1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 88, 89, 92-98, 1999 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
31 To scan an insn, call `find_reloads'. This does two things:
32 1. sets up tables describing which values must be reloaded
33 for this insn, and what kind of hard regs they must be reloaded into;
34 2. optionally record the locations where those values appear in
35 the data, so they can be replaced properly later.
36 This is done only if the second arg to `find_reloads' is nonzero.
38 The third arg to `find_reloads' specifies the number of levels
39 of indirect addressing supported by the machine. If it is zero,
40 indirect addressing is not valid. If it is one, (MEM (REG n))
41 is valid even if (REG n) did not get a hard register; if it is two,
42 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
43 hard register, and similarly for higher values.
45 Then you must choose the hard regs to reload those pseudo regs into,
46 and generate appropriate load insns before this insn and perhaps
47 also store insns after this insn. Set up the array `reload_reg_rtx'
48 to contain the REG rtx's for the registers you used. In some
49 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
50 for certain reloads. Then that tells you which register to use,
51 so you do not need to allocate one. But you still do need to add extra
52 instructions to copy the value into and out of that register.
54 Finally you must call `subst_reloads' to substitute the reload reg rtx's
55 into the locations already recorded.
59 find_reloads can alter the operands of the instruction it is called on.
61 1. Two operands of any sort may be interchanged, if they are in a
62 commutative instruction.
63 This happens only if find_reloads thinks the instruction will compile
66 2. Pseudo-registers that are equivalent to constants are replaced
67 with those constants if they are not in hard registers.
69 1 happens every time find_reloads is called.
70 2 happens only when REPLACE is 1, which is only when
71 actually doing the reloads, not when just counting them.
74 Using a reload register for several reloads in one insn:
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
94 #include "insn-config.h"
95 #include "insn-codes.h"
99 #include "hard-reg-set.h"
103 #include "function.h"
107 #ifndef REGISTER_MOVE_COST
108 #define REGISTER_MOVE_COST(x, y) 2
111 #ifndef REGNO_MODE_OK_FOR_BASE_P
112 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
115 #ifndef REG_MODE_OK_FOR_BASE_P
116 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
119 /* All reloads of the current insn are recorded here. See reload.h for
122 struct reload rld
[MAX_RELOADS
];
124 /* All the "earlyclobber" operands of the current insn
125 are recorded here. */
127 rtx reload_earlyclobbers
[MAX_RECOG_OPERANDS
];
129 int reload_n_operands
;
131 /* Replacing reloads.
133 If `replace_reloads' is nonzero, then as each reload is recorded
134 an entry is made for it in the table `replacements'.
135 Then later `subst_reloads' can look through that table and
136 perform all the replacements needed. */
138 /* Nonzero means record the places to replace. */
139 static int replace_reloads
;
141 /* Each replacement is recorded with a structure like this. */
144 rtx
*where
; /* Location to store in */
145 rtx
*subreg_loc
; /* Location of SUBREG if WHERE is inside
146 a SUBREG; 0 otherwise. */
147 int what
; /* which reload this is for */
148 enum machine_mode mode
; /* mode it must have */
151 static struct replacement replacements
[MAX_RECOG_OPERANDS
* ((MAX_REGS_PER_ADDRESS
* 2) + 1)];
153 /* Number of replacements currently recorded. */
154 static int n_replacements
;
156 /* Used to track what is modified by an operand. */
159 int reg_flag
; /* Nonzero if referencing a register. */
160 int safe
; /* Nonzero if this can't conflict with anything. */
161 rtx base
; /* Base address for MEM. */
162 HOST_WIDE_INT start
; /* Starting offset or register number. */
163 HOST_WIDE_INT end
; /* Ending offset or register number. */
166 #ifdef SECONDARY_MEMORY_NEEDED
168 /* Save MEMs needed to copy from one class of registers to another. One MEM
169 is used per mode, but normally only one or two modes are ever used.
171 We keep two versions, before and after register elimination. The one
172 after register elimination is record separately for each operand. This
173 is done in case the address is not valid to be sure that we separately
176 static rtx secondary_memlocs
[NUM_MACHINE_MODES
];
177 static rtx secondary_memlocs_elim
[NUM_MACHINE_MODES
][MAX_RECOG_OPERANDS
];
180 /* The instruction we are doing reloads for;
181 so we can test whether a register dies in it. */
182 static rtx this_insn
;
184 /* Nonzero if this instruction is a user-specified asm with operands. */
185 static int this_insn_is_asm
;
187 /* If hard_regs_live_known is nonzero,
188 we can tell which hard regs are currently live,
189 at least enough to succeed in choosing dummy reloads. */
190 static int hard_regs_live_known
;
192 /* Indexed by hard reg number,
193 element is nonnegative if hard reg has been spilled.
194 This vector is passed to `find_reloads' as an argument
195 and is not changed here. */
196 static short *static_reload_reg_p
;
198 /* Set to 1 in subst_reg_equivs if it changes anything. */
199 static int subst_reg_equivs_changed
;
201 /* On return from push_reload, holds the reload-number for the OUT
202 operand, which can be different for that from the input operand. */
203 static int output_reloadnum
;
205 /* Compare two RTX's. */
206 #define MATCHES(x, y) \
207 (x == y || (x != 0 && (GET_CODE (x) == REG \
208 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
209 : rtx_equal_p (x, y) && ! side_effects_p (x))))
211 /* Indicates if two reloads purposes are for similar enough things that we
212 can merge their reloads. */
213 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
214 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
215 || ((when1) == (when2) && (op1) == (op2)) \
216 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
217 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
218 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
219 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
220 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
222 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
223 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
224 ((when1) != (when2) \
225 || ! ((op1) == (op2) \
226 || (when1) == RELOAD_FOR_INPUT \
227 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
228 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
230 /* If we are going to reload an address, compute the reload type to
232 #define ADDR_TYPE(type) \
233 ((type) == RELOAD_FOR_INPUT_ADDRESS \
234 ? RELOAD_FOR_INPADDR_ADDRESS \
235 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
236 ? RELOAD_FOR_OUTADDR_ADDRESS \
239 #ifdef HAVE_SECONDARY_RELOADS
240 static int push_secondary_reload
PROTO((int, rtx
, int, int, enum reg_class
,
241 enum machine_mode
, enum reload_type
,
244 static enum reg_class find_valid_class
PROTO((enum machine_mode
, int));
245 static int push_reload
PROTO((rtx
, rtx
, rtx
*, rtx
*, enum reg_class
,
246 enum machine_mode
, enum machine_mode
,
247 int, int, int, enum reload_type
));
248 static void push_replacement
PROTO((rtx
*, int, enum machine_mode
));
249 static void combine_reloads
PROTO((void));
250 static int find_reusable_reload
PROTO((rtx
*, rtx
, enum reg_class
,
251 enum reload_type
, int, int));
252 static rtx find_dummy_reload
PROTO((rtx
, rtx
, rtx
*, rtx
*,
253 enum machine_mode
, enum machine_mode
,
254 enum reg_class
, int, int));
255 static int hard_reg_set_here_p
PROTO((int, int, rtx
));
256 static struct decomposition decompose
PROTO((rtx
));
257 static int immune_p
PROTO((rtx
, rtx
, struct decomposition
));
258 static int alternative_allows_memconst
PROTO((const char *, int));
259 static rtx find_reloads_toplev
PROTO((rtx
, int, enum reload_type
, int, int, rtx
));
260 static rtx make_memloc
PROTO((rtx
, int));
261 static int find_reloads_address
PROTO((enum machine_mode
, rtx
*, rtx
, rtx
*,
262 int, enum reload_type
, int, rtx
));
263 static rtx subst_reg_equivs
PROTO((rtx
, rtx
));
264 static rtx subst_indexed_address
PROTO((rtx
));
265 static int find_reloads_address_1
PROTO((enum machine_mode
, rtx
, int, rtx
*,
266 int, enum reload_type
,int, rtx
));
267 static void find_reloads_address_part
PROTO((rtx
, rtx
*, enum reg_class
,
268 enum machine_mode
, int,
269 enum reload_type
, int));
270 static rtx find_reloads_subreg_address
PROTO((rtx
, int, int, enum reload_type
,
272 static int find_inc_amount
PROTO((rtx
, rtx
));
273 static int loc_mentioned_in_p
PROTO((rtx
*, rtx
));
274 extern void debug_reload_to_stream
PROTO((FILE *));
275 extern void debug_reload
PROTO((void));
277 #ifdef HAVE_SECONDARY_RELOADS
279 /* Determine if any secondary reloads are needed for loading (if IN_P is
280 non-zero) or storing (if IN_P is zero) X to or from a reload register of
281 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
282 are needed, push them.
284 Return the reload number of the secondary reload we made, or -1 if
285 we didn't need one. *PICODE is set to the insn_code to use if we do
286 need a secondary reload. */
289 push_secondary_reload (in_p
, x
, opnum
, optional
, reload_class
, reload_mode
,
295 enum reg_class reload_class
;
296 enum machine_mode reload_mode
;
297 enum reload_type type
;
298 enum insn_code
*picode
;
300 enum reg_class
class = NO_REGS
;
301 enum machine_mode mode
= reload_mode
;
302 enum insn_code icode
= CODE_FOR_nothing
;
303 enum reg_class t_class
= NO_REGS
;
304 enum machine_mode t_mode
= VOIDmode
;
305 enum insn_code t_icode
= CODE_FOR_nothing
;
306 enum reload_type secondary_type
;
307 int s_reload
, t_reload
= -1;
309 if (type
== RELOAD_FOR_INPUT_ADDRESS
310 || type
== RELOAD_FOR_OUTPUT_ADDRESS
311 || type
== RELOAD_FOR_INPADDR_ADDRESS
312 || type
== RELOAD_FOR_OUTADDR_ADDRESS
)
313 secondary_type
= type
;
315 secondary_type
= in_p
? RELOAD_FOR_INPUT_ADDRESS
: RELOAD_FOR_OUTPUT_ADDRESS
;
317 *picode
= CODE_FOR_nothing
;
319 /* If X is a paradoxical SUBREG, use the inner value to determine both the
320 mode and object being reloaded. */
321 if (GET_CODE (x
) == SUBREG
322 && (GET_MODE_SIZE (GET_MODE (x
))
323 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
)))))
326 reload_mode
= GET_MODE (x
);
329 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
330 is still a pseudo-register by now, it *must* have an equivalent MEM
331 but we don't want to assume that), use that equivalent when seeing if
332 a secondary reload is needed since whether or not a reload is needed
333 might be sensitive to the form of the MEM. */
335 if (GET_CODE (x
) == REG
&& REGNO (x
) >= FIRST_PSEUDO_REGISTER
336 && reg_equiv_mem
[REGNO (x
)] != 0)
337 x
= reg_equiv_mem
[REGNO (x
)];
339 #ifdef SECONDARY_INPUT_RELOAD_CLASS
341 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class
, reload_mode
, x
);
344 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
346 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class
, reload_mode
, x
);
349 /* If we don't need any secondary registers, done. */
350 if (class == NO_REGS
)
353 /* Get a possible insn to use. If the predicate doesn't accept X, don't
356 icode
= (in_p
? reload_in_optab
[(int) reload_mode
]
357 : reload_out_optab
[(int) reload_mode
]);
359 if (icode
!= CODE_FOR_nothing
360 && insn_data
[(int) icode
].operand
[in_p
].predicate
361 && (! (insn_data
[(int) icode
].operand
[in_p
].predicate
) (x
, reload_mode
)))
362 icode
= CODE_FOR_nothing
;
364 /* If we will be using an insn, see if it can directly handle the reload
365 register we will be using. If it can, the secondary reload is for a
366 scratch register. If it can't, we will use the secondary reload for
367 an intermediate register and require a tertiary reload for the scratch
370 if (icode
!= CODE_FOR_nothing
)
372 /* If IN_P is non-zero, the reload register will be the output in
373 operand 0. If IN_P is zero, the reload register will be the input
374 in operand 1. Outputs should have an initial "=", which we must
378 = insn_data
[(int) icode
].operand
[!in_p
].constraint
[in_p
];
379 enum reg_class insn_class
380 = (insn_letter
== 'r' ? GENERAL_REGS
381 : REG_CLASS_FROM_LETTER ((unsigned char) insn_letter
));
383 if (insn_class
== NO_REGS
385 && insn_data
[(int) icode
].operand
[!in_p
].constraint
[0] != '=')
386 /* The scratch register's constraint must start with "=&". */
387 || insn_data
[(int) icode
].operand
[2].constraint
[0] != '='
388 || insn_data
[(int) icode
].operand
[2].constraint
[1] != '&')
391 if (reg_class_subset_p (reload_class
, insn_class
))
392 mode
= insn_data
[(int) icode
].operand
[2].mode
;
395 char t_letter
= insn_data
[(int) icode
].operand
[2].constraint
[2];
397 t_mode
= insn_data
[(int) icode
].operand
[2].mode
;
398 t_class
= (t_letter
== 'r' ? GENERAL_REGS
399 : REG_CLASS_FROM_LETTER ((unsigned char) t_letter
));
401 icode
= CODE_FOR_nothing
;
405 /* This case isn't valid, so fail. Reload is allowed to use the same
406 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
407 in the case of a secondary register, we actually need two different
408 registers for correct code. We fail here to prevent the possibility of
409 silently generating incorrect code later.
411 The convention is that secondary input reloads are valid only if the
412 secondary_class is different from class. If you have such a case, you
413 can not use secondary reloads, you must work around the problem some
416 Allow this when MODE is not reload_mode and assume that the generated
417 code handles this case (it does on the Alpha, which is the only place
418 this currently happens). */
420 if (in_p
&& class == reload_class
&& mode
== reload_mode
)
423 /* If we need a tertiary reload, see if we have one we can reuse or else
426 if (t_class
!= NO_REGS
)
428 for (t_reload
= 0; t_reload
< n_reloads
; t_reload
++)
429 if (rld
[t_reload
].secondary_p
430 && (reg_class_subset_p (t_class
, rld
[t_reload
].class)
431 || reg_class_subset_p (rld
[t_reload
].class, t_class
))
432 && ((in_p
&& rld
[t_reload
].inmode
== t_mode
)
433 || (! in_p
&& rld
[t_reload
].outmode
== t_mode
))
434 && ((in_p
&& (rld
[t_reload
].secondary_in_icode
435 == CODE_FOR_nothing
))
436 || (! in_p
&&(rld
[t_reload
].secondary_out_icode
437 == CODE_FOR_nothing
)))
438 && (reg_class_size
[(int) t_class
] == 1 || SMALL_REGISTER_CLASSES
)
439 && MERGABLE_RELOADS (secondary_type
,
440 rld
[t_reload
].when_needed
,
441 opnum
, rld
[t_reload
].opnum
))
444 rld
[t_reload
].inmode
= t_mode
;
446 rld
[t_reload
].outmode
= t_mode
;
448 if (reg_class_subset_p (t_class
, rld
[t_reload
].class))
449 rld
[t_reload
].class = t_class
;
451 rld
[t_reload
].opnum
= MIN (rld
[t_reload
].opnum
, opnum
);
452 rld
[t_reload
].optional
&= optional
;
453 rld
[t_reload
].secondary_p
= 1;
454 if (MERGE_TO_OTHER (secondary_type
, rld
[t_reload
].when_needed
,
455 opnum
, rld
[t_reload
].opnum
))
456 rld
[t_reload
].when_needed
= RELOAD_OTHER
;
459 if (t_reload
== n_reloads
)
461 /* We need to make a new tertiary reload for this register class. */
462 rld
[t_reload
].in
= rld
[t_reload
].out
= 0;
463 rld
[t_reload
].class = t_class
;
464 rld
[t_reload
].inmode
= in_p
? t_mode
: VOIDmode
;
465 rld
[t_reload
].outmode
= ! in_p
? t_mode
: VOIDmode
;
466 rld
[t_reload
].reg_rtx
= 0;
467 rld
[t_reload
].optional
= optional
;
468 rld
[t_reload
].nongroup
= 0;
469 rld
[t_reload
].inc
= 0;
470 /* Maybe we could combine these, but it seems too tricky. */
471 rld
[t_reload
].nocombine
= 1;
472 rld
[t_reload
].in_reg
= 0;
473 rld
[t_reload
].out_reg
= 0;
474 rld
[t_reload
].opnum
= opnum
;
475 rld
[t_reload
].when_needed
= secondary_type
;
476 rld
[t_reload
].secondary_in_reload
= -1;
477 rld
[t_reload
].secondary_out_reload
= -1;
478 rld
[t_reload
].secondary_in_icode
= CODE_FOR_nothing
;
479 rld
[t_reload
].secondary_out_icode
= CODE_FOR_nothing
;
480 rld
[t_reload
].secondary_p
= 1;
486 /* See if we can reuse an existing secondary reload. */
487 for (s_reload
= 0; s_reload
< n_reloads
; s_reload
++)
488 if (rld
[s_reload
].secondary_p
489 && (reg_class_subset_p (class, rld
[s_reload
].class)
490 || reg_class_subset_p (rld
[s_reload
].class, class))
491 && ((in_p
&& rld
[s_reload
].inmode
== mode
)
492 || (! in_p
&& rld
[s_reload
].outmode
== mode
))
493 && ((in_p
&& rld
[s_reload
].secondary_in_reload
== t_reload
)
494 || (! in_p
&& rld
[s_reload
].secondary_out_reload
== t_reload
))
495 && ((in_p
&& rld
[s_reload
].secondary_in_icode
== t_icode
)
496 || (! in_p
&& rld
[s_reload
].secondary_out_icode
== t_icode
))
497 && (reg_class_size
[(int) class] == 1 || SMALL_REGISTER_CLASSES
)
498 && MERGABLE_RELOADS (secondary_type
, rld
[s_reload
].when_needed
,
499 opnum
, rld
[s_reload
].opnum
))
502 rld
[s_reload
].inmode
= mode
;
504 rld
[s_reload
].outmode
= mode
;
506 if (reg_class_subset_p (class, rld
[s_reload
].class))
507 rld
[s_reload
].class = class;
509 rld
[s_reload
].opnum
= MIN (rld
[s_reload
].opnum
, opnum
);
510 rld
[s_reload
].optional
&= optional
;
511 rld
[s_reload
].secondary_p
= 1;
512 if (MERGE_TO_OTHER (secondary_type
, rld
[s_reload
].when_needed
,
513 opnum
, rld
[s_reload
].opnum
))
514 rld
[s_reload
].when_needed
= RELOAD_OTHER
;
517 if (s_reload
== n_reloads
)
519 #ifdef SECONDARY_MEMORY_NEEDED
520 /* If we need a memory location to copy between the two reload regs,
521 set it up now. Note that we do the input case before making
522 the reload and the output case after. This is due to the
523 way reloads are output. */
525 if (in_p
&& icode
== CODE_FOR_nothing
526 && SECONDARY_MEMORY_NEEDED (class, reload_class
, mode
))
527 get_secondary_mem (x
, reload_mode
, opnum
, type
);
530 /* We need to make a new secondary reload for this register class. */
531 rld
[s_reload
].in
= rld
[s_reload
].out
= 0;
532 rld
[s_reload
].class = class;
534 rld
[s_reload
].inmode
= in_p
? mode
: VOIDmode
;
535 rld
[s_reload
].outmode
= ! in_p
? mode
: VOIDmode
;
536 rld
[s_reload
].reg_rtx
= 0;
537 rld
[s_reload
].optional
= optional
;
538 rld
[s_reload
].nongroup
= 0;
539 rld
[s_reload
].inc
= 0;
540 /* Maybe we could combine these, but it seems too tricky. */
541 rld
[s_reload
].nocombine
= 1;
542 rld
[s_reload
].in_reg
= 0;
543 rld
[s_reload
].out_reg
= 0;
544 rld
[s_reload
].opnum
= opnum
;
545 rld
[s_reload
].when_needed
= secondary_type
;
546 rld
[s_reload
].secondary_in_reload
= in_p
? t_reload
: -1;
547 rld
[s_reload
].secondary_out_reload
= ! in_p
? t_reload
: -1;
548 rld
[s_reload
].secondary_in_icode
= in_p
? t_icode
: CODE_FOR_nothing
;
549 rld
[s_reload
].secondary_out_icode
550 = ! in_p
? t_icode
: CODE_FOR_nothing
;
551 rld
[s_reload
].secondary_p
= 1;
555 #ifdef SECONDARY_MEMORY_NEEDED
556 if (! in_p
&& icode
== CODE_FOR_nothing
557 && SECONDARY_MEMORY_NEEDED (reload_class
, class, mode
))
558 get_secondary_mem (x
, mode
, opnum
, type
);
565 #endif /* HAVE_SECONDARY_RELOADS */
567 #ifdef SECONDARY_MEMORY_NEEDED
569 /* Return a memory location that will be used to copy X in mode MODE.
570 If we haven't already made a location for this mode in this insn,
571 call find_reloads_address on the location being returned. */
574 get_secondary_mem (x
, mode
, opnum
, type
)
575 rtx x ATTRIBUTE_UNUSED
;
576 enum machine_mode mode
;
578 enum reload_type type
;
583 /* By default, if MODE is narrower than a word, widen it to a word.
584 This is required because most machines that require these memory
585 locations do not support short load and stores from all registers
586 (e.g., FP registers). */
588 #ifdef SECONDARY_MEMORY_NEEDED_MODE
589 mode
= SECONDARY_MEMORY_NEEDED_MODE (mode
);
591 if (GET_MODE_BITSIZE (mode
) < BITS_PER_WORD
)
592 mode
= mode_for_size (BITS_PER_WORD
, GET_MODE_CLASS (mode
), 0);
595 /* If we already have made a MEM for this operand in MODE, return it. */
596 if (secondary_memlocs_elim
[(int) mode
][opnum
] != 0)
597 return secondary_memlocs_elim
[(int) mode
][opnum
];
599 /* If this is the first time we've tried to get a MEM for this mode,
600 allocate a new one. `something_changed' in reload will get set
601 by noticing that the frame size has changed. */
603 if (secondary_memlocs
[(int) mode
] == 0)
605 #ifdef SECONDARY_MEMORY_NEEDED_RTX
606 secondary_memlocs
[(int) mode
] = SECONDARY_MEMORY_NEEDED_RTX (mode
);
608 secondary_memlocs
[(int) mode
]
609 = assign_stack_local (mode
, GET_MODE_SIZE (mode
), 0);
613 /* Get a version of the address doing any eliminations needed. If that
614 didn't give us a new MEM, make a new one if it isn't valid. */
616 loc
= eliminate_regs (secondary_memlocs
[(int) mode
], VOIDmode
, NULL_RTX
);
617 mem_valid
= strict_memory_address_p (mode
, XEXP (loc
, 0));
619 if (! mem_valid
&& loc
== secondary_memlocs
[(int) mode
])
620 loc
= copy_rtx (loc
);
622 /* The only time the call below will do anything is if the stack
623 offset is too large. In that case IND_LEVELS doesn't matter, so we
624 can just pass a zero. Adjust the type to be the address of the
625 corresponding object. If the address was valid, save the eliminated
626 address. If it wasn't valid, we need to make a reload each time, so
631 type
= (type
== RELOAD_FOR_INPUT
? RELOAD_FOR_INPUT_ADDRESS
632 : type
== RELOAD_FOR_OUTPUT
? RELOAD_FOR_OUTPUT_ADDRESS
635 find_reloads_address (mode
, NULL_PTR
, XEXP (loc
, 0), &XEXP (loc
, 0),
639 secondary_memlocs_elim
[(int) mode
][opnum
] = loc
;
643 /* Clear any secondary memory locations we've made. */
646 clear_secondary_mem ()
648 bzero ((char *) secondary_memlocs
, sizeof secondary_memlocs
);
650 #endif /* SECONDARY_MEMORY_NEEDED */
652 /* Find the largest class for which every register number plus N is valid in
653 M1 (if in range). Abort if no such class exists. */
655 static enum reg_class
656 find_valid_class (m1
, n
)
657 enum machine_mode m1
;
662 enum reg_class best_class
= NO_REGS
;
665 for (class = 1; class < N_REG_CLASSES
; class++)
668 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
&& ! bad
; regno
++)
669 if (TEST_HARD_REG_BIT (reg_class_contents
[class], regno
)
670 && TEST_HARD_REG_BIT (reg_class_contents
[class], regno
+ n
)
671 && ! HARD_REGNO_MODE_OK (regno
+ n
, m1
))
674 if (! bad
&& reg_class_size
[class] > best_size
)
675 best_class
= class, best_size
= reg_class_size
[class];
684 /* Return the number of a previously made reload that can be combined with
685 a new one, or n_reloads if none of the existing reloads can be used.
686 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
687 push_reload, they determine the kind of the new reload that we try to
688 combine. P_IN points to the corresponding value of IN, which can be
689 modified by this function.
690 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
692 find_reusable_reload (p_in
, out
, class, type
, opnum
, dont_share
)
694 enum reg_class
class;
695 enum reload_type type
;
696 int opnum
, dont_share
;
700 /* We can't merge two reloads if the output of either one is
703 if (earlyclobber_operand_p (out
))
706 /* We can use an existing reload if the class is right
707 and at least one of IN and OUT is a match
708 and the other is at worst neutral.
709 (A zero compared against anything is neutral.)
711 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
712 for the same thing since that can cause us to need more reload registers
713 than we otherwise would. */
715 for (i
= 0; i
< n_reloads
; i
++)
716 if ((reg_class_subset_p (class, rld
[i
].class)
717 || reg_class_subset_p (rld
[i
].class, class))
718 /* If the existing reload has a register, it must fit our class. */
719 && (rld
[i
].reg_rtx
== 0
720 || TEST_HARD_REG_BIT (reg_class_contents
[(int) class],
721 true_regnum (rld
[i
].reg_rtx
)))
722 && ((in
!= 0 && MATCHES (rld
[i
].in
, in
) && ! dont_share
723 && (out
== 0 || rld
[i
].out
== 0 || MATCHES (rld
[i
].out
, out
)))
724 || (out
!= 0 && MATCHES (rld
[i
].out
, out
)
725 && (in
== 0 || rld
[i
].in
== 0 || MATCHES (rld
[i
].in
, in
))))
726 && (rld
[i
].out
== 0 || ! earlyclobber_operand_p (rld
[i
].out
))
727 && (reg_class_size
[(int) class] == 1 || SMALL_REGISTER_CLASSES
)
728 && MERGABLE_RELOADS (type
, rld
[i
].when_needed
, opnum
, rld
[i
].opnum
))
731 /* Reloading a plain reg for input can match a reload to postincrement
732 that reg, since the postincrement's value is the right value.
733 Likewise, it can match a preincrement reload, since we regard
734 the preincrementation as happening before any ref in this insn
736 for (i
= 0; i
< n_reloads
; i
++)
737 if ((reg_class_subset_p (class, rld
[i
].class)
738 || reg_class_subset_p (rld
[i
].class, class))
739 /* If the existing reload has a register, it must fit our
741 && (rld
[i
].reg_rtx
== 0
742 || TEST_HARD_REG_BIT (reg_class_contents
[(int) class],
743 true_regnum (rld
[i
].reg_rtx
)))
744 && out
== 0 && rld
[i
].out
== 0 && rld
[i
].in
!= 0
745 && ((GET_CODE (in
) == REG
746 && (GET_CODE (rld
[i
].in
) == POST_INC
747 || GET_CODE (rld
[i
].in
) == POST_DEC
748 || GET_CODE (rld
[i
].in
) == PRE_INC
749 || GET_CODE (rld
[i
].in
) == PRE_DEC
)
750 && MATCHES (XEXP (rld
[i
].in
, 0), in
))
752 (GET_CODE (rld
[i
].in
) == REG
753 && (GET_CODE (in
) == POST_INC
754 || GET_CODE (in
) == POST_DEC
755 || GET_CODE (in
) == PRE_INC
756 || GET_CODE (in
) == PRE_DEC
)
757 && MATCHES (XEXP (in
, 0), rld
[i
].in
)))
758 && (rld
[i
].out
== 0 || ! earlyclobber_operand_p (rld
[i
].out
))
759 && (reg_class_size
[(int) class] == 1 || SMALL_REGISTER_CLASSES
)
760 && MERGABLE_RELOADS (type
, rld
[i
].when_needed
,
761 opnum
, rld
[i
].opnum
))
763 /* Make sure reload_in ultimately has the increment,
764 not the plain register. */
765 if (GET_CODE (in
) == REG
)
772 /* Record one reload that needs to be performed.
773 IN is an rtx saying where the data are to be found before this instruction.
774 OUT says where they must be stored after the instruction.
775 (IN is zero for data not read, and OUT is zero for data not written.)
776 INLOC and OUTLOC point to the places in the instructions where
777 IN and OUT were found.
778 If IN and OUT are both non-zero, it means the same register must be used
779 to reload both IN and OUT.
781 CLASS is a register class required for the reloaded data.
782 INMODE is the machine mode that the instruction requires
783 for the reg that replaces IN and OUTMODE is likewise for OUT.
785 If IN is zero, then OUT's location and mode should be passed as
788 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
790 OPTIONAL nonzero means this reload does not need to be performed:
791 it can be discarded if that is more convenient.
793 OPNUM and TYPE say what the purpose of this reload is.
795 The return value is the reload-number for this reload.
797 If both IN and OUT are nonzero, in some rare cases we might
798 want to make two separate reloads. (Actually we never do this now.)
799 Therefore, the reload-number for OUT is stored in
800 output_reloadnum when we return; the return value applies to IN.
801 Usually (presently always), when IN and OUT are nonzero,
802 the two reload-numbers are equal, but the caller should be careful to
806 push_reload (in
, out
, inloc
, outloc
, class,
807 inmode
, outmode
, strict_low
, optional
, opnum
, type
)
810 enum reg_class
class;
811 enum machine_mode inmode
, outmode
;
815 enum reload_type type
;
819 int dont_remove_subreg
= 0;
820 rtx
*in_subreg_loc
= 0, *out_subreg_loc
= 0;
821 int secondary_in_reload
= -1, secondary_out_reload
= -1;
822 enum insn_code secondary_in_icode
= CODE_FOR_nothing
;
823 enum insn_code secondary_out_icode
= CODE_FOR_nothing
;
825 /* INMODE and/or OUTMODE could be VOIDmode if no mode
826 has been specified for the operand. In that case,
827 use the operand's mode as the mode to reload. */
828 if (inmode
== VOIDmode
&& in
!= 0)
829 inmode
= GET_MODE (in
);
830 if (outmode
== VOIDmode
&& out
!= 0)
831 outmode
= GET_MODE (out
);
833 /* If IN is a pseudo register everywhere-equivalent to a constant, and
834 it is not in a hard register, reload straight from the constant,
835 since we want to get rid of such pseudo registers.
836 Often this is done earlier, but not always in find_reloads_address. */
837 if (in
!= 0 && GET_CODE (in
) == REG
)
839 register int regno
= REGNO (in
);
841 if (regno
>= FIRST_PSEUDO_REGISTER
&& reg_renumber
[regno
] < 0
842 && reg_equiv_constant
[regno
] != 0)
843 in
= reg_equiv_constant
[regno
];
846 /* Likewise for OUT. Of course, OUT will never be equivalent to
847 an actual constant, but it might be equivalent to a memory location
848 (in the case of a parameter). */
849 if (out
!= 0 && GET_CODE (out
) == REG
)
851 register int regno
= REGNO (out
);
853 if (regno
>= FIRST_PSEUDO_REGISTER
&& reg_renumber
[regno
] < 0
854 && reg_equiv_constant
[regno
] != 0)
855 out
= reg_equiv_constant
[regno
];
858 /* If we have a read-write operand with an address side-effect,
859 change either IN or OUT so the side-effect happens only once. */
860 if (in
!= 0 && out
!= 0 && GET_CODE (in
) == MEM
&& rtx_equal_p (in
, out
))
862 if (GET_CODE (XEXP (in
, 0)) == POST_INC
863 || GET_CODE (XEXP (in
, 0)) == POST_DEC
)
864 in
= gen_rtx_MEM (GET_MODE (in
), XEXP (XEXP (in
, 0), 0));
865 if (GET_CODE (XEXP (in
, 0)) == PRE_INC
866 || GET_CODE (XEXP (in
, 0)) == PRE_DEC
)
867 out
= gen_rtx_MEM (GET_MODE (out
), XEXP (XEXP (out
, 0), 0));
870 /* If we are reloading a (SUBREG constant ...), really reload just the
871 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
872 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
873 a pseudo and hence will become a MEM) with M1 wider than M2 and the
874 register is a pseudo, also reload the inside expression.
875 For machines that extend byte loads, do this for any SUBREG of a pseudo
876 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
877 M2 is an integral mode that gets extended when loaded.
878 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
879 either M1 is not valid for R or M2 is wider than a word but we only
880 need one word to store an M2-sized quantity in R.
881 (However, if OUT is nonzero, we need to reload the reg *and*
882 the subreg, so do nothing here, and let following statement handle it.)
884 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
885 we can't handle it here because CONST_INT does not indicate a mode.
887 Similarly, we must reload the inside expression if we have a
888 STRICT_LOW_PART (presumably, in == out in the cas).
890 Also reload the inner expression if it does not require a secondary
891 reload but the SUBREG does.
893 Finally, reload the inner expression if it is a register that is in
894 the class whose registers cannot be referenced in a different size
895 and M1 is not the same size as M2. If SUBREG_WORD is nonzero, we
896 cannot reload just the inside since we might end up with the wrong
897 register class. But if it is inside a STRICT_LOW_PART, we have
898 no choice, so we hope we do get the right register class there. */
900 if (in
!= 0 && GET_CODE (in
) == SUBREG
901 && (SUBREG_WORD (in
) == 0 || strict_low
)
902 #ifdef CLASS_CANNOT_CHANGE_SIZE
903 && class != CLASS_CANNOT_CHANGE_SIZE
905 && (CONSTANT_P (SUBREG_REG (in
))
906 || GET_CODE (SUBREG_REG (in
)) == PLUS
908 || (((GET_CODE (SUBREG_REG (in
)) == REG
909 && REGNO (SUBREG_REG (in
)) >= FIRST_PSEUDO_REGISTER
)
910 || GET_CODE (SUBREG_REG (in
)) == MEM
)
911 && ((GET_MODE_SIZE (inmode
)
912 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
))))
913 #ifdef LOAD_EXTEND_OP
914 || (GET_MODE_SIZE (inmode
) <= UNITS_PER_WORD
915 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
)))
917 && (GET_MODE_SIZE (inmode
)
918 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
))))
919 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in
)))
920 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in
))) != NIL
)
922 #ifdef WORD_REGISTER_OPERATIONS
923 || ((GET_MODE_SIZE (inmode
)
924 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
))))
925 && ((GET_MODE_SIZE (inmode
) - 1) / UNITS_PER_WORD
==
926 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
))) - 1)
930 || (GET_CODE (SUBREG_REG (in
)) == REG
931 && REGNO (SUBREG_REG (in
)) < FIRST_PSEUDO_REGISTER
932 /* The case where out is nonzero
933 is handled differently in the following statement. */
934 && (out
== 0 || SUBREG_WORD (in
) == 0)
935 && ((GET_MODE_SIZE (inmode
) <= UNITS_PER_WORD
936 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
)))
938 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
)))
940 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in
)),
941 GET_MODE (SUBREG_REG (in
)))))
942 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (in
))
945 #ifdef SECONDARY_INPUT_RELOAD_CLASS
946 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode
, in
) != NO_REGS
947 && (SECONDARY_INPUT_RELOAD_CLASS (class,
948 GET_MODE (SUBREG_REG (in
)),
952 #ifdef CLASS_CANNOT_CHANGE_SIZE
953 || (GET_CODE (SUBREG_REG (in
)) == REG
954 && REGNO (SUBREG_REG (in
)) < FIRST_PSEUDO_REGISTER
955 && (TEST_HARD_REG_BIT
956 (reg_class_contents
[(int) CLASS_CANNOT_CHANGE_SIZE
],
957 REGNO (SUBREG_REG (in
))))
958 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
)))
959 != GET_MODE_SIZE (inmode
)))
963 in_subreg_loc
= inloc
;
964 inloc
= &SUBREG_REG (in
);
966 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
967 if (GET_CODE (in
) == MEM
)
968 /* This is supposed to happen only for paradoxical subregs made by
969 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
970 if (GET_MODE_SIZE (GET_MODE (in
)) > GET_MODE_SIZE (inmode
))
973 inmode
= GET_MODE (in
);
976 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
977 either M1 is not valid for R or M2 is wider than a word but we only
978 need one word to store an M2-sized quantity in R.
980 However, we must reload the inner reg *as well as* the subreg in
983 /* Similar issue for (SUBREG constant ...) if it was not handled by the
984 code above. This can happen if SUBREG_WORD != 0. */
986 if (in
!= 0 && GET_CODE (in
) == SUBREG
987 && (CONSTANT_P (SUBREG_REG (in
))
988 || (GET_CODE (SUBREG_REG (in
)) == REG
989 && REGNO (SUBREG_REG (in
)) < FIRST_PSEUDO_REGISTER
990 && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (in
))
993 || (GET_MODE_SIZE (inmode
) <= UNITS_PER_WORD
994 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
)))
996 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
)))
998 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in
)),
999 GET_MODE (SUBREG_REG (in
)))))))))
1001 /* This relies on the fact that emit_reload_insns outputs the
1002 instructions for input reloads of type RELOAD_OTHER in the same
1003 order as the reloads. Thus if the outer reload is also of type
1004 RELOAD_OTHER, we are guaranteed that this inner reload will be
1005 output before the outer reload. */
1006 push_reload (SUBREG_REG (in
), NULL_RTX
, &SUBREG_REG (in
), NULL_PTR
,
1007 find_valid_class (inmode
, SUBREG_WORD (in
)),
1008 VOIDmode
, VOIDmode
, 0, 0, opnum
, type
);
1009 dont_remove_subreg
= 1;
1012 /* Similarly for paradoxical and problematical SUBREGs on the output.
1013 Note that there is no reason we need worry about the previous value
1014 of SUBREG_REG (out); even if wider than out,
1015 storing in a subreg is entitled to clobber it all
1016 (except in the case of STRICT_LOW_PART,
1017 and in that case the constraint should label it input-output.) */
1018 if (out
!= 0 && GET_CODE (out
) == SUBREG
1019 && (SUBREG_WORD (out
) == 0 || strict_low
)
1020 #ifdef CLASS_CANNOT_CHANGE_SIZE
1021 && class != CLASS_CANNOT_CHANGE_SIZE
1023 && (CONSTANT_P (SUBREG_REG (out
))
1025 || (((GET_CODE (SUBREG_REG (out
)) == REG
1026 && REGNO (SUBREG_REG (out
)) >= FIRST_PSEUDO_REGISTER
)
1027 || GET_CODE (SUBREG_REG (out
)) == MEM
)
1028 && ((GET_MODE_SIZE (outmode
)
1029 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out
))))
1030 #ifdef WORD_REGISTER_OPERATIONS
1031 || ((GET_MODE_SIZE (outmode
)
1032 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out
))))
1033 && ((GET_MODE_SIZE (outmode
) - 1) / UNITS_PER_WORD
==
1034 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out
))) - 1)
1038 || (GET_CODE (SUBREG_REG (out
)) == REG
1039 && REGNO (SUBREG_REG (out
)) < FIRST_PSEUDO_REGISTER
1040 && ((GET_MODE_SIZE (outmode
) <= UNITS_PER_WORD
1041 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out
)))
1043 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out
)))
1045 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out
)),
1046 GET_MODE (SUBREG_REG (out
)))))
1047 || ! HARD_REGNO_MODE_OK ((REGNO (SUBREG_REG (out
))
1048 + SUBREG_WORD (out
)),
1050 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1051 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode
, out
) != NO_REGS
1052 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1053 GET_MODE (SUBREG_REG (out
)),
1057 #ifdef CLASS_CANNOT_CHANGE_SIZE
1058 || (GET_CODE (SUBREG_REG (out
)) == REG
1059 && REGNO (SUBREG_REG (out
)) < FIRST_PSEUDO_REGISTER
1060 && (TEST_HARD_REG_BIT
1061 (reg_class_contents
[(int) CLASS_CANNOT_CHANGE_SIZE
],
1062 REGNO (SUBREG_REG (out
))))
1063 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out
)))
1064 != GET_MODE_SIZE (outmode
)))
1068 out_subreg_loc
= outloc
;
1069 outloc
= &SUBREG_REG (out
);
1071 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1072 if (GET_CODE (out
) == MEM
1073 && GET_MODE_SIZE (GET_MODE (out
)) > GET_MODE_SIZE (outmode
))
1076 outmode
= GET_MODE (out
);
1079 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1080 either M1 is not valid for R or M2 is wider than a word but we only
1081 need one word to store an M2-sized quantity in R.
1083 However, we must reload the inner reg *as well as* the subreg in
1084 that case. In this case, the inner reg is an in-out reload. */
1086 if (out
!= 0 && GET_CODE (out
) == SUBREG
1087 && GET_CODE (SUBREG_REG (out
)) == REG
1088 && REGNO (SUBREG_REG (out
)) < FIRST_PSEUDO_REGISTER
1089 && (! HARD_REGNO_MODE_OK (REGNO (SUBREG_REG (out
)) + SUBREG_WORD (out
),
1091 || (GET_MODE_SIZE (outmode
) <= UNITS_PER_WORD
1092 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out
)))
1094 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out
)))
1096 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out
)),
1097 GET_MODE (SUBREG_REG (out
)))))))
1099 /* This relies on the fact that emit_reload_insns outputs the
1100 instructions for output reloads of type RELOAD_OTHER in reverse
1101 order of the reloads. Thus if the outer reload is also of type
1102 RELOAD_OTHER, we are guaranteed that this inner reload will be
1103 output after the outer reload. */
1104 dont_remove_subreg
= 1;
1105 push_reload (SUBREG_REG (out
), SUBREG_REG (out
), &SUBREG_REG (out
),
1107 find_valid_class (outmode
, SUBREG_WORD (out
)),
1108 VOIDmode
, VOIDmode
, 0, 0,
1109 opnum
, RELOAD_OTHER
);
1112 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1113 if (in
!= 0 && out
!= 0 && GET_CODE (out
) == MEM
1114 && (GET_CODE (in
) == REG
|| GET_CODE (in
) == MEM
)
1115 && reg_overlap_mentioned_for_reload_p (in
, XEXP (out
, 0)))
1118 /* If IN is a SUBREG of a hard register, make a new REG. This
1119 simplifies some of the cases below. */
1121 if (in
!= 0 && GET_CODE (in
) == SUBREG
&& GET_CODE (SUBREG_REG (in
)) == REG
1122 && REGNO (SUBREG_REG (in
)) < FIRST_PSEUDO_REGISTER
1123 && ! dont_remove_subreg
)
1124 in
= gen_rtx_REG (GET_MODE (in
),
1125 REGNO (SUBREG_REG (in
)) + SUBREG_WORD (in
));
1127 /* Similarly for OUT. */
1128 if (out
!= 0 && GET_CODE (out
) == SUBREG
1129 && GET_CODE (SUBREG_REG (out
)) == REG
1130 && REGNO (SUBREG_REG (out
)) < FIRST_PSEUDO_REGISTER
1131 && ! dont_remove_subreg
)
1132 out
= gen_rtx_REG (GET_MODE (out
),
1133 REGNO (SUBREG_REG (out
)) + SUBREG_WORD (out
));
1135 /* Narrow down the class of register wanted if that is
1136 desirable on this machine for efficiency. */
1138 class = PREFERRED_RELOAD_CLASS (in
, class);
1140 /* Output reloads may need analogous treatment, different in detail. */
1141 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1143 class = PREFERRED_OUTPUT_RELOAD_CLASS (out
, class);
1146 /* Make sure we use a class that can handle the actual pseudo
1147 inside any subreg. For example, on the 386, QImode regs
1148 can appear within SImode subregs. Although GENERAL_REGS
1149 can handle SImode, QImode needs a smaller class. */
1150 #ifdef LIMIT_RELOAD_CLASS
1152 class = LIMIT_RELOAD_CLASS (inmode
, class);
1153 else if (in
!= 0 && GET_CODE (in
) == SUBREG
)
1154 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in
)), class);
1157 class = LIMIT_RELOAD_CLASS (outmode
, class);
1158 if (out
!= 0 && GET_CODE (out
) == SUBREG
)
1159 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out
)), class);
1162 /* Verify that this class is at least possible for the mode that
1164 if (this_insn_is_asm
)
1166 enum machine_mode mode
;
1167 if (GET_MODE_SIZE (inmode
) > GET_MODE_SIZE (outmode
))
1171 if (mode
== VOIDmode
)
1173 error_for_asm (this_insn
, "cannot reload integer constant operand in `asm'");
1178 outmode
= word_mode
;
1180 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
1181 if (HARD_REGNO_MODE_OK (i
, mode
)
1182 && TEST_HARD_REG_BIT (reg_class_contents
[(int) class], i
))
1184 int nregs
= HARD_REGNO_NREGS (i
, mode
);
1187 for (j
= 1; j
< nregs
; j
++)
1188 if (! TEST_HARD_REG_BIT (reg_class_contents
[(int) class], i
+ j
))
1193 if (i
== FIRST_PSEUDO_REGISTER
)
1195 error_for_asm (this_insn
, "impossible register constraint in `asm'");
1200 /* Optional output reloads are always OK even if we have no register class,
1201 since the function of these reloads is only to have spill_reg_store etc.
1202 set, so that the storing insn can be deleted later. */
1203 if (class == NO_REGS
1204 && (optional
== 0 || type
!= RELOAD_FOR_OUTPUT
))
1207 i
= find_reusable_reload (&in
, out
, class, type
, opnum
, dont_share
);
1211 /* See if we need a secondary reload register to move between CLASS
1212 and IN or CLASS and OUT. Get the icode and push any required reloads
1213 needed for each of them if so. */
1215 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1218 = push_secondary_reload (1, in
, opnum
, optional
, class, inmode
, type
,
1219 &secondary_in_icode
);
1222 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1223 if (out
!= 0 && GET_CODE (out
) != SCRATCH
)
1224 secondary_out_reload
1225 = push_secondary_reload (0, out
, opnum
, optional
, class, outmode
,
1226 type
, &secondary_out_icode
);
1229 /* We found no existing reload suitable for re-use.
1230 So add an additional reload. */
1232 #ifdef SECONDARY_MEMORY_NEEDED
1233 /* If a memory location is needed for the copy, make one. */
1234 if (in
!= 0 && GET_CODE (in
) == REG
1235 && REGNO (in
) < FIRST_PSEUDO_REGISTER
1236 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in
)),
1238 get_secondary_mem (in
, inmode
, opnum
, type
);
1244 rld
[i
].class = class;
1245 rld
[i
].inmode
= inmode
;
1246 rld
[i
].outmode
= outmode
;
1248 rld
[i
].optional
= optional
;
1249 rld
[i
].nongroup
= 0;
1251 rld
[i
].nocombine
= 0;
1252 rld
[i
].in_reg
= inloc
? *inloc
: 0;
1253 rld
[i
].out_reg
= outloc
? *outloc
: 0;
1254 rld
[i
].opnum
= opnum
;
1255 rld
[i
].when_needed
= type
;
1256 rld
[i
].secondary_in_reload
= secondary_in_reload
;
1257 rld
[i
].secondary_out_reload
= secondary_out_reload
;
1258 rld
[i
].secondary_in_icode
= secondary_in_icode
;
1259 rld
[i
].secondary_out_icode
= secondary_out_icode
;
1260 rld
[i
].secondary_p
= 0;
1264 #ifdef SECONDARY_MEMORY_NEEDED
1265 if (out
!= 0 && GET_CODE (out
) == REG
1266 && REGNO (out
) < FIRST_PSEUDO_REGISTER
1267 && SECONDARY_MEMORY_NEEDED (class, REGNO_REG_CLASS (REGNO (out
)),
1269 get_secondary_mem (out
, outmode
, opnum
, type
);
1274 /* We are reusing an existing reload,
1275 but we may have additional information for it.
1276 For example, we may now have both IN and OUT
1277 while the old one may have just one of them. */
1279 /* The modes can be different. If they are, we want to reload in
1280 the larger mode, so that the value is valid for both modes. */
1281 if (inmode
!= VOIDmode
1282 && GET_MODE_SIZE (inmode
) > GET_MODE_SIZE (rld
[i
].inmode
))
1283 rld
[i
].inmode
= inmode
;
1284 if (outmode
!= VOIDmode
1285 && GET_MODE_SIZE (outmode
) > GET_MODE_SIZE (rld
[i
].outmode
))
1286 rld
[i
].outmode
= outmode
;
1289 rtx in_reg
= inloc
? *inloc
: 0;
1290 /* If we merge reloads for two distinct rtl expressions that
1291 are identical in content, there might be duplicate address
1292 reloads. Remove the extra set now, so that if we later find
1293 that we can inherit this reload, we can get rid of the
1294 address reloads altogether.
1296 Do not do this if both reloads are optional since the result
1297 would be an optional reload which could potentially leave
1298 unresolved address replacements.
1300 It is not sufficient to call transfer_replacements since
1301 choose_reload_regs will remove the replacements for address
1302 reloads of inherited reloads which results in the same
1304 if (rld
[i
].in
!= in
&& rtx_equal_p (in
, rld
[i
].in
)
1305 && ! (rld
[i
].optional
&& optional
))
1307 /* We must keep the address reload with the lower operand
1309 if (opnum
> rld
[i
].opnum
)
1311 remove_address_replacements (in
);
1313 in_reg
= rld
[i
].in_reg
;
1316 remove_address_replacements (rld
[i
].in
);
1319 rld
[i
].in_reg
= in_reg
;
1324 rld
[i
].out_reg
= outloc
? *outloc
: 0;
1326 if (reg_class_subset_p (class, rld
[i
].class))
1327 rld
[i
].class = class;
1328 rld
[i
].optional
&= optional
;
1329 if (MERGE_TO_OTHER (type
, rld
[i
].when_needed
,
1330 opnum
, rld
[i
].opnum
))
1331 rld
[i
].when_needed
= RELOAD_OTHER
;
1332 rld
[i
].opnum
= MIN (rld
[i
].opnum
, opnum
);
1335 /* If the ostensible rtx being reload differs from the rtx found
1336 in the location to substitute, this reload is not safe to combine
1337 because we cannot reliably tell whether it appears in the insn. */
1339 if (in
!= 0 && in
!= *inloc
)
1340 rld
[i
].nocombine
= 1;
1343 /* This was replaced by changes in find_reloads_address_1 and the new
1344 function inc_for_reload, which go with a new meaning of reload_inc. */
1346 /* If this is an IN/OUT reload in an insn that sets the CC,
1347 it must be for an autoincrement. It doesn't work to store
1348 the incremented value after the insn because that would clobber the CC.
1349 So we must do the increment of the value reloaded from,
1350 increment it, store it back, then decrement again. */
1351 if (out
!= 0 && sets_cc0_p (PATTERN (this_insn
)))
1355 rld
[i
].inc
= find_inc_amount (PATTERN (this_insn
), in
);
1356 /* If we did not find a nonzero amount-to-increment-by,
1357 that contradicts the belief that IN is being incremented
1358 in an address in this insn. */
1359 if (rld
[i
].inc
== 0)
1364 /* If we will replace IN and OUT with the reload-reg,
1365 record where they are located so that substitution need
1366 not do a tree walk. */
1368 if (replace_reloads
)
1372 register struct replacement
*r
= &replacements
[n_replacements
++];
1374 r
->subreg_loc
= in_subreg_loc
;
1378 if (outloc
!= 0 && outloc
!= inloc
)
1380 register struct replacement
*r
= &replacements
[n_replacements
++];
1383 r
->subreg_loc
= out_subreg_loc
;
1388 /* If this reload is just being introduced and it has both
1389 an incoming quantity and an outgoing quantity that are
1390 supposed to be made to match, see if either one of the two
1391 can serve as the place to reload into.
1393 If one of them is acceptable, set rld[i].reg_rtx
1396 if (in
!= 0 && out
!= 0 && in
!= out
&& rld
[i
].reg_rtx
== 0)
1398 rld
[i
].reg_rtx
= find_dummy_reload (in
, out
, inloc
, outloc
,
1401 earlyclobber_operand_p (out
));
1403 /* If the outgoing register already contains the same value
1404 as the incoming one, we can dispense with loading it.
1405 The easiest way to tell the caller that is to give a phony
1406 value for the incoming operand (same as outgoing one). */
1407 if (rld
[i
].reg_rtx
== out
1408 && (GET_CODE (in
) == REG
|| CONSTANT_P (in
))
1409 && 0 != find_equiv_reg (in
, this_insn
, 0, REGNO (out
),
1410 static_reload_reg_p
, i
, inmode
))
1414 /* If this is an input reload and the operand contains a register that
1415 dies in this insn and is used nowhere else, see if it is the right class
1416 to be used for this reload. Use it if so. (This occurs most commonly
1417 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1418 this if it is also an output reload that mentions the register unless
1419 the output is a SUBREG that clobbers an entire register.
1421 Note that the operand might be one of the spill regs, if it is a
1422 pseudo reg and we are in a block where spilling has not taken place.
1423 But if there is no spilling in this block, that is OK.
1424 An explicitly used hard reg cannot be a spill reg. */
1426 if (rld
[i
].reg_rtx
== 0 && in
!= 0)
1431 for (note
= REG_NOTES (this_insn
); note
; note
= XEXP (note
, 1))
1432 if (REG_NOTE_KIND (note
) == REG_DEAD
1433 && GET_CODE (XEXP (note
, 0)) == REG
1434 && (regno
= REGNO (XEXP (note
, 0))) < FIRST_PSEUDO_REGISTER
1435 && reg_mentioned_p (XEXP (note
, 0), in
)
1436 && ! refers_to_regno_for_reload_p (regno
,
1438 + HARD_REGNO_NREGS (regno
,
1440 PATTERN (this_insn
), inloc
)
1441 /* If this is also an output reload, IN cannot be used as
1442 the reload register if it is set in this insn unless IN
1444 && (out
== 0 || in
== out
1445 || ! hard_reg_set_here_p (regno
,
1447 + HARD_REGNO_NREGS (regno
,
1449 PATTERN (this_insn
)))
1450 /* ??? Why is this code so different from the previous?
1451 Is there any simple coherent way to describe the two together?
1452 What's going on here. */
1454 || (GET_CODE (in
) == SUBREG
1455 && (((GET_MODE_SIZE (GET_MODE (in
)) + (UNITS_PER_WORD
- 1))
1457 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in
)))
1458 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))))
1459 /* Make sure the operand fits in the reg that dies. */
1460 && GET_MODE_SIZE (inmode
) <= GET_MODE_SIZE (GET_MODE (XEXP (note
, 0)))
1461 && HARD_REGNO_MODE_OK (regno
, inmode
)
1462 && GET_MODE_SIZE (outmode
) <= GET_MODE_SIZE (GET_MODE (XEXP (note
, 0)))
1463 && HARD_REGNO_MODE_OK (regno
, outmode
)
1464 && TEST_HARD_REG_BIT (reg_class_contents
[(int) class], regno
)
1465 && !fixed_regs
[regno
])
1467 rld
[i
].reg_rtx
= gen_rtx_REG (inmode
, regno
);
1473 output_reloadnum
= i
;
1478 /* Record an additional place we must replace a value
1479 for which we have already recorded a reload.
1480 RELOADNUM is the value returned by push_reload
1481 when the reload was recorded.
1482 This is used in insn patterns that use match_dup. */
1485 push_replacement (loc
, reloadnum
, mode
)
1488 enum machine_mode mode
;
1490 if (replace_reloads
)
1492 register struct replacement
*r
= &replacements
[n_replacements
++];
1493 r
->what
= reloadnum
;
1500 /* Transfer all replacements that used to be in reload FROM to be in
1504 transfer_replacements (to
, from
)
1509 for (i
= 0; i
< n_replacements
; i
++)
1510 if (replacements
[i
].what
== from
)
1511 replacements
[i
].what
= to
;
1514 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1515 or a subpart of it. If we have any replacements registered for IN_RTX,
1516 cancel the reloads that were supposed to load them.
1517 Return non-zero if we canceled any reloads. */
1519 remove_address_replacements (in_rtx
)
1523 char reload_flags
[MAX_RELOADS
];
1524 int something_changed
= 0;
1526 bzero (reload_flags
, sizeof reload_flags
);
1527 for (i
= 0, j
= 0; i
< n_replacements
; i
++)
1529 if (loc_mentioned_in_p (replacements
[i
].where
, in_rtx
))
1530 reload_flags
[replacements
[i
].what
] |= 1;
1533 replacements
[j
++] = replacements
[i
];
1534 reload_flags
[replacements
[i
].what
] |= 2;
1537 /* Note that the following store must be done before the recursive calls. */
1540 for (i
= n_reloads
- 1; i
>= 0; i
--)
1542 if (reload_flags
[i
] == 1)
1544 deallocate_reload_reg (i
);
1545 remove_address_replacements (rld
[i
].in
);
1547 something_changed
= 1;
1550 return something_changed
;
1553 /* Return non-zero if IN contains a piece of rtl that has the address LOC */
1555 loc_mentioned_in_p (loc
, in
)
1558 enum rtx_code code
= GET_CODE (in
);
1559 const char *fmt
= GET_RTX_FORMAT (code
);
1562 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1564 if (loc
== &in
->fld
[i
].rtx
)
1568 if (loc_mentioned_in_p (loc
, XEXP (in
, i
)))
1571 else if (fmt
[i
] == 'E')
1572 for (j
= XVECLEN (in
, i
) - 1; i
>= 0; i
--)
1573 if (loc_mentioned_in_p (loc
, XVECEXP (in
, i
, j
)))
1579 /* If there is only one output reload, and it is not for an earlyclobber
1580 operand, try to combine it with a (logically unrelated) input reload
1581 to reduce the number of reload registers needed.
1583 This is safe if the input reload does not appear in
1584 the value being output-reloaded, because this implies
1585 it is not needed any more once the original insn completes.
1587 If that doesn't work, see we can use any of the registers that
1588 die in this insn as a reload register. We can if it is of the right
1589 class and does not appear in the value being output-reloaded. */
1595 int output_reload
= -1;
1596 int secondary_out
= -1;
1599 /* Find the output reload; return unless there is exactly one
1600 and that one is mandatory. */
1602 for (i
= 0; i
< n_reloads
; i
++)
1603 if (rld
[i
].out
!= 0)
1605 if (output_reload
>= 0)
1610 if (output_reload
< 0 || rld
[output_reload
].optional
)
1613 /* An input-output reload isn't combinable. */
1615 if (rld
[output_reload
].in
!= 0)
1618 /* If this reload is for an earlyclobber operand, we can't do anything. */
1619 if (earlyclobber_operand_p (rld
[output_reload
].out
))
1622 /* Check each input reload; can we combine it? */
1624 for (i
= 0; i
< n_reloads
; i
++)
1625 if (rld
[i
].in
&& ! rld
[i
].optional
&& ! rld
[i
].nocombine
1626 /* Life span of this reload must not extend past main insn. */
1627 && rld
[i
].when_needed
!= RELOAD_FOR_OUTPUT_ADDRESS
1628 && rld
[i
].when_needed
!= RELOAD_FOR_OUTADDR_ADDRESS
1629 && rld
[i
].when_needed
!= RELOAD_OTHER
1630 && (CLASS_MAX_NREGS (rld
[i
].class, rld
[i
].inmode
)
1631 == CLASS_MAX_NREGS (rld
[output_reload
].class,
1632 rld
[output_reload
].outmode
))
1634 && rld
[i
].reg_rtx
== 0
1635 #ifdef SECONDARY_MEMORY_NEEDED
1636 /* Don't combine two reloads with different secondary
1637 memory locations. */
1638 && (secondary_memlocs_elim
[(int) rld
[output_reload
].outmode
][rld
[i
].opnum
] == 0
1639 || secondary_memlocs_elim
[(int) rld
[output_reload
].outmode
][rld
[output_reload
].opnum
] == 0
1640 || rtx_equal_p (secondary_memlocs_elim
[(int) rld
[output_reload
].outmode
][rld
[i
].opnum
],
1641 secondary_memlocs_elim
[(int) rld
[output_reload
].outmode
][rld
[output_reload
].opnum
]))
1643 && (SMALL_REGISTER_CLASSES
1644 ? (rld
[i
].class == rld
[output_reload
].class)
1645 : (reg_class_subset_p (rld
[i
].class,
1646 rld
[output_reload
].class)
1647 || reg_class_subset_p (rld
[output_reload
].class,
1649 && (MATCHES (rld
[i
].in
, rld
[output_reload
].out
)
1650 /* Args reversed because the first arg seems to be
1651 the one that we imagine being modified
1652 while the second is the one that might be affected. */
1653 || (! reg_overlap_mentioned_for_reload_p (rld
[output_reload
].out
,
1655 /* However, if the input is a register that appears inside
1656 the output, then we also can't share.
1657 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1658 If the same reload reg is used for both reg 69 and the
1659 result to be stored in memory, then that result
1660 will clobber the address of the memory ref. */
1661 && ! (GET_CODE (rld
[i
].in
) == REG
1662 && reg_overlap_mentioned_for_reload_p (rld
[i
].in
,
1663 rld
[output_reload
].out
))))
1664 && (reg_class_size
[(int) rld
[i
].class]
1665 || SMALL_REGISTER_CLASSES
)
1666 /* We will allow making things slightly worse by combining an
1667 input and an output, but no worse than that. */
1668 && (rld
[i
].when_needed
== RELOAD_FOR_INPUT
1669 || rld
[i
].when_needed
== RELOAD_FOR_OUTPUT
))
1673 /* We have found a reload to combine with! */
1674 rld
[i
].out
= rld
[output_reload
].out
;
1675 rld
[i
].out_reg
= rld
[output_reload
].out_reg
;
1676 rld
[i
].outmode
= rld
[output_reload
].outmode
;
1677 /* Mark the old output reload as inoperative. */
1678 rld
[output_reload
].out
= 0;
1679 /* The combined reload is needed for the entire insn. */
1680 rld
[i
].when_needed
= RELOAD_OTHER
;
1681 /* If the output reload had a secondary reload, copy it. */
1682 if (rld
[output_reload
].secondary_out_reload
!= -1)
1684 rld
[i
].secondary_out_reload
1685 = rld
[output_reload
].secondary_out_reload
;
1686 rld
[i
].secondary_out_icode
1687 = rld
[output_reload
].secondary_out_icode
;
1690 #ifdef SECONDARY_MEMORY_NEEDED
1691 /* Copy any secondary MEM. */
1692 if (secondary_memlocs_elim
[(int) rld
[output_reload
].outmode
][rld
[output_reload
].opnum
] != 0)
1693 secondary_memlocs_elim
[(int) rld
[output_reload
].outmode
][rld
[i
].opnum
]
1694 = secondary_memlocs_elim
[(int) rld
[output_reload
].outmode
][rld
[output_reload
].opnum
];
1696 /* If required, minimize the register class. */
1697 if (reg_class_subset_p (rld
[output_reload
].class,
1699 rld
[i
].class = rld
[output_reload
].class;
1701 /* Transfer all replacements from the old reload to the combined. */
1702 for (j
= 0; j
< n_replacements
; j
++)
1703 if (replacements
[j
].what
== output_reload
)
1704 replacements
[j
].what
= i
;
1709 /* If this insn has only one operand that is modified or written (assumed
1710 to be the first), it must be the one corresponding to this reload. It
1711 is safe to use anything that dies in this insn for that output provided
1712 that it does not occur in the output (we already know it isn't an
1713 earlyclobber. If this is an asm insn, give up. */
1715 if (INSN_CODE (this_insn
) == -1)
1718 for (i
= 1; i
< insn_data
[INSN_CODE (this_insn
)].n_operands
; i
++)
1719 if (insn_data
[INSN_CODE (this_insn
)].operand
[i
].constraint
[0] == '='
1720 || insn_data
[INSN_CODE (this_insn
)].operand
[i
].constraint
[0] == '+')
1723 /* See if some hard register that dies in this insn and is not used in
1724 the output is the right class. Only works if the register we pick
1725 up can fully hold our output reload. */
1726 for (note
= REG_NOTES (this_insn
); note
; note
= XEXP (note
, 1))
1727 if (REG_NOTE_KIND (note
) == REG_DEAD
1728 && GET_CODE (XEXP (note
, 0)) == REG
1729 && ! reg_overlap_mentioned_for_reload_p (XEXP (note
, 0),
1730 rld
[output_reload
].out
)
1731 && REGNO (XEXP (note
, 0)) < FIRST_PSEUDO_REGISTER
1732 && HARD_REGNO_MODE_OK (REGNO (XEXP (note
, 0)), rld
[output_reload
].outmode
)
1733 && TEST_HARD_REG_BIT (reg_class_contents
[(int) rld
[output_reload
].class],
1734 REGNO (XEXP (note
, 0)))
1735 && (HARD_REGNO_NREGS (REGNO (XEXP (note
, 0)), rld
[output_reload
].outmode
)
1736 <= HARD_REGNO_NREGS (REGNO (XEXP (note
, 0)), GET_MODE (XEXP (note
, 0))))
1737 /* Ensure that a secondary or tertiary reload for this output
1738 won't want this register. */
1739 && ((secondary_out
= rld
[output_reload
].secondary_out_reload
) == -1
1740 || (! (TEST_HARD_REG_BIT
1741 (reg_class_contents
[(int) rld
[secondary_out
].class],
1742 REGNO (XEXP (note
, 0))))
1743 && ((secondary_out
= rld
[secondary_out
].secondary_out_reload
) == -1
1744 || ! (TEST_HARD_REG_BIT
1745 (reg_class_contents
[(int) rld
[secondary_out
].class],
1746 REGNO (XEXP (note
, 0)))))))
1747 && ! fixed_regs
[REGNO (XEXP (note
, 0))])
1749 rld
[output_reload
].reg_rtx
1750 = gen_rtx_REG (rld
[output_reload
].outmode
,
1751 REGNO (XEXP (note
, 0)));
1756 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1757 See if one of IN and OUT is a register that may be used;
1758 this is desirable since a spill-register won't be needed.
1759 If so, return the register rtx that proves acceptable.
1761 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1762 CLASS is the register class required for the reload.
1764 If FOR_REAL is >= 0, it is the number of the reload,
1765 and in some cases when it can be discovered that OUT doesn't need
1766 to be computed, clear out rld[FOR_REAL].out.
1768 If FOR_REAL is -1, this should not be done, because this call
1769 is just to see if a register can be found, not to find and install it.
1771 EARLYCLOBBER is non-zero if OUT is an earlyclobber operand. This
1772 puts an additional constraint on being able to use IN for OUT since
1773 IN must not appear elsewhere in the insn (it is assumed that IN itself
1774 is safe from the earlyclobber). */
1777 find_dummy_reload (real_in
, real_out
, inloc
, outloc
,
1778 inmode
, outmode
, class, for_real
, earlyclobber
)
1779 rtx real_in
, real_out
;
1780 rtx
*inloc
, *outloc
;
1781 enum machine_mode inmode
, outmode
;
1782 enum reg_class
class;
1792 /* If operands exceed a word, we can't use either of them
1793 unless they have the same size. */
1794 if (GET_MODE_SIZE (outmode
) != GET_MODE_SIZE (inmode
)
1795 && (GET_MODE_SIZE (outmode
) > UNITS_PER_WORD
1796 || GET_MODE_SIZE (inmode
) > UNITS_PER_WORD
))
1799 /* Find the inside of any subregs. */
1800 while (GET_CODE (out
) == SUBREG
)
1802 out_offset
= SUBREG_WORD (out
);
1803 out
= SUBREG_REG (out
);
1805 while (GET_CODE (in
) == SUBREG
)
1807 in_offset
= SUBREG_WORD (in
);
1808 in
= SUBREG_REG (in
);
1811 /* Narrow down the reg class, the same way push_reload will;
1812 otherwise we might find a dummy now, but push_reload won't. */
1813 class = PREFERRED_RELOAD_CLASS (in
, class);
1815 /* See if OUT will do. */
1816 if (GET_CODE (out
) == REG
1817 && REGNO (out
) < FIRST_PSEUDO_REGISTER
)
1819 register int regno
= REGNO (out
) + out_offset
;
1820 int nwords
= HARD_REGNO_NREGS (regno
, outmode
);
1823 /* When we consider whether the insn uses OUT,
1824 ignore references within IN. They don't prevent us
1825 from copying IN into OUT, because those refs would
1826 move into the insn that reloads IN.
1828 However, we only ignore IN in its role as this reload.
1829 If the insn uses IN elsewhere and it contains OUT,
1830 that counts. We can't be sure it's the "same" operand
1831 so it might not go through this reload. */
1833 *inloc
= const0_rtx
;
1835 if (regno
< FIRST_PSEUDO_REGISTER
1836 /* A fixed reg that can overlap other regs better not be used
1837 for reloading in any way. */
1838 #ifdef OVERLAPPING_REGNO_P
1839 && ! (fixed_regs
[regno
] && OVERLAPPING_REGNO_P (regno
))
1841 && ! refers_to_regno_for_reload_p (regno
, regno
+ nwords
,
1842 PATTERN (this_insn
), outloc
))
1845 for (i
= 0; i
< nwords
; i
++)
1846 if (! TEST_HARD_REG_BIT (reg_class_contents
[(int) class],
1852 if (GET_CODE (real_out
) == REG
)
1855 value
= gen_rtx_REG (outmode
, regno
);
1862 /* Consider using IN if OUT was not acceptable
1863 or if OUT dies in this insn (like the quotient in a divmod insn).
1864 We can't use IN unless it is dies in this insn,
1865 which means we must know accurately which hard regs are live.
1866 Also, the result can't go in IN if IN is used within OUT,
1867 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1868 if (hard_regs_live_known
1869 && GET_CODE (in
) == REG
1870 && REGNO (in
) < FIRST_PSEUDO_REGISTER
1872 || find_reg_note (this_insn
, REG_UNUSED
, real_out
))
1873 && find_reg_note (this_insn
, REG_DEAD
, real_in
)
1874 && !fixed_regs
[REGNO (in
)]
1875 && HARD_REGNO_MODE_OK (REGNO (in
),
1876 /* The only case where out and real_out might
1877 have different modes is where real_out
1878 is a subreg, and in that case, out
1880 (GET_MODE (out
) != VOIDmode
1881 ? GET_MODE (out
) : outmode
)))
1883 register int regno
= REGNO (in
) + in_offset
;
1884 int nwords
= HARD_REGNO_NREGS (regno
, inmode
);
1886 if (! refers_to_regno_for_reload_p (regno
, regno
+ nwords
, out
, NULL_PTR
)
1887 && ! hard_reg_set_here_p (regno
, regno
+ nwords
,
1888 PATTERN (this_insn
))
1890 || ! refers_to_regno_for_reload_p (regno
, regno
+ nwords
,
1891 PATTERN (this_insn
), inloc
)))
1894 for (i
= 0; i
< nwords
; i
++)
1895 if (! TEST_HARD_REG_BIT (reg_class_contents
[(int) class],
1901 /* If we were going to use OUT as the reload reg
1902 and changed our mind, it means OUT is a dummy that
1903 dies here. So don't bother copying value to it. */
1904 if (for_real
>= 0 && value
== real_out
)
1905 rld
[for_real
].out
= 0;
1906 if (GET_CODE (real_in
) == REG
)
1909 value
= gen_rtx_REG (inmode
, regno
);
1917 /* This page contains subroutines used mainly for determining
1918 whether the IN or an OUT of a reload can serve as the
1921 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
1924 earlyclobber_operand_p (x
)
1929 for (i
= 0; i
< n_earlyclobbers
; i
++)
1930 if (reload_earlyclobbers
[i
] == x
)
1936 /* Return 1 if expression X alters a hard reg in the range
1937 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
1938 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
1939 X should be the body of an instruction. */
1942 hard_reg_set_here_p (beg_regno
, end_regno
, x
)
1943 register int beg_regno
, end_regno
;
1946 if (GET_CODE (x
) == SET
|| GET_CODE (x
) == CLOBBER
)
1948 register rtx op0
= SET_DEST (x
);
1949 while (GET_CODE (op0
) == SUBREG
)
1950 op0
= SUBREG_REG (op0
);
1951 if (GET_CODE (op0
) == REG
)
1953 register int r
= REGNO (op0
);
1954 /* See if this reg overlaps range under consideration. */
1956 && r
+ HARD_REGNO_NREGS (r
, GET_MODE (op0
)) > beg_regno
)
1960 else if (GET_CODE (x
) == PARALLEL
)
1962 register int i
= XVECLEN (x
, 0) - 1;
1964 if (hard_reg_set_here_p (beg_regno
, end_regno
, XVECEXP (x
, 0, i
)))
1971 /* Return 1 if ADDR is a valid memory address for mode MODE,
1972 and check that each pseudo reg has the proper kind of
1976 strict_memory_address_p (mode
, addr
)
1977 enum machine_mode mode
;
1980 GO_IF_LEGITIMATE_ADDRESS (mode
, addr
, win
);
1987 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
1988 if they are the same hard reg, and has special hacks for
1989 autoincrement and autodecrement.
1990 This is specifically intended for find_reloads to use
1991 in determining whether two operands match.
1992 X is the operand whose number is the lower of the two.
1994 The value is 2 if Y contains a pre-increment that matches
1995 a non-incrementing address in X. */
1997 /* ??? To be completely correct, we should arrange to pass
1998 for X the output operand and for Y the input operand.
1999 For now, we assume that the output operand has the lower number
2000 because that is natural in (SET output (... input ...)). */
2003 operands_match_p (x
, y
)
2007 register RTX_CODE code
= GET_CODE (x
);
2008 register const char *fmt
;
2013 if ((code
== REG
|| (code
== SUBREG
&& GET_CODE (SUBREG_REG (x
)) == REG
))
2014 && (GET_CODE (y
) == REG
|| (GET_CODE (y
) == SUBREG
2015 && GET_CODE (SUBREG_REG (y
)) == REG
)))
2021 i
= REGNO (SUBREG_REG (x
));
2022 if (i
>= FIRST_PSEUDO_REGISTER
)
2024 i
+= SUBREG_WORD (x
);
2029 if (GET_CODE (y
) == SUBREG
)
2031 j
= REGNO (SUBREG_REG (y
));
2032 if (j
>= FIRST_PSEUDO_REGISTER
)
2034 j
+= SUBREG_WORD (y
);
2039 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2040 multiple hard register group, so that for example (reg:DI 0) and
2041 (reg:SI 1) will be considered the same register. */
2042 if (WORDS_BIG_ENDIAN
&& GET_MODE_SIZE (GET_MODE (x
)) > UNITS_PER_WORD
2043 && i
< FIRST_PSEUDO_REGISTER
)
2044 i
+= (GET_MODE_SIZE (GET_MODE (x
)) / UNITS_PER_WORD
) - 1;
2045 if (WORDS_BIG_ENDIAN
&& GET_MODE_SIZE (GET_MODE (y
)) > UNITS_PER_WORD
2046 && j
< FIRST_PSEUDO_REGISTER
)
2047 j
+= (GET_MODE_SIZE (GET_MODE (y
)) / UNITS_PER_WORD
) - 1;
2051 /* If two operands must match, because they are really a single
2052 operand of an assembler insn, then two postincrements are invalid
2053 because the assembler insn would increment only once.
2054 On the other hand, an postincrement matches ordinary indexing
2055 if the postincrement is the output operand. */
2056 if (code
== POST_DEC
|| code
== POST_INC
)
2057 return operands_match_p (XEXP (x
, 0), y
);
2058 /* Two preincrements are invalid
2059 because the assembler insn would increment only once.
2060 On the other hand, an preincrement matches ordinary indexing
2061 if the preincrement is the input operand.
2062 In this case, return 2, since some callers need to do special
2063 things when this happens. */
2064 if (GET_CODE (y
) == PRE_DEC
|| GET_CODE (y
) == PRE_INC
)
2065 return operands_match_p (x
, XEXP (y
, 0)) ? 2 : 0;
2069 /* Now we have disposed of all the cases
2070 in which different rtx codes can match. */
2071 if (code
!= GET_CODE (y
))
2073 if (code
== LABEL_REF
)
2074 return XEXP (x
, 0) == XEXP (y
, 0);
2075 if (code
== SYMBOL_REF
)
2076 return XSTR (x
, 0) == XSTR (y
, 0);
2078 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2080 if (GET_MODE (x
) != GET_MODE (y
))
2083 /* Compare the elements. If any pair of corresponding elements
2084 fail to match, return 0 for the whole things. */
2087 fmt
= GET_RTX_FORMAT (code
);
2088 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
2094 if (XWINT (x
, i
) != XWINT (y
, i
))
2099 if (XINT (x
, i
) != XINT (y
, i
))
2104 val
= operands_match_p (XEXP (x
, i
), XEXP (y
, i
));
2107 /* If any subexpression returns 2,
2108 we should return 2 if we are successful. */
2117 if (XVECLEN (x
, i
) != XVECLEN (y
, i
))
2119 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; --j
)
2121 val
= operands_match_p (XVECEXP (x
, i
, j
), XVECEXP (y
, i
, j
));
2129 /* It is believed that rtx's at this level will never
2130 contain anything but integers and other rtx's,
2131 except for within LABEL_REFs and SYMBOL_REFs. */
2136 return 1 + success_2
;
2139 /* Describe the range of registers or memory referenced by X.
2140 If X is a register, set REG_FLAG and put the first register
2141 number into START and the last plus one into END.
2142 If X is a memory reference, put a base address into BASE
2143 and a range of integer offsets into START and END.
2144 If X is pushing on the stack, we can assume it causes no trouble,
2145 so we set the SAFE field. */
2147 static struct decomposition
2151 struct decomposition val
;
2157 if (GET_CODE (x
) == MEM
)
2159 rtx base
= NULL_RTX
, offset
= 0;
2160 rtx addr
= XEXP (x
, 0);
2162 if (GET_CODE (addr
) == PRE_DEC
|| GET_CODE (addr
) == PRE_INC
2163 || GET_CODE (addr
) == POST_DEC
|| GET_CODE (addr
) == POST_INC
)
2165 val
.base
= XEXP (addr
, 0);
2166 val
.start
= - GET_MODE_SIZE (GET_MODE (x
));
2167 val
.end
= GET_MODE_SIZE (GET_MODE (x
));
2168 val
.safe
= REGNO (val
.base
) == STACK_POINTER_REGNUM
;
2172 if (GET_CODE (addr
) == CONST
)
2174 addr
= XEXP (addr
, 0);
2177 if (GET_CODE (addr
) == PLUS
)
2179 if (CONSTANT_P (XEXP (addr
, 0)))
2181 base
= XEXP (addr
, 1);
2182 offset
= XEXP (addr
, 0);
2184 else if (CONSTANT_P (XEXP (addr
, 1)))
2186 base
= XEXP (addr
, 0);
2187 offset
= XEXP (addr
, 1);
2194 offset
= const0_rtx
;
2196 if (GET_CODE (offset
) == CONST
)
2197 offset
= XEXP (offset
, 0);
2198 if (GET_CODE (offset
) == PLUS
)
2200 if (GET_CODE (XEXP (offset
, 0)) == CONST_INT
)
2202 base
= gen_rtx_PLUS (GET_MODE (base
), base
, XEXP (offset
, 1));
2203 offset
= XEXP (offset
, 0);
2205 else if (GET_CODE (XEXP (offset
, 1)) == CONST_INT
)
2207 base
= gen_rtx_PLUS (GET_MODE (base
), base
, XEXP (offset
, 0));
2208 offset
= XEXP (offset
, 1);
2212 base
= gen_rtx_PLUS (GET_MODE (base
), base
, offset
);
2213 offset
= const0_rtx
;
2216 else if (GET_CODE (offset
) != CONST_INT
)
2218 base
= gen_rtx_PLUS (GET_MODE (base
), base
, offset
);
2219 offset
= const0_rtx
;
2222 if (all_const
&& GET_CODE (base
) == PLUS
)
2223 base
= gen_rtx_CONST (GET_MODE (base
), base
);
2225 if (GET_CODE (offset
) != CONST_INT
)
2228 val
.start
= INTVAL (offset
);
2229 val
.end
= val
.start
+ GET_MODE_SIZE (GET_MODE (x
));
2233 else if (GET_CODE (x
) == REG
)
2236 val
.start
= true_regnum (x
);
2239 /* A pseudo with no hard reg. */
2240 val
.start
= REGNO (x
);
2241 val
.end
= val
.start
+ 1;
2245 val
.end
= val
.start
+ HARD_REGNO_NREGS (val
.start
, GET_MODE (x
));
2247 else if (GET_CODE (x
) == SUBREG
)
2249 if (GET_CODE (SUBREG_REG (x
)) != REG
)
2250 /* This could be more precise, but it's good enough. */
2251 return decompose (SUBREG_REG (x
));
2253 val
.start
= true_regnum (x
);
2255 return decompose (SUBREG_REG (x
));
2258 val
.end
= val
.start
+ HARD_REGNO_NREGS (val
.start
, GET_MODE (x
));
2260 else if (CONSTANT_P (x
)
2261 /* This hasn't been assigned yet, so it can't conflict yet. */
2262 || GET_CODE (x
) == SCRATCH
)
2269 /* Return 1 if altering Y will not modify the value of X.
2270 Y is also described by YDATA, which should be decompose (Y). */
2273 immune_p (x
, y
, ydata
)
2275 struct decomposition ydata
;
2277 struct decomposition xdata
;
2280 return !refers_to_regno_for_reload_p (ydata
.start
, ydata
.end
, x
, NULL_PTR
);
2284 if (GET_CODE (y
) != MEM
)
2286 /* If Y is memory and X is not, Y can't affect X. */
2287 if (GET_CODE (x
) != MEM
)
2290 xdata
= decompose (x
);
2292 if (! rtx_equal_p (xdata
.base
, ydata
.base
))
2294 /* If bases are distinct symbolic constants, there is no overlap. */
2295 if (CONSTANT_P (xdata
.base
) && CONSTANT_P (ydata
.base
))
2297 /* Constants and stack slots never overlap. */
2298 if (CONSTANT_P (xdata
.base
)
2299 && (ydata
.base
== frame_pointer_rtx
2300 || ydata
.base
== hard_frame_pointer_rtx
2301 || ydata
.base
== stack_pointer_rtx
))
2303 if (CONSTANT_P (ydata
.base
)
2304 && (xdata
.base
== frame_pointer_rtx
2305 || xdata
.base
== hard_frame_pointer_rtx
2306 || xdata
.base
== stack_pointer_rtx
))
2308 /* If either base is variable, we don't know anything. */
2313 return (xdata
.start
>= ydata
.end
|| ydata
.start
>= xdata
.end
);
2316 /* Similar, but calls decompose. */
2319 safe_from_earlyclobber (op
, clobber
)
2322 struct decomposition early_data
;
2324 early_data
= decompose (clobber
);
2325 return immune_p (op
, clobber
, early_data
);
2328 /* Main entry point of this file: search the body of INSN
2329 for values that need reloading and record them with push_reload.
2330 REPLACE nonzero means record also where the values occur
2331 so that subst_reloads can be used.
2333 IND_LEVELS says how many levels of indirection are supported by this
2334 machine; a value of zero means that a memory reference is not a valid
2337 LIVE_KNOWN says we have valid information about which hard
2338 regs are live at each point in the program; this is true when
2339 we are called from global_alloc but false when stupid register
2340 allocation has been done.
2342 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2343 which is nonnegative if the reg has been commandeered for reloading into.
2344 It is copied into STATIC_RELOAD_REG_P and referenced from there
2345 by various subroutines.
2347 Return TRUE if some operands need to be changed, because of swapping
2348 commutative operands, reg_equiv_address substitution, or whatever. */
2351 find_reloads (insn
, replace
, ind_levels
, live_known
, reload_reg_p
)
2353 int replace
, ind_levels
;
2355 short *reload_reg_p
;
2357 register int insn_code_number
;
2360 /* These start out as the constraints for the insn
2361 and they are chewed up as we consider alternatives. */
2362 char *constraints
[MAX_RECOG_OPERANDS
];
2363 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2365 enum reg_class preferred_class
[MAX_RECOG_OPERANDS
];
2366 char pref_or_nothing
[MAX_RECOG_OPERANDS
];
2367 /* Nonzero for a MEM operand whose entire address needs a reload. */
2368 int address_reloaded
[MAX_RECOG_OPERANDS
];
2369 /* Value of enum reload_type to use for operand. */
2370 enum reload_type operand_type
[MAX_RECOG_OPERANDS
];
2371 /* Value of enum reload_type to use within address of operand. */
2372 enum reload_type address_type
[MAX_RECOG_OPERANDS
];
2373 /* Save the usage of each operand. */
2374 enum reload_usage
{ RELOAD_READ
, RELOAD_READ_WRITE
, RELOAD_WRITE
} modified
[MAX_RECOG_OPERANDS
];
2375 int no_input_reloads
= 0, no_output_reloads
= 0;
2377 int this_alternative
[MAX_RECOG_OPERANDS
];
2378 char this_alternative_win
[MAX_RECOG_OPERANDS
];
2379 char this_alternative_offmemok
[MAX_RECOG_OPERANDS
];
2380 char this_alternative_earlyclobber
[MAX_RECOG_OPERANDS
];
2381 int this_alternative_matches
[MAX_RECOG_OPERANDS
];
2383 int goal_alternative
[MAX_RECOG_OPERANDS
];
2384 int this_alternative_number
;
2385 int goal_alternative_number
;
2386 int operand_reloadnum
[MAX_RECOG_OPERANDS
];
2387 int goal_alternative_matches
[MAX_RECOG_OPERANDS
];
2388 int goal_alternative_matched
[MAX_RECOG_OPERANDS
];
2389 char goal_alternative_win
[MAX_RECOG_OPERANDS
];
2390 char goal_alternative_offmemok
[MAX_RECOG_OPERANDS
];
2391 char goal_alternative_earlyclobber
[MAX_RECOG_OPERANDS
];
2392 int goal_alternative_swapped
;
2396 char operands_match
[MAX_RECOG_OPERANDS
][MAX_RECOG_OPERANDS
];
2397 rtx substed_operand
[MAX_RECOG_OPERANDS
];
2398 rtx body
= PATTERN (insn
);
2399 rtx set
= single_set (insn
);
2400 int goal_earlyclobber
, this_earlyclobber
;
2401 enum machine_mode operand_mode
[MAX_RECOG_OPERANDS
];
2407 n_earlyclobbers
= 0;
2408 replace_reloads
= replace
;
2409 hard_regs_live_known
= live_known
;
2410 static_reload_reg_p
= reload_reg_p
;
2412 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2413 neither are insns that SET cc0. Insns that use CC0 are not allowed
2414 to have any input reloads. */
2415 if (GET_CODE (insn
) == JUMP_INSN
|| GET_CODE (insn
) == CALL_INSN
)
2416 no_output_reloads
= 1;
2419 if (reg_referenced_p (cc0_rtx
, PATTERN (insn
)))
2420 no_input_reloads
= 1;
2421 if (reg_set_p (cc0_rtx
, PATTERN (insn
)))
2422 no_output_reloads
= 1;
2425 #ifdef SECONDARY_MEMORY_NEEDED
2426 /* The eliminated forms of any secondary memory locations are per-insn, so
2427 clear them out here. */
2429 bzero ((char *) secondary_memlocs_elim
, sizeof secondary_memlocs_elim
);
2432 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2433 is cheap to move between them. If it is not, there may not be an insn
2434 to do the copy, so we may need a reload. */
2435 if (GET_CODE (body
) == SET
2436 && GET_CODE (SET_DEST (body
)) == REG
2437 && REGNO (SET_DEST (body
)) < FIRST_PSEUDO_REGISTER
2438 && GET_CODE (SET_SRC (body
)) == REG
2439 && REGNO (SET_SRC (body
)) < FIRST_PSEUDO_REGISTER
2440 && REGISTER_MOVE_COST (REGNO_REG_CLASS (REGNO (SET_SRC (body
))),
2441 REGNO_REG_CLASS (REGNO (SET_DEST (body
)))) == 2)
2444 extract_insn (insn
);
2446 noperands
= reload_n_operands
= recog_data
.n_operands
;
2447 n_alternatives
= recog_data
.n_alternatives
;
2449 /* Just return "no reloads" if insn has no operands with constraints. */
2450 if (noperands
== 0 || n_alternatives
== 0)
2453 insn_code_number
= INSN_CODE (insn
);
2454 this_insn_is_asm
= insn_code_number
< 0;
2456 memcpy (operand_mode
, recog_data
.operand_mode
,
2457 noperands
* sizeof (enum machine_mode
));
2458 memcpy (constraints
, recog_data
.constraints
, noperands
* sizeof (char *));
2462 /* If we will need to know, later, whether some pair of operands
2463 are the same, we must compare them now and save the result.
2464 Reloading the base and index registers will clobber them
2465 and afterward they will fail to match. */
2467 for (i
= 0; i
< noperands
; i
++)
2472 substed_operand
[i
] = recog_data
.operand
[i
];
2475 modified
[i
] = RELOAD_READ
;
2477 /* Scan this operand's constraint to see if it is an output operand,
2478 an in-out operand, is commutative, or should match another. */
2483 modified
[i
] = RELOAD_WRITE
;
2485 modified
[i
] = RELOAD_READ_WRITE
;
2488 /* The last operand should not be marked commutative. */
2489 if (i
== noperands
- 1)
2494 else if (c
>= '0' && c
<= '9')
2497 operands_match
[c
][i
]
2498 = operands_match_p (recog_data
.operand
[c
],
2499 recog_data
.operand
[i
]);
2501 /* An operand may not match itself. */
2505 /* If C can be commuted with C+1, and C might need to match I,
2506 then C+1 might also need to match I. */
2507 if (commutative
>= 0)
2509 if (c
== commutative
|| c
== commutative
+ 1)
2511 int other
= c
+ (c
== commutative
? 1 : -1);
2512 operands_match
[other
][i
]
2513 = operands_match_p (recog_data
.operand
[other
],
2514 recog_data
.operand
[i
]);
2516 if (i
== commutative
|| i
== commutative
+ 1)
2518 int other
= i
+ (i
== commutative
? 1 : -1);
2519 operands_match
[c
][other
]
2520 = operands_match_p (recog_data
.operand
[c
],
2521 recog_data
.operand
[other
]);
2523 /* Note that C is supposed to be less than I.
2524 No need to consider altering both C and I because in
2525 that case we would alter one into the other. */
2531 /* Examine each operand that is a memory reference or memory address
2532 and reload parts of the addresses into index registers.
2533 Also here any references to pseudo regs that didn't get hard regs
2534 but are equivalent to constants get replaced in the insn itself
2535 with those constants. Nobody will ever see them again.
2537 Finally, set up the preferred classes of each operand. */
2539 for (i
= 0; i
< noperands
; i
++)
2541 register RTX_CODE code
= GET_CODE (recog_data
.operand
[i
]);
2543 address_reloaded
[i
] = 0;
2544 operand_type
[i
] = (modified
[i
] == RELOAD_READ
? RELOAD_FOR_INPUT
2545 : modified
[i
] == RELOAD_WRITE
? RELOAD_FOR_OUTPUT
2548 = (modified
[i
] == RELOAD_READ
? RELOAD_FOR_INPUT_ADDRESS
2549 : modified
[i
] == RELOAD_WRITE
? RELOAD_FOR_OUTPUT_ADDRESS
2552 if (*constraints
[i
] == 0)
2553 /* Ignore things like match_operator operands. */
2555 else if (constraints
[i
][0] == 'p')
2557 find_reloads_address (VOIDmode
, NULL_PTR
,
2558 recog_data
.operand
[i
],
2559 recog_data
.operand_loc
[i
],
2560 i
, operand_type
[i
], ind_levels
, insn
);
2562 /* If we now have a simple operand where we used to have a
2563 PLUS or MULT, re-recognize and try again. */
2564 if ((GET_RTX_CLASS (GET_CODE (*recog_data
.operand_loc
[i
])) == 'o'
2565 || GET_CODE (*recog_data
.operand_loc
[i
]) == SUBREG
)
2566 && (GET_CODE (recog_data
.operand
[i
]) == MULT
2567 || GET_CODE (recog_data
.operand
[i
]) == PLUS
))
2569 INSN_CODE (insn
) = -1;
2570 retval
= find_reloads (insn
, replace
, ind_levels
, live_known
,
2575 recog_data
.operand
[i
] = *recog_data
.operand_loc
[i
];
2576 substed_operand
[i
] = recog_data
.operand
[i
];
2578 else if (code
== MEM
)
2581 = find_reloads_address (GET_MODE (recog_data
.operand
[i
]),
2582 recog_data
.operand_loc
[i
],
2583 XEXP (recog_data
.operand
[i
], 0),
2584 &XEXP (recog_data
.operand
[i
], 0),
2585 i
, address_type
[i
], ind_levels
, insn
);
2586 recog_data
.operand
[i
] = *recog_data
.operand_loc
[i
];
2587 substed_operand
[i
] = recog_data
.operand
[i
];
2589 else if (code
== SUBREG
)
2591 rtx reg
= SUBREG_REG (recog_data
.operand
[i
]);
2593 = find_reloads_toplev (recog_data
.operand
[i
], i
, address_type
[i
],
2596 && &SET_DEST (set
) == recog_data
.operand_loc
[i
],
2599 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2600 that didn't get a hard register, emit a USE with a REG_EQUAL
2601 note in front so that we might inherit a previous, possibly
2605 && GET_CODE (op
) == MEM
2606 && GET_CODE (reg
) == REG
2607 && (GET_MODE_SIZE (GET_MODE (reg
))
2608 >= GET_MODE_SIZE (GET_MODE (op
))))
2609 REG_NOTES (emit_insn_before (gen_rtx_USE (VOIDmode
, reg
), insn
))
2610 = gen_rtx_EXPR_LIST (REG_EQUAL
,
2611 reg_equiv_memory_loc
[REGNO (reg
)], NULL_RTX
);
2613 substed_operand
[i
] = recog_data
.operand
[i
] = op
;
2615 else if (code
== PLUS
|| GET_RTX_CLASS (code
) == '1')
2616 /* We can get a PLUS as an "operand" as a result of register
2617 elimination. See eliminate_regs and gen_reload. We handle
2618 a unary operator by reloading the operand. */
2619 substed_operand
[i
] = recog_data
.operand
[i
]
2620 = find_reloads_toplev (recog_data
.operand
[i
], i
, address_type
[i
],
2621 ind_levels
, 0, insn
);
2622 else if (code
== REG
)
2624 /* This is equivalent to calling find_reloads_toplev.
2625 The code is duplicated for speed.
2626 When we find a pseudo always equivalent to a constant,
2627 we replace it by the constant. We must be sure, however,
2628 that we don't try to replace it in the insn in which it
2630 register int regno
= REGNO (recog_data
.operand
[i
]);
2631 if (reg_equiv_constant
[regno
] != 0
2632 && (set
== 0 || &SET_DEST (set
) != recog_data
.operand_loc
[i
]))
2634 /* Record the existing mode so that the check if constants are
2635 allowed will work when operand_mode isn't specified. */
2637 if (operand_mode
[i
] == VOIDmode
)
2638 operand_mode
[i
] = GET_MODE (recog_data
.operand
[i
]);
2640 substed_operand
[i
] = recog_data
.operand
[i
]
2641 = reg_equiv_constant
[regno
];
2643 if (reg_equiv_memory_loc
[regno
] != 0
2644 && (reg_equiv_address
[regno
] != 0 || num_not_at_initial_offset
))
2645 /* We need not give a valid is_set_dest argument since the case
2646 of a constant equivalence was checked above. */
2647 substed_operand
[i
] = recog_data
.operand
[i
]
2648 = find_reloads_toplev (recog_data
.operand
[i
], i
, address_type
[i
],
2649 ind_levels
, 0, insn
);
2651 /* If the operand is still a register (we didn't replace it with an
2652 equivalent), get the preferred class to reload it into. */
2653 code
= GET_CODE (recog_data
.operand
[i
]);
2655 = ((code
== REG
&& REGNO (recog_data
.operand
[i
])
2656 >= FIRST_PSEUDO_REGISTER
)
2657 ? reg_preferred_class (REGNO (recog_data
.operand
[i
]))
2661 && REGNO (recog_data
.operand
[i
]) >= FIRST_PSEUDO_REGISTER
2662 && reg_alternate_class (REGNO (recog_data
.operand
[i
])) == NO_REGS
);
2665 /* If this is simply a copy from operand 1 to operand 0, merge the
2666 preferred classes for the operands. */
2667 if (set
!= 0 && noperands
>= 2 && recog_data
.operand
[0] == SET_DEST (set
)
2668 && recog_data
.operand
[1] == SET_SRC (set
))
2670 preferred_class
[0] = preferred_class
[1]
2671 = reg_class_subunion
[(int) preferred_class
[0]][(int) preferred_class
[1]];
2672 pref_or_nothing
[0] |= pref_or_nothing
[1];
2673 pref_or_nothing
[1] |= pref_or_nothing
[0];
2676 /* Now see what we need for pseudo-regs that didn't get hard regs
2677 or got the wrong kind of hard reg. For this, we must consider
2678 all the operands together against the register constraints. */
2680 best
= MAX_RECOG_OPERANDS
* 2 + 600;
2683 goal_alternative_swapped
= 0;
2686 /* The constraints are made of several alternatives.
2687 Each operand's constraint looks like foo,bar,... with commas
2688 separating the alternatives. The first alternatives for all
2689 operands go together, the second alternatives go together, etc.
2691 First loop over alternatives. */
2693 for (this_alternative_number
= 0;
2694 this_alternative_number
< n_alternatives
;
2695 this_alternative_number
++)
2697 /* Loop over operands for one constraint alternative. */
2698 /* LOSERS counts those that don't fit this alternative
2699 and would require loading. */
2701 /* BAD is set to 1 if it some operand can't fit this alternative
2702 even after reloading. */
2704 /* REJECT is a count of how undesirable this alternative says it is
2705 if any reloading is required. If the alternative matches exactly
2706 then REJECT is ignored, but otherwise it gets this much
2707 counted against it in addition to the reloading needed. Each
2708 ? counts three times here since we want the disparaging caused by
2709 a bad register class to only count 1/3 as much. */
2712 this_earlyclobber
= 0;
2714 for (i
= 0; i
< noperands
; i
++)
2716 register char *p
= constraints
[i
];
2717 register int win
= 0;
2718 /* 0 => this operand can be reloaded somehow for this alternative */
2720 /* 0 => this operand can be reloaded if the alternative allows regs. */
2723 register rtx operand
= recog_data
.operand
[i
];
2725 /* Nonzero means this is a MEM that must be reloaded into a reg
2726 regardless of what the constraint says. */
2727 int force_reload
= 0;
2729 /* Nonzero if a constant forced into memory would be OK for this
2732 int earlyclobber
= 0;
2734 /* If the predicate accepts a unary operator, it means that
2735 we need to reload the operand, but do not do this for
2736 match_operator and friends. */
2737 if (GET_RTX_CLASS (GET_CODE (operand
)) == '1' && *p
!= 0)
2738 operand
= XEXP (operand
, 0);
2740 /* If the operand is a SUBREG, extract
2741 the REG or MEM (or maybe even a constant) within.
2742 (Constants can occur as a result of reg_equiv_constant.) */
2744 while (GET_CODE (operand
) == SUBREG
)
2746 offset
+= SUBREG_WORD (operand
);
2747 operand
= SUBREG_REG (operand
);
2748 /* Force reload if this is a constant or PLUS or if there may
2749 be a problem accessing OPERAND in the outer mode. */
2750 if (CONSTANT_P (operand
)
2751 || GET_CODE (operand
) == PLUS
2752 /* We must force a reload of paradoxical SUBREGs
2753 of a MEM because the alignment of the inner value
2754 may not be enough to do the outer reference. On
2755 big-endian machines, it may also reference outside
2758 On machines that extend byte operations and we have a
2759 SUBREG where both the inner and outer modes are no wider
2760 than a word and the inner mode is narrower, is integral,
2761 and gets extended when loaded from memory, combine.c has
2762 made assumptions about the behavior of the machine in such
2763 register access. If the data is, in fact, in memory we
2764 must always load using the size assumed to be in the
2765 register and let the insn do the different-sized
2768 This is doubly true if WORD_REGISTER_OPERATIONS. In
2769 this case eliminate_regs has left non-paradoxical
2770 subregs for push_reloads to see. Make sure it does
2771 by forcing the reload.
2773 ??? When is it right at this stage to have a subreg
2774 of a mem that is _not_ to be handled specialy? IMO
2775 those should have been reduced to just a mem. */
2776 || ((GET_CODE (operand
) == MEM
2777 || (GET_CODE (operand
)== REG
2778 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
))
2779 #ifndef WORD_REGISTER_OPERATIONS
2780 && (((GET_MODE_BITSIZE (GET_MODE (operand
))
2781 < BIGGEST_ALIGNMENT
)
2782 && (GET_MODE_SIZE (operand_mode
[i
])
2783 > GET_MODE_SIZE (GET_MODE (operand
))))
2784 || (GET_CODE (operand
) == MEM
&& BYTES_BIG_ENDIAN
)
2785 #ifdef LOAD_EXTEND_OP
2786 || (GET_MODE_SIZE (operand_mode
[i
]) <= UNITS_PER_WORD
2787 && (GET_MODE_SIZE (GET_MODE (operand
))
2789 && (GET_MODE_SIZE (operand_mode
[i
])
2790 > GET_MODE_SIZE (GET_MODE (operand
)))
2791 && INTEGRAL_MODE_P (GET_MODE (operand
))
2792 && LOAD_EXTEND_OP (GET_MODE (operand
)) != NIL
)
2797 /* Subreg of a hard reg which can't handle the subreg's mode
2798 or which would handle that mode in the wrong number of
2799 registers for subregging to work. */
2800 || (GET_CODE (operand
) == REG
2801 && REGNO (operand
) < FIRST_PSEUDO_REGISTER
2802 && ((GET_MODE_SIZE (operand_mode
[i
]) <= UNITS_PER_WORD
2803 && (GET_MODE_SIZE (GET_MODE (operand
))
2805 && ((GET_MODE_SIZE (GET_MODE (operand
))
2807 != HARD_REGNO_NREGS (REGNO (operand
),
2808 GET_MODE (operand
))))
2809 || ! HARD_REGNO_MODE_OK (REGNO (operand
) + offset
,
2814 this_alternative
[i
] = (int) NO_REGS
;
2815 this_alternative_win
[i
] = 0;
2816 this_alternative_offmemok
[i
] = 0;
2817 this_alternative_earlyclobber
[i
] = 0;
2818 this_alternative_matches
[i
] = -1;
2820 /* An empty constraint or empty alternative
2821 allows anything which matched the pattern. */
2822 if (*p
== 0 || *p
== ',')
2825 /* Scan this alternative's specs for this operand;
2826 set WIN if the operand fits any letter in this alternative.
2827 Otherwise, clear BADOP if this operand could
2828 fit some letter after reloads,
2829 or set WINREG if this operand could fit after reloads
2830 provided the constraint allows some registers. */
2832 while (*p
&& (c
= *p
++) != ',')
2835 case '=': case '+': case '*':
2839 /* The last operand should not be marked commutative. */
2840 if (i
!= noperands
- 1)
2853 /* Ignore rest of this alternative as far as
2854 reloading is concerned. */
2855 while (*p
&& *p
!= ',') p
++;
2858 case '0': case '1': case '2': case '3': case '4':
2859 case '5': case '6': case '7': case '8': case '9':
2862 this_alternative_matches
[i
] = c
;
2863 /* We are supposed to match a previous operand.
2864 If we do, we win if that one did.
2865 If we do not, count both of the operands as losers.
2866 (This is too conservative, since most of the time
2867 only a single reload insn will be needed to make
2868 the two operands win. As a result, this alternative
2869 may be rejected when it is actually desirable.) */
2870 if ((swapped
&& (c
!= commutative
|| i
!= commutative
+ 1))
2871 /* If we are matching as if two operands were swapped,
2872 also pretend that operands_match had been computed
2874 But if I is the second of those and C is the first,
2875 don't exchange them, because operands_match is valid
2876 only on one side of its diagonal. */
2878 [(c
== commutative
|| c
== commutative
+ 1)
2879 ? 2*commutative
+ 1 - c
: c
]
2880 [(i
== commutative
|| i
== commutative
+ 1)
2881 ? 2*commutative
+ 1 - i
: i
])
2882 : operands_match
[c
][i
])
2884 /* If we are matching a non-offsettable address where an
2885 offsettable address was expected, then we must reject
2886 this combination, because we can't reload it. */
2887 if (this_alternative_offmemok
[c
]
2888 && GET_CODE (recog_data
.operand
[c
]) == MEM
2889 && this_alternative
[c
] == (int) NO_REGS
2890 && ! this_alternative_win
[c
])
2893 win
= this_alternative_win
[c
];
2897 /* Operands don't match. */
2899 /* Retroactively mark the operand we had to match
2900 as a loser, if it wasn't already. */
2901 if (this_alternative_win
[c
])
2903 this_alternative_win
[c
] = 0;
2904 if (this_alternative
[c
] == (int) NO_REGS
)
2906 /* But count the pair only once in the total badness of
2907 this alternative, if the pair can be a dummy reload. */
2909 = find_dummy_reload (recog_data
.operand
[i
],
2910 recog_data
.operand
[c
],
2911 recog_data
.operand_loc
[i
],
2912 recog_data
.operand_loc
[c
],
2913 operand_mode
[i
], operand_mode
[c
],
2914 this_alternative
[c
], -1,
2915 this_alternative_earlyclobber
[c
]);
2920 /* This can be fixed with reloads if the operand
2921 we are supposed to match can be fixed with reloads. */
2923 this_alternative
[i
] = this_alternative
[c
];
2925 /* If we have to reload this operand and some previous
2926 operand also had to match the same thing as this
2927 operand, we don't know how to do that. So reject this
2929 if (! win
|| force_reload
)
2930 for (j
= 0; j
< i
; j
++)
2931 if (this_alternative_matches
[j
]
2932 == this_alternative_matches
[i
])
2938 /* All necessary reloads for an address_operand
2939 were handled in find_reloads_address. */
2940 this_alternative
[i
] = (int) BASE_REG_CLASS
;
2947 if (GET_CODE (operand
) == MEM
2948 || (GET_CODE (operand
) == REG
2949 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
2950 && reg_renumber
[REGNO (operand
)] < 0))
2952 if (CONSTANT_P (operand
)
2953 /* force_const_mem does not accept HIGH. */
2954 && GET_CODE (operand
) != HIGH
)
2960 if (GET_CODE (operand
) == MEM
2961 && ! address_reloaded
[i
]
2962 && (GET_CODE (XEXP (operand
, 0)) == PRE_DEC
2963 || GET_CODE (XEXP (operand
, 0)) == POST_DEC
))
2968 if (GET_CODE (operand
) == MEM
2969 && ! address_reloaded
[i
]
2970 && (GET_CODE (XEXP (operand
, 0)) == PRE_INC
2971 || GET_CODE (XEXP (operand
, 0)) == POST_INC
))
2975 /* Memory operand whose address is not offsettable. */
2979 if (GET_CODE (operand
) == MEM
2980 && ! (ind_levels
? offsettable_memref_p (operand
)
2981 : offsettable_nonstrict_memref_p (operand
))
2982 /* Certain mem addresses will become offsettable
2983 after they themselves are reloaded. This is important;
2984 we don't want our own handling of unoffsettables
2985 to override the handling of reg_equiv_address. */
2986 && !(GET_CODE (XEXP (operand
, 0)) == REG
2988 || reg_equiv_address
[REGNO (XEXP (operand
, 0))] != 0)))
2992 /* Memory operand whose address is offsettable. */
2996 if ((GET_CODE (operand
) == MEM
2997 /* If IND_LEVELS, find_reloads_address won't reload a
2998 pseudo that didn't get a hard reg, so we have to
2999 reject that case. */
3000 && ((ind_levels
? offsettable_memref_p (operand
)
3001 : offsettable_nonstrict_memref_p (operand
))
3002 /* A reloaded address is offsettable because it is now
3003 just a simple register indirect. */
3004 || address_reloaded
[i
]))
3005 || (GET_CODE (operand
) == REG
3006 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
3007 && reg_renumber
[REGNO (operand
)] < 0
3008 /* If reg_equiv_address is nonzero, we will be
3009 loading it into a register; hence it will be
3010 offsettable, but we cannot say that reg_equiv_mem
3011 is offsettable without checking. */
3012 && ((reg_equiv_mem
[REGNO (operand
)] != 0
3013 && offsettable_memref_p (reg_equiv_mem
[REGNO (operand
)]))
3014 || (reg_equiv_address
[REGNO (operand
)] != 0))))
3016 /* force_const_mem does not accept HIGH. */
3017 if ((CONSTANT_P (operand
) && GET_CODE (operand
) != HIGH
)
3018 || GET_CODE (operand
) == MEM
)
3025 /* Output operand that is stored before the need for the
3026 input operands (and their index registers) is over. */
3027 earlyclobber
= 1, this_earlyclobber
= 1;
3031 #ifndef REAL_ARITHMETIC
3032 /* Match any floating double constant, but only if
3033 we can examine the bits of it reliably. */
3034 if ((HOST_FLOAT_FORMAT
!= TARGET_FLOAT_FORMAT
3035 || HOST_BITS_PER_WIDE_INT
!= BITS_PER_WORD
)
3036 && GET_MODE (operand
) != VOIDmode
&& ! flag_pretend_float
)
3039 if (GET_CODE (operand
) == CONST_DOUBLE
)
3044 if (GET_CODE (operand
) == CONST_DOUBLE
)
3050 if (GET_CODE (operand
) == CONST_DOUBLE
3051 && CONST_DOUBLE_OK_FOR_LETTER_P (operand
, c
))
3056 if (GET_CODE (operand
) == CONST_INT
3057 || (GET_CODE (operand
) == CONST_DOUBLE
3058 && GET_MODE (operand
) == VOIDmode
))
3061 if (CONSTANT_P (operand
)
3062 #ifdef LEGITIMATE_PIC_OPERAND_P
3063 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (operand
))
3070 if (GET_CODE (operand
) == CONST_INT
3071 || (GET_CODE (operand
) == CONST_DOUBLE
3072 && GET_MODE (operand
) == VOIDmode
))
3084 if (GET_CODE (operand
) == CONST_INT
3085 && CONST_OK_FOR_LETTER_P (INTVAL (operand
), c
))
3095 /* A PLUS is never a valid operand, but reload can make
3096 it from a register when eliminating registers. */
3097 && GET_CODE (operand
) != PLUS
3098 /* A SCRATCH is not a valid operand. */
3099 && GET_CODE (operand
) != SCRATCH
3100 #ifdef LEGITIMATE_PIC_OPERAND_P
3101 && (! CONSTANT_P (operand
)
3103 || LEGITIMATE_PIC_OPERAND_P (operand
))
3105 && (GENERAL_REGS
== ALL_REGS
3106 || GET_CODE (operand
) != REG
3107 || (REGNO (operand
) >= FIRST_PSEUDO_REGISTER
3108 && reg_renumber
[REGNO (operand
)] < 0)))
3110 /* Drop through into 'r' case */
3114 = (int) reg_class_subunion
[this_alternative
[i
]][(int) GENERAL_REGS
];
3117 #ifdef EXTRA_CONSTRAINT
3123 if (EXTRA_CONSTRAINT (operand
, c
))
3130 = (int) reg_class_subunion
[this_alternative
[i
]][(int) REG_CLASS_FROM_LETTER (c
)];
3133 if (GET_MODE (operand
) == BLKmode
)
3136 if (GET_CODE (operand
) == REG
3137 && reg_fits_class_p (operand
, this_alternative
[i
],
3138 offset
, GET_MODE (recog_data
.operand
[i
])))
3145 /* If this operand could be handled with a reg,
3146 and some reg is allowed, then this operand can be handled. */
3147 if (winreg
&& this_alternative
[i
] != (int) NO_REGS
)
3150 /* Record which operands fit this alternative. */
3151 this_alternative_earlyclobber
[i
] = earlyclobber
;
3152 if (win
&& ! force_reload
)
3153 this_alternative_win
[i
] = 1;
3156 int const_to_mem
= 0;
3158 this_alternative_offmemok
[i
] = offmemok
;
3162 /* Alternative loses if it has no regs for a reg operand. */
3163 if (GET_CODE (operand
) == REG
3164 && this_alternative
[i
] == (int) NO_REGS
3165 && this_alternative_matches
[i
] < 0)
3168 /* If this is a constant that is reloaded into the desired
3169 class by copying it to memory first, count that as another
3170 reload. This is consistent with other code and is
3171 required to avoid choosing another alternative when
3172 the constant is moved into memory by this function on
3173 an early reload pass. Note that the test here is
3174 precisely the same as in the code below that calls
3176 if (CONSTANT_P (operand
)
3177 /* force_const_mem does not accept HIGH. */
3178 && GET_CODE (operand
) != HIGH
3179 && ((PREFERRED_RELOAD_CLASS (operand
,
3180 (enum reg_class
) this_alternative
[i
])
3182 || no_input_reloads
)
3183 && operand_mode
[i
] != VOIDmode
)
3186 if (this_alternative
[i
] != (int) NO_REGS
)
3190 /* If we can't reload this value at all, reject this
3191 alternative. Note that we could also lose due to
3192 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3195 if (! CONSTANT_P (operand
)
3196 && (enum reg_class
) this_alternative
[i
] != NO_REGS
3197 && (PREFERRED_RELOAD_CLASS (operand
,
3198 (enum reg_class
) this_alternative
[i
])
3202 /* Alternative loses if it requires a type of reload not
3203 permitted for this insn. We can always reload SCRATCH
3204 and objects with a REG_UNUSED note. */
3205 else if (GET_CODE (operand
) != SCRATCH
3206 && modified
[i
] != RELOAD_READ
&& no_output_reloads
3207 && ! find_reg_note (insn
, REG_UNUSED
, operand
))
3209 else if (modified
[i
] != RELOAD_WRITE
&& no_input_reloads
3214 /* We prefer to reload pseudos over reloading other things,
3215 since such reloads may be able to be eliminated later.
3216 If we are reloading a SCRATCH, we won't be generating any
3217 insns, just using a register, so it is also preferred.
3218 So bump REJECT in other cases. Don't do this in the
3219 case where we are forcing a constant into memory and
3220 it will then win since we don't want to have a different
3221 alternative match then. */
3222 if (! (GET_CODE (operand
) == REG
3223 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
)
3224 && GET_CODE (operand
) != SCRATCH
3225 && ! (const_to_mem
&& constmemok
))
3228 /* Input reloads can be inherited more often than output
3229 reloads can be removed, so penalize output reloads. */
3230 if (operand_type
[i
] != RELOAD_FOR_INPUT
3231 && GET_CODE (operand
) != SCRATCH
)
3235 /* If this operand is a pseudo register that didn't get a hard
3236 reg and this alternative accepts some register, see if the
3237 class that we want is a subset of the preferred class for this
3238 register. If not, but it intersects that class, use the
3239 preferred class instead. If it does not intersect the preferred
3240 class, show that usage of this alternative should be discouraged;
3241 it will be discouraged more still if the register is `preferred
3242 or nothing'. We do this because it increases the chance of
3243 reusing our spill register in a later insn and avoiding a pair
3244 of memory stores and loads.
3246 Don't bother with this if this alternative will accept this
3249 Don't do this for a multiword operand, since it is only a
3250 small win and has the risk of requiring more spill registers,
3251 which could cause a large loss.
3253 Don't do this if the preferred class has only one register
3254 because we might otherwise exhaust the class. */
3257 if (! win
&& this_alternative
[i
] != (int) NO_REGS
3258 && GET_MODE_SIZE (operand_mode
[i
]) <= UNITS_PER_WORD
3259 && reg_class_size
[(int) preferred_class
[i
]] > 1)
3261 if (! reg_class_subset_p (this_alternative
[i
],
3262 preferred_class
[i
]))
3264 /* Since we don't have a way of forming the intersection,
3265 we just do something special if the preferred class
3266 is a subset of the class we have; that's the most
3267 common case anyway. */
3268 if (reg_class_subset_p (preferred_class
[i
],
3269 this_alternative
[i
]))
3270 this_alternative
[i
] = (int) preferred_class
[i
];
3272 reject
+= (2 + 2 * pref_or_nothing
[i
]);
3277 /* Now see if any output operands that are marked "earlyclobber"
3278 in this alternative conflict with any input operands
3279 or any memory addresses. */
3281 for (i
= 0; i
< noperands
; i
++)
3282 if (this_alternative_earlyclobber
[i
]
3283 && this_alternative_win
[i
])
3285 struct decomposition early_data
;
3287 early_data
= decompose (recog_data
.operand
[i
]);
3289 if (modified
[i
] == RELOAD_READ
)
3292 if (this_alternative
[i
] == NO_REGS
)
3294 this_alternative_earlyclobber
[i
] = 0;
3295 if (this_insn_is_asm
)
3296 error_for_asm (this_insn
,
3297 "`&' constraint used with no register class");
3302 for (j
= 0; j
< noperands
; j
++)
3303 /* Is this an input operand or a memory ref? */
3304 if ((GET_CODE (recog_data
.operand
[j
]) == MEM
3305 || modified
[j
] != RELOAD_WRITE
)
3307 /* Ignore things like match_operator operands. */
3308 && *recog_data
.constraints
[j
] != 0
3309 /* Don't count an input operand that is constrained to match
3310 the early clobber operand. */
3311 && ! (this_alternative_matches
[j
] == i
3312 && rtx_equal_p (recog_data
.operand
[i
],
3313 recog_data
.operand
[j
]))
3314 /* Is it altered by storing the earlyclobber operand? */
3315 && !immune_p (recog_data
.operand
[j
], recog_data
.operand
[i
],
3318 /* If the output is in a single-reg class,
3319 it's costly to reload it, so reload the input instead. */
3320 if (reg_class_size
[this_alternative
[i
]] == 1
3321 && (GET_CODE (recog_data
.operand
[j
]) == REG
3322 || GET_CODE (recog_data
.operand
[j
]) == SUBREG
))
3325 this_alternative_win
[j
] = 0;
3330 /* If an earlyclobber operand conflicts with something,
3331 it must be reloaded, so request this and count the cost. */
3335 this_alternative_win
[i
] = 0;
3336 for (j
= 0; j
< noperands
; j
++)
3337 if (this_alternative_matches
[j
] == i
3338 && this_alternative_win
[j
])
3340 this_alternative_win
[j
] = 0;
3346 /* If one alternative accepts all the operands, no reload required,
3347 choose that alternative; don't consider the remaining ones. */
3350 /* Unswap these so that they are never swapped at `finish'. */
3351 if (commutative
>= 0)
3353 recog_data
.operand
[commutative
] = substed_operand
[commutative
];
3354 recog_data
.operand
[commutative
+ 1]
3355 = substed_operand
[commutative
+ 1];
3357 for (i
= 0; i
< noperands
; i
++)
3359 goal_alternative_win
[i
] = 1;
3360 goal_alternative
[i
] = this_alternative
[i
];
3361 goal_alternative_offmemok
[i
] = this_alternative_offmemok
[i
];
3362 goal_alternative_matches
[i
] = this_alternative_matches
[i
];
3363 goal_alternative_earlyclobber
[i
]
3364 = this_alternative_earlyclobber
[i
];
3366 goal_alternative_number
= this_alternative_number
;
3367 goal_alternative_swapped
= swapped
;
3368 goal_earlyclobber
= this_earlyclobber
;
3372 /* REJECT, set by the ! and ? constraint characters and when a register
3373 would be reloaded into a non-preferred class, discourages the use of
3374 this alternative for a reload goal. REJECT is incremented by six
3375 for each ? and two for each non-preferred class. */
3376 losers
= losers
* 6 + reject
;
3378 /* If this alternative can be made to work by reloading,
3379 and it needs less reloading than the others checked so far,
3380 record it as the chosen goal for reloading. */
3381 if (! bad
&& best
> losers
)
3383 for (i
= 0; i
< noperands
; i
++)
3385 goal_alternative
[i
] = this_alternative
[i
];
3386 goal_alternative_win
[i
] = this_alternative_win
[i
];
3387 goal_alternative_offmemok
[i
] = this_alternative_offmemok
[i
];
3388 goal_alternative_matches
[i
] = this_alternative_matches
[i
];
3389 goal_alternative_earlyclobber
[i
]
3390 = this_alternative_earlyclobber
[i
];
3392 goal_alternative_swapped
= swapped
;
3394 goal_alternative_number
= this_alternative_number
;
3395 goal_earlyclobber
= this_earlyclobber
;
3399 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3400 then we need to try each alternative twice,
3401 the second time matching those two operands
3402 as if we had exchanged them.
3403 To do this, really exchange them in operands.
3405 If we have just tried the alternatives the second time,
3406 return operands to normal and drop through. */
3408 if (commutative
>= 0)
3413 register enum reg_class tclass
;
3416 recog_data
.operand
[commutative
] = substed_operand
[commutative
+ 1];
3417 recog_data
.operand
[commutative
+ 1] = substed_operand
[commutative
];
3419 tclass
= preferred_class
[commutative
];
3420 preferred_class
[commutative
] = preferred_class
[commutative
+ 1];
3421 preferred_class
[commutative
+ 1] = tclass
;
3423 t
= pref_or_nothing
[commutative
];
3424 pref_or_nothing
[commutative
] = pref_or_nothing
[commutative
+ 1];
3425 pref_or_nothing
[commutative
+ 1] = t
;
3427 memcpy (constraints
, recog_data
.constraints
,
3428 noperands
* sizeof (char *));
3433 recog_data
.operand
[commutative
] = substed_operand
[commutative
];
3434 recog_data
.operand
[commutative
+ 1]
3435 = substed_operand
[commutative
+ 1];
3439 /* The operands don't meet the constraints.
3440 goal_alternative describes the alternative
3441 that we could reach by reloading the fewest operands.
3442 Reload so as to fit it. */
3444 if (best
== MAX_RECOG_OPERANDS
* 2 + 600)
3446 /* No alternative works with reloads?? */
3447 if (insn_code_number
>= 0)
3448 fatal_insn ("Unable to generate reloads for:", insn
);
3449 error_for_asm (insn
, "inconsistent operand constraints in an `asm'");
3450 /* Avoid further trouble with this insn. */
3451 PATTERN (insn
) = gen_rtx_USE (VOIDmode
, const0_rtx
);
3456 /* Jump to `finish' from above if all operands are valid already.
3457 In that case, goal_alternative_win is all 1. */
3460 /* Right now, for any pair of operands I and J that are required to match,
3462 goal_alternative_matches[J] is I.
3463 Set up goal_alternative_matched as the inverse function:
3464 goal_alternative_matched[I] = J. */
3466 for (i
= 0; i
< noperands
; i
++)
3467 goal_alternative_matched
[i
] = -1;
3469 for (i
= 0; i
< noperands
; i
++)
3470 if (! goal_alternative_win
[i
]
3471 && goal_alternative_matches
[i
] >= 0)
3472 goal_alternative_matched
[goal_alternative_matches
[i
]] = i
;
3474 /* If the best alternative is with operands 1 and 2 swapped,
3475 consider them swapped before reporting the reloads. Update the
3476 operand numbers of any reloads already pushed. */
3478 if (goal_alternative_swapped
)
3482 tem
= substed_operand
[commutative
];
3483 substed_operand
[commutative
] = substed_operand
[commutative
+ 1];
3484 substed_operand
[commutative
+ 1] = tem
;
3485 tem
= recog_data
.operand
[commutative
];
3486 recog_data
.operand
[commutative
] = recog_data
.operand
[commutative
+ 1];
3487 recog_data
.operand
[commutative
+ 1] = tem
;
3488 tem
= *recog_data
.operand_loc
[commutative
];
3489 *recog_data
.operand_loc
[commutative
]
3490 = *recog_data
.operand_loc
[commutative
+ 1];
3491 *recog_data
.operand_loc
[commutative
+1] = tem
;
3493 for (i
= 0; i
< n_reloads
; i
++)
3495 if (rld
[i
].opnum
== commutative
)
3496 rld
[i
].opnum
= commutative
+ 1;
3497 else if (rld
[i
].opnum
== commutative
+ 1)
3498 rld
[i
].opnum
= commutative
;
3502 for (i
= 0; i
< noperands
; i
++)
3504 operand_reloadnum
[i
] = -1;
3506 /* If this is an earlyclobber operand, we need to widen the scope.
3507 The reload must remain valid from the start of the insn being
3508 reloaded until after the operand is stored into its destination.
3509 We approximate this with RELOAD_OTHER even though we know that we
3510 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3512 One special case that is worth checking is when we have an
3513 output that is earlyclobber but isn't used past the insn (typically
3514 a SCRATCH). In this case, we only need have the reload live
3515 through the insn itself, but not for any of our input or output
3517 But we must not accidentally narrow the scope of an existing
3518 RELOAD_OTHER reload - leave these alone.
3520 In any case, anything needed to address this operand can remain
3521 however they were previously categorized. */
3523 if (goal_alternative_earlyclobber
[i
] && operand_type
[i
] != RELOAD_OTHER
)
3525 = (find_reg_note (insn
, REG_UNUSED
, recog_data
.operand
[i
])
3526 ? RELOAD_FOR_INSN
: RELOAD_OTHER
);
3529 /* Any constants that aren't allowed and can't be reloaded
3530 into registers are here changed into memory references. */
3531 for (i
= 0; i
< noperands
; i
++)
3532 if (! goal_alternative_win
[i
]
3533 && CONSTANT_P (recog_data
.operand
[i
])
3534 /* force_const_mem does not accept HIGH. */
3535 && GET_CODE (recog_data
.operand
[i
]) != HIGH
3536 && ((PREFERRED_RELOAD_CLASS (recog_data
.operand
[i
],
3537 (enum reg_class
) goal_alternative
[i
])
3539 || no_input_reloads
)
3540 && operand_mode
[i
] != VOIDmode
)
3542 substed_operand
[i
] = recog_data
.operand
[i
]
3543 = find_reloads_toplev (force_const_mem (operand_mode
[i
],
3544 recog_data
.operand
[i
]),
3545 i
, address_type
[i
], ind_levels
, 0, insn
);
3546 if (alternative_allows_memconst (recog_data
.constraints
[i
],
3547 goal_alternative_number
))
3548 goal_alternative_win
[i
] = 1;
3551 /* Record the values of the earlyclobber operands for the caller. */
3552 if (goal_earlyclobber
)
3553 for (i
= 0; i
< noperands
; i
++)
3554 if (goal_alternative_earlyclobber
[i
])
3555 reload_earlyclobbers
[n_earlyclobbers
++] = recog_data
.operand
[i
];
3557 /* Now record reloads for all the operands that need them. */
3558 for (i
= 0; i
< noperands
; i
++)
3559 if (! goal_alternative_win
[i
])
3561 /* Operands that match previous ones have already been handled. */
3562 if (goal_alternative_matches
[i
] >= 0)
3564 /* Handle an operand with a nonoffsettable address
3565 appearing where an offsettable address will do
3566 by reloading the address into a base register.
3568 ??? We can also do this when the operand is a register and
3569 reg_equiv_mem is not offsettable, but this is a bit tricky,
3570 so we don't bother with it. It may not be worth doing. */
3571 else if (goal_alternative_matched
[i
] == -1
3572 && goal_alternative_offmemok
[i
]
3573 && GET_CODE (recog_data
.operand
[i
]) == MEM
)
3575 operand_reloadnum
[i
]
3576 = push_reload (XEXP (recog_data
.operand
[i
], 0), NULL_RTX
,
3577 &XEXP (recog_data
.operand
[i
], 0), NULL_PTR
,
3579 GET_MODE (XEXP (recog_data
.operand
[i
], 0)),
3580 VOIDmode
, 0, 0, i
, RELOAD_FOR_INPUT
);
3581 rld
[operand_reloadnum
[i
]].inc
3582 = GET_MODE_SIZE (GET_MODE (recog_data
.operand
[i
]));
3584 /* If this operand is an output, we will have made any
3585 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3586 now we are treating part of the operand as an input, so
3587 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3589 if (modified
[i
] == RELOAD_WRITE
)
3591 for (j
= 0; j
< n_reloads
; j
++)
3593 if (rld
[j
].opnum
== i
)
3595 if (rld
[j
].when_needed
== RELOAD_FOR_OUTPUT_ADDRESS
)
3596 rld
[j
].when_needed
= RELOAD_FOR_INPUT_ADDRESS
;
3597 else if (rld
[j
].when_needed
3598 == RELOAD_FOR_OUTADDR_ADDRESS
)
3599 rld
[j
].when_needed
= RELOAD_FOR_INPADDR_ADDRESS
;
3604 else if (goal_alternative_matched
[i
] == -1)
3606 operand_reloadnum
[i
]
3607 = push_reload ((modified
[i
] != RELOAD_WRITE
3608 ? recog_data
.operand
[i
] : 0),
3609 (modified
[i
] != RELOAD_READ
3610 ? recog_data
.operand
[i
] : 0),
3611 (modified
[i
] != RELOAD_WRITE
3612 ? recog_data
.operand_loc
[i
] : 0),
3613 (modified
[i
] != RELOAD_READ
3614 ? recog_data
.operand_loc
[i
] : 0),
3615 (enum reg_class
) goal_alternative
[i
],
3616 (modified
[i
] == RELOAD_WRITE
3617 ? VOIDmode
: operand_mode
[i
]),
3618 (modified
[i
] == RELOAD_READ
3619 ? VOIDmode
: operand_mode
[i
]),
3620 (insn_code_number
< 0 ? 0
3621 : insn_data
[insn_code_number
].operand
[i
].strict_low
),
3622 0, i
, operand_type
[i
]);
3624 /* In a matching pair of operands, one must be input only
3625 and the other must be output only.
3626 Pass the input operand as IN and the other as OUT. */
3627 else if (modified
[i
] == RELOAD_READ
3628 && modified
[goal_alternative_matched
[i
]] == RELOAD_WRITE
)
3630 operand_reloadnum
[i
]
3631 = push_reload (recog_data
.operand
[i
],
3632 recog_data
.operand
[goal_alternative_matched
[i
]],
3633 recog_data
.operand_loc
[i
],
3634 recog_data
.operand_loc
[goal_alternative_matched
[i
]],
3635 (enum reg_class
) goal_alternative
[i
],
3637 operand_mode
[goal_alternative_matched
[i
]],
3638 0, 0, i
, RELOAD_OTHER
);
3639 operand_reloadnum
[goal_alternative_matched
[i
]] = output_reloadnum
;
3641 else if (modified
[i
] == RELOAD_WRITE
3642 && modified
[goal_alternative_matched
[i
]] == RELOAD_READ
)
3644 operand_reloadnum
[goal_alternative_matched
[i
]]
3645 = push_reload (recog_data
.operand
[goal_alternative_matched
[i
]],
3646 recog_data
.operand
[i
],
3647 recog_data
.operand_loc
[goal_alternative_matched
[i
]],
3648 recog_data
.operand_loc
[i
],
3649 (enum reg_class
) goal_alternative
[i
],
3650 operand_mode
[goal_alternative_matched
[i
]],
3652 0, 0, i
, RELOAD_OTHER
);
3653 operand_reloadnum
[i
] = output_reloadnum
;
3655 else if (insn_code_number
>= 0)
3659 error_for_asm (insn
, "inconsistent operand constraints in an `asm'");
3660 /* Avoid further trouble with this insn. */
3661 PATTERN (insn
) = gen_rtx_USE (VOIDmode
, const0_rtx
);
3666 else if (goal_alternative_matched
[i
] < 0
3667 && goal_alternative_matches
[i
] < 0
3670 /* For each non-matching operand that's a MEM or a pseudo-register
3671 that didn't get a hard register, make an optional reload.
3672 This may get done even if the insn needs no reloads otherwise. */
3674 rtx operand
= recog_data
.operand
[i
];
3676 while (GET_CODE (operand
) == SUBREG
)
3677 operand
= XEXP (operand
, 0);
3678 if ((GET_CODE (operand
) == MEM
3679 || (GET_CODE (operand
) == REG
3680 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
))
3681 /* If this is only for an output, the optional reload would not
3682 actually cause us to use a register now, just note that
3683 something is stored here. */
3684 && ((enum reg_class
) goal_alternative
[i
] != NO_REGS
3685 || modified
[i
] == RELOAD_WRITE
)
3686 && ! no_input_reloads
3687 /* An optional output reload might allow to delete INSN later.
3688 We mustn't make in-out reloads on insns that are not permitted
3690 If this is an asm, we can't delete it; we must not even call
3691 push_reload for an optional output reload in this case,
3692 because we can't be sure that the constraint allows a register,
3693 and push_reload verifies the constraints for asms. */
3694 && (modified
[i
] == RELOAD_READ
3695 || (! no_output_reloads
&& ! this_insn_is_asm
)))
3696 operand_reloadnum
[i
]
3697 = push_reload ((modified
[i
] != RELOAD_WRITE
3698 ? recog_data
.operand
[i
] : 0),
3699 (modified
[i
] != RELOAD_READ
3700 ? recog_data
.operand
[i
] : 0),
3701 (modified
[i
] != RELOAD_WRITE
3702 ? recog_data
.operand_loc
[i
] : 0),
3703 (modified
[i
] != RELOAD_READ
3704 ? recog_data
.operand_loc
[i
] : 0),
3705 (enum reg_class
) goal_alternative
[i
],
3706 (modified
[i
] == RELOAD_WRITE
3707 ? VOIDmode
: operand_mode
[i
]),
3708 (modified
[i
] == RELOAD_READ
3709 ? VOIDmode
: operand_mode
[i
]),
3710 (insn_code_number
< 0 ? 0
3711 : insn_data
[insn_code_number
].operand
[i
].strict_low
),
3712 1, i
, operand_type
[i
]);
3713 /* If a memory reference remains (either as a MEM or a pseudo that
3714 did not get a hard register), yet we can't make an optional
3715 reload, check if this is actually a pseudo register reference;
3716 we then need to emit a USE and/or a CLOBBER so that reload
3717 inheritance will do the right thing. */
3719 && (GET_CODE (operand
) == MEM
3720 || (GET_CODE (operand
) == REG
3721 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
3722 && reg_renumber
[REGNO (operand
)] < 0)))
3724 operand
= *recog_data
.operand_loc
[i
];
3726 while (GET_CODE (operand
) == SUBREG
)
3727 operand
= XEXP (operand
, 0);
3728 if (GET_CODE (operand
) == REG
)
3730 if (modified
[i
] != RELOAD_WRITE
)
3731 emit_insn_before (gen_rtx_USE (VOIDmode
, operand
), insn
);
3732 if (modified
[i
] != RELOAD_READ
)
3733 emit_insn_after (gen_rtx_CLOBBER (VOIDmode
, operand
), insn
);
3737 else if (goal_alternative_matches
[i
] >= 0
3738 && goal_alternative_win
[goal_alternative_matches
[i
]]
3739 && modified
[i
] == RELOAD_READ
3740 && modified
[goal_alternative_matches
[i
]] == RELOAD_WRITE
3741 && ! no_input_reloads
&& ! no_output_reloads
3744 /* Similarly, make an optional reload for a pair of matching
3745 objects that are in MEM or a pseudo that didn't get a hard reg. */
3747 rtx operand
= recog_data
.operand
[i
];
3749 while (GET_CODE (operand
) == SUBREG
)
3750 operand
= XEXP (operand
, 0);
3751 if ((GET_CODE (operand
) == MEM
3752 || (GET_CODE (operand
) == REG
3753 && REGNO (operand
) >= FIRST_PSEUDO_REGISTER
))
3754 && ((enum reg_class
) goal_alternative
[goal_alternative_matches
[i
]]
3756 operand_reloadnum
[i
] = operand_reloadnum
[goal_alternative_matches
[i
]]
3757 = push_reload (recog_data
.operand
[goal_alternative_matches
[i
]],
3758 recog_data
.operand
[i
],
3759 recog_data
.operand_loc
[goal_alternative_matches
[i
]],
3760 recog_data
.operand_loc
[i
],
3761 (enum reg_class
) goal_alternative
[goal_alternative_matches
[i
]],
3762 operand_mode
[goal_alternative_matches
[i
]],
3764 0, 1, goal_alternative_matches
[i
], RELOAD_OTHER
);
3767 /* Perform whatever substitutions on the operands we are supposed
3768 to make due to commutativity or replacement of registers
3769 with equivalent constants or memory slots. */
3771 for (i
= 0; i
< noperands
; i
++)
3773 /* We only do this on the last pass through reload, because it is
3774 possible for some data (like reg_equiv_address) to be changed during
3775 later passes. Moreover, we loose the opportunity to get a useful
3776 reload_{in,out}_reg when we do these replacements. */
3780 rtx substitution
= substed_operand
[i
];
3782 *recog_data
.operand_loc
[i
] = substitution
;
3784 /* If we're replacing an operand with a LABEL_REF, we need
3785 to make sure that there's a REG_LABEL note attached to
3786 this instruction. */
3787 if (GET_CODE (insn
) != JUMP_INSN
3788 && GET_CODE (substitution
) == LABEL_REF
3789 && !find_reg_note (insn
, REG_LABEL
, XEXP (substitution
, 0)))
3790 REG_NOTES (insn
) = gen_rtx_EXPR_LIST (REG_LABEL
,
3791 XEXP (substitution
, 0),
3795 retval
|= (substed_operand
[i
] != *recog_data
.operand_loc
[i
]);
3798 /* If this insn pattern contains any MATCH_DUP's, make sure that
3799 they will be substituted if the operands they match are substituted.
3800 Also do now any substitutions we already did on the operands.
3802 Don't do this if we aren't making replacements because we might be
3803 propagating things allocated by frame pointer elimination into places
3804 it doesn't expect. */
3806 if (insn_code_number
>= 0 && replace
)
3807 for (i
= insn_data
[insn_code_number
].n_dups
- 1; i
>= 0; i
--)
3809 int opno
= recog_data
.dup_num
[i
];
3810 *recog_data
.dup_loc
[i
] = *recog_data
.operand_loc
[opno
];
3811 if (operand_reloadnum
[opno
] >= 0)
3812 push_replacement (recog_data
.dup_loc
[i
], operand_reloadnum
[opno
],
3813 insn_data
[insn_code_number
].operand
[opno
].mode
);
3817 /* This loses because reloading of prior insns can invalidate the equivalence
3818 (or at least find_equiv_reg isn't smart enough to find it any more),
3819 causing this insn to need more reload regs than it needed before.
3820 It may be too late to make the reload regs available.
3821 Now this optimization is done safely in choose_reload_regs. */
3823 /* For each reload of a reg into some other class of reg,
3824 search for an existing equivalent reg (same value now) in the right class.
3825 We can use it as long as we don't need to change its contents. */
3826 for (i
= 0; i
< n_reloads
; i
++)
3827 if (rld
[i
].reg_rtx
== 0
3829 && GET_CODE (rld
[i
].in
) == REG
3833 = find_equiv_reg (rld
[i
].in
, insn
, rld
[i
].class, -1,
3834 static_reload_reg_p
, 0, rld
[i
].inmode
);
3835 /* Prevent generation of insn to load the value
3836 because the one we found already has the value. */
3838 rld
[i
].in
= rld
[i
].reg_rtx
;
3842 /* Perhaps an output reload can be combined with another
3843 to reduce needs by one. */
3844 if (!goal_earlyclobber
)
3847 /* If we have a pair of reloads for parts of an address, they are reloading
3848 the same object, the operands themselves were not reloaded, and they
3849 are for two operands that are supposed to match, merge the reloads and
3850 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
3852 for (i
= 0; i
< n_reloads
; i
++)
3856 for (j
= i
+ 1; j
< n_reloads
; j
++)
3857 if ((rld
[i
].when_needed
== RELOAD_FOR_INPUT_ADDRESS
3858 || rld
[i
].when_needed
== RELOAD_FOR_OUTPUT_ADDRESS
3859 || rld
[i
].when_needed
== RELOAD_FOR_INPADDR_ADDRESS
3860 || rld
[i
].when_needed
== RELOAD_FOR_OUTADDR_ADDRESS
)
3861 && (rld
[j
].when_needed
== RELOAD_FOR_INPUT_ADDRESS
3862 || rld
[j
].when_needed
== RELOAD_FOR_OUTPUT_ADDRESS
3863 || rld
[j
].when_needed
== RELOAD_FOR_INPADDR_ADDRESS
3864 || rld
[j
].when_needed
== RELOAD_FOR_OUTADDR_ADDRESS
)
3865 && rtx_equal_p (rld
[i
].in
, rld
[j
].in
)
3866 && (operand_reloadnum
[rld
[i
].opnum
] < 0
3867 || rld
[operand_reloadnum
[rld
[i
].opnum
]].optional
)
3868 && (operand_reloadnum
[rld
[j
].opnum
] < 0
3869 || rld
[operand_reloadnum
[rld
[j
].opnum
]].optional
)
3870 && (goal_alternative_matches
[rld
[i
].opnum
] == rld
[j
].opnum
3871 || (goal_alternative_matches
[rld
[j
].opnum
]
3874 for (k
= 0; k
< n_replacements
; k
++)
3875 if (replacements
[k
].what
== j
)
3876 replacements
[k
].what
= i
;
3878 if (rld
[i
].when_needed
== RELOAD_FOR_INPADDR_ADDRESS
3879 || rld
[i
].when_needed
== RELOAD_FOR_OUTADDR_ADDRESS
)
3880 rld
[i
].when_needed
= RELOAD_FOR_OPADDR_ADDR
;
3882 rld
[i
].when_needed
= RELOAD_FOR_OPERAND_ADDRESS
;
3887 /* Scan all the reloads and update their type.
3888 If a reload is for the address of an operand and we didn't reload
3889 that operand, change the type. Similarly, change the operand number
3890 of a reload when two operands match. If a reload is optional, treat it
3891 as though the operand isn't reloaded.
3893 ??? This latter case is somewhat odd because if we do the optional
3894 reload, it means the object is hanging around. Thus we need only
3895 do the address reload if the optional reload was NOT done.
3897 Change secondary reloads to be the address type of their operand, not
3900 If an operand's reload is now RELOAD_OTHER, change any
3901 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
3902 RELOAD_FOR_OTHER_ADDRESS. */
3904 for (i
= 0; i
< n_reloads
; i
++)
3906 if (rld
[i
].secondary_p
3907 && rld
[i
].when_needed
== operand_type
[rld
[i
].opnum
])
3908 rld
[i
].when_needed
= address_type
[rld
[i
].opnum
];
3910 if ((rld
[i
].when_needed
== RELOAD_FOR_INPUT_ADDRESS
3911 || rld
[i
].when_needed
== RELOAD_FOR_OUTPUT_ADDRESS
3912 || rld
[i
].when_needed
== RELOAD_FOR_INPADDR_ADDRESS
3913 || rld
[i
].when_needed
== RELOAD_FOR_OUTADDR_ADDRESS
)
3914 && (operand_reloadnum
[rld
[i
].opnum
] < 0
3915 || rld
[operand_reloadnum
[rld
[i
].opnum
]].optional
))
3917 /* If we have a secondary reload to go along with this reload,
3918 change its type to RELOAD_FOR_OPADDR_ADDR. */
3920 if ((rld
[i
].when_needed
== RELOAD_FOR_INPUT_ADDRESS
3921 || rld
[i
].when_needed
== RELOAD_FOR_INPADDR_ADDRESS
)
3922 && rld
[i
].secondary_in_reload
!= -1)
3924 int secondary_in_reload
= rld
[i
].secondary_in_reload
;
3926 rld
[secondary_in_reload
].when_needed
3927 = RELOAD_FOR_OPADDR_ADDR
;
3929 /* If there's a tertiary reload we have to change it also. */
3930 if (secondary_in_reload
> 0
3931 && rld
[secondary_in_reload
].secondary_in_reload
!= -1)
3932 rld
[rld
[secondary_in_reload
].secondary_in_reload
].when_needed
3933 = RELOAD_FOR_OPADDR_ADDR
;
3936 if ((rld
[i
].when_needed
== RELOAD_FOR_OUTPUT_ADDRESS
3937 || rld
[i
].when_needed
== RELOAD_FOR_OUTADDR_ADDRESS
)
3938 && rld
[i
].secondary_out_reload
!= -1)
3940 int secondary_out_reload
= rld
[i
].secondary_out_reload
;
3942 rld
[secondary_out_reload
].when_needed
3943 = RELOAD_FOR_OPADDR_ADDR
;
3945 /* If there's a tertiary reload we have to change it also. */
3946 if (secondary_out_reload
3947 && rld
[secondary_out_reload
].secondary_out_reload
!= -1)
3948 rld
[rld
[secondary_out_reload
].secondary_out_reload
].when_needed
3949 = RELOAD_FOR_OPADDR_ADDR
;
3952 if (rld
[i
].when_needed
== RELOAD_FOR_INPADDR_ADDRESS
3953 || rld
[i
].when_needed
== RELOAD_FOR_OUTADDR_ADDRESS
)
3954 rld
[i
].when_needed
= RELOAD_FOR_OPADDR_ADDR
;
3956 rld
[i
].when_needed
= RELOAD_FOR_OPERAND_ADDRESS
;
3959 if ((rld
[i
].when_needed
== RELOAD_FOR_INPUT_ADDRESS
3960 || rld
[i
].when_needed
== RELOAD_FOR_INPADDR_ADDRESS
)
3961 && operand_reloadnum
[rld
[i
].opnum
] >= 0
3962 && (rld
[operand_reloadnum
[rld
[i
].opnum
]].when_needed
3964 rld
[i
].when_needed
= RELOAD_FOR_OTHER_ADDRESS
;
3966 if (goal_alternative_matches
[rld
[i
].opnum
] >= 0)
3967 rld
[i
].opnum
= goal_alternative_matches
[rld
[i
].opnum
];
3970 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
3971 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
3972 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
3974 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
3975 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
3976 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
3977 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
3978 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
3979 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
3980 This is complicated by the fact that a single operand can have more
3981 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
3982 choose_reload_regs without affecting code quality, and cases that
3983 actually fail are extremely rare, so it turns out to be better to fix
3984 the problem here by not generating cases that choose_reload_regs will
3986 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
3987 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
3989 We can reduce the register pressure by exploiting that a
3990 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
3991 does not conflict with any of them, if it is only used for the first of
3992 the RELOAD_FOR_X_ADDRESS reloads. */
3994 int first_op_addr_num
= -2;
3995 int first_inpaddr_num
[MAX_RECOG_OPERANDS
];
3996 int first_outpaddr_num
[MAX_RECOG_OPERANDS
];
3998 /* We use last_op_addr_reload and the contents of the above arrays
3999 first as flags - -2 means no instance encountered, -1 means exactly
4000 one instance encountered.
4001 If more than one instance has been encountered, we store the reload
4002 number of the first reload of the kind in question; reload numbers
4003 are known to be non-negative. */
4004 for (i
= 0; i
< noperands
; i
++)
4005 first_inpaddr_num
[i
] = first_outpaddr_num
[i
] = -2;
4006 for (i
= n_reloads
- 1; i
>= 0; i
--)
4008 switch (rld
[i
].when_needed
)
4010 case RELOAD_FOR_OPERAND_ADDRESS
:
4011 if (++first_op_addr_num
>= 0)
4013 first_op_addr_num
= i
;
4017 case RELOAD_FOR_INPUT_ADDRESS
:
4018 if (++first_inpaddr_num
[rld
[i
].opnum
] >= 0)
4020 first_inpaddr_num
[rld
[i
].opnum
] = i
;
4024 case RELOAD_FOR_OUTPUT_ADDRESS
:
4025 if (++first_outpaddr_num
[rld
[i
].opnum
] >= 0)
4027 first_outpaddr_num
[rld
[i
].opnum
] = i
;
4038 for (i
= 0; i
< n_reloads
; i
++)
4040 int first_num
, type
;
4042 switch (rld
[i
].when_needed
)
4044 case RELOAD_FOR_OPADDR_ADDR
:
4045 first_num
= first_op_addr_num
;
4046 type
= RELOAD_FOR_OPERAND_ADDRESS
;
4048 case RELOAD_FOR_INPADDR_ADDRESS
:
4049 first_num
= first_inpaddr_num
[rld
[i
].opnum
];
4050 type
= RELOAD_FOR_INPUT_ADDRESS
;
4052 case RELOAD_FOR_OUTADDR_ADDRESS
:
4053 first_num
= first_outpaddr_num
[rld
[i
].opnum
];
4054 type
= RELOAD_FOR_OUTPUT_ADDRESS
;
4061 else if (i
> first_num
)
4062 rld
[i
].when_needed
= type
;
4065 /* Check if the only TYPE reload that uses reload I is
4066 reload FIRST_NUM. */
4067 for (j
= n_reloads
- 1; j
> first_num
; j
--)
4069 if (rld
[j
].when_needed
== type
4070 && (rld
[i
].secondary_p
4071 ? rld
[j
].secondary_in_reload
== i
4072 : reg_mentioned_p (rld
[i
].in
, rld
[j
].in
)))
4074 rld
[i
].when_needed
= type
;
4083 /* See if we have any reloads that are now allowed to be merged
4084 because we've changed when the reload is needed to
4085 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4086 check for the most common cases. */
4088 for (i
= 0; i
< n_reloads
; i
++)
4089 if (rld
[i
].in
!= 0 && rld
[i
].out
== 0
4090 && (rld
[i
].when_needed
== RELOAD_FOR_OPERAND_ADDRESS
4091 || rld
[i
].when_needed
== RELOAD_FOR_OPADDR_ADDR
4092 || rld
[i
].when_needed
== RELOAD_FOR_OTHER_ADDRESS
))
4093 for (j
= 0; j
< n_reloads
; j
++)
4094 if (i
!= j
&& rld
[j
].in
!= 0 && rld
[j
].out
== 0
4095 && rld
[j
].when_needed
== rld
[i
].when_needed
4096 && MATCHES (rld
[i
].in
, rld
[j
].in
)
4097 && rld
[i
].class == rld
[j
].class
4098 && !rld
[i
].nocombine
&& !rld
[j
].nocombine
4099 && rld
[i
].reg_rtx
== rld
[j
].reg_rtx
)
4101 rld
[i
].opnum
= MIN (rld
[i
].opnum
, rld
[j
].opnum
);
4102 transfer_replacements (i
, j
);
4107 /* If we made any reloads for addresses, see if they violate a
4108 "no input reloads" requirement for this insn. But loads that we
4109 do after the insn (such as for output addresses) are fine. */
4110 if (no_input_reloads
)
4111 for (i
= 0; i
< n_reloads
; i
++)
4113 && rld
[i
].when_needed
!= RELOAD_FOR_OUTADDR_ADDRESS
4114 && rld
[i
].when_needed
!= RELOAD_FOR_OUTPUT_ADDRESS
)
4118 /* Set which reloads must use registers not used in any group. Start
4119 with those that conflict with a group and then include ones that
4120 conflict with ones that are already known to conflict with a group. */
4123 for (i
= 0; i
< n_reloads
; i
++)
4125 enum machine_mode mode
= rld
[i
].inmode
;
4126 enum reg_class
class = rld
[i
].class;
4129 if (GET_MODE_SIZE (rld
[i
].outmode
) > GET_MODE_SIZE (mode
))
4130 mode
= rld
[i
].outmode
;
4131 size
= CLASS_MAX_NREGS (class, mode
);
4134 for (j
= 0; j
< n_reloads
; j
++)
4135 if ((CLASS_MAX_NREGS (rld
[j
].class,
4136 (GET_MODE_SIZE (rld
[j
].outmode
)
4137 > GET_MODE_SIZE (rld
[j
].inmode
))
4138 ? rld
[j
].outmode
: rld
[j
].inmode
)
4141 && (rld
[j
].in
!= 0 || rld
[j
].out
!= 0
4142 || rld
[j
].secondary_p
)
4143 && reloads_conflict (i
, j
)
4144 && reg_classes_intersect_p (class, rld
[j
].class))
4146 rld
[i
].nongroup
= 1;
4156 for (i
= 0; i
< n_reloads
; i
++)
4158 enum machine_mode mode
= rld
[i
].inmode
;
4159 enum reg_class
class = rld
[i
].class;
4162 if (GET_MODE_SIZE (rld
[i
].outmode
) > GET_MODE_SIZE (mode
))
4163 mode
= rld
[i
].outmode
;
4164 size
= CLASS_MAX_NREGS (class, mode
);
4166 if (! rld
[i
].nongroup
&& size
== 1)
4167 for (j
= 0; j
< n_reloads
; j
++)
4169 && reloads_conflict (i
, j
)
4170 && reg_classes_intersect_p (class, rld
[j
].class))
4172 rld
[i
].nongroup
= 1;
4179 /* Compute reload_mode and reload_nregs. */
4180 for (i
= 0; i
< n_reloads
; i
++)
4183 = (rld
[i
].inmode
== VOIDmode
4184 || (GET_MODE_SIZE (rld
[i
].outmode
)
4185 > GET_MODE_SIZE (rld
[i
].inmode
)))
4186 ? rld
[i
].outmode
: rld
[i
].inmode
;
4188 rld
[i
].nregs
= CLASS_MAX_NREGS (rld
[i
].class, rld
[i
].mode
);
4194 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4195 accepts a memory operand with constant address. */
4198 alternative_allows_memconst (constraint
, altnum
)
4199 const char *constraint
;
4203 /* Skip alternatives before the one requested. */
4206 while (*constraint
++ != ',');
4209 /* Scan the requested alternative for 'm' or 'o'.
4210 If one of them is present, this alternative accepts memory constants. */
4211 while ((c
= *constraint
++) && c
!= ',' && c
!= '#')
4212 if (c
== 'm' || c
== 'o')
4217 /* Scan X for memory references and scan the addresses for reloading.
4218 Also checks for references to "constant" regs that we want to eliminate
4219 and replaces them with the values they stand for.
4220 We may alter X destructively if it contains a reference to such.
4221 If X is just a constant reg, we return the equivalent value
4224 IND_LEVELS says how many levels of indirect addressing this machine
4227 OPNUM and TYPE identify the purpose of the reload.
4229 IS_SET_DEST is true if X is the destination of a SET, which is not
4230 appropriate to be replaced by a constant.
4232 INSN, if nonzero, is the insn in which we do the reload. It is used
4233 to determine if we may generate output reloads, and where to put USEs
4234 for pseudos that we have to replace with stack slots. */
4237 find_reloads_toplev (x
, opnum
, type
, ind_levels
, is_set_dest
, insn
)
4240 enum reload_type type
;
4245 register RTX_CODE code
= GET_CODE (x
);
4247 register const char *fmt
= GET_RTX_FORMAT (code
);
4253 /* This code is duplicated for speed in find_reloads. */
4254 register int regno
= REGNO (x
);
4255 if (reg_equiv_constant
[regno
] != 0 && !is_set_dest
)
4256 x
= reg_equiv_constant
[regno
];
4258 /* This creates (subreg (mem...)) which would cause an unnecessary
4259 reload of the mem. */
4260 else if (reg_equiv_mem
[regno
] != 0)
4261 x
= reg_equiv_mem
[regno
];
4263 else if (reg_equiv_memory_loc
[regno
]
4264 && (reg_equiv_address
[regno
] != 0 || num_not_at_initial_offset
))
4266 rtx mem
= make_memloc (x
, regno
);
4267 if (reg_equiv_address
[regno
]
4268 || ! rtx_equal_p (mem
, reg_equiv_mem
[regno
]))
4270 /* If this is not a toplevel operand, find_reloads doesn't see
4271 this substitution. We have to emit a USE of the pseudo so
4272 that delete_output_reload can see it. */
4273 if (replace_reloads
&& recog_data
.operand
[opnum
] != x
)
4274 emit_insn_before (gen_rtx_USE (VOIDmode
, x
), insn
);
4276 find_reloads_address (GET_MODE (x
), &x
, XEXP (x
, 0), &XEXP (x
, 0),
4277 opnum
, type
, ind_levels
, insn
);
4285 find_reloads_address (GET_MODE (x
), &tem
, XEXP (x
, 0), &XEXP (x
, 0),
4286 opnum
, type
, ind_levels
, insn
);
4290 if (code
== SUBREG
&& GET_CODE (SUBREG_REG (x
)) == REG
)
4292 /* Check for SUBREG containing a REG that's equivalent to a constant.
4293 If the constant has a known value, truncate it right now.
4294 Similarly if we are extracting a single-word of a multi-word
4295 constant. If the constant is symbolic, allow it to be substituted
4296 normally. push_reload will strip the subreg later. If the
4297 constant is VOIDmode, abort because we will lose the mode of
4298 the register (this should never happen because one of the cases
4299 above should handle it). */
4301 register int regno
= REGNO (SUBREG_REG (x
));
4304 if (subreg_lowpart_p (x
)
4305 && regno
>= FIRST_PSEUDO_REGISTER
&& reg_renumber
[regno
] < 0
4306 && reg_equiv_constant
[regno
] != 0
4307 && (tem
= gen_lowpart_common (GET_MODE (x
),
4308 reg_equiv_constant
[regno
])) != 0)
4311 if (GET_MODE_BITSIZE (GET_MODE (x
)) == BITS_PER_WORD
4312 && regno
>= FIRST_PSEUDO_REGISTER
&& reg_renumber
[regno
] < 0
4313 && reg_equiv_constant
[regno
] != 0
4314 && (tem
= operand_subword (reg_equiv_constant
[regno
],
4316 GET_MODE (SUBREG_REG (x
)))) != 0)
4318 /* TEM is now a word sized constant for the bits from X that
4319 we wanted. However, TEM may be the wrong representation.
4321 Use gen_lowpart_common to convert a CONST_INT into a
4322 CONST_DOUBLE and vice versa as needed according to by the mode
4324 tem
= gen_lowpart_common (GET_MODE (x
), tem
);
4330 /* If the SUBREG is wider than a word, the above test will fail.
4331 For example, we might have a SImode SUBREG of a DImode SUBREG_REG
4332 for a 16 bit target, or a DImode SUBREG of a TImode SUBREG_REG for
4333 a 32 bit target. We still can - and have to - handle this
4334 for non-paradoxical subregs of CONST_INTs. */
4335 if (regno
>= FIRST_PSEUDO_REGISTER
&& reg_renumber
[regno
] < 0
4336 && reg_equiv_constant
[regno
] != 0
4337 && GET_CODE (reg_equiv_constant
[regno
]) == CONST_INT
4338 && (GET_MODE_SIZE (GET_MODE (x
))
4339 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
)))))
4341 int shift
= SUBREG_WORD (x
) * BITS_PER_WORD
;
4342 if (WORDS_BIG_ENDIAN
)
4343 shift
= (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x
)))
4344 - GET_MODE_BITSIZE (GET_MODE (x
))
4346 /* Here we use the knowledge that CONST_INTs have a
4347 HOST_WIDE_INT field. */
4348 if (shift
>= HOST_BITS_PER_WIDE_INT
)
4349 shift
= HOST_BITS_PER_WIDE_INT
- 1;
4350 return GEN_INT (INTVAL (reg_equiv_constant
[regno
]) >> shift
);
4353 if (regno
>= FIRST_PSEUDO_REGISTER
&& reg_renumber
[regno
] < 0
4354 && reg_equiv_constant
[regno
] != 0
4355 && GET_MODE (reg_equiv_constant
[regno
]) == VOIDmode
)
4358 /* If the subreg contains a reg that will be converted to a mem,
4359 convert the subreg to a narrower memref now.
4360 Otherwise, we would get (subreg (mem ...) ...),
4361 which would force reload of the mem.
4363 We also need to do this if there is an equivalent MEM that is
4364 not offsettable. In that case, alter_subreg would produce an
4365 invalid address on big-endian machines.
4367 For machines that extend byte loads, we must not reload using
4368 a wider mode if we have a paradoxical SUBREG. find_reloads will
4369 force a reload in that case. So we should not do anything here. */
4371 else if (regno
>= FIRST_PSEUDO_REGISTER
4372 #ifdef LOAD_EXTEND_OP
4373 && (GET_MODE_SIZE (GET_MODE (x
))
4374 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
4376 && (reg_equiv_address
[regno
] != 0
4377 || (reg_equiv_mem
[regno
] != 0
4378 && (! strict_memory_address_p (GET_MODE (x
),
4379 XEXP (reg_equiv_mem
[regno
], 0))
4380 || ! offsettable_memref_p (reg_equiv_mem
[regno
])
4381 || num_not_at_initial_offset
))))
4382 x
= find_reloads_subreg_address (x
, 1, opnum
, type
, ind_levels
,
4386 for (copied
= 0, i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4390 rtx new_part
= find_reloads_toplev (XEXP (x
, i
), opnum
, type
,
4391 ind_levels
, is_set_dest
, insn
);
4392 /* If we have replaced a reg with it's equivalent memory loc -
4393 that can still be handled here e.g. if it's in a paradoxical
4394 subreg - we must make the change in a copy, rather than using
4395 a destructive change. This way, find_reloads can still elect
4396 not to do the change. */
4397 if (new_part
!= XEXP (x
, i
) && ! CONSTANT_P (new_part
) && ! copied
)
4399 x
= shallow_copy_rtx (x
);
4402 XEXP (x
, i
) = new_part
;
4408 /* Return a mem ref for the memory equivalent of reg REGNO.
4409 This mem ref is not shared with anything. */
4412 make_memloc (ad
, regno
)
4416 /* We must rerun eliminate_regs, in case the elimination
4417 offsets have changed. */
4419 = XEXP (eliminate_regs (reg_equiv_memory_loc
[regno
], 0, NULL_RTX
), 0);
4421 /* If TEM might contain a pseudo, we must copy it to avoid
4422 modifying it when we do the substitution for the reload. */
4423 if (rtx_varies_p (tem
))
4424 tem
= copy_rtx (tem
);
4426 tem
= gen_rtx_MEM (GET_MODE (ad
), tem
);
4427 RTX_UNCHANGING_P (tem
) = RTX_UNCHANGING_P (regno_reg_rtx
[regno
]);
4431 /* Record all reloads needed for handling memory address AD
4432 which appears in *LOC in a memory reference to mode MODE
4433 which itself is found in location *MEMREFLOC.
4434 Note that we take shortcuts assuming that no multi-reg machine mode
4435 occurs as part of an address.
4437 OPNUM and TYPE specify the purpose of this reload.
4439 IND_LEVELS says how many levels of indirect addressing this machine
4442 INSN, if nonzero, is the insn in which we do the reload. It is used
4443 to determine if we may generate output reloads, and where to put USEs
4444 for pseudos that we have to replace with stack slots.
4446 Value is nonzero if this address is reloaded or replaced as a whole.
4447 This is interesting to the caller if the address is an autoincrement.
4449 Note that there is no verification that the address will be valid after
4450 this routine does its work. Instead, we rely on the fact that the address
4451 was valid when reload started. So we need only undo things that reload
4452 could have broken. These are wrong register types, pseudos not allocated
4453 to a hard register, and frame pointer elimination. */
4456 find_reloads_address (mode
, memrefloc
, ad
, loc
, opnum
, type
, ind_levels
, insn
)
4457 enum machine_mode mode
;
4462 enum reload_type type
;
4467 int removed_and
= 0;
4470 /* If the address is a register, see if it is a legitimate address and
4471 reload if not. We first handle the cases where we need not reload
4472 or where we must reload in a non-standard way. */
4474 if (GET_CODE (ad
) == REG
)
4478 if (reg_equiv_constant
[regno
] != 0
4479 && strict_memory_address_p (mode
, reg_equiv_constant
[regno
]))
4481 *loc
= ad
= reg_equiv_constant
[regno
];
4485 tem
= reg_equiv_memory_loc
[regno
];
4488 if (reg_equiv_address
[regno
] != 0 || num_not_at_initial_offset
)
4490 tem
= make_memloc (ad
, regno
);
4491 if (! strict_memory_address_p (GET_MODE (tem
), XEXP (tem
, 0)))
4493 find_reloads_address (GET_MODE (tem
), NULL_PTR
, XEXP (tem
, 0),
4494 &XEXP (tem
, 0), opnum
, ADDR_TYPE (type
),
4497 /* We can avoid a reload if the register's equivalent memory
4498 expression is valid as an indirect memory address.
4499 But not all addresses are valid in a mem used as an indirect
4500 address: only reg or reg+constant. */
4503 && strict_memory_address_p (mode
, tem
)
4504 && (GET_CODE (XEXP (tem
, 0)) == REG
4505 || (GET_CODE (XEXP (tem
, 0)) == PLUS
4506 && GET_CODE (XEXP (XEXP (tem
, 0), 0)) == REG
4507 && CONSTANT_P (XEXP (XEXP (tem
, 0), 1)))))
4509 /* TEM is not the same as what we'll be replacing the
4510 pseudo with after reload, put a USE in front of INSN
4511 in the final reload pass. */
4513 && num_not_at_initial_offset
4514 && ! rtx_equal_p (tem
, reg_equiv_mem
[regno
]))
4517 emit_insn_before (gen_rtx_USE (VOIDmode
, ad
), insn
);
4518 /* This doesn't really count as replacing the address
4519 as a whole, since it is still a memory access. */
4527 /* The only remaining case where we can avoid a reload is if this is a
4528 hard register that is valid as a base register and which is not the
4529 subject of a CLOBBER in this insn. */
4531 else if (regno
< FIRST_PSEUDO_REGISTER
4532 && REGNO_MODE_OK_FOR_BASE_P (regno
, mode
)
4533 && ! regno_clobbered_p (regno
, this_insn
))
4536 /* If we do not have one of the cases above, we must do the reload. */
4537 push_reload (ad
, NULL_RTX
, loc
, NULL_PTR
, BASE_REG_CLASS
,
4538 GET_MODE (ad
), VOIDmode
, 0, 0, opnum
, type
);
4542 if (strict_memory_address_p (mode
, ad
))
4544 /* The address appears valid, so reloads are not needed.
4545 But the address may contain an eliminable register.
4546 This can happen because a machine with indirect addressing
4547 may consider a pseudo register by itself a valid address even when
4548 it has failed to get a hard reg.
4549 So do a tree-walk to find and eliminate all such regs. */
4551 /* But first quickly dispose of a common case. */
4552 if (GET_CODE (ad
) == PLUS
4553 && GET_CODE (XEXP (ad
, 1)) == CONST_INT
4554 && GET_CODE (XEXP (ad
, 0)) == REG
4555 && reg_equiv_constant
[REGNO (XEXP (ad
, 0))] == 0)
4558 subst_reg_equivs_changed
= 0;
4559 *loc
= subst_reg_equivs (ad
, insn
);
4561 if (! subst_reg_equivs_changed
)
4564 /* Check result for validity after substitution. */
4565 if (strict_memory_address_p (mode
, ad
))
4569 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4574 LEGITIMIZE_RELOAD_ADDRESS (ad
, GET_MODE (*memrefloc
), opnum
, type
,
4579 *memrefloc
= copy_rtx (*memrefloc
);
4580 XEXP (*memrefloc
, 0) = ad
;
4581 move_replacements (&ad
, &XEXP (*memrefloc
, 0));
4587 /* The address is not valid. We have to figure out why. First see if
4588 we have an outer AND and remove it if so. Then analyze what's inside. */
4590 if (GET_CODE (ad
) == AND
)
4593 loc
= &XEXP (ad
, 0);
4597 /* One possibility for why the address is invalid is that it is itself
4598 a MEM. This can happen when the frame pointer is being eliminated, a
4599 pseudo is not allocated to a hard register, and the offset between the
4600 frame and stack pointers is not its initial value. In that case the
4601 pseudo will have been replaced by a MEM referring to the
4603 if (GET_CODE (ad
) == MEM
)
4605 /* First ensure that the address in this MEM is valid. Then, unless
4606 indirect addresses are valid, reload the MEM into a register. */
4608 find_reloads_address (GET_MODE (ad
), &tem
, XEXP (ad
, 0), &XEXP (ad
, 0),
4609 opnum
, ADDR_TYPE (type
),
4610 ind_levels
== 0 ? 0 : ind_levels
- 1, insn
);
4612 /* If tem was changed, then we must create a new memory reference to
4613 hold it and store it back into memrefloc. */
4614 if (tem
!= ad
&& memrefloc
)
4616 *memrefloc
= copy_rtx (*memrefloc
);
4617 copy_replacements (tem
, XEXP (*memrefloc
, 0));
4618 loc
= &XEXP (*memrefloc
, 0);
4620 loc
= &XEXP (*loc
, 0);
4623 /* Check similar cases as for indirect addresses as above except
4624 that we can allow pseudos and a MEM since they should have been
4625 taken care of above. */
4628 || (GET_CODE (XEXP (tem
, 0)) == SYMBOL_REF
&& ! indirect_symref_ok
)
4629 || GET_CODE (XEXP (tem
, 0)) == MEM
4630 || ! (GET_CODE (XEXP (tem
, 0)) == REG
4631 || (GET_CODE (XEXP (tem
, 0)) == PLUS
4632 && GET_CODE (XEXP (XEXP (tem
, 0), 0)) == REG
4633 && GET_CODE (XEXP (XEXP (tem
, 0), 1)) == CONST_INT
)))
4635 /* Must use TEM here, not AD, since it is the one that will
4636 have any subexpressions reloaded, if needed. */
4637 push_reload (tem
, NULL_RTX
, loc
, NULL_PTR
,
4638 BASE_REG_CLASS
, GET_MODE (tem
),
4641 return ! removed_and
;
4647 /* If we have address of a stack slot but it's not valid because the
4648 displacement is too large, compute the sum in a register.
4649 Handle all base registers here, not just fp/ap/sp, because on some
4650 targets (namely SH) we can also get too large displacements from
4651 big-endian corrections. */
4652 else if (GET_CODE (ad
) == PLUS
4653 && GET_CODE (XEXP (ad
, 0)) == REG
4654 && REGNO (XEXP (ad
, 0)) < FIRST_PSEUDO_REGISTER
4655 && REG_MODE_OK_FOR_BASE_P (XEXP (ad
, 0), mode
)
4656 && GET_CODE (XEXP (ad
, 1)) == CONST_INT
)
4658 /* Unshare the MEM rtx so we can safely alter it. */
4661 *memrefloc
= copy_rtx (*memrefloc
);
4662 loc
= &XEXP (*memrefloc
, 0);
4664 loc
= &XEXP (*loc
, 0);
4667 if (double_reg_address_ok
)
4669 /* Unshare the sum as well. */
4670 *loc
= ad
= copy_rtx (ad
);
4672 /* Reload the displacement into an index reg.
4673 We assume the frame pointer or arg pointer is a base reg. */
4674 find_reloads_address_part (XEXP (ad
, 1), &XEXP (ad
, 1),
4675 INDEX_REG_CLASS
, GET_MODE (ad
), opnum
,
4681 /* If the sum of two regs is not necessarily valid,
4682 reload the sum into a base reg.
4683 That will at least work. */
4684 find_reloads_address_part (ad
, loc
, BASE_REG_CLASS
,
4685 Pmode
, opnum
, type
, ind_levels
);
4687 return ! removed_and
;
4690 /* If we have an indexed stack slot, there are three possible reasons why
4691 it might be invalid: The index might need to be reloaded, the address
4692 might have been made by frame pointer elimination and hence have a
4693 constant out of range, or both reasons might apply.
4695 We can easily check for an index needing reload, but even if that is the
4696 case, we might also have an invalid constant. To avoid making the
4697 conservative assumption and requiring two reloads, we see if this address
4698 is valid when not interpreted strictly. If it is, the only problem is
4699 that the index needs a reload and find_reloads_address_1 will take care
4702 If we decide to do something here, it must be that
4703 `double_reg_address_ok' is true and that this address rtl was made by
4704 eliminate_regs. We generate a reload of the fp/sp/ap + constant and
4705 rework the sum so that the reload register will be added to the index.
4706 This is safe because we know the address isn't shared.
4708 We check for fp/ap/sp as both the first and second operand of the
4711 else if (GET_CODE (ad
) == PLUS
&& GET_CODE (XEXP (ad
, 1)) == CONST_INT
4712 && GET_CODE (XEXP (ad
, 0)) == PLUS
4713 && (XEXP (XEXP (ad
, 0), 0) == frame_pointer_rtx
4714 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4715 || XEXP (XEXP (ad
, 0), 0) == hard_frame_pointer_rtx
4717 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4718 || XEXP (XEXP (ad
, 0), 0) == arg_pointer_rtx
4720 || XEXP (XEXP (ad
, 0), 0) == stack_pointer_rtx
)
4721 && ! memory_address_p (mode
, ad
))
4723 *loc
= ad
= gen_rtx_PLUS (GET_MODE (ad
),
4724 plus_constant (XEXP (XEXP (ad
, 0), 0),
4725 INTVAL (XEXP (ad
, 1))),
4726 XEXP (XEXP (ad
, 0), 1));
4727 find_reloads_address_part (XEXP (ad
, 0), &XEXP (ad
, 0), BASE_REG_CLASS
,
4728 GET_MODE (ad
), opnum
, type
, ind_levels
);
4729 find_reloads_address_1 (mode
, XEXP (ad
, 1), 1, &XEXP (ad
, 1), opnum
,
4735 else if (GET_CODE (ad
) == PLUS
&& GET_CODE (XEXP (ad
, 1)) == CONST_INT
4736 && GET_CODE (XEXP (ad
, 0)) == PLUS
4737 && (XEXP (XEXP (ad
, 0), 1) == frame_pointer_rtx
4738 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4739 || XEXP (XEXP (ad
, 0), 1) == hard_frame_pointer_rtx
4741 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4742 || XEXP (XEXP (ad
, 0), 1) == arg_pointer_rtx
4744 || XEXP (XEXP (ad
, 0), 1) == stack_pointer_rtx
)
4745 && ! memory_address_p (mode
, ad
))
4747 *loc
= ad
= gen_rtx_PLUS (GET_MODE (ad
),
4748 XEXP (XEXP (ad
, 0), 0),
4749 plus_constant (XEXP (XEXP (ad
, 0), 1),
4750 INTVAL (XEXP (ad
, 1))));
4751 find_reloads_address_part (XEXP (ad
, 1), &XEXP (ad
, 1), BASE_REG_CLASS
,
4752 GET_MODE (ad
), opnum
, type
, ind_levels
);
4753 find_reloads_address_1 (mode
, XEXP (ad
, 0), 1, &XEXP (ad
, 0), opnum
,
4759 /* See if address becomes valid when an eliminable register
4760 in a sum is replaced. */
4763 if (GET_CODE (ad
) == PLUS
)
4764 tem
= subst_indexed_address (ad
);
4765 if (tem
!= ad
&& strict_memory_address_p (mode
, tem
))
4767 /* Ok, we win that way. Replace any additional eliminable
4770 subst_reg_equivs_changed
= 0;
4771 tem
= subst_reg_equivs (tem
, insn
);
4773 /* Make sure that didn't make the address invalid again. */
4775 if (! subst_reg_equivs_changed
|| strict_memory_address_p (mode
, tem
))
4782 /* If constants aren't valid addresses, reload the constant address
4784 if (CONSTANT_P (ad
) && ! strict_memory_address_p (mode
, ad
))
4786 /* If AD is in address in the constant pool, the MEM rtx may be shared.
4787 Unshare it so we can safely alter it. */
4788 if (memrefloc
&& GET_CODE (ad
) == SYMBOL_REF
4789 && CONSTANT_POOL_ADDRESS_P (ad
))
4791 *memrefloc
= copy_rtx (*memrefloc
);
4792 loc
= &XEXP (*memrefloc
, 0);
4794 loc
= &XEXP (*loc
, 0);
4797 find_reloads_address_part (ad
, loc
, BASE_REG_CLASS
, Pmode
, opnum
, type
,
4799 return ! removed_and
;
4802 return find_reloads_address_1 (mode
, ad
, 0, loc
, opnum
, type
, ind_levels
,
4806 /* Find all pseudo regs appearing in AD
4807 that are eliminable in favor of equivalent values
4808 and do not have hard regs; replace them by their equivalents.
4809 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
4810 front of it for pseudos that we have to replace with stack slots. */
4813 subst_reg_equivs (ad
, insn
)
4817 register RTX_CODE code
= GET_CODE (ad
);
4819 register const char *fmt
;
4835 register int regno
= REGNO (ad
);
4837 if (reg_equiv_constant
[regno
] != 0)
4839 subst_reg_equivs_changed
= 1;
4840 return reg_equiv_constant
[regno
];
4842 if (reg_equiv_memory_loc
[regno
] && num_not_at_initial_offset
)
4844 rtx mem
= make_memloc (ad
, regno
);
4845 if (! rtx_equal_p (mem
, reg_equiv_mem
[regno
]))
4847 subst_reg_equivs_changed
= 1;
4848 emit_insn_before (gen_rtx_USE (VOIDmode
, ad
), insn
);
4856 /* Quickly dispose of a common case. */
4857 if (XEXP (ad
, 0) == frame_pointer_rtx
4858 && GET_CODE (XEXP (ad
, 1)) == CONST_INT
)
4866 fmt
= GET_RTX_FORMAT (code
);
4867 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
4869 XEXP (ad
, i
) = subst_reg_equivs (XEXP (ad
, i
), insn
);
4873 /* Compute the sum of X and Y, making canonicalizations assumed in an
4874 address, namely: sum constant integers, surround the sum of two
4875 constants with a CONST, put the constant as the second operand, and
4876 group the constant on the outermost sum.
4878 This routine assumes both inputs are already in canonical form. */
4885 enum machine_mode mode
= GET_MODE (x
);
4887 if (mode
== VOIDmode
)
4888 mode
= GET_MODE (y
);
4890 if (mode
== VOIDmode
)
4893 if (GET_CODE (x
) == CONST_INT
)
4894 return plus_constant (y
, INTVAL (x
));
4895 else if (GET_CODE (y
) == CONST_INT
)
4896 return plus_constant (x
, INTVAL (y
));
4897 else if (CONSTANT_P (x
))
4898 tem
= x
, x
= y
, y
= tem
;
4900 if (GET_CODE (x
) == PLUS
&& CONSTANT_P (XEXP (x
, 1)))
4901 return form_sum (XEXP (x
, 0), form_sum (XEXP (x
, 1), y
));
4903 /* Note that if the operands of Y are specified in the opposite
4904 order in the recursive calls below, infinite recursion will occur. */
4905 if (GET_CODE (y
) == PLUS
&& CONSTANT_P (XEXP (y
, 1)))
4906 return form_sum (form_sum (x
, XEXP (y
, 0)), XEXP (y
, 1));
4908 /* If both constant, encapsulate sum. Otherwise, just form sum. A
4909 constant will have been placed second. */
4910 if (CONSTANT_P (x
) && CONSTANT_P (y
))
4912 if (GET_CODE (x
) == CONST
)
4914 if (GET_CODE (y
) == CONST
)
4917 return gen_rtx_CONST (VOIDmode
, gen_rtx_PLUS (mode
, x
, y
));
4920 return gen_rtx_PLUS (mode
, x
, y
);
4923 /* If ADDR is a sum containing a pseudo register that should be
4924 replaced with a constant (from reg_equiv_constant),
4925 return the result of doing so, and also apply the associative
4926 law so that the result is more likely to be a valid address.
4927 (But it is not guaranteed to be one.)
4929 Note that at most one register is replaced, even if more are
4930 replaceable. Also, we try to put the result into a canonical form
4931 so it is more likely to be a valid address.
4933 In all other cases, return ADDR. */
4936 subst_indexed_address (addr
)
4939 rtx op0
= 0, op1
= 0, op2
= 0;
4943 if (GET_CODE (addr
) == PLUS
)
4945 /* Try to find a register to replace. */
4946 op0
= XEXP (addr
, 0), op1
= XEXP (addr
, 1), op2
= 0;
4947 if (GET_CODE (op0
) == REG
4948 && (regno
= REGNO (op0
)) >= FIRST_PSEUDO_REGISTER
4949 && reg_renumber
[regno
] < 0
4950 && reg_equiv_constant
[regno
] != 0)
4951 op0
= reg_equiv_constant
[regno
];
4952 else if (GET_CODE (op1
) == REG
4953 && (regno
= REGNO (op1
)) >= FIRST_PSEUDO_REGISTER
4954 && reg_renumber
[regno
] < 0
4955 && reg_equiv_constant
[regno
] != 0)
4956 op1
= reg_equiv_constant
[regno
];
4957 else if (GET_CODE (op0
) == PLUS
4958 && (tem
= subst_indexed_address (op0
)) != op0
)
4960 else if (GET_CODE (op1
) == PLUS
4961 && (tem
= subst_indexed_address (op1
)) != op1
)
4966 /* Pick out up to three things to add. */
4967 if (GET_CODE (op1
) == PLUS
)
4968 op2
= XEXP (op1
, 1), op1
= XEXP (op1
, 0);
4969 else if (GET_CODE (op0
) == PLUS
)
4970 op2
= op1
, op1
= XEXP (op0
, 1), op0
= XEXP (op0
, 0);
4972 /* Compute the sum. */
4974 op1
= form_sum (op1
, op2
);
4976 op0
= form_sum (op0
, op1
);
4983 /* Record the pseudo registers we must reload into hard registers in a
4984 subexpression of a would-be memory address, X referring to a value
4985 in mode MODE. (This function is not called if the address we find
4988 CONTEXT = 1 means we are considering regs as index regs,
4989 = 0 means we are considering them as base regs.
4991 OPNUM and TYPE specify the purpose of any reloads made.
4993 IND_LEVELS says how many levels of indirect addressing are
4994 supported at this point in the address.
4996 INSN, if nonzero, is the insn in which we do the reload. It is used
4997 to determine if we may generate output reloads.
4999 We return nonzero if X, as a whole, is reloaded or replaced. */
5001 /* Note that we take shortcuts assuming that no multi-reg machine mode
5002 occurs as part of an address.
5003 Also, this is not fully machine-customizable; it works for machines
5004 such as vaxes and 68000's and 32000's, but other possible machines
5005 could have addressing modes that this does not handle right. */
5008 find_reloads_address_1 (mode
, x
, context
, loc
, opnum
, type
, ind_levels
, insn
)
5009 enum machine_mode mode
;
5014 enum reload_type type
;
5018 register RTX_CODE code
= GET_CODE (x
);
5024 register rtx orig_op0
= XEXP (x
, 0);
5025 register rtx orig_op1
= XEXP (x
, 1);
5026 register RTX_CODE code0
= GET_CODE (orig_op0
);
5027 register RTX_CODE code1
= GET_CODE (orig_op1
);
5028 register rtx op0
= orig_op0
;
5029 register rtx op1
= orig_op1
;
5031 if (GET_CODE (op0
) == SUBREG
)
5033 op0
= SUBREG_REG (op0
);
5034 code0
= GET_CODE (op0
);
5035 if (code0
== REG
&& REGNO (op0
) < FIRST_PSEUDO_REGISTER
)
5036 op0
= gen_rtx_REG (word_mode
,
5037 REGNO (op0
) + SUBREG_WORD (orig_op0
));
5040 if (GET_CODE (op1
) == SUBREG
)
5042 op1
= SUBREG_REG (op1
);
5043 code1
= GET_CODE (op1
);
5044 if (code1
== REG
&& REGNO (op1
) < FIRST_PSEUDO_REGISTER
)
5045 op1
= gen_rtx_REG (GET_MODE (op1
),
5046 REGNO (op1
) + SUBREG_WORD (orig_op1
));
5049 if (code0
== MULT
|| code0
== SIGN_EXTEND
|| code0
== TRUNCATE
5050 || code0
== ZERO_EXTEND
|| code1
== MEM
)
5052 find_reloads_address_1 (mode
, orig_op0
, 1, &XEXP (x
, 0), opnum
,
5053 type
, ind_levels
, insn
);
5054 find_reloads_address_1 (mode
, orig_op1
, 0, &XEXP (x
, 1), opnum
,
5055 type
, ind_levels
, insn
);
5058 else if (code1
== MULT
|| code1
== SIGN_EXTEND
|| code1
== TRUNCATE
5059 || code1
== ZERO_EXTEND
|| code0
== MEM
)
5061 find_reloads_address_1 (mode
, orig_op0
, 0, &XEXP (x
, 0), opnum
,
5062 type
, ind_levels
, insn
);
5063 find_reloads_address_1 (mode
, orig_op1
, 1, &XEXP (x
, 1), opnum
,
5064 type
, ind_levels
, insn
);
5067 else if (code0
== CONST_INT
|| code0
== CONST
5068 || code0
== SYMBOL_REF
|| code0
== LABEL_REF
)
5069 find_reloads_address_1 (mode
, orig_op1
, 0, &XEXP (x
, 1), opnum
,
5070 type
, ind_levels
, insn
);
5072 else if (code1
== CONST_INT
|| code1
== CONST
5073 || code1
== SYMBOL_REF
|| code1
== LABEL_REF
)
5074 find_reloads_address_1 (mode
, orig_op0
, 0, &XEXP (x
, 0), opnum
,
5075 type
, ind_levels
, insn
);
5077 else if (code0
== REG
&& code1
== REG
)
5079 if (REG_OK_FOR_INDEX_P (op0
)
5080 && REG_MODE_OK_FOR_BASE_P (op1
, mode
))
5082 else if (REG_OK_FOR_INDEX_P (op1
)
5083 && REG_MODE_OK_FOR_BASE_P (op0
, mode
))
5085 else if (REG_MODE_OK_FOR_BASE_P (op1
, mode
))
5086 find_reloads_address_1 (mode
, orig_op0
, 1, &XEXP (x
, 0), opnum
,
5087 type
, ind_levels
, insn
);
5088 else if (REG_MODE_OK_FOR_BASE_P (op0
, mode
))
5089 find_reloads_address_1 (mode
, orig_op1
, 1, &XEXP (x
, 1), opnum
,
5090 type
, ind_levels
, insn
);
5091 else if (REG_OK_FOR_INDEX_P (op1
))
5092 find_reloads_address_1 (mode
, orig_op0
, 0, &XEXP (x
, 0), opnum
,
5093 type
, ind_levels
, insn
);
5094 else if (REG_OK_FOR_INDEX_P (op0
))
5095 find_reloads_address_1 (mode
, orig_op1
, 0, &XEXP (x
, 1), opnum
,
5096 type
, ind_levels
, insn
);
5099 find_reloads_address_1 (mode
, orig_op0
, 1, &XEXP (x
, 0), opnum
,
5100 type
, ind_levels
, insn
);
5101 find_reloads_address_1 (mode
, orig_op1
, 0, &XEXP (x
, 1), opnum
,
5102 type
, ind_levels
, insn
);
5106 else if (code0
== REG
)
5108 find_reloads_address_1 (mode
, orig_op0
, 1, &XEXP (x
, 0), opnum
,
5109 type
, ind_levels
, insn
);
5110 find_reloads_address_1 (mode
, orig_op1
, 0, &XEXP (x
, 1), opnum
,
5111 type
, ind_levels
, insn
);
5114 else if (code1
== REG
)
5116 find_reloads_address_1 (mode
, orig_op1
, 1, &XEXP (x
, 1), opnum
,
5117 type
, ind_levels
, insn
);
5118 find_reloads_address_1 (mode
, orig_op0
, 0, &XEXP (x
, 0), opnum
,
5119 type
, ind_levels
, insn
);
5129 if (GET_CODE (XEXP (x
, 0)) == REG
)
5131 register int regno
= REGNO (XEXP (x
, 0));
5135 /* A register that is incremented cannot be constant! */
5136 if (regno
>= FIRST_PSEUDO_REGISTER
5137 && reg_equiv_constant
[regno
] != 0)
5140 /* Handle a register that is equivalent to a memory location
5141 which cannot be addressed directly. */
5142 if (reg_equiv_memory_loc
[regno
] != 0
5143 && (reg_equiv_address
[regno
] != 0 || num_not_at_initial_offset
))
5145 rtx tem
= make_memloc (XEXP (x
, 0), regno
);
5146 if (reg_equiv_address
[regno
]
5147 || ! rtx_equal_p (tem
, reg_equiv_mem
[regno
]))
5149 /* First reload the memory location's address.
5150 We can't use ADDR_TYPE (type) here, because we need to
5151 write back the value after reading it, hence we actually
5152 need two registers. */
5153 find_reloads_address (GET_MODE (tem
), &tem
, XEXP (tem
, 0),
5154 &XEXP (tem
, 0), opnum
, type
,
5156 /* Put this inside a new increment-expression. */
5157 x
= gen_rtx_fmt_e (GET_CODE (x
), GET_MODE (x
), tem
);
5158 /* Proceed to reload that, as if it contained a register. */
5162 /* If we have a hard register that is ok as an index,
5163 don't make a reload. If an autoincrement of a nice register
5164 isn't "valid", it must be that no autoincrement is "valid".
5165 If that is true and something made an autoincrement anyway,
5166 this must be a special context where one is allowed.
5167 (For example, a "push" instruction.)
5168 We can't improve this address, so leave it alone. */
5170 /* Otherwise, reload the autoincrement into a suitable hard reg
5171 and record how much to increment by. */
5173 if (reg_renumber
[regno
] >= 0)
5174 regno
= reg_renumber
[regno
];
5175 if ((regno
>= FIRST_PSEUDO_REGISTER
5176 || !(context
? REGNO_OK_FOR_INDEX_P (regno
)
5177 : REGNO_MODE_OK_FOR_BASE_P (regno
, mode
))))
5184 /* If we can output the register afterwards, do so, this
5185 saves the extra update.
5186 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5187 CALL_INSN - and it does not set CC0.
5188 But don't do this if we cannot directly address the
5189 memory location, since this will make it harder to
5190 reuse address reloads, and increases register pressure.
5191 Also don't do this if we can probably update x directly. */
5192 rtx equiv
= (GET_CODE (XEXP (x
, 0)) == MEM
5194 : reg_equiv_mem
[regno
]);
5195 int icode
= (int) add_optab
->handlers
[(int) Pmode
].insn_code
;
5196 if (insn
&& GET_CODE (insn
) == INSN
&& equiv
5197 && memory_operand (equiv
, GET_MODE (equiv
))
5199 && ! sets_cc0_p (PATTERN (insn
))
5201 && ! (icode
!= CODE_FOR_nothing
5202 && ((*insn_data
[icode
].operand
[0].predicate
)
5204 && ((*insn_data
[icode
].operand
[1].predicate
)
5210 = push_reload (x
, x
, loc
, loc
,
5211 (context
? INDEX_REG_CLASS
: BASE_REG_CLASS
),
5212 GET_MODE (x
), GET_MODE (x
), 0, 0,
5213 opnum
, RELOAD_OTHER
);
5215 /* If we created a new MEM based on reg_equiv_mem[REGNO], then
5216 LOC above is part of the new MEM, not the MEM in INSN.
5218 We must also replace the address of the MEM in INSN. */
5219 if (&XEXP (x_orig
, 0) != loc
)
5220 push_replacement (&XEXP (x_orig
, 0), reloadnum
, VOIDmode
);
5226 = push_reload (x
, NULL_RTX
, loc
, NULL_PTR
,
5227 (context
? INDEX_REG_CLASS
: BASE_REG_CLASS
),
5228 GET_MODE (x
), GET_MODE (x
), 0, 0,
5231 = find_inc_amount (PATTERN (this_insn
), XEXP (x_orig
, 0));
5237 /* Update the REG_INC notes. */
5239 for (link
= REG_NOTES (this_insn
);
5240 link
; link
= XEXP (link
, 1))
5241 if (REG_NOTE_KIND (link
) == REG_INC
5242 && REGNO (XEXP (link
, 0)) == REGNO (XEXP (x_orig
, 0)))
5243 push_replacement (&XEXP (link
, 0), reloadnum
, VOIDmode
);
5249 else if (GET_CODE (XEXP (x
, 0)) == MEM
)
5251 /* This is probably the result of a substitution, by eliminate_regs,
5252 of an equivalent address for a pseudo that was not allocated to a
5253 hard register. Verify that the specified address is valid and
5254 reload it into a register. */
5255 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5256 rtx tem ATTRIBUTE_UNUSED
= XEXP (x
, 0);
5260 /* Since we know we are going to reload this item, don't decrement
5261 for the indirection level.
5263 Note that this is actually conservative: it would be slightly
5264 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5266 /* We can't use ADDR_TYPE (type) here, because we need to
5267 write back the value after reading it, hence we actually
5268 need two registers. */
5269 find_reloads_address (GET_MODE (x
), &XEXP (x
, 0),
5270 XEXP (XEXP (x
, 0), 0), &XEXP (XEXP (x
, 0), 0),
5271 opnum
, type
, ind_levels
, insn
);
5273 reloadnum
= push_reload (x
, NULL_RTX
, loc
, NULL_PTR
,
5274 (context
? INDEX_REG_CLASS
: BASE_REG_CLASS
),
5275 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
5277 = find_inc_amount (PATTERN (this_insn
), XEXP (x
, 0));
5279 link
= FIND_REG_INC_NOTE (this_insn
, tem
);
5281 push_replacement (&XEXP (link
, 0), reloadnum
, VOIDmode
);
5288 /* This is probably the result of a substitution, by eliminate_regs, of
5289 an equivalent address for a pseudo that was not allocated to a hard
5290 register. Verify that the specified address is valid and reload it
5293 Since we know we are going to reload this item, don't decrement for
5294 the indirection level.
5296 Note that this is actually conservative: it would be slightly more
5297 efficient to use the value of SPILL_INDIRECT_LEVELS from
5300 find_reloads_address (GET_MODE (x
), loc
, XEXP (x
, 0), &XEXP (x
, 0),
5301 opnum
, ADDR_TYPE (type
), ind_levels
, insn
);
5302 push_reload (*loc
, NULL_RTX
, loc
, NULL_PTR
,
5303 (context
? INDEX_REG_CLASS
: BASE_REG_CLASS
),
5304 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
5309 register int regno
= REGNO (x
);
5311 if (reg_equiv_constant
[regno
] != 0)
5313 find_reloads_address_part (reg_equiv_constant
[regno
], loc
,
5314 (context
? INDEX_REG_CLASS
: BASE_REG_CLASS
),
5315 GET_MODE (x
), opnum
, type
, ind_levels
);
5319 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5320 that feeds this insn. */
5321 if (reg_equiv_mem
[regno
] != 0)
5323 push_reload (reg_equiv_mem
[regno
], NULL_RTX
, loc
, NULL_PTR
,
5324 (context
? INDEX_REG_CLASS
: BASE_REG_CLASS
),
5325 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
5330 if (reg_equiv_memory_loc
[regno
]
5331 && (reg_equiv_address
[regno
] != 0 || num_not_at_initial_offset
))
5333 rtx tem
= make_memloc (x
, regno
);
5334 if (reg_equiv_address
[regno
] != 0
5335 || ! rtx_equal_p (tem
, reg_equiv_mem
[regno
]))
5338 find_reloads_address (GET_MODE (x
), &x
, XEXP (x
, 0),
5339 &XEXP (x
, 0), opnum
, ADDR_TYPE (type
),
5344 if (reg_renumber
[regno
] >= 0)
5345 regno
= reg_renumber
[regno
];
5347 if ((regno
>= FIRST_PSEUDO_REGISTER
5348 || !(context
? REGNO_OK_FOR_INDEX_P (regno
)
5349 : REGNO_MODE_OK_FOR_BASE_P (regno
, mode
))))
5351 push_reload (x
, NULL_RTX
, loc
, NULL_PTR
,
5352 (context
? INDEX_REG_CLASS
: BASE_REG_CLASS
),
5353 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
5357 /* If a register appearing in an address is the subject of a CLOBBER
5358 in this insn, reload it into some other register to be safe.
5359 The CLOBBER is supposed to make the register unavailable
5360 from before this insn to after it. */
5361 if (regno_clobbered_p (regno
, this_insn
))
5363 push_reload (x
, NULL_RTX
, loc
, NULL_PTR
,
5364 (context
? INDEX_REG_CLASS
: BASE_REG_CLASS
),
5365 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
5372 if (GET_CODE (SUBREG_REG (x
)) == REG
)
5374 /* If this is a SUBREG of a hard register and the resulting register
5375 is of the wrong class, reload the whole SUBREG. This avoids
5376 needless copies if SUBREG_REG is multi-word. */
5377 if (REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
)
5379 int regno
= REGNO (SUBREG_REG (x
)) + SUBREG_WORD (x
);
5381 if (! (context
? REGNO_OK_FOR_INDEX_P (regno
)
5382 : REGNO_MODE_OK_FOR_BASE_P (regno
, mode
)))
5384 push_reload (x
, NULL_RTX
, loc
, NULL_PTR
,
5385 (context
? INDEX_REG_CLASS
: BASE_REG_CLASS
),
5386 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
5390 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5391 is larger than the class size, then reload the whole SUBREG. */
5394 enum reg_class
class = (context
? INDEX_REG_CLASS
5396 if (CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x
)))
5397 > reg_class_size
[class])
5399 x
= find_reloads_subreg_address (x
, 0, opnum
, type
,
5401 push_reload (x
, NULL_RTX
, loc
, NULL_PTR
, class,
5402 GET_MODE (x
), VOIDmode
, 0, 0, opnum
, type
);
5414 register const char *fmt
= GET_RTX_FORMAT (code
);
5417 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
5420 find_reloads_address_1 (mode
, XEXP (x
, i
), context
, &XEXP (x
, i
),
5421 opnum
, type
, ind_levels
, insn
);
5428 /* X, which is found at *LOC, is a part of an address that needs to be
5429 reloaded into a register of class CLASS. If X is a constant, or if
5430 X is a PLUS that contains a constant, check that the constant is a
5431 legitimate operand and that we are supposed to be able to load
5432 it into the register.
5434 If not, force the constant into memory and reload the MEM instead.
5436 MODE is the mode to use, in case X is an integer constant.
5438 OPNUM and TYPE describe the purpose of any reloads made.
5440 IND_LEVELS says how many levels of indirect addressing this machine
5444 find_reloads_address_part (x
, loc
, class, mode
, opnum
, type
, ind_levels
)
5447 enum reg_class
class;
5448 enum machine_mode mode
;
5450 enum reload_type type
;
5454 && (! LEGITIMATE_CONSTANT_P (x
)
5455 || PREFERRED_RELOAD_CLASS (x
, class) == NO_REGS
))
5459 /* If this is a CONST_INT, it could have been created by a
5460 plus_constant call in eliminate_regs, which means it may be
5461 on the reload_obstack. reload_obstack will be freed later, so
5462 we can't allow such RTL to be put in the constant pool. There
5463 is code in force_const_mem to check for this case, but it doesn't
5464 work because we have already popped off the reload_obstack, so
5465 rtl_obstack == saveable_obstack is true at this point. */
5466 if (GET_CODE (x
) == CONST_INT
)
5467 tem
= x
= force_const_mem (mode
, GEN_INT (INTVAL (x
)));
5469 tem
= x
= force_const_mem (mode
, x
);
5471 find_reloads_address (mode
, &tem
, XEXP (tem
, 0), &XEXP (tem
, 0),
5472 opnum
, type
, ind_levels
, 0);
5475 else if (GET_CODE (x
) == PLUS
5476 && CONSTANT_P (XEXP (x
, 1))
5477 && (! LEGITIMATE_CONSTANT_P (XEXP (x
, 1))
5478 || PREFERRED_RELOAD_CLASS (XEXP (x
, 1), class) == NO_REGS
))
5482 /* See comment above. */
5483 if (GET_CODE (XEXP (x
, 1)) == CONST_INT
)
5484 tem
= force_const_mem (GET_MODE (x
), GEN_INT (INTVAL (XEXP (x
, 1))));
5486 tem
= force_const_mem (GET_MODE (x
), XEXP (x
, 1));
5488 x
= gen_rtx_PLUS (GET_MODE (x
), XEXP (x
, 0), tem
);
5489 find_reloads_address (mode
, &tem
, XEXP (tem
, 0), &XEXP (tem
, 0),
5490 opnum
, type
, ind_levels
, 0);
5493 push_reload (x
, NULL_RTX
, loc
, NULL_PTR
, class,
5494 mode
, VOIDmode
, 0, 0, opnum
, type
);
5497 /* X, a subreg of a pseudo, is a part of an address that needs to be
5500 If the pseudo is equivalent to a memory location that cannot be directly
5501 addressed, make the necessary address reloads.
5503 If address reloads have been necessary, or if the address is changed
5504 by register elimination, return the rtx of the memory location;
5505 otherwise, return X.
5507 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5510 OPNUM and TYPE identify the purpose of the reload.
5512 IND_LEVELS says how many levels of indirect addressing are
5513 supported at this point in the address.
5515 INSN, if nonzero, is the insn in which we do the reload. It is used
5516 to determine where to put USEs for pseudos that we have to replace with
5520 find_reloads_subreg_address (x
, force_replace
, opnum
, type
,
5525 enum reload_type type
;
5529 int regno
= REGNO (SUBREG_REG (x
));
5531 if (reg_equiv_memory_loc
[regno
])
5533 /* If the address is not directly addressable, or if the address is not
5534 offsettable, then it must be replaced. */
5536 && (reg_equiv_address
[regno
]
5537 || ! offsettable_memref_p (reg_equiv_mem
[regno
])))
5540 if (force_replace
|| num_not_at_initial_offset
)
5542 rtx tem
= make_memloc (SUBREG_REG (x
), regno
);
5544 /* If the address changes because of register elimination, then
5545 it must be replaced. */
5547 || ! rtx_equal_p (tem
, reg_equiv_mem
[regno
]))
5549 int offset
= SUBREG_WORD (x
) * UNITS_PER_WORD
;
5551 if (BYTES_BIG_ENDIAN
)
5555 size
= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
)));
5556 offset
+= MIN (size
, UNITS_PER_WORD
);
5557 size
= GET_MODE_SIZE (GET_MODE (x
));
5558 offset
-= MIN (size
, UNITS_PER_WORD
);
5560 XEXP (tem
, 0) = plus_constant (XEXP (tem
, 0), offset
);
5561 PUT_MODE (tem
, GET_MODE (x
));
5562 find_reloads_address (GET_MODE (tem
), &tem
, XEXP (tem
, 0),
5563 &XEXP (tem
, 0), opnum
, ADDR_TYPE (type
),
5565 /* If this is not a toplevel operand, find_reloads doesn't see
5566 this substitution. We have to emit a USE of the pseudo so
5567 that delete_output_reload can see it. */
5568 if (replace_reloads
&& recog_data
.operand
[opnum
] != x
)
5569 emit_insn_before (gen_rtx_USE (VOIDmode
, SUBREG_REG (x
)), insn
);
5577 /* Substitute into the current INSN the registers into which we have reloaded
5578 the things that need reloading. The array `replacements'
5579 says contains the locations of all pointers that must be changed
5580 and says what to replace them with.
5582 Return the rtx that X translates into; usually X, but modified. */
5589 for (i
= 0; i
< n_replacements
; i
++)
5591 register struct replacement
*r
= &replacements
[i
];
5592 register rtx reloadreg
= rld
[r
->what
].reg_rtx
;
5595 /* Encapsulate RELOADREG so its machine mode matches what
5596 used to be there. Note that gen_lowpart_common will
5597 do the wrong thing if RELOADREG is multi-word. RELOADREG
5598 will always be a REG here. */
5599 if (GET_MODE (reloadreg
) != r
->mode
&& r
->mode
!= VOIDmode
)
5600 reloadreg
= gen_rtx_REG (r
->mode
, REGNO (reloadreg
));
5602 /* If we are putting this into a SUBREG and RELOADREG is a
5603 SUBREG, we would be making nested SUBREGs, so we have to fix
5604 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5606 if (r
->subreg_loc
!= 0 && GET_CODE (reloadreg
) == SUBREG
)
5608 if (GET_MODE (*r
->subreg_loc
)
5609 == GET_MODE (SUBREG_REG (reloadreg
)))
5610 *r
->subreg_loc
= SUBREG_REG (reloadreg
);
5613 *r
->where
= SUBREG_REG (reloadreg
);
5614 SUBREG_WORD (*r
->subreg_loc
) += SUBREG_WORD (reloadreg
);
5618 *r
->where
= reloadreg
;
5620 /* If reload got no reg and isn't optional, something's wrong. */
5621 else if (! rld
[r
->what
].optional
)
5626 /* Make a copy of any replacements being done into X and move those copies
5627 to locations in Y, a copy of X. We only look at the highest level of
5631 copy_replacements (x
, y
)
5636 enum rtx_code code
= GET_CODE (x
);
5637 const char *fmt
= GET_RTX_FORMAT (code
);
5638 struct replacement
*r
;
5640 /* We can't support X being a SUBREG because we might then need to know its
5641 location if something inside it was replaced. */
5645 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
5647 for (j
= 0; j
< n_replacements
; j
++)
5649 if (replacements
[j
].subreg_loc
== &XEXP (x
, i
))
5651 r
= &replacements
[n_replacements
++];
5652 r
->where
= replacements
[j
].where
;
5653 r
->subreg_loc
= &XEXP (y
, i
);
5654 r
->what
= replacements
[j
].what
;
5655 r
->mode
= replacements
[j
].mode
;
5657 else if (replacements
[j
].where
== &XEXP (x
, i
))
5659 r
= &replacements
[n_replacements
++];
5660 r
->where
= &XEXP (y
, i
);
5662 r
->what
= replacements
[j
].what
;
5663 r
->mode
= replacements
[j
].mode
;
5668 /* Change any replacements being done to *X to be done to *Y */
5671 move_replacements (x
, y
)
5677 for (i
= 0; i
< n_replacements
; i
++)
5678 if (replacements
[i
].subreg_loc
== x
)
5679 replacements
[i
].subreg_loc
= y
;
5680 else if (replacements
[i
].where
== x
)
5682 replacements
[i
].where
= y
;
5683 replacements
[i
].subreg_loc
= 0;
5687 /* If LOC was scheduled to be replaced by something, return the replacement.
5688 Otherwise, return *LOC. */
5691 find_replacement (loc
)
5694 struct replacement
*r
;
5696 for (r
= &replacements
[0]; r
< &replacements
[n_replacements
]; r
++)
5698 rtx reloadreg
= rld
[r
->what
].reg_rtx
;
5700 if (reloadreg
&& r
->where
== loc
)
5702 if (r
->mode
!= VOIDmode
&& GET_MODE (reloadreg
) != r
->mode
)
5703 reloadreg
= gen_rtx_REG (r
->mode
, REGNO (reloadreg
));
5707 else if (reloadreg
&& r
->subreg_loc
== loc
)
5709 /* RELOADREG must be either a REG or a SUBREG.
5711 ??? Is it actually still ever a SUBREG? If so, why? */
5713 if (GET_CODE (reloadreg
) == REG
)
5714 return gen_rtx_REG (GET_MODE (*loc
),
5715 REGNO (reloadreg
) + SUBREG_WORD (*loc
));
5716 else if (GET_MODE (reloadreg
) == GET_MODE (*loc
))
5719 return gen_rtx_SUBREG (GET_MODE (*loc
), SUBREG_REG (reloadreg
),
5720 SUBREG_WORD (reloadreg
) + SUBREG_WORD (*loc
));
5724 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
5725 what's inside and make a new rtl if so. */
5726 if (GET_CODE (*loc
) == PLUS
|| GET_CODE (*loc
) == MINUS
5727 || GET_CODE (*loc
) == MULT
)
5729 rtx x
= find_replacement (&XEXP (*loc
, 0));
5730 rtx y
= find_replacement (&XEXP (*loc
, 1));
5732 if (x
!= XEXP (*loc
, 0) || y
!= XEXP (*loc
, 1))
5733 return gen_rtx_fmt_ee (GET_CODE (*loc
), GET_MODE (*loc
), x
, y
);
5739 /* Return nonzero if register in range [REGNO, ENDREGNO)
5740 appears either explicitly or implicitly in X
5741 other than being stored into (except for earlyclobber operands).
5743 References contained within the substructure at LOC do not count.
5744 LOC may be zero, meaning don't ignore anything.
5746 This is similar to refers_to_regno_p in rtlanal.c except that we
5747 look at equivalences for pseudos that didn't get hard registers. */
5750 refers_to_regno_for_reload_p (regno
, endregno
, x
, loc
)
5751 int regno
, endregno
;
5756 register RTX_CODE code
;
5757 register const char *fmt
;
5763 code
= GET_CODE (x
);
5770 /* If this is a pseudo, a hard register must not have been allocated.
5771 X must therefore either be a constant or be in memory. */
5772 if (i
>= FIRST_PSEUDO_REGISTER
)
5774 if (reg_equiv_memory_loc
[i
])
5775 return refers_to_regno_for_reload_p (regno
, endregno
,
5776 reg_equiv_memory_loc
[i
],
5779 if (reg_equiv_constant
[i
])
5785 return (endregno
> i
5786 && regno
< i
+ (i
< FIRST_PSEUDO_REGISTER
5787 ? HARD_REGNO_NREGS (i
, GET_MODE (x
))
5791 /* If this is a SUBREG of a hard reg, we can see exactly which
5792 registers are being modified. Otherwise, handle normally. */
5793 if (GET_CODE (SUBREG_REG (x
)) == REG
5794 && REGNO (SUBREG_REG (x
)) < FIRST_PSEUDO_REGISTER
)
5796 int inner_regno
= REGNO (SUBREG_REG (x
)) + SUBREG_WORD (x
);
5798 = inner_regno
+ (inner_regno
< FIRST_PSEUDO_REGISTER
5799 ? HARD_REGNO_NREGS (regno
, GET_MODE (x
)) : 1);
5801 return endregno
> inner_regno
&& regno
< inner_endregno
;
5807 if (&SET_DEST (x
) != loc
5808 /* Note setting a SUBREG counts as referring to the REG it is in for
5809 a pseudo but not for hard registers since we can
5810 treat each word individually. */
5811 && ((GET_CODE (SET_DEST (x
)) == SUBREG
5812 && loc
!= &SUBREG_REG (SET_DEST (x
))
5813 && GET_CODE (SUBREG_REG (SET_DEST (x
))) == REG
5814 && REGNO (SUBREG_REG (SET_DEST (x
))) >= FIRST_PSEUDO_REGISTER
5815 && refers_to_regno_for_reload_p (regno
, endregno
,
5816 SUBREG_REG (SET_DEST (x
)),
5818 /* If the output is an earlyclobber operand, this is
5820 || ((GET_CODE (SET_DEST (x
)) != REG
5821 || earlyclobber_operand_p (SET_DEST (x
)))
5822 && refers_to_regno_for_reload_p (regno
, endregno
,
5823 SET_DEST (x
), loc
))))
5826 if (code
== CLOBBER
|| loc
== &SET_SRC (x
))
5835 /* X does not match, so try its subexpressions. */
5837 fmt
= GET_RTX_FORMAT (code
);
5838 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
5840 if (fmt
[i
] == 'e' && loc
!= &XEXP (x
, i
))
5848 if (refers_to_regno_for_reload_p (regno
, endregno
,
5852 else if (fmt
[i
] == 'E')
5855 for (j
= XVECLEN (x
, i
) - 1; j
>=0; j
--)
5856 if (loc
!= &XVECEXP (x
, i
, j
)
5857 && refers_to_regno_for_reload_p (regno
, endregno
,
5858 XVECEXP (x
, i
, j
), loc
))
5865 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
5866 we check if any register number in X conflicts with the relevant register
5867 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
5868 contains a MEM (we don't bother checking for memory addresses that can't
5869 conflict because we expect this to be a rare case.
5871 This function is similar to reg_overlap_mention_p in rtlanal.c except
5872 that we look at equivalences for pseudos that didn't get hard registers. */
5875 reg_overlap_mentioned_for_reload_p (x
, in
)
5878 int regno
, endregno
;
5880 /* Overly conservative. */
5881 if (GET_CODE (x
) == STRICT_LOW_PART
)
5884 /* If either argument is a constant, then modifying X can not affect IN. */
5885 if (CONSTANT_P (x
) || CONSTANT_P (in
))
5887 else if (GET_CODE (x
) == SUBREG
)
5889 regno
= REGNO (SUBREG_REG (x
));
5890 if (regno
< FIRST_PSEUDO_REGISTER
)
5891 regno
+= SUBREG_WORD (x
);
5893 else if (GET_CODE (x
) == REG
)
5897 /* If this is a pseudo, it must not have been assigned a hard register.
5898 Therefore, it must either be in memory or be a constant. */
5900 if (regno
>= FIRST_PSEUDO_REGISTER
)
5902 if (reg_equiv_memory_loc
[regno
])
5903 return refers_to_mem_for_reload_p (in
);
5904 else if (reg_equiv_constant
[regno
])
5909 else if (GET_CODE (x
) == MEM
)
5910 return refers_to_mem_for_reload_p (in
);
5911 else if (GET_CODE (x
) == SCRATCH
|| GET_CODE (x
) == PC
5912 || GET_CODE (x
) == CC0
)
5913 return reg_mentioned_p (x
, in
);
5917 endregno
= regno
+ (regno
< FIRST_PSEUDO_REGISTER
5918 ? HARD_REGNO_NREGS (regno
, GET_MODE (x
)) : 1);
5920 return refers_to_regno_for_reload_p (regno
, endregno
, in
, NULL_PTR
);
5923 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
5927 refers_to_mem_for_reload_p (x
)
5933 if (GET_CODE (x
) == MEM
)
5936 if (GET_CODE (x
) == REG
)
5937 return (REGNO (x
) >= FIRST_PSEUDO_REGISTER
5938 && reg_equiv_memory_loc
[REGNO (x
)]);
5940 fmt
= GET_RTX_FORMAT (GET_CODE (x
));
5941 for (i
= GET_RTX_LENGTH (GET_CODE (x
)) - 1; i
>= 0; i
--)
5943 && (GET_CODE (XEXP (x
, i
)) == MEM
5944 || refers_to_mem_for_reload_p (XEXP (x
, i
))))
5950 /* Check the insns before INSN to see if there is a suitable register
5951 containing the same value as GOAL.
5952 If OTHER is -1, look for a register in class CLASS.
5953 Otherwise, just see if register number OTHER shares GOAL's value.
5955 Return an rtx for the register found, or zero if none is found.
5957 If RELOAD_REG_P is (short *)1,
5958 we reject any hard reg that appears in reload_reg_rtx
5959 because such a hard reg is also needed coming into this insn.
5961 If RELOAD_REG_P is any other nonzero value,
5962 it is a vector indexed by hard reg number
5963 and we reject any hard reg whose element in the vector is nonnegative
5964 as well as any that appears in reload_reg_rtx.
5966 If GOAL is zero, then GOALREG is a register number; we look
5967 for an equivalent for that register.
5969 MODE is the machine mode of the value we want an equivalence for.
5970 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
5972 This function is used by jump.c as well as in the reload pass.
5974 If GOAL is the sum of the stack pointer and a constant, we treat it
5975 as if it were a constant except that sp is required to be unchanging. */
5978 find_equiv_reg (goal
, insn
, class, other
, reload_reg_p
, goalreg
, mode
)
5981 enum reg_class
class;
5983 short *reload_reg_p
;
5985 enum machine_mode mode
;
5987 register rtx p
= insn
;
5988 rtx goaltry
, valtry
, value
, where
;
5990 register int regno
= -1;
5994 int goal_mem_addr_varies
= 0;
5995 int need_stable_sp
= 0;
6001 else if (GET_CODE (goal
) == REG
)
6002 regno
= REGNO (goal
);
6003 else if (GET_CODE (goal
) == MEM
)
6005 enum rtx_code code
= GET_CODE (XEXP (goal
, 0));
6006 if (MEM_VOLATILE_P (goal
))
6008 if (flag_float_store
&& GET_MODE_CLASS (GET_MODE (goal
)) == MODE_FLOAT
)
6010 /* An address with side effects must be reexecuted. */
6023 else if (CONSTANT_P (goal
))
6025 else if (GET_CODE (goal
) == PLUS
6026 && XEXP (goal
, 0) == stack_pointer_rtx
6027 && CONSTANT_P (XEXP (goal
, 1)))
6028 goal_const
= need_stable_sp
= 1;
6029 else if (GET_CODE (goal
) == PLUS
6030 && XEXP (goal
, 0) == frame_pointer_rtx
6031 && CONSTANT_P (XEXP (goal
, 1)))
6036 /* On some machines, certain regs must always be rejected
6037 because they don't behave the way ordinary registers do. */
6039 #ifdef OVERLAPPING_REGNO_P
6040 if (regno
>= 0 && regno
< FIRST_PSEUDO_REGISTER
6041 && OVERLAPPING_REGNO_P (regno
))
6045 /* Scan insns back from INSN, looking for one that copies
6046 a value into or out of GOAL.
6047 Stop and give up if we reach a label. */
6052 if (p
== 0 || GET_CODE (p
) == CODE_LABEL
)
6054 if (GET_CODE (p
) == INSN
6055 /* If we don't want spill regs ... */
6056 && (! (reload_reg_p
!= 0
6057 && reload_reg_p
!= (short *) (HOST_WIDE_INT
) 1)
6058 /* ... then ignore insns introduced by reload; they aren't useful
6059 and can cause results in reload_as_needed to be different
6060 from what they were when calculating the need for spills.
6061 If we notice an input-reload insn here, we will reject it below,
6062 but it might hide a usable equivalent. That makes bad code.
6063 It may even abort: perhaps no reg was spilled for this insn
6064 because it was assumed we would find that equivalent. */
6065 || INSN_UID (p
) < reload_first_uid
))
6068 pat
= single_set (p
);
6069 /* First check for something that sets some reg equal to GOAL. */
6072 && true_regnum (SET_SRC (pat
)) == regno
6073 && (valueno
= true_regnum (valtry
= SET_DEST (pat
))) >= 0)
6076 && true_regnum (SET_DEST (pat
)) == regno
6077 && (valueno
= true_regnum (valtry
= SET_SRC (pat
))) >= 0)
6079 (goal_const
&& rtx_equal_p (SET_SRC (pat
), goal
)
6080 /* When looking for stack pointer + const,
6081 make sure we don't use a stack adjust. */
6082 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat
), goal
)
6083 && (valueno
= true_regnum (valtry
= SET_DEST (pat
))) >= 0)
6085 && (valueno
= true_regnum (valtry
= SET_DEST (pat
))) >= 0
6086 && rtx_renumbered_equal_p (goal
, SET_SRC (pat
)))
6088 && (valueno
= true_regnum (valtry
= SET_SRC (pat
))) >= 0
6089 && rtx_renumbered_equal_p (goal
, SET_DEST (pat
)))
6090 /* If we are looking for a constant,
6091 and something equivalent to that constant was copied
6092 into a reg, we can use that reg. */
6093 || (goal_const
&& (tem
= find_reg_note (p
, REG_EQUIV
,
6095 && rtx_equal_p (XEXP (tem
, 0), goal
)
6096 && (valueno
= true_regnum (valtry
= SET_DEST (pat
))) >= 0)
6097 || (goal_const
&& (tem
= find_reg_note (p
, REG_EQUIV
,
6099 && GET_CODE (SET_DEST (pat
)) == REG
6100 && GET_CODE (XEXP (tem
, 0)) == CONST_DOUBLE
6101 && GET_MODE_CLASS (GET_MODE (XEXP (tem
, 0))) == MODE_FLOAT
6102 && GET_CODE (goal
) == CONST_INT
6103 && 0 != (goaltry
= operand_subword (XEXP (tem
, 0), 0, 0,
6105 && rtx_equal_p (goal
, goaltry
)
6106 && (valtry
= operand_subword (SET_DEST (pat
), 0, 0,
6108 && (valueno
= true_regnum (valtry
)) >= 0)
6109 || (goal_const
&& (tem
= find_reg_note (p
, REG_EQUIV
,
6111 && GET_CODE (SET_DEST (pat
)) == REG
6112 && GET_CODE (XEXP (tem
, 0)) == CONST_DOUBLE
6113 && GET_MODE_CLASS (GET_MODE (XEXP (tem
, 0))) == MODE_FLOAT
6114 && GET_CODE (goal
) == CONST_INT
6115 && 0 != (goaltry
= operand_subword (XEXP (tem
, 0), 1, 0,
6117 && rtx_equal_p (goal
, goaltry
)
6119 = operand_subword (SET_DEST (pat
), 1, 0, VOIDmode
))
6120 && (valueno
= true_regnum (valtry
)) >= 0)))
6123 : ((unsigned) valueno
< FIRST_PSEUDO_REGISTER
6124 && TEST_HARD_REG_BIT (reg_class_contents
[(int) class],
6134 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6135 (or copying VALUE into GOAL, if GOAL is also a register).
6136 Now verify that VALUE is really valid. */
6138 /* VALUENO is the register number of VALUE; a hard register. */
6140 /* Don't try to re-use something that is killed in this insn. We want
6141 to be able to trust REG_UNUSED notes. */
6142 if (find_reg_note (where
, REG_UNUSED
, value
))
6145 /* If we propose to get the value from the stack pointer or if GOAL is
6146 a MEM based on the stack pointer, we need a stable SP. */
6147 if (valueno
== STACK_POINTER_REGNUM
|| regno
== STACK_POINTER_REGNUM
6148 || (goal_mem
&& reg_overlap_mentioned_for_reload_p (stack_pointer_rtx
,
6152 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6153 if (GET_MODE (value
) != mode
)
6156 /* Reject VALUE if it was loaded from GOAL
6157 and is also a register that appears in the address of GOAL. */
6159 if (goal_mem
&& value
== SET_DEST (single_set (where
))
6160 && refers_to_regno_for_reload_p (valueno
,
6162 + HARD_REGNO_NREGS (valueno
, mode
)),
6166 /* Reject registers that overlap GOAL. */
6168 if (!goal_mem
&& !goal_const
6169 && regno
+ HARD_REGNO_NREGS (regno
, mode
) > valueno
6170 && regno
< valueno
+ HARD_REGNO_NREGS (valueno
, mode
))
6173 /* Reject VALUE if it is one of the regs reserved for reloads.
6174 Reload1 knows how to reuse them anyway, and it would get
6175 confused if we allocated one without its knowledge.
6176 (Now that insns introduced by reload are ignored above,
6177 this case shouldn't happen, but I'm not positive.) */
6179 if (reload_reg_p
!= 0 && reload_reg_p
!= (short *) (HOST_WIDE_INT
) 1
6180 && reload_reg_p
[valueno
] >= 0)
6183 /* On some machines, certain regs must always be rejected
6184 because they don't behave the way ordinary registers do. */
6186 #ifdef OVERLAPPING_REGNO_P
6187 if (OVERLAPPING_REGNO_P (valueno
))
6191 nregs
= HARD_REGNO_NREGS (regno
, mode
);
6192 valuenregs
= HARD_REGNO_NREGS (valueno
, mode
);
6194 /* Reject VALUE if it is a register being used for an input reload
6195 even if it is not one of those reserved. */
6197 if (reload_reg_p
!= 0)
6200 for (i
= 0; i
< n_reloads
; i
++)
6201 if (rld
[i
].reg_rtx
!= 0 && rld
[i
].in
)
6203 int regno1
= REGNO (rld
[i
].reg_rtx
);
6204 int nregs1
= HARD_REGNO_NREGS (regno1
,
6205 GET_MODE (rld
[i
].reg_rtx
));
6206 if (regno1
< valueno
+ valuenregs
6207 && regno1
+ nregs1
> valueno
)
6213 /* We must treat frame pointer as varying here,
6214 since it can vary--in a nonlocal goto as generated by expand_goto. */
6215 goal_mem_addr_varies
= !CONSTANT_ADDRESS_P (XEXP (goal
, 0));
6217 /* Now verify that the values of GOAL and VALUE remain unaltered
6218 until INSN is reached. */
6227 /* Don't trust the conversion past a function call
6228 if either of the two is in a call-clobbered register, or memory. */
6229 if (GET_CODE (p
) == CALL_INSN
6230 && ((regno
>= 0 && regno
< FIRST_PSEUDO_REGISTER
6231 && call_used_regs
[regno
])
6233 (valueno
>= 0 && valueno
< FIRST_PSEUDO_REGISTER
6234 && call_used_regs
[valueno
])
6240 #ifdef NON_SAVING_SETJMP
6241 if (NON_SAVING_SETJMP
&& GET_CODE (p
) == NOTE
6242 && NOTE_LINE_NUMBER (p
) == NOTE_INSN_SETJMP
)
6246 #ifdef INSN_CLOBBERS_REGNO_P
6247 if ((valueno
>= 0 && valueno
< FIRST_PSEUDO_REGISTER
6248 && INSN_CLOBBERS_REGNO_P (p
, valueno
))
6249 || (regno
>= 0 && regno
< FIRST_PSEUDO_REGISTER
6250 && INSN_CLOBBERS_REGNO_P (p
, regno
)))
6254 if (GET_RTX_CLASS (GET_CODE (p
)) == 'i')
6258 /* Watch out for unspec_volatile, and volatile asms. */
6259 if (volatile_insn_p (pat
))
6262 /* If this insn P stores in either GOAL or VALUE, return 0.
6263 If GOAL is a memory ref and this insn writes memory, return 0.
6264 If GOAL is a memory ref and its address is not constant,
6265 and this insn P changes a register used in GOAL, return 0. */
6267 if (GET_CODE (pat
) == SET
|| GET_CODE (pat
) == CLOBBER
)
6269 register rtx dest
= SET_DEST (pat
);
6270 while (GET_CODE (dest
) == SUBREG
6271 || GET_CODE (dest
) == ZERO_EXTRACT
6272 || GET_CODE (dest
) == SIGN_EXTRACT
6273 || GET_CODE (dest
) == STRICT_LOW_PART
)
6274 dest
= XEXP (dest
, 0);
6275 if (GET_CODE (dest
) == REG
)
6277 register int xregno
= REGNO (dest
);
6279 if (REGNO (dest
) < FIRST_PSEUDO_REGISTER
)
6280 xnregs
= HARD_REGNO_NREGS (xregno
, GET_MODE (dest
));
6283 if (xregno
< regno
+ nregs
&& xregno
+ xnregs
> regno
)
6285 if (xregno
< valueno
+ valuenregs
6286 && xregno
+ xnregs
> valueno
)
6288 if (goal_mem_addr_varies
6289 && reg_overlap_mentioned_for_reload_p (dest
, goal
))
6291 if (xregno
== STACK_POINTER_REGNUM
&& need_stable_sp
)
6294 else if (goal_mem
&& GET_CODE (dest
) == MEM
6295 && ! push_operand (dest
, GET_MODE (dest
)))
6297 else if (GET_CODE (dest
) == MEM
&& regno
>= FIRST_PSEUDO_REGISTER
6298 && reg_equiv_memory_loc
[regno
] != 0)
6300 else if (need_stable_sp
&& push_operand (dest
, GET_MODE (dest
)))
6303 else if (GET_CODE (pat
) == PARALLEL
)
6306 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; i
--)
6308 register rtx v1
= XVECEXP (pat
, 0, i
);
6309 if (GET_CODE (v1
) == SET
|| GET_CODE (v1
) == CLOBBER
)
6311 register rtx dest
= SET_DEST (v1
);
6312 while (GET_CODE (dest
) == SUBREG
6313 || GET_CODE (dest
) == ZERO_EXTRACT
6314 || GET_CODE (dest
) == SIGN_EXTRACT
6315 || GET_CODE (dest
) == STRICT_LOW_PART
)
6316 dest
= XEXP (dest
, 0);
6317 if (GET_CODE (dest
) == REG
)
6319 register int xregno
= REGNO (dest
);
6321 if (REGNO (dest
) < FIRST_PSEUDO_REGISTER
)
6322 xnregs
= HARD_REGNO_NREGS (xregno
, GET_MODE (dest
));
6325 if (xregno
< regno
+ nregs
6326 && xregno
+ xnregs
> regno
)
6328 if (xregno
< valueno
+ valuenregs
6329 && xregno
+ xnregs
> valueno
)
6331 if (goal_mem_addr_varies
6332 && reg_overlap_mentioned_for_reload_p (dest
,
6335 if (xregno
== STACK_POINTER_REGNUM
&& need_stable_sp
)
6338 else if (goal_mem
&& GET_CODE (dest
) == MEM
6339 && ! push_operand (dest
, GET_MODE (dest
)))
6341 else if (GET_CODE (dest
) == MEM
&& regno
>= FIRST_PSEUDO_REGISTER
6342 && reg_equiv_memory_loc
[regno
] != 0)
6344 else if (need_stable_sp
6345 && push_operand (dest
, GET_MODE (dest
)))
6351 if (GET_CODE (p
) == CALL_INSN
&& CALL_INSN_FUNCTION_USAGE (p
))
6355 for (link
= CALL_INSN_FUNCTION_USAGE (p
); XEXP (link
, 1) != 0;
6356 link
= XEXP (link
, 1))
6358 pat
= XEXP (link
, 0);
6359 if (GET_CODE (pat
) == CLOBBER
)
6361 register rtx dest
= SET_DEST (pat
);
6362 while (GET_CODE (dest
) == SUBREG
6363 || GET_CODE (dest
) == ZERO_EXTRACT
6364 || GET_CODE (dest
) == SIGN_EXTRACT
6365 || GET_CODE (dest
) == STRICT_LOW_PART
)
6366 dest
= XEXP (dest
, 0);
6367 if (GET_CODE (dest
) == REG
)
6369 register int xregno
= REGNO (dest
);
6371 if (REGNO (dest
) < FIRST_PSEUDO_REGISTER
)
6372 xnregs
= HARD_REGNO_NREGS (xregno
, GET_MODE (dest
));
6375 if (xregno
< regno
+ nregs
6376 && xregno
+ xnregs
> regno
)
6378 if (xregno
< valueno
+ valuenregs
6379 && xregno
+ xnregs
> valueno
)
6381 if (goal_mem_addr_varies
6382 && reg_overlap_mentioned_for_reload_p (dest
,
6386 else if (goal_mem
&& GET_CODE (dest
) == MEM
6387 && ! push_operand (dest
, GET_MODE (dest
)))
6389 else if (need_stable_sp
6390 && push_operand (dest
, GET_MODE (dest
)))
6397 /* If this insn auto-increments or auto-decrements
6398 either regno or valueno, return 0 now.
6399 If GOAL is a memory ref and its address is not constant,
6400 and this insn P increments a register used in GOAL, return 0. */
6404 for (link
= REG_NOTES (p
); link
; link
= XEXP (link
, 1))
6405 if (REG_NOTE_KIND (link
) == REG_INC
6406 && GET_CODE (XEXP (link
, 0)) == REG
)
6408 register int incno
= REGNO (XEXP (link
, 0));
6409 if (incno
< regno
+ nregs
&& incno
>= regno
)
6411 if (incno
< valueno
+ valuenregs
&& incno
>= valueno
)
6413 if (goal_mem_addr_varies
6414 && reg_overlap_mentioned_for_reload_p (XEXP (link
, 0),
6424 /* Find a place where INCED appears in an increment or decrement operator
6425 within X, and return the amount INCED is incremented or decremented by.
6426 The value is always positive. */
6429 find_inc_amount (x
, inced
)
6432 register enum rtx_code code
= GET_CODE (x
);
6433 register const char *fmt
;
6438 register rtx addr
= XEXP (x
, 0);
6439 if ((GET_CODE (addr
) == PRE_DEC
6440 || GET_CODE (addr
) == POST_DEC
6441 || GET_CODE (addr
) == PRE_INC
6442 || GET_CODE (addr
) == POST_INC
)
6443 && XEXP (addr
, 0) == inced
)
6444 return GET_MODE_SIZE (GET_MODE (x
));
6447 fmt
= GET_RTX_FORMAT (code
);
6448 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
6452 register int tem
= find_inc_amount (XEXP (x
, i
), inced
);
6459 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
6461 register int tem
= find_inc_amount (XVECEXP (x
, i
, j
), inced
);
6471 /* Return 1 if register REGNO is the subject of a clobber in insn INSN. */
6474 regno_clobbered_p (regno
, insn
)
6478 if (GET_CODE (PATTERN (insn
)) == CLOBBER
6479 && GET_CODE (XEXP (PATTERN (insn
), 0)) == REG
)
6480 return REGNO (XEXP (PATTERN (insn
), 0)) == regno
;
6482 if (GET_CODE (PATTERN (insn
)) == PARALLEL
)
6484 int i
= XVECLEN (PATTERN (insn
), 0) - 1;
6488 rtx elt
= XVECEXP (PATTERN (insn
), 0, i
);
6489 if (GET_CODE (elt
) == CLOBBER
&& GET_CODE (XEXP (elt
, 0)) == REG
6490 && REGNO (XEXP (elt
, 0)) == regno
)
6498 static const char *reload_when_needed_name
[] =
6501 "RELOAD_FOR_OUTPUT",
6503 "RELOAD_FOR_INPUT_ADDRESS",
6504 "RELOAD_FOR_INPADDR_ADDRESS",
6505 "RELOAD_FOR_OUTPUT_ADDRESS",
6506 "RELOAD_FOR_OUTADDR_ADDRESS",
6507 "RELOAD_FOR_OPERAND_ADDRESS",
6508 "RELOAD_FOR_OPADDR_ADDR",
6510 "RELOAD_FOR_OTHER_ADDRESS"
6513 static const char * const reg_class_names
[] = REG_CLASS_NAMES
;
6515 /* These functions are used to print the variables set by 'find_reloads' */
6518 debug_reload_to_stream (f
)
6526 for (r
= 0; r
< n_reloads
; r
++)
6528 fprintf (f
, "Reload %d: ", r
);
6532 fprintf (f
, "reload_in (%s) = ",
6533 GET_MODE_NAME (rld
[r
].inmode
));
6534 print_inline_rtx (f
, rld
[r
].in
, 24);
6535 fprintf (f
, "\n\t");
6538 if (rld
[r
].out
!= 0)
6540 fprintf (f
, "reload_out (%s) = ",
6541 GET_MODE_NAME (rld
[r
].outmode
));
6542 print_inline_rtx (f
, rld
[r
].out
, 24);
6543 fprintf (f
, "\n\t");
6546 fprintf (f
, "%s, ", reg_class_names
[(int) rld
[r
].class]);
6548 fprintf (f
, "%s (opnum = %d)",
6549 reload_when_needed_name
[(int) rld
[r
].when_needed
],
6552 if (rld
[r
].optional
)
6553 fprintf (f
, ", optional");
6555 if (rld
[r
].nongroup
)
6556 fprintf (stderr
, ", nongroup");
6558 if (rld
[r
].inc
!= 0)
6559 fprintf (f
, ", inc by %d", rld
[r
].inc
);
6561 if (rld
[r
].nocombine
)
6562 fprintf (f
, ", can't combine");
6564 if (rld
[r
].secondary_p
)
6565 fprintf (f
, ", secondary_reload_p");
6567 if (rld
[r
].in_reg
!= 0)
6569 fprintf (f
, "\n\treload_in_reg: ");
6570 print_inline_rtx (f
, rld
[r
].in_reg
, 24);
6573 if (rld
[r
].out_reg
!= 0)
6575 fprintf (f
, "\n\treload_out_reg: ");
6576 print_inline_rtx (f
, rld
[r
].out_reg
, 24);
6579 if (rld
[r
].reg_rtx
!= 0)
6581 fprintf (f
, "\n\treload_reg_rtx: ");
6582 print_inline_rtx (f
, rld
[r
].reg_rtx
, 24);
6586 if (rld
[r
].secondary_in_reload
!= -1)
6588 fprintf (f
, "%ssecondary_in_reload = %d",
6589 prefix
, rld
[r
].secondary_in_reload
);
6593 if (rld
[r
].secondary_out_reload
!= -1)
6594 fprintf (f
, "%ssecondary_out_reload = %d\n",
6595 prefix
, rld
[r
].secondary_out_reload
);
6598 if (rld
[r
].secondary_in_icode
!= CODE_FOR_nothing
)
6600 fprintf (stderr
, "%ssecondary_in_icode = %s", prefix
,
6601 insn_data
[rld
[r
].secondary_in_icode
].name
);
6605 if (rld
[r
].secondary_out_icode
!= CODE_FOR_nothing
)
6606 fprintf (stderr
, "%ssecondary_out_icode = %s", prefix
,
6607 insn_data
[rld
[r
].secondary_out_icode
].name
);
6616 debug_reload_to_stream (stderr
);