2014-10-24 Richard Biener <rguenther@suse.de>
[official-gcc.git] / gcc / cfgloop.c
blob3cb2241a7dda9d37eaf4948a089003c831d9fc20
1 /* Natural loop discovery code for GNU compiler.
2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "hashtab.h"
26 #include "hash-set.h"
27 #include "vec.h"
28 #include "machmode.h"
29 #include "hard-reg-set.h"
30 #include "input.h"
31 #include "function.h"
32 #include "basic-block.h"
33 #include "cfgloop.h"
34 #include "diagnostic-core.h"
35 #include "flags.h"
36 #include "tree.h"
37 #include "tree-ssa-alias.h"
38 #include "internal-fn.h"
39 #include "gimple-expr.h"
40 #include "is-a.h"
41 #include "gimple.h"
42 #include "gimple-iterator.h"
43 #include "gimple-ssa.h"
44 #include "dumpfile.h"
46 static void flow_loops_cfg_dump (FILE *);
48 /* Dump loop related CFG information. */
50 static void
51 flow_loops_cfg_dump (FILE *file)
53 basic_block bb;
55 if (!file)
56 return;
58 FOR_EACH_BB_FN (bb, cfun)
60 edge succ;
61 edge_iterator ei;
63 fprintf (file, ";; %d succs { ", bb->index);
64 FOR_EACH_EDGE (succ, ei, bb->succs)
65 fprintf (file, "%d ", succ->dest->index);
66 fprintf (file, "}\n");
70 /* Return nonzero if the nodes of LOOP are a subset of OUTER. */
72 bool
73 flow_loop_nested_p (const struct loop *outer, const struct loop *loop)
75 unsigned odepth = loop_depth (outer);
77 return (loop_depth (loop) > odepth
78 && (*loop->superloops)[odepth] == outer);
81 /* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
82 loops within LOOP. */
84 struct loop *
85 superloop_at_depth (struct loop *loop, unsigned depth)
87 unsigned ldepth = loop_depth (loop);
89 gcc_assert (depth <= ldepth);
91 if (depth == ldepth)
92 return loop;
94 return (*loop->superloops)[depth];
97 /* Returns the list of the latch edges of LOOP. */
99 static vec<edge>
100 get_loop_latch_edges (const struct loop *loop)
102 edge_iterator ei;
103 edge e;
104 vec<edge> ret = vNULL;
106 FOR_EACH_EDGE (e, ei, loop->header->preds)
108 if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
109 ret.safe_push (e);
112 return ret;
115 /* Dump the loop information specified by LOOP to the stream FILE
116 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
118 void
119 flow_loop_dump (const struct loop *loop, FILE *file,
120 void (*loop_dump_aux) (const struct loop *, FILE *, int),
121 int verbose)
123 basic_block *bbs;
124 unsigned i;
125 vec<edge> latches;
126 edge e;
128 if (! loop || ! loop->header)
129 return;
131 fprintf (file, ";;\n;; Loop %d\n", loop->num);
133 fprintf (file, ";; header %d, ", loop->header->index);
134 if (loop->latch)
135 fprintf (file, "latch %d\n", loop->latch->index);
136 else
138 fprintf (file, "multiple latches:");
139 latches = get_loop_latch_edges (loop);
140 FOR_EACH_VEC_ELT (latches, i, e)
141 fprintf (file, " %d", e->src->index);
142 latches.release ();
143 fprintf (file, "\n");
146 fprintf (file, ";; depth %d, outer %ld\n",
147 loop_depth (loop), (long) (loop_outer (loop)
148 ? loop_outer (loop)->num : -1));
150 fprintf (file, ";; nodes:");
151 bbs = get_loop_body (loop);
152 for (i = 0; i < loop->num_nodes; i++)
153 fprintf (file, " %d", bbs[i]->index);
154 free (bbs);
155 fprintf (file, "\n");
157 if (loop_dump_aux)
158 loop_dump_aux (loop, file, verbose);
161 /* Dump the loop information about loops to the stream FILE,
162 using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
164 void
165 flow_loops_dump (FILE *file, void (*loop_dump_aux) (const struct loop *, FILE *, int), int verbose)
167 struct loop *loop;
169 if (!current_loops || ! file)
170 return;
172 fprintf (file, ";; %d loops found\n", number_of_loops (cfun));
174 FOR_EACH_LOOP (loop, LI_INCLUDE_ROOT)
176 flow_loop_dump (loop, file, loop_dump_aux, verbose);
179 if (verbose)
180 flow_loops_cfg_dump (file);
183 /* Free data allocated for LOOP. */
185 void
186 flow_loop_free (struct loop *loop)
188 struct loop_exit *exit, *next;
190 vec_free (loop->superloops);
192 /* Break the list of the loop exit records. They will be freed when the
193 corresponding edge is rescanned or removed, and this avoids
194 accessing the (already released) head of the list stored in the
195 loop structure. */
196 for (exit = loop->exits->next; exit != loop->exits; exit = next)
198 next = exit->next;
199 exit->next = exit;
200 exit->prev = exit;
203 ggc_free (loop->exits);
204 ggc_free (loop);
207 /* Free all the memory allocated for LOOPS. */
209 void
210 flow_loops_free (struct loops *loops)
212 if (loops->larray)
214 unsigned i;
215 loop_p loop;
217 /* Free the loop descriptors. */
218 FOR_EACH_VEC_SAFE_ELT (loops->larray, i, loop)
220 if (!loop)
221 continue;
223 flow_loop_free (loop);
226 vec_free (loops->larray);
230 /* Find the nodes contained within the LOOP with header HEADER.
231 Return the number of nodes within the loop. */
234 flow_loop_nodes_find (basic_block header, struct loop *loop)
236 vec<basic_block> stack = vNULL;
237 int num_nodes = 1;
238 edge latch;
239 edge_iterator latch_ei;
241 header->loop_father = loop;
243 FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)
245 if (latch->src->loop_father == loop
246 || !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
247 continue;
249 num_nodes++;
250 stack.safe_push (latch->src);
251 latch->src->loop_father = loop;
253 while (!stack.is_empty ())
255 basic_block node;
256 edge e;
257 edge_iterator ei;
259 node = stack.pop ();
261 FOR_EACH_EDGE (e, ei, node->preds)
263 basic_block ancestor = e->src;
265 if (ancestor->loop_father != loop)
267 ancestor->loop_father = loop;
268 num_nodes++;
269 stack.safe_push (ancestor);
274 stack.release ();
276 return num_nodes;
279 /* Records the vector of superloops of the loop LOOP, whose immediate
280 superloop is FATHER. */
282 static void
283 establish_preds (struct loop *loop, struct loop *father)
285 loop_p ploop;
286 unsigned depth = loop_depth (father) + 1;
287 unsigned i;
289 loop->superloops = 0;
290 vec_alloc (loop->superloops, depth);
291 FOR_EACH_VEC_SAFE_ELT (father->superloops, i, ploop)
292 loop->superloops->quick_push (ploop);
293 loop->superloops->quick_push (father);
295 for (ploop = loop->inner; ploop; ploop = ploop->next)
296 establish_preds (ploop, loop);
299 /* Add LOOP to the loop hierarchy tree where FATHER is father of the
300 added loop. If LOOP has some children, take care of that their
301 pred field will be initialized correctly. */
303 void
304 flow_loop_tree_node_add (struct loop *father, struct loop *loop)
306 loop->next = father->inner;
307 father->inner = loop;
309 establish_preds (loop, father);
312 /* Remove LOOP from the loop hierarchy tree. */
314 void
315 flow_loop_tree_node_remove (struct loop *loop)
317 struct loop *prev, *father;
319 father = loop_outer (loop);
321 /* Remove loop from the list of sons. */
322 if (father->inner == loop)
323 father->inner = loop->next;
324 else
326 for (prev = father->inner; prev->next != loop; prev = prev->next)
327 continue;
328 prev->next = loop->next;
331 loop->superloops = NULL;
334 /* Allocates and returns new loop structure. */
336 struct loop *
337 alloc_loop (void)
339 struct loop *loop = ggc_cleared_alloc<struct loop> ();
341 loop->exits = ggc_cleared_alloc<loop_exit> ();
342 loop->exits->next = loop->exits->prev = loop->exits;
343 loop->can_be_parallel = false;
344 loop->nb_iterations_upper_bound = 0;
345 loop->nb_iterations_estimate = 0;
346 return loop;
349 /* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops
350 (including the root of the loop tree). */
352 void
353 init_loops_structure (struct function *fn,
354 struct loops *loops, unsigned num_loops)
356 struct loop *root;
358 memset (loops, 0, sizeof *loops);
359 vec_alloc (loops->larray, num_loops);
361 /* Dummy loop containing whole function. */
362 root = alloc_loop ();
363 root->num_nodes = n_basic_blocks_for_fn (fn);
364 root->latch = EXIT_BLOCK_PTR_FOR_FN (fn);
365 root->header = ENTRY_BLOCK_PTR_FOR_FN (fn);
366 ENTRY_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
367 EXIT_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
369 loops->larray->quick_push (root);
370 loops->tree_root = root;
373 /* Returns whether HEADER is a loop header. */
375 bool
376 bb_loop_header_p (basic_block header)
378 edge_iterator ei;
379 edge e;
381 /* If we have an abnormal predecessor, do not consider the
382 loop (not worth the problems). */
383 if (bb_has_abnormal_pred (header))
384 return false;
386 /* Look for back edges where a predecessor is dominated
387 by this block. A natural loop has a single entry
388 node (header) that dominates all the nodes in the
389 loop. It also has single back edge to the header
390 from a latch node. */
391 FOR_EACH_EDGE (e, ei, header->preds)
393 basic_block latch = e->src;
394 if (latch != ENTRY_BLOCK_PTR_FOR_FN (cfun)
395 && dominated_by_p (CDI_DOMINATORS, latch, header))
396 return true;
399 return false;
402 /* Find all the natural loops in the function and save in LOOPS structure and
403 recalculate loop_father information in basic block structures.
404 If LOOPS is non-NULL then the loop structures for already recorded loops
405 will be re-used and their number will not change. We assume that no
406 stale loops exist in LOOPS.
407 When LOOPS is NULL it is allocated and re-built from scratch.
408 Return the built LOOPS structure. */
410 struct loops *
411 flow_loops_find (struct loops *loops)
413 bool from_scratch = (loops == NULL);
414 int *rc_order;
415 int b;
416 unsigned i;
418 /* Ensure that the dominators are computed. */
419 calculate_dominance_info (CDI_DOMINATORS);
421 if (!loops)
423 loops = ggc_cleared_alloc<struct loops> ();
424 init_loops_structure (cfun, loops, 1);
427 /* Ensure that loop exits were released. */
428 gcc_assert (loops->exits == NULL);
430 /* Taking care of this degenerate case makes the rest of
431 this code simpler. */
432 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
433 return loops;
435 /* The root loop node contains all basic-blocks. */
436 loops->tree_root->num_nodes = n_basic_blocks_for_fn (cfun);
438 /* Compute depth first search order of the CFG so that outer
439 natural loops will be found before inner natural loops. */
440 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
441 pre_and_rev_post_order_compute (NULL, rc_order, false);
443 /* Gather all loop headers in reverse completion order and allocate
444 loop structures for loops that are not already present. */
445 auto_vec<loop_p> larray (loops->larray->length ());
446 for (b = 0; b < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; b++)
448 basic_block header = BASIC_BLOCK_FOR_FN (cfun, rc_order[b]);
449 if (bb_loop_header_p (header))
451 struct loop *loop;
453 /* The current active loop tree has valid loop-fathers for
454 header blocks. */
455 if (!from_scratch
456 && header->loop_father->header == header)
458 loop = header->loop_father;
459 /* If we found an existing loop remove it from the
460 loop tree. It is going to be inserted again
461 below. */
462 flow_loop_tree_node_remove (loop);
464 else
466 /* Otherwise allocate a new loop structure for the loop. */
467 loop = alloc_loop ();
468 /* ??? We could re-use unused loop slots here. */
469 loop->num = loops->larray->length ();
470 vec_safe_push (loops->larray, loop);
471 loop->header = header;
473 if (!from_scratch
474 && dump_file && (dump_flags & TDF_DETAILS))
475 fprintf (dump_file, "flow_loops_find: discovered new "
476 "loop %d with header %d\n",
477 loop->num, header->index);
479 /* Reset latch, we recompute it below. */
480 loop->latch = NULL;
481 larray.safe_push (loop);
484 /* Make blocks part of the loop root node at start. */
485 header->loop_father = loops->tree_root;
488 free (rc_order);
490 /* Now iterate over the loops found, insert them into the loop tree
491 and assign basic-block ownership. */
492 for (i = 0; i < larray.length (); ++i)
494 struct loop *loop = larray[i];
495 basic_block header = loop->header;
496 edge_iterator ei;
497 edge e;
499 flow_loop_tree_node_add (header->loop_father, loop);
500 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
502 /* Look for the latch for this header block, if it has just a
503 single one. */
504 FOR_EACH_EDGE (e, ei, header->preds)
506 basic_block latch = e->src;
508 if (flow_bb_inside_loop_p (loop, latch))
510 if (loop->latch != NULL)
512 /* More than one latch edge. */
513 loop->latch = NULL;
514 break;
516 loop->latch = latch;
521 return loops;
524 /* Ratio of frequencies of edges so that one of more latch edges is
525 considered to belong to inner loop with same header. */
526 #define HEAVY_EDGE_RATIO 8
528 /* Minimum number of samples for that we apply
529 find_subloop_latch_edge_by_profile heuristics. */
530 #define HEAVY_EDGE_MIN_SAMPLES 10
532 /* If the profile info is available, finds an edge in LATCHES that much more
533 frequent than the remaining edges. Returns such an edge, or NULL if we do
534 not find one.
536 We do not use guessed profile here, only the measured one. The guessed
537 profile is usually too flat and unreliable for this (and it is mostly based
538 on the loop structure of the program, so it does not make much sense to
539 derive the loop structure from it). */
541 static edge
542 find_subloop_latch_edge_by_profile (vec<edge> latches)
544 unsigned i;
545 edge e, me = NULL;
546 gcov_type mcount = 0, tcount = 0;
548 FOR_EACH_VEC_ELT (latches, i, e)
550 if (e->count > mcount)
552 me = e;
553 mcount = e->count;
555 tcount += e->count;
558 if (tcount < HEAVY_EDGE_MIN_SAMPLES
559 || (tcount - mcount) * HEAVY_EDGE_RATIO > tcount)
560 return NULL;
562 if (dump_file)
563 fprintf (dump_file,
564 "Found latch edge %d -> %d using profile information.\n",
565 me->src->index, me->dest->index);
566 return me;
569 /* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
570 on the structure of induction variables. Returns this edge, or NULL if we
571 do not find any.
573 We are quite conservative, and look just for an obvious simple innermost
574 loop (which is the case where we would lose the most performance by not
575 disambiguating the loop). More precisely, we look for the following
576 situation: The source of the chosen latch edge dominates sources of all
577 the other latch edges. Additionally, the header does not contain a phi node
578 such that the argument from the chosen edge is equal to the argument from
579 another edge. */
581 static edge
582 find_subloop_latch_edge_by_ivs (struct loop *loop ATTRIBUTE_UNUSED, vec<edge> latches)
584 edge e, latch = latches[0];
585 unsigned i;
586 gimple phi;
587 gimple_stmt_iterator psi;
588 tree lop;
589 basic_block bb;
591 /* Find the candidate for the latch edge. */
592 for (i = 1; latches.iterate (i, &e); i++)
593 if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
594 latch = e;
596 /* Verify that it dominates all the latch edges. */
597 FOR_EACH_VEC_ELT (latches, i, e)
598 if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
599 return NULL;
601 /* Check for a phi node that would deny that this is a latch edge of
602 a subloop. */
603 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
605 phi = gsi_stmt (psi);
606 lop = PHI_ARG_DEF_FROM_EDGE (phi, latch);
608 /* Ignore the values that are not changed inside the subloop. */
609 if (TREE_CODE (lop) != SSA_NAME
610 || SSA_NAME_DEF_STMT (lop) == phi)
611 continue;
612 bb = gimple_bb (SSA_NAME_DEF_STMT (lop));
613 if (!bb || !flow_bb_inside_loop_p (loop, bb))
614 continue;
616 FOR_EACH_VEC_ELT (latches, i, e)
617 if (e != latch
618 && PHI_ARG_DEF_FROM_EDGE (phi, e) == lop)
619 return NULL;
622 if (dump_file)
623 fprintf (dump_file,
624 "Found latch edge %d -> %d using iv structure.\n",
625 latch->src->index, latch->dest->index);
626 return latch;
629 /* If we can determine that one of the several latch edges of LOOP behaves
630 as a latch edge of a separate subloop, returns this edge. Otherwise
631 returns NULL. */
633 static edge
634 find_subloop_latch_edge (struct loop *loop)
636 vec<edge> latches = get_loop_latch_edges (loop);
637 edge latch = NULL;
639 if (latches.length () > 1)
641 latch = find_subloop_latch_edge_by_profile (latches);
643 if (!latch
644 /* We consider ivs to guess the latch edge only in SSA. Perhaps we
645 should use cfghook for this, but it is hard to imagine it would
646 be useful elsewhere. */
647 && current_ir_type () == IR_GIMPLE)
648 latch = find_subloop_latch_edge_by_ivs (loop, latches);
651 latches.release ();
652 return latch;
655 /* Callback for make_forwarder_block. Returns true if the edge E is marked
656 in the set MFB_REIS_SET. */
658 static hash_set<edge> *mfb_reis_set;
659 static bool
660 mfb_redirect_edges_in_set (edge e)
662 return mfb_reis_set->contains (e);
665 /* Creates a subloop of LOOP with latch edge LATCH. */
667 static void
668 form_subloop (struct loop *loop, edge latch)
670 edge_iterator ei;
671 edge e, new_entry;
672 struct loop *new_loop;
674 mfb_reis_set = new hash_set<edge>;
675 FOR_EACH_EDGE (e, ei, loop->header->preds)
677 if (e != latch)
678 mfb_reis_set->add (e);
680 new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
681 NULL);
682 delete mfb_reis_set;
684 loop->header = new_entry->src;
686 /* Find the blocks and subloops that belong to the new loop, and add it to
687 the appropriate place in the loop tree. */
688 new_loop = alloc_loop ();
689 new_loop->header = new_entry->dest;
690 new_loop->latch = latch->src;
691 add_loop (new_loop, loop);
694 /* Make all the latch edges of LOOP to go to a single forwarder block --
695 a new latch of LOOP. */
697 static void
698 merge_latch_edges (struct loop *loop)
700 vec<edge> latches = get_loop_latch_edges (loop);
701 edge latch, e;
702 unsigned i;
704 gcc_assert (latches.length () > 0);
706 if (latches.length () == 1)
707 loop->latch = latches[0]->src;
708 else
710 if (dump_file)
711 fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
713 mfb_reis_set = new hash_set<edge>;
714 FOR_EACH_VEC_ELT (latches, i, e)
715 mfb_reis_set->add (e);
716 latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
717 NULL);
718 delete mfb_reis_set;
720 loop->header = latch->dest;
721 loop->latch = latch->src;
724 latches.release ();
727 /* LOOP may have several latch edges. Transform it into (possibly several)
728 loops with single latch edge. */
730 static void
731 disambiguate_multiple_latches (struct loop *loop)
733 edge e;
735 /* We eliminate the multiple latches by splitting the header to the forwarder
736 block F and the rest R, and redirecting the edges. There are two cases:
738 1) If there is a latch edge E that corresponds to a subloop (we guess
739 that based on profile -- if it is taken much more often than the
740 remaining edges; and on trees, using the information about induction
741 variables of the loops), we redirect E to R, all the remaining edges to
742 F, then rescan the loops and try again for the outer loop.
743 2) If there is no such edge, we redirect all latch edges to F, and the
744 entry edges to R, thus making F the single latch of the loop. */
746 if (dump_file)
747 fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
748 loop->num);
750 /* During latch merging, we may need to redirect the entry edges to a new
751 block. This would cause problems if the entry edge was the one from the
752 entry block. To avoid having to handle this case specially, split
753 such entry edge. */
754 e = find_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), loop->header);
755 if (e)
756 split_edge (e);
758 while (1)
760 e = find_subloop_latch_edge (loop);
761 if (!e)
762 break;
764 form_subloop (loop, e);
767 merge_latch_edges (loop);
770 /* Split loops with multiple latch edges. */
772 void
773 disambiguate_loops_with_multiple_latches (void)
775 struct loop *loop;
777 FOR_EACH_LOOP (loop, 0)
779 if (!loop->latch)
780 disambiguate_multiple_latches (loop);
784 /* Return nonzero if basic block BB belongs to LOOP. */
785 bool
786 flow_bb_inside_loop_p (const struct loop *loop, const_basic_block bb)
788 struct loop *source_loop;
790 if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
791 || bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
792 return 0;
794 source_loop = bb->loop_father;
795 return loop == source_loop || flow_loop_nested_p (loop, source_loop);
798 /* Enumeration predicate for get_loop_body_with_size. */
799 static bool
800 glb_enum_p (const_basic_block bb, const void *glb_loop)
802 const struct loop *const loop = (const struct loop *) glb_loop;
803 return (bb != loop->header
804 && dominated_by_p (CDI_DOMINATORS, bb, loop->header));
807 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
808 order against direction of edges from latch. Specially, if
809 header != latch, latch is the 1-st block. LOOP cannot be the fake
810 loop tree root, and its size must be at most MAX_SIZE. The blocks
811 in the LOOP body are stored to BODY, and the size of the LOOP is
812 returned. */
814 unsigned
815 get_loop_body_with_size (const struct loop *loop, basic_block *body,
816 unsigned max_size)
818 return dfs_enumerate_from (loop->header, 1, glb_enum_p,
819 body, max_size, loop);
822 /* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
823 order against direction of edges from latch. Specially, if
824 header != latch, latch is the 1-st block. */
826 basic_block *
827 get_loop_body (const struct loop *loop)
829 basic_block *body, bb;
830 unsigned tv = 0;
832 gcc_assert (loop->num_nodes);
834 body = XNEWVEC (basic_block, loop->num_nodes);
836 if (loop->latch == EXIT_BLOCK_PTR_FOR_FN (cfun))
838 /* There may be blocks unreachable from EXIT_BLOCK, hence we need to
839 special-case the fake loop that contains the whole function. */
840 gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks_for_fn (cfun));
841 body[tv++] = loop->header;
842 body[tv++] = EXIT_BLOCK_PTR_FOR_FN (cfun);
843 FOR_EACH_BB_FN (bb, cfun)
844 body[tv++] = bb;
846 else
847 tv = get_loop_body_with_size (loop, body, loop->num_nodes);
849 gcc_assert (tv == loop->num_nodes);
850 return body;
853 /* Fills dominance descendants inside LOOP of the basic block BB into
854 array TOVISIT from index *TV. */
856 static void
857 fill_sons_in_loop (const struct loop *loop, basic_block bb,
858 basic_block *tovisit, int *tv)
860 basic_block son, postpone = NULL;
862 tovisit[(*tv)++] = bb;
863 for (son = first_dom_son (CDI_DOMINATORS, bb);
864 son;
865 son = next_dom_son (CDI_DOMINATORS, son))
867 if (!flow_bb_inside_loop_p (loop, son))
868 continue;
870 if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
872 postpone = son;
873 continue;
875 fill_sons_in_loop (loop, son, tovisit, tv);
878 if (postpone)
879 fill_sons_in_loop (loop, postpone, tovisit, tv);
882 /* Gets body of a LOOP (that must be different from the outermost loop)
883 sorted by dominance relation. Additionally, if a basic block s dominates
884 the latch, then only blocks dominated by s are be after it. */
886 basic_block *
887 get_loop_body_in_dom_order (const struct loop *loop)
889 basic_block *tovisit;
890 int tv;
892 gcc_assert (loop->num_nodes);
894 tovisit = XNEWVEC (basic_block, loop->num_nodes);
896 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
898 tv = 0;
899 fill_sons_in_loop (loop, loop->header, tovisit, &tv);
901 gcc_assert (tv == (int) loop->num_nodes);
903 return tovisit;
906 /* Gets body of a LOOP sorted via provided BB_COMPARATOR. */
908 basic_block *
909 get_loop_body_in_custom_order (const struct loop *loop,
910 int (*bb_comparator) (const void *, const void *))
912 basic_block *bbs = get_loop_body (loop);
914 qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator);
916 return bbs;
919 /* Get body of a LOOP in breadth first sort order. */
921 basic_block *
922 get_loop_body_in_bfs_order (const struct loop *loop)
924 basic_block *blocks;
925 basic_block bb;
926 bitmap visited;
927 unsigned int i = 0;
928 unsigned int vc = 1;
930 gcc_assert (loop->num_nodes);
931 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
933 blocks = XNEWVEC (basic_block, loop->num_nodes);
934 visited = BITMAP_ALLOC (NULL);
936 bb = loop->header;
937 while (i < loop->num_nodes)
939 edge e;
940 edge_iterator ei;
942 if (bitmap_set_bit (visited, bb->index))
943 /* This basic block is now visited */
944 blocks[i++] = bb;
946 FOR_EACH_EDGE (e, ei, bb->succs)
948 if (flow_bb_inside_loop_p (loop, e->dest))
950 if (bitmap_set_bit (visited, e->dest->index))
951 blocks[i++] = e->dest;
955 gcc_assert (i >= vc);
957 bb = blocks[vc++];
960 BITMAP_FREE (visited);
961 return blocks;
964 /* Hash function for struct loop_exit. */
966 hashval_t
967 loop_exit_hasher::hash (loop_exit *exit)
969 return htab_hash_pointer (exit->e);
972 /* Equality function for struct loop_exit. Compares with edge. */
974 bool
975 loop_exit_hasher::equal (loop_exit *exit, edge e)
977 return exit->e == e;
980 /* Frees the list of loop exit descriptions EX. */
982 void
983 loop_exit_hasher::remove (loop_exit *exit)
985 loop_exit *next;
986 for (; exit; exit = next)
988 next = exit->next_e;
990 exit->next->prev = exit->prev;
991 exit->prev->next = exit->next;
993 ggc_free (exit);
997 /* Returns the list of records for E as an exit of a loop. */
999 static struct loop_exit *
1000 get_exit_descriptions (edge e)
1002 return current_loops->exits->find_with_hash (e, htab_hash_pointer (e));
1005 /* Updates the lists of loop exits in that E appears.
1006 If REMOVED is true, E is being removed, and we
1007 just remove it from the lists of exits.
1008 If NEW_EDGE is true and E is not a loop exit, we
1009 do not try to remove it from loop exit lists. */
1011 void
1012 rescan_loop_exit (edge e, bool new_edge, bool removed)
1014 struct loop_exit *exits = NULL, *exit;
1015 struct loop *aloop, *cloop;
1017 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1018 return;
1020 if (!removed
1021 && e->src->loop_father != NULL
1022 && e->dest->loop_father != NULL
1023 && !flow_bb_inside_loop_p (e->src->loop_father, e->dest))
1025 cloop = find_common_loop (e->src->loop_father, e->dest->loop_father);
1026 for (aloop = e->src->loop_father;
1027 aloop != cloop;
1028 aloop = loop_outer (aloop))
1030 exit = ggc_alloc<loop_exit> ();
1031 exit->e = e;
1033 exit->next = aloop->exits->next;
1034 exit->prev = aloop->exits;
1035 exit->next->prev = exit;
1036 exit->prev->next = exit;
1038 exit->next_e = exits;
1039 exits = exit;
1043 if (!exits && new_edge)
1044 return;
1046 loop_exit **slot
1047 = current_loops->exits->find_slot_with_hash (e, htab_hash_pointer (e),
1048 exits ? INSERT : NO_INSERT);
1049 if (!slot)
1050 return;
1052 if (exits)
1054 if (*slot)
1055 loop_exit_hasher::remove (*slot);
1056 *slot = exits;
1058 else
1059 current_loops->exits->clear_slot (slot);
1062 /* For each loop, record list of exit edges, and start maintaining these
1063 lists. */
1065 void
1066 record_loop_exits (void)
1068 basic_block bb;
1069 edge_iterator ei;
1070 edge e;
1072 if (!current_loops)
1073 return;
1075 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1076 return;
1077 loops_state_set (LOOPS_HAVE_RECORDED_EXITS);
1079 gcc_assert (current_loops->exits == NULL);
1080 current_loops->exits
1081 = hash_table<loop_exit_hasher>::create_ggc (2 * number_of_loops (cfun));
1083 FOR_EACH_BB_FN (bb, cfun)
1085 FOR_EACH_EDGE (e, ei, bb->succs)
1087 rescan_loop_exit (e, true, false);
1092 /* Dumps information about the exit in *SLOT to FILE.
1093 Callback for htab_traverse. */
1096 dump_recorded_exit (loop_exit **slot, FILE *file)
1098 struct loop_exit *exit = *slot;
1099 unsigned n = 0;
1100 edge e = exit->e;
1102 for (; exit != NULL; exit = exit->next_e)
1103 n++;
1105 fprintf (file, "Edge %d->%d exits %u loops\n",
1106 e->src->index, e->dest->index, n);
1108 return 1;
1111 /* Dumps the recorded exits of loops to FILE. */
1113 extern void dump_recorded_exits (FILE *);
1114 void
1115 dump_recorded_exits (FILE *file)
1117 if (!current_loops->exits)
1118 return;
1119 current_loops->exits->traverse<FILE *, dump_recorded_exit> (file);
1122 /* Releases lists of loop exits. */
1124 void
1125 release_recorded_exits (void)
1127 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS));
1128 current_loops->exits->empty ();
1129 current_loops->exits = NULL;
1130 loops_state_clear (LOOPS_HAVE_RECORDED_EXITS);
1133 /* Returns the list of the exit edges of a LOOP. */
1135 vec<edge>
1136 get_loop_exit_edges (const struct loop *loop)
1138 vec<edge> edges = vNULL;
1139 edge e;
1140 unsigned i;
1141 basic_block *body;
1142 edge_iterator ei;
1143 struct loop_exit *exit;
1145 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1147 /* If we maintain the lists of exits, use them. Otherwise we must
1148 scan the body of the loop. */
1149 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1151 for (exit = loop->exits->next; exit->e; exit = exit->next)
1152 edges.safe_push (exit->e);
1154 else
1156 body = get_loop_body (loop);
1157 for (i = 0; i < loop->num_nodes; i++)
1158 FOR_EACH_EDGE (e, ei, body[i]->succs)
1160 if (!flow_bb_inside_loop_p (loop, e->dest))
1161 edges.safe_push (e);
1163 free (body);
1166 return edges;
1169 /* Counts the number of conditional branches inside LOOP. */
1171 unsigned
1172 num_loop_branches (const struct loop *loop)
1174 unsigned i, n;
1175 basic_block * body;
1177 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
1179 body = get_loop_body (loop);
1180 n = 0;
1181 for (i = 0; i < loop->num_nodes; i++)
1182 if (EDGE_COUNT (body[i]->succs) >= 2)
1183 n++;
1184 free (body);
1186 return n;
1189 /* Adds basic block BB to LOOP. */
1190 void
1191 add_bb_to_loop (basic_block bb, struct loop *loop)
1193 unsigned i;
1194 loop_p ploop;
1195 edge_iterator ei;
1196 edge e;
1198 gcc_assert (bb->loop_father == NULL);
1199 bb->loop_father = loop;
1200 loop->num_nodes++;
1201 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1202 ploop->num_nodes++;
1204 FOR_EACH_EDGE (e, ei, bb->succs)
1206 rescan_loop_exit (e, true, false);
1208 FOR_EACH_EDGE (e, ei, bb->preds)
1210 rescan_loop_exit (e, true, false);
1214 /* Remove basic block BB from loops. */
1215 void
1216 remove_bb_from_loops (basic_block bb)
1218 unsigned i;
1219 struct loop *loop = bb->loop_father;
1220 loop_p ploop;
1221 edge_iterator ei;
1222 edge e;
1224 gcc_assert (loop != NULL);
1225 loop->num_nodes--;
1226 FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
1227 ploop->num_nodes--;
1228 bb->loop_father = NULL;
1230 FOR_EACH_EDGE (e, ei, bb->succs)
1232 rescan_loop_exit (e, false, true);
1234 FOR_EACH_EDGE (e, ei, bb->preds)
1236 rescan_loop_exit (e, false, true);
1240 /* Finds nearest common ancestor in loop tree for given loops. */
1241 struct loop *
1242 find_common_loop (struct loop *loop_s, struct loop *loop_d)
1244 unsigned sdepth, ddepth;
1246 if (!loop_s) return loop_d;
1247 if (!loop_d) return loop_s;
1249 sdepth = loop_depth (loop_s);
1250 ddepth = loop_depth (loop_d);
1252 if (sdepth < ddepth)
1253 loop_d = (*loop_d->superloops)[sdepth];
1254 else if (sdepth > ddepth)
1255 loop_s = (*loop_s->superloops)[ddepth];
1257 while (loop_s != loop_d)
1259 loop_s = loop_outer (loop_s);
1260 loop_d = loop_outer (loop_d);
1262 return loop_s;
1265 /* Removes LOOP from structures and frees its data. */
1267 void
1268 delete_loop (struct loop *loop)
1270 /* Remove the loop from structure. */
1271 flow_loop_tree_node_remove (loop);
1273 /* Remove loop from loops array. */
1274 (*current_loops->larray)[loop->num] = NULL;
1276 /* Free loop data. */
1277 flow_loop_free (loop);
1280 /* Cancels the LOOP; it must be innermost one. */
1282 static void
1283 cancel_loop (struct loop *loop)
1285 basic_block *bbs;
1286 unsigned i;
1287 struct loop *outer = loop_outer (loop);
1289 gcc_assert (!loop->inner);
1291 /* Move blocks up one level (they should be removed as soon as possible). */
1292 bbs = get_loop_body (loop);
1293 for (i = 0; i < loop->num_nodes; i++)
1294 bbs[i]->loop_father = outer;
1296 free (bbs);
1297 delete_loop (loop);
1300 /* Cancels LOOP and all its subloops. */
1301 void
1302 cancel_loop_tree (struct loop *loop)
1304 while (loop->inner)
1305 cancel_loop_tree (loop->inner);
1306 cancel_loop (loop);
1309 /* Checks that information about loops is correct
1310 -- sizes of loops are all right
1311 -- results of get_loop_body really belong to the loop
1312 -- loop header have just single entry edge and single latch edge
1313 -- loop latches have only single successor that is header of their loop
1314 -- irreducible loops are correctly marked
1315 -- the cached loop depth and loop father of each bb is correct
1317 DEBUG_FUNCTION void
1318 verify_loop_structure (void)
1320 unsigned *sizes, i, j;
1321 sbitmap irreds;
1322 basic_block bb, *bbs;
1323 struct loop *loop;
1324 int err = 0;
1325 edge e;
1326 unsigned num = number_of_loops (cfun);
1327 struct loop_exit *exit, *mexit;
1328 bool dom_available = dom_info_available_p (CDI_DOMINATORS);
1329 sbitmap visited;
1331 if (loops_state_satisfies_p (LOOPS_NEED_FIXUP))
1333 error ("loop verification on loop tree that needs fixup");
1334 err = 1;
1337 /* We need up-to-date dominators, compute or verify them. */
1338 if (!dom_available)
1339 calculate_dominance_info (CDI_DOMINATORS);
1340 else
1341 verify_dominators (CDI_DOMINATORS);
1343 /* Check the headers. */
1344 FOR_EACH_BB_FN (bb, cfun)
1345 if (bb_loop_header_p (bb))
1347 if (bb->loop_father->header == NULL)
1349 error ("loop with header %d marked for removal", bb->index);
1350 err = 1;
1352 else if (bb->loop_father->header != bb)
1354 error ("loop with header %d not in loop tree", bb->index);
1355 err = 1;
1358 else if (bb->loop_father->header == bb)
1360 error ("non-loop with header %d not marked for removal", bb->index);
1361 err = 1;
1364 /* Check the recorded loop father and sizes of loops. */
1365 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
1366 bitmap_clear (visited);
1367 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
1368 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1370 unsigned n;
1372 if (loop->header == NULL)
1374 error ("removed loop %d in loop tree", loop->num);
1375 err = 1;
1376 continue;
1379 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
1380 if (loop->num_nodes != n)
1382 error ("size of loop %d should be %d, not %d",
1383 loop->num, n, loop->num_nodes);
1384 err = 1;
1387 for (j = 0; j < n; j++)
1389 bb = bbs[j];
1391 if (!flow_bb_inside_loop_p (loop, bb))
1393 error ("bb %d does not belong to loop %d",
1394 bb->index, loop->num);
1395 err = 1;
1398 /* Ignore this block if it is in an inner loop. */
1399 if (bitmap_bit_p (visited, bb->index))
1400 continue;
1401 bitmap_set_bit (visited, bb->index);
1403 if (bb->loop_father != loop)
1405 error ("bb %d has father loop %d, should be loop %d",
1406 bb->index, bb->loop_father->num, loop->num);
1407 err = 1;
1411 free (bbs);
1412 sbitmap_free (visited);
1414 /* Check headers and latches. */
1415 FOR_EACH_LOOP (loop, 0)
1417 i = loop->num;
1418 if (loop->header == NULL)
1419 continue;
1420 if (!bb_loop_header_p (loop->header))
1422 error ("loop %d%'s header is not a loop header", i);
1423 err = 1;
1425 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
1426 && EDGE_COUNT (loop->header->preds) != 2)
1428 error ("loop %d%'s header does not have exactly 2 entries", i);
1429 err = 1;
1431 if (loop->latch)
1433 if (!find_edge (loop->latch, loop->header))
1435 error ("loop %d%'s latch does not have an edge to its header", i);
1436 err = 1;
1438 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, loop->header))
1440 error ("loop %d%'s latch is not dominated by its header", i);
1441 err = 1;
1444 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1446 if (!single_succ_p (loop->latch))
1448 error ("loop %d%'s latch does not have exactly 1 successor", i);
1449 err = 1;
1451 if (single_succ (loop->latch) != loop->header)
1453 error ("loop %d%'s latch does not have header as successor", i);
1454 err = 1;
1456 if (loop->latch->loop_father != loop)
1458 error ("loop %d%'s latch does not belong directly to it", i);
1459 err = 1;
1462 if (loop->header->loop_father != loop)
1464 error ("loop %d%'s header does not belong directly to it", i);
1465 err = 1;
1467 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
1468 && (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP))
1470 error ("loop %d%'s latch is marked as part of irreducible region", i);
1471 err = 1;
1475 /* Check irreducible loops. */
1476 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1478 /* Record old info. */
1479 irreds = sbitmap_alloc (last_basic_block_for_fn (cfun));
1480 FOR_EACH_BB_FN (bb, cfun)
1482 edge_iterator ei;
1483 if (bb->flags & BB_IRREDUCIBLE_LOOP)
1484 bitmap_set_bit (irreds, bb->index);
1485 else
1486 bitmap_clear_bit (irreds, bb->index);
1487 FOR_EACH_EDGE (e, ei, bb->succs)
1488 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1489 e->flags |= EDGE_ALL_FLAGS + 1;
1492 /* Recount it. */
1493 mark_irreducible_loops ();
1495 /* Compare. */
1496 FOR_EACH_BB_FN (bb, cfun)
1498 edge_iterator ei;
1500 if ((bb->flags & BB_IRREDUCIBLE_LOOP)
1501 && !bitmap_bit_p (irreds, bb->index))
1503 error ("basic block %d should be marked irreducible", bb->index);
1504 err = 1;
1506 else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
1507 && bitmap_bit_p (irreds, bb->index))
1509 error ("basic block %d should not be marked irreducible", bb->index);
1510 err = 1;
1512 FOR_EACH_EDGE (e, ei, bb->succs)
1514 if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
1515 && !(e->flags & (EDGE_ALL_FLAGS + 1)))
1517 error ("edge from %d to %d should be marked irreducible",
1518 e->src->index, e->dest->index);
1519 err = 1;
1521 else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
1522 && (e->flags & (EDGE_ALL_FLAGS + 1)))
1524 error ("edge from %d to %d should not be marked irreducible",
1525 e->src->index, e->dest->index);
1526 err = 1;
1528 e->flags &= ~(EDGE_ALL_FLAGS + 1);
1531 free (irreds);
1534 /* Check the recorded loop exits. */
1535 FOR_EACH_LOOP (loop, 0)
1537 if (!loop->exits || loop->exits->e != NULL)
1539 error ("corrupted head of the exits list of loop %d",
1540 loop->num);
1541 err = 1;
1543 else
1545 /* Check that the list forms a cycle, and all elements except
1546 for the head are nonnull. */
1547 for (mexit = loop->exits, exit = mexit->next, i = 0;
1548 exit->e && exit != mexit;
1549 exit = exit->next)
1551 if (i++ & 1)
1552 mexit = mexit->next;
1555 if (exit != loop->exits)
1557 error ("corrupted exits list of loop %d", loop->num);
1558 err = 1;
1562 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1564 if (loop->exits->next != loop->exits)
1566 error ("nonempty exits list of loop %d, but exits are not recorded",
1567 loop->num);
1568 err = 1;
1573 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1575 unsigned n_exits = 0, eloops;
1577 sizes = XCNEWVEC (unsigned, num);
1578 memset (sizes, 0, sizeof (unsigned) * num);
1579 FOR_EACH_BB_FN (bb, cfun)
1581 edge_iterator ei;
1582 if (bb->loop_father == current_loops->tree_root)
1583 continue;
1584 FOR_EACH_EDGE (e, ei, bb->succs)
1586 if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
1587 continue;
1589 n_exits++;
1590 exit = get_exit_descriptions (e);
1591 if (!exit)
1593 error ("exit %d->%d not recorded",
1594 e->src->index, e->dest->index);
1595 err = 1;
1597 eloops = 0;
1598 for (; exit; exit = exit->next_e)
1599 eloops++;
1601 for (loop = bb->loop_father;
1602 loop != e->dest->loop_father
1603 /* When a loop exit is also an entry edge which
1604 can happen when avoiding CFG manipulations
1605 then the last loop exited is the outer loop
1606 of the loop entered. */
1607 && loop != loop_outer (e->dest->loop_father);
1608 loop = loop_outer (loop))
1610 eloops--;
1611 sizes[loop->num]++;
1614 if (eloops != 0)
1616 error ("wrong list of exited loops for edge %d->%d",
1617 e->src->index, e->dest->index);
1618 err = 1;
1623 if (n_exits != current_loops->exits->elements ())
1625 error ("too many loop exits recorded");
1626 err = 1;
1629 FOR_EACH_LOOP (loop, 0)
1631 eloops = 0;
1632 for (exit = loop->exits->next; exit->e; exit = exit->next)
1633 eloops++;
1634 if (eloops != sizes[loop->num])
1636 error ("%d exits recorded for loop %d (having %d exits)",
1637 eloops, loop->num, sizes[loop->num]);
1638 err = 1;
1642 free (sizes);
1645 gcc_assert (!err);
1647 if (!dom_available)
1648 free_dominance_info (CDI_DOMINATORS);
1651 /* Returns latch edge of LOOP. */
1652 edge
1653 loop_latch_edge (const struct loop *loop)
1655 return find_edge (loop->latch, loop->header);
1658 /* Returns preheader edge of LOOP. */
1659 edge
1660 loop_preheader_edge (const struct loop *loop)
1662 edge e;
1663 edge_iterator ei;
1665 gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS));
1667 FOR_EACH_EDGE (e, ei, loop->header->preds)
1668 if (e->src != loop->latch)
1669 break;
1671 return e;
1674 /* Returns true if E is an exit of LOOP. */
1676 bool
1677 loop_exit_edge_p (const struct loop *loop, const_edge e)
1679 return (flow_bb_inside_loop_p (loop, e->src)
1680 && !flow_bb_inside_loop_p (loop, e->dest));
1683 /* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit
1684 or more than one exit. If loops do not have the exits recorded, NULL
1685 is returned always. */
1687 edge
1688 single_exit (const struct loop *loop)
1690 struct loop_exit *exit = loop->exits->next;
1692 if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1693 return NULL;
1695 if (exit->e && exit->next == loop->exits)
1696 return exit->e;
1697 else
1698 return NULL;
1701 /* Returns true when BB has an incoming edge exiting LOOP. */
1703 bool
1704 loop_exits_to_bb_p (struct loop *loop, basic_block bb)
1706 edge e;
1707 edge_iterator ei;
1709 FOR_EACH_EDGE (e, ei, bb->preds)
1710 if (loop_exit_edge_p (loop, e))
1711 return true;
1713 return false;
1716 /* Returns true when BB has an outgoing edge exiting LOOP. */
1718 bool
1719 loop_exits_from_bb_p (struct loop *loop, basic_block bb)
1721 edge e;
1722 edge_iterator ei;
1724 FOR_EACH_EDGE (e, ei, bb->succs)
1725 if (loop_exit_edge_p (loop, e))
1726 return true;
1728 return false;
1731 /* Return location corresponding to the loop control condition if possible. */
1733 location_t
1734 get_loop_location (struct loop *loop)
1736 rtx_insn *insn = NULL;
1737 struct niter_desc *desc = NULL;
1738 edge exit;
1740 /* For a for or while loop, we would like to return the location
1741 of the for or while statement, if possible. To do this, look
1742 for the branch guarding the loop back-edge. */
1744 /* If this is a simple loop with an in_edge, then the loop control
1745 branch is typically at the end of its source. */
1746 desc = get_simple_loop_desc (loop);
1747 if (desc->in_edge)
1749 FOR_BB_INSNS_REVERSE (desc->in_edge->src, insn)
1751 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1752 return INSN_LOCATION (insn);
1755 /* If loop has a single exit, then the loop control branch
1756 must be at the end of its source. */
1757 if ((exit = single_exit (loop)))
1759 FOR_BB_INSNS_REVERSE (exit->src, insn)
1761 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1762 return INSN_LOCATION (insn);
1765 /* Next check the latch, to see if it is non-empty. */
1766 FOR_BB_INSNS_REVERSE (loop->latch, insn)
1768 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1769 return INSN_LOCATION (insn);
1771 /* Finally, if none of the above identifies the loop control branch,
1772 return the first location in the loop header. */
1773 FOR_BB_INSNS (loop->header, insn)
1775 if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
1776 return INSN_LOCATION (insn);
1778 /* If all else fails, simply return the current function location. */
1779 return DECL_SOURCE_LOCATION (current_function_decl);
1782 /* Records that every statement in LOOP is executed I_BOUND times.
1783 REALISTIC is true if I_BOUND is expected to be close to the real number
1784 of iterations. UPPER is true if we are sure the loop iterates at most
1785 I_BOUND times. */
1787 void
1788 record_niter_bound (struct loop *loop, const widest_int &i_bound,
1789 bool realistic, bool upper)
1791 /* Update the bounds only when there is no previous estimation, or when the
1792 current estimation is smaller. */
1793 if (upper
1794 && (!loop->any_upper_bound
1795 || wi::ltu_p (i_bound, loop->nb_iterations_upper_bound)))
1797 loop->any_upper_bound = true;
1798 loop->nb_iterations_upper_bound = i_bound;
1800 if (realistic
1801 && (!loop->any_estimate
1802 || wi::ltu_p (i_bound, loop->nb_iterations_estimate)))
1804 loop->any_estimate = true;
1805 loop->nb_iterations_estimate = i_bound;
1808 /* If an upper bound is smaller than the realistic estimate of the
1809 number of iterations, use the upper bound instead. */
1810 if (loop->any_upper_bound
1811 && loop->any_estimate
1812 && wi::ltu_p (loop->nb_iterations_upper_bound,
1813 loop->nb_iterations_estimate))
1814 loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
1817 /* Similar to get_estimated_loop_iterations, but returns the estimate only
1818 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1819 on the number of iterations of LOOP could not be derived, returns -1. */
1821 HOST_WIDE_INT
1822 get_estimated_loop_iterations_int (struct loop *loop)
1824 widest_int nit;
1825 HOST_WIDE_INT hwi_nit;
1827 if (!get_estimated_loop_iterations (loop, &nit))
1828 return -1;
1830 if (!wi::fits_shwi_p (nit))
1831 return -1;
1832 hwi_nit = nit.to_shwi ();
1834 return hwi_nit < 0 ? -1 : hwi_nit;
1837 /* Returns an upper bound on the number of executions of statements
1838 in the LOOP. For statements before the loop exit, this exceeds
1839 the number of execution of the latch by one. */
1841 HOST_WIDE_INT
1842 max_stmt_executions_int (struct loop *loop)
1844 HOST_WIDE_INT nit = get_max_loop_iterations_int (loop);
1845 HOST_WIDE_INT snit;
1847 if (nit == -1)
1848 return -1;
1850 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
1852 /* If the computation overflows, return -1. */
1853 return snit < 0 ? -1 : snit;
1856 /* Sets NIT to the estimated number of executions of the latch of the
1857 LOOP. If we have no reliable estimate, the function returns false, otherwise
1858 returns true. */
1860 bool
1861 get_estimated_loop_iterations (struct loop *loop, widest_int *nit)
1863 /* Even if the bound is not recorded, possibly we can derrive one from
1864 profile. */
1865 if (!loop->any_estimate)
1867 if (loop->header->count)
1869 *nit = gcov_type_to_wide_int
1870 (expected_loop_iterations_unbounded (loop) + 1);
1871 return true;
1873 return false;
1876 *nit = loop->nb_iterations_estimate;
1877 return true;
1880 /* Sets NIT to an upper bound for the maximum number of executions of the
1881 latch of the LOOP. If we have no reliable estimate, the function returns
1882 false, otherwise returns true. */
1884 bool
1885 get_max_loop_iterations (struct loop *loop, widest_int *nit)
1887 if (!loop->any_upper_bound)
1888 return false;
1890 *nit = loop->nb_iterations_upper_bound;
1891 return true;
1894 /* Similar to get_max_loop_iterations, but returns the estimate only
1895 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
1896 on the number of iterations of LOOP could not be derived, returns -1. */
1898 HOST_WIDE_INT
1899 get_max_loop_iterations_int (struct loop *loop)
1901 widest_int nit;
1902 HOST_WIDE_INT hwi_nit;
1904 if (!get_max_loop_iterations (loop, &nit))
1905 return -1;
1907 if (!wi::fits_shwi_p (nit))
1908 return -1;
1909 hwi_nit = nit.to_shwi ();
1911 return hwi_nit < 0 ? -1 : hwi_nit;
1914 /* Returns the loop depth of the loop BB belongs to. */
1917 bb_loop_depth (const_basic_block bb)
1919 return bb->loop_father ? loop_depth (bb->loop_father) : 0;
1922 /* Marks LOOP for removal and sets LOOPS_NEED_FIXUP. */
1924 void
1925 mark_loop_for_removal (loop_p loop)
1927 loop->former_header = loop->header;
1928 loop->header = NULL;
1929 loop->latch = NULL;
1930 loops_state_set (LOOPS_NEED_FIXUP);