1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
3 Contributed by John Carr (jfc@mit.edu).
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
30 #include "hard-reg-set.h"
31 #include "basic-block.h"
36 #include "splay-tree.h"
38 #include "langhooks.h"
40 /* The alias sets assigned to MEMs assist the back-end in determining
41 which MEMs can alias which other MEMs. In general, two MEMs in
42 different alias sets cannot alias each other, with one important
43 exception. Consider something like:
45 struct S {int i; double d; };
47 a store to an `S' can alias something of either type `int' or type
48 `double'. (However, a store to an `int' cannot alias a `double'
49 and vice versa.) We indicate this via a tree structure that looks
57 (The arrows are directed and point downwards.)
58 In this situation we say the alias set for `struct S' is the
59 `superset' and that those for `int' and `double' are `subsets'.
61 To see whether two alias sets can point to the same memory, we must
62 see if either alias set is a subset of the other. We need not trace
63 past immediate descendents, however, since we propagate all
64 grandchildren up one level.
66 Alias set zero is implicitly a superset of all other alias sets.
67 However, this is no actual entry for alias set zero. It is an
68 error to attempt to explicitly construct a subset of zero. */
70 typedef struct alias_set_entry
72 /* The alias set number, as stored in MEM_ALIAS_SET. */
73 HOST_WIDE_INT alias_set
;
75 /* The children of the alias set. These are not just the immediate
76 children, but, in fact, all descendents. So, if we have:
78 struct T { struct S s; float f; }
80 continuing our example above, the children here will be all of
81 `int', `double', `float', and `struct S'. */
84 /* Nonzero if would have a child of zero: this effectively makes this
85 alias set the same as alias set zero. */
89 static int rtx_equal_for_memref_p
PARAMS ((rtx
, rtx
));
90 static rtx find_symbolic_term
PARAMS ((rtx
));
91 rtx get_addr
PARAMS ((rtx
));
92 static int memrefs_conflict_p
PARAMS ((int, rtx
, int, rtx
,
94 static void record_set
PARAMS ((rtx
, rtx
, void *));
95 static rtx find_base_term
PARAMS ((rtx
));
96 static int base_alias_check
PARAMS ((rtx
, rtx
, enum machine_mode
,
98 static rtx find_base_value
PARAMS ((rtx
));
99 static int mems_in_disjoint_alias_sets_p
PARAMS ((rtx
, rtx
));
100 static int insert_subset_children
PARAMS ((splay_tree_node
, void*));
101 static tree find_base_decl
PARAMS ((tree
));
102 static alias_set_entry get_alias_set_entry
PARAMS ((HOST_WIDE_INT
));
103 static rtx fixed_scalar_and_varying_struct_p
PARAMS ((rtx
, rtx
, rtx
, rtx
,
104 int (*) (rtx
, int)));
105 static int aliases_everything_p
PARAMS ((rtx
));
106 static bool nonoverlapping_component_refs_p
PARAMS ((tree
, tree
));
107 static tree decl_for_component_ref
PARAMS ((tree
));
108 static rtx adjust_offset_for_component_ref
PARAMS ((tree
, rtx
));
109 static int nonoverlapping_memrefs_p
PARAMS ((rtx
, rtx
));
110 static int write_dependence_p
PARAMS ((rtx
, rtx
, int));
111 static int nonlocal_mentioned_p
PARAMS ((rtx
));
113 /* Set up all info needed to perform alias analysis on memory references. */
115 /* Returns the size in bytes of the mode of X. */
116 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
118 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
119 different alias sets. We ignore alias sets in functions making use
120 of variable arguments because the va_arg macros on some systems are
122 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
123 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
125 /* Cap the number of passes we make over the insns propagating alias
126 information through set chains. 10 is a completely arbitrary choice. */
127 #define MAX_ALIAS_LOOP_PASSES 10
129 /* reg_base_value[N] gives an address to which register N is related.
130 If all sets after the first add or subtract to the current value
131 or otherwise modify it so it does not point to a different top level
132 object, reg_base_value[N] is equal to the address part of the source
135 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
136 expressions represent certain special values: function arguments and
137 the stack, frame, and argument pointers.
139 The contents of an ADDRESS is not normally used, the mode of the
140 ADDRESS determines whether the ADDRESS is a function argument or some
141 other special value. Pointer equality, not rtx_equal_p, determines whether
142 two ADDRESS expressions refer to the same base address.
144 The only use of the contents of an ADDRESS is for determining if the
145 current function performs nonlocal memory memory references for the
146 purposes of marking the function as a constant function. */
148 static rtx
*reg_base_value
;
149 static rtx
*new_reg_base_value
;
150 static unsigned int reg_base_value_size
; /* size of reg_base_value array */
152 #define REG_BASE_VALUE(X) \
153 (REGNO (X) < reg_base_value_size \
154 ? reg_base_value[REGNO (X)] : 0)
156 /* Vector of known invariant relationships between registers. Set in
157 loop unrolling. Indexed by register number, if nonzero the value
158 is an expression describing this register in terms of another.
160 The length of this array is REG_BASE_VALUE_SIZE.
162 Because this array contains only pseudo registers it has no effect
164 static rtx
*alias_invariant
;
166 /* Vector indexed by N giving the initial (unchanging) value known for
167 pseudo-register N. This array is initialized in
168 init_alias_analysis, and does not change until end_alias_analysis
170 rtx
*reg_known_value
;
172 /* Indicates number of valid entries in reg_known_value. */
173 static unsigned int reg_known_value_size
;
175 /* Vector recording for each reg_known_value whether it is due to a
176 REG_EQUIV note. Future passes (viz., reload) may replace the
177 pseudo with the equivalent expression and so we account for the
178 dependences that would be introduced if that happens.
180 The REG_EQUIV notes created in assign_parms may mention the arg
181 pointer, and there are explicit insns in the RTL that modify the
182 arg pointer. Thus we must ensure that such insns don't get
183 scheduled across each other because that would invalidate the
184 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
185 wrong, but solving the problem in the scheduler will likely give
186 better code, so we do it here. */
187 char *reg_known_equiv_p
;
189 /* True when scanning insns from the start of the rtl to the
190 NOTE_INSN_FUNCTION_BEG note. */
191 static int copying_arguments
;
193 /* The splay-tree used to store the various alias set entries. */
194 static splay_tree alias_sets
;
196 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
197 such an entry, or NULL otherwise. */
199 static alias_set_entry
200 get_alias_set_entry (alias_set
)
201 HOST_WIDE_INT alias_set
;
204 = splay_tree_lookup (alias_sets
, (splay_tree_key
) alias_set
);
206 return sn
!= 0 ? ((alias_set_entry
) sn
->value
) : 0;
209 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
210 the two MEMs cannot alias each other. */
213 mems_in_disjoint_alias_sets_p (mem1
, mem2
)
217 #ifdef ENABLE_CHECKING
218 /* Perform a basic sanity check. Namely, that there are no alias sets
219 if we're not using strict aliasing. This helps to catch bugs
220 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
221 where a MEM is allocated in some way other than by the use of
222 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
223 use alias sets to indicate that spilled registers cannot alias each
224 other, we might need to remove this check. */
225 if (! flag_strict_aliasing
226 && (MEM_ALIAS_SET (mem1
) != 0 || MEM_ALIAS_SET (mem2
) != 0))
230 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1
), MEM_ALIAS_SET (mem2
));
233 /* Insert the NODE into the splay tree given by DATA. Used by
234 record_alias_subset via splay_tree_foreach. */
237 insert_subset_children (node
, data
)
238 splay_tree_node node
;
241 splay_tree_insert ((splay_tree
) data
, node
->key
, node
->value
);
246 /* Return 1 if the two specified alias sets may conflict. */
249 alias_sets_conflict_p (set1
, set2
)
250 HOST_WIDE_INT set1
, set2
;
254 /* If have no alias set information for one of the operands, we have
255 to assume it can alias anything. */
256 if (set1
== 0 || set2
== 0
257 /* If the two alias sets are the same, they may alias. */
261 /* See if the first alias set is a subset of the second. */
262 ase
= get_alias_set_entry (set1
);
264 && (ase
->has_zero_child
265 || splay_tree_lookup (ase
->children
,
266 (splay_tree_key
) set2
)))
269 /* Now do the same, but with the alias sets reversed. */
270 ase
= get_alias_set_entry (set2
);
272 && (ase
->has_zero_child
273 || splay_tree_lookup (ase
->children
,
274 (splay_tree_key
) set1
)))
277 /* The two alias sets are distinct and neither one is the
278 child of the other. Therefore, they cannot alias. */
282 /* Return 1 if TYPE is a RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE and has
283 has any readonly fields. If any of the fields have types that
284 contain readonly fields, return true as well. */
287 readonly_fields_p (type
)
292 if (TREE_CODE (type
) != RECORD_TYPE
&& TREE_CODE (type
) != UNION_TYPE
293 && TREE_CODE (type
) != QUAL_UNION_TYPE
)
296 for (field
= TYPE_FIELDS (type
); field
!= 0; field
= TREE_CHAIN (field
))
297 if (TREE_CODE (field
) == FIELD_DECL
298 && (TREE_READONLY (field
)
299 || readonly_fields_p (TREE_TYPE (field
))))
305 /* Return 1 if any MEM object of type T1 will always conflict (using the
306 dependency routines in this file) with any MEM object of type T2.
307 This is used when allocating temporary storage. If T1 and/or T2 are
308 NULL_TREE, it means we know nothing about the storage. */
311 objects_must_conflict_p (t1
, t2
)
314 /* If neither has a type specified, we don't know if they'll conflict
315 because we may be using them to store objects of various types, for
316 example the argument and local variables areas of inlined functions. */
317 if (t1
== 0 && t2
== 0)
320 /* If one or the other has readonly fields or is readonly,
321 then they may not conflict. */
322 if ((t1
!= 0 && readonly_fields_p (t1
))
323 || (t2
!= 0 && readonly_fields_p (t2
))
324 || (t1
!= 0 && TYPE_READONLY (t1
))
325 || (t2
!= 0 && TYPE_READONLY (t2
)))
328 /* If they are the same type, they must conflict. */
330 /* Likewise if both are volatile. */
331 || (t1
!= 0 && TYPE_VOLATILE (t1
) && t2
!= 0 && TYPE_VOLATILE (t2
)))
334 /* If one is aggregate and the other is scalar then they may not
336 if ((t1
!= 0 && AGGREGATE_TYPE_P (t1
))
337 != (t2
!= 0 && AGGREGATE_TYPE_P (t2
)))
340 /* Otherwise they conflict only if the alias sets conflict. */
341 return alias_sets_conflict_p (t1
? get_alias_set (t1
) : 0,
342 t2
? get_alias_set (t2
) : 0);
345 /* T is an expression with pointer type. Find the DECL on which this
346 expression is based. (For example, in `a[i]' this would be `a'.)
347 If there is no such DECL, or a unique decl cannot be determined,
348 NULL_TREE is returned. */
356 if (t
== 0 || t
== error_mark_node
|| ! POINTER_TYPE_P (TREE_TYPE (t
)))
359 /* If this is a declaration, return it. */
360 if (TREE_CODE_CLASS (TREE_CODE (t
)) == 'd')
363 /* Handle general expressions. It would be nice to deal with
364 COMPONENT_REFs here. If we could tell that `a' and `b' were the
365 same, then `a->f' and `b->f' are also the same. */
366 switch (TREE_CODE_CLASS (TREE_CODE (t
)))
369 return find_base_decl (TREE_OPERAND (t
, 0));
372 /* Return 0 if found in neither or both are the same. */
373 d0
= find_base_decl (TREE_OPERAND (t
, 0));
374 d1
= find_base_decl (TREE_OPERAND (t
, 1));
385 d0
= find_base_decl (TREE_OPERAND (t
, 0));
386 d1
= find_base_decl (TREE_OPERAND (t
, 1));
387 d2
= find_base_decl (TREE_OPERAND (t
, 2));
389 /* Set any nonzero values from the last, then from the first. */
390 if (d1
== 0) d1
= d2
;
391 if (d0
== 0) d0
= d1
;
392 if (d1
== 0) d1
= d0
;
393 if (d2
== 0) d2
= d1
;
395 /* At this point all are nonzero or all are zero. If all three are the
396 same, return it. Otherwise, return zero. */
397 return (d0
== d1
&& d1
== d2
) ? d0
: 0;
404 /* Return 1 if all the nested component references handled by
405 get_inner_reference in T are such that we can address the object in T. */
411 /* If we're at the end, it is vacuously addressable. */
412 if (! handled_component_p (t
))
415 /* Bitfields are never addressable. */
416 else if (TREE_CODE (t
) == BIT_FIELD_REF
)
419 /* Fields are addressable unless they are marked as nonaddressable or
420 the containing type has alias set 0. */
421 else if (TREE_CODE (t
) == COMPONENT_REF
422 && ! DECL_NONADDRESSABLE_P (TREE_OPERAND (t
, 1))
423 && get_alias_set (TREE_TYPE (TREE_OPERAND (t
, 0))) != 0
424 && can_address_p (TREE_OPERAND (t
, 0)))
427 /* Likewise for arrays. */
428 else if ((TREE_CODE (t
) == ARRAY_REF
|| TREE_CODE (t
) == ARRAY_RANGE_REF
)
429 && ! TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t
, 0)))
430 && get_alias_set (TREE_TYPE (TREE_OPERAND (t
, 0))) != 0
431 && can_address_p (TREE_OPERAND (t
, 0)))
437 /* Return the alias set for T, which may be either a type or an
438 expression. Call language-specific routine for help, if needed. */
446 /* If we're not doing any alias analysis, just assume everything
447 aliases everything else. Also return 0 if this or its type is
449 if (! flag_strict_aliasing
|| t
== error_mark_node
451 && (TREE_TYPE (t
) == 0 || TREE_TYPE (t
) == error_mark_node
)))
454 /* We can be passed either an expression or a type. This and the
455 language-specific routine may make mutually-recursive calls to each other
456 to figure out what to do. At each juncture, we see if this is a tree
457 that the language may need to handle specially. First handle things that
462 tree placeholder_ptr
= 0;
464 /* Remove any nops, then give the language a chance to do
465 something with this tree before we look at it. */
467 set
= (*lang_hooks
.get_alias_set
) (t
);
471 /* First see if the actual object referenced is an INDIRECT_REF from a
472 restrict-qualified pointer or a "void *". Replace
473 PLACEHOLDER_EXPRs. */
474 while (TREE_CODE (inner
) == PLACEHOLDER_EXPR
475 || handled_component_p (inner
))
477 if (TREE_CODE (inner
) == PLACEHOLDER_EXPR
)
478 inner
= find_placeholder (inner
, &placeholder_ptr
);
480 inner
= TREE_OPERAND (inner
, 0);
485 /* Check for accesses through restrict-qualified pointers. */
486 if (TREE_CODE (inner
) == INDIRECT_REF
)
488 tree decl
= find_base_decl (TREE_OPERAND (inner
, 0));
490 if (decl
&& DECL_POINTER_ALIAS_SET_KNOWN_P (decl
))
492 /* If we haven't computed the actual alias set, do it now. */
493 if (DECL_POINTER_ALIAS_SET (decl
) == -2)
495 /* No two restricted pointers can point at the same thing.
496 However, a restricted pointer can point at the same thing
497 as an unrestricted pointer, if that unrestricted pointer
498 is based on the restricted pointer. So, we make the
499 alias set for the restricted pointer a subset of the
500 alias set for the type pointed to by the type of the
502 HOST_WIDE_INT pointed_to_alias_set
503 = get_alias_set (TREE_TYPE (TREE_TYPE (decl
)));
505 if (pointed_to_alias_set
== 0)
506 /* It's not legal to make a subset of alias set zero. */
510 DECL_POINTER_ALIAS_SET (decl
) = new_alias_set ();
511 record_alias_subset (pointed_to_alias_set
,
512 DECL_POINTER_ALIAS_SET (decl
));
516 /* We use the alias set indicated in the declaration. */
517 return DECL_POINTER_ALIAS_SET (decl
);
520 /* If we have an INDIRECT_REF via a void pointer, we don't
521 know anything about what that might alias. */
522 else if (TREE_CODE (TREE_TYPE (inner
)) == VOID_TYPE
)
526 /* Otherwise, pick up the outermost object that we could have a pointer
527 to, processing conversion and PLACEHOLDER_EXPR as above. */
529 while (TREE_CODE (t
) == PLACEHOLDER_EXPR
530 || (handled_component_p (t
) && ! can_address_p (t
)))
532 if (TREE_CODE (t
) == PLACEHOLDER_EXPR
)
533 t
= find_placeholder (t
, &placeholder_ptr
);
535 t
= TREE_OPERAND (t
, 0);
540 /* If we've already determined the alias set for a decl, just return
541 it. This is necessary for C++ anonymous unions, whose component
542 variables don't look like union members (boo!). */
543 if (TREE_CODE (t
) == VAR_DECL
544 && DECL_RTL_SET_P (t
) && GET_CODE (DECL_RTL (t
)) == MEM
)
545 return MEM_ALIAS_SET (DECL_RTL (t
));
547 /* Now all we care about is the type. */
551 /* Variant qualifiers don't affect the alias set, so get the main
552 variant. If this is a type with a known alias set, return it. */
553 t
= TYPE_MAIN_VARIANT (t
);
554 if (TYPE_ALIAS_SET_KNOWN_P (t
))
555 return TYPE_ALIAS_SET (t
);
557 /* See if the language has special handling for this type. */
558 set
= (*lang_hooks
.get_alias_set
) (t
);
562 /* There are no objects of FUNCTION_TYPE, so there's no point in
563 using up an alias set for them. (There are, of course, pointers
564 and references to functions, but that's different.) */
565 else if (TREE_CODE (t
) == FUNCTION_TYPE
)
568 /* Otherwise make a new alias set for this type. */
569 set
= new_alias_set ();
571 TYPE_ALIAS_SET (t
) = set
;
573 /* If this is an aggregate type, we must record any component aliasing
575 if (AGGREGATE_TYPE_P (t
) || TREE_CODE (t
) == COMPLEX_TYPE
)
576 record_component_aliases (t
);
581 /* Return a brand-new alias set. */
586 static HOST_WIDE_INT last_alias_set
;
588 if (flag_strict_aliasing
)
589 return ++last_alias_set
;
594 /* Indicate that things in SUBSET can alias things in SUPERSET, but
595 not vice versa. For example, in C, a store to an `int' can alias a
596 structure containing an `int', but not vice versa. Here, the
597 structure would be the SUPERSET and `int' the SUBSET. This
598 function should be called only once per SUPERSET/SUBSET pair.
600 It is illegal for SUPERSET to be zero; everything is implicitly a
601 subset of alias set zero. */
604 record_alias_subset (superset
, subset
)
605 HOST_WIDE_INT superset
;
606 HOST_WIDE_INT subset
;
608 alias_set_entry superset_entry
;
609 alias_set_entry subset_entry
;
611 /* It is possible in complex type situations for both sets to be the same,
612 in which case we can ignore this operation. */
613 if (superset
== subset
)
619 superset_entry
= get_alias_set_entry (superset
);
620 if (superset_entry
== 0)
622 /* Create an entry for the SUPERSET, so that we have a place to
623 attach the SUBSET. */
625 = (alias_set_entry
) xmalloc (sizeof (struct alias_set_entry
));
626 superset_entry
->alias_set
= superset
;
627 superset_entry
->children
628 = splay_tree_new (splay_tree_compare_ints
, 0, 0);
629 superset_entry
->has_zero_child
= 0;
630 splay_tree_insert (alias_sets
, (splay_tree_key
) superset
,
631 (splay_tree_value
) superset_entry
);
635 superset_entry
->has_zero_child
= 1;
638 subset_entry
= get_alias_set_entry (subset
);
639 /* If there is an entry for the subset, enter all of its children
640 (if they are not already present) as children of the SUPERSET. */
643 if (subset_entry
->has_zero_child
)
644 superset_entry
->has_zero_child
= 1;
646 splay_tree_foreach (subset_entry
->children
, insert_subset_children
,
647 superset_entry
->children
);
650 /* Enter the SUBSET itself as a child of the SUPERSET. */
651 splay_tree_insert (superset_entry
->children
,
652 (splay_tree_key
) subset
, 0);
656 /* Record that component types of TYPE, if any, are part of that type for
657 aliasing purposes. For record types, we only record component types
658 for fields that are marked addressable. For array types, we always
659 record the component types, so the front end should not call this
660 function if the individual component aren't addressable. */
663 record_component_aliases (type
)
666 HOST_WIDE_INT superset
= get_alias_set (type
);
672 switch (TREE_CODE (type
))
675 if (! TYPE_NONALIASED_COMPONENT (type
))
676 record_alias_subset (superset
, get_alias_set (TREE_TYPE (type
)));
681 case QUAL_UNION_TYPE
:
682 for (field
= TYPE_FIELDS (type
); field
!= 0; field
= TREE_CHAIN (field
))
683 if (TREE_CODE (field
) == FIELD_DECL
&& ! DECL_NONADDRESSABLE_P (field
))
684 record_alias_subset (superset
, get_alias_set (TREE_TYPE (field
)));
688 record_alias_subset (superset
, get_alias_set (TREE_TYPE (type
)));
696 /* Allocate an alias set for use in storing and reading from the varargs
700 get_varargs_alias_set ()
702 static HOST_WIDE_INT set
= -1;
705 set
= new_alias_set ();
710 /* Likewise, but used for the fixed portions of the frame, e.g., register
714 get_frame_alias_set ()
716 static HOST_WIDE_INT set
= -1;
719 set
= new_alias_set ();
724 /* Inside SRC, the source of a SET, find a base address. */
727 find_base_value (src
)
731 switch (GET_CODE (src
))
739 /* At the start of a function, argument registers have known base
740 values which may be lost later. Returning an ADDRESS
741 expression here allows optimization based on argument values
742 even when the argument registers are used for other purposes. */
743 if (regno
< FIRST_PSEUDO_REGISTER
&& copying_arguments
)
744 return new_reg_base_value
[regno
];
746 /* If a pseudo has a known base value, return it. Do not do this
747 for hard regs since it can result in a circular dependency
748 chain for registers which have values at function entry.
750 The test above is not sufficient because the scheduler may move
751 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
752 if (regno
>= FIRST_PSEUDO_REGISTER
753 && regno
< reg_base_value_size
754 && reg_base_value
[regno
])
755 return reg_base_value
[regno
];
760 /* Check for an argument passed in memory. Only record in the
761 copying-arguments block; it is too hard to track changes
763 if (copying_arguments
764 && (XEXP (src
, 0) == arg_pointer_rtx
765 || (GET_CODE (XEXP (src
, 0)) == PLUS
766 && XEXP (XEXP (src
, 0), 0) == arg_pointer_rtx
)))
767 return gen_rtx_ADDRESS (VOIDmode
, src
);
772 if (GET_CODE (src
) != PLUS
&& GET_CODE (src
) != MINUS
)
775 /* ... fall through ... */
780 rtx temp
, src_0
= XEXP (src
, 0), src_1
= XEXP (src
, 1);
782 /* If either operand is a REG, then see if we already have
783 a known value for it. */
784 if (GET_CODE (src_0
) == REG
)
786 temp
= find_base_value (src_0
);
791 if (GET_CODE (src_1
) == REG
)
793 temp
= find_base_value (src_1
);
798 /* Guess which operand is the base address:
799 If either operand is a symbol, then it is the base. If
800 either operand is a CONST_INT, then the other is the base. */
801 if (GET_CODE (src_1
) == CONST_INT
|| CONSTANT_P (src_0
))
802 return find_base_value (src_0
);
803 else if (GET_CODE (src_0
) == CONST_INT
|| CONSTANT_P (src_1
))
804 return find_base_value (src_1
);
806 /* This might not be necessary anymore:
807 If either operand is a REG that is a known pointer, then it
809 else if (GET_CODE (src_0
) == REG
&& REG_POINTER (src_0
))
810 return find_base_value (src_0
);
811 else if (GET_CODE (src_1
) == REG
&& REG_POINTER (src_1
))
812 return find_base_value (src_1
);
818 /* The standard form is (lo_sum reg sym) so look only at the
820 return find_base_value (XEXP (src
, 1));
823 /* If the second operand is constant set the base
824 address to the first operand. */
825 if (GET_CODE (XEXP (src
, 1)) == CONST_INT
&& INTVAL (XEXP (src
, 1)) != 0)
826 return find_base_value (XEXP (src
, 0));
830 if (GET_MODE_SIZE (GET_MODE (src
)) < GET_MODE_SIZE (Pmode
))
834 case SIGN_EXTEND
: /* used for NT/Alpha pointers */
836 return find_base_value (XEXP (src
, 0));
845 /* Called from init_alias_analysis indirectly through note_stores. */
847 /* While scanning insns to find base values, reg_seen[N] is nonzero if
848 register N has been set in this function. */
849 static char *reg_seen
;
851 /* Addresses which are known not to alias anything else are identified
852 by a unique integer. */
853 static int unique_id
;
856 record_set (dest
, set
, data
)
858 void *data ATTRIBUTE_UNUSED
;
863 if (GET_CODE (dest
) != REG
)
866 regno
= REGNO (dest
);
868 if (regno
>= reg_base_value_size
)
873 /* A CLOBBER wipes out any old value but does not prevent a previously
874 unset register from acquiring a base address (i.e. reg_seen is not
876 if (GET_CODE (set
) == CLOBBER
)
878 new_reg_base_value
[regno
] = 0;
887 new_reg_base_value
[regno
] = 0;
891 new_reg_base_value
[regno
] = gen_rtx_ADDRESS (Pmode
,
892 GEN_INT (unique_id
++));
896 /* This is not the first set. If the new value is not related to the
897 old value, forget the base value. Note that the following code is
899 extern int x, y; int *p = &x; p += (&y-&x);
900 ANSI C does not allow computing the difference of addresses
901 of distinct top level objects. */
902 if (new_reg_base_value
[regno
])
903 switch (GET_CODE (src
))
907 if (XEXP (src
, 0) != dest
&& XEXP (src
, 1) != dest
)
908 new_reg_base_value
[regno
] = 0;
911 /* If the value we add in the PLUS is also a valid base value,
912 this might be the actual base value, and the original value
915 rtx other
= NULL_RTX
;
917 if (XEXP (src
, 0) == dest
)
918 other
= XEXP (src
, 1);
919 else if (XEXP (src
, 1) == dest
)
920 other
= XEXP (src
, 0);
922 if (! other
|| find_base_value (other
))
923 new_reg_base_value
[regno
] = 0;
927 if (XEXP (src
, 0) != dest
|| GET_CODE (XEXP (src
, 1)) != CONST_INT
)
928 new_reg_base_value
[regno
] = 0;
931 new_reg_base_value
[regno
] = 0;
934 /* If this is the first set of a register, record the value. */
935 else if ((regno
>= FIRST_PSEUDO_REGISTER
|| ! fixed_regs
[regno
])
936 && ! reg_seen
[regno
] && new_reg_base_value
[regno
] == 0)
937 new_reg_base_value
[regno
] = find_base_value (src
);
942 /* Called from loop optimization when a new pseudo-register is
943 created. It indicates that REGNO is being set to VAL. f INVARIANT
944 is true then this value also describes an invariant relationship
945 which can be used to deduce that two registers with unknown values
949 record_base_value (regno
, val
, invariant
)
954 if (regno
>= reg_base_value_size
)
957 if (invariant
&& alias_invariant
)
958 alias_invariant
[regno
] = val
;
960 if (GET_CODE (val
) == REG
)
962 if (REGNO (val
) < reg_base_value_size
)
963 reg_base_value
[regno
] = reg_base_value
[REGNO (val
)];
968 reg_base_value
[regno
] = find_base_value (val
);
971 /* Clear alias info for a register. This is used if an RTL transformation
972 changes the value of a register. This is used in flow by AUTO_INC_DEC
973 optimizations. We don't need to clear reg_base_value, since flow only
974 changes the offset. */
977 clear_reg_alias_info (reg
)
980 unsigned int regno
= REGNO (reg
);
982 if (regno
< reg_known_value_size
&& regno
>= FIRST_PSEUDO_REGISTER
)
983 reg_known_value
[regno
] = reg
;
986 /* Returns a canonical version of X, from the point of view alias
987 analysis. (For example, if X is a MEM whose address is a register,
988 and the register has a known value (say a SYMBOL_REF), then a MEM
989 whose address is the SYMBOL_REF is returned.) */
995 /* Recursively look for equivalences. */
996 if (GET_CODE (x
) == REG
&& REGNO (x
) >= FIRST_PSEUDO_REGISTER
997 && REGNO (x
) < reg_known_value_size
)
998 return reg_known_value
[REGNO (x
)] == x
999 ? x
: canon_rtx (reg_known_value
[REGNO (x
)]);
1000 else if (GET_CODE (x
) == PLUS
)
1002 rtx x0
= canon_rtx (XEXP (x
, 0));
1003 rtx x1
= canon_rtx (XEXP (x
, 1));
1005 if (x0
!= XEXP (x
, 0) || x1
!= XEXP (x
, 1))
1007 if (GET_CODE (x0
) == CONST_INT
)
1008 return plus_constant (x1
, INTVAL (x0
));
1009 else if (GET_CODE (x1
) == CONST_INT
)
1010 return plus_constant (x0
, INTVAL (x1
));
1011 return gen_rtx_PLUS (GET_MODE (x
), x0
, x1
);
1015 /* This gives us much better alias analysis when called from
1016 the loop optimizer. Note we want to leave the original
1017 MEM alone, but need to return the canonicalized MEM with
1018 all the flags with their original values. */
1019 else if (GET_CODE (x
) == MEM
)
1020 x
= replace_equiv_address_nv (x
, canon_rtx (XEXP (x
, 0)));
1025 /* Return 1 if X and Y are identical-looking rtx's.
1027 We use the data in reg_known_value above to see if two registers with
1028 different numbers are, in fact, equivalent. */
1031 rtx_equal_for_memref_p (x
, y
)
1039 if (x
== 0 && y
== 0)
1041 if (x
== 0 || y
== 0)
1050 code
= GET_CODE (x
);
1051 /* Rtx's of different codes cannot be equal. */
1052 if (code
!= GET_CODE (y
))
1055 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1056 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1058 if (GET_MODE (x
) != GET_MODE (y
))
1061 /* Some RTL can be compared without a recursive examination. */
1065 return CSELIB_VAL_PTR (x
) == CSELIB_VAL_PTR (y
);
1068 return REGNO (x
) == REGNO (y
);
1071 return XEXP (x
, 0) == XEXP (y
, 0);
1074 return XSTR (x
, 0) == XSTR (y
, 0);
1078 /* There's no need to compare the contents of CONST_DOUBLEs or
1079 CONST_INTs because pointer equality is a good enough
1080 comparison for these nodes. */
1084 return (XINT (x
, 1) == XINT (y
, 1)
1085 && rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0)));
1091 /* For commutative operations, the RTX match if the operand match in any
1092 order. Also handle the simple binary and unary cases without a loop. */
1093 if (code
== EQ
|| code
== NE
|| GET_RTX_CLASS (code
) == 'c')
1094 return ((rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0))
1095 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 1)))
1096 || (rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 1))
1097 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 0))));
1098 else if (GET_RTX_CLASS (code
) == '<' || GET_RTX_CLASS (code
) == '2')
1099 return (rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0))
1100 && rtx_equal_for_memref_p (XEXP (x
, 1), XEXP (y
, 1)));
1101 else if (GET_RTX_CLASS (code
) == '1')
1102 return rtx_equal_for_memref_p (XEXP (x
, 0), XEXP (y
, 0));
1104 /* Compare the elements. If any pair of corresponding elements
1105 fail to match, return 0 for the whole things.
1107 Limit cases to types which actually appear in addresses. */
1109 fmt
= GET_RTX_FORMAT (code
);
1110 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1115 if (XINT (x
, i
) != XINT (y
, i
))
1120 /* Two vectors must have the same length. */
1121 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
1124 /* And the corresponding elements must match. */
1125 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
1126 if (rtx_equal_for_memref_p (XVECEXP (x
, i
, j
),
1127 XVECEXP (y
, i
, j
)) == 0)
1132 if (rtx_equal_for_memref_p (XEXP (x
, i
), XEXP (y
, i
)) == 0)
1136 /* This can happen for asm operands. */
1138 if (strcmp (XSTR (x
, i
), XSTR (y
, i
)))
1142 /* This can happen for an asm which clobbers memory. */
1146 /* It is believed that rtx's at this level will never
1147 contain anything but integers and other rtx's,
1148 except for within LABEL_REFs and SYMBOL_REFs. */
1156 /* Given an rtx X, find a SYMBOL_REF or LABEL_REF within
1157 X and return it, or return 0 if none found. */
1160 find_symbolic_term (x
)
1167 code
= GET_CODE (x
);
1168 if (code
== SYMBOL_REF
|| code
== LABEL_REF
)
1170 if (GET_RTX_CLASS (code
) == 'o')
1173 fmt
= GET_RTX_FORMAT (code
);
1174 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1180 t
= find_symbolic_term (XEXP (x
, i
));
1184 else if (fmt
[i
] == 'E')
1195 struct elt_loc_list
*l
;
1197 #if defined (FIND_BASE_TERM)
1198 /* Try machine-dependent ways to find the base term. */
1199 x
= FIND_BASE_TERM (x
);
1202 switch (GET_CODE (x
))
1205 return REG_BASE_VALUE (x
);
1208 case SIGN_EXTEND
: /* Used for Alpha/NT pointers */
1214 return find_base_term (XEXP (x
, 0));
1217 val
= CSELIB_VAL_PTR (x
);
1218 for (l
= val
->locs
; l
; l
= l
->next
)
1219 if ((x
= find_base_term (l
->loc
)) != 0)
1225 if (GET_CODE (x
) != PLUS
&& GET_CODE (x
) != MINUS
)
1232 rtx tmp1
= XEXP (x
, 0);
1233 rtx tmp2
= XEXP (x
, 1);
1235 /* This is a little bit tricky since we have to determine which of
1236 the two operands represents the real base address. Otherwise this
1237 routine may return the index register instead of the base register.
1239 That may cause us to believe no aliasing was possible, when in
1240 fact aliasing is possible.
1242 We use a few simple tests to guess the base register. Additional
1243 tests can certainly be added. For example, if one of the operands
1244 is a shift or multiply, then it must be the index register and the
1245 other operand is the base register. */
1247 if (tmp1
== pic_offset_table_rtx
&& CONSTANT_P (tmp2
))
1248 return find_base_term (tmp2
);
1250 /* If either operand is known to be a pointer, then use it
1251 to determine the base term. */
1252 if (REG_P (tmp1
) && REG_POINTER (tmp1
))
1253 return find_base_term (tmp1
);
1255 if (REG_P (tmp2
) && REG_POINTER (tmp2
))
1256 return find_base_term (tmp2
);
1258 /* Neither operand was known to be a pointer. Go ahead and find the
1259 base term for both operands. */
1260 tmp1
= find_base_term (tmp1
);
1261 tmp2
= find_base_term (tmp2
);
1263 /* If either base term is named object or a special address
1264 (like an argument or stack reference), then use it for the
1267 && (GET_CODE (tmp1
) == SYMBOL_REF
1268 || GET_CODE (tmp1
) == LABEL_REF
1269 || (GET_CODE (tmp1
) == ADDRESS
1270 && GET_MODE (tmp1
) != VOIDmode
)))
1274 && (GET_CODE (tmp2
) == SYMBOL_REF
1275 || GET_CODE (tmp2
) == LABEL_REF
1276 || (GET_CODE (tmp2
) == ADDRESS
1277 && GET_MODE (tmp2
) != VOIDmode
)))
1280 /* We could not determine which of the two operands was the
1281 base register and which was the index. So we can determine
1282 nothing from the base alias check. */
1287 if (GET_CODE (XEXP (x
, 0)) == REG
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
)
1288 return REG_BASE_VALUE (XEXP (x
, 0));
1296 return REG_BASE_VALUE (frame_pointer_rtx
);
1303 /* Return 0 if the addresses X and Y are known to point to different
1304 objects, 1 if they might be pointers to the same object. */
1307 base_alias_check (x
, y
, x_mode
, y_mode
)
1309 enum machine_mode x_mode
, y_mode
;
1311 rtx x_base
= find_base_term (x
);
1312 rtx y_base
= find_base_term (y
);
1314 /* If the address itself has no known base see if a known equivalent
1315 value has one. If either address still has no known base, nothing
1316 is known about aliasing. */
1321 if (! flag_expensive_optimizations
|| (x_c
= canon_rtx (x
)) == x
)
1324 x_base
= find_base_term (x_c
);
1332 if (! flag_expensive_optimizations
|| (y_c
= canon_rtx (y
)) == y
)
1335 y_base
= find_base_term (y_c
);
1340 /* If the base addresses are equal nothing is known about aliasing. */
1341 if (rtx_equal_p (x_base
, y_base
))
1344 /* The base addresses of the read and write are different expressions.
1345 If they are both symbols and they are not accessed via AND, there is
1346 no conflict. We can bring knowledge of object alignment into play
1347 here. For example, on alpha, "char a, b;" can alias one another,
1348 though "char a; long b;" cannot. */
1349 if (GET_CODE (x_base
) != ADDRESS
&& GET_CODE (y_base
) != ADDRESS
)
1351 if (GET_CODE (x
) == AND
&& GET_CODE (y
) == AND
)
1353 if (GET_CODE (x
) == AND
1354 && (GET_CODE (XEXP (x
, 1)) != CONST_INT
1355 || (int) GET_MODE_UNIT_SIZE (y_mode
) < -INTVAL (XEXP (x
, 1))))
1357 if (GET_CODE (y
) == AND
1358 && (GET_CODE (XEXP (y
, 1)) != CONST_INT
1359 || (int) GET_MODE_UNIT_SIZE (x_mode
) < -INTVAL (XEXP (y
, 1))))
1361 /* Differing symbols never alias. */
1365 /* If one address is a stack reference there can be no alias:
1366 stack references using different base registers do not alias,
1367 a stack reference can not alias a parameter, and a stack reference
1368 can not alias a global. */
1369 if ((GET_CODE (x_base
) == ADDRESS
&& GET_MODE (x_base
) == Pmode
)
1370 || (GET_CODE (y_base
) == ADDRESS
&& GET_MODE (y_base
) == Pmode
))
1373 if (! flag_argument_noalias
)
1376 if (flag_argument_noalias
> 1)
1379 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1380 return ! (GET_MODE (x_base
) == VOIDmode
&& GET_MODE (y_base
) == VOIDmode
);
1383 /* Convert the address X into something we can use. This is done by returning
1384 it unchanged unless it is a value; in the latter case we call cselib to get
1385 a more useful rtx. */
1392 struct elt_loc_list
*l
;
1394 if (GET_CODE (x
) != VALUE
)
1396 v
= CSELIB_VAL_PTR (x
);
1397 for (l
= v
->locs
; l
; l
= l
->next
)
1398 if (CONSTANT_P (l
->loc
))
1400 for (l
= v
->locs
; l
; l
= l
->next
)
1401 if (GET_CODE (l
->loc
) != REG
&& GET_CODE (l
->loc
) != MEM
)
1404 return v
->locs
->loc
;
1408 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1409 where SIZE is the size in bytes of the memory reference. If ADDR
1410 is not modified by the memory reference then ADDR is returned. */
1413 addr_side_effect_eval (addr
, size
, n_refs
)
1420 switch (GET_CODE (addr
))
1423 offset
= (n_refs
+ 1) * size
;
1426 offset
= -(n_refs
+ 1) * size
;
1429 offset
= n_refs
* size
;
1432 offset
= -n_refs
* size
;
1440 addr
= gen_rtx_PLUS (GET_MODE (addr
), XEXP (addr
, 0), GEN_INT (offset
));
1442 addr
= XEXP (addr
, 0);
1447 /* Return nonzero if X and Y (memory addresses) could reference the
1448 same location in memory. C is an offset accumulator. When
1449 C is nonzero, we are testing aliases between X and Y + C.
1450 XSIZE is the size in bytes of the X reference,
1451 similarly YSIZE is the size in bytes for Y.
1453 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1454 referenced (the reference was BLKmode), so make the most pessimistic
1457 If XSIZE or YSIZE is negative, we may access memory outside the object
1458 being referenced as a side effect. This can happen when using AND to
1459 align memory references, as is done on the Alpha.
1461 Nice to notice that varying addresses cannot conflict with fp if no
1462 local variables had their addresses taken, but that's too hard now. */
1465 memrefs_conflict_p (xsize
, x
, ysize
, y
, c
)
1470 if (GET_CODE (x
) == VALUE
)
1472 if (GET_CODE (y
) == VALUE
)
1474 if (GET_CODE (x
) == HIGH
)
1476 else if (GET_CODE (x
) == LO_SUM
)
1479 x
= canon_rtx (addr_side_effect_eval (x
, xsize
, 0));
1480 if (GET_CODE (y
) == HIGH
)
1482 else if (GET_CODE (y
) == LO_SUM
)
1485 y
= canon_rtx (addr_side_effect_eval (y
, ysize
, 0));
1487 if (rtx_equal_for_memref_p (x
, y
))
1489 if (xsize
<= 0 || ysize
<= 0)
1491 if (c
>= 0 && xsize
> c
)
1493 if (c
< 0 && ysize
+c
> 0)
1498 /* This code used to check for conflicts involving stack references and
1499 globals but the base address alias code now handles these cases. */
1501 if (GET_CODE (x
) == PLUS
)
1503 /* The fact that X is canonicalized means that this
1504 PLUS rtx is canonicalized. */
1505 rtx x0
= XEXP (x
, 0);
1506 rtx x1
= XEXP (x
, 1);
1508 if (GET_CODE (y
) == PLUS
)
1510 /* The fact that Y is canonicalized means that this
1511 PLUS rtx is canonicalized. */
1512 rtx y0
= XEXP (y
, 0);
1513 rtx y1
= XEXP (y
, 1);
1515 if (rtx_equal_for_memref_p (x1
, y1
))
1516 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
1517 if (rtx_equal_for_memref_p (x0
, y0
))
1518 return memrefs_conflict_p (xsize
, x1
, ysize
, y1
, c
);
1519 if (GET_CODE (x1
) == CONST_INT
)
1521 if (GET_CODE (y1
) == CONST_INT
)
1522 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
,
1523 c
- INTVAL (x1
) + INTVAL (y1
));
1525 return memrefs_conflict_p (xsize
, x0
, ysize
, y
,
1528 else if (GET_CODE (y1
) == CONST_INT
)
1529 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
1533 else if (GET_CODE (x1
) == CONST_INT
)
1534 return memrefs_conflict_p (xsize
, x0
, ysize
, y
, c
- INTVAL (x1
));
1536 else if (GET_CODE (y
) == PLUS
)
1538 /* The fact that Y is canonicalized means that this
1539 PLUS rtx is canonicalized. */
1540 rtx y0
= XEXP (y
, 0);
1541 rtx y1
= XEXP (y
, 1);
1543 if (GET_CODE (y1
) == CONST_INT
)
1544 return memrefs_conflict_p (xsize
, x
, ysize
, y0
, c
+ INTVAL (y1
));
1549 if (GET_CODE (x
) == GET_CODE (y
))
1550 switch (GET_CODE (x
))
1554 /* Handle cases where we expect the second operands to be the
1555 same, and check only whether the first operand would conflict
1558 rtx x1
= canon_rtx (XEXP (x
, 1));
1559 rtx y1
= canon_rtx (XEXP (y
, 1));
1560 if (! rtx_equal_for_memref_p (x1
, y1
))
1562 x0
= canon_rtx (XEXP (x
, 0));
1563 y0
= canon_rtx (XEXP (y
, 0));
1564 if (rtx_equal_for_memref_p (x0
, y0
))
1565 return (xsize
== 0 || ysize
== 0
1566 || (c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0));
1568 /* Can't properly adjust our sizes. */
1569 if (GET_CODE (x1
) != CONST_INT
)
1571 xsize
/= INTVAL (x1
);
1572 ysize
/= INTVAL (x1
);
1574 return memrefs_conflict_p (xsize
, x0
, ysize
, y0
, c
);
1578 /* Are these registers known not to be equal? */
1579 if (alias_invariant
)
1581 unsigned int r_x
= REGNO (x
), r_y
= REGNO (y
);
1582 rtx i_x
, i_y
; /* invariant relationships of X and Y */
1584 i_x
= r_x
>= reg_base_value_size
? 0 : alias_invariant
[r_x
];
1585 i_y
= r_y
>= reg_base_value_size
? 0 : alias_invariant
[r_y
];
1587 if (i_x
== 0 && i_y
== 0)
1590 if (! memrefs_conflict_p (xsize
, i_x
? i_x
: x
,
1591 ysize
, i_y
? i_y
: y
, c
))
1600 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1601 as an access with indeterminate size. Assume that references
1602 besides AND are aligned, so if the size of the other reference is
1603 at least as large as the alignment, assume no other overlap. */
1604 if (GET_CODE (x
) == AND
&& GET_CODE (XEXP (x
, 1)) == CONST_INT
)
1606 if (GET_CODE (y
) == AND
|| ysize
< -INTVAL (XEXP (x
, 1)))
1608 return memrefs_conflict_p (xsize
, XEXP (x
, 0), ysize
, y
, c
);
1610 if (GET_CODE (y
) == AND
&& GET_CODE (XEXP (y
, 1)) == CONST_INT
)
1612 /* ??? If we are indexing far enough into the array/structure, we
1613 may yet be able to determine that we can not overlap. But we
1614 also need to that we are far enough from the end not to overlap
1615 a following reference, so we do nothing with that for now. */
1616 if (GET_CODE (x
) == AND
|| xsize
< -INTVAL (XEXP (y
, 1)))
1618 return memrefs_conflict_p (xsize
, x
, ysize
, XEXP (y
, 0), c
);
1621 if (GET_CODE (x
) == ADDRESSOF
)
1623 if (y
== frame_pointer_rtx
1624 || GET_CODE (y
) == ADDRESSOF
)
1625 return xsize
<= 0 || ysize
<= 0;
1627 if (GET_CODE (y
) == ADDRESSOF
)
1629 if (x
== frame_pointer_rtx
)
1630 return xsize
<= 0 || ysize
<= 0;
1635 if (GET_CODE (x
) == CONST_INT
&& GET_CODE (y
) == CONST_INT
)
1637 c
+= (INTVAL (y
) - INTVAL (x
));
1638 return (xsize
<= 0 || ysize
<= 0
1639 || (c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0));
1642 if (GET_CODE (x
) == CONST
)
1644 if (GET_CODE (y
) == CONST
)
1645 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
1646 ysize
, canon_rtx (XEXP (y
, 0)), c
);
1648 return memrefs_conflict_p (xsize
, canon_rtx (XEXP (x
, 0)),
1651 if (GET_CODE (y
) == CONST
)
1652 return memrefs_conflict_p (xsize
, x
, ysize
,
1653 canon_rtx (XEXP (y
, 0)), c
);
1656 return (xsize
<= 0 || ysize
<= 0
1657 || (rtx_equal_for_memref_p (x
, y
)
1658 && ((c
>= 0 && xsize
> c
) || (c
< 0 && ysize
+c
> 0))));
1665 /* Functions to compute memory dependencies.
1667 Since we process the insns in execution order, we can build tables
1668 to keep track of what registers are fixed (and not aliased), what registers
1669 are varying in known ways, and what registers are varying in unknown
1672 If both memory references are volatile, then there must always be a
1673 dependence between the two references, since their order can not be
1674 changed. A volatile and non-volatile reference can be interchanged
1677 A MEM_IN_STRUCT reference at a non-AND varying address can never
1678 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1679 also must allow AND addresses, because they may generate accesses
1680 outside the object being referenced. This is used to generate
1681 aligned addresses from unaligned addresses, for instance, the alpha
1682 storeqi_unaligned pattern. */
1684 /* Read dependence: X is read after read in MEM takes place. There can
1685 only be a dependence here if both reads are volatile. */
1688 read_dependence (mem
, x
)
1692 return MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
);
1695 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1696 MEM2 is a reference to a structure at a varying address, or returns
1697 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1698 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1699 to decide whether or not an address may vary; it should return
1700 nonzero whenever variation is possible.
1701 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1704 fixed_scalar_and_varying_struct_p (mem1
, mem2
, mem1_addr
, mem2_addr
, varies_p
)
1706 rtx mem1_addr
, mem2_addr
;
1707 int (*varies_p
) PARAMS ((rtx
, int));
1709 if (! flag_strict_aliasing
)
1712 if (MEM_SCALAR_P (mem1
) && MEM_IN_STRUCT_P (mem2
)
1713 && !varies_p (mem1_addr
, 1) && varies_p (mem2_addr
, 1))
1714 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1718 if (MEM_IN_STRUCT_P (mem1
) && MEM_SCALAR_P (mem2
)
1719 && varies_p (mem1_addr
, 1) && !varies_p (mem2_addr
, 1))
1720 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1727 /* Returns nonzero if something about the mode or address format MEM1
1728 indicates that it might well alias *anything*. */
1731 aliases_everything_p (mem
)
1734 if (GET_CODE (XEXP (mem
, 0)) == AND
)
1735 /* If the address is an AND, its very hard to know at what it is
1736 actually pointing. */
1742 /* Return true if we can determine that the fields referenced cannot
1743 overlap for any pair of objects. */
1746 nonoverlapping_component_refs_p (x
, y
)
1749 tree fieldx
, fieldy
, typex
, typey
, orig_y
;
1753 /* The comparison has to be done at a common type, since we don't
1754 know how the inheritance heirarchy works. */
1758 fieldx
= TREE_OPERAND (x
, 1);
1759 typex
= DECL_FIELD_CONTEXT (fieldx
);
1764 fieldy
= TREE_OPERAND (y
, 1);
1765 typey
= DECL_FIELD_CONTEXT (fieldy
);
1770 y
= TREE_OPERAND (y
, 0);
1772 while (y
&& TREE_CODE (y
) == COMPONENT_REF
);
1774 x
= TREE_OPERAND (x
, 0);
1776 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
1778 /* Never found a common type. */
1782 /* If we're left with accessing different fields of a structure,
1784 if (TREE_CODE (typex
) == RECORD_TYPE
1785 && fieldx
!= fieldy
)
1788 /* The comparison on the current field failed. If we're accessing
1789 a very nested structure, look at the next outer level. */
1790 x
= TREE_OPERAND (x
, 0);
1791 y
= TREE_OPERAND (y
, 0);
1794 && TREE_CODE (x
) == COMPONENT_REF
1795 && TREE_CODE (y
) == COMPONENT_REF
);
1800 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1803 decl_for_component_ref (x
)
1808 x
= TREE_OPERAND (x
, 0);
1810 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
1812 return x
&& DECL_P (x
) ? x
: NULL_TREE
;
1815 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1816 offset of the field reference. */
1819 adjust_offset_for_component_ref (x
, offset
)
1823 HOST_WIDE_INT ioffset
;
1828 ioffset
= INTVAL (offset
);
1831 tree field
= TREE_OPERAND (x
, 1);
1833 if (! host_integerp (DECL_FIELD_OFFSET (field
), 1))
1835 ioffset
+= (tree_low_cst (DECL_FIELD_OFFSET (field
), 1)
1836 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
1839 x
= TREE_OPERAND (x
, 0);
1841 while (x
&& TREE_CODE (x
) == COMPONENT_REF
);
1843 return GEN_INT (ioffset
);
1846 /* Return nonzero if we can deterimine the exprs corresponding to memrefs
1847 X and Y and they do not overlap. */
1850 nonoverlapping_memrefs_p (x
, y
)
1853 tree exprx
= MEM_EXPR (x
), expry
= MEM_EXPR (y
);
1856 rtx moffsetx
, moffsety
;
1857 HOST_WIDE_INT offsetx
= 0, offsety
= 0, sizex
, sizey
, tem
;
1859 /* Unless both have exprs, we can't tell anything. */
1860 if (exprx
== 0 || expry
== 0)
1863 /* If both are field references, we may be able to determine something. */
1864 if (TREE_CODE (exprx
) == COMPONENT_REF
1865 && TREE_CODE (expry
) == COMPONENT_REF
1866 && nonoverlapping_component_refs_p (exprx
, expry
))
1869 /* If the field reference test failed, look at the DECLs involved. */
1870 moffsetx
= MEM_OFFSET (x
);
1871 if (TREE_CODE (exprx
) == COMPONENT_REF
)
1873 tree t
= decl_for_component_ref (exprx
);
1876 moffsetx
= adjust_offset_for_component_ref (exprx
, moffsetx
);
1879 moffsety
= MEM_OFFSET (y
);
1880 if (TREE_CODE (expry
) == COMPONENT_REF
)
1882 tree t
= decl_for_component_ref (expry
);
1885 moffsety
= adjust_offset_for_component_ref (expry
, moffsety
);
1889 if (! DECL_P (exprx
) || ! DECL_P (expry
))
1892 rtlx
= DECL_RTL (exprx
);
1893 rtly
= DECL_RTL (expry
);
1895 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
1896 can't overlap unless they are the same because we never reuse that part
1897 of the stack frame used for locals for spilled pseudos. */
1898 if ((GET_CODE (rtlx
) != MEM
|| GET_CODE (rtly
) != MEM
)
1899 && ! rtx_equal_p (rtlx
, rtly
))
1902 /* Get the base and offsets of both decls. If either is a register, we
1903 know both are and are the same, so use that as the base. The only
1904 we can avoid overlap is if we can deduce that they are nonoverlapping
1905 pieces of that decl, which is very rare. */
1906 basex
= GET_CODE (rtlx
) == MEM
? XEXP (rtlx
, 0) : rtlx
;
1907 if (GET_CODE (basex
) == PLUS
&& GET_CODE (XEXP (basex
, 1)) == CONST_INT
)
1908 offsetx
= INTVAL (XEXP (basex
, 1)), basex
= XEXP (basex
, 0);
1910 basey
= GET_CODE (rtly
) == MEM
? XEXP (rtly
, 0) : rtly
;
1911 if (GET_CODE (basey
) == PLUS
&& GET_CODE (XEXP (basey
, 1)) == CONST_INT
)
1912 offsety
= INTVAL (XEXP (basey
, 1)), basey
= XEXP (basey
, 0);
1914 /* If the bases are different, we know they do not overlap if both
1915 are constants or if one is a constant and the other a pointer into the
1916 stack frame. Otherwise a different base means we can't tell if they
1918 if (! rtx_equal_p (basex
, basey
))
1919 return ((CONSTANT_P (basex
) && CONSTANT_P (basey
))
1920 || (CONSTANT_P (basex
) && REG_P (basey
)
1921 && REGNO_PTR_FRAME_P (REGNO (basey
)))
1922 || (CONSTANT_P (basey
) && REG_P (basex
)
1923 && REGNO_PTR_FRAME_P (REGNO (basex
))));
1925 sizex
= (GET_CODE (rtlx
) != MEM
? (int) GET_MODE_SIZE (GET_MODE (rtlx
))
1926 : MEM_SIZE (rtlx
) ? INTVAL (MEM_SIZE (rtlx
))
1928 sizey
= (GET_CODE (rtly
) != MEM
? (int) GET_MODE_SIZE (GET_MODE (rtly
))
1929 : MEM_SIZE (rtly
) ? INTVAL (MEM_SIZE (rtly
)) :
1932 /* If we have an offset for either memref, it can update the values computed
1935 offsetx
+= INTVAL (moffsetx
), sizex
-= INTVAL (moffsetx
);
1937 offsety
+= INTVAL (moffsety
), sizey
-= INTVAL (moffsety
);
1939 /* If a memref has both a size and an offset, we can use the smaller size.
1940 We can't do this if the offset isn't known because we must view this
1941 memref as being anywhere inside the DECL's MEM. */
1942 if (MEM_SIZE (x
) && moffsetx
)
1943 sizex
= INTVAL (MEM_SIZE (x
));
1944 if (MEM_SIZE (y
) && moffsety
)
1945 sizey
= INTVAL (MEM_SIZE (y
));
1947 /* Put the values of the memref with the lower offset in X's values. */
1948 if (offsetx
> offsety
)
1950 tem
= offsetx
, offsetx
= offsety
, offsety
= tem
;
1951 tem
= sizex
, sizex
= sizey
, sizey
= tem
;
1954 /* If we don't know the size of the lower-offset value, we can't tell
1955 if they conflict. Otherwise, we do the test. */
1956 return sizex
>= 0 && offsety
> offsetx
+ sizex
;
1959 /* True dependence: X is read after store in MEM takes place. */
1962 true_dependence (mem
, mem_mode
, x
, varies
)
1964 enum machine_mode mem_mode
;
1966 int (*varies
) PARAMS ((rtx
, int));
1968 rtx x_addr
, mem_addr
;
1971 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
1974 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
1977 /* Unchanging memory can't conflict with non-unchanging memory.
1978 A non-unchanging read can conflict with a non-unchanging write.
1979 An unchanging read can conflict with an unchanging write since
1980 there may be a single store to this address to initialize it.
1981 Note that an unchanging store can conflict with a non-unchanging read
1982 since we have to make conservative assumptions when we have a
1983 record with readonly fields and we are copying the whole thing.
1984 Just fall through to the code below to resolve potential conflicts.
1985 This won't handle all cases optimally, but the possible performance
1986 loss should be negligible. */
1987 if (RTX_UNCHANGING_P (x
) && ! RTX_UNCHANGING_P (mem
))
1990 if (nonoverlapping_memrefs_p (mem
, x
))
1993 if (mem_mode
== VOIDmode
)
1994 mem_mode
= GET_MODE (mem
);
1996 x_addr
= get_addr (XEXP (x
, 0));
1997 mem_addr
= get_addr (XEXP (mem
, 0));
1999 base
= find_base_term (x_addr
);
2000 if (base
&& (GET_CODE (base
) == LABEL_REF
2001 || (GET_CODE (base
) == SYMBOL_REF
2002 && CONSTANT_POOL_ADDRESS_P (base
))))
2005 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
), mem_mode
))
2008 x_addr
= canon_rtx (x_addr
);
2009 mem_addr
= canon_rtx (mem_addr
);
2011 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode
), mem_addr
,
2012 SIZE_FOR_MODE (x
), x_addr
, 0))
2015 if (aliases_everything_p (x
))
2018 /* We cannot use aliases_everything_p to test MEM, since we must look
2019 at MEM_MODE, rather than GET_MODE (MEM). */
2020 if (mem_mode
== QImode
|| GET_CODE (mem_addr
) == AND
)
2023 /* In true_dependence we also allow BLKmode to alias anything. Why
2024 don't we do this in anti_dependence and output_dependence? */
2025 if (mem_mode
== BLKmode
|| GET_MODE (x
) == BLKmode
)
2028 return ! fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
,
2032 /* Canonical true dependence: X is read after store in MEM takes place.
2033 Variant of true_dependence which assumes MEM has already been
2034 canonicalized (hence we no longer do that here).
2035 The mem_addr argument has been added, since true_dependence computed
2036 this value prior to canonicalizing. */
2039 canon_true_dependence (mem
, mem_mode
, mem_addr
, x
, varies
)
2040 rtx mem
, mem_addr
, x
;
2041 enum machine_mode mem_mode
;
2042 int (*varies
) PARAMS ((rtx
, int));
2046 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2049 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
2052 /* If X is an unchanging read, then it can't possibly conflict with any
2053 non-unchanging store. It may conflict with an unchanging write though,
2054 because there may be a single store to this address to initialize it.
2055 Just fall through to the code below to resolve the case where we have
2056 both an unchanging read and an unchanging write. This won't handle all
2057 cases optimally, but the possible performance loss should be
2059 if (RTX_UNCHANGING_P (x
) && ! RTX_UNCHANGING_P (mem
))
2062 if (nonoverlapping_memrefs_p (x
, mem
))
2065 x_addr
= get_addr (XEXP (x
, 0));
2067 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
), mem_mode
))
2070 x_addr
= canon_rtx (x_addr
);
2071 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode
), mem_addr
,
2072 SIZE_FOR_MODE (x
), x_addr
, 0))
2075 if (aliases_everything_p (x
))
2078 /* We cannot use aliases_everything_p to test MEM, since we must look
2079 at MEM_MODE, rather than GET_MODE (MEM). */
2080 if (mem_mode
== QImode
|| GET_CODE (mem_addr
) == AND
)
2083 /* In true_dependence we also allow BLKmode to alias anything. Why
2084 don't we do this in anti_dependence and output_dependence? */
2085 if (mem_mode
== BLKmode
|| GET_MODE (x
) == BLKmode
)
2088 return ! fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
,
2092 /* Returns non-zero if a write to X might alias a previous read from
2093 (or, if WRITEP is non-zero, a write to) MEM. */
2096 write_dependence_p (mem
, x
, writep
)
2101 rtx x_addr
, mem_addr
;
2105 if (MEM_VOLATILE_P (x
) && MEM_VOLATILE_P (mem
))
2108 if (DIFFERENT_ALIAS_SETS_P (x
, mem
))
2111 /* Unchanging memory can't conflict with non-unchanging memory. */
2112 if (RTX_UNCHANGING_P (x
) != RTX_UNCHANGING_P (mem
))
2115 /* If MEM is an unchanging read, then it can't possibly conflict with
2116 the store to X, because there is at most one store to MEM, and it must
2117 have occurred somewhere before MEM. */
2118 if (! writep
&& RTX_UNCHANGING_P (mem
))
2121 if (nonoverlapping_memrefs_p (x
, mem
))
2124 x_addr
= get_addr (XEXP (x
, 0));
2125 mem_addr
= get_addr (XEXP (mem
, 0));
2129 base
= find_base_term (mem_addr
);
2130 if (base
&& (GET_CODE (base
) == LABEL_REF
2131 || (GET_CODE (base
) == SYMBOL_REF
2132 && CONSTANT_POOL_ADDRESS_P (base
))))
2136 if (! base_alias_check (x_addr
, mem_addr
, GET_MODE (x
),
2140 x_addr
= canon_rtx (x_addr
);
2141 mem_addr
= canon_rtx (mem_addr
);
2143 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem
), mem_addr
,
2144 SIZE_FOR_MODE (x
), x_addr
, 0))
2148 = fixed_scalar_and_varying_struct_p (mem
, x
, mem_addr
, x_addr
,
2151 return (!(fixed_scalar
== mem
&& !aliases_everything_p (x
))
2152 && !(fixed_scalar
== x
&& !aliases_everything_p (mem
)));
2155 /* Anti dependence: X is written after read in MEM takes place. */
2158 anti_dependence (mem
, x
)
2162 return write_dependence_p (mem
, x
, /*writep=*/0);
2165 /* Output dependence: X is written after store in MEM takes place. */
2168 output_dependence (mem
, x
)
2172 return write_dependence_p (mem
, x
, /*writep=*/1);
2175 /* Returns non-zero if X mentions something which is not
2176 local to the function and is not constant. */
2179 nonlocal_mentioned_p (x
)
2186 code
= GET_CODE (x
);
2188 if (GET_RTX_CLASS (code
) == 'i')
2190 /* Constant functions can be constant if they don't use
2191 scratch memory used to mark function w/o side effects. */
2192 if (code
== CALL_INSN
&& CONST_OR_PURE_CALL_P (x
))
2194 x
= CALL_INSN_FUNCTION_USAGE (x
);
2200 code
= GET_CODE (x
);
2206 if (GET_CODE (SUBREG_REG (x
)) == REG
)
2208 /* Global registers are not local. */
2209 if (REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
2210 && global_regs
[subreg_regno (x
)])
2218 /* Global registers are not local. */
2219 if (regno
< FIRST_PSEUDO_REGISTER
&& global_regs
[regno
])
2233 /* Constants in the function's constants pool are constant. */
2234 if (CONSTANT_POOL_ADDRESS_P (x
))
2239 /* Non-constant calls and recursion are not local. */
2243 /* Be overly conservative and consider any volatile memory
2244 reference as not local. */
2245 if (MEM_VOLATILE_P (x
))
2247 base
= find_base_term (XEXP (x
, 0));
2250 /* A Pmode ADDRESS could be a reference via the structure value
2251 address or static chain. Such memory references are nonlocal.
2253 Thus, we have to examine the contents of the ADDRESS to find
2254 out if this is a local reference or not. */
2255 if (GET_CODE (base
) == ADDRESS
2256 && GET_MODE (base
) == Pmode
2257 && (XEXP (base
, 0) == stack_pointer_rtx
2258 || XEXP (base
, 0) == arg_pointer_rtx
2259 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2260 || XEXP (base
, 0) == hard_frame_pointer_rtx
2262 || XEXP (base
, 0) == frame_pointer_rtx
))
2264 /* Constants in the function's constant pool are constant. */
2265 if (GET_CODE (base
) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (base
))
2270 case UNSPEC_VOLATILE
:
2275 if (MEM_VOLATILE_P (x
))
2284 /* Recursively scan the operands of this expression. */
2287 const char *fmt
= GET_RTX_FORMAT (code
);
2290 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2292 if (fmt
[i
] == 'e' && XEXP (x
, i
))
2294 if (nonlocal_mentioned_p (XEXP (x
, i
)))
2297 else if (fmt
[i
] == 'E')
2300 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2301 if (nonlocal_mentioned_p (XVECEXP (x
, i
, j
)))
2310 /* Mark the function if it is constant. */
2313 mark_constant_function ()
2316 int nonlocal_mentioned
;
2318 if (TREE_PUBLIC (current_function_decl
)
2319 || TREE_READONLY (current_function_decl
)
2320 || DECL_IS_PURE (current_function_decl
)
2321 || TREE_THIS_VOLATILE (current_function_decl
)
2322 || TYPE_MODE (TREE_TYPE (current_function_decl
)) == VOIDmode
)
2325 /* A loop might not return which counts as a side effect. */
2326 if (mark_dfs_back_edges ())
2329 nonlocal_mentioned
= 0;
2331 init_alias_analysis ();
2333 /* Determine if this is a constant function. */
2335 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2336 if (INSN_P (insn
) && nonlocal_mentioned_p (insn
))
2338 nonlocal_mentioned
= 1;
2342 end_alias_analysis ();
2344 /* Mark the function. */
2346 if (! nonlocal_mentioned
)
2347 TREE_READONLY (current_function_decl
) = 1;
2351 static HARD_REG_SET argument_registers
;
2358 #ifndef OUTGOING_REGNO
2359 #define OUTGOING_REGNO(N) N
2361 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2362 /* Check whether this register can hold an incoming pointer
2363 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2364 numbers, so translate if necessary due to register windows. */
2365 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i
))
2366 && HARD_REGNO_MODE_OK (i
, Pmode
))
2367 SET_HARD_REG_BIT (argument_registers
, i
);
2369 alias_sets
= splay_tree_new (splay_tree_compare_ints
, 0, 0);
2372 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2376 init_alias_analysis ()
2378 int maxreg
= max_reg_num ();
2384 reg_known_value_size
= maxreg
;
2387 = (rtx
*) xcalloc ((maxreg
- FIRST_PSEUDO_REGISTER
), sizeof (rtx
))
2388 - FIRST_PSEUDO_REGISTER
;
2390 = (char*) xcalloc ((maxreg
- FIRST_PSEUDO_REGISTER
), sizeof (char))
2391 - FIRST_PSEUDO_REGISTER
;
2393 /* Overallocate reg_base_value to allow some growth during loop
2394 optimization. Loop unrolling can create a large number of
2396 reg_base_value_size
= maxreg
* 2;
2397 reg_base_value
= (rtx
*) xcalloc (reg_base_value_size
, sizeof (rtx
));
2398 ggc_add_rtx_root (reg_base_value
, reg_base_value_size
);
2400 new_reg_base_value
= (rtx
*) xmalloc (reg_base_value_size
* sizeof (rtx
));
2401 reg_seen
= (char *) xmalloc (reg_base_value_size
);
2402 if (! reload_completed
&& flag_unroll_loops
)
2404 /* ??? Why are we realloc'ing if we're just going to zero it? */
2405 alias_invariant
= (rtx
*)xrealloc (alias_invariant
,
2406 reg_base_value_size
* sizeof (rtx
));
2407 memset ((char *)alias_invariant
, 0, reg_base_value_size
* sizeof (rtx
));
2410 /* The basic idea is that each pass through this loop will use the
2411 "constant" information from the previous pass to propagate alias
2412 information through another level of assignments.
2414 This could get expensive if the assignment chains are long. Maybe
2415 we should throttle the number of iterations, possibly based on
2416 the optimization level or flag_expensive_optimizations.
2418 We could propagate more information in the first pass by making use
2419 of REG_N_SETS to determine immediately that the alias information
2420 for a pseudo is "constant".
2422 A program with an uninitialized variable can cause an infinite loop
2423 here. Instead of doing a full dataflow analysis to detect such problems
2424 we just cap the number of iterations for the loop.
2426 The state of the arrays for the set chain in question does not matter
2427 since the program has undefined behavior. */
2432 /* Assume nothing will change this iteration of the loop. */
2435 /* We want to assign the same IDs each iteration of this loop, so
2436 start counting from zero each iteration of the loop. */
2439 /* We're at the start of the function each iteration through the
2440 loop, so we're copying arguments. */
2441 copying_arguments
= 1;
2443 /* Wipe the potential alias information clean for this pass. */
2444 memset ((char *) new_reg_base_value
, 0, reg_base_value_size
* sizeof (rtx
));
2446 /* Wipe the reg_seen array clean. */
2447 memset ((char *) reg_seen
, 0, reg_base_value_size
);
2449 /* Mark all hard registers which may contain an address.
2450 The stack, frame and argument pointers may contain an address.
2451 An argument register which can hold a Pmode value may contain
2452 an address even if it is not in BASE_REGS.
2454 The address expression is VOIDmode for an argument and
2455 Pmode for other registers. */
2457 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2458 if (TEST_HARD_REG_BIT (argument_registers
, i
))
2459 new_reg_base_value
[i
] = gen_rtx_ADDRESS (VOIDmode
,
2460 gen_rtx_REG (Pmode
, i
));
2462 new_reg_base_value
[STACK_POINTER_REGNUM
]
2463 = gen_rtx_ADDRESS (Pmode
, stack_pointer_rtx
);
2464 new_reg_base_value
[ARG_POINTER_REGNUM
]
2465 = gen_rtx_ADDRESS (Pmode
, arg_pointer_rtx
);
2466 new_reg_base_value
[FRAME_POINTER_REGNUM
]
2467 = gen_rtx_ADDRESS (Pmode
, frame_pointer_rtx
);
2468 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2469 new_reg_base_value
[HARD_FRAME_POINTER_REGNUM
]
2470 = gen_rtx_ADDRESS (Pmode
, hard_frame_pointer_rtx
);
2473 /* Walk the insns adding values to the new_reg_base_value array. */
2474 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2480 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2481 /* The prologue/epilogue insns are not threaded onto the
2482 insn chain until after reload has completed. Thus,
2483 there is no sense wasting time checking if INSN is in
2484 the prologue/epilogue until after reload has completed. */
2485 if (reload_completed
2486 && prologue_epilogue_contains (insn
))
2490 /* If this insn has a noalias note, process it, Otherwise,
2491 scan for sets. A simple set will have no side effects
2492 which could change the base value of any other register. */
2494 if (GET_CODE (PATTERN (insn
)) == SET
2495 && REG_NOTES (insn
) != 0
2496 && find_reg_note (insn
, REG_NOALIAS
, NULL_RTX
))
2497 record_set (SET_DEST (PATTERN (insn
)), NULL_RTX
, NULL
);
2499 note_stores (PATTERN (insn
), record_set
, NULL
);
2501 set
= single_set (insn
);
2504 && GET_CODE (SET_DEST (set
)) == REG
2505 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
2507 unsigned int regno
= REGNO (SET_DEST (set
));
2508 rtx src
= SET_SRC (set
);
2510 if (REG_NOTES (insn
) != 0
2511 && (((note
= find_reg_note (insn
, REG_EQUAL
, 0)) != 0
2512 && REG_N_SETS (regno
) == 1)
2513 || (note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) != 0)
2514 && GET_CODE (XEXP (note
, 0)) != EXPR_LIST
2515 && ! rtx_varies_p (XEXP (note
, 0), 1)
2516 && ! reg_overlap_mentioned_p (SET_DEST (set
), XEXP (note
, 0)))
2518 reg_known_value
[regno
] = XEXP (note
, 0);
2519 reg_known_equiv_p
[regno
] = REG_NOTE_KIND (note
) == REG_EQUIV
;
2521 else if (REG_N_SETS (regno
) == 1
2522 && GET_CODE (src
) == PLUS
2523 && GET_CODE (XEXP (src
, 0)) == REG
2524 && REGNO (XEXP (src
, 0)) >= FIRST_PSEUDO_REGISTER
2525 && (reg_known_value
[REGNO (XEXP (src
, 0))])
2526 && GET_CODE (XEXP (src
, 1)) == CONST_INT
)
2528 rtx op0
= XEXP (src
, 0);
2529 op0
= reg_known_value
[REGNO (op0
)];
2530 reg_known_value
[regno
]
2531 = plus_constant (op0
, INTVAL (XEXP (src
, 1)));
2532 reg_known_equiv_p
[regno
] = 0;
2534 else if (REG_N_SETS (regno
) == 1
2535 && ! rtx_varies_p (src
, 1))
2537 reg_known_value
[regno
] = src
;
2538 reg_known_equiv_p
[regno
] = 0;
2542 else if (GET_CODE (insn
) == NOTE
2543 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_FUNCTION_BEG
)
2544 copying_arguments
= 0;
2547 /* Now propagate values from new_reg_base_value to reg_base_value. */
2548 for (ui
= 0; ui
< reg_base_value_size
; ui
++)
2550 if (new_reg_base_value
[ui
]
2551 && new_reg_base_value
[ui
] != reg_base_value
[ui
]
2552 && ! rtx_equal_p (new_reg_base_value
[ui
], reg_base_value
[ui
]))
2554 reg_base_value
[ui
] = new_reg_base_value
[ui
];
2559 while (changed
&& ++pass
< MAX_ALIAS_LOOP_PASSES
);
2561 /* Fill in the remaining entries. */
2562 for (i
= FIRST_PSEUDO_REGISTER
; i
< maxreg
; i
++)
2563 if (reg_known_value
[i
] == 0)
2564 reg_known_value
[i
] = regno_reg_rtx
[i
];
2566 /* Simplify the reg_base_value array so that no register refers to
2567 another register, except to special registers indirectly through
2568 ADDRESS expressions.
2570 In theory this loop can take as long as O(registers^2), but unless
2571 there are very long dependency chains it will run in close to linear
2574 This loop may not be needed any longer now that the main loop does
2575 a better job at propagating alias information. */
2581 for (ui
= 0; ui
< reg_base_value_size
; ui
++)
2583 rtx base
= reg_base_value
[ui
];
2584 if (base
&& GET_CODE (base
) == REG
)
2586 unsigned int base_regno
= REGNO (base
);
2587 if (base_regno
== ui
) /* register set from itself */
2588 reg_base_value
[ui
] = 0;
2590 reg_base_value
[ui
] = reg_base_value
[base_regno
];
2595 while (changed
&& pass
< MAX_ALIAS_LOOP_PASSES
);
2598 free (new_reg_base_value
);
2599 new_reg_base_value
= 0;
2605 end_alias_analysis ()
2607 free (reg_known_value
+ FIRST_PSEUDO_REGISTER
);
2608 reg_known_value
= 0;
2609 reg_known_value_size
= 0;
2610 free (reg_known_equiv_p
+ FIRST_PSEUDO_REGISTER
);
2611 reg_known_equiv_p
= 0;
2614 ggc_del_root (reg_base_value
);
2615 free (reg_base_value
);
2618 reg_base_value_size
= 0;
2619 if (alias_invariant
)
2621 free (alias_invariant
);
2622 alias_invariant
= 0;