* cp-tree.def (FUNCTION_NAME): New tree node.
[official-gcc.git] / gcc / genrecog.c
blob464c49921a7f6ac4da58dc4c998aff358531d32b
1 /* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987, 88, 92-95, 97-98, 1999 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* This program is used to produce insn-recog.c, which contains a
23 function called `recog' plus its subroutines. These functions
24 contain a decision tree that recognizes whether an rtx, the
25 argument given to recog, is a valid instruction.
27 recog returns -1 if the rtx is not valid. If the rtx is valid,
28 recog returns a nonnegative number which is the insn code number
29 for the pattern that matched. This is the same as the order in the
30 machine description of the entry that matched. This number can be
31 used as an index into various insn_* tables, such as insn_template,
32 insn_outfun, and insn_n_operands (found in insn-output.c).
34 The third argument to recog is an optional pointer to an int. If
35 present, recog will accept a pattern if it matches except for
36 missing CLOBBER expressions at the end. In that case, the value
37 pointed to by the optional pointer will be set to the number of
38 CLOBBERs that need to be added (it should be initialized to zero by
39 the caller). If it is set nonzero, the caller should allocate a
40 PARALLEL of the appropriate size, copy the initial entries, and
41 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
43 This program also generates the function `split_insns', which
44 returns 0 if the rtl could not be split, or it returns the split
45 rtl in a SEQUENCE.
47 This program also generates the function `peephole2_insns', which
48 returns 0 if the rtl could not be matched. If there was a match,
49 the new rtl is returned in a SEQUENCE, and LAST_INSN will point
50 to the last recognized insn in the old sequence. */
52 #include "hconfig.h"
53 #include "system.h"
54 #include "rtl.h"
55 #include "obstack.h"
56 #include "errors.h"
58 #define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
59 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
61 static struct obstack obstack;
62 struct obstack *rtl_obstack = &obstack;
64 #define obstack_chunk_alloc xmalloc
65 #define obstack_chunk_free free
67 /* Holds an array of names indexed by insn_code_number. */
68 static char **insn_name_ptr = 0;
69 static int insn_name_ptr_size = 0;
71 /* A listhead of decision trees. The alternatives to a node are kept
72 in a doublely-linked list so we can easily add nodes to the proper
73 place when merging. */
75 struct decision_head
77 struct decision *first;
78 struct decision *last;
81 /* A single test. The two accept types aren't tests per-se, but
82 their equality (or lack thereof) does affect tree merging so
83 it is convenient to keep them here. */
85 struct decision_test
87 /* A linked list through the tests attached to a node. */
88 struct decision_test *next;
90 /* These types are roughly in the order in which we'd like to test them. */
91 enum decision_type {
92 DT_mode, DT_code, DT_veclen,
93 DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide,
94 DT_dup, DT_pred, DT_c_test,
95 DT_accept_op, DT_accept_insn
96 } type;
98 union
100 enum machine_mode mode; /* Machine mode of node. */
101 RTX_CODE code; /* Code to test. */
103 struct
105 const char *name; /* Predicate to call. */
106 int index; /* Index into `preds' or -1. */
107 enum machine_mode mode; /* Machine mode for node. */
108 } pred;
110 const char *c_test; /* Additional test to perform. */
111 int veclen; /* Length of vector. */
112 int dup; /* Number of operand to compare against. */
113 HOST_WIDE_INT intval; /* Value for XINT for XWINT. */
114 int opno; /* Operand number matched. */
116 struct {
117 int code_number; /* Insn number matched. */
118 int lineno; /* Line number of the insn. */
119 int num_clobbers_to_add; /* Number of CLOBBERs to be added. */
120 } insn;
121 } u;
124 /* Data structure for decision tree for recognizing legitimate insns. */
126 struct decision
128 struct decision_head success; /* Nodes to test on success. */
129 struct decision *next; /* Node to test on failure. */
130 struct decision *prev; /* Node whose failure tests us. */
131 struct decision *afterward; /* Node to test on success,
132 but failure of successor nodes. */
134 const char *position; /* String denoting position in pattern. */
136 struct decision_test *tests; /* The tests for this node. */
138 int number; /* Node number, used for labels */
139 int subroutine_number; /* Number of subroutine this node starts */
140 int need_label; /* Label needs to be output. */
143 #define SUBROUTINE_THRESHOLD 100
145 static int next_subroutine_number;
147 /* We can write three types of subroutines: One for insn recognition,
148 one to split insns, and one for peephole-type optimizations. This
149 defines which type is being written. */
151 enum routine_type {
152 RECOG, SPLIT, PEEPHOLE2
155 #define IS_SPLIT(X) ((X) != RECOG)
157 /* Next available node number for tree nodes. */
159 static int next_number;
161 /* Next number to use as an insn_code. */
163 static int next_insn_code;
165 /* Similar, but counts all expressions in the MD file; used for
166 error messages. */
168 static int next_index;
170 /* Record the highest depth we ever have so we know how many variables to
171 allocate in each subroutine we make. */
173 static int max_depth;
175 /* The line number of the start of the pattern currently being processed. */
176 static int pattern_lineno;
178 /* Count of errors. */
179 static int error_count;
181 /* This table contains a list of the rtl codes that can possibly match a
182 predicate defined in recog.c. The function `maybe_both_true' uses it to
183 deduce that there are no expressions that can be matches by certain pairs
184 of tree nodes. Also, if a predicate can match only one code, we can
185 hardwire that code into the node testing the predicate. */
187 static struct pred_table
189 const char *name;
190 RTX_CODE codes[NUM_RTX_CODE];
191 } preds[] = {
192 {"general_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
193 LABEL_REF, SUBREG, REG, MEM}},
194 #ifdef PREDICATE_CODES
195 PREDICATE_CODES
196 #endif
197 {"address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
198 LABEL_REF, SUBREG, REG, MEM, PLUS, MINUS, MULT}},
199 {"register_operand", {SUBREG, REG}},
200 {"pmode_register_operand", {SUBREG, REG}},
201 {"scratch_operand", {SCRATCH, REG}},
202 {"immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
203 LABEL_REF}},
204 {"const_int_operand", {CONST_INT}},
205 {"const_double_operand", {CONST_INT, CONST_DOUBLE}},
206 {"nonimmediate_operand", {SUBREG, REG, MEM}},
207 {"nonmemory_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
208 LABEL_REF, SUBREG, REG}},
209 {"push_operand", {MEM}},
210 {"pop_operand", {MEM}},
211 {"memory_operand", {SUBREG, MEM}},
212 {"indirect_operand", {SUBREG, MEM}},
213 {"comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU}},
214 {"mode_independent_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
215 LABEL_REF, SUBREG, REG, MEM}}
218 #define NUM_KNOWN_PREDS (sizeof preds / sizeof preds[0])
220 static const char * special_mode_pred_table[] = {
221 #ifdef SPECIAL_MODE_PREDICATES
222 SPECIAL_MODE_PREDICATES
223 #endif
224 "pmode_register_operand"
227 #define NUM_SPECIAL_MODE_PREDS \
228 (sizeof (special_mode_pred_table) / sizeof (special_mode_pred_table[0]))
230 static void message_with_line
231 PVPROTO ((int, const char *, ...)) ATTRIBUTE_PRINTF_2;
233 static struct decision *new_decision
234 PROTO((const char *, struct decision_head *));
235 static struct decision_test *new_decision_test
236 PROTO((enum decision_type, struct decision_test ***));
237 static rtx find_operand
238 PROTO((rtx, int));
239 static void validate_pattern
240 PROTO((rtx, rtx, rtx));
241 static struct decision *add_to_sequence
242 PROTO((rtx, struct decision_head *, const char *, enum routine_type, int));
244 static int maybe_both_true_2
245 PROTO((struct decision_test *, struct decision_test *));
246 static int maybe_both_true_1
247 PROTO((struct decision_test *, struct decision_test *));
248 static int maybe_both_true
249 PROTO((struct decision *, struct decision *, int));
251 static int nodes_identical_1
252 PROTO((struct decision_test *, struct decision_test *));
253 static int nodes_identical
254 PROTO((struct decision *, struct decision *));
255 static void merge_accept_insn
256 PROTO((struct decision *, struct decision *));
257 static void merge_trees
258 PROTO((struct decision_head *, struct decision_head *));
260 static void factor_tests
261 PROTO((struct decision_head *));
262 static void simplify_tests
263 PROTO((struct decision_head *));
264 static int break_out_subroutines
265 PROTO((struct decision_head *, int));
266 static void find_afterward
267 PROTO((struct decision_head *, struct decision *));
269 static void change_state
270 PROTO((const char *, const char *, struct decision *, const char *));
271 static void print_code
272 PROTO((enum rtx_code));
273 static void write_afterward
274 PROTO((struct decision *, struct decision *, const char *));
275 static struct decision *write_switch
276 PROTO((struct decision *, int));
277 static void write_cond
278 PROTO((struct decision_test *, int, enum routine_type));
279 static void write_action
280 PROTO((struct decision_test *, int, int, struct decision *,
281 enum routine_type));
282 static int is_unconditional
283 PROTO((struct decision_test *, enum routine_type));
284 static int write_node
285 PROTO((struct decision *, int, enum routine_type));
286 static void write_tree_1
287 PROTO((struct decision_head *, int, enum routine_type));
288 static void write_tree
289 PROTO((struct decision_head *, const char *, enum routine_type, int));
290 static void write_subroutine
291 PROTO((struct decision_head *, enum routine_type));
292 static void write_subroutines
293 PROTO((struct decision_head *, enum routine_type));
294 static void write_header
295 PROTO((void));
297 static struct decision_head make_insn_sequence
298 PROTO((rtx, enum routine_type));
299 static void process_tree
300 PROTO((struct decision_head *, enum routine_type));
302 static void record_insn_name
303 PROTO((int, const char *));
305 static void debug_decision_0
306 PROTO((struct decision *, int, int));
307 static void debug_decision_1
308 PROTO((struct decision *, int));
309 static void debug_decision_2
310 PROTO((struct decision_test *));
311 extern void debug_decision
312 PROTO((struct decision *));
313 extern void debug_decision_list
314 PROTO((struct decision *));
316 static void
317 message_with_line VPROTO ((int lineno, const char *msg, ...))
319 #ifndef ANSI_PROTOTYPES
320 int lineno;
321 const char *msg;
322 #endif
323 va_list ap;
325 VA_START (ap, msg);
327 #ifndef ANSI_PROTOTYPES
328 lineno = va_arg (ap, int);
329 msg = va_arg (ap, const char *);
330 #endif
332 fprintf (stderr, "%s:%d: ", read_rtx_filename, lineno);
333 vfprintf (stderr, msg, ap);
334 fputc ('\n', stderr);
336 va_end (ap);
339 /* Create a new node in sequence after LAST. */
341 static struct decision *
342 new_decision (position, last)
343 const char *position;
344 struct decision_head *last;
346 register struct decision *new
347 = (struct decision *) xmalloc (sizeof (struct decision));
349 memset (new, 0, sizeof (*new));
350 new->success = *last;
351 new->position = xstrdup (position);
352 new->number = next_number++;
354 last->first = last->last = new;
355 return new;
358 /* Create a new test and link it in at PLACE. */
360 static struct decision_test *
361 new_decision_test (type, pplace)
362 enum decision_type type;
363 struct decision_test ***pplace;
365 struct decision_test **place = *pplace;
366 struct decision_test *test;
368 test = (struct decision_test *) xmalloc (sizeof (*test));
369 test->next = *place;
370 test->type = type;
371 *place = test;
373 place = &test->next;
374 *pplace = place;
376 return test;
379 /* Search for and return operand N. */
381 static rtx
382 find_operand (pattern, n)
383 rtx pattern;
384 int n;
386 const char *fmt;
387 RTX_CODE code;
388 int i, j, len;
389 rtx r;
391 code = GET_CODE (pattern);
392 if ((code == MATCH_SCRATCH
393 || code == MATCH_INSN
394 || code == MATCH_OPERAND
395 || code == MATCH_OPERATOR
396 || code == MATCH_PARALLEL)
397 && XINT (pattern, 0) == n)
398 return pattern;
400 fmt = GET_RTX_FORMAT (code);
401 len = GET_RTX_LENGTH (code);
402 for (i = 0; i < len; i++)
404 switch (fmt[i])
406 case 'e': case 'u':
407 if ((r = find_operand (XEXP (pattern, i), n)) != NULL_RTX)
408 return r;
409 break;
411 case 'E':
412 for (j = 0; j < XVECLEN (pattern, i); j++)
413 if ((r = find_operand (XVECEXP (pattern, i, j), n)) != NULL_RTX)
414 return r;
415 break;
417 case 'i': case 'w': case '0': case 's':
418 break;
420 default:
421 abort ();
425 return NULL;
428 /* Check for various errors in patterns. SET is nonnull for a destination,
429 and is the complete set pattern. */
431 static void
432 validate_pattern (pattern, insn, set)
433 rtx pattern;
434 rtx insn;
435 rtx set;
437 const char *fmt;
438 RTX_CODE code;
439 size_t i, len;
440 int j;
442 code = GET_CODE (pattern);
443 switch (code)
445 case MATCH_SCRATCH:
446 return;
448 case MATCH_INSN:
449 case MATCH_OPERAND:
450 case MATCH_OPERATOR:
452 const char *pred_name = XSTR (pattern, 1);
453 int allows_non_lvalue = 1, allows_non_const = 1;
454 int special_mode_pred = 0;
455 const char *c_test;
457 if (GET_CODE (insn) == DEFINE_INSN)
458 c_test = XSTR (insn, 2);
459 else
460 c_test = XSTR (insn, 1);
462 if (pred_name[0] != 0)
464 for (i = 0; i < NUM_KNOWN_PREDS; i++)
465 if (! strcmp (preds[i].name, pred_name))
466 break;
468 if (i < NUM_KNOWN_PREDS)
470 int j;
472 allows_non_lvalue = allows_non_const = 0;
473 for (j = 0; preds[i].codes[j] != 0; j++)
475 RTX_CODE c = preds[i].codes[j];
476 if (c != LABEL_REF
477 && c != SYMBOL_REF
478 && c != CONST_INT
479 && c != CONST_DOUBLE
480 && c != CONST
481 && c != HIGH
482 && c != CONSTANT_P_RTX)
483 allows_non_const = 1;
485 if (c != REG
486 && c != SUBREG
487 && c != MEM
488 && c != CONCAT
489 && c != PARALLEL
490 && c != STRICT_LOW_PART)
491 allows_non_lvalue = 1;
494 else
496 #ifdef PREDICATE_CODES
497 /* If the port has a list of the predicates it uses but
498 omits one, warn. */
499 message_with_line (pattern_lineno,
500 "warning: `%s' not in PREDICATE_CODES",
501 pred_name);
502 #endif
505 for (i = 0; i < NUM_SPECIAL_MODE_PREDS; ++i)
506 if (strcmp (pred_name, special_mode_pred_table[i]) == 0)
508 special_mode_pred = 1;
509 break;
513 /* A MATCH_OPERAND that is a SET should have an output reload. */
514 if (set
515 && code == MATCH_OPERAND
516 && XSTR (pattern, 2)[0] != '\0'
517 && XSTR (pattern, 2)[0] != '='
518 && XSTR (pattern, 2)[0] != '+')
520 message_with_line (pattern_lineno,
521 "operand %d missing output reload",
522 XINT (pattern, 0));
523 error_count++;
526 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
527 while not likely to occur at runtime, results in less efficient
528 code from insn-recog.c. */
529 if (set
530 && pred_name[0] != '\0'
531 && allows_non_lvalue)
533 message_with_line (pattern_lineno,
534 "warning: destination operand %d allows non-lvalue",
535 XINT (pattern, 0));
538 /* A modeless MATCH_OPERAND can be handy when we can
539 check for multiple modes in the c_test. In most other cases,
540 it is a mistake. Only DEFINE_INSN is eligible, since SPLIT
541 and PEEP2 can FAIL within the output pattern. Exclude
542 address_operand, since its mode is related to the mode of
543 the memory not the operand. Exclude the SET_DEST of a call
544 instruction, as that is a common idiom. */
546 if (GET_MODE (pattern) == VOIDmode
547 && code == MATCH_OPERAND
548 && GET_CODE (insn) == DEFINE_INSN
549 && allows_non_const
550 && ! special_mode_pred
551 && pred_name[0] != '\0'
552 && strcmp (pred_name, "address_operand") != 0
553 && strstr (c_test, "operands") == NULL
554 && ! (set
555 && GET_CODE (set) == SET
556 && GET_CODE (SET_SRC (set)) == CALL))
558 message_with_line (pattern_lineno,
559 "warning: operand %d missing mode?",
560 XINT (pattern, 0));
562 return;
565 case SET:
567 enum machine_mode dmode, smode;
568 rtx dest, src;
570 dest = SET_DEST (pattern);
571 src = SET_SRC (pattern);
573 /* Find the referant for a DUP. */
575 if (GET_CODE (dest) == MATCH_DUP
576 || GET_CODE (dest) == MATCH_OP_DUP
577 || GET_CODE (dest) == MATCH_PAR_DUP)
578 dest = find_operand (insn, XINT (dest, 0));
580 if (GET_CODE (src) == MATCH_DUP
581 || GET_CODE (src) == MATCH_OP_DUP
582 || GET_CODE (src) == MATCH_PAR_DUP)
583 src = find_operand (insn, XINT (src, 0));
585 /* STRICT_LOW_PART is a wrapper. Its argument is the real
586 destination, and it's mode should match the source. */
587 if (GET_CODE (dest) == STRICT_LOW_PART)
588 dest = XEXP (dest, 0);
590 dmode = GET_MODE (dest);
591 smode = GET_MODE (src);
593 /* The mode of an ADDRESS_OPERAND is the mode of the memory
594 reference, not the mode of the address. */
595 if (GET_CODE (src) == MATCH_OPERAND
596 && ! strcmp (XSTR (src, 1), "address_operand"))
599 /* The operands of a SET must have the same mode unless one
600 is VOIDmode. */
601 else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
603 message_with_line (pattern_lineno,
604 "mode mismatch in set: %smode vs %smode",
605 GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
606 error_count++;
609 /* If only one of the operands is VOIDmode, and PC or CC0 is
610 not involved, it's probably a mistake. */
611 else if (dmode != smode
612 && GET_CODE (dest) != PC
613 && GET_CODE (dest) != CC0
614 && GET_CODE (src) != PC
615 && GET_CODE (src) != CC0
616 && GET_CODE (src) != CONST_INT)
618 const char *which;
619 which = (dmode == VOIDmode ? "destination" : "source");
620 message_with_line (pattern_lineno,
621 "warning: %s missing a mode?", which);
624 if (dest != SET_DEST (pattern))
625 validate_pattern (dest, insn, pattern);
626 validate_pattern (SET_DEST (pattern), insn, pattern);
627 validate_pattern (SET_SRC (pattern), insn, NULL_RTX);
628 return;
631 case CLOBBER:
632 validate_pattern (SET_DEST (pattern), insn, pattern);
633 return;
635 case LABEL_REF:
636 if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
638 message_with_line (pattern_lineno,
639 "operand to label_ref %smode not VOIDmode",
640 GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
641 error_count++;
643 break;
645 default:
646 break;
649 fmt = GET_RTX_FORMAT (code);
650 len = GET_RTX_LENGTH (code);
651 for (i = 0; i < len; i++)
653 switch (fmt[i])
655 case 'e': case 'u':
656 validate_pattern (XEXP (pattern, i), insn, NULL_RTX);
657 break;
659 case 'E':
660 for (j = 0; j < XVECLEN (pattern, i); j++)
661 validate_pattern (XVECEXP (pattern, i, j), insn, NULL_RTX);
662 break;
664 case 'i': case 'w': case '0': case 's':
665 break;
667 default:
668 abort ();
673 /* Create a chain of nodes to verify that an rtl expression matches
674 PATTERN.
676 LAST is a pointer to the listhead in the previous node in the chain (or
677 in the calling function, for the first node).
679 POSITION is the string representing the current position in the insn.
681 INSN_TYPE is the type of insn for which we are emitting code.
683 A pointer to the final node in the chain is returned. */
685 static struct decision *
686 add_to_sequence (pattern, last, position, insn_type, top)
687 rtx pattern;
688 struct decision_head *last;
689 const char *position;
690 enum routine_type insn_type;
691 int top;
693 RTX_CODE code;
694 struct decision *this, *sub;
695 struct decision_test *test;
696 struct decision_test **place;
697 char *subpos;
698 register size_t i;
699 register const char *fmt;
700 int depth = strlen (position);
701 int len;
702 enum machine_mode mode;
704 if (depth > max_depth)
705 max_depth = depth;
707 subpos = (char *) alloca (depth + 2);
708 strcpy (subpos, position);
709 subpos[depth + 1] = 0;
711 sub = this = new_decision (position, last);
712 place = &this->tests;
714 restart:
715 mode = GET_MODE (pattern);
716 code = GET_CODE (pattern);
718 switch (code)
720 case PARALLEL:
721 /* Toplevel peephole pattern. */
722 if (insn_type == PEEPHOLE2 && top)
724 /* We don't need the node we just created -- unlink it. */
725 last->first = last->last = NULL;
727 for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++)
729 /* Which insn we're looking at is represented by A-Z. We don't
730 ever use 'A', however; it is always implied. */
732 subpos[depth] = (i > 0 ? 'A' + i : 0);
733 sub = add_to_sequence (XVECEXP (pattern, 0, i),
734 last, subpos, insn_type, 0);
735 last = &sub->success;
737 return sub;
740 /* Else nothing special. */
741 break;
743 case MATCH_OPERAND:
744 case MATCH_SCRATCH:
745 case MATCH_OPERATOR:
746 case MATCH_PARALLEL:
747 case MATCH_INSN:
749 const char *pred_name;
750 RTX_CODE was_code = code;
751 int allows_const_int = 1;
753 if (code == MATCH_SCRATCH)
755 pred_name = "scratch_operand";
756 code = UNKNOWN;
758 else
760 pred_name = XSTR (pattern, 1);
761 if (code == MATCH_PARALLEL)
762 code = PARALLEL;
763 else
764 code = UNKNOWN;
767 /* We know exactly what const_int_operand matches -- any CONST_INT. */
768 if (strcmp ("const_int_operand", pred_name) == 0)
770 code = CONST_INT;
771 mode = VOIDmode;
773 else if (pred_name[0] != 0)
775 test = new_decision_test (DT_pred, &place);
776 test->u.pred.name = pred_name;
777 test->u.pred.mode = mode;
779 /* See if we know about this predicate and save its number. If
780 we do, and it only accepts one code, note that fact. The
781 predicate `const_int_operand' only tests for a CONST_INT, so
782 if we do so we can avoid calling it at all.
784 Finally, if we know that the predicate does not allow
785 CONST_INT, we know that the only way the predicate can match
786 is if the modes match (here we use the kludge of relying on
787 the fact that "address_operand" accepts CONST_INT; otherwise,
788 it would have to be a special case), so we can test the mode
789 (but we need not). This fact should considerably simplify the
790 generated code. */
792 for (i = 0; i < NUM_KNOWN_PREDS; i++)
793 if (! strcmp (preds[i].name, pred_name))
794 break;
796 if (i < NUM_KNOWN_PREDS)
798 int j;
800 test->u.pred.index = i;
802 if (preds[i].codes[1] == 0 && code == UNKNOWN)
803 code = preds[i].codes[0];
805 allows_const_int = 0;
806 for (j = 0; preds[i].codes[j] != 0; j++)
807 if (preds[i].codes[j] == CONST_INT)
809 allows_const_int = 1;
810 break;
813 else
814 test->u.pred.index = -1;
817 /* Can't enforce a mode if we allow const_int. */
818 if (allows_const_int)
819 mode = VOIDmode;
821 /* Accept the operand, ie. record it in `operands'. */
822 test = new_decision_test (DT_accept_op, &place);
823 test->u.opno = XINT (pattern, 0);
825 if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL)
827 char base = (was_code == MATCH_OPERATOR ? '0' : 'a');
828 for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++)
830 subpos[depth] = i + base;
831 sub = add_to_sequence (XVECEXP (pattern, 2, i),
832 &sub->success, subpos, insn_type, 0);
835 goto fini;
838 case MATCH_OP_DUP:
839 code = UNKNOWN;
841 test = new_decision_test (DT_dup, &place);
842 test->u.dup = XINT (pattern, 0);
844 test = new_decision_test (DT_accept_op, &place);
845 test->u.opno = XINT (pattern, 0);
847 for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++)
849 subpos[depth] = i + '0';
850 sub = add_to_sequence (XVECEXP (pattern, 1, i),
851 &sub->success, subpos, insn_type, 0);
853 goto fini;
855 case MATCH_DUP:
856 case MATCH_PAR_DUP:
857 code = UNKNOWN;
859 test = new_decision_test (DT_dup, &place);
860 test->u.dup = XINT (pattern, 0);
861 goto fini;
863 case ADDRESS:
864 pattern = XEXP (pattern, 0);
865 goto restart;
867 default:
868 break;
871 fmt = GET_RTX_FORMAT (code);
872 len = GET_RTX_LENGTH (code);
874 /* Do tests against the current node first. */
875 for (i = 0; i < (size_t) len; i++)
877 if (fmt[i] == 'i')
879 if (i == 0)
881 test = new_decision_test (DT_elt_zero_int, &place);
882 test->u.intval = XINT (pattern, i);
884 else if (i == 1)
886 test = new_decision_test (DT_elt_one_int, &place);
887 test->u.intval = XINT (pattern, i);
889 else
890 abort ();
892 else if (fmt[i] == 'w')
894 if (i != 0)
895 abort ();
897 test = new_decision_test (DT_elt_zero_wide, &place);
898 test->u.intval = XWINT (pattern, i);
900 else if (fmt[i] == 'E')
902 if (i != 0)
903 abort ();
905 test = new_decision_test (DT_veclen, &place);
906 test->u.veclen = XVECLEN (pattern, i);
910 /* Now test our sub-patterns. */
911 for (i = 0; i < (size_t) len; i++)
913 switch (fmt[i])
915 case 'e': case 'u':
916 subpos[depth] = '0' + i;
917 sub = add_to_sequence (XEXP (pattern, i), &sub->success,
918 subpos, insn_type, 0);
919 break;
921 case 'E':
923 register int j;
924 for (j = 0; j < XVECLEN (pattern, i); j++)
926 subpos[depth] = 'a' + j;
927 sub = add_to_sequence (XVECEXP (pattern, i, j),
928 &sub->success, subpos, insn_type, 0);
930 break;
933 case 'i': case 'w':
934 /* Handled above. */
935 break;
936 case '0':
937 break;
939 default:
940 abort ();
944 fini:
945 /* Insert nodes testing mode and code, if they're still relevant,
946 before any of the nodes we may have added above. */
947 if (code != UNKNOWN)
949 place = &this->tests;
950 test = new_decision_test (DT_code, &place);
951 test->u.code = code;
954 if (mode != VOIDmode)
956 place = &this->tests;
957 test = new_decision_test (DT_mode, &place);
958 test->u.mode = mode;
961 /* If we didn't insert any tests or accept nodes, hork. */
962 if (this->tests == NULL)
963 abort ();
965 return sub;
968 /* A subroutine of maybe_both_true; examines only one test.
969 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
971 static int
972 maybe_both_true_2 (d1, d2)
973 struct decision_test *d1, *d2;
975 if (d1->type == d2->type)
977 switch (d1->type)
979 case DT_mode:
980 return d1->u.mode == d2->u.mode;
982 case DT_code:
983 return d1->u.code == d2->u.code;
985 case DT_veclen:
986 return d1->u.veclen == d2->u.veclen;
988 case DT_elt_zero_int:
989 case DT_elt_one_int:
990 case DT_elt_zero_wide:
991 return d1->u.intval == d2->u.intval;
993 default:
994 break;
998 /* If either has a predicate that we know something about, set
999 things up so that D1 is the one that always has a known
1000 predicate. Then see if they have any codes in common. */
1002 if (d1->type == DT_pred || d2->type == DT_pred)
1004 if (d2->type == DT_pred)
1006 struct decision_test *tmp;
1007 tmp = d1, d1 = d2, d2 = tmp;
1010 /* If D2 tests a mode, see if it matches D1. */
1011 if (d1->u.pred.mode != VOIDmode)
1013 if (d2->type == DT_mode)
1015 if (d1->u.pred.mode != d2->u.mode)
1016 return 0;
1018 /* Don't check two predicate modes here, because if both predicates
1019 accept CONST_INT, then both can still be true even if the modes
1020 are different. If they don't accept CONST_INT, there will be a
1021 separate DT_mode that will make maybe_both_true_1 return 0. */
1024 if (d1->u.pred.index >= 0)
1026 /* If D2 tests a code, see if it is in the list of valid
1027 codes for D1's predicate. */
1028 if (d2->type == DT_code)
1030 const RTX_CODE *c = &preds[d1->u.pred.index].codes[0];
1031 while (*c != 0)
1033 if (*c == d2->u.code)
1034 break;
1035 ++c;
1037 if (*c == 0)
1038 return 0;
1041 /* Otherwise see if the predicates have any codes in common. */
1042 else if (d2->type == DT_pred && d2->u.pred.index >= 0)
1044 const RTX_CODE *c1 = &preds[d1->u.pred.index].codes[0];
1045 int common = 0;
1047 while (*c1 != 0 && !common)
1049 const RTX_CODE *c2 = &preds[d2->u.pred.index].codes[0];
1050 while (*c2 != 0 && !common)
1052 common = (*c1 == *c2);
1053 ++c2;
1055 ++c1;
1058 if (!common)
1059 return 0;
1064 return -1;
1067 /* A subroutine of maybe_both_true; examines all the tests for a given node.
1068 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1070 static int
1071 maybe_both_true_1 (d1, d2)
1072 struct decision_test *d1, *d2;
1074 struct decision_test *t1, *t2;
1076 /* A match_operand with no predicate can match anything. Recognize
1077 this by the existance of a lone DT_accept_op test. */
1078 if (d1->type == DT_accept_op || d2->type == DT_accept_op)
1079 return 1;
1081 /* Eliminate pairs of tests while they can exactly match. */
1082 while (d1 && d2 && d1->type == d2->type)
1084 if (maybe_both_true_2 (d1, d2) == 0)
1085 return 0;
1086 d1 = d1->next, d2 = d2->next;
1089 /* After that, consider all pairs. */
1090 for (t1 = d1; t1 ; t1 = t1->next)
1091 for (t2 = d2; t2 ; t2 = t2->next)
1092 if (maybe_both_true_2 (t1, t2) == 0)
1093 return 0;
1095 return -1;
1098 /* Return 0 if we can prove that there is no RTL that can match both
1099 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
1100 can match both or just that we couldn't prove there wasn't such an RTL).
1102 TOPLEVEL is non-zero if we are to only look at the top level and not
1103 recursively descend. */
1105 static int
1106 maybe_both_true (d1, d2, toplevel)
1107 struct decision *d1, *d2;
1108 int toplevel;
1110 struct decision *p1, *p2;
1111 int cmp;
1113 /* Don't compare strings on the different positions in insn. Doing so
1114 is incorrect and results in false matches from constructs like
1116 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1117 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1119 [(set (match_operand:HI "register_operand" "r")
1120 (match_operand:HI "register_operand" "r"))]
1122 If we are presented with such, we are recursing through the remainder
1123 of a node's success nodes (from the loop at the end of this function).
1124 Skip forward until we come to a position that matches.
1126 Due to the way position strings are constructed, we know that iterating
1127 forward from the lexically lower position (e.g. "00") will run into
1128 the lexically higher position (e.g. "1") and not the other way around.
1129 This saves a bit of effort. */
1131 cmp = strcmp (d1->position, d2->position);
1132 if (cmp != 0)
1134 if (toplevel)
1135 abort();
1137 /* If the d2->position was lexically lower, swap. */
1138 if (cmp > 0)
1139 p1 = d1, d1 = d2, d2 = p1;
1141 if (d1->success.first == 0)
1142 return 0;
1143 for (p1 = d1->success.first; p1; p1 = p1->next)
1144 if (maybe_both_true (p1, d2, 0))
1145 return 1;
1147 return 0;
1150 /* Test the current level. */
1151 cmp = maybe_both_true_1 (d1->tests, d2->tests);
1152 if (cmp >= 0)
1153 return cmp;
1155 /* We can't prove that D1 and D2 cannot both be true. If we are only
1156 to check the top level, return 1. Otherwise, see if we can prove
1157 that all choices in both successors are mutually exclusive. If
1158 either does not have any successors, we can't prove they can't both
1159 be true. */
1161 if (toplevel || d1->success.first == 0 || d2->success.first == 0)
1162 return 1;
1164 for (p1 = d1->success.first; p1; p1 = p1->next)
1165 for (p2 = d2->success.first; p2; p2 = p2->next)
1166 if (maybe_both_true (p1, p2, 0))
1167 return 1;
1169 return 0;
1172 /* A subroutine of nodes_identical. Examine two tests for equivalence. */
1174 static int
1175 nodes_identical_1 (d1, d2)
1176 struct decision_test *d1, *d2;
1178 switch (d1->type)
1180 case DT_mode:
1181 return d1->u.mode == d2->u.mode;
1183 case DT_code:
1184 return d1->u.code == d2->u.code;
1186 case DT_pred:
1187 return (d1->u.pred.mode == d2->u.pred.mode
1188 && strcmp (d1->u.pred.name, d2->u.pred.name) == 0);
1190 case DT_c_test:
1191 return strcmp (d1->u.c_test, d2->u.c_test) == 0;
1193 case DT_veclen:
1194 return d1->u.veclen == d2->u.veclen;
1196 case DT_dup:
1197 return d1->u.dup == d2->u.dup;
1199 case DT_elt_zero_int:
1200 case DT_elt_one_int:
1201 case DT_elt_zero_wide:
1202 return d1->u.intval == d2->u.intval;
1204 case DT_accept_op:
1205 return d1->u.opno == d2->u.opno;
1207 case DT_accept_insn:
1208 /* Differences will be handled in merge_accept_insn. */
1209 return 1;
1211 default:
1212 abort ();
1216 /* True iff the two nodes are identical (on one level only). Due
1217 to the way these lists are constructed, we shouldn't have to
1218 consider different orderings on the tests. */
1220 static int
1221 nodes_identical (d1, d2)
1222 struct decision *d1, *d2;
1224 struct decision_test *t1, *t2;
1226 for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next)
1228 if (t1->type != t2->type)
1229 return 0;
1230 if (! nodes_identical_1 (t1, t2))
1231 return 0;
1234 /* For success, they should now both be null. */
1235 if (t1 != t2)
1236 return 0;
1238 /* Check that their subnodes are at the same position, as any one set
1239 of sibling decisions must be at the same position. */
1240 if (d1->success.first
1241 && d2->success.first
1242 && strcmp (d1->success.first->position, d2->success.first->position))
1243 return 0;
1245 return 1;
1248 /* A subroutine of merge_trees; given two nodes that have been declared
1249 identical, cope with two insn accept states. If they differ in the
1250 number of clobbers, then the conflict was created by make_insn_sequence
1251 and we can drop the with-clobbers version on the floor. If both
1252 nodes have no additional clobbers, we have found an ambiguity in the
1253 source machine description. */
1255 static void
1256 merge_accept_insn (oldd, addd)
1257 struct decision *oldd, *addd;
1259 struct decision_test *old, *add;
1261 for (old = oldd->tests; old; old = old->next)
1262 if (old->type == DT_accept_insn)
1263 break;
1264 if (old == NULL)
1265 return;
1267 for (add = addd->tests; add; add = add->next)
1268 if (add->type == DT_accept_insn)
1269 break;
1270 if (add == NULL)
1271 return;
1273 /* If one node is for a normal insn and the second is for the base
1274 insn with clobbers stripped off, the second node should be ignored. */
1276 if (old->u.insn.num_clobbers_to_add == 0
1277 && add->u.insn.num_clobbers_to_add > 0)
1279 /* Nothing to do here. */
1281 else if (old->u.insn.num_clobbers_to_add > 0
1282 && add->u.insn.num_clobbers_to_add == 0)
1284 /* In this case, replace OLD with ADD. */
1285 old->u.insn = add->u.insn;
1287 else
1289 message_with_line (add->u.insn.lineno, "`%s' matches `%s'",
1290 get_insn_name (add->u.insn.code_number),
1291 get_insn_name (old->u.insn.code_number));
1292 message_with_line (old->u.insn.lineno, "previous definition of `%s'",
1293 get_insn_name (old->u.insn.code_number));
1294 error_count++;
1298 /* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1300 static void
1301 merge_trees (oldh, addh)
1302 struct decision_head *oldh, *addh;
1304 struct decision *next, *add;
1306 if (addh->first == 0)
1307 return;
1308 if (oldh->first == 0)
1310 *oldh = *addh;
1311 return;
1314 /* Trying to merge bits at different positions isn't possible. */
1315 if (strcmp (oldh->first->position, addh->first->position))
1316 abort ();
1318 for (add = addh->first; add ; add = next)
1320 struct decision *old, *insert_before = NULL;
1322 next = add->next;
1324 /* The semantics of pattern matching state that the tests are
1325 done in the order given in the MD file so that if an insn
1326 matches two patterns, the first one will be used. However,
1327 in practice, most, if not all, patterns are unambiguous so
1328 that their order is independent. In that case, we can merge
1329 identical tests and group all similar modes and codes together.
1331 Scan starting from the end of OLDH until we reach a point
1332 where we reach the head of the list or where we pass a
1333 pattern that could also be true if NEW is true. If we find
1334 an identical pattern, we can merge them. Also, record the
1335 last node that tests the same code and mode and the last one
1336 that tests just the same mode.
1338 If we have no match, place NEW after the closest match we found. */
1340 for (old = oldh->last; old; old = old->prev)
1342 if (nodes_identical (old, add))
1344 merge_accept_insn (old, add);
1345 merge_trees (&old->success, &add->success);
1346 goto merged_nodes;
1349 if (maybe_both_true (old, add, 0))
1350 break;
1352 /* Insert the nodes in DT test type order, which is roughly
1353 how expensive/important the test is. Given that the tests
1354 are also ordered within the list, examining the first is
1355 sufficient. */
1356 if (add->tests->type < old->tests->type)
1357 insert_before = old;
1360 if (insert_before == NULL)
1362 add->next = NULL;
1363 add->prev = oldh->last;
1364 oldh->last->next = add;
1365 oldh->last = add;
1367 else
1369 if ((add->prev = insert_before->prev) != NULL)
1370 add->prev->next = add;
1371 else
1372 oldh->first = add;
1373 add->next = insert_before;
1374 insert_before->prev = add;
1377 merged_nodes:;
1381 /* Walk the tree looking for sub-nodes that perform common tests.
1382 Factor out the common test into a new node. This enables us
1383 (depending on the test type) to emit switch statements later. */
1385 static void
1386 factor_tests (head)
1387 struct decision_head *head;
1389 struct decision *first, *next;
1391 for (first = head->first; first && first->next; first = next)
1393 enum decision_type type;
1394 struct decision *new, *old_last;
1396 type = first->tests->type;
1397 next = first->next;
1399 /* Want at least two compatible sequential nodes. */
1400 if (next->tests->type != type)
1401 continue;
1403 /* Don't want all node types, just those we can turn into
1404 switch statements. */
1405 if (type != DT_mode
1406 && type != DT_code
1407 && type != DT_veclen
1408 && type != DT_elt_zero_int
1409 && type != DT_elt_one_int
1410 && type != DT_elt_zero_wide)
1411 continue;
1413 /* If we'd been performing more than one test, create a new node
1414 below our first test. */
1415 if (first->tests->next != NULL)
1417 new = new_decision (first->position, &first->success);
1418 new->tests = first->tests->next;
1419 first->tests->next = NULL;
1422 /* Crop the node tree off after our first test. */
1423 first->next = NULL;
1424 old_last = head->last;
1425 head->last = first;
1427 /* For each compatible test, adjust to perform only one test in
1428 the top level node, then merge the node back into the tree. */
1431 struct decision_head h;
1433 if (next->tests->next != NULL)
1435 new = new_decision (next->position, &next->success);
1436 new->tests = next->tests->next;
1437 next->tests->next = NULL;
1439 new = next;
1440 next = next->next;
1441 new->next = NULL;
1442 h.first = h.last = new;
1444 merge_trees (head, &h);
1446 while (next && next->tests->type == type);
1448 /* After we run out of compatible tests, graft the remaining nodes
1449 back onto the tree. */
1450 if (next)
1452 next->prev = head->last;
1453 head->last->next = next;
1454 head->last = old_last;
1458 /* Recurse. */
1459 for (first = head->first; first; first = first->next)
1460 factor_tests (&first->success);
1463 /* After factoring, try to simplify the tests on any one node.
1464 Tests that are useful for switch statements are recognizable
1465 by having only a single test on a node -- we'll be manipulating
1466 nodes with multiple tests:
1468 If we have mode tests or code tests that are redundant with
1469 predicates, remove them. */
1471 static void
1472 simplify_tests (head)
1473 struct decision_head *head;
1475 struct decision *tree;
1477 for (tree = head->first; tree; tree = tree->next)
1479 struct decision_test *a, *b;
1481 a = tree->tests;
1482 b = a->next;
1483 if (b == NULL)
1484 continue;
1486 /* Find a predicate node. */
1487 while (b && b->type != DT_pred)
1488 b = b->next;
1489 if (b)
1491 /* Due to how these tests are constructed, we don't even need
1492 to check that the mode and code are compatible -- they were
1493 generated from the predicate in the first place. */
1494 while (a->type == DT_mode || a->type == DT_code)
1495 a = a->next;
1496 tree->tests = a;
1500 /* Recurse. */
1501 for (tree = head->first; tree; tree = tree->next)
1502 simplify_tests (&tree->success);
1505 /* Count the number of subnodes of HEAD. If the number is high enough,
1506 make the first node in HEAD start a separate subroutine in the C code
1507 that is generated. */
1509 static int
1510 break_out_subroutines (head, initial)
1511 struct decision_head *head;
1512 int initial;
1514 int size = 0;
1515 struct decision *sub;
1517 for (sub = head->first; sub; sub = sub->next)
1518 size += 1 + break_out_subroutines (&sub->success, 0);
1520 if (size > SUBROUTINE_THRESHOLD && ! initial)
1522 head->first->subroutine_number = ++next_subroutine_number;
1523 size = 1;
1525 return size;
1528 /* For each node p, find the next alternative that might be true
1529 when p is true. */
1531 static void
1532 find_afterward (head, real_afterward)
1533 struct decision_head *head;
1534 struct decision *real_afterward;
1536 struct decision *p, *q, *afterward;
1538 /* We can't propogate alternatives across subroutine boundaries.
1539 This is not incorrect, merely a minor optimization loss. */
1541 p = head->first;
1542 afterward = (p->subroutine_number > 0 ? NULL : real_afterward);
1544 for ( ; p ; p = p->next)
1546 /* Find the next node that might be true if this one fails. */
1547 for (q = p->next; q ; q = q->next)
1548 if (maybe_both_true (p, q, 1))
1549 break;
1551 /* If we reached the end of the list without finding one,
1552 use the incoming afterward position. */
1553 if (!q)
1554 q = afterward;
1555 p->afterward = q;
1556 if (q)
1557 q->need_label = 1;
1560 /* Recurse. */
1561 for (p = head->first; p ; p = p->next)
1562 if (p->success.first)
1563 find_afterward (&p->success, p->afterward);
1565 /* When we are generating a subroutine, record the real afterward
1566 position in the first node where write_tree can find it, and we
1567 can do the right thing at the subroutine call site. */
1568 p = head->first;
1569 if (p->subroutine_number > 0)
1570 p->afterward = real_afterward;
1573 /* Assuming that the state of argument is denoted by OLDPOS, take whatever
1574 actions are necessary to move to NEWPOS. If we fail to move to the
1575 new state, branch to node AFTERWARD if non-zero, otherwise return.
1577 Failure to move to the new state can only occur if we are trying to
1578 match multiple insns and we try to step past the end of the stream. */
1580 static void
1581 change_state (oldpos, newpos, afterward, indent)
1582 const char *oldpos;
1583 const char *newpos;
1584 struct decision *afterward;
1585 const char *indent;
1587 int odepth = strlen (oldpos);
1588 int ndepth = strlen (newpos);
1589 int depth;
1590 int old_has_insn, new_has_insn;
1592 /* Pop up as many levels as necessary. */
1593 for (depth = odepth; strncmp (oldpos, newpos, depth) != 0; --depth)
1594 continue;
1596 /* Hunt for the last [A-Z] in both strings. */
1597 for (old_has_insn = odepth - 1; old_has_insn >= 0; --old_has_insn)
1598 if (oldpos[old_has_insn] >= 'A' && oldpos[old_has_insn] <= 'Z')
1599 break;
1600 for (new_has_insn = odepth - 1; new_has_insn >= 0; --new_has_insn)
1601 if (newpos[new_has_insn] >= 'A' && newpos[new_has_insn] <= 'Z')
1602 break;
1604 /* Make sure to reset the _last_insn pointer when popping back up. */
1605 if (old_has_insn >= 0 && new_has_insn < 0)
1606 printf ("%s_last_insn = insn;\n", indent);
1608 /* Go down to desired level. */
1609 while (depth < ndepth)
1611 /* It's a different insn from the first one. */
1612 if (newpos[depth] >= 'A' && newpos[depth] <= 'Z')
1614 /* We can only fail if we're moving down the tree. */
1615 if (old_has_insn >= 0 && oldpos[old_has_insn] >= newpos[depth])
1617 printf ("%s_last_insn = recog_next_insn (insn, %d);\n",
1618 indent, newpos[depth] - 'A');
1620 else
1622 printf ("%stem = recog_next_insn (insn, %d);\n",
1623 indent, newpos[depth] - 'A');
1624 printf ("%sif (tem == NULL_RTX)\n", indent);
1625 if (afterward)
1626 printf ("%s goto L%d;\n", indent, afterward->number);
1627 else
1628 printf ("%s goto ret0;\n", indent);
1629 printf ("%s_last_insn = tem;\n", indent);
1631 printf ("%sx%d = PATTERN (_last_insn);\n", indent, depth + 1);
1633 else if (newpos[depth] >= 'a' && newpos[depth] <= 'z')
1634 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1635 indent, depth + 1, depth, newpos[depth] - 'a');
1636 else
1637 printf ("%sx%d = XEXP (x%d, %c);\n",
1638 indent, depth + 1, depth, newpos[depth]);
1639 ++depth;
1643 /* Print the enumerator constant for CODE -- the upcase version of
1644 the name. */
1646 static void
1647 print_code (code)
1648 enum rtx_code code;
1650 register const char *p;
1651 for (p = GET_RTX_NAME (code); *p; p++)
1652 putchar (TOUPPER (*p));
1655 /* Emit code to cross an afterward link -- change state and branch. */
1657 static void
1658 write_afterward (start, afterward, indent)
1659 struct decision *start;
1660 struct decision *afterward;
1661 const char *indent;
1663 if (!afterward || start->subroutine_number > 0)
1664 printf("%sgoto ret0;\n", indent);
1665 else
1667 change_state (start->position, afterward->position, NULL, indent);
1668 printf ("%sgoto L%d;\n", indent, afterward->number);
1672 /* Emit a switch statement, if possible, for an initial sequence of
1673 nodes at START. Return the first node yet untested. */
1675 static struct decision *
1676 write_switch (start, depth)
1677 struct decision *start;
1678 int depth;
1680 struct decision *p = start;
1681 enum decision_type type = p->tests->type;
1683 /* If we have two or more nodes in sequence that test the same one
1684 thing, we may be able to use a switch statement. */
1686 if (!p->next
1687 || p->tests->next
1688 || p->next->tests->type != type
1689 || p->next->tests->next)
1690 return p;
1692 /* DT_code is special in that we can do interesting things with
1693 known predicates at the same time. */
1694 if (type == DT_code)
1696 char codemap[NUM_RTX_CODE];
1697 struct decision *ret;
1698 RTX_CODE code;
1700 memset (codemap, 0, sizeof(codemap));
1702 printf (" switch (GET_CODE (x%d))\n {\n", depth);
1703 code = p->tests->u.code;
1706 printf (" case ");
1707 print_code (code);
1708 printf (":\n goto L%d;\n", p->success.first->number);
1709 p->success.first->need_label = 1;
1711 codemap[code] = 1;
1712 p = p->next;
1714 while (p
1715 && ! p->tests->next
1716 && p->tests->type == DT_code
1717 && ! codemap[code = p->tests->u.code]);
1719 /* If P is testing a predicate that we know about and we haven't
1720 seen any of the codes that are valid for the predicate, we can
1721 write a series of "case" statement, one for each possible code.
1722 Since we are already in a switch, these redundant tests are very
1723 cheap and will reduce the number of predicates called. */
1725 /* Note that while we write out cases for these predicates here,
1726 we don't actually write the test here, as it gets kinda messy.
1727 It is trivial to leave this to later by telling our caller that
1728 we only processed the CODE tests. */
1729 ret = p;
1731 while (p && p->tests->type == DT_pred
1732 && p->tests->u.pred.index >= 0)
1734 const RTX_CODE *c;
1736 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1737 if (codemap[(int) *c] != 0)
1738 goto pred_done;
1740 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1742 printf (" case ");
1743 print_code (*c);
1744 printf (":\n");
1745 codemap[(int) *c] = 1;
1748 printf (" goto L%d;\n", p->number);
1749 p->need_label = 1;
1750 p = p->next;
1753 pred_done:
1754 /* Make the default case skip the predicates we managed to match. */
1756 printf (" default:\n");
1757 if (p != ret)
1759 if (p)
1761 printf (" goto L%d;\n", p->number);
1762 p->need_label = 1;
1764 else
1765 write_afterward (start, start->afterward, " ");
1767 else
1768 printf (" break;\n");
1769 printf (" }\n");
1771 return ret;
1773 else if (type == DT_mode
1774 || type == DT_veclen
1775 || type == DT_elt_zero_int
1776 || type == DT_elt_one_int
1777 || type == DT_elt_zero_wide)
1779 const char *str;
1781 printf (" switch (");
1782 switch (type)
1784 case DT_mode:
1785 str = "GET_MODE (x%d)";
1786 break;
1787 case DT_veclen:
1788 str = "XVECLEN (x%d, 0)";
1789 break;
1790 case DT_elt_zero_int:
1791 str = "XINT (x%d, 0)";
1792 break;
1793 case DT_elt_one_int:
1794 str = "XINT (x%d, 1)";
1795 break;
1796 case DT_elt_zero_wide:
1797 str = "XWINT (x%d, 0)";
1798 break;
1799 default:
1800 abort ();
1802 printf (str, depth);
1803 printf (")\n {\n");
1807 printf (" case ");
1808 switch (type)
1810 case DT_mode:
1811 printf ("%smode", GET_MODE_NAME (p->tests->u.mode));
1812 break;
1813 case DT_veclen:
1814 printf ("%d", p->tests->u.veclen);
1815 break;
1816 case DT_elt_zero_int:
1817 case DT_elt_one_int:
1818 case DT_elt_zero_wide:
1819 printf (HOST_WIDE_INT_PRINT_DEC, p->tests->u.intval);
1820 break;
1821 default:
1822 abort ();
1824 printf (":\n goto L%d;\n", p->success.first->number);
1825 p->success.first->need_label = 1;
1827 p = p->next;
1829 while (p && p->tests->type == type && !p->tests->next);
1831 printf (" default:\n break;\n }\n");
1833 return p;
1835 else
1837 /* None of the other tests are ameanable. */
1838 return p;
1842 /* Emit code for one test. */
1844 static void
1845 write_cond (p, depth, subroutine_type)
1846 struct decision_test *p;
1847 int depth;
1848 enum routine_type subroutine_type;
1850 switch (p->type)
1852 case DT_mode:
1853 printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode));
1854 break;
1856 case DT_code:
1857 printf ("GET_CODE (x%d) == ", depth);
1858 print_code (p->u.code);
1859 break;
1861 case DT_veclen:
1862 printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen);
1863 break;
1865 case DT_elt_zero_int:
1866 printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval);
1867 break;
1869 case DT_elt_one_int:
1870 printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval);
1871 break;
1873 case DT_elt_zero_wide:
1874 printf ("XWINT (x%d, 0) == ", depth);
1875 printf (HOST_WIDE_INT_PRINT_DEC, p->u.intval);
1876 break;
1878 case DT_dup:
1879 printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup);
1880 break;
1882 case DT_pred:
1883 printf ("%s (x%d, %smode)", p->u.pred.name, depth,
1884 GET_MODE_NAME (p->u.pred.mode));
1885 break;
1887 case DT_c_test:
1888 printf ("(%s)", p->u.c_test);
1889 break;
1891 case DT_accept_insn:
1892 switch (subroutine_type)
1894 case RECOG:
1895 if (p->u.insn.num_clobbers_to_add == 0)
1896 abort ();
1897 printf ("pnum_clobbers != NULL");
1898 break;
1900 default:
1901 abort ();
1903 break;
1905 default:
1906 abort ();
1910 /* Emit code for one action. The previous tests have succeeded;
1911 TEST is the last of the chain. In the normal case we simply
1912 perform a state change. For the `accept' tests we must do more work. */
1914 static void
1915 write_action (test, depth, uncond, success, subroutine_type)
1916 struct decision_test *test;
1917 int depth, uncond;
1918 struct decision *success;
1919 enum routine_type subroutine_type;
1921 const char *indent;
1922 int want_close = 0;
1924 if (uncond)
1925 indent = " ";
1926 else if (test->type == DT_accept_op || test->type == DT_accept_insn)
1928 fputs (" {\n", stdout);
1929 indent = " ";
1930 want_close = 1;
1932 else
1933 indent = " ";
1935 if (test->type == DT_accept_op)
1937 printf("%soperands[%d] = x%d;\n", indent, test->u.opno, depth);
1939 /* Only allow DT_accept_insn to follow. */
1940 if (test->next)
1942 test = test->next;
1943 if (test->type != DT_accept_insn)
1944 abort ();
1948 /* Sanity check that we're now at the end of the list of tests. */
1949 if (test->next)
1950 abort ();
1952 if (test->type == DT_accept_insn)
1954 switch (subroutine_type)
1956 case RECOG:
1957 if (test->u.insn.num_clobbers_to_add != 0)
1958 printf ("%s*pnum_clobbers = %d;\n",
1959 indent, test->u.insn.num_clobbers_to_add);
1960 printf ("%sreturn %d;\n", indent, test->u.insn.code_number);
1961 break;
1963 case SPLIT:
1964 printf ("%sreturn gen_split_%d (operands);\n",
1965 indent, test->u.insn.code_number);
1966 break;
1968 case PEEPHOLE2:
1969 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
1970 indent, test->u.insn.code_number);
1971 printf ("%sif (tem != 0)\n%s goto ret1;\n", indent, indent);
1972 break;
1974 default:
1975 abort ();
1978 else
1980 printf("%sgoto L%d;\n", indent, success->number);
1981 success->need_label = 1;
1984 if (want_close)
1985 fputs (" }\n", stdout);
1988 /* Return 1 if the test is always true and has no fallthru path. Return -1
1989 if the test does have a fallthru path, but requires that the condition be
1990 terminated. Otherwise return 0 for a normal test. */
1991 /* ??? is_unconditional is a stupid name for a tri-state function. */
1993 static int
1994 is_unconditional (t, subroutine_type)
1995 struct decision_test *t;
1996 enum routine_type subroutine_type;
1998 if (t->type == DT_accept_op)
1999 return 1;
2001 if (t->type == DT_accept_insn)
2003 switch (subroutine_type)
2005 case RECOG:
2006 return (t->u.insn.num_clobbers_to_add == 0);
2007 case SPLIT:
2008 return 1;
2009 case PEEPHOLE2:
2010 return -1;
2011 default:
2012 abort ();
2016 return 0;
2019 /* Emit code for one node -- the conditional and the accompanying action.
2020 Return true if there is no fallthru path. */
2022 static int
2023 write_node (p, depth, subroutine_type)
2024 struct decision *p;
2025 int depth;
2026 enum routine_type subroutine_type;
2028 struct decision_test *test, *last_test;
2029 int uncond;
2031 last_test = test = p->tests;
2032 uncond = is_unconditional (test, subroutine_type);
2033 if (uncond == 0)
2035 printf (" if (");
2036 write_cond (test, depth, subroutine_type);
2038 while ((test = test->next) != NULL)
2040 int uncond2;
2042 last_test = test;
2043 uncond2 = is_unconditional (test, subroutine_type);
2044 if (uncond2 != 0)
2045 break;
2047 printf ("\n && ");
2048 write_cond (test, depth, subroutine_type);
2051 printf (")\n");
2054 write_action (last_test, depth, uncond, p->success.first, subroutine_type);
2056 return uncond > 0;
2059 /* Emit code for all of the sibling nodes of HEAD. */
2061 static void
2062 write_tree_1 (head, depth, subroutine_type)
2063 struct decision_head *head;
2064 int depth;
2065 enum routine_type subroutine_type;
2067 struct decision *p, *next;
2068 int uncond = 0;
2070 for (p = head->first; p ; p = next)
2072 /* The label for the first element was printed in write_tree. */
2073 if (p != head->first && p->need_label)
2074 OUTPUT_LABEL (" ", p->number);
2076 /* Attempt to write a switch statement for a whole sequence. */
2077 next = write_switch (p, depth);
2078 if (p != next)
2079 uncond = 0;
2080 else
2082 /* Failed -- fall back and write one node. */
2083 uncond = write_node (p, depth, subroutine_type);
2084 next = p->next;
2088 /* Finished with this chain. Close a fallthru path by branching
2089 to the afterward node. */
2090 if (! uncond)
2091 write_afterward (head->last, head->last->afterward, " ");
2094 /* Write out the decision tree starting at HEAD. PREVPOS is the
2095 position at the node that branched to this node. */
2097 static void
2098 write_tree (head, prevpos, type, initial)
2099 struct decision_head *head;
2100 const char *prevpos;
2101 enum routine_type type;
2102 int initial;
2104 register struct decision *p = head->first;
2106 putchar ('\n');
2107 if (p->need_label)
2108 OUTPUT_LABEL (" ", p->number);
2110 if (! initial && p->subroutine_number > 0)
2112 static const char * const name_prefix[] = {
2113 "recog", "split", "peephole2"
2116 static const char * const call_suffix[] = {
2117 ", pnum_clobbers", "", ", _plast_insn"
2120 /* This node has been broken out into a separate subroutine.
2121 Call it, test the result, and branch accordingly. */
2123 if (p->afterward)
2125 printf (" tem = %s_%d (x0, insn%s);\n",
2126 name_prefix[type], p->subroutine_number, call_suffix[type]);
2127 if (IS_SPLIT (type))
2128 printf (" if (tem != 0)\n return tem;\n");
2129 else
2130 printf (" if (tem >= 0)\n return tem;\n");
2132 change_state (p->position, p->afterward->position, NULL, " ");
2133 printf (" goto L%d;\n", p->afterward->number);
2135 else
2137 printf (" return %s_%d (x0, insn%s);\n",
2138 name_prefix[type], p->subroutine_number, call_suffix[type]);
2141 else
2143 int depth = strlen (p->position);
2145 change_state (prevpos, p->position, head->last->afterward, " ");
2146 write_tree_1 (head, depth, type);
2148 for (p = head->first; p; p = p->next)
2149 if (p->success.first)
2150 write_tree (&p->success, p->position, type, 0);
2154 /* Write out a subroutine of type TYPE to do comparisons starting at
2155 node TREE. */
2157 static void
2158 write_subroutine (head, type)
2159 struct decision_head *head;
2160 enum routine_type type;
2162 static const char * const proto_pattern[] = {
2163 "%sint recog%s PROTO ((rtx, rtx, int *));\n",
2164 "%srtx split%s PROTO ((rtx, rtx));\n",
2165 "%srtx peephole2%s PROTO ((rtx, rtx, rtx *));\n"
2168 static const char * const decl_pattern[] = {
2169 "%sint\n\
2170 recog%s (x0, insn, pnum_clobbers)\n\
2171 register rtx x0;\n\
2172 rtx insn ATTRIBUTE_UNUSED;\n\
2173 int *pnum_clobbers ATTRIBUTE_UNUSED;\n",
2175 "%srtx\n\
2176 split%s (x0, insn)\n\
2177 register rtx x0;\n\
2178 rtx insn ATTRIBUTE_UNUSED;\n",
2180 "%srtx\n\
2181 peephole2%s (x0, insn, _plast_insn)\n\
2182 register rtx x0;\n\
2183 rtx insn ATTRIBUTE_UNUSED;\n\
2184 rtx *_plast_insn ATTRIBUTE_UNUSED;\n"
2187 int subfunction = head->first ? head->first->subroutine_number : 0;
2188 const char *s_or_e;
2189 char extension[32];
2190 int i;
2192 s_or_e = subfunction ? "static " : "";
2194 if (subfunction)
2195 sprintf (extension, "_%d", subfunction);
2196 else if (type == RECOG)
2197 extension[0] = '\0';
2198 else
2199 strcpy (extension, "_insns");
2201 printf (proto_pattern[type], s_or_e, extension);
2202 printf (decl_pattern[type], s_or_e, extension);
2204 printf ("{\n register rtx * const operands = &recog_data.operand[0];\n");
2205 for (i = 1; i <= max_depth; i++)
2206 printf (" register rtx x%d ATTRIBUTE_UNUSED;\n", i);
2208 if (type == PEEPHOLE2)
2209 printf (" register rtx _last_insn = insn;\n");
2210 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int");
2212 if (head->first)
2213 write_tree (head, "", type, 1);
2214 else
2215 printf (" goto ret0;\n");
2217 if (type == PEEPHOLE2)
2218 printf (" ret1:\n *_plast_insn = _last_insn;\n return tem;\n");
2219 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1);
2222 /* In break_out_subroutines, we discovered the boundaries for the
2223 subroutines, but did not write them out. Do so now. */
2225 static void
2226 write_subroutines (head, type)
2227 struct decision_head *head;
2228 enum routine_type type;
2230 struct decision *p;
2232 for (p = head->first; p ; p = p->next)
2233 if (p->success.first)
2234 write_subroutines (&p->success, type);
2236 if (head->first->subroutine_number > 0)
2237 write_subroutine (head, type);
2240 /* Begin the output file. */
2242 static void
2243 write_header ()
2245 puts ("\
2246 /* Generated automatically by the program `genrecog' from the target\n\
2247 machine description file. */\n\
2249 #include \"config.h\"\n\
2250 #include \"system.h\"\n\
2251 #include \"rtl.h\"\n\
2252 #include \"tm_p.h\"\n\
2253 #include \"function.h\"\n\
2254 #include \"insn-config.h\"\n\
2255 #include \"recog.h\"\n\
2256 #include \"real.h\"\n\
2257 #include \"output.h\"\n\
2258 #include \"flags.h\"\n\
2259 #include \"hard-reg-set.h\"\n\
2260 #include \"resource.h\"\n\
2261 \n");
2263 puts ("\n\
2264 /* `recog' contains a decision tree that recognizes whether the rtx\n\
2265 X0 is a valid instruction.\n\
2267 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2268 returns a nonnegative number which is the insn code number for the\n\
2269 pattern that matched. This is the same as the order in the machine\n\
2270 description of the entry that matched. This number can be used as an\n\
2271 index into `insn_data' and other tables.\n\
2273 The third argument to recog is an optional pointer to an int. If\n\
2274 present, recog will accept a pattern if it matches except for missing\n\
2275 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2276 the optional pointer will be set to the number of CLOBBERs that need\n\
2277 to be added (it should be initialized to zero by the caller). If it\n\
2278 is set nonzero, the caller should allocate a PARALLEL of the\n\
2279 appropriate size, copy the initial entries, and call add_clobbers\n\
2280 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2283 puts ("\n\
2284 The function split_insns returns 0 if the rtl could not\n\
2285 be split or the split rtl in a SEQUENCE if it can be.\n\
2287 The function peephole2_insns returns 0 if the rtl could not\n\
2288 be matched. If there was a match, the new rtl is returned in a SEQUENCE,\n\
2289 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2290 */\n\n");
2294 /* Construct and return a sequence of decisions
2295 that will recognize INSN.
2297 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2299 static struct decision_head
2300 make_insn_sequence (insn, type)
2301 rtx insn;
2302 enum routine_type type;
2304 rtx x;
2305 const char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
2306 struct decision *last;
2307 struct decision_test *test, **place;
2308 struct decision_head head;
2310 record_insn_name (next_insn_code, (type == RECOG ? XSTR (insn, 0) : NULL));
2312 if (type == PEEPHOLE2)
2314 int i, j;
2316 /* peephole2 gets special treatment:
2317 - X always gets an outer parallel even if it's only one entry
2318 - we remove all traces of outer-level match_scratch and match_dup
2319 expressions here. */
2320 x = rtx_alloc (PARALLEL);
2321 PUT_MODE (x, VOIDmode);
2322 XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0));
2323 for (i = j = 0; i < XVECLEN (insn, 0); i++)
2325 rtx tmp = XVECEXP (insn, 0, i);
2326 if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP)
2328 XVECEXP (x, 0, j) = tmp;
2329 j++;
2332 XVECLEN (x, 0) = j;
2334 else if (XVECLEN (insn, type == RECOG) == 1)
2335 x = XVECEXP (insn, type == RECOG, 0);
2336 else
2338 x = rtx_alloc (PARALLEL);
2339 XVEC (x, 0) = XVEC (insn, type == RECOG);
2340 PUT_MODE (x, VOIDmode);
2343 validate_pattern (x, insn, NULL_RTX);
2345 memset(&head, 0, sizeof(head));
2346 last = add_to_sequence (x, &head, "", type, 1);
2348 /* Find the end of the test chain on the last node. */
2349 for (test = last->tests; test->next; test = test->next)
2350 continue;
2351 place = &test->next;
2353 if (c_test[0])
2355 /* Need a new node if we have another test to add. */
2356 if (test->type == DT_accept_op)
2358 last = new_decision ("", &last->success);
2359 place = &last->tests;
2361 test = new_decision_test (DT_c_test, &place);
2362 test->u.c_test = c_test;
2365 test = new_decision_test (DT_accept_insn, &place);
2366 test->u.insn.code_number = next_insn_code;
2367 test->u.insn.lineno = pattern_lineno;
2368 test->u.insn.num_clobbers_to_add = 0;
2370 switch (type)
2372 case RECOG:
2373 /* If this is an DEFINE_INSN and X is a PARALLEL, see if it ends
2374 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2375 If so, set up to recognize the pattern without these CLOBBERs. */
2377 if (GET_CODE (x) == PARALLEL)
2379 int i;
2381 /* Find the last non-clobber in the parallel. */
2382 for (i = XVECLEN (x, 0); i > 0; i--)
2384 rtx y = XVECEXP (x, 0, i - 1);
2385 if (GET_CODE (y) != CLOBBER
2386 || (GET_CODE (XEXP (y, 0)) != REG
2387 && GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH))
2388 break;
2391 if (i != XVECLEN (x, 0))
2393 rtx new;
2394 struct decision_head clobber_head;
2396 /* Build a similar insn without the clobbers. */
2397 if (i == 1)
2398 new = XVECEXP (x, 0, 0);
2399 else
2401 int j;
2403 new = rtx_alloc (PARALLEL);
2404 XVEC (new, 0) = rtvec_alloc (i);
2405 for (j = i - 1; j >= 0; j--)
2406 XVECEXP (new, 0, j) = XVECEXP (x, 0, j);
2409 /* Recognize it. */
2410 memset (&clobber_head, 0, sizeof(clobber_head));
2411 last = add_to_sequence (new, &clobber_head, "", type, 1);
2413 /* Find the end of the test chain on the last node. */
2414 for (test = last->tests; test->next; test = test->next)
2415 continue;
2417 /* We definitely have a new test to add -- create a new
2418 node if needed. */
2419 place = &test->next;
2420 if (test->type == DT_accept_op)
2422 last = new_decision ("", &last->success);
2423 place = &last->tests;
2426 if (c_test[0])
2428 test = new_decision_test (DT_c_test, &place);
2429 test->u.c_test = c_test;
2432 test = new_decision_test (DT_accept_insn, &place);
2433 test->u.insn.code_number = next_insn_code;
2434 test->u.insn.lineno = pattern_lineno;
2435 test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i;
2437 merge_trees (&head, &clobber_head);
2440 break;
2442 case SPLIT:
2443 /* Define the subroutine we will call below and emit in genemit. */
2444 printf ("extern rtx gen_split_%d PROTO ((rtx *));\n", next_insn_code);
2445 break;
2447 case PEEPHOLE2:
2448 /* Define the subroutine we will call below and emit in genemit. */
2449 printf ("extern rtx gen_peephole2_%d PROTO ((rtx, rtx *));\n",
2450 next_insn_code);
2451 break;
2453 next_insn_code++;
2455 return head;
2458 static void
2459 process_tree (head, subroutine_type)
2460 struct decision_head *head;
2461 enum routine_type subroutine_type;
2463 if (head->first == NULL)
2465 /* We can elide peephole2_insns, but not recog or split_insns. */
2466 if (subroutine_type == PEEPHOLE2)
2467 return;
2469 else
2471 factor_tests (head);
2473 next_subroutine_number = 0;
2474 break_out_subroutines (head, 1);
2475 find_afterward (head, NULL);
2477 /* We run this after find_afterward, because find_afterward needs
2478 the redundant DT_mode tests on predicates to determine whether
2479 two tests can both be true or not. */
2480 simplify_tests(head);
2482 write_subroutines (head, subroutine_type);
2485 write_subroutine (head, subroutine_type);
2488 extern int main PROTO ((int, char **));
2491 main (argc, argv)
2492 int argc;
2493 char **argv;
2495 rtx desc;
2496 struct decision_head recog_tree, split_tree, peephole2_tree, h;
2497 FILE *infile;
2498 register int c;
2500 progname = "genrecog";
2501 obstack_init (rtl_obstack);
2503 memset (&recog_tree, 0, sizeof recog_tree);
2504 memset (&split_tree, 0, sizeof split_tree);
2505 memset (&peephole2_tree, 0, sizeof peephole2_tree);
2507 if (argc <= 1)
2508 fatal ("No input file name.");
2510 infile = fopen (argv[1], "r");
2511 if (infile == 0)
2513 perror (argv[1]);
2514 return FATAL_EXIT_CODE;
2516 read_rtx_filename = argv[1];
2518 next_insn_code = 0;
2519 next_index = 0;
2521 write_header ();
2523 /* Read the machine description. */
2525 while (1)
2527 c = read_skip_spaces (infile);
2528 if (c == EOF)
2529 break;
2530 ungetc (c, infile);
2531 pattern_lineno = read_rtx_lineno;
2533 desc = read_rtx (infile);
2534 if (GET_CODE (desc) == DEFINE_INSN)
2536 h = make_insn_sequence (desc, RECOG);
2537 merge_trees (&recog_tree, &h);
2539 else if (GET_CODE (desc) == DEFINE_SPLIT)
2541 h = make_insn_sequence (desc, SPLIT);
2542 merge_trees (&split_tree, &h);
2544 else if (GET_CODE (desc) == DEFINE_PEEPHOLE2)
2546 h = make_insn_sequence (desc, PEEPHOLE2);
2547 merge_trees (&peephole2_tree, &h);
2550 if (GET_CODE (desc) == DEFINE_PEEPHOLE
2551 || GET_CODE (desc) == DEFINE_EXPAND)
2552 next_insn_code++;
2553 next_index++;
2556 if (error_count)
2557 return FATAL_EXIT_CODE;
2559 puts ("\n\n");
2561 process_tree (&recog_tree, RECOG);
2562 process_tree (&split_tree, SPLIT);
2563 process_tree (&peephole2_tree, PEEPHOLE2);
2565 fflush (stdout);
2566 return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
2569 /* Define this so we can link with print-rtl.o to get debug_rtx function. */
2570 const char *
2571 get_insn_name (code)
2572 int code;
2574 if (code < insn_name_ptr_size)
2575 return insn_name_ptr[code];
2576 else
2577 return NULL;
2580 static void
2581 record_insn_name (code, name)
2582 int code;
2583 const char *name;
2585 static const char *last_real_name = "insn";
2586 static int last_real_code = 0;
2587 char *new;
2589 if (insn_name_ptr_size <= code)
2591 int new_size;
2592 new_size = (insn_name_ptr_size ? insn_name_ptr_size * 2 : 512);
2593 insn_name_ptr =
2594 (char **) xrealloc (insn_name_ptr, sizeof(char *) * new_size);
2595 memset (insn_name_ptr + insn_name_ptr_size, 0,
2596 sizeof(char *) * (new_size - insn_name_ptr_size));
2597 insn_name_ptr_size = new_size;
2600 if (!name || name[0] == '\0')
2602 new = xmalloc (strlen (last_real_name) + 10);
2603 sprintf (new, "%s+%d", last_real_name, code - last_real_code);
2605 else
2607 last_real_name = new = xstrdup (name);
2608 last_real_code = code;
2611 insn_name_ptr[code] = new;
2614 char *
2615 xstrdup (input)
2616 const char *input;
2618 register size_t len = strlen (input) + 1;
2619 register char *output = xmalloc (len);
2620 memcpy (output, input, len);
2621 return output;
2625 xrealloc (old, size)
2626 PTR old;
2627 size_t size;
2629 register PTR ptr;
2630 if (old)
2631 ptr = (PTR) realloc (old, size);
2632 else
2633 ptr = (PTR) malloc (size);
2634 if (!ptr)
2635 fatal ("virtual memory exhausted");
2636 return ptr;
2640 xmalloc (size)
2641 size_t size;
2643 register PTR val = (PTR) malloc (size);
2645 if (val == 0)
2646 fatal ("virtual memory exhausted");
2647 return val;
2650 static void
2651 debug_decision_2 (test)
2652 struct decision_test *test;
2654 switch (test->type)
2656 case DT_mode:
2657 fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode));
2658 break;
2659 case DT_code:
2660 fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code));
2661 break;
2662 case DT_veclen:
2663 fprintf (stderr, "veclen=%d", test->u.veclen);
2664 break;
2665 case DT_elt_zero_int:
2666 fprintf (stderr, "elt0_i=%d", (int) test->u.intval);
2667 break;
2668 case DT_elt_one_int:
2669 fprintf (stderr, "elt1_i=%d", (int) test->u.intval);
2670 break;
2671 case DT_elt_zero_wide:
2672 fprintf (stderr, "elt0_w=");
2673 fprintf (stderr, HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2674 break;
2675 case DT_dup:
2676 fprintf (stderr, "dup=%d", test->u.dup);
2677 break;
2678 case DT_pred:
2679 fprintf (stderr, "pred=(%s,%s)",
2680 test->u.pred.name, GET_MODE_NAME(test->u.pred.mode));
2681 break;
2682 case DT_c_test:
2684 char sub[16+4];
2685 strncpy (sub, test->u.c_test, sizeof(sub));
2686 memcpy (sub+16, "...", 4);
2687 fprintf (stderr, "c_test=\"%s\"", sub);
2689 break;
2690 case DT_accept_op:
2691 fprintf (stderr, "A_op=%d", test->u.opno);
2692 break;
2693 case DT_accept_insn:
2694 fprintf (stderr, "A_insn=(%d,%d)",
2695 test->u.insn.code_number, test->u.insn.num_clobbers_to_add);
2696 break;
2698 default:
2699 abort ();
2703 static void
2704 debug_decision_1 (d, indent)
2705 struct decision *d;
2706 int indent;
2708 int i;
2709 struct decision_test *test;
2711 if (d == NULL)
2713 for (i = 0; i < indent; ++i)
2714 putc (' ', stderr);
2715 fputs ("(nil)\n", stderr);
2716 return;
2719 for (i = 0; i < indent; ++i)
2720 putc (' ', stderr);
2722 putc ('{', stderr);
2723 test = d->tests;
2724 if (test)
2726 debug_decision_2 (test);
2727 while ((test = test->next) != NULL)
2729 fputs (" + ", stderr);
2730 debug_decision_2 (test);
2733 fprintf (stderr, "} %d n %d a %d\n", d->number,
2734 (d->next ? d->next->number : -1),
2735 (d->afterward ? d->afterward->number : -1));
2738 static void
2739 debug_decision_0 (d, indent, maxdepth)
2740 struct decision *d;
2741 int indent, maxdepth;
2743 struct decision *n;
2744 int i;
2746 if (maxdepth < 0)
2747 return;
2748 if (d == NULL)
2750 for (i = 0; i < indent; ++i)
2751 putc (' ', stderr);
2752 fputs ("(nil)\n", stderr);
2753 return;
2756 debug_decision_1 (d, indent);
2757 for (n = d->success.first; n ; n = n->next)
2758 debug_decision_0 (n, indent + 2, maxdepth - 1);
2761 void
2762 debug_decision (d)
2763 struct decision *d;
2765 debug_decision_0 (d, 0, 1000000);
2768 void
2769 debug_decision_list (d)
2770 struct decision *d;
2772 while (d)
2774 debug_decision_0 (d, 0, 0);
2775 d = d->next;