn);
808 /* The next pass actually builds the hash table. */
809 FOR_BB_INSNS (bb, insn)
810 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SET)
811 hash_scan_set (insn);
816 /* Check if register REG is killed in any insn waiting to be inserted on
817 edge E. This function is required to check that our data flow analysis
818 is still valid prior to commit_edge_insertions. */
820 static bool
821 reg_killed_on_edge (rtx reg, edge e)
823 rtx insn;
825 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
826 if (INSN_P (insn) && reg_set_p (reg, insn))
827 return true;
829 return false;
832 /* Similar to above - check if register REG is used in any insn waiting
833 to be inserted on edge E.
834 Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
835 with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p. */
837 static bool
838 reg_used_on_edge (rtx reg, edge e)
840 rtx insn;
842 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
843 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
844 return true;
846 return false;
850 /* Return the insn that sets register REG or clobbers it in between
851 FROM_INSN and TO_INSN (exclusive of those two).
852 Just like reg_set_between but for hard registers and not pseudos. */
854 static rtx
855 reg_set_between_after_reload_p (rtx reg, rtx from_insn, rtx to_insn)
857 rtx insn;
859 #ifdef ENABLE_CHECKING
860 /* We are called after register allocation. */
861 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
862 abort ();
863 #endif
865 if (from_insn == to_insn)
866 return NULL_RTX;
868 for (insn = NEXT_INSN (from_insn);
869 insn != to_insn;
870 insn = NEXT_INSN (insn))
871 if (INSN_P (insn))
873 if (set_of (reg, insn) != NULL_RTX)
874 return insn;
875 if ((CALL_P (insn)
876 && call_used_regs[REGNO (reg)])
877 || find_reg_fusage (insn, CLOBBER, reg))
878 return insn;
880 if (FIND_REG_INC_NOTE (insn, reg))
881 return insn;
884 return NULL_RTX;
887 /* Return the insn that uses register REG in between FROM_INSN and TO_INSN
888 (exclusive of those two). Similar to reg_used_between but for hard
889 registers and not pseudos. */
891 static rtx
892 reg_used_between_after_reload_p (rtx reg, rtx from_insn, rtx to_insn)
894 rtx insn;
896 #ifdef ENABLE_CHECKING
897 /* We are called after register allocation. */
898 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
899 abort ();
900 #endif
902 if (from_insn == to_insn)
903 return NULL_RTX;
905 for (insn = NEXT_INSN (from_insn);
906 insn != to_insn;
907 insn = NEXT_INSN (insn))
908 if (INSN_P (insn))
910 if (reg_overlap_mentioned_p (reg, PATTERN (insn))
911 || (CALL_P (insn)
912 && call_used_regs[REGNO (reg)])
913 || find_reg_fusage (insn, USE, reg)
914 || find_reg_fusage (insn, CLOBBER, reg))
915 return insn;
917 if (FIND_REG_INC_NOTE (insn, reg))
918 return insn;
921 return NULL_RTX;
924 /* Return true if REG is used, set, or killed between the beginning of
925 basic block BB and UP_TO_INSN. Caches the result in reg_avail_info. */
927 static bool
928 reg_set_or_used_since_bb_start (rtx reg, basic_block bb, rtx up_to_insn)
930 rtx insn, start = PREV_INSN (BB_HEAD (bb));
932 if (reg_avail_info[REGNO (reg)] != 0)
933 return true;
935 insn = reg_used_between_after_reload_p (reg, start, up_to_insn);
936 if (! insn)
937 insn = reg_set_between_after_reload_p (reg, start, up_to_insn);
939 if (insn)
940 reg_avail_info[REGNO (reg)] = INSN_CUID (insn);
942 return insn != NULL_RTX;
945 /* Return the loaded/stored register of a load/store instruction. */
947 static rtx
948 get_avail_load_store_reg (rtx insn)
950 if (REG_P (SET_DEST (PATTERN (insn)))) /* A load. */
951 return SET_DEST(PATTERN(insn));
952 if (REG_P (SET_SRC (PATTERN (insn)))) /* A store. */
953 return SET_SRC (PATTERN (insn));
954 abort ();
957 /* Return nonzero if the predecessors of BB are "well behaved". */
959 static bool
960 bb_has_well_behaved_predecessors (basic_block bb)
962 edge pred;
963 edge_iterator ei;
965 if (EDGE_COUNT (bb->preds) == 0)
966 return false;
968 FOR_EACH_EDGE (pred, ei, bb->preds)
970 if ((pred->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (pred))
971 return false;
973 if (JUMP_TABLE_DATA_P (BB_END (pred->src)))
974 return false;
976 return true;
980 /* Search for the occurrences of expression in BB. */
982 static struct occr*
983 get_bb_avail_insn (basic_block bb, struct occr *occr)
985 for (; occr != NULL; occr = occr->next)
986 if (BLOCK_FOR_INSN (occr->insn) == bb)
987 return occr;
988 return NULL;
992 /* This handles the case where several stores feed a partially redundant
993 load. It checks if the redundancy elimination is possible and if it's
994 worth it.
996 Redundancy elimination is possible if,
997 1) None of the operands of an insn have been modified since the start
998 of the current basic block.
999 2) In any predecessor of the current basic block, the same expression
1000 is generated.
1002 See the function body for the heuristics that determine if eliminating
1003 a redundancy is also worth doing, assuming it is possible. */
1005 static void
1006 eliminate_partially_redundant_load (basic_block bb, rtx insn,
1007 struct expr *expr)
1009 edge pred;
1010 rtx avail_insn = NULL_RTX;
1011 rtx avail_reg;
1012 rtx dest, pat;
1013 struct occr *a_occr;
1014 struct unoccr *occr, *avail_occrs = NULL;
1015 struct unoccr *unoccr, *unavail_occrs = NULL, *rollback_unoccr = NULL;
1016 int npred_ok = 0;
1017 gcov_type ok_count = 0; /* Redundant load execution count. */
1018 gcov_type critical_count = 0; /* Execution count of critical edges. */
1019 edge_iterator ei;
1021 /* The execution count of the loads to be added to make the
1022 load fully redundant. */
1023 gcov_type not_ok_count = 0;
1024 basic_block pred_bb;
1026 pat = PATTERN (insn);
1027 dest = SET_DEST (pat);
1029 /* Check that the loaded register is not used, set, or killed from the
1030 beginning of the block. */
1031 if (reg_set_or_used_since_bb_start (dest, bb, insn))
1032 return;
1034 /* Check potential for replacing load with copy for predecessors. */
1035 FOR_EACH_EDGE (pred, ei, bb->preds)
1037 rtx next_pred_bb_end;
1039 avail_insn = NULL_RTX;
1040 pred_bb = pred->src;
1041 next_pred_bb_end = NEXT_INSN (BB_END (pred_bb));
1042 for (a_occr = get_bb_avail_insn (pred_bb, expr->avail_occr); a_occr;
1043 a_occr = get_bb_avail_insn (pred_bb, a_occr->next))
1045 /* Check if the loaded register is not used. */
1046 avail_insn = a_occr->insn;
1047 if (! (avail_reg = get_avail_load_store_reg (avail_insn)))
1048 abort ();
1049 /* Make sure we can generate a move from register avail_reg to
1050 dest. */
1051 extract_insn (gen_move_insn (copy_rtx (dest),
1052 copy_rtx (avail_reg)));
1053 if (! constrain_operands (1)
1054 || reg_killed_on_edge (avail_reg, pred)
1055 || reg_used_on_edge (dest, pred))
1057 avail_insn = NULL;
1058 continue;
1060 if (! reg_set_between_after_reload_p (avail_reg, avail_insn,
1061 next_pred_bb_end))
1062 /* AVAIL_INSN remains non-null. */
1063 break;
1064 else
1065 avail_insn = NULL;
1068 if (EDGE_CRITICAL_P (pred))
1069 critical_count += pred->count;
1071 if (avail_insn != NULL_RTX)
1073 npred_ok++;
1074 ok_count += pred->count;
1075 occr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1076 sizeof (struct occr));
1077 occr->insn = avail_insn;
1078 occr->pred = pred;
1079 occr->next = avail_occrs;
1080 avail_occrs = occr;
1081 if (! rollback_unoccr)
1082 rollback_unoccr = occr;
1084 else
1086 not_ok_count += pred->count;
1087 unoccr = (struct unoccr *) obstack_alloc (&unoccr_obstack,
1088 sizeof (struct unoccr));
1089 unoccr->insn = NULL_RTX;
1090 unoccr->pred = pred;
1091 unoccr->next = unavail_occrs;
1092 unavail_occrs = unoccr;
1093 if (! rollback_unoccr)
1094 rollback_unoccr = unoccr;
1098 if (/* No load can be replaced by copy. */
1099 npred_ok == 0
1100 /* Prevent exploding the code. */
1101 || (optimize_size && npred_ok > 1))
1102 goto cleanup;
1104 /* Check if it's worth applying the partial redundancy elimination. */
1105 if (ok_count < GCSE_AFTER_RELOAD_PARTIAL_FRACTION * not_ok_count)
1106 goto cleanup;
1107 if (ok_count < GCSE_AFTER_RELOAD_CRITICAL_FRACTION * critical_count)
1108 goto cleanup;
1110 /* Generate moves to the loaded register from where
1111 the memory is available. */
1112 for (occr = avail_occrs; occr; occr = occr->next)
1114 avail_insn = occr->insn;
1115 pred = occr->pred;
1116 /* Set avail_reg to be the register having the value of the
1117 memory. */
1118 avail_reg = get_avail_load_store_reg (avail_insn);
1119 if (! avail_reg)
1120 abort ();
1122 insert_insn_on_edge (gen_move_insn (copy_rtx (dest),
1123 copy_rtx (avail_reg)),
1124 pred);
1125 stats.moves_inserted++;
1127 if (dump_file)
1128 fprintf (dump_file,
1129 "generating move from %d to %d on edge from %d to %d\n",
1130 REGNO (avail_reg),
1131 REGNO (dest),
1132 pred->src->index,
1133 pred->dest->index);
1136 /* Regenerate loads where the memory is unavailable. */
1137 for (unoccr = unavail_occrs; unoccr; unoccr = unoccr->next)
1139 pred = unoccr->pred;
1140 insert_insn_on_edge (copy_insn (PATTERN (insn)), pred);
1141 stats.copies_inserted++;
1143 if (dump_file)
1145 fprintf (dump_file,
1146 "generating on edge from %d to %d a copy of load: ",
1147 pred->src->index,
1148 pred->dest->index);
1149 print_rtl (dump_file, PATTERN (insn));
1150 fprintf (dump_file, "\n");
1154 /* Delete the insn if it is not available in this block and mark it
1155 for deletion if it is available. If insn is available it may help
1156 discover additional redundancies, so mark it for later deletion. */
1157 for (a_occr = get_bb_avail_insn (bb, expr->avail_occr);
1158 a_occr && (a_occr->insn != insn);
1159 a_occr = get_bb_avail_insn (bb, a_occr->next));
1161 if (!a_occr)
1162 delete_insn (insn);
1163 else
1164 a_occr->deleted_p = 1;
1166 cleanup:
1167 if (rollback_unoccr)
1168 obstack_free (&unoccr_obstack, rollback_unoccr);
1171 /* Performing the redundancy elimination as described before. */
1173 static void
1174 eliminate_partially_redundant_loads (void)
1176 rtx insn;
1177 basic_block bb;
1179 /* Note we start at block 1. */
1181 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
1182 return;
1184 FOR_BB_BETWEEN (bb,
1185 ENTRY_BLOCK_PTR->next_bb->next_bb,
1186 EXIT_BLOCK_PTR,
1187 next_bb)
1189 /* Don't try anything on basic blocks with strange predecessors. */
1190 if (! bb_has_well_behaved_predecessors (bb))
1191 continue;
1193 /* Do not try anything on cold basic blocks. */
1194 if (probably_cold_bb_p (bb))
1195 continue;
1197 /* Reset the table of things changed since the start of the current
1198 basic block. */
1199 reset_opr_set_tables ();
1201 /* Look at all insns in the current basic block and see if there are
1202 any loads in it that we can record. */
1203 FOR_BB_INSNS (bb, insn)
1205 /* Is it a load - of the form (set (reg) (mem))? */
1206 if (NONJUMP_INSN_P (insn)
1207 && GET_CODE (PATTERN (insn)) == SET
1208 && REG_P (SET_DEST (PATTERN (insn)))
1209 && MEM_P (SET_SRC (PATTERN (insn))))
1211 rtx pat = PATTERN (insn);
1212 rtx src = SET_SRC (pat);
1213 struct expr *expr;
1215 if (!MEM_VOLATILE_P (src)
1216 && GET_MODE (src) != BLKmode
1217 && general_operand (src, GET_MODE (src))
1218 /* Are the operands unchanged since the start of the
1219 block? */
1220 && oprs_unchanged_p (src, insn, false)
1221 && !(flag_non_call_exceptions && may_trap_p (src))
1222 && !side_effects_p (src)
1223 /* Is the expression recorded? */
1224 && (expr = lookup_expr_in_table (src)) != NULL)
1226 /* We now have a load (insn) and an available memory at
1227 its BB start (expr). Try to remove the loads if it is
1228 redundant. */
1229 eliminate_partially_redundant_load (bb, insn, expr);
1233 /* Keep track of everything modified by this insn, so that we
1234 know what has been modified since the start of the current
1235 basic block. */
1236 if (INSN_P (insn))
1237 record_opr_changes (insn);
1241 commit_edge_insertions ();
1244 /* Go over the expression hash table and delete insns that were
1245 marked for later deletion. */
1247 /* This helper is called via htab_traverse. */
1248 static int
1249 delete_redundant_insns_1 (void **slot, void *data ATTRIBUTE_UNUSED)
1251 struct expr *expr = (struct expr *) *slot;
1252 struct occr *occr;
1254 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1256 if (occr->deleted_p)
1258 delete_insn (occr->insn);
1259 stats.insns_deleted++;
1261 if (dump_file)
1263 fprintf (dump_file, "deleting insn:\n");
1264 print_rtl_single (dump_file, occr->insn);
1265 fprintf (dump_file, "\n");
1270 return 1;
1273 static void
1274 delete_redundant_insns (void)
1276 htab_traverse (expr_table, delete_redundant_insns_1, NULL);
1277 if (dump_file)
1278 fprintf (dump_file, "\n");
1281 /* Main entry point of the GCSE after reload - clean some redundant loads
1282 due to spilling. */
1284 void
1285 gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED)
1287 memset (&stats, 0, sizeof (stats));
1289 /* Allocate ememory for this pass.
1290 Also computes and initializes the insns' CUIDs. */
1291 alloc_mem ();
1293 /* We need alias analysis. */
1294 init_alias_analysis ();
1296 compute_hash_table ();
1298 if (dump_file)
1299 dump_hash_table (dump_file);
1301 if (htab_elements (expr_table) > 0)
1303 eliminate_partially_redundant_loads ();
1304 delete_redundant_insns ();
1306 if (dump_file)
1308 fprintf (dump_file, "GCSE AFTER RELOAD stats:\n");
1309 fprintf (dump_file, "copies inserted: %d\n", stats.copies_inserted);
1310 fprintf (dump_file, "moves inserted: %d\n", stats.moves_inserted);
1311 fprintf (dump_file, "insns deleted: %d\n", stats.insns_deleted);
1312 fprintf (dump_file, "\n\n");
1316 /* We are finished with alias. */
1317 end_alias_analysis ();
1319 free_mem ();