1 /* Emit RTL for the GNU C-Compiler expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
48 #include "hard-reg-set.h"
50 #include "insn-config.h"
55 #include "basic-block.h"
58 #include "langhooks.h"
60 /* Commonly used modes. */
62 enum machine_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
63 enum machine_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
64 enum machine_mode double_mode
; /* Mode whose width is DOUBLE_TYPE_SIZE. */
65 enum machine_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
68 /* This is *not* reset after each function. It gives each CODE_LABEL
69 in the entire compilation a unique label number. */
71 static int label_num
= 1;
73 /* Highest label number in current function.
74 Zero means use the value of label_num instead.
75 This is nonzero only when belatedly compiling an inline function. */
77 static int last_label_num
;
79 /* Value label_num had when set_new_first_and_last_label_number was called.
80 If label_num has not changed since then, last_label_num is valid. */
82 static int base_label_num
;
84 /* Nonzero means do not generate NOTEs for source line numbers. */
86 static int no_line_numbers
;
88 /* Commonly used rtx's, so that we only need space for one copy.
89 These are initialized once for the entire compilation.
90 All of these except perhaps the floating-point CONST_DOUBLEs
91 are unique; no other rtx-object will be equal to any of these. */
93 rtx global_rtl
[GR_MAX
];
95 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
96 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
97 record a copy of const[012]_rtx. */
99 rtx const_tiny_rtx
[3][(int) MAX_MACHINE_MODE
];
103 REAL_VALUE_TYPE dconst0
;
104 REAL_VALUE_TYPE dconst1
;
105 REAL_VALUE_TYPE dconst2
;
106 REAL_VALUE_TYPE dconstm1
;
108 /* All references to the following fixed hard registers go through
109 these unique rtl objects. On machines where the frame-pointer and
110 arg-pointer are the same register, they use the same unique object.
112 After register allocation, other rtl objects which used to be pseudo-regs
113 may be clobbered to refer to the frame-pointer register.
114 But references that were originally to the frame-pointer can be
115 distinguished from the others because they contain frame_pointer_rtx.
117 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
118 tricky: until register elimination has taken place hard_frame_pointer_rtx
119 should be used if it is being set, and frame_pointer_rtx otherwise. After
120 register elimination hard_frame_pointer_rtx should always be used.
121 On machines where the two registers are same (most) then these are the
124 In an inline procedure, the stack and frame pointer rtxs may not be
125 used for anything else. */
126 rtx struct_value_rtx
; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
127 rtx struct_value_incoming_rtx
; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
128 rtx static_chain_rtx
; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
129 rtx static_chain_incoming_rtx
; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
130 rtx pic_offset_table_rtx
; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
132 /* This is used to implement __builtin_return_address for some machines.
133 See for instance the MIPS port. */
134 rtx return_address_pointer_rtx
; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
136 /* We make one copy of (const_int C) where C is in
137 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
138 to save space during the compilation and simplify comparisons of
141 rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
143 /* A hash table storing CONST_INTs whose absolute value is greater
144 than MAX_SAVED_CONST_INT. */
146 static htab_t const_int_htab
;
148 /* A hash table storing memory attribute structures. */
149 static htab_t mem_attrs_htab
;
151 /* start_sequence and gen_sequence can make a lot of rtx expressions which are
152 shortly thrown away. We use two mechanisms to prevent this waste:
154 For sizes up to 5 elements, we keep a SEQUENCE and its associated
155 rtvec for use by gen_sequence. One entry for each size is
156 sufficient because most cases are calls to gen_sequence followed by
157 immediately emitting the SEQUENCE. Reuse is safe since emitting a
158 sequence is destructive on the insn in it anyway and hence can't be
161 We do not bother to save this cached data over nested function calls.
162 Instead, we just reinitialize them. */
164 #define SEQUENCE_RESULT_SIZE 5
166 static rtx sequence_result
[SEQUENCE_RESULT_SIZE
];
168 /* During RTL generation, we also keep a list of free INSN rtl codes. */
169 static rtx free_insn
;
171 #define first_insn (cfun->emit->x_first_insn)
172 #define last_insn (cfun->emit->x_last_insn)
173 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
174 #define last_linenum (cfun->emit->x_last_linenum)
175 #define last_filename (cfun->emit->x_last_filename)
176 #define first_label_num (cfun->emit->x_first_label_num)
178 static rtx make_jump_insn_raw
PARAMS ((rtx
));
179 static rtx make_call_insn_raw
PARAMS ((rtx
));
180 static rtx find_line_note
PARAMS ((rtx
));
181 static void mark_sequence_stack
PARAMS ((struct sequence_stack
*));
182 static rtx change_address_1
PARAMS ((rtx
, enum machine_mode
, rtx
,
184 static void unshare_all_rtl_1
PARAMS ((rtx
));
185 static void unshare_all_decls
PARAMS ((tree
));
186 static void reset_used_decls
PARAMS ((tree
));
187 static void mark_label_nuses
PARAMS ((rtx
));
188 static hashval_t const_int_htab_hash
PARAMS ((const void *));
189 static int const_int_htab_eq
PARAMS ((const void *,
191 static hashval_t mem_attrs_htab_hash
PARAMS ((const void *));
192 static int mem_attrs_htab_eq
PARAMS ((const void *,
194 static void mem_attrs_mark
PARAMS ((const void *));
195 static mem_attrs
*get_mem_attrs
PARAMS ((HOST_WIDE_INT
, tree
, rtx
,
198 static tree component_ref_for_mem_expr
PARAMS ((tree
));
200 /* Probability of the conditional branch currently proceeded by try_split.
201 Set to -1 otherwise. */
202 int split_branch_probability
= -1;
204 /* Returns a hash code for X (which is a really a CONST_INT). */
207 const_int_htab_hash (x
)
210 return (hashval_t
) INTVAL ((const struct rtx_def
*) x
);
213 /* Returns non-zero if the value represented by X (which is really a
214 CONST_INT) is the same as that given by Y (which is really a
218 const_int_htab_eq (x
, y
)
222 return (INTVAL ((const struct rtx_def
*) x
) == *((const HOST_WIDE_INT
*) y
));
225 /* Returns a hash code for X (which is a really a mem_attrs *). */
228 mem_attrs_htab_hash (x
)
231 mem_attrs
*p
= (mem_attrs
*) x
;
233 return (p
->alias
^ (p
->align
* 1000)
234 ^ ((p
->offset
? INTVAL (p
->offset
) : 0) * 50000)
235 ^ ((p
->size
? INTVAL (p
->size
) : 0) * 2500000)
239 /* Returns non-zero if the value represented by X (which is really a
240 mem_attrs *) is the same as that given by Y (which is also really a
244 mem_attrs_htab_eq (x
, y
)
248 mem_attrs
*p
= (mem_attrs
*) x
;
249 mem_attrs
*q
= (mem_attrs
*) y
;
251 return (p
->alias
== q
->alias
&& p
->expr
== q
->expr
&& p
->offset
== q
->offset
252 && p
->size
== q
->size
&& p
->align
== q
->align
);
255 /* This routine is called when we determine that we need a mem_attrs entry.
256 It marks the associated decl and RTL as being used, if present. */
262 mem_attrs
*p
= (mem_attrs
*) x
;
265 ggc_mark_tree (p
->expr
);
268 ggc_mark_rtx (p
->offset
);
271 ggc_mark_rtx (p
->size
);
274 /* Allocate a new mem_attrs structure and insert it into the hash table if
275 one identical to it is not already in the table. We are doing this for
279 get_mem_attrs (alias
, expr
, offset
, size
, align
, mode
)
285 enum machine_mode mode
;
290 /* If everything is the default, we can just return zero. */
291 if (alias
== 0 && expr
== 0 && offset
== 0
293 || (mode
!= BLKmode
&& GET_MODE_SIZE (mode
) == INTVAL (size
)))
294 && (align
== BITS_PER_UNIT
295 || (mode
!= BLKmode
&& align
== GET_MODE_ALIGNMENT (mode
))))
300 attrs
.offset
= offset
;
304 slot
= htab_find_slot (mem_attrs_htab
, &attrs
, INSERT
);
307 *slot
= ggc_alloc (sizeof (mem_attrs
));
308 memcpy (*slot
, &attrs
, sizeof (mem_attrs
));
314 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
315 don't attempt to share with the various global pieces of rtl (such as
316 frame_pointer_rtx). */
319 gen_raw_REG (mode
, regno
)
320 enum machine_mode mode
;
323 rtx x
= gen_rtx_raw_REG (mode
, regno
);
324 ORIGINAL_REGNO (x
) = regno
;
328 /* There are some RTL codes that require special attention; the generation
329 functions do the raw handling. If you add to this list, modify
330 special_rtx in gengenrtl.c as well. */
333 gen_rtx_CONST_INT (mode
, arg
)
334 enum machine_mode mode ATTRIBUTE_UNUSED
;
339 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
340 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
342 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
343 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
344 return const_true_rtx
;
347 /* Look up the CONST_INT in the hash table. */
348 slot
= htab_find_slot_with_hash (const_int_htab
, &arg
,
349 (hashval_t
) arg
, INSERT
);
351 *slot
= gen_rtx_raw_CONST_INT (VOIDmode
, arg
);
356 /* CONST_DOUBLEs needs special handling because their length is known
360 gen_rtx_CONST_DOUBLE (mode
, arg0
, arg1
)
361 enum machine_mode mode
;
362 HOST_WIDE_INT arg0
, arg1
;
364 rtx r
= rtx_alloc (CONST_DOUBLE
);
368 X0EXP (r
, 0) = NULL_RTX
;
372 for (i
= GET_RTX_LENGTH (CONST_DOUBLE
) - 1; i
> 2; --i
)
379 gen_rtx_REG (mode
, regno
)
380 enum machine_mode mode
;
383 /* In case the MD file explicitly references the frame pointer, have
384 all such references point to the same frame pointer. This is
385 used during frame pointer elimination to distinguish the explicit
386 references to these registers from pseudos that happened to be
389 If we have eliminated the frame pointer or arg pointer, we will
390 be using it as a normal register, for example as a spill
391 register. In such cases, we might be accessing it in a mode that
392 is not Pmode and therefore cannot use the pre-allocated rtx.
394 Also don't do this when we are making new REGs in reload, since
395 we don't want to get confused with the real pointers. */
397 if (mode
== Pmode
&& !reload_in_progress
)
399 if (regno
== FRAME_POINTER_REGNUM
)
400 return frame_pointer_rtx
;
401 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
402 if (regno
== HARD_FRAME_POINTER_REGNUM
)
403 return hard_frame_pointer_rtx
;
405 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
406 if (regno
== ARG_POINTER_REGNUM
)
407 return arg_pointer_rtx
;
409 #ifdef RETURN_ADDRESS_POINTER_REGNUM
410 if (regno
== RETURN_ADDRESS_POINTER_REGNUM
)
411 return return_address_pointer_rtx
;
413 if (regno
== STACK_POINTER_REGNUM
)
414 return stack_pointer_rtx
;
417 return gen_raw_REG (mode
, regno
);
421 gen_rtx_MEM (mode
, addr
)
422 enum machine_mode mode
;
425 rtx rt
= gen_rtx_raw_MEM (mode
, addr
);
427 /* This field is not cleared by the mere allocation of the rtx, so
435 gen_rtx_SUBREG (mode
, reg
, offset
)
436 enum machine_mode mode
;
440 /* This is the most common failure type.
441 Catch it early so we can see who does it. */
442 if ((offset
% GET_MODE_SIZE (mode
)) != 0)
445 /* This check isn't usable right now because combine will
446 throw arbitrary crap like a CALL into a SUBREG in
447 gen_lowpart_for_combine so we must just eat it. */
449 /* Check for this too. */
450 if (offset
>= GET_MODE_SIZE (GET_MODE (reg
)))
453 return gen_rtx_fmt_ei (SUBREG
, mode
, reg
, offset
);
456 /* Generate a SUBREG representing the least-significant part of REG if MODE
457 is smaller than mode of REG, otherwise paradoxical SUBREG. */
460 gen_lowpart_SUBREG (mode
, reg
)
461 enum machine_mode mode
;
464 enum machine_mode inmode
;
466 inmode
= GET_MODE (reg
);
467 if (inmode
== VOIDmode
)
469 return gen_rtx_SUBREG (mode
, reg
,
470 subreg_lowpart_offset (mode
, inmode
));
473 /* rtx gen_rtx (code, mode, [element1, ..., elementn])
475 ** This routine generates an RTX of the size specified by
476 ** <code>, which is an RTX code. The RTX structure is initialized
477 ** from the arguments <element1> through <elementn>, which are
478 ** interpreted according to the specific RTX type's format. The
479 ** special machine mode associated with the rtx (if any) is specified
482 ** gen_rtx can be invoked in a way which resembles the lisp-like
483 ** rtx it will generate. For example, the following rtx structure:
485 ** (plus:QI (mem:QI (reg:SI 1))
486 ** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
488 ** ...would be generated by the following C code:
490 ** gen_rtx (PLUS, QImode,
491 ** gen_rtx (MEM, QImode,
492 ** gen_rtx (REG, SImode, 1)),
493 ** gen_rtx (MEM, QImode,
494 ** gen_rtx (PLUS, SImode,
495 ** gen_rtx (REG, SImode, 2),
496 ** gen_rtx (REG, SImode, 3)))),
501 gen_rtx
VPARAMS ((enum rtx_code code
, enum machine_mode mode
, ...))
503 int i
; /* Array indices... */
504 const char *fmt
; /* Current rtx's format... */
505 rtx rt_val
; /* RTX to return to caller... */
508 VA_FIXEDARG (p
, enum rtx_code
, code
);
509 VA_FIXEDARG (p
, enum machine_mode
, mode
);
514 rt_val
= gen_rtx_CONST_INT (mode
, va_arg (p
, HOST_WIDE_INT
));
519 HOST_WIDE_INT arg0
= va_arg (p
, HOST_WIDE_INT
);
520 HOST_WIDE_INT arg1
= va_arg (p
, HOST_WIDE_INT
);
522 rt_val
= gen_rtx_CONST_DOUBLE (mode
, arg0
, arg1
);
527 rt_val
= gen_rtx_REG (mode
, va_arg (p
, int));
531 rt_val
= gen_rtx_MEM (mode
, va_arg (p
, rtx
));
535 rt_val
= rtx_alloc (code
); /* Allocate the storage space. */
536 rt_val
->mode
= mode
; /* Store the machine mode... */
538 fmt
= GET_RTX_FORMAT (code
); /* Find the right format... */
539 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
543 case '0': /* Unused field. */
546 case 'i': /* An integer? */
547 XINT (rt_val
, i
) = va_arg (p
, int);
550 case 'w': /* A wide integer? */
551 XWINT (rt_val
, i
) = va_arg (p
, HOST_WIDE_INT
);
554 case 's': /* A string? */
555 XSTR (rt_val
, i
) = va_arg (p
, char *);
558 case 'e': /* An expression? */
559 case 'u': /* An insn? Same except when printing. */
560 XEXP (rt_val
, i
) = va_arg (p
, rtx
);
563 case 'E': /* An RTX vector? */
564 XVEC (rt_val
, i
) = va_arg (p
, rtvec
);
567 case 'b': /* A bitmap? */
568 XBITMAP (rt_val
, i
) = va_arg (p
, bitmap
);
571 case 't': /* A tree? */
572 XTREE (rt_val
, i
) = va_arg (p
, tree
);
586 /* gen_rtvec (n, [rt1, ..., rtn])
588 ** This routine creates an rtvec and stores within it the
589 ** pointers to rtx's which are its arguments.
594 gen_rtvec
VPARAMS ((int n
, ...))
600 VA_FIXEDARG (p
, int, n
);
603 return NULL_RTVEC
; /* Don't allocate an empty rtvec... */
605 vector
= (rtx
*) alloca (n
* sizeof (rtx
));
607 for (i
= 0; i
< n
; i
++)
608 vector
[i
] = va_arg (p
, rtx
);
610 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
614 return gen_rtvec_v (save_n
, vector
);
618 gen_rtvec_v (n
, argp
)
626 return NULL_RTVEC
; /* Don't allocate an empty rtvec... */
628 rt_val
= rtvec_alloc (n
); /* Allocate an rtvec... */
630 for (i
= 0; i
< n
; i
++)
631 rt_val
->elem
[i
] = *argp
++;
636 /* Generate a REG rtx for a new pseudo register of mode MODE.
637 This pseudo is assigned the next sequential register number. */
641 enum machine_mode mode
;
643 struct function
*f
= cfun
;
646 /* Don't let anything called after initial flow analysis create new
651 if (generating_concat_p
652 && (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
653 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
))
655 /* For complex modes, don't make a single pseudo.
656 Instead, make a CONCAT of two pseudos.
657 This allows noncontiguous allocation of the real and imaginary parts,
658 which makes much better code. Besides, allocating DCmode
659 pseudos overstrains reload on some machines like the 386. */
660 rtx realpart
, imagpart
;
661 int size
= GET_MODE_UNIT_SIZE (mode
);
662 enum machine_mode partmode
663 = mode_for_size (size
* BITS_PER_UNIT
,
664 (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
665 ? MODE_FLOAT
: MODE_INT
),
668 realpart
= gen_reg_rtx (partmode
);
669 imagpart
= gen_reg_rtx (partmode
);
670 return gen_rtx_CONCAT (mode
, realpart
, imagpart
);
673 /* Make sure regno_pointer_align, regno_decl, and regno_reg_rtx are large
674 enough to have an element for this pseudo reg number. */
676 if (reg_rtx_no
== f
->emit
->regno_pointer_align_length
)
678 int old_size
= f
->emit
->regno_pointer_align_length
;
683 new = xrealloc (f
->emit
->regno_pointer_align
, old_size
* 2);
684 memset (new + old_size
, 0, old_size
);
685 f
->emit
->regno_pointer_align
= (unsigned char *) new;
687 new1
= (rtx
*) xrealloc (f
->emit
->x_regno_reg_rtx
,
688 old_size
* 2 * sizeof (rtx
));
689 memset (new1
+ old_size
, 0, old_size
* sizeof (rtx
));
690 regno_reg_rtx
= new1
;
692 new2
= (tree
*) xrealloc (f
->emit
->regno_decl
,
693 old_size
* 2 * sizeof (tree
));
694 memset (new2
+ old_size
, 0, old_size
* sizeof (tree
));
695 f
->emit
->regno_decl
= new2
;
697 f
->emit
->regno_pointer_align_length
= old_size
* 2;
700 val
= gen_raw_REG (mode
, reg_rtx_no
);
701 regno_reg_rtx
[reg_rtx_no
++] = val
;
705 /* Identify REG (which may be a CONCAT) as a user register. */
711 if (GET_CODE (reg
) == CONCAT
)
713 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
714 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
716 else if (GET_CODE (reg
) == REG
)
717 REG_USERVAR_P (reg
) = 1;
722 /* Identify REG as a probable pointer register and show its alignment
723 as ALIGN, if nonzero. */
726 mark_reg_pointer (reg
, align
)
730 if (! REG_POINTER (reg
))
732 REG_POINTER (reg
) = 1;
735 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
737 else if (align
&& align
< REGNO_POINTER_ALIGN (REGNO (reg
)))
738 /* We can no-longer be sure just how aligned this pointer is */
739 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
742 /* Return 1 plus largest pseudo reg number used in the current function. */
750 /* Return 1 + the largest label number used so far in the current function. */
755 if (last_label_num
&& label_num
== base_label_num
)
756 return last_label_num
;
760 /* Return first label number used in this function (if any were used). */
763 get_first_label_num ()
765 return first_label_num
;
768 /* Return the final regno of X, which is a SUBREG of a hard
771 subreg_hard_regno (x
, check_mode
)
775 enum machine_mode mode
= GET_MODE (x
);
776 unsigned int byte_offset
, base_regno
, final_regno
;
777 rtx reg
= SUBREG_REG (x
);
779 /* This is where we attempt to catch illegal subregs
780 created by the compiler. */
781 if (GET_CODE (x
) != SUBREG
782 || GET_CODE (reg
) != REG
)
784 base_regno
= REGNO (reg
);
785 if (base_regno
>= FIRST_PSEUDO_REGISTER
)
787 if (check_mode
&& ! HARD_REGNO_MODE_OK (base_regno
, GET_MODE (reg
)))
790 /* Catch non-congruent offsets too. */
791 byte_offset
= SUBREG_BYTE (x
);
792 if ((byte_offset
% GET_MODE_SIZE (mode
)) != 0)
795 final_regno
= subreg_regno (x
);
800 /* Return a value representing some low-order bits of X, where the number
801 of low-order bits is given by MODE. Note that no conversion is done
802 between floating-point and fixed-point values, rather, the bit
803 representation is returned.
805 This function handles the cases in common between gen_lowpart, below,
806 and two variants in cse.c and combine.c. These are the cases that can
807 be safely handled at all points in the compilation.
809 If this is not a case we can handle, return 0. */
812 gen_lowpart_common (mode
, x
)
813 enum machine_mode mode
;
816 int msize
= GET_MODE_SIZE (mode
);
817 int xsize
= GET_MODE_SIZE (GET_MODE (x
));
820 if (GET_MODE (x
) == mode
)
823 /* MODE must occupy no more words than the mode of X. */
824 if (GET_MODE (x
) != VOIDmode
825 && ((msize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
826 > ((xsize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)))
829 offset
= subreg_lowpart_offset (mode
, GET_MODE (x
));
831 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
832 && (GET_MODE_CLASS (mode
) == MODE_INT
833 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
))
835 /* If we are getting the low-order part of something that has been
836 sign- or zero-extended, we can either just use the object being
837 extended or make a narrower extension. If we want an even smaller
838 piece than the size of the object being extended, call ourselves
841 This case is used mostly by combine and cse. */
843 if (GET_MODE (XEXP (x
, 0)) == mode
)
845 else if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))))
846 return gen_lowpart_common (mode
, XEXP (x
, 0));
847 else if (GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (x
)))
848 return gen_rtx_fmt_e (GET_CODE (x
), mode
, XEXP (x
, 0));
850 else if (GET_CODE (x
) == SUBREG
|| GET_CODE (x
) == REG
851 || GET_CODE (x
) == CONCAT
)
852 return simplify_gen_subreg (mode
, x
, GET_MODE (x
), offset
);
853 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
854 from the low-order part of the constant. */
855 else if ((GET_MODE_CLASS (mode
) == MODE_INT
856 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
857 && GET_MODE (x
) == VOIDmode
858 && (GET_CODE (x
) == CONST_INT
|| GET_CODE (x
) == CONST_DOUBLE
))
860 /* If MODE is twice the host word size, X is already the desired
861 representation. Otherwise, if MODE is wider than a word, we can't
862 do this. If MODE is exactly a word, return just one CONST_INT. */
864 if (GET_MODE_BITSIZE (mode
) >= 2 * HOST_BITS_PER_WIDE_INT
)
866 else if (GET_MODE_BITSIZE (mode
) > HOST_BITS_PER_WIDE_INT
)
868 else if (GET_MODE_BITSIZE (mode
) == HOST_BITS_PER_WIDE_INT
)
869 return (GET_CODE (x
) == CONST_INT
? x
870 : GEN_INT (CONST_DOUBLE_LOW (x
)));
873 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
874 HOST_WIDE_INT val
= (GET_CODE (x
) == CONST_INT
? INTVAL (x
)
875 : CONST_DOUBLE_LOW (x
));
877 /* Sign extend to HOST_WIDE_INT. */
878 val
= trunc_int_for_mode (val
, mode
);
880 return (GET_CODE (x
) == CONST_INT
&& INTVAL (x
) == val
? x
885 #ifndef REAL_ARITHMETIC
886 /* If X is an integral constant but we want it in floating-point, it
887 must be the case that we have a union of an integer and a floating-point
888 value. If the machine-parameters allow it, simulate that union here
889 and return the result. The two-word and single-word cases are
892 else if (((HOST_FLOAT_FORMAT
== TARGET_FLOAT_FORMAT
893 && HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
894 || flag_pretend_float
)
895 && GET_MODE_CLASS (mode
) == MODE_FLOAT
896 && GET_MODE_SIZE (mode
) == UNITS_PER_WORD
897 && GET_CODE (x
) == CONST_INT
898 && sizeof (float) * HOST_BITS_PER_CHAR
== HOST_BITS_PER_WIDE_INT
)
900 union {HOST_WIDE_INT i
; float d
; } u
;
903 return CONST_DOUBLE_FROM_REAL_VALUE (u
.d
, mode
);
905 else if (((HOST_FLOAT_FORMAT
== TARGET_FLOAT_FORMAT
906 && HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
907 || flag_pretend_float
)
908 && GET_MODE_CLASS (mode
) == MODE_FLOAT
909 && GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
910 && (GET_CODE (x
) == CONST_INT
|| GET_CODE (x
) == CONST_DOUBLE
)
911 && GET_MODE (x
) == VOIDmode
912 && (sizeof (double) * HOST_BITS_PER_CHAR
913 == 2 * HOST_BITS_PER_WIDE_INT
))
915 union {HOST_WIDE_INT i
[2]; double d
; } u
;
916 HOST_WIDE_INT low
, high
;
918 if (GET_CODE (x
) == CONST_INT
)
919 low
= INTVAL (x
), high
= low
>> (HOST_BITS_PER_WIDE_INT
-1);
921 low
= CONST_DOUBLE_LOW (x
), high
= CONST_DOUBLE_HIGH (x
);
923 #ifdef HOST_WORDS_BIG_ENDIAN
924 u
.i
[0] = high
, u
.i
[1] = low
;
926 u
.i
[0] = low
, u
.i
[1] = high
;
929 return CONST_DOUBLE_FROM_REAL_VALUE (u
.d
, mode
);
932 /* Similarly, if this is converting a floating-point value into a
933 single-word integer. Only do this is the host and target parameters are
936 else if (((HOST_FLOAT_FORMAT
== TARGET_FLOAT_FORMAT
937 && HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
938 || flag_pretend_float
)
939 && (GET_MODE_CLASS (mode
) == MODE_INT
940 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
941 && GET_CODE (x
) == CONST_DOUBLE
942 && GET_MODE_CLASS (GET_MODE (x
)) == MODE_FLOAT
943 && GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
)
944 return constant_subword (x
, (offset
/ UNITS_PER_WORD
), GET_MODE (x
));
946 /* Similarly, if this is converting a floating-point value into a
947 two-word integer, we can do this one word at a time and make an
948 integer. Only do this is the host and target parameters are
951 else if (((HOST_FLOAT_FORMAT
== TARGET_FLOAT_FORMAT
952 && HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
953 || flag_pretend_float
)
954 && (GET_MODE_CLASS (mode
) == MODE_INT
955 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
956 && GET_CODE (x
) == CONST_DOUBLE
957 && GET_MODE_CLASS (GET_MODE (x
)) == MODE_FLOAT
958 && GET_MODE_BITSIZE (mode
) == 2 * BITS_PER_WORD
)
960 rtx lowpart
, highpart
;
962 lowpart
= constant_subword (x
,
963 (offset
/ UNITS_PER_WORD
) + WORDS_BIG_ENDIAN
,
965 highpart
= constant_subword (x
,
966 (offset
/ UNITS_PER_WORD
) + (! WORDS_BIG_ENDIAN
),
968 if (lowpart
&& GET_CODE (lowpart
) == CONST_INT
969 && highpart
&& GET_CODE (highpart
) == CONST_INT
)
970 return immed_double_const (INTVAL (lowpart
), INTVAL (highpart
), mode
);
972 #else /* ifndef REAL_ARITHMETIC */
974 /* When we have a FP emulator, we can handle all conversions between
975 FP and integer operands. This simplifies reload because it
976 doesn't have to deal with constructs like (subreg:DI
977 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
978 /* Single-precision floats are always 32-bits and double-precision
979 floats are always 64-bits. */
981 else if (GET_MODE_CLASS (mode
) == MODE_FLOAT
982 && GET_MODE_BITSIZE (mode
) == 32
983 && GET_CODE (x
) == CONST_INT
)
989 r
= REAL_VALUE_FROM_TARGET_SINGLE (i
);
990 return CONST_DOUBLE_FROM_REAL_VALUE (r
, mode
);
992 else if (GET_MODE_CLASS (mode
) == MODE_FLOAT
993 && GET_MODE_BITSIZE (mode
) == 64
994 && (GET_CODE (x
) == CONST_INT
|| GET_CODE (x
) == CONST_DOUBLE
)
995 && GET_MODE (x
) == VOIDmode
)
999 HOST_WIDE_INT low
, high
;
1001 if (GET_CODE (x
) == CONST_INT
)
1004 high
= low
>> (HOST_BITS_PER_WIDE_INT
- 1);
1008 low
= CONST_DOUBLE_LOW (x
);
1009 high
= CONST_DOUBLE_HIGH (x
);
1012 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1014 if (WORDS_BIG_ENDIAN
)
1015 i
[0] = high
, i
[1] = low
;
1017 i
[0] = low
, i
[1] = high
;
1019 r
= REAL_VALUE_FROM_TARGET_DOUBLE (i
);
1020 return CONST_DOUBLE_FROM_REAL_VALUE (r
, mode
);
1022 else if ((GET_MODE_CLASS (mode
) == MODE_INT
1023 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
1024 && GET_CODE (x
) == CONST_DOUBLE
1025 && GET_MODE_CLASS (GET_MODE (x
)) == MODE_FLOAT
)
1028 long i
[4]; /* Only the low 32 bits of each 'long' are used. */
1029 int endian
= WORDS_BIG_ENDIAN
? 1 : 0;
1031 /* Convert 'r' into an array of four 32-bit words in target word
1033 REAL_VALUE_FROM_CONST_DOUBLE (r
, x
);
1034 switch (GET_MODE_BITSIZE (GET_MODE (x
)))
1037 REAL_VALUE_TO_TARGET_SINGLE (r
, i
[3 * endian
]);
1040 i
[3 - 3 * endian
] = 0;
1043 REAL_VALUE_TO_TARGET_DOUBLE (r
, i
+ 2 * endian
);
1044 i
[2 - 2 * endian
] = 0;
1045 i
[3 - 2 * endian
] = 0;
1048 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r
, i
+ endian
);
1049 i
[3 - 3 * endian
] = 0;
1052 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r
, i
);
1057 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1059 #if HOST_BITS_PER_WIDE_INT == 32
1060 return immed_double_const (i
[3 * endian
], i
[1 + endian
], mode
);
1062 if (HOST_BITS_PER_WIDE_INT
!= 64)
1065 return immed_double_const (i
[3 * endian
]
1066 | ((HOST_WIDE_INT
) i
[1 + endian
] << 32),
1068 | ((HOST_WIDE_INT
) i
[3 - 3 * endian
] << 32),
1072 #endif /* ifndef REAL_ARITHMETIC */
1074 /* Otherwise, we can't do this. */
1078 /* Return the real part (which has mode MODE) of a complex value X.
1079 This always comes at the low address in memory. */
1082 gen_realpart (mode
, x
)
1083 enum machine_mode mode
;
1086 if (WORDS_BIG_ENDIAN
1087 && GET_MODE_BITSIZE (mode
) < BITS_PER_WORD
1089 && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1091 ("Can't access real part of complex value in hard register");
1092 else if (WORDS_BIG_ENDIAN
)
1093 return gen_highpart (mode
, x
);
1095 return gen_lowpart (mode
, x
);
1098 /* Return the imaginary part (which has mode MODE) of a complex value X.
1099 This always comes at the high address in memory. */
1102 gen_imagpart (mode
, x
)
1103 enum machine_mode mode
;
1106 if (WORDS_BIG_ENDIAN
)
1107 return gen_lowpart (mode
, x
);
1108 else if (! WORDS_BIG_ENDIAN
1109 && GET_MODE_BITSIZE (mode
) < BITS_PER_WORD
1111 && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1113 ("can't access imaginary part of complex value in hard register");
1115 return gen_highpart (mode
, x
);
1118 /* Return 1 iff X, assumed to be a SUBREG,
1119 refers to the real part of the complex value in its containing reg.
1120 Complex values are always stored with the real part in the first word,
1121 regardless of WORDS_BIG_ENDIAN. */
1124 subreg_realpart_p (x
)
1127 if (GET_CODE (x
) != SUBREG
)
1130 return ((unsigned int) SUBREG_BYTE (x
)
1131 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x
))));
1134 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1135 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1136 least-significant part of X.
1137 MODE specifies how big a part of X to return;
1138 it usually should not be larger than a word.
1139 If X is a MEM whose address is a QUEUED, the value may be so also. */
1142 gen_lowpart (mode
, x
)
1143 enum machine_mode mode
;
1146 rtx result
= gen_lowpart_common (mode
, x
);
1150 else if (GET_CODE (x
) == REG
)
1152 /* Must be a hard reg that's not valid in MODE. */
1153 result
= gen_lowpart_common (mode
, copy_to_reg (x
));
1158 else if (GET_CODE (x
) == MEM
)
1160 /* The only additional case we can do is MEM. */
1162 if (WORDS_BIG_ENDIAN
)
1163 offset
= (MAX (GET_MODE_SIZE (GET_MODE (x
)), UNITS_PER_WORD
)
1164 - MAX (GET_MODE_SIZE (mode
), UNITS_PER_WORD
));
1166 if (BYTES_BIG_ENDIAN
)
1167 /* Adjust the address so that the address-after-the-data
1169 offset
-= (MIN (UNITS_PER_WORD
, GET_MODE_SIZE (mode
))
1170 - MIN (UNITS_PER_WORD
, GET_MODE_SIZE (GET_MODE (x
))));
1172 return adjust_address (x
, mode
, offset
);
1174 else if (GET_CODE (x
) == ADDRESSOF
)
1175 return gen_lowpart (mode
, force_reg (GET_MODE (x
), x
));
1180 /* Like `gen_lowpart', but refer to the most significant part.
1181 This is used to access the imaginary part of a complex number. */
1184 gen_highpart (mode
, x
)
1185 enum machine_mode mode
;
1188 unsigned int msize
= GET_MODE_SIZE (mode
);
1191 /* This case loses if X is a subreg. To catch bugs early,
1192 complain if an invalid MODE is used even in other cases. */
1193 if (msize
> UNITS_PER_WORD
1194 && msize
!= GET_MODE_UNIT_SIZE (GET_MODE (x
)))
1197 result
= simplify_gen_subreg (mode
, x
, GET_MODE (x
),
1198 subreg_highpart_offset (mode
, GET_MODE (x
)));
1200 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1201 the target if we have a MEM. gen_highpart must return a valid operand,
1202 emitting code if necessary to do so. */
1203 if (GET_CODE (result
) == MEM
)
1204 result
= validize_mem (result
);
1211 /* Like gen_highpart_mode, but accept mode of EXP operand in case EXP can
1212 be VOIDmode constant. */
1214 gen_highpart_mode (outermode
, innermode
, exp
)
1215 enum machine_mode outermode
, innermode
;
1218 if (GET_MODE (exp
) != VOIDmode
)
1220 if (GET_MODE (exp
) != innermode
)
1222 return gen_highpart (outermode
, exp
);
1224 return simplify_gen_subreg (outermode
, exp
, innermode
,
1225 subreg_highpart_offset (outermode
, innermode
));
1227 /* Return offset in bytes to get OUTERMODE low part
1228 of the value in mode INNERMODE stored in memory in target format. */
1231 subreg_lowpart_offset (outermode
, innermode
)
1232 enum machine_mode outermode
, innermode
;
1234 unsigned int offset
= 0;
1235 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1239 if (WORDS_BIG_ENDIAN
)
1240 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1241 if (BYTES_BIG_ENDIAN
)
1242 offset
+= difference
% UNITS_PER_WORD
;
1248 /* Return offset in bytes to get OUTERMODE high part
1249 of the value in mode INNERMODE stored in memory in target format. */
1251 subreg_highpart_offset (outermode
, innermode
)
1252 enum machine_mode outermode
, innermode
;
1254 unsigned int offset
= 0;
1255 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1257 if (GET_MODE_SIZE (innermode
) < GET_MODE_SIZE (outermode
))
1262 if (! WORDS_BIG_ENDIAN
)
1263 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1264 if (! BYTES_BIG_ENDIAN
)
1265 offset
+= difference
% UNITS_PER_WORD
;
1271 /* Return 1 iff X, assumed to be a SUBREG,
1272 refers to the least significant part of its containing reg.
1273 If X is not a SUBREG, always return 1 (it is its own low part!). */
1276 subreg_lowpart_p (x
)
1279 if (GET_CODE (x
) != SUBREG
)
1281 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1284 return (subreg_lowpart_offset (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)))
1285 == SUBREG_BYTE (x
));
1289 /* Helper routine for all the constant cases of operand_subword.
1290 Some places invoke this directly. */
1293 constant_subword (op
, offset
, mode
)
1296 enum machine_mode mode
;
1298 int size_ratio
= HOST_BITS_PER_WIDE_INT
/ BITS_PER_WORD
;
1301 /* If OP is already an integer word, return it. */
1302 if (GET_MODE_CLASS (mode
) == MODE_INT
1303 && GET_MODE_SIZE (mode
) == UNITS_PER_WORD
)
1306 #ifdef REAL_ARITHMETIC
1307 /* The output is some bits, the width of the target machine's word.
1308 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1310 if (HOST_BITS_PER_WIDE_INT
>= BITS_PER_WORD
1311 && GET_MODE_CLASS (mode
) == MODE_FLOAT
1312 && GET_MODE_BITSIZE (mode
) == 64
1313 && GET_CODE (op
) == CONST_DOUBLE
)
1318 REAL_VALUE_FROM_CONST_DOUBLE (rv
, op
);
1319 REAL_VALUE_TO_TARGET_DOUBLE (rv
, k
);
1321 /* We handle 32-bit and >= 64-bit words here. Note that the order in
1322 which the words are written depends on the word endianness.
1323 ??? This is a potential portability problem and should
1324 be fixed at some point.
1326 We must exercise caution with the sign bit. By definition there
1327 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1328 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1329 So we explicitly mask and sign-extend as necessary. */
1330 if (BITS_PER_WORD
== 32)
1333 val
= ((val
& 0xffffffff) ^ 0x80000000) - 0x80000000;
1334 return GEN_INT (val
);
1336 #if HOST_BITS_PER_WIDE_INT >= 64
1337 else if (BITS_PER_WORD
>= 64 && offset
== 0)
1339 val
= k
[! WORDS_BIG_ENDIAN
];
1340 val
= (((val
& 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1341 val
|= (HOST_WIDE_INT
) k
[WORDS_BIG_ENDIAN
] & 0xffffffff;
1342 return GEN_INT (val
);
1345 else if (BITS_PER_WORD
== 16)
1347 val
= k
[offset
>> 1];
1348 if ((offset
& 1) == ! WORDS_BIG_ENDIAN
)
1350 val
= ((val
& 0xffff) ^ 0x8000) - 0x8000;
1351 return GEN_INT (val
);
1356 else if (HOST_BITS_PER_WIDE_INT
>= BITS_PER_WORD
1357 && GET_MODE_CLASS (mode
) == MODE_FLOAT
1358 && GET_MODE_BITSIZE (mode
) > 64
1359 && GET_CODE (op
) == CONST_DOUBLE
)
1364 REAL_VALUE_FROM_CONST_DOUBLE (rv
, op
);
1365 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv
, k
);
1367 if (BITS_PER_WORD
== 32)
1370 val
= ((val
& 0xffffffff) ^ 0x80000000) - 0x80000000;
1371 return GEN_INT (val
);
1373 #if HOST_BITS_PER_WIDE_INT >= 64
1374 else if (BITS_PER_WORD
>= 64 && offset
<= 1)
1376 val
= k
[offset
* 2 + ! WORDS_BIG_ENDIAN
];
1377 val
= (((val
& 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1378 val
|= (HOST_WIDE_INT
) k
[offset
* 2 + WORDS_BIG_ENDIAN
] & 0xffffffff;
1379 return GEN_INT (val
);
1385 #else /* no REAL_ARITHMETIC */
1386 if (((HOST_FLOAT_FORMAT
== TARGET_FLOAT_FORMAT
1387 && HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
1388 || flag_pretend_float
)
1389 && GET_MODE_CLASS (mode
) == MODE_FLOAT
1390 && GET_MODE_SIZE (mode
) == 2 * UNITS_PER_WORD
1391 && GET_CODE (op
) == CONST_DOUBLE
)
1393 /* The constant is stored in the host's word-ordering,
1394 but we want to access it in the target's word-ordering. Some
1395 compilers don't like a conditional inside macro args, so we have two
1396 copies of the return. */
1397 #ifdef HOST_WORDS_BIG_ENDIAN
1398 return GEN_INT (offset
== WORDS_BIG_ENDIAN
1399 ? CONST_DOUBLE_HIGH (op
) : CONST_DOUBLE_LOW (op
));
1401 return GEN_INT (offset
!= WORDS_BIG_ENDIAN
1402 ? CONST_DOUBLE_HIGH (op
) : CONST_DOUBLE_LOW (op
));
1405 #endif /* no REAL_ARITHMETIC */
1407 /* Single word float is a little harder, since single- and double-word
1408 values often do not have the same high-order bits. We have already
1409 verified that we want the only defined word of the single-word value. */
1410 #ifdef REAL_ARITHMETIC
1411 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
1412 && GET_MODE_BITSIZE (mode
) == 32
1413 && GET_CODE (op
) == CONST_DOUBLE
)
1418 REAL_VALUE_FROM_CONST_DOUBLE (rv
, op
);
1419 REAL_VALUE_TO_TARGET_SINGLE (rv
, l
);
1421 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1423 val
= ((val
& 0xffffffff) ^ 0x80000000) - 0x80000000;
1425 if (BITS_PER_WORD
== 16)
1427 if ((offset
& 1) == ! WORDS_BIG_ENDIAN
)
1429 val
= ((val
& 0xffff) ^ 0x8000) - 0x8000;
1432 return GEN_INT (val
);
1435 if (((HOST_FLOAT_FORMAT
== TARGET_FLOAT_FORMAT
1436 && HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
1437 || flag_pretend_float
)
1438 && sizeof (float) * 8 == HOST_BITS_PER_WIDE_INT
1439 && GET_MODE_CLASS (mode
) == MODE_FLOAT
1440 && GET_MODE_SIZE (mode
) == UNITS_PER_WORD
1441 && GET_CODE (op
) == CONST_DOUBLE
)
1444 union {float f
; HOST_WIDE_INT i
; } u
;
1446 REAL_VALUE_FROM_CONST_DOUBLE (d
, op
);
1449 return GEN_INT (u
.i
);
1451 if (((HOST_FLOAT_FORMAT
== TARGET_FLOAT_FORMAT
1452 && HOST_BITS_PER_WIDE_INT
== BITS_PER_WORD
)
1453 || flag_pretend_float
)
1454 && sizeof (double) * 8 == HOST_BITS_PER_WIDE_INT
1455 && GET_MODE_CLASS (mode
) == MODE_FLOAT
1456 && GET_MODE_SIZE (mode
) == UNITS_PER_WORD
1457 && GET_CODE (op
) == CONST_DOUBLE
)
1460 union {double d
; HOST_WIDE_INT i
; } u
;
1462 REAL_VALUE_FROM_CONST_DOUBLE (d
, op
);
1465 return GEN_INT (u
.i
);
1467 #endif /* no REAL_ARITHMETIC */
1469 /* The only remaining cases that we can handle are integers.
1470 Convert to proper endianness now since these cases need it.
1471 At this point, offset == 0 means the low-order word.
1473 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1474 in general. However, if OP is (const_int 0), we can just return
1477 if (op
== const0_rtx
)
1480 if (GET_MODE_CLASS (mode
) != MODE_INT
1481 || (GET_CODE (op
) != CONST_INT
&& GET_CODE (op
) != CONST_DOUBLE
)
1482 || BITS_PER_WORD
> HOST_BITS_PER_WIDE_INT
)
1485 if (WORDS_BIG_ENDIAN
)
1486 offset
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
- 1 - offset
;
1488 /* Find out which word on the host machine this value is in and get
1489 it from the constant. */
1490 val
= (offset
/ size_ratio
== 0
1491 ? (GET_CODE (op
) == CONST_INT
? INTVAL (op
) : CONST_DOUBLE_LOW (op
))
1492 : (GET_CODE (op
) == CONST_INT
1493 ? (INTVAL (op
) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op
)));
1495 /* Get the value we want into the low bits of val. */
1496 if (BITS_PER_WORD
< HOST_BITS_PER_WIDE_INT
)
1497 val
= ((val
>> ((offset
% size_ratio
) * BITS_PER_WORD
)));
1499 val
= trunc_int_for_mode (val
, word_mode
);
1501 return GEN_INT (val
);
1504 /* Return subword OFFSET of operand OP.
1505 The word number, OFFSET, is interpreted as the word number starting
1506 at the low-order address. OFFSET 0 is the low-order word if not
1507 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1509 If we cannot extract the required word, we return zero. Otherwise,
1510 an rtx corresponding to the requested word will be returned.
1512 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1513 reload has completed, a valid address will always be returned. After
1514 reload, if a valid address cannot be returned, we return zero.
1516 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1517 it is the responsibility of the caller.
1519 MODE is the mode of OP in case it is a CONST_INT.
1521 ??? This is still rather broken for some cases. The problem for the
1522 moment is that all callers of this thing provide no 'goal mode' to
1523 tell us to work with. This exists because all callers were written
1524 in a word based SUBREG world.
1525 Now use of this function can be deprecated by simplify_subreg in most
1530 operand_subword (op
, offset
, validate_address
, mode
)
1532 unsigned int offset
;
1533 int validate_address
;
1534 enum machine_mode mode
;
1536 if (mode
== VOIDmode
)
1537 mode
= GET_MODE (op
);
1539 if (mode
== VOIDmode
)
1542 /* If OP is narrower than a word, fail. */
1544 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
))
1547 /* If we want a word outside OP, return zero. */
1549 && (offset
+ 1) * UNITS_PER_WORD
> GET_MODE_SIZE (mode
))
1552 /* Form a new MEM at the requested address. */
1553 if (GET_CODE (op
) == MEM
)
1555 rtx
new = adjust_address_nv (op
, word_mode
, offset
* UNITS_PER_WORD
);
1557 if (! validate_address
)
1560 else if (reload_completed
)
1562 if (! strict_memory_address_p (word_mode
, XEXP (new, 0)))
1566 return replace_equiv_address (new, XEXP (new, 0));
1569 /* Rest can be handled by simplify_subreg. */
1570 return simplify_gen_subreg (word_mode
, op
, mode
, (offset
* UNITS_PER_WORD
));
1573 /* Similar to `operand_subword', but never return 0. If we can't extract
1574 the required subword, put OP into a register and try again. If that fails,
1575 abort. We always validate the address in this case.
1577 MODE is the mode of OP, in case it is CONST_INT. */
1580 operand_subword_force (op
, offset
, mode
)
1582 unsigned int offset
;
1583 enum machine_mode mode
;
1585 rtx result
= operand_subword (op
, offset
, 1, mode
);
1590 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1592 /* If this is a register which can not be accessed by words, copy it
1593 to a pseudo register. */
1594 if (GET_CODE (op
) == REG
)
1595 op
= copy_to_reg (op
);
1597 op
= force_reg (mode
, op
);
1600 result
= operand_subword (op
, offset
, 1, mode
);
1607 /* Given a compare instruction, swap the operands.
1608 A test instruction is changed into a compare of 0 against the operand. */
1611 reverse_comparison (insn
)
1614 rtx body
= PATTERN (insn
);
1617 if (GET_CODE (body
) == SET
)
1618 comp
= SET_SRC (body
);
1620 comp
= SET_SRC (XVECEXP (body
, 0, 0));
1622 if (GET_CODE (comp
) == COMPARE
)
1624 rtx op0
= XEXP (comp
, 0);
1625 rtx op1
= XEXP (comp
, 1);
1626 XEXP (comp
, 0) = op1
;
1627 XEXP (comp
, 1) = op0
;
1631 rtx
new = gen_rtx_COMPARE (VOIDmode
,
1632 CONST0_RTX (GET_MODE (comp
)), comp
);
1633 if (GET_CODE (body
) == SET
)
1634 SET_SRC (body
) = new;
1636 SET_SRC (XVECEXP (body
, 0, 0)) = new;
1640 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1641 or (2) a component ref of something variable. Represent the later with
1642 a NULL expression. */
1645 component_ref_for_mem_expr (ref
)
1648 tree inner
= TREE_OPERAND (ref
, 0);
1650 if (TREE_CODE (inner
) == COMPONENT_REF
)
1651 inner
= component_ref_for_mem_expr (inner
);
1652 else if (! DECL_P (inner
))
1655 if (inner
== TREE_OPERAND (ref
, 0))
1658 return build (COMPONENT_REF
, TREE_TYPE (ref
), inner
, TREE_OPERAND (ref
, 1));
1661 /* Given REF, a MEM, and T, either the type of X or the expression
1662 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1663 if we are making a new object of this type. */
1666 set_mem_attributes (ref
, t
, objectp
)
1671 HOST_WIDE_INT alias
= MEM_ALIAS_SET (ref
);
1672 tree expr
= MEM_EXPR (ref
);
1673 rtx offset
= MEM_OFFSET (ref
);
1674 rtx size
= MEM_SIZE (ref
);
1675 unsigned int align
= MEM_ALIGN (ref
);
1678 /* It can happen that type_for_mode was given a mode for which there
1679 is no language-level type. In which case it returns NULL, which
1684 type
= TYPE_P (t
) ? t
: TREE_TYPE (t
);
1686 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1687 wrong answer, as it assumes that DECL_RTL already has the right alias
1688 info. Callers should not set DECL_RTL until after the call to
1689 set_mem_attributes. */
1690 if (DECL_P (t
) && ref
== DECL_RTL_IF_SET (t
))
1693 /* Get the alias set from the expression or type (perhaps using a
1694 front-end routine) and use it. */
1695 alias
= get_alias_set (t
);
1697 MEM_VOLATILE_P (ref
) = TYPE_VOLATILE (type
);
1698 MEM_IN_STRUCT_P (ref
) = AGGREGATE_TYPE_P (type
);
1699 RTX_UNCHANGING_P (ref
)
1700 |= ((lang_hooks
.honor_readonly
1701 && (TYPE_READONLY (type
) || TREE_READONLY (t
)))
1702 || (! TYPE_P (t
) && TREE_CONSTANT (t
)));
1704 /* If we are making an object of this type, or if this is a DECL, we know
1705 that it is a scalar if the type is not an aggregate. */
1706 if ((objectp
|| DECL_P (t
)) && ! AGGREGATE_TYPE_P (type
))
1707 MEM_SCALAR_P (ref
) = 1;
1709 /* We can set the alignment from the type if we are making an object,
1710 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1711 if (objectp
|| TREE_CODE (t
) == INDIRECT_REF
|| TYPE_ALIGN_OK (type
))
1712 align
= MAX (align
, TYPE_ALIGN (type
));
1714 /* If the size is known, we can set that. */
1715 if (TYPE_SIZE_UNIT (type
) && host_integerp (TYPE_SIZE_UNIT (type
), 1))
1716 size
= GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type
), 1));
1718 /* If T is not a type, we may be able to deduce some more information about
1722 maybe_set_unchanging (ref
, t
);
1723 if (TREE_THIS_VOLATILE (t
))
1724 MEM_VOLATILE_P (ref
) = 1;
1726 /* Now remove any NOPs: they don't change what the underlying object is.
1727 Likewise for SAVE_EXPR. */
1728 while (TREE_CODE (t
) == NOP_EXPR
|| TREE_CODE (t
) == CONVERT_EXPR
1729 || TREE_CODE (t
) == NON_LVALUE_EXPR
|| TREE_CODE (t
) == SAVE_EXPR
)
1730 t
= TREE_OPERAND (t
, 0);
1732 /* If this expression can't be addressed (e.g., it contains a reference
1733 to a non-addressable field), show we don't change its alias set. */
1734 if (! can_address_p (t
))
1735 MEM_KEEP_ALIAS_SET_P (ref
) = 1;
1737 /* If this is a decl, set the attributes of the MEM from it. */
1741 offset
= const0_rtx
;
1742 size
= (DECL_SIZE_UNIT (t
)
1743 && host_integerp (DECL_SIZE_UNIT (t
), 1)
1744 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t
), 1)) : 0);
1745 align
= DECL_ALIGN (t
);
1748 /* If this is a constant, we know the alignment. */
1749 else if (TREE_CODE_CLASS (TREE_CODE (t
)) == 'c')
1751 align
= TYPE_ALIGN (type
);
1752 #ifdef CONSTANT_ALIGNMENT
1753 align
= CONSTANT_ALIGNMENT (t
, align
);
1757 /* If this is a field reference and not a bit-field, record it. */
1758 /* ??? There is some information that can be gleened from bit-fields,
1759 such as the word offset in the structure that might be modified.
1760 But skip it for now. */
1761 else if (TREE_CODE (t
) == COMPONENT_REF
1762 && ! DECL_BIT_FIELD (TREE_OPERAND (t
, 1)))
1764 expr
= component_ref_for_mem_expr (t
);
1765 offset
= const0_rtx
;
1766 /* ??? Any reason the field size would be different than
1767 the size we got from the type? */
1770 /* If this is an array reference, look for an outer field reference. */
1771 else if (TREE_CODE (t
) == ARRAY_REF
)
1773 tree off_tree
= size_zero_node
;
1778 = fold (build (PLUS_EXPR
, sizetype
,
1779 fold (build (MULT_EXPR
, sizetype
,
1780 TREE_OPERAND (t
, 1),
1781 TYPE_SIZE_UNIT (TREE_TYPE (t
)))),
1783 t
= TREE_OPERAND (t
, 0);
1785 while (TREE_CODE (t
) == ARRAY_REF
);
1787 if (TREE_CODE (t
) == COMPONENT_REF
)
1789 expr
= component_ref_for_mem_expr (t
);
1790 if (host_integerp (off_tree
, 1))
1791 offset
= GEN_INT (tree_low_cst (off_tree
, 1));
1792 /* ??? Any reason the field size would be different than
1793 the size we got from the type? */
1798 /* Now set the attributes we computed above. */
1800 = get_mem_attrs (alias
, expr
, offset
, size
, align
, GET_MODE (ref
));
1802 /* If this is already known to be a scalar or aggregate, we are done. */
1803 if (MEM_IN_STRUCT_P (ref
) || MEM_SCALAR_P (ref
))
1806 /* If it is a reference into an aggregate, this is part of an aggregate.
1807 Otherwise we don't know. */
1808 else if (TREE_CODE (t
) == COMPONENT_REF
|| TREE_CODE (t
) == ARRAY_REF
1809 || TREE_CODE (t
) == ARRAY_RANGE_REF
1810 || TREE_CODE (t
) == BIT_FIELD_REF
)
1811 MEM_IN_STRUCT_P (ref
) = 1;
1814 /* Set the alias set of MEM to SET. */
1817 set_mem_alias_set (mem
, set
)
1821 #ifdef ENABLE_CHECKING
1822 /* If the new and old alias sets don't conflict, something is wrong. */
1823 if (!alias_sets_conflict_p (set
, MEM_ALIAS_SET (mem
)))
1827 MEM_ATTRS (mem
) = get_mem_attrs (set
, MEM_EXPR (mem
), MEM_OFFSET (mem
),
1828 MEM_SIZE (mem
), MEM_ALIGN (mem
),
1832 /* Set the alignment of MEM to ALIGN bits. */
1835 set_mem_align (mem
, align
)
1839 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1840 MEM_OFFSET (mem
), MEM_SIZE (mem
), align
,
1844 /* Set the expr for MEM to EXPR. */
1847 set_mem_expr (mem
, expr
)
1852 = get_mem_attrs (MEM_ALIAS_SET (mem
), expr
, MEM_OFFSET (mem
),
1853 MEM_SIZE (mem
), MEM_ALIGN (mem
), GET_MODE (mem
));
1856 /* Set the offset of MEM to OFFSET. */
1859 set_mem_offset (mem
, offset
)
1862 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1863 offset
, MEM_SIZE (mem
), MEM_ALIGN (mem
),
1867 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1868 and its address changed to ADDR. (VOIDmode means don't change the mode.
1869 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1870 returned memory location is required to be valid. The memory
1871 attributes are not changed. */
1874 change_address_1 (memref
, mode
, addr
, validate
)
1876 enum machine_mode mode
;
1882 if (GET_CODE (memref
) != MEM
)
1884 if (mode
== VOIDmode
)
1885 mode
= GET_MODE (memref
);
1887 addr
= XEXP (memref
, 0);
1891 if (reload_in_progress
|| reload_completed
)
1893 if (! memory_address_p (mode
, addr
))
1897 addr
= memory_address (mode
, addr
);
1900 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
1903 new = gen_rtx_MEM (mode
, addr
);
1904 MEM_COPY_ATTRIBUTES (new, memref
);
1908 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1909 way we are changing MEMREF, so we only preserve the alias set. */
1912 change_address (memref
, mode
, addr
)
1914 enum machine_mode mode
;
1917 rtx
new = change_address_1 (memref
, mode
, addr
, 1);
1918 enum machine_mode mmode
= GET_MODE (new);
1921 = get_mem_attrs (MEM_ALIAS_SET (memref
), 0, 0,
1922 mmode
== BLKmode
? 0 : GEN_INT (GET_MODE_SIZE (mmode
)),
1923 (mmode
== BLKmode
? BITS_PER_UNIT
1924 : GET_MODE_ALIGNMENT (mmode
)),
1930 /* Return a memory reference like MEMREF, but with its mode changed
1931 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1932 nonzero, the memory address is forced to be valid.
1933 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1934 and caller is responsible for adjusting MEMREF base register. */
1937 adjust_address_1 (memref
, mode
, offset
, validate
, adjust
)
1939 enum machine_mode mode
;
1940 HOST_WIDE_INT offset
;
1941 int validate
, adjust
;
1943 rtx addr
= XEXP (memref
, 0);
1945 rtx memoffset
= MEM_OFFSET (memref
);
1947 unsigned int memalign
= MEM_ALIGN (memref
);
1949 if (adjust
== 0 || offset
== 0)
1950 /* ??? Prefer to create garbage instead of creating shared rtl. */
1951 addr
= copy_rtx (addr
);
1952 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1953 object, we can merge it into the LO_SUM. */
1954 else if (GET_MODE (memref
) != BLKmode
&& GET_CODE (addr
) == LO_SUM
1956 && (unsigned HOST_WIDE_INT
) offset
1957 < GET_MODE_ALIGNMENT (GET_MODE (memref
)) / BITS_PER_UNIT
)
1958 addr
= gen_rtx_LO_SUM (Pmode
, XEXP (addr
, 0),
1959 plus_constant (XEXP (addr
, 1), offset
));
1961 addr
= plus_constant (addr
, offset
);
1963 new = change_address_1 (memref
, mode
, addr
, validate
);
1965 /* Compute the new values of the memory attributes due to this adjustment.
1966 We add the offsets and update the alignment. */
1968 memoffset
= GEN_INT (offset
+ INTVAL (memoffset
));
1970 /* Compute the new alignment by taking the MIN of the alignment and the
1971 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1974 memalign
= MIN (memalign
, (offset
& -offset
) * BITS_PER_UNIT
);
1976 /* We can compute the size in a number of ways. */
1977 if (GET_MODE (new) != BLKmode
)
1978 size
= GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1979 else if (MEM_SIZE (memref
))
1980 size
= plus_constant (MEM_SIZE (memref
), -offset
);
1982 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref
), MEM_EXPR (memref
),
1983 memoffset
, size
, memalign
, GET_MODE (new));
1985 /* At some point, we should validate that this offset is within the object,
1986 if all the appropriate values are known. */
1990 /* Return a memory reference like MEMREF, but with its mode changed
1991 to MODE and its address changed to ADDR, which is assumed to be
1992 MEMREF offseted by OFFSET bytes. If VALIDATE is
1993 nonzero, the memory address is forced to be valid. */
1996 adjust_automodify_address_1 (memref
, mode
, addr
, offset
, validate
)
1998 enum machine_mode mode
;
2000 HOST_WIDE_INT offset
;
2003 memref
= change_address_1 (memref
, VOIDmode
, addr
, validate
);
2004 return adjust_address_1 (memref
, mode
, offset
, validate
, 0);
2007 /* Return a memory reference like MEMREF, but whose address is changed by
2008 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2009 known to be in OFFSET (possibly 1). */
2012 offset_address (memref
, offset
, pow2
)
2017 rtx
new = change_address_1 (memref
, VOIDmode
,
2018 gen_rtx_PLUS (Pmode
, XEXP (memref
, 0),
2019 force_reg (Pmode
, offset
)), 1);
2021 /* Update the alignment to reflect the offset. Reset the offset, which
2023 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref
), MEM_EXPR (memref
),
2024 0, 0, MIN (MEM_ALIGN (memref
),
2025 pow2
* BITS_PER_UNIT
),
2030 /* Return a memory reference like MEMREF, but with its address changed to
2031 ADDR. The caller is asserting that the actual piece of memory pointed
2032 to is the same, just the form of the address is being changed, such as
2033 by putting something into a register. */
2036 replace_equiv_address (memref
, addr
)
2040 /* change_address_1 copies the memory attribute structure without change
2041 and that's exactly what we want here. */
2042 update_temp_slot_address (XEXP (memref
, 0), addr
);
2043 return change_address_1 (memref
, VOIDmode
, addr
, 1);
2046 /* Likewise, but the reference is not required to be valid. */
2049 replace_equiv_address_nv (memref
, addr
)
2053 return change_address_1 (memref
, VOIDmode
, addr
, 0);
2056 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2063 label
= gen_rtx_CODE_LABEL (VOIDmode
, 0, NULL_RTX
,
2064 NULL_RTX
, label_num
++, NULL
, NULL
);
2066 LABEL_NUSES (label
) = 0;
2067 LABEL_ALTERNATE_NAME (label
) = NULL
;
2071 /* For procedure integration. */
2073 /* Install new pointers to the first and last insns in the chain.
2074 Also, set cur_insn_uid to one higher than the last in use.
2075 Used for an inline-procedure after copying the insn chain. */
2078 set_new_first_and_last_insn (first
, last
)
2087 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2088 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2093 /* Set the range of label numbers found in the current function.
2094 This is used when belatedly compiling an inline function. */
2097 set_new_first_and_last_label_num (first
, last
)
2100 base_label_num
= label_num
;
2101 first_label_num
= first
;
2102 last_label_num
= last
;
2105 /* Set the last label number found in the current function.
2106 This is used when belatedly compiling an inline function. */
2109 set_new_last_label_num (last
)
2112 base_label_num
= label_num
;
2113 last_label_num
= last
;
2116 /* Restore all variables describing the current status from the structure *P.
2117 This is used after a nested function. */
2120 restore_emit_status (p
)
2121 struct function
*p ATTRIBUTE_UNUSED
;
2124 clear_emit_caches ();
2127 /* Clear out all parts of the state in F that can safely be discarded
2128 after the function has been compiled, to let garbage collection
2129 reclaim the memory. */
2132 free_emit_status (f
)
2135 free (f
->emit
->x_regno_reg_rtx
);
2136 free (f
->emit
->regno_pointer_align
);
2137 free (f
->emit
->regno_decl
);
2142 /* Go through all the RTL insn bodies and copy any invalid shared
2143 structure. This routine should only be called once. */
2146 unshare_all_rtl (fndecl
, insn
)
2152 /* Make sure that virtual parameters are not shared. */
2153 for (decl
= DECL_ARGUMENTS (fndecl
); decl
; decl
= TREE_CHAIN (decl
))
2154 SET_DECL_RTL (decl
, copy_rtx_if_shared (DECL_RTL (decl
)));
2156 /* Make sure that virtual stack slots are not shared. */
2157 unshare_all_decls (DECL_INITIAL (fndecl
));
2159 /* Unshare just about everything else. */
2160 unshare_all_rtl_1 (insn
);
2162 /* Make sure the addresses of stack slots found outside the insn chain
2163 (such as, in DECL_RTL of a variable) are not shared
2164 with the insn chain.
2166 This special care is necessary when the stack slot MEM does not
2167 actually appear in the insn chain. If it does appear, its address
2168 is unshared from all else at that point. */
2169 stack_slot_list
= copy_rtx_if_shared (stack_slot_list
);
2172 /* Go through all the RTL insn bodies and copy any invalid shared
2173 structure, again. This is a fairly expensive thing to do so it
2174 should be done sparingly. */
2177 unshare_all_rtl_again (insn
)
2183 for (p
= insn
; p
; p
= NEXT_INSN (p
))
2186 reset_used_flags (PATTERN (p
));
2187 reset_used_flags (REG_NOTES (p
));
2188 reset_used_flags (LOG_LINKS (p
));
2191 /* Make sure that virtual stack slots are not shared. */
2192 reset_used_decls (DECL_INITIAL (cfun
->decl
));
2194 /* Make sure that virtual parameters are not shared. */
2195 for (decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= TREE_CHAIN (decl
))
2196 reset_used_flags (DECL_RTL (decl
));
2198 reset_used_flags (stack_slot_list
);
2200 unshare_all_rtl (cfun
->decl
, insn
);
2203 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2204 Assumes the mark bits are cleared at entry. */
2207 unshare_all_rtl_1 (insn
)
2210 for (; insn
; insn
= NEXT_INSN (insn
))
2213 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
2214 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
2215 LOG_LINKS (insn
) = copy_rtx_if_shared (LOG_LINKS (insn
));
2219 /* Go through all virtual stack slots of a function and copy any
2220 shared structure. */
2222 unshare_all_decls (blk
)
2227 /* Copy shared decls. */
2228 for (t
= BLOCK_VARS (blk
); t
; t
= TREE_CHAIN (t
))
2229 if (DECL_RTL_SET_P (t
))
2230 SET_DECL_RTL (t
, copy_rtx_if_shared (DECL_RTL (t
)));
2232 /* Now process sub-blocks. */
2233 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= TREE_CHAIN (t
))
2234 unshare_all_decls (t
);
2237 /* Go through all virtual stack slots of a function and mark them as
2240 reset_used_decls (blk
)
2246 for (t
= BLOCK_VARS (blk
); t
; t
= TREE_CHAIN (t
))
2247 if (DECL_RTL_SET_P (t
))
2248 reset_used_flags (DECL_RTL (t
));
2250 /* Now process sub-blocks. */
2251 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= TREE_CHAIN (t
))
2252 reset_used_decls (t
);
2255 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2256 Recursively does the same for subexpressions. */
2259 copy_rtx_if_shared (orig
)
2265 const char *format_ptr
;
2271 code
= GET_CODE (x
);
2273 /* These types may be freely shared. */
2286 /* SCRATCH must be shared because they represent distinct values. */
2290 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2291 a LABEL_REF, it isn't sharable. */
2292 if (GET_CODE (XEXP (x
, 0)) == PLUS
2293 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == SYMBOL_REF
2294 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
)
2303 /* The chain of insns is not being copied. */
2307 /* A MEM is allowed to be shared if its address is constant.
2309 We used to allow sharing of MEMs which referenced
2310 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
2311 that can lose. instantiate_virtual_regs will not unshare
2312 the MEMs, and combine may change the structure of the address
2313 because it looks safe and profitable in one context, but
2314 in some other context it creates unrecognizable RTL. */
2315 if (CONSTANT_ADDRESS_P (XEXP (x
, 0)))
2324 /* This rtx may not be shared. If it has already been seen,
2325 replace it with a copy of itself. */
2331 copy
= rtx_alloc (code
);
2333 (sizeof (*copy
) - sizeof (copy
->fld
)
2334 + sizeof (copy
->fld
[0]) * GET_RTX_LENGTH (code
)));
2340 /* Now scan the subexpressions recursively.
2341 We can store any replaced subexpressions directly into X
2342 since we know X is not shared! Any vectors in X
2343 must be copied if X was copied. */
2345 format_ptr
= GET_RTX_FORMAT (code
);
2347 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2349 switch (*format_ptr
++)
2352 XEXP (x
, i
) = copy_rtx_if_shared (XEXP (x
, i
));
2356 if (XVEC (x
, i
) != NULL
)
2359 int len
= XVECLEN (x
, i
);
2361 if (copied
&& len
> 0)
2362 XVEC (x
, i
) = gen_rtvec_v (len
, XVEC (x
, i
)->elem
);
2363 for (j
= 0; j
< len
; j
++)
2364 XVECEXP (x
, i
, j
) = copy_rtx_if_shared (XVECEXP (x
, i
, j
));
2372 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2373 to look for shared sub-parts. */
2376 reset_used_flags (x
)
2381 const char *format_ptr
;
2386 code
= GET_CODE (x
);
2388 /* These types may be freely shared so we needn't do any resetting
2409 /* The chain of insns is not being copied. */
2418 format_ptr
= GET_RTX_FORMAT (code
);
2419 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2421 switch (*format_ptr
++)
2424 reset_used_flags (XEXP (x
, i
));
2428 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2429 reset_used_flags (XVECEXP (x
, i
, j
));
2435 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2436 Return X or the rtx for the pseudo reg the value of X was copied into.
2437 OTHER must be valid as a SET_DEST. */
2440 make_safe_from (x
, other
)
2444 switch (GET_CODE (other
))
2447 other
= SUBREG_REG (other
);
2449 case STRICT_LOW_PART
:
2452 other
= XEXP (other
, 0);
2458 if ((GET_CODE (other
) == MEM
2460 && GET_CODE (x
) != REG
2461 && GET_CODE (x
) != SUBREG
)
2462 || (GET_CODE (other
) == REG
2463 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
2464 || reg_mentioned_p (other
, x
))))
2466 rtx temp
= gen_reg_rtx (GET_MODE (x
));
2467 emit_move_insn (temp
, x
);
2473 /* Emission of insns (adding them to the doubly-linked list). */
2475 /* Return the first insn of the current sequence or current function. */
2483 /* Return the last insn emitted in current sequence or current function. */
2491 /* Specify a new insn as the last in the chain. */
2494 set_last_insn (insn
)
2497 if (NEXT_INSN (insn
) != 0)
2502 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2505 get_last_insn_anywhere ()
2507 struct sequence_stack
*stack
;
2510 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
2511 if (stack
->last
!= 0)
2516 /* Return a number larger than any instruction's uid in this function. */
2521 return cur_insn_uid
;
2524 /* Renumber instructions so that no instruction UIDs are wasted. */
2527 renumber_insns (stream
)
2532 /* If we're not supposed to renumber instructions, don't. */
2533 if (!flag_renumber_insns
)
2536 /* If there aren't that many instructions, then it's not really
2537 worth renumbering them. */
2538 if (flag_renumber_insns
== 1 && get_max_uid () < 25000)
2543 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2546 fprintf (stream
, "Renumbering insn %d to %d\n",
2547 INSN_UID (insn
), cur_insn_uid
);
2548 INSN_UID (insn
) = cur_insn_uid
++;
2552 /* Return the next insn. If it is a SEQUENCE, return the first insn
2561 insn
= NEXT_INSN (insn
);
2562 if (insn
&& GET_CODE (insn
) == INSN
2563 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2564 insn
= XVECEXP (PATTERN (insn
), 0, 0);
2570 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2574 previous_insn (insn
)
2579 insn
= PREV_INSN (insn
);
2580 if (insn
&& GET_CODE (insn
) == INSN
2581 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2582 insn
= XVECEXP (PATTERN (insn
), 0, XVECLEN (PATTERN (insn
), 0) - 1);
2588 /* Return the next insn after INSN that is not a NOTE. This routine does not
2589 look inside SEQUENCEs. */
2592 next_nonnote_insn (insn
)
2597 insn
= NEXT_INSN (insn
);
2598 if (insn
== 0 || GET_CODE (insn
) != NOTE
)
2605 /* Return the previous insn before INSN that is not a NOTE. This routine does
2606 not look inside SEQUENCEs. */
2609 prev_nonnote_insn (insn
)
2614 insn
= PREV_INSN (insn
);
2615 if (insn
== 0 || GET_CODE (insn
) != NOTE
)
2622 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2623 or 0, if there is none. This routine does not look inside
2627 next_real_insn (insn
)
2632 insn
= NEXT_INSN (insn
);
2633 if (insn
== 0 || GET_CODE (insn
) == INSN
2634 || GET_CODE (insn
) == CALL_INSN
|| GET_CODE (insn
) == JUMP_INSN
)
2641 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2642 or 0, if there is none. This routine does not look inside
2646 prev_real_insn (insn
)
2651 insn
= PREV_INSN (insn
);
2652 if (insn
== 0 || GET_CODE (insn
) == INSN
|| GET_CODE (insn
) == CALL_INSN
2653 || GET_CODE (insn
) == JUMP_INSN
)
2660 /* Find the next insn after INSN that really does something. This routine
2661 does not look inside SEQUENCEs. Until reload has completed, this is the
2662 same as next_real_insn. */
2665 active_insn_p (insn
)
2668 return (GET_CODE (insn
) == CALL_INSN
|| GET_CODE (insn
) == JUMP_INSN
2669 || (GET_CODE (insn
) == INSN
2670 && (! reload_completed
2671 || (GET_CODE (PATTERN (insn
)) != USE
2672 && GET_CODE (PATTERN (insn
)) != CLOBBER
))));
2676 next_active_insn (insn
)
2681 insn
= NEXT_INSN (insn
);
2682 if (insn
== 0 || active_insn_p (insn
))
2689 /* Find the last insn before INSN that really does something. This routine
2690 does not look inside SEQUENCEs. Until reload has completed, this is the
2691 same as prev_real_insn. */
2694 prev_active_insn (insn
)
2699 insn
= PREV_INSN (insn
);
2700 if (insn
== 0 || active_insn_p (insn
))
2707 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2715 insn
= NEXT_INSN (insn
);
2716 if (insn
== 0 || GET_CODE (insn
) == CODE_LABEL
)
2723 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2731 insn
= PREV_INSN (insn
);
2732 if (insn
== 0 || GET_CODE (insn
) == CODE_LABEL
)
2740 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
2741 and REG_CC_USER notes so we can find it. */
2744 link_cc0_insns (insn
)
2747 rtx user
= next_nonnote_insn (insn
);
2749 if (GET_CODE (user
) == INSN
&& GET_CODE (PATTERN (user
)) == SEQUENCE
)
2750 user
= XVECEXP (PATTERN (user
), 0, 0);
2752 REG_NOTES (user
) = gen_rtx_INSN_LIST (REG_CC_SETTER
, insn
,
2754 REG_NOTES (insn
) = gen_rtx_INSN_LIST (REG_CC_USER
, user
, REG_NOTES (insn
));
2757 /* Return the next insn that uses CC0 after INSN, which is assumed to
2758 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
2759 applied to the result of this function should yield INSN).
2761 Normally, this is simply the next insn. However, if a REG_CC_USER note
2762 is present, it contains the insn that uses CC0.
2764 Return 0 if we can't find the insn. */
2767 next_cc0_user (insn
)
2770 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
2773 return XEXP (note
, 0);
2775 insn
= next_nonnote_insn (insn
);
2776 if (insn
&& GET_CODE (insn
) == INSN
&& GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2777 insn
= XVECEXP (PATTERN (insn
), 0, 0);
2779 if (insn
&& INSN_P (insn
) && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
2785 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
2786 note, it is the previous insn. */
2789 prev_cc0_setter (insn
)
2792 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
2795 return XEXP (note
, 0);
2797 insn
= prev_nonnote_insn (insn
);
2798 if (! sets_cc0_p (PATTERN (insn
)))
2805 /* Increment the label uses for all labels present in rtx. */
2815 code
= GET_CODE (x
);
2816 if (code
== LABEL_REF
)
2817 LABEL_NUSES (XEXP (x
, 0))++;
2819 fmt
= GET_RTX_FORMAT (code
);
2820 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2823 mark_label_nuses (XEXP (x
, i
));
2824 else if (fmt
[i
] == 'E')
2825 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
2826 mark_label_nuses (XVECEXP (x
, i
, j
));
2831 /* Try splitting insns that can be split for better scheduling.
2832 PAT is the pattern which might split.
2833 TRIAL is the insn providing PAT.
2834 LAST is non-zero if we should return the last insn of the sequence produced.
2836 If this routine succeeds in splitting, it returns the first or last
2837 replacement insn depending on the value of LAST. Otherwise, it
2838 returns TRIAL. If the insn to be returned can be split, it will be. */
2841 try_split (pat
, trial
, last
)
2845 rtx before
= PREV_INSN (trial
);
2846 rtx after
= NEXT_INSN (trial
);
2847 int has_barrier
= 0;
2852 if (any_condjump_p (trial
)
2853 && (note
= find_reg_note (trial
, REG_BR_PROB
, 0)))
2854 split_branch_probability
= INTVAL (XEXP (note
, 0));
2855 probability
= split_branch_probability
;
2857 seq
= split_insns (pat
, trial
);
2859 split_branch_probability
= -1;
2861 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
2862 We may need to handle this specially. */
2863 if (after
&& GET_CODE (after
) == BARRIER
)
2866 after
= NEXT_INSN (after
);
2871 /* SEQ can either be a SEQUENCE or the pattern of a single insn.
2872 The latter case will normally arise only when being done so that
2873 it, in turn, will be split (SFmode on the 29k is an example). */
2874 if (GET_CODE (seq
) == SEQUENCE
)
2878 /* Avoid infinite loop if any insn of the result matches
2879 the original pattern. */
2880 for (i
= 0; i
< XVECLEN (seq
, 0); i
++)
2881 if (GET_CODE (XVECEXP (seq
, 0, i
)) == INSN
2882 && rtx_equal_p (PATTERN (XVECEXP (seq
, 0, i
)), pat
))
2886 for (i
= XVECLEN (seq
, 0) - 1; i
>= 0; i
--)
2887 if (GET_CODE (XVECEXP (seq
, 0, i
)) == JUMP_INSN
)
2889 rtx insn
= XVECEXP (seq
, 0, i
);
2890 mark_jump_label (PATTERN (insn
),
2891 XVECEXP (seq
, 0, i
), 0);
2893 if (probability
!= -1
2894 && any_condjump_p (insn
)
2895 && !find_reg_note (insn
, REG_BR_PROB
, 0))
2897 /* We can preserve the REG_BR_PROB notes only if exactly
2898 one jump is created, otherwise the machine description
2899 is responsible for this step using
2900 split_branch_probability variable. */
2904 = gen_rtx_EXPR_LIST (REG_BR_PROB
,
2905 GEN_INT (probability
),
2910 /* If we are splitting a CALL_INSN, look for the CALL_INSN
2911 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
2912 if (GET_CODE (trial
) == CALL_INSN
)
2913 for (i
= XVECLEN (seq
, 0) - 1; i
>= 0; i
--)
2914 if (GET_CODE (XVECEXP (seq
, 0, i
)) == CALL_INSN
)
2915 CALL_INSN_FUNCTION_USAGE (XVECEXP (seq
, 0, i
))
2916 = CALL_INSN_FUNCTION_USAGE (trial
);
2918 /* Copy notes, particularly those related to the CFG. */
2919 for (note
= REG_NOTES (trial
); note
; note
= XEXP (note
, 1))
2921 switch (REG_NOTE_KIND (note
))
2924 for (i
= XVECLEN (seq
, 0) - 1; i
>= 0; i
--)
2926 rtx insn
= XVECEXP (seq
, 0, i
);
2927 if (GET_CODE (insn
) == CALL_INSN
2928 || (flag_non_call_exceptions
2929 && may_trap_p (PATTERN (insn
))))
2931 = gen_rtx_EXPR_LIST (REG_EH_REGION
,
2939 case REG_ALWAYS_RETURN
:
2940 for (i
= XVECLEN (seq
, 0) - 1; i
>= 0; i
--)
2942 rtx insn
= XVECEXP (seq
, 0, i
);
2943 if (GET_CODE (insn
) == CALL_INSN
)
2945 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note
),
2951 case REG_NON_LOCAL_GOTO
:
2952 for (i
= XVECLEN (seq
, 0) - 1; i
>= 0; i
--)
2954 rtx insn
= XVECEXP (seq
, 0, i
);
2955 if (GET_CODE (insn
) == JUMP_INSN
)
2957 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note
),
2968 /* If there are LABELS inside the split insns increment the
2969 usage count so we don't delete the label. */
2970 if (GET_CODE (trial
) == INSN
)
2971 for (i
= XVECLEN (seq
, 0) - 1; i
>= 0; i
--)
2972 if (GET_CODE (XVECEXP (seq
, 0, i
)) == INSN
)
2973 mark_label_nuses (PATTERN (XVECEXP (seq
, 0, i
)));
2975 tem
= emit_insn_after (seq
, trial
);
2977 delete_related_insns (trial
);
2979 emit_barrier_after (tem
);
2981 /* Recursively call try_split for each new insn created; by the
2982 time control returns here that insn will be fully split, so
2983 set LAST and continue from the insn after the one returned.
2984 We can't use next_active_insn here since AFTER may be a note.
2985 Ignore deleted insns, which can be occur if not optimizing. */
2986 for (tem
= NEXT_INSN (before
); tem
!= after
; tem
= NEXT_INSN (tem
))
2987 if (! INSN_DELETED_P (tem
) && INSN_P (tem
))
2988 tem
= try_split (PATTERN (tem
), tem
, 1);
2990 /* Avoid infinite loop if the result matches the original pattern. */
2991 else if (rtx_equal_p (seq
, pat
))
2995 PATTERN (trial
) = seq
;
2996 INSN_CODE (trial
) = -1;
2997 try_split (seq
, trial
, last
);
3000 /* Return either the first or the last insn, depending on which was
3003 ? (after
? PREV_INSN (after
) : last_insn
)
3004 : NEXT_INSN (before
);
3010 /* Make and return an INSN rtx, initializing all its slots.
3011 Store PATTERN in the pattern slots. */
3014 make_insn_raw (pattern
)
3019 insn
= rtx_alloc (INSN
);
3021 INSN_UID (insn
) = cur_insn_uid
++;
3022 PATTERN (insn
) = pattern
;
3023 INSN_CODE (insn
) = -1;
3024 LOG_LINKS (insn
) = NULL
;
3025 REG_NOTES (insn
) = NULL
;
3027 #ifdef ENABLE_RTL_CHECKING
3030 && (returnjump_p (insn
)
3031 || (GET_CODE (insn
) == SET
3032 && SET_DEST (insn
) == pc_rtx
)))
3034 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3042 /* Like `make_insn' but make a JUMP_INSN instead of an insn. */
3045 make_jump_insn_raw (pattern
)
3050 insn
= rtx_alloc (JUMP_INSN
);
3051 INSN_UID (insn
) = cur_insn_uid
++;
3053 PATTERN (insn
) = pattern
;
3054 INSN_CODE (insn
) = -1;
3055 LOG_LINKS (insn
) = NULL
;
3056 REG_NOTES (insn
) = NULL
;
3057 JUMP_LABEL (insn
) = NULL
;
3062 /* Like `make_insn' but make a CALL_INSN instead of an insn. */
3065 make_call_insn_raw (pattern
)
3070 insn
= rtx_alloc (CALL_INSN
);
3071 INSN_UID (insn
) = cur_insn_uid
++;
3073 PATTERN (insn
) = pattern
;
3074 INSN_CODE (insn
) = -1;
3075 LOG_LINKS (insn
) = NULL
;
3076 REG_NOTES (insn
) = NULL
;
3077 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
3082 /* Add INSN to the end of the doubly-linked list.
3083 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3089 PREV_INSN (insn
) = last_insn
;
3090 NEXT_INSN (insn
) = 0;
3092 if (NULL
!= last_insn
)
3093 NEXT_INSN (last_insn
) = insn
;
3095 if (NULL
== first_insn
)
3101 /* Add INSN into the doubly-linked list after insn AFTER. This and
3102 the next should be the only functions called to insert an insn once
3103 delay slots have been filled since only they know how to update a
3107 add_insn_after (insn
, after
)
3110 rtx next
= NEXT_INSN (after
);
3113 if (optimize
&& INSN_DELETED_P (after
))
3116 NEXT_INSN (insn
) = next
;
3117 PREV_INSN (insn
) = after
;
3121 PREV_INSN (next
) = insn
;
3122 if (GET_CODE (next
) == INSN
&& GET_CODE (PATTERN (next
)) == SEQUENCE
)
3123 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = insn
;
3125 else if (last_insn
== after
)
3129 struct sequence_stack
*stack
= seq_stack
;
3130 /* Scan all pending sequences too. */
3131 for (; stack
; stack
= stack
->next
)
3132 if (after
== stack
->last
)
3142 if (basic_block_for_insn
3143 && (unsigned int)INSN_UID (after
) < basic_block_for_insn
->num_elements
3144 && (bb
= BLOCK_FOR_INSN (after
)))
3146 set_block_for_insn (insn
, bb
);
3147 /* Should not happen as first in the BB is always
3148 either NOTE or LABEL. */
3149 if (bb
->end
== after
3150 /* Avoid clobbering of structure when creating new BB. */
3151 && GET_CODE (insn
) != BARRIER
3152 && (GET_CODE (insn
) != NOTE
3153 || NOTE_LINE_NUMBER (insn
) != NOTE_INSN_BASIC_BLOCK
))
3157 NEXT_INSN (after
) = insn
;
3158 if (GET_CODE (after
) == INSN
&& GET_CODE (PATTERN (after
)) == SEQUENCE
)
3160 rtx sequence
= PATTERN (after
);
3161 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3165 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3166 the previous should be the only functions called to insert an insn once
3167 delay slots have been filled since only they know how to update a
3171 add_insn_before (insn
, before
)
3174 rtx prev
= PREV_INSN (before
);
3177 if (optimize
&& INSN_DELETED_P (before
))
3180 PREV_INSN (insn
) = prev
;
3181 NEXT_INSN (insn
) = before
;
3185 NEXT_INSN (prev
) = insn
;
3186 if (GET_CODE (prev
) == INSN
&& GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3188 rtx sequence
= PATTERN (prev
);
3189 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3192 else if (first_insn
== before
)
3196 struct sequence_stack
*stack
= seq_stack
;
3197 /* Scan all pending sequences too. */
3198 for (; stack
; stack
= stack
->next
)
3199 if (before
== stack
->first
)
3201 stack
->first
= insn
;
3209 if (basic_block_for_insn
3210 && (unsigned int)INSN_UID (before
) < basic_block_for_insn
->num_elements
3211 && (bb
= BLOCK_FOR_INSN (before
)))
3213 set_block_for_insn (insn
, bb
);
3214 /* Should not happen as first in the BB is always
3215 either NOTE or LABEl. */
3216 if (bb
->head
== insn
3217 /* Avoid clobbering of structure when creating new BB. */
3218 && GET_CODE (insn
) != BARRIER
3219 && (GET_CODE (insn
) != NOTE
3220 || NOTE_LINE_NUMBER (insn
) != NOTE_INSN_BASIC_BLOCK
))
3224 PREV_INSN (before
) = insn
;
3225 if (GET_CODE (before
) == INSN
&& GET_CODE (PATTERN (before
)) == SEQUENCE
)
3226 PREV_INSN (XVECEXP (PATTERN (before
), 0, 0)) = insn
;
3229 /* Remove an insn from its doubly-linked list. This function knows how
3230 to handle sequences. */
3235 rtx next
= NEXT_INSN (insn
);
3236 rtx prev
= PREV_INSN (insn
);
3241 NEXT_INSN (prev
) = next
;
3242 if (GET_CODE (prev
) == INSN
&& GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3244 rtx sequence
= PATTERN (prev
);
3245 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = next
;
3248 else if (first_insn
== insn
)
3252 struct sequence_stack
*stack
= seq_stack
;
3253 /* Scan all pending sequences too. */
3254 for (; stack
; stack
= stack
->next
)
3255 if (insn
== stack
->first
)
3257 stack
->first
= next
;
3267 PREV_INSN (next
) = prev
;
3268 if (GET_CODE (next
) == INSN
&& GET_CODE (PATTERN (next
)) == SEQUENCE
)
3269 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = prev
;
3271 else if (last_insn
== insn
)
3275 struct sequence_stack
*stack
= seq_stack
;
3276 /* Scan all pending sequences too. */
3277 for (; stack
; stack
= stack
->next
)
3278 if (insn
== stack
->last
)
3287 if (basic_block_for_insn
3288 && (unsigned int)INSN_UID (insn
) < basic_block_for_insn
->num_elements
3289 && (bb
= BLOCK_FOR_INSN (insn
)))
3291 if (bb
->head
== insn
)
3293 /* Never ever delete the basic block note without deleting whole basic
3295 if (GET_CODE (insn
) == NOTE
)
3299 if (bb
->end
== insn
)
3304 /* Delete all insns made since FROM.
3305 FROM becomes the new last instruction. */
3308 delete_insns_since (from
)
3314 NEXT_INSN (from
) = 0;
3318 /* This function is deprecated, please use sequences instead.
3320 Move a consecutive bunch of insns to a different place in the chain.
3321 The insns to be moved are those between FROM and TO.
3322 They are moved to a new position after the insn AFTER.
3323 AFTER must not be FROM or TO or any insn in between.
3325 This function does not know about SEQUENCEs and hence should not be
3326 called after delay-slot filling has been done. */
3329 reorder_insns_nobb (from
, to
, after
)
3330 rtx from
, to
, after
;
3332 /* Splice this bunch out of where it is now. */
3333 if (PREV_INSN (from
))
3334 NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
3336 PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
3337 if (last_insn
== to
)
3338 last_insn
= PREV_INSN (from
);
3339 if (first_insn
== from
)
3340 first_insn
= NEXT_INSN (to
);
3342 /* Make the new neighbors point to it and it to them. */
3343 if (NEXT_INSN (after
))
3344 PREV_INSN (NEXT_INSN (after
)) = to
;
3346 NEXT_INSN (to
) = NEXT_INSN (after
);
3347 PREV_INSN (from
) = after
;
3348 NEXT_INSN (after
) = from
;
3349 if (after
== last_insn
)
3353 /* Same as function above, but take care to update BB boundaries. */
3355 reorder_insns (from
, to
, after
)
3356 rtx from
, to
, after
;
3358 rtx prev
= PREV_INSN (from
);
3359 basic_block bb
, bb2
;
3361 reorder_insns_nobb (from
, to
, after
);
3363 if (basic_block_for_insn
3364 && (unsigned int)INSN_UID (after
) < basic_block_for_insn
->num_elements
3365 && (bb
= BLOCK_FOR_INSN (after
)))
3369 if (basic_block_for_insn
3370 && (unsigned int)INSN_UID (from
) < basic_block_for_insn
->num_elements
3371 && (bb2
= BLOCK_FOR_INSN (from
)))
3377 if (bb
->end
== after
)
3380 for (x
= from
; x
!= NEXT_INSN (to
); x
= NEXT_INSN (x
))
3381 set_block_for_insn (x
, bb
);
3385 /* Return the line note insn preceding INSN. */
3388 find_line_note (insn
)
3391 if (no_line_numbers
)
3394 for (; insn
; insn
= PREV_INSN (insn
))
3395 if (GET_CODE (insn
) == NOTE
3396 && NOTE_LINE_NUMBER (insn
) >= 0)
3402 /* Like reorder_insns, but inserts line notes to preserve the line numbers
3403 of the moved insns when debugging. This may insert a note between AFTER
3404 and FROM, and another one after TO. */
3407 reorder_insns_with_line_notes (from
, to
, after
)
3408 rtx from
, to
, after
;
3410 rtx from_line
= find_line_note (from
);
3411 rtx after_line
= find_line_note (after
);
3413 reorder_insns (from
, to
, after
);
3415 if (from_line
== after_line
)
3419 emit_line_note_after (NOTE_SOURCE_FILE (from_line
),
3420 NOTE_LINE_NUMBER (from_line
),
3423 emit_line_note_after (NOTE_SOURCE_FILE (after_line
),
3424 NOTE_LINE_NUMBER (after_line
),
3428 /* Remove unnecessary notes from the instruction stream. */
3431 remove_unnecessary_notes ()
3433 rtx block_stack
= NULL_RTX
;
3434 rtx eh_stack
= NULL_RTX
;
3439 /* We must not remove the first instruction in the function because
3440 the compiler depends on the first instruction being a note. */
3441 for (insn
= NEXT_INSN (get_insns ()); insn
; insn
= next
)
3443 /* Remember what's next. */
3444 next
= NEXT_INSN (insn
);
3446 /* We're only interested in notes. */
3447 if (GET_CODE (insn
) != NOTE
)
3450 switch (NOTE_LINE_NUMBER (insn
))
3452 case NOTE_INSN_DELETED
:
3456 case NOTE_INSN_EH_REGION_BEG
:
3457 eh_stack
= alloc_INSN_LIST (insn
, eh_stack
);
3460 case NOTE_INSN_EH_REGION_END
:
3461 /* Too many end notes. */
3462 if (eh_stack
== NULL_RTX
)
3464 /* Mismatched nesting. */
3465 if (NOTE_EH_HANDLER (XEXP (eh_stack
, 0)) != NOTE_EH_HANDLER (insn
))
3468 eh_stack
= XEXP (eh_stack
, 1);
3469 free_INSN_LIST_node (tmp
);
3472 case NOTE_INSN_BLOCK_BEG
:
3473 /* By now, all notes indicating lexical blocks should have
3474 NOTE_BLOCK filled in. */
3475 if (NOTE_BLOCK (insn
) == NULL_TREE
)
3477 block_stack
= alloc_INSN_LIST (insn
, block_stack
);
3480 case NOTE_INSN_BLOCK_END
:
3481 /* Too many end notes. */
3482 if (block_stack
== NULL_RTX
)
3484 /* Mismatched nesting. */
3485 if (NOTE_BLOCK (XEXP (block_stack
, 0)) != NOTE_BLOCK (insn
))
3488 block_stack
= XEXP (block_stack
, 1);
3489 free_INSN_LIST_node (tmp
);
3491 /* Scan back to see if there are any non-note instructions
3492 between INSN and the beginning of this block. If not,
3493 then there is no PC range in the generated code that will
3494 actually be in this block, so there's no point in
3495 remembering the existence of the block. */
3496 for (tmp
= PREV_INSN (insn
); tmp
; tmp
= PREV_INSN (tmp
))
3498 /* This block contains a real instruction. Note that we
3499 don't include labels; if the only thing in the block
3500 is a label, then there are still no PC values that
3501 lie within the block. */
3505 /* We're only interested in NOTEs. */
3506 if (GET_CODE (tmp
) != NOTE
)
3509 if (NOTE_LINE_NUMBER (tmp
) == NOTE_INSN_BLOCK_BEG
)
3511 /* We just verified that this BLOCK matches us with
3512 the block_stack check above. Never delete the
3513 BLOCK for the outermost scope of the function; we
3514 can refer to names from that scope even if the
3515 block notes are messed up. */
3516 if (! is_body_block (NOTE_BLOCK (insn
))
3517 && (*debug_hooks
->ignore_block
) (NOTE_BLOCK (insn
)))
3524 else if (NOTE_LINE_NUMBER (tmp
) == NOTE_INSN_BLOCK_END
)
3525 /* There's a nested block. We need to leave the
3526 current block in place since otherwise the debugger
3527 wouldn't be able to show symbols from our block in
3528 the nested block. */
3534 /* Too many begin notes. */
3535 if (block_stack
|| eh_stack
)
3540 /* Emit an insn of given code and pattern
3541 at a specified place within the doubly-linked list. */
3543 /* Make an instruction with body PATTERN
3544 and output it before the instruction BEFORE. */
3547 emit_insn_before (pattern
, before
)
3548 rtx pattern
, before
;
3552 if (GET_CODE (pattern
) == SEQUENCE
)
3556 for (i
= 0; i
< XVECLEN (pattern
, 0); i
++)
3558 insn
= XVECEXP (pattern
, 0, i
);
3559 add_insn_before (insn
, before
);
3564 insn
= make_insn_raw (pattern
);
3565 add_insn_before (insn
, before
);
3571 /* Make an instruction with body PATTERN and code JUMP_INSN
3572 and output it before the instruction BEFORE. */
3575 emit_jump_insn_before (pattern
, before
)
3576 rtx pattern
, before
;
3580 if (GET_CODE (pattern
) == SEQUENCE
)
3581 insn
= emit_insn_before (pattern
, before
);
3584 insn
= make_jump_insn_raw (pattern
);
3585 add_insn_before (insn
, before
);
3591 /* Make an instruction with body PATTERN and code CALL_INSN
3592 and output it before the instruction BEFORE. */
3595 emit_call_insn_before (pattern
, before
)
3596 rtx pattern
, before
;
3600 if (GET_CODE (pattern
) == SEQUENCE
)
3601 insn
= emit_insn_before (pattern
, before
);
3604 insn
= make_call_insn_raw (pattern
);
3605 add_insn_before (insn
, before
);
3606 PUT_CODE (insn
, CALL_INSN
);
3612 /* Make an insn of code BARRIER
3613 and output it before the insn BEFORE. */
3616 emit_barrier_before (before
)
3619 rtx insn
= rtx_alloc (BARRIER
);
3621 INSN_UID (insn
) = cur_insn_uid
++;
3623 add_insn_before (insn
, before
);
3627 /* Emit the label LABEL before the insn BEFORE. */
3630 emit_label_before (label
, before
)
3633 /* This can be called twice for the same label as a result of the
3634 confusion that follows a syntax error! So make it harmless. */
3635 if (INSN_UID (label
) == 0)
3637 INSN_UID (label
) = cur_insn_uid
++;
3638 add_insn_before (label
, before
);
3644 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3647 emit_note_before (subtype
, before
)
3651 rtx note
= rtx_alloc (NOTE
);
3652 INSN_UID (note
) = cur_insn_uid
++;
3653 NOTE_SOURCE_FILE (note
) = 0;
3654 NOTE_LINE_NUMBER (note
) = subtype
;
3656 add_insn_before (note
, before
);
3660 /* Make an insn of code INSN with body PATTERN
3661 and output it after the insn AFTER. */
3664 emit_insn_after (pattern
, after
)
3669 if (GET_CODE (pattern
) == SEQUENCE
)
3673 for (i
= 0; i
< XVECLEN (pattern
, 0); i
++)
3675 insn
= XVECEXP (pattern
, 0, i
);
3676 add_insn_after (insn
, after
);
3682 insn
= make_insn_raw (pattern
);
3683 add_insn_after (insn
, after
);
3689 /* Similar to emit_insn_after, except that line notes are to be inserted so
3690 as to act as if this insn were at FROM. */
3693 emit_insn_after_with_line_notes (pattern
, after
, from
)
3694 rtx pattern
, after
, from
;
3696 rtx from_line
= find_line_note (from
);
3697 rtx after_line
= find_line_note (after
);
3698 rtx insn
= emit_insn_after (pattern
, after
);
3701 emit_line_note_after (NOTE_SOURCE_FILE (from_line
),
3702 NOTE_LINE_NUMBER (from_line
),
3706 emit_line_note_after (NOTE_SOURCE_FILE (after_line
),
3707 NOTE_LINE_NUMBER (after_line
),
3711 /* Make an insn of code JUMP_INSN with body PATTERN
3712 and output it after the insn AFTER. */
3715 emit_jump_insn_after (pattern
, after
)
3720 if (GET_CODE (pattern
) == SEQUENCE
)
3721 insn
= emit_insn_after (pattern
, after
);
3724 insn
= make_jump_insn_raw (pattern
);
3725 add_insn_after (insn
, after
);
3731 /* Make an insn of code BARRIER
3732 and output it after the insn AFTER. */
3735 emit_barrier_after (after
)
3738 rtx insn
= rtx_alloc (BARRIER
);
3740 INSN_UID (insn
) = cur_insn_uid
++;
3742 add_insn_after (insn
, after
);
3746 /* Emit the label LABEL after the insn AFTER. */
3749 emit_label_after (label
, after
)
3752 /* This can be called twice for the same label
3753 as a result of the confusion that follows a syntax error!
3754 So make it harmless. */
3755 if (INSN_UID (label
) == 0)
3757 INSN_UID (label
) = cur_insn_uid
++;
3758 add_insn_after (label
, after
);
3764 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
3767 emit_note_after (subtype
, after
)
3771 rtx note
= rtx_alloc (NOTE
);
3772 INSN_UID (note
) = cur_insn_uid
++;
3773 NOTE_SOURCE_FILE (note
) = 0;
3774 NOTE_LINE_NUMBER (note
) = subtype
;
3775 add_insn_after (note
, after
);
3779 /* Emit a line note for FILE and LINE after the insn AFTER. */
3782 emit_line_note_after (file
, line
, after
)
3789 if (no_line_numbers
&& line
> 0)
3795 note
= rtx_alloc (NOTE
);
3796 INSN_UID (note
) = cur_insn_uid
++;
3797 NOTE_SOURCE_FILE (note
) = file
;
3798 NOTE_LINE_NUMBER (note
) = line
;
3799 add_insn_after (note
, after
);
3803 /* Make an insn of code INSN with pattern PATTERN
3804 and add it to the end of the doubly-linked list.
3805 If PATTERN is a SEQUENCE, take the elements of it
3806 and emit an insn for each element.
3808 Returns the last insn emitted. */
3814 rtx insn
= last_insn
;
3816 if (GET_CODE (pattern
) == SEQUENCE
)
3820 for (i
= 0; i
< XVECLEN (pattern
, 0); i
++)
3822 insn
= XVECEXP (pattern
, 0, i
);
3828 insn
= make_insn_raw (pattern
);
3835 /* Emit the insns in a chain starting with INSN.
3836 Return the last insn emitted. */
3846 rtx next
= NEXT_INSN (insn
);
3855 /* Emit the insns in a chain starting with INSN and place them in front of
3856 the insn BEFORE. Return the last insn emitted. */
3859 emit_insns_before (insn
, before
)
3867 rtx next
= NEXT_INSN (insn
);
3868 add_insn_before (insn
, before
);
3876 /* Emit the insns in a chain starting with FIRST and place them in back of
3877 the insn AFTER. Return the last insn emitted. */
3880 emit_insns_after (first
, after
)
3894 if (basic_block_for_insn
3895 && (unsigned int)INSN_UID (after
) < basic_block_for_insn
->num_elements
3896 && (bb
= BLOCK_FOR_INSN (after
)))
3898 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
3899 set_block_for_insn (last
, bb
);
3900 set_block_for_insn (last
, bb
);
3901 if (bb
->end
== after
)
3905 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
3908 after_after
= NEXT_INSN (after
);
3910 NEXT_INSN (after
) = first
;
3911 PREV_INSN (first
) = after
;
3912 NEXT_INSN (last
) = after_after
;
3914 PREV_INSN (after_after
) = last
;
3916 if (after
== last_insn
)
3921 /* Make an insn of code JUMP_INSN with pattern PATTERN
3922 and add it to the end of the doubly-linked list. */
3925 emit_jump_insn (pattern
)
3928 if (GET_CODE (pattern
) == SEQUENCE
)
3929 return emit_insn (pattern
);
3932 rtx insn
= make_jump_insn_raw (pattern
);
3938 /* Make an insn of code CALL_INSN with pattern PATTERN
3939 and add it to the end of the doubly-linked list. */
3942 emit_call_insn (pattern
)
3945 if (GET_CODE (pattern
) == SEQUENCE
)
3946 return emit_insn (pattern
);
3949 rtx insn
= make_call_insn_raw (pattern
);
3951 PUT_CODE (insn
, CALL_INSN
);
3956 /* Add the label LABEL to the end of the doubly-linked list. */
3962 /* This can be called twice for the same label
3963 as a result of the confusion that follows a syntax error!
3964 So make it harmless. */
3965 if (INSN_UID (label
) == 0)
3967 INSN_UID (label
) = cur_insn_uid
++;
3973 /* Make an insn of code BARRIER
3974 and add it to the end of the doubly-linked list. */
3979 rtx barrier
= rtx_alloc (BARRIER
);
3980 INSN_UID (barrier
) = cur_insn_uid
++;
3985 /* Make an insn of code NOTE
3986 with data-fields specified by FILE and LINE
3987 and add it to the end of the doubly-linked list,
3988 but only if line-numbers are desired for debugging info. */
3991 emit_line_note (file
, line
)
3995 set_file_and_line_for_stmt (file
, line
);
3998 if (no_line_numbers
)
4002 return emit_note (file
, line
);
4005 /* Make an insn of code NOTE
4006 with data-fields specified by FILE and LINE
4007 and add it to the end of the doubly-linked list.
4008 If it is a line-number NOTE, omit it if it matches the previous one. */
4011 emit_note (file
, line
)
4019 if (file
&& last_filename
&& !strcmp (file
, last_filename
)
4020 && line
== last_linenum
)
4022 last_filename
= file
;
4023 last_linenum
= line
;
4026 if (no_line_numbers
&& line
> 0)
4032 note
= rtx_alloc (NOTE
);
4033 INSN_UID (note
) = cur_insn_uid
++;
4034 NOTE_SOURCE_FILE (note
) = file
;
4035 NOTE_LINE_NUMBER (note
) = line
;
4040 /* Emit a NOTE, and don't omit it even if LINE is the previous note. */
4043 emit_line_note_force (file
, line
)
4048 return emit_line_note (file
, line
);
4051 /* Cause next statement to emit a line note even if the line number
4052 has not changed. This is used at the beginning of a function. */
4055 force_next_line_note ()
4060 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4061 note of this type already exists, remove it first. */
4064 set_unique_reg_note (insn
, kind
, datum
)
4069 rtx note
= find_reg_note (insn
, kind
, NULL_RTX
);
4071 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4072 It serves no useful purpose and breaks eliminate_regs. */
4073 if ((kind
== REG_EQUAL
|| kind
== REG_EQUIV
)
4074 && GET_CODE (datum
) == ASM_OPERANDS
)
4079 XEXP (note
, 0) = datum
;
4083 REG_NOTES (insn
) = gen_rtx_EXPR_LIST (kind
, datum
, REG_NOTES (insn
));
4084 return REG_NOTES (insn
);
4087 /* Return an indication of which type of insn should have X as a body.
4088 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4094 if (GET_CODE (x
) == CODE_LABEL
)
4096 if (GET_CODE (x
) == CALL
)
4098 if (GET_CODE (x
) == RETURN
)
4100 if (GET_CODE (x
) == SET
)
4102 if (SET_DEST (x
) == pc_rtx
)
4104 else if (GET_CODE (SET_SRC (x
)) == CALL
)
4109 if (GET_CODE (x
) == PARALLEL
)
4112 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
4113 if (GET_CODE (XVECEXP (x
, 0, j
)) == CALL
)
4115 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
4116 && SET_DEST (XVECEXP (x
, 0, j
)) == pc_rtx
)
4118 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
4119 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == CALL
)
4125 /* Emit the rtl pattern X as an appropriate kind of insn.
4126 If X is a label, it is simply added into the insn chain. */
4132 enum rtx_code code
= classify_insn (x
);
4134 if (code
== CODE_LABEL
)
4135 return emit_label (x
);
4136 else if (code
== INSN
)
4137 return emit_insn (x
);
4138 else if (code
== JUMP_INSN
)
4140 rtx insn
= emit_jump_insn (x
);
4141 if (any_uncondjump_p (insn
) || GET_CODE (x
) == RETURN
)
4142 return emit_barrier ();
4145 else if (code
== CALL_INSN
)
4146 return emit_call_insn (x
);
4151 /* Begin emitting insns to a sequence which can be packaged in an
4152 RTL_EXPR. If this sequence will contain something that might cause
4153 the compiler to pop arguments to function calls (because those
4154 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4155 details), use do_pending_stack_adjust before calling this function.
4156 That will ensure that the deferred pops are not accidentally
4157 emitted in the middle of this sequence. */
4162 struct sequence_stack
*tem
;
4164 tem
= (struct sequence_stack
*) xmalloc (sizeof (struct sequence_stack
));
4166 tem
->next
= seq_stack
;
4167 tem
->first
= first_insn
;
4168 tem
->last
= last_insn
;
4169 tem
->sequence_rtl_expr
= seq_rtl_expr
;
4177 /* Similarly, but indicate that this sequence will be placed in T, an
4178 RTL_EXPR. See the documentation for start_sequence for more
4179 information about how to use this function. */
4182 start_sequence_for_rtl_expr (t
)
4190 /* Set up the insn chain starting with FIRST as the current sequence,
4191 saving the previously current one. See the documentation for
4192 start_sequence for more information about how to use this function. */
4195 push_to_sequence (first
)
4202 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
));
4208 /* Set up the insn chain from a chain stort in FIRST to LAST. */
4211 push_to_full_sequence (first
, last
)
4217 /* We really should have the end of the insn chain here. */
4218 if (last
&& NEXT_INSN (last
))
4222 /* Set up the outer-level insn chain
4223 as the current sequence, saving the previously current one. */
4226 push_topmost_sequence ()
4228 struct sequence_stack
*stack
, *top
= NULL
;
4232 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
4235 first_insn
= top
->first
;
4236 last_insn
= top
->last
;
4237 seq_rtl_expr
= top
->sequence_rtl_expr
;
4240 /* After emitting to the outer-level insn chain, update the outer-level
4241 insn chain, and restore the previous saved state. */
4244 pop_topmost_sequence ()
4246 struct sequence_stack
*stack
, *top
= NULL
;
4248 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
4251 top
->first
= first_insn
;
4252 top
->last
= last_insn
;
4253 /* ??? Why don't we save seq_rtl_expr here? */
4258 /* After emitting to a sequence, restore previous saved state.
4260 To get the contents of the sequence just made, you must call
4261 `gen_sequence' *before* calling here.
4263 If the compiler might have deferred popping arguments while
4264 generating this sequence, and this sequence will not be immediately
4265 inserted into the instruction stream, use do_pending_stack_adjust
4266 before calling gen_sequence. That will ensure that the deferred
4267 pops are inserted into this sequence, and not into some random
4268 location in the instruction stream. See INHIBIT_DEFER_POP for more
4269 information about deferred popping of arguments. */
4274 struct sequence_stack
*tem
= seq_stack
;
4276 first_insn
= tem
->first
;
4277 last_insn
= tem
->last
;
4278 seq_rtl_expr
= tem
->sequence_rtl_expr
;
4279 seq_stack
= tem
->next
;
4284 /* This works like end_sequence, but records the old sequence in FIRST
4288 end_full_sequence (first
, last
)
4291 *first
= first_insn
;
4296 /* Return 1 if currently emitting into a sequence. */
4301 return seq_stack
!= 0;
4304 /* Generate a SEQUENCE rtx containing the insns already emitted
4305 to the current sequence.
4307 This is how the gen_... function from a DEFINE_EXPAND
4308 constructs the SEQUENCE that it returns. */
4318 /* Count the insns in the chain. */
4320 for (tem
= first_insn
; tem
; tem
= NEXT_INSN (tem
))
4323 /* If only one insn, return it rather than a SEQUENCE.
4324 (Now that we cache SEQUENCE expressions, it isn't worth special-casing
4325 the case of an empty list.)
4326 We only return the pattern of an insn if its code is INSN and it
4327 has no notes. This ensures that no information gets lost. */
4329 && ! RTX_FRAME_RELATED_P (first_insn
)
4330 && GET_CODE (first_insn
) == INSN
4331 /* Don't throw away any reg notes. */
4332 && REG_NOTES (first_insn
) == 0)
4333 return PATTERN (first_insn
);
4335 result
= gen_rtx_SEQUENCE (VOIDmode
, rtvec_alloc (len
));
4337 for (i
= 0, tem
= first_insn
; tem
; tem
= NEXT_INSN (tem
), i
++)
4338 XVECEXP (result
, 0, i
) = tem
;
4343 /* Put the various virtual registers into REGNO_REG_RTX. */
4346 init_virtual_regs (es
)
4347 struct emit_status
*es
;
4349 rtx
*ptr
= es
->x_regno_reg_rtx
;
4350 ptr
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
4351 ptr
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
4352 ptr
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
4353 ptr
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
4354 ptr
[VIRTUAL_CFA_REGNUM
] = virtual_cfa_rtx
;
4358 clear_emit_caches ()
4362 /* Clear the start_sequence/gen_sequence cache. */
4363 for (i
= 0; i
< SEQUENCE_RESULT_SIZE
; i
++)
4364 sequence_result
[i
] = 0;
4368 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4369 static rtx copy_insn_scratch_in
[MAX_RECOG_OPERANDS
];
4370 static rtx copy_insn_scratch_out
[MAX_RECOG_OPERANDS
];
4371 static int copy_insn_n_scratches
;
4373 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4374 copied an ASM_OPERANDS.
4375 In that case, it is the original input-operand vector. */
4376 static rtvec orig_asm_operands_vector
;
4378 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4379 copied an ASM_OPERANDS.
4380 In that case, it is the copied input-operand vector. */
4381 static rtvec copy_asm_operands_vector
;
4383 /* Likewise for the constraints vector. */
4384 static rtvec orig_asm_constraints_vector
;
4385 static rtvec copy_asm_constraints_vector
;
4387 /* Recursively create a new copy of an rtx for copy_insn.
4388 This function differs from copy_rtx in that it handles SCRATCHes and
4389 ASM_OPERANDs properly.
4390 Normally, this function is not used directly; use copy_insn as front end.
4391 However, you could first copy an insn pattern with copy_insn and then use
4392 this function afterwards to properly copy any REG_NOTEs containing
4402 const char *format_ptr
;
4404 code
= GET_CODE (orig
);
4420 for (i
= 0; i
< copy_insn_n_scratches
; i
++)
4421 if (copy_insn_scratch_in
[i
] == orig
)
4422 return copy_insn_scratch_out
[i
];
4426 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4427 a LABEL_REF, it isn't sharable. */
4428 if (GET_CODE (XEXP (orig
, 0)) == PLUS
4429 && GET_CODE (XEXP (XEXP (orig
, 0), 0)) == SYMBOL_REF
4430 && GET_CODE (XEXP (XEXP (orig
, 0), 1)) == CONST_INT
)
4434 /* A MEM with a constant address is not sharable. The problem is that
4435 the constant address may need to be reloaded. If the mem is shared,
4436 then reloading one copy of this mem will cause all copies to appear
4437 to have been reloaded. */
4443 copy
= rtx_alloc (code
);
4445 /* Copy the various flags, and other information. We assume that
4446 all fields need copying, and then clear the fields that should
4447 not be copied. That is the sensible default behavior, and forces
4448 us to explicitly document why we are *not* copying a flag. */
4449 memcpy (copy
, orig
, sizeof (struct rtx_def
) - sizeof (rtunion
));
4451 /* We do not copy the USED flag, which is used as a mark bit during
4452 walks over the RTL. */
4455 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4456 if (GET_RTX_CLASS (code
) == 'i')
4460 copy
->frame_related
= 0;
4463 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
4465 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
4467 copy
->fld
[i
] = orig
->fld
[i
];
4468 switch (*format_ptr
++)
4471 if (XEXP (orig
, i
) != NULL
)
4472 XEXP (copy
, i
) = copy_insn_1 (XEXP (orig
, i
));
4477 if (XVEC (orig
, i
) == orig_asm_constraints_vector
)
4478 XVEC (copy
, i
) = copy_asm_constraints_vector
;
4479 else if (XVEC (orig
, i
) == orig_asm_operands_vector
)
4480 XVEC (copy
, i
) = copy_asm_operands_vector
;
4481 else if (XVEC (orig
, i
) != NULL
)
4483 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
4484 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
4485 XVECEXP (copy
, i
, j
) = copy_insn_1 (XVECEXP (orig
, i
, j
));
4496 /* These are left unchanged. */
4504 if (code
== SCRATCH
)
4506 i
= copy_insn_n_scratches
++;
4507 if (i
>= MAX_RECOG_OPERANDS
)
4509 copy_insn_scratch_in
[i
] = orig
;
4510 copy_insn_scratch_out
[i
] = copy
;
4512 else if (code
== ASM_OPERANDS
)
4514 orig_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (orig
);
4515 copy_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (copy
);
4516 orig_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig
);
4517 copy_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy
);
4523 /* Create a new copy of an rtx.
4524 This function differs from copy_rtx in that it handles SCRATCHes and
4525 ASM_OPERANDs properly.
4526 INSN doesn't really have to be a full INSN; it could be just the
4532 copy_insn_n_scratches
= 0;
4533 orig_asm_operands_vector
= 0;
4534 orig_asm_constraints_vector
= 0;
4535 copy_asm_operands_vector
= 0;
4536 copy_asm_constraints_vector
= 0;
4537 return copy_insn_1 (insn
);
4540 /* Initialize data structures and variables in this file
4541 before generating rtl for each function. */
4546 struct function
*f
= cfun
;
4548 f
->emit
= (struct emit_status
*) xmalloc (sizeof (struct emit_status
));
4551 seq_rtl_expr
= NULL
;
4553 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
4556 first_label_num
= label_num
;
4560 clear_emit_caches ();
4562 /* Init the tables that describe all the pseudo regs. */
4564 f
->emit
->regno_pointer_align_length
= LAST_VIRTUAL_REGISTER
+ 101;
4566 f
->emit
->regno_pointer_align
4567 = (unsigned char *) xcalloc (f
->emit
->regno_pointer_align_length
,
4568 sizeof (unsigned char));
4571 = (rtx
*) xcalloc (f
->emit
->regno_pointer_align_length
, sizeof (rtx
));
4574 = (tree
*) xcalloc (f
->emit
->regno_pointer_align_length
, sizeof (tree
));
4576 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
4577 init_virtual_regs (f
->emit
);
4579 /* Indicate that the virtual registers and stack locations are
4581 REG_POINTER (stack_pointer_rtx
) = 1;
4582 REG_POINTER (frame_pointer_rtx
) = 1;
4583 REG_POINTER (hard_frame_pointer_rtx
) = 1;
4584 REG_POINTER (arg_pointer_rtx
) = 1;
4586 REG_POINTER (virtual_incoming_args_rtx
) = 1;
4587 REG_POINTER (virtual_stack_vars_rtx
) = 1;
4588 REG_POINTER (virtual_stack_dynamic_rtx
) = 1;
4589 REG_POINTER (virtual_outgoing_args_rtx
) = 1;
4590 REG_POINTER (virtual_cfa_rtx
) = 1;
4592 #ifdef STACK_BOUNDARY
4593 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
;
4594 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
4595 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
4596 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
;
4598 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
) = STACK_BOUNDARY
;
4599 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
) = STACK_BOUNDARY
;
4600 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
) = STACK_BOUNDARY
;
4601 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
) = STACK_BOUNDARY
;
4602 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM
) = BITS_PER_WORD
;
4605 #ifdef INIT_EXPANDERS
4610 /* Mark SS for GC. */
4613 mark_sequence_stack (ss
)
4614 struct sequence_stack
*ss
;
4618 ggc_mark_rtx (ss
->first
);
4619 ggc_mark_tree (ss
->sequence_rtl_expr
);
4624 /* Mark ES for GC. */
4627 mark_emit_status (es
)
4628 struct emit_status
*es
;
4637 for (i
= es
->regno_pointer_align_length
, r
= es
->x_regno_reg_rtx
,
4639 i
> 0; --i
, ++r
, ++t
)
4645 mark_sequence_stack (es
->sequence_stack
);
4646 ggc_mark_tree (es
->sequence_rtl_expr
);
4647 ggc_mark_rtx (es
->x_first_insn
);
4650 /* Create some permanent unique rtl objects shared between all functions.
4651 LINE_NUMBERS is nonzero if line numbers are to be generated. */
4654 init_emit_once (line_numbers
)
4658 enum machine_mode mode
;
4659 enum machine_mode double_mode
;
4661 /* Initialize the CONST_INT and memory attribute hash tables. */
4662 const_int_htab
= htab_create (37, const_int_htab_hash
,
4663 const_int_htab_eq
, NULL
);
4664 ggc_add_deletable_htab (const_int_htab
, 0, 0);
4666 mem_attrs_htab
= htab_create (37, mem_attrs_htab_hash
,
4667 mem_attrs_htab_eq
, NULL
);
4668 ggc_add_deletable_htab (mem_attrs_htab
, 0, mem_attrs_mark
);
4670 no_line_numbers
= ! line_numbers
;
4672 /* Compute the word and byte modes. */
4674 byte_mode
= VOIDmode
;
4675 word_mode
= VOIDmode
;
4676 double_mode
= VOIDmode
;
4678 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
4679 mode
= GET_MODE_WIDER_MODE (mode
))
4681 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
4682 && byte_mode
== VOIDmode
)
4685 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
4686 && word_mode
== VOIDmode
)
4690 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
4691 mode
= GET_MODE_WIDER_MODE (mode
))
4693 if (GET_MODE_BITSIZE (mode
) == DOUBLE_TYPE_SIZE
4694 && double_mode
== VOIDmode
)
4698 ptr_mode
= mode_for_size (POINTER_SIZE
, GET_MODE_CLASS (Pmode
), 0);
4700 /* Assign register numbers to the globally defined register rtx.
4701 This must be done at runtime because the register number field
4702 is in a union and some compilers can't initialize unions. */
4704 pc_rtx
= gen_rtx (PC
, VOIDmode
);
4705 cc0_rtx
= gen_rtx (CC0
, VOIDmode
);
4706 stack_pointer_rtx
= gen_raw_REG (Pmode
, STACK_POINTER_REGNUM
);
4707 frame_pointer_rtx
= gen_raw_REG (Pmode
, FRAME_POINTER_REGNUM
);
4708 if (hard_frame_pointer_rtx
== 0)
4709 hard_frame_pointer_rtx
= gen_raw_REG (Pmode
,
4710 HARD_FRAME_POINTER_REGNUM
);
4711 if (arg_pointer_rtx
== 0)
4712 arg_pointer_rtx
= gen_raw_REG (Pmode
, ARG_POINTER_REGNUM
);
4713 virtual_incoming_args_rtx
=
4714 gen_raw_REG (Pmode
, VIRTUAL_INCOMING_ARGS_REGNUM
);
4715 virtual_stack_vars_rtx
=
4716 gen_raw_REG (Pmode
, VIRTUAL_STACK_VARS_REGNUM
);
4717 virtual_stack_dynamic_rtx
=
4718 gen_raw_REG (Pmode
, VIRTUAL_STACK_DYNAMIC_REGNUM
);
4719 virtual_outgoing_args_rtx
=
4720 gen_raw_REG (Pmode
, VIRTUAL_OUTGOING_ARGS_REGNUM
);
4721 virtual_cfa_rtx
= gen_raw_REG (Pmode
, VIRTUAL_CFA_REGNUM
);
4723 /* These rtx must be roots if GC is enabled. */
4724 ggc_add_rtx_root (global_rtl
, GR_MAX
);
4726 #ifdef INIT_EXPANDERS
4727 /* This is to initialize {init|mark|free}_machine_status before the first
4728 call to push_function_context_to. This is needed by the Chill front
4729 end which calls push_function_context_to before the first call to
4730 init_function_start. */
4734 /* Create the unique rtx's for certain rtx codes and operand values. */
4736 /* Don't use gen_rtx here since gen_rtx in this case
4737 tries to use these variables. */
4738 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
4739 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] =
4740 gen_rtx_raw_CONST_INT (VOIDmode
, i
);
4741 ggc_add_rtx_root (const_int_rtx
, 2 * MAX_SAVED_CONST_INT
+ 1);
4743 if (STORE_FLAG_VALUE
>= - MAX_SAVED_CONST_INT
4744 && STORE_FLAG_VALUE
<= MAX_SAVED_CONST_INT
)
4745 const_true_rtx
= const_int_rtx
[STORE_FLAG_VALUE
+ MAX_SAVED_CONST_INT
];
4747 const_true_rtx
= gen_rtx_CONST_INT (VOIDmode
, STORE_FLAG_VALUE
);
4749 dconst0
= REAL_VALUE_ATOF ("0", double_mode
);
4750 dconst1
= REAL_VALUE_ATOF ("1", double_mode
);
4751 dconst2
= REAL_VALUE_ATOF ("2", double_mode
);
4752 dconstm1
= REAL_VALUE_ATOF ("-1", double_mode
);
4754 for (i
= 0; i
<= 2; i
++)
4756 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
4757 mode
= GET_MODE_WIDER_MODE (mode
))
4759 rtx tem
= rtx_alloc (CONST_DOUBLE
);
4760 union real_extract u
;
4762 /* Zero any holes in a structure. */
4763 memset ((char *) &u
, 0, sizeof u
);
4764 u
.d
= i
== 0 ? dconst0
: i
== 1 ? dconst1
: dconst2
;
4766 /* Avoid trailing garbage in the rtx. */
4767 if (sizeof (u
) < sizeof (HOST_WIDE_INT
))
4768 CONST_DOUBLE_LOW (tem
) = 0;
4769 if (sizeof (u
) < 2 * sizeof (HOST_WIDE_INT
))
4770 CONST_DOUBLE_HIGH (tem
) = 0;
4772 memcpy (&CONST_DOUBLE_LOW (tem
), &u
, sizeof u
);
4773 CONST_DOUBLE_CHAIN (tem
) = NULL_RTX
;
4774 PUT_MODE (tem
, mode
);
4776 const_tiny_rtx
[i
][(int) mode
] = tem
;
4779 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
4781 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
4782 mode
= GET_MODE_WIDER_MODE (mode
))
4783 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
4785 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT
);
4787 mode
= GET_MODE_WIDER_MODE (mode
))
4788 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
4791 for (i
= (int) CCmode
; i
< (int) MAX_MACHINE_MODE
; ++i
)
4792 if (GET_MODE_CLASS ((enum machine_mode
) i
) == MODE_CC
)
4793 const_tiny_rtx
[0][i
] = const0_rtx
;
4795 const_tiny_rtx
[0][(int) BImode
] = const0_rtx
;
4796 if (STORE_FLAG_VALUE
== 1)
4797 const_tiny_rtx
[1][(int) BImode
] = const1_rtx
;
4799 /* For bounded pointers, `&const_tiny_rtx[0][0]' is not the same as
4800 `(rtx *) const_tiny_rtx'. The former has bounds that only cover
4801 `const_tiny_rtx[0]', whereas the latter has bounds that cover all. */
4802 ggc_add_rtx_root ((rtx
*) const_tiny_rtx
, sizeof const_tiny_rtx
/ sizeof (rtx
));
4803 ggc_add_rtx_root (&const_true_rtx
, 1);
4805 #ifdef RETURN_ADDRESS_POINTER_REGNUM
4806 return_address_pointer_rtx
4807 = gen_raw_REG (Pmode
, RETURN_ADDRESS_POINTER_REGNUM
);
4811 struct_value_rtx
= STRUCT_VALUE
;
4813 struct_value_rtx
= gen_rtx_REG (Pmode
, STRUCT_VALUE_REGNUM
);
4816 #ifdef STRUCT_VALUE_INCOMING
4817 struct_value_incoming_rtx
= STRUCT_VALUE_INCOMING
;
4819 #ifdef STRUCT_VALUE_INCOMING_REGNUM
4820 struct_value_incoming_rtx
4821 = gen_rtx_REG (Pmode
, STRUCT_VALUE_INCOMING_REGNUM
);
4823 struct_value_incoming_rtx
= struct_value_rtx
;
4827 #ifdef STATIC_CHAIN_REGNUM
4828 static_chain_rtx
= gen_rtx_REG (Pmode
, STATIC_CHAIN_REGNUM
);
4830 #ifdef STATIC_CHAIN_INCOMING_REGNUM
4831 if (STATIC_CHAIN_INCOMING_REGNUM
!= STATIC_CHAIN_REGNUM
)
4832 static_chain_incoming_rtx
4833 = gen_rtx_REG (Pmode
, STATIC_CHAIN_INCOMING_REGNUM
);
4836 static_chain_incoming_rtx
= static_chain_rtx
;
4840 static_chain_rtx
= STATIC_CHAIN
;
4842 #ifdef STATIC_CHAIN_INCOMING
4843 static_chain_incoming_rtx
= STATIC_CHAIN_INCOMING
;
4845 static_chain_incoming_rtx
= static_chain_rtx
;
4849 if (PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
)
4850 pic_offset_table_rtx
= gen_rtx_REG (Pmode
, PIC_OFFSET_TABLE_REGNUM
);
4852 ggc_add_rtx_root (&pic_offset_table_rtx
, 1);
4853 ggc_add_rtx_root (&struct_value_rtx
, 1);
4854 ggc_add_rtx_root (&struct_value_incoming_rtx
, 1);
4855 ggc_add_rtx_root (&static_chain_rtx
, 1);
4856 ggc_add_rtx_root (&static_chain_incoming_rtx
, 1);
4857 ggc_add_rtx_root (&return_address_pointer_rtx
, 1);
4860 /* Query and clear/ restore no_line_numbers. This is used by the
4861 switch / case handling in stmt.c to give proper line numbers in
4862 warnings about unreachable code. */
4865 force_line_numbers ()
4867 int old
= no_line_numbers
;
4869 no_line_numbers
= 0;
4871 force_next_line_note ();
4876 restore_line_number_status (old_value
)
4879 no_line_numbers
= old_value
;