2014-10-24 Richard Biener <rguenther@suse.de>
[official-gcc.git] / libsanitizer / tsan / tsan_mman.cc
blob2eae60de512f09dff4199f3ccdf5c65e87cd0276
1 //===-- tsan_mman.cc ------------------------------------------------------===//
2 //
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
5 //
6 //===----------------------------------------------------------------------===//
7 //
8 // This file is a part of ThreadSanitizer (TSan), a race detector.
9 //
10 //===----------------------------------------------------------------------===//
11 #include "sanitizer_common/sanitizer_allocator_interface.h"
12 #include "sanitizer_common/sanitizer_common.h"
13 #include "sanitizer_common/sanitizer_placement_new.h"
14 #include "tsan_mman.h"
15 #include "tsan_rtl.h"
16 #include "tsan_report.h"
17 #include "tsan_flags.h"
19 // May be overriden by front-end.
20 extern "C" void WEAK __sanitizer_malloc_hook(void *ptr, uptr size) {
21 (void)ptr;
22 (void)size;
25 extern "C" void WEAK __sanitizer_free_hook(void *ptr) {
26 (void)ptr;
29 namespace __tsan {
31 struct MapUnmapCallback {
32 void OnMap(uptr p, uptr size) const { }
33 void OnUnmap(uptr p, uptr size) const {
34 // We are about to unmap a chunk of user memory.
35 // Mark the corresponding shadow memory as not needed.
36 DontNeedShadowFor(p, size);
40 static char allocator_placeholder[sizeof(Allocator)] ALIGNED(64);
41 Allocator *allocator() {
42 return reinterpret_cast<Allocator*>(&allocator_placeholder);
45 void InitializeAllocator() {
46 allocator()->Init();
49 void AllocatorThreadStart(ThreadState *thr) {
50 allocator()->InitCache(&thr->alloc_cache);
51 internal_allocator()->InitCache(&thr->internal_alloc_cache);
54 void AllocatorThreadFinish(ThreadState *thr) {
55 allocator()->DestroyCache(&thr->alloc_cache);
56 internal_allocator()->DestroyCache(&thr->internal_alloc_cache);
59 void AllocatorPrintStats() {
60 allocator()->PrintStats();
63 static void SignalUnsafeCall(ThreadState *thr, uptr pc) {
64 if (atomic_load(&thr->in_signal_handler, memory_order_relaxed) == 0 ||
65 !flags()->report_signal_unsafe)
66 return;
67 StackTrace stack;
68 stack.ObtainCurrent(thr, pc);
69 ThreadRegistryLock l(ctx->thread_registry);
70 ScopedReport rep(ReportTypeSignalUnsafe);
71 if (!IsFiredSuppression(ctx, rep, stack)) {
72 rep.AddStack(&stack, true);
73 OutputReport(thr, rep);
77 void *user_alloc(ThreadState *thr, uptr pc, uptr sz, uptr align) {
78 if ((sz >= (1ull << 40)) || (align >= (1ull << 40)))
79 return AllocatorReturnNull();
80 void *p = allocator()->Allocate(&thr->alloc_cache, sz, align);
81 if (p == 0)
82 return 0;
83 if (ctx && ctx->initialized)
84 OnUserAlloc(thr, pc, (uptr)p, sz, true);
85 SignalUnsafeCall(thr, pc);
86 return p;
89 void user_free(ThreadState *thr, uptr pc, void *p) {
90 if (ctx && ctx->initialized)
91 OnUserFree(thr, pc, (uptr)p, true);
92 allocator()->Deallocate(&thr->alloc_cache, p);
93 SignalUnsafeCall(thr, pc);
96 void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write) {
97 DPrintf("#%d: alloc(%zu) = %p\n", thr->tid, sz, p);
98 ctx->metamap.AllocBlock(thr, pc, p, sz);
99 if (write && thr->ignore_reads_and_writes == 0)
100 MemoryRangeImitateWrite(thr, pc, (uptr)p, sz);
101 else
102 MemoryResetRange(thr, pc, (uptr)p, sz);
105 void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write) {
106 CHECK_NE(p, (void*)0);
107 uptr sz = ctx->metamap.FreeBlock(thr, pc, p);
108 DPrintf("#%d: free(%p, %zu)\n", thr->tid, p, sz);
109 if (write && thr->ignore_reads_and_writes == 0)
110 MemoryRangeFreed(thr, pc, (uptr)p, sz);
113 void *user_realloc(ThreadState *thr, uptr pc, void *p, uptr sz) {
114 void *p2 = 0;
115 // FIXME: Handle "shrinking" more efficiently,
116 // it seems that some software actually does this.
117 if (sz) {
118 p2 = user_alloc(thr, pc, sz);
119 if (p2 == 0)
120 return 0;
121 if (p) {
122 uptr oldsz = user_alloc_usable_size(p);
123 internal_memcpy(p2, p, min(oldsz, sz));
126 if (p)
127 user_free(thr, pc, p);
128 return p2;
131 uptr user_alloc_usable_size(const void *p) {
132 if (p == 0)
133 return 0;
134 MBlock *b = ctx->metamap.GetBlock((uptr)p);
135 return b ? b->siz : 0;
138 void invoke_malloc_hook(void *ptr, uptr size) {
139 ThreadState *thr = cur_thread();
140 if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
141 return;
142 __sanitizer_malloc_hook(ptr, size);
145 void invoke_free_hook(void *ptr) {
146 ThreadState *thr = cur_thread();
147 if (ctx == 0 || !ctx->initialized || thr->ignore_interceptors)
148 return;
149 __sanitizer_free_hook(ptr);
152 void *internal_alloc(MBlockType typ, uptr sz) {
153 ThreadState *thr = cur_thread();
154 if (thr->nomalloc) {
155 thr->nomalloc = 0; // CHECK calls internal_malloc().
156 CHECK(0);
158 return InternalAlloc(sz, &thr->internal_alloc_cache);
161 void internal_free(void *p) {
162 ThreadState *thr = cur_thread();
163 if (thr->nomalloc) {
164 thr->nomalloc = 0; // CHECK calls internal_malloc().
165 CHECK(0);
167 InternalFree(p, &thr->internal_alloc_cache);
170 } // namespace __tsan
172 using namespace __tsan;
174 extern "C" {
175 uptr __sanitizer_get_current_allocated_bytes() {
176 uptr stats[AllocatorStatCount];
177 allocator()->GetStats(stats);
178 return stats[AllocatorStatAllocated];
181 uptr __sanitizer_get_heap_size() {
182 uptr stats[AllocatorStatCount];
183 allocator()->GetStats(stats);
184 return stats[AllocatorStatMapped];
187 uptr __sanitizer_get_free_bytes() {
188 return 1;
191 uptr __sanitizer_get_unmapped_bytes() {
192 return 1;
195 uptr __sanitizer_get_estimated_allocated_size(uptr size) {
196 return size;
199 int __sanitizer_get_ownership(const void *p) {
200 return allocator()->GetBlockBegin(p) != 0;
203 uptr __sanitizer_get_allocated_size(const void *p) {
204 return user_alloc_usable_size(p);
207 void __tsan_on_thread_idle() {
208 ThreadState *thr = cur_thread();
209 allocator()->SwallowCache(&thr->alloc_cache);
210 internal_allocator()->SwallowCache(&thr->internal_alloc_cache);
211 ctx->metamap.OnThreadIdle(thr);
213 } // extern "C"