* builtins.c: Fix comment typos.
[official-gcc.git] / gcc / gcse.c
blob47d3fae5730e07fc757b10668d06397ae69c77b8
1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
23 /* TODO
24 - reordering of memory allocation and freeing to be more space efficient
25 - do rough calc of how many regs are needed in each block, and a rough
26 calc of how many regs are available in each class and use that to
27 throttle back the code in cases where RTX_COST is minimal.
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
37 /* References searched while implementing this.
39 Compilers Principles, Techniques and Tools
40 Aho, Sethi, Ullman
41 Addison-Wesley, 1988
43 Global Optimization by Suppression of Partial Redundancies
44 E. Morel, C. Renvoise
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
48 Frederick Chow
49 Stanford Ph.D. thesis, Dec. 1983
51 A Fast Algorithm for Code Movement Optimization
52 D.M. Dhamdhere
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
62 D.M. Dhamdhere
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
65 Efficiently Computing Static Single Assignment Form and the Control
66 Dependence Graph
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
70 Lazy Code Motion
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
76 Thomas Ball
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
109 Global code motion / global value numbering
110 C. Click
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
113 Value Driven Redundancy Elimination
114 L.T. Simpson
115 Rice University Ph.D. thesis, Apr. 1996
117 Value Numbering
118 L.T. Simpson
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
121 High Performance Compilers for Parallel Computing
122 Michael Wolfe
123 Addison-Wesley, 1996
125 Advanced Compiler Design and Implementation
126 Steven Muchnick
127 Morgan Kaufmann, 1997
129 Building an Optimizing Compiler
130 Robert Morgan
131 Digital Press, 1998
133 People wishing to speed up the code here should read:
134 Elimination Algorithms for Data Flow Analysis
135 B.G. Ryder, M.C. Paull
136 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
138 How to Analyze Large Programs Efficiently and Informatively
139 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
140 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
142 People wishing to do something different can find various possibilities
143 in the above papers and elsewhere.
146 #include "config.h"
147 #include "system.h"
148 #include "coretypes.h"
149 #include "tm.h"
150 #include "toplev.h"
152 #include "rtl.h"
153 #include "tree.h"
154 #include "tm_p.h"
155 #include "regs.h"
156 #include "hard-reg-set.h"
157 #include "flags.h"
158 #include "real.h"
159 #include "insn-config.h"
160 #include "recog.h"
161 #include "basic-block.h"
162 #include "output.h"
163 #include "function.h"
164 #include "expr.h"
165 #include "except.h"
166 #include "ggc.h"
167 #include "params.h"
168 #include "cselib.h"
169 #include "intl.h"
170 #include "obstack.h"
171 #include "timevar.h"
173 /* Propagate flow information through back edges and thus enable PRE's
174 moving loop invariant calculations out of loops.
176 Originally this tended to create worse overall code, but several
177 improvements during the development of PRE seem to have made following
178 back edges generally a win.
180 Note much of the loop invariant code motion done here would normally
181 be done by loop.c, which has more heuristics for when to move invariants
182 out of loops. At some point we might need to move some of those
183 heuristics into gcse.c. */
185 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
186 are a superset of those done by GCSE.
188 We perform the following steps:
190 1) Compute basic block information.
192 2) Compute table of places where registers are set.
194 3) Perform copy/constant propagation.
196 4) Perform global cse using lazy code motion if not optimizing
197 for size, or code hoisting if we are.
199 5) Perform another pass of copy/constant propagation.
201 Two passes of copy/constant propagation are done because the first one
202 enables more GCSE and the second one helps to clean up the copies that
203 GCSE creates. This is needed more for PRE than for Classic because Classic
204 GCSE will try to use an existing register containing the common
205 subexpression rather than create a new one. This is harder to do for PRE
206 because of the code motion (which Classic GCSE doesn't do).
208 Expressions we are interested in GCSE-ing are of the form
209 (set (pseudo-reg) (expression)).
210 Function want_to_gcse_p says what these are.
212 PRE handles moving invariant expressions out of loops (by treating them as
213 partially redundant).
215 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
216 assignment) based GVN (global value numbering). L. T. Simpson's paper
217 (Rice University) on value numbering is a useful reference for this.
219 **********************
221 We used to support multiple passes but there are diminishing returns in
222 doing so. The first pass usually makes 90% of the changes that are doable.
223 A second pass can make a few more changes made possible by the first pass.
224 Experiments show any further passes don't make enough changes to justify
225 the expense.
227 A study of spec92 using an unlimited number of passes:
228 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
229 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
230 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
232 It was found doing copy propagation between each pass enables further
233 substitutions.
235 PRE is quite expensive in complicated functions because the DFA can take
236 a while to converge. Hence we only perform one pass. The parameter
237 max-gcse-passes can be modified if one wants to experiment.
239 **********************
241 The steps for PRE are:
243 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
245 2) Perform the data flow analysis for PRE.
247 3) Delete the redundant instructions
249 4) Insert the required copies [if any] that make the partially
250 redundant instructions fully redundant.
252 5) For other reaching expressions, insert an instruction to copy the value
253 to a newly created pseudo that will reach the redundant instruction.
255 The deletion is done first so that when we do insertions we
256 know which pseudo reg to use.
258 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
259 argue it is not. The number of iterations for the algorithm to converge
260 is typically 2-4 so I don't view it as that expensive (relatively speaking).
262 PRE GCSE depends heavily on the second CSE pass to clean up the copies
263 we create. To make an expression reach the place where it's redundant,
264 the result of the expression is copied to a new register, and the redundant
265 expression is deleted by replacing it with this new register. Classic GCSE
266 doesn't have this problem as much as it computes the reaching defs of
267 each register in each block and thus can try to use an existing register.
269 **********************
271 A fair bit of simplicity is created by creating small functions for simple
272 tasks, even when the function is only called in one place. This may
273 measurably slow things down [or may not] by creating more function call
274 overhead than is necessary. The source is laid out so that it's trivial
275 to make the affected functions inline so that one can measure what speed
276 up, if any, can be achieved, and maybe later when things settle things can
277 be rearranged.
279 Help stamp out big monolithic functions! */
281 /* GCSE global vars. */
283 /* -dG dump file. */
284 static FILE *gcse_file;
286 /* Note whether or not we should run jump optimization after gcse. We
287 want to do this for two cases.
289 * If we changed any jumps via cprop.
291 * If we added any labels via edge splitting. */
292 static int run_jump_opt_after_gcse;
294 /* Bitmaps are normally not included in debugging dumps.
295 However it's useful to be able to print them from GDB.
296 We could create special functions for this, but it's simpler to
297 just allow passing stderr to the dump_foo fns. Since stderr can
298 be a macro, we store a copy here. */
299 static FILE *debug_stderr;
301 /* An obstack for our working variables. */
302 static struct obstack gcse_obstack;
304 struct reg_use {rtx reg_rtx; };
306 /* Hash table of expressions. */
308 struct expr
310 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
311 rtx expr;
312 /* Index in the available expression bitmaps. */
313 int bitmap_index;
314 /* Next entry with the same hash. */
315 struct expr *next_same_hash;
316 /* List of anticipatable occurrences in basic blocks in the function.
317 An "anticipatable occurrence" is one that is the first occurrence in the
318 basic block, the operands are not modified in the basic block prior
319 to the occurrence and the output is not used between the start of
320 the block and the occurrence. */
321 struct occr *antic_occr;
322 /* List of available occurrence in basic blocks in the function.
323 An "available occurrence" is one that is the last occurrence in the
324 basic block and the operands are not modified by following statements in
325 the basic block [including this insn]. */
326 struct occr *avail_occr;
327 /* Non-null if the computation is PRE redundant.
328 The value is the newly created pseudo-reg to record a copy of the
329 expression in all the places that reach the redundant copy. */
330 rtx reaching_reg;
333 /* Occurrence of an expression.
334 There is one per basic block. If a pattern appears more than once the
335 last appearance is used [or first for anticipatable expressions]. */
337 struct occr
339 /* Next occurrence of this expression. */
340 struct occr *next;
341 /* The insn that computes the expression. */
342 rtx insn;
343 /* Nonzero if this [anticipatable] occurrence has been deleted. */
344 char deleted_p;
345 /* Nonzero if this [available] occurrence has been copied to
346 reaching_reg. */
347 /* ??? This is mutually exclusive with deleted_p, so they could share
348 the same byte. */
349 char copied_p;
352 /* Expression and copy propagation hash tables.
353 Each hash table is an array of buckets.
354 ??? It is known that if it were an array of entries, structure elements
355 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
356 not clear whether in the final analysis a sufficient amount of memory would
357 be saved as the size of the available expression bitmaps would be larger
358 [one could build a mapping table without holes afterwards though].
359 Someday I'll perform the computation and figure it out. */
361 struct hash_table
363 /* The table itself.
364 This is an array of `expr_hash_table_size' elements. */
365 struct expr **table;
367 /* Size of the hash table, in elements. */
368 unsigned int size;
370 /* Number of hash table elements. */
371 unsigned int n_elems;
373 /* Whether the table is expression of copy propagation one. */
374 int set_p;
377 /* Expression hash table. */
378 static struct hash_table expr_hash_table;
380 /* Copy propagation hash table. */
381 static struct hash_table set_hash_table;
383 /* Mapping of uids to cuids.
384 Only real insns get cuids. */
385 static int *uid_cuid;
387 /* Highest UID in UID_CUID. */
388 static int max_uid;
390 /* Get the cuid of an insn. */
391 #ifdef ENABLE_CHECKING
392 #define INSN_CUID(INSN) \
393 (gcc_assert (INSN_UID (INSN) <= max_uid), uid_cuid[INSN_UID (INSN)])
394 #else
395 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
396 #endif
398 /* Number of cuids. */
399 static int max_cuid;
401 /* Mapping of cuids to insns. */
402 static rtx *cuid_insn;
404 /* Get insn from cuid. */
405 #define CUID_INSN(CUID) (cuid_insn[CUID])
407 /* Maximum register number in function prior to doing gcse + 1.
408 Registers created during this pass have regno >= max_gcse_regno.
409 This is named with "gcse" to not collide with global of same name. */
410 static unsigned int max_gcse_regno;
412 /* Table of registers that are modified.
414 For each register, each element is a list of places where the pseudo-reg
415 is set.
417 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
418 requires knowledge of which blocks kill which regs [and thus could use
419 a bitmap instead of the lists `reg_set_table' uses].
421 `reg_set_table' and could be turned into an array of bitmaps (num-bbs x
422 num-regs) [however perhaps it may be useful to keep the data as is]. One
423 advantage of recording things this way is that `reg_set_table' is fairly
424 sparse with respect to pseudo regs but for hard regs could be fairly dense
425 [relatively speaking]. And recording sets of pseudo-regs in lists speeds
426 up functions like compute_transp since in the case of pseudo-regs we only
427 need to iterate over the number of times a pseudo-reg is set, not over the
428 number of basic blocks [clearly there is a bit of a slow down in the cases
429 where a pseudo is set more than once in a block, however it is believed
430 that the net effect is to speed things up]. This isn't done for hard-regs
431 because recording call-clobbered hard-regs in `reg_set_table' at each
432 function call can consume a fair bit of memory, and iterating over
433 hard-regs stored this way in compute_transp will be more expensive. */
435 typedef struct reg_set
437 /* The next setting of this register. */
438 struct reg_set *next;
439 /* The insn where it was set. */
440 rtx insn;
441 } reg_set;
443 static reg_set **reg_set_table;
445 /* Size of `reg_set_table'.
446 The table starts out at max_gcse_regno + slop, and is enlarged as
447 necessary. */
448 static int reg_set_table_size;
450 /* Amount to grow `reg_set_table' by when it's full. */
451 #define REG_SET_TABLE_SLOP 100
453 /* This is a list of expressions which are MEMs and will be used by load
454 or store motion.
455 Load motion tracks MEMs which aren't killed by
456 anything except itself. (i.e., loads and stores to a single location).
457 We can then allow movement of these MEM refs with a little special
458 allowance. (all stores copy the same value to the reaching reg used
459 for the loads). This means all values used to store into memory must have
460 no side effects so we can re-issue the setter value.
461 Store Motion uses this structure as an expression table to track stores
462 which look interesting, and might be moveable towards the exit block. */
464 struct ls_expr
466 struct expr * expr; /* Gcse expression reference for LM. */
467 rtx pattern; /* Pattern of this mem. */
468 rtx pattern_regs; /* List of registers mentioned by the mem. */
469 rtx loads; /* INSN list of loads seen. */
470 rtx stores; /* INSN list of stores seen. */
471 struct ls_expr * next; /* Next in the list. */
472 int invalid; /* Invalid for some reason. */
473 int index; /* If it maps to a bitmap index. */
474 unsigned int hash_index; /* Index when in a hash table. */
475 rtx reaching_reg; /* Register to use when re-writing. */
478 /* Array of implicit set patterns indexed by basic block index. */
479 static rtx *implicit_sets;
481 /* Head of the list of load/store memory refs. */
482 static struct ls_expr * pre_ldst_mems = NULL;
484 /* Bitmap containing one bit for each register in the program.
485 Used when performing GCSE to track which registers have been set since
486 the start of the basic block. */
487 static regset reg_set_bitmap;
489 /* For each block, a bitmap of registers set in the block.
490 This is used by compute_transp.
491 It is computed during hash table computation and not by compute_sets
492 as it includes registers added since the last pass (or between cprop and
493 gcse) and it's currently not easy to realloc sbitmap vectors. */
494 static sbitmap *reg_set_in_block;
496 /* Array, indexed by basic block number for a list of insns which modify
497 memory within that block. */
498 static rtx * modify_mem_list;
499 static bitmap modify_mem_list_set;
501 /* This array parallels modify_mem_list, but is kept canonicalized. */
502 static rtx * canon_modify_mem_list;
503 static bitmap canon_modify_mem_list_set;
505 /* Various variables for statistics gathering. */
507 /* Memory used in a pass.
508 This isn't intended to be absolutely precise. Its intent is only
509 to keep an eye on memory usage. */
510 static int bytes_used;
512 /* GCSE substitutions made. */
513 static int gcse_subst_count;
514 /* Number of copy instructions created. */
515 static int gcse_create_count;
516 /* Number of local constants propagated. */
517 static int local_const_prop_count;
518 /* Number of local copys propagated. */
519 static int local_copy_prop_count;
520 /* Number of global constants propagated. */
521 static int global_const_prop_count;
522 /* Number of global copys propagated. */
523 static int global_copy_prop_count;
525 /* For available exprs */
526 static sbitmap *ae_kill, *ae_gen;
528 /* Objects of this type are passed around by the null-pointer check
529 removal routines. */
530 struct null_pointer_info
532 /* The basic block being processed. */
533 basic_block current_block;
534 /* The first register to be handled in this pass. */
535 unsigned int min_reg;
536 /* One greater than the last register to be handled in this pass. */
537 unsigned int max_reg;
538 sbitmap *nonnull_local;
539 sbitmap *nonnull_killed;
542 static void compute_can_copy (void);
543 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
544 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
545 static void *grealloc (void *, size_t);
546 static void *gcse_alloc (unsigned long);
547 static void alloc_gcse_mem (rtx);
548 static void free_gcse_mem (void);
549 static void alloc_reg_set_mem (int);
550 static void free_reg_set_mem (void);
551 static void record_one_set (int, rtx);
552 static void replace_one_set (int, rtx, rtx);
553 static void record_set_info (rtx, rtx, void *);
554 static void compute_sets (rtx);
555 static void hash_scan_insn (rtx, struct hash_table *, int);
556 static void hash_scan_set (rtx, rtx, struct hash_table *);
557 static void hash_scan_clobber (rtx, rtx, struct hash_table *);
558 static void hash_scan_call (rtx, rtx, struct hash_table *);
559 static int want_to_gcse_p (rtx);
560 static bool can_assign_to_reg_p (rtx);
561 static bool gcse_constant_p (rtx);
562 static int oprs_unchanged_p (rtx, rtx, int);
563 static int oprs_anticipatable_p (rtx, rtx);
564 static int oprs_available_p (rtx, rtx);
565 static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int,
566 struct hash_table *);
567 static void insert_set_in_table (rtx, rtx, struct hash_table *);
568 static unsigned int hash_expr (rtx, enum machine_mode, int *, int);
569 static unsigned int hash_set (int, int);
570 static int expr_equiv_p (rtx, rtx);
571 static void record_last_reg_set_info (rtx, int);
572 static void record_last_mem_set_info (rtx);
573 static void record_last_set_info (rtx, rtx, void *);
574 static void compute_hash_table (struct hash_table *);
575 static void alloc_hash_table (int, struct hash_table *, int);
576 static void free_hash_table (struct hash_table *);
577 static void compute_hash_table_work (struct hash_table *);
578 static void dump_hash_table (FILE *, const char *, struct hash_table *);
579 static struct expr *lookup_set (unsigned int, struct hash_table *);
580 static struct expr *next_set (unsigned int, struct expr *);
581 static void reset_opr_set_tables (void);
582 static int oprs_not_set_p (rtx, rtx);
583 static void mark_call (rtx);
584 static void mark_set (rtx, rtx);
585 static void mark_clobber (rtx, rtx);
586 static void mark_oprs_set (rtx);
587 static void alloc_cprop_mem (int, int);
588 static void free_cprop_mem (void);
589 static void compute_transp (rtx, int, sbitmap *, int);
590 static void compute_transpout (void);
591 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
592 struct hash_table *);
593 static void compute_cprop_data (void);
594 static void find_used_regs (rtx *, void *);
595 static int try_replace_reg (rtx, rtx, rtx);
596 static struct expr *find_avail_set (int, rtx);
597 static int cprop_jump (basic_block, rtx, rtx, rtx, rtx);
598 static void mems_conflict_for_gcse_p (rtx, rtx, void *);
599 static int load_killed_in_block_p (basic_block, int, rtx, int);
600 static void canon_list_insert (rtx, rtx, void *);
601 static int cprop_insn (rtx, int);
602 static int cprop (int);
603 static void find_implicit_sets (void);
604 static int one_cprop_pass (int, int, int);
605 static bool constprop_register (rtx, rtx, rtx, int);
606 static struct expr *find_bypass_set (int, int);
607 static bool reg_killed_on_edge (rtx, edge);
608 static int bypass_block (basic_block, rtx, rtx);
609 static int bypass_conditional_jumps (void);
610 static void alloc_pre_mem (int, int);
611 static void free_pre_mem (void);
612 static void compute_pre_data (void);
613 static int pre_expr_reaches_here_p (basic_block, struct expr *,
614 basic_block);
615 static void insert_insn_end_bb (struct expr *, basic_block, int);
616 static void pre_insert_copy_insn (struct expr *, rtx);
617 static void pre_insert_copies (void);
618 static int pre_delete (void);
619 static int pre_gcse (void);
620 static int one_pre_gcse_pass (int);
621 static void add_label_notes (rtx, rtx);
622 static void alloc_code_hoist_mem (int, int);
623 static void free_code_hoist_mem (void);
624 static void compute_code_hoist_vbeinout (void);
625 static void compute_code_hoist_data (void);
626 static int hoist_expr_reaches_here_p (basic_block, int, basic_block, char *);
627 static void hoist_code (void);
628 static int one_code_hoisting_pass (void);
629 static rtx process_insert_insn (struct expr *);
630 static int pre_edge_insert (struct edge_list *, struct expr **);
631 static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
632 basic_block, char *);
633 static struct ls_expr * ldst_entry (rtx);
634 static void free_ldst_entry (struct ls_expr *);
635 static void free_ldst_mems (void);
636 static void print_ldst_list (FILE *);
637 static struct ls_expr * find_rtx_in_ldst (rtx);
638 static int enumerate_ldsts (void);
639 static inline struct ls_expr * first_ls_expr (void);
640 static inline struct ls_expr * next_ls_expr (struct ls_expr *);
641 static int simple_mem (rtx);
642 static void invalidate_any_buried_refs (rtx);
643 static void compute_ld_motion_mems (void);
644 static void trim_ld_motion_mems (void);
645 static void update_ld_motion_stores (struct expr *);
646 static void reg_set_info (rtx, rtx, void *);
647 static void reg_clear_last_set (rtx, rtx, void *);
648 static bool store_ops_ok (rtx, int *);
649 static rtx extract_mentioned_regs (rtx);
650 static rtx extract_mentioned_regs_helper (rtx, rtx);
651 static void find_moveable_store (rtx, int *, int *);
652 static int compute_store_table (void);
653 static bool load_kills_store (rtx, rtx, int);
654 static bool find_loads (rtx, rtx, int);
655 static bool store_killed_in_insn (rtx, rtx, rtx, int);
656 static bool store_killed_after (rtx, rtx, rtx, basic_block, int *, rtx *);
657 static bool store_killed_before (rtx, rtx, rtx, basic_block, int *);
658 static void build_store_vectors (void);
659 static void insert_insn_start_bb (rtx, basic_block);
660 static int insert_store (struct ls_expr *, edge);
661 static void remove_reachable_equiv_notes (basic_block, struct ls_expr *);
662 static void replace_store_insn (rtx, rtx, basic_block, struct ls_expr *);
663 static void delete_store (struct ls_expr *, basic_block);
664 static void free_store_memory (void);
665 static void store_motion (void);
666 static void free_insn_expr_list_list (rtx *);
667 static void clear_modify_mem_tables (void);
668 static void free_modify_mem_tables (void);
669 static rtx gcse_emit_move_after (rtx, rtx, rtx);
670 static void local_cprop_find_used_regs (rtx *, void *);
671 static bool do_local_cprop (rtx, rtx, int, rtx*);
672 static bool adjust_libcall_notes (rtx, rtx, rtx, rtx*);
673 static void local_cprop_pass (int);
674 static bool is_too_expensive (const char *);
677 /* Entry point for global common subexpression elimination.
678 F is the first instruction in the function. Return nonzero if a
679 change is mode. */
682 gcse_main (rtx f, FILE *file)
684 int changed, pass;
685 /* Bytes used at start of pass. */
686 int initial_bytes_used;
687 /* Maximum number of bytes used by a pass. */
688 int max_pass_bytes;
689 /* Point to release obstack data from for each pass. */
690 char *gcse_obstack_bottom;
692 /* We do not construct an accurate cfg in functions which call
693 setjmp, so just punt to be safe. */
694 if (current_function_calls_setjmp)
695 return 0;
697 /* Assume that we do not need to run jump optimizations after gcse. */
698 run_jump_opt_after_gcse = 0;
700 /* For calling dump_foo fns from gdb. */
701 debug_stderr = stderr;
702 gcse_file = file;
704 /* Identify the basic block information for this function, including
705 successors and predecessors. */
706 max_gcse_regno = max_reg_num ();
708 if (file)
709 dump_flow_info (file);
711 /* Return if there's nothing to do, or it is too expensive. */
712 if (n_basic_blocks <= 1 || is_too_expensive (_("GCSE disabled")))
713 return 0;
715 gcc_obstack_init (&gcse_obstack);
716 bytes_used = 0;
718 /* We need alias. */
719 init_alias_analysis ();
720 /* Record where pseudo-registers are set. This data is kept accurate
721 during each pass. ??? We could also record hard-reg information here
722 [since it's unchanging], however it is currently done during hash table
723 computation.
725 It may be tempting to compute MEM set information here too, but MEM sets
726 will be subject to code motion one day and thus we need to compute
727 information about memory sets when we build the hash tables. */
729 alloc_reg_set_mem (max_gcse_regno);
730 compute_sets (f);
732 pass = 0;
733 initial_bytes_used = bytes_used;
734 max_pass_bytes = 0;
735 gcse_obstack_bottom = gcse_alloc (1);
736 changed = 1;
737 while (changed && pass < MAX_GCSE_PASSES)
739 changed = 0;
740 if (file)
741 fprintf (file, "GCSE pass %d\n\n", pass + 1);
743 /* Initialize bytes_used to the space for the pred/succ lists,
744 and the reg_set_table data. */
745 bytes_used = initial_bytes_used;
747 /* Each pass may create new registers, so recalculate each time. */
748 max_gcse_regno = max_reg_num ();
750 alloc_gcse_mem (f);
752 /* Don't allow constant propagation to modify jumps
753 during this pass. */
754 timevar_push (TV_CPROP1);
755 changed = one_cprop_pass (pass + 1, 0, 0);
756 timevar_pop (TV_CPROP1);
758 if (optimize_size)
759 /* Do nothing. */ ;
760 else
762 timevar_push (TV_PRE);
763 changed |= one_pre_gcse_pass (pass + 1);
764 /* We may have just created new basic blocks. Release and
765 recompute various things which are sized on the number of
766 basic blocks. */
767 if (changed)
769 free_modify_mem_tables ();
770 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
771 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
773 free_reg_set_mem ();
774 alloc_reg_set_mem (max_reg_num ());
775 compute_sets (f);
776 run_jump_opt_after_gcse = 1;
777 timevar_pop (TV_PRE);
780 if (max_pass_bytes < bytes_used)
781 max_pass_bytes = bytes_used;
783 /* Free up memory, then reallocate for code hoisting. We can
784 not re-use the existing allocated memory because the tables
785 will not have info for the insns or registers created by
786 partial redundancy elimination. */
787 free_gcse_mem ();
789 /* It does not make sense to run code hoisting unless we are optimizing
790 for code size -- it rarely makes programs faster, and can make
791 them bigger if we did partial redundancy elimination (when optimizing
792 for space, we don't run the partial redundancy algorithms). */
793 if (optimize_size)
795 timevar_push (TV_HOIST);
796 max_gcse_regno = max_reg_num ();
797 alloc_gcse_mem (f);
798 changed |= one_code_hoisting_pass ();
799 free_gcse_mem ();
801 if (max_pass_bytes < bytes_used)
802 max_pass_bytes = bytes_used;
803 timevar_pop (TV_HOIST);
806 if (file)
808 fprintf (file, "\n");
809 fflush (file);
812 obstack_free (&gcse_obstack, gcse_obstack_bottom);
813 pass++;
816 /* Do one last pass of copy propagation, including cprop into
817 conditional jumps. */
819 max_gcse_regno = max_reg_num ();
820 alloc_gcse_mem (f);
821 /* This time, go ahead and allow cprop to alter jumps. */
822 timevar_push (TV_CPROP2);
823 one_cprop_pass (pass + 1, 1, 0);
824 timevar_pop (TV_CPROP2);
825 free_gcse_mem ();
827 if (file)
829 fprintf (file, "GCSE of %s: %d basic blocks, ",
830 current_function_name (), n_basic_blocks);
831 fprintf (file, "%d pass%s, %d bytes\n\n",
832 pass, pass > 1 ? "es" : "", max_pass_bytes);
835 obstack_free (&gcse_obstack, NULL);
836 free_reg_set_mem ();
838 /* We are finished with alias. */
839 end_alias_analysis ();
840 allocate_reg_info (max_reg_num (), FALSE, FALSE);
842 if (!optimize_size && flag_gcse_sm)
844 timevar_push (TV_LSM);
845 store_motion ();
846 timevar_pop (TV_LSM);
849 /* Record where pseudo-registers are set. */
850 return run_jump_opt_after_gcse;
853 /* Misc. utilities. */
855 /* Nonzero for each mode that supports (set (reg) (reg)).
856 This is trivially true for integer and floating point values.
857 It may or may not be true for condition codes. */
858 static char can_copy[(int) NUM_MACHINE_MODES];
860 /* Compute which modes support reg/reg copy operations. */
862 static void
863 compute_can_copy (void)
865 int i;
866 #ifndef AVOID_CCMODE_COPIES
867 rtx reg, insn;
868 #endif
869 memset (can_copy, 0, NUM_MACHINE_MODES);
871 start_sequence ();
872 for (i = 0; i < NUM_MACHINE_MODES; i++)
873 if (GET_MODE_CLASS (i) == MODE_CC)
875 #ifdef AVOID_CCMODE_COPIES
876 can_copy[i] = 0;
877 #else
878 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
879 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
880 if (recog (PATTERN (insn), insn, NULL) >= 0)
881 can_copy[i] = 1;
882 #endif
884 else
885 can_copy[i] = 1;
887 end_sequence ();
890 /* Returns whether the mode supports reg/reg copy operations. */
892 bool
893 can_copy_p (enum machine_mode mode)
895 static bool can_copy_init_p = false;
897 if (! can_copy_init_p)
899 compute_can_copy ();
900 can_copy_init_p = true;
903 return can_copy[mode] != 0;
906 /* Cover function to xmalloc to record bytes allocated. */
908 static void *
909 gmalloc (size_t size)
911 bytes_used += size;
912 return xmalloc (size);
915 /* Cover function to xcalloc to record bytes allocated. */
917 static void *
918 gcalloc (size_t nelem, size_t elsize)
920 bytes_used += nelem * elsize;
921 return xcalloc (nelem, elsize);
924 /* Cover function to xrealloc.
925 We don't record the additional size since we don't know it.
926 It won't affect memory usage stats much anyway. */
928 static void *
929 grealloc (void *ptr, size_t size)
931 return xrealloc (ptr, size);
934 /* Cover function to obstack_alloc. */
936 static void *
937 gcse_alloc (unsigned long size)
939 bytes_used += size;
940 return obstack_alloc (&gcse_obstack, size);
943 /* Allocate memory for the cuid mapping array,
944 and reg/memory set tracking tables.
946 This is called at the start of each pass. */
948 static void
949 alloc_gcse_mem (rtx f)
951 int i;
952 rtx insn;
954 /* Find the largest UID and create a mapping from UIDs to CUIDs.
955 CUIDs are like UIDs except they increase monotonically, have no gaps,
956 and only apply to real insns. */
958 max_uid = get_max_uid ();
959 uid_cuid = gcalloc (max_uid + 1, sizeof (int));
960 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
962 if (INSN_P (insn))
963 uid_cuid[INSN_UID (insn)] = i++;
964 else
965 uid_cuid[INSN_UID (insn)] = i;
968 /* Create a table mapping cuids to insns. */
970 max_cuid = i;
971 cuid_insn = gcalloc (max_cuid + 1, sizeof (rtx));
972 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
973 if (INSN_P (insn))
974 CUID_INSN (i++) = insn;
976 /* Allocate vars to track sets of regs. */
977 reg_set_bitmap = BITMAP_XMALLOC ();
979 /* Allocate vars to track sets of regs, memory per block. */
980 reg_set_in_block = sbitmap_vector_alloc (last_basic_block, max_gcse_regno);
981 /* Allocate array to keep a list of insns which modify memory in each
982 basic block. */
983 modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
984 canon_modify_mem_list = gcalloc (last_basic_block, sizeof (rtx));
985 modify_mem_list_set = BITMAP_XMALLOC ();
986 canon_modify_mem_list_set = BITMAP_XMALLOC ();
989 /* Free memory allocated by alloc_gcse_mem. */
991 static void
992 free_gcse_mem (void)
994 free (uid_cuid);
995 free (cuid_insn);
997 BITMAP_XFREE (reg_set_bitmap);
999 sbitmap_vector_free (reg_set_in_block);
1000 free_modify_mem_tables ();
1001 BITMAP_XFREE (modify_mem_list_set);
1002 BITMAP_XFREE (canon_modify_mem_list_set);
1005 /* Compute the local properties of each recorded expression.
1007 Local properties are those that are defined by the block, irrespective of
1008 other blocks.
1010 An expression is transparent in a block if its operands are not modified
1011 in the block.
1013 An expression is computed (locally available) in a block if it is computed
1014 at least once and expression would contain the same value if the
1015 computation was moved to the end of the block.
1017 An expression is locally anticipatable in a block if it is computed at
1018 least once and expression would contain the same value if the computation
1019 was moved to the beginning of the block.
1021 We call this routine for cprop, pre and code hoisting. They all compute
1022 basically the same information and thus can easily share this code.
1024 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
1025 properties. If NULL, then it is not necessary to compute or record that
1026 particular property.
1028 TABLE controls which hash table to look at. If it is set hash table,
1029 additionally, TRANSP is computed as ~TRANSP, since this is really cprop's
1030 ABSALTERED. */
1032 static void
1033 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
1034 struct hash_table *table)
1036 unsigned int i;
1038 /* Initialize any bitmaps that were passed in. */
1039 if (transp)
1041 if (table->set_p)
1042 sbitmap_vector_zero (transp, last_basic_block);
1043 else
1044 sbitmap_vector_ones (transp, last_basic_block);
1047 if (comp)
1048 sbitmap_vector_zero (comp, last_basic_block);
1049 if (antloc)
1050 sbitmap_vector_zero (antloc, last_basic_block);
1052 for (i = 0; i < table->size; i++)
1054 struct expr *expr;
1056 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1058 int indx = expr->bitmap_index;
1059 struct occr *occr;
1061 /* The expression is transparent in this block if it is not killed.
1062 We start by assuming all are transparent [none are killed], and
1063 then reset the bits for those that are. */
1064 if (transp)
1065 compute_transp (expr->expr, indx, transp, table->set_p);
1067 /* The occurrences recorded in antic_occr are exactly those that
1068 we want to set to nonzero in ANTLOC. */
1069 if (antloc)
1070 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1072 SET_BIT (antloc[BLOCK_NUM (occr->insn)], indx);
1074 /* While we're scanning the table, this is a good place to
1075 initialize this. */
1076 occr->deleted_p = 0;
1079 /* The occurrences recorded in avail_occr are exactly those that
1080 we want to set to nonzero in COMP. */
1081 if (comp)
1082 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1084 SET_BIT (comp[BLOCK_NUM (occr->insn)], indx);
1086 /* While we're scanning the table, this is a good place to
1087 initialize this. */
1088 occr->copied_p = 0;
1091 /* While we're scanning the table, this is a good place to
1092 initialize this. */
1093 expr->reaching_reg = 0;
1098 /* Register set information.
1100 `reg_set_table' records where each register is set or otherwise
1101 modified. */
1103 static struct obstack reg_set_obstack;
1105 static void
1106 alloc_reg_set_mem (int n_regs)
1108 reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
1109 reg_set_table = gcalloc (reg_set_table_size, sizeof (struct reg_set *));
1111 gcc_obstack_init (&reg_set_obstack);
1114 static void
1115 free_reg_set_mem (void)
1117 free (reg_set_table);
1118 obstack_free (&reg_set_obstack, NULL);
1121 /* An OLD_INSN that used to set REGNO was replaced by NEW_INSN.
1122 Update the corresponding `reg_set_table' entry accordingly.
1123 We assume that NEW_INSN is not already recorded in reg_set_table[regno]. */
1125 static void
1126 replace_one_set (int regno, rtx old_insn, rtx new_insn)
1128 struct reg_set *reg_info;
1129 if (regno >= reg_set_table_size)
1130 return;
1131 for (reg_info = reg_set_table[regno]; reg_info; reg_info = reg_info->next)
1132 if (reg_info->insn == old_insn)
1134 reg_info->insn = new_insn;
1135 break;
1139 /* Record REGNO in the reg_set table. */
1141 static void
1142 record_one_set (int regno, rtx insn)
1144 /* Allocate a new reg_set element and link it onto the list. */
1145 struct reg_set *new_reg_info;
1147 /* If the table isn't big enough, enlarge it. */
1148 if (regno >= reg_set_table_size)
1150 int new_size = regno + REG_SET_TABLE_SLOP;
1152 reg_set_table = grealloc (reg_set_table,
1153 new_size * sizeof (struct reg_set *));
1154 memset (reg_set_table + reg_set_table_size, 0,
1155 (new_size - reg_set_table_size) * sizeof (struct reg_set *));
1156 reg_set_table_size = new_size;
1159 new_reg_info = obstack_alloc (&reg_set_obstack, sizeof (struct reg_set));
1160 bytes_used += sizeof (struct reg_set);
1161 new_reg_info->insn = insn;
1162 new_reg_info->next = reg_set_table[regno];
1163 reg_set_table[regno] = new_reg_info;
1166 /* Called from compute_sets via note_stores to handle one SET or CLOBBER in
1167 an insn. The DATA is really the instruction in which the SET is
1168 occurring. */
1170 static void
1171 record_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
1173 rtx record_set_insn = (rtx) data;
1175 if (REG_P (dest) && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
1176 record_one_set (REGNO (dest), record_set_insn);
1179 /* Scan the function and record each set of each pseudo-register.
1181 This is called once, at the start of the gcse pass. See the comments for
1182 `reg_set_table' for further documentation. */
1184 static void
1185 compute_sets (rtx f)
1187 rtx insn;
1189 for (insn = f; insn != 0; insn = NEXT_INSN (insn))
1190 if (INSN_P (insn))
1191 note_stores (PATTERN (insn), record_set_info, insn);
1194 /* Hash table support. */
1196 struct reg_avail_info
1198 basic_block last_bb;
1199 int first_set;
1200 int last_set;
1203 static struct reg_avail_info *reg_avail_info;
1204 static basic_block current_bb;
1207 /* See whether X, the source of a set, is something we want to consider for
1208 GCSE. */
1210 static int
1211 want_to_gcse_p (rtx x)
1213 switch (GET_CODE (x))
1215 case REG:
1216 case SUBREG:
1217 case CONST_INT:
1218 case CONST_DOUBLE:
1219 case CONST_VECTOR:
1220 case CALL:
1221 return 0;
1223 default:
1224 return can_assign_to_reg_p (x);
1228 /* Used internally by can_assign_to_reg_p. */
1230 static GTY(()) rtx test_insn;
1232 /* Return true if we can assign X to a pseudo register. */
1234 static bool
1235 can_assign_to_reg_p (rtx x)
1237 int num_clobbers = 0;
1238 int icode;
1240 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
1241 if (general_operand (x, GET_MODE (x)))
1242 return 1;
1243 else if (GET_MODE (x) == VOIDmode)
1244 return 0;
1246 /* Otherwise, check if we can make a valid insn from it. First initialize
1247 our test insn if we haven't already. */
1248 if (test_insn == 0)
1250 test_insn
1251 = make_insn_raw (gen_rtx_SET (VOIDmode,
1252 gen_rtx_REG (word_mode,
1253 FIRST_PSEUDO_REGISTER * 2),
1254 const0_rtx));
1255 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
1258 /* Now make an insn like the one we would make when GCSE'ing and see if
1259 valid. */
1260 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
1261 SET_SRC (PATTERN (test_insn)) = x;
1262 return ((icode = recog (PATTERN (test_insn), test_insn, &num_clobbers)) >= 0
1263 && (num_clobbers == 0 || ! added_clobbers_hard_reg_p (icode)));
1266 /* Return nonzero if the operands of expression X are unchanged from the
1267 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1268 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1270 static int
1271 oprs_unchanged_p (rtx x, rtx insn, int avail_p)
1273 int i, j;
1274 enum rtx_code code;
1275 const char *fmt;
1277 if (x == 0)
1278 return 1;
1280 code = GET_CODE (x);
1281 switch (code)
1283 case REG:
1285 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
1287 if (info->last_bb != current_bb)
1288 return 1;
1289 if (avail_p)
1290 return info->last_set < INSN_CUID (insn);
1291 else
1292 return info->first_set >= INSN_CUID (insn);
1295 case MEM:
1296 if (load_killed_in_block_p (current_bb, INSN_CUID (insn),
1297 x, avail_p))
1298 return 0;
1299 else
1300 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
1302 case PRE_DEC:
1303 case PRE_INC:
1304 case POST_DEC:
1305 case POST_INC:
1306 case PRE_MODIFY:
1307 case POST_MODIFY:
1308 return 0;
1310 case PC:
1311 case CC0: /*FIXME*/
1312 case CONST:
1313 case CONST_INT:
1314 case CONST_DOUBLE:
1315 case CONST_VECTOR:
1316 case SYMBOL_REF:
1317 case LABEL_REF:
1318 case ADDR_VEC:
1319 case ADDR_DIFF_VEC:
1320 return 1;
1322 default:
1323 break;
1326 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1328 if (fmt[i] == 'e')
1330 /* If we are about to do the last recursive call needed at this
1331 level, change it into iteration. This function is called enough
1332 to be worth it. */
1333 if (i == 0)
1334 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
1336 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
1337 return 0;
1339 else if (fmt[i] == 'E')
1340 for (j = 0; j < XVECLEN (x, i); j++)
1341 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
1342 return 0;
1345 return 1;
1348 /* Used for communication between mems_conflict_for_gcse_p and
1349 load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
1350 conflict between two memory references. */
1351 static int gcse_mems_conflict_p;
1353 /* Used for communication between mems_conflict_for_gcse_p and
1354 load_killed_in_block_p. A memory reference for a load instruction,
1355 mems_conflict_for_gcse_p will see if a memory store conflicts with
1356 this memory load. */
1357 static rtx gcse_mem_operand;
1359 /* DEST is the output of an instruction. If it is a memory reference, and
1360 possibly conflicts with the load found in gcse_mem_operand, then set
1361 gcse_mems_conflict_p to a nonzero value. */
1363 static void
1364 mems_conflict_for_gcse_p (rtx dest, rtx setter ATTRIBUTE_UNUSED,
1365 void *data ATTRIBUTE_UNUSED)
1367 while (GET_CODE (dest) == SUBREG
1368 || GET_CODE (dest) == ZERO_EXTRACT
1369 || GET_CODE (dest) == SIGN_EXTRACT
1370 || GET_CODE (dest) == STRICT_LOW_PART)
1371 dest = XEXP (dest, 0);
1373 /* If DEST is not a MEM, then it will not conflict with the load. Note
1374 that function calls are assumed to clobber memory, but are handled
1375 elsewhere. */
1376 if (! MEM_P (dest))
1377 return;
1379 /* If we are setting a MEM in our list of specially recognized MEMs,
1380 don't mark as killed this time. */
1382 if (expr_equiv_p (dest, gcse_mem_operand) && pre_ldst_mems != NULL)
1384 if (!find_rtx_in_ldst (dest))
1385 gcse_mems_conflict_p = 1;
1386 return;
1389 if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
1390 rtx_addr_varies_p))
1391 gcse_mems_conflict_p = 1;
1394 /* Return nonzero if the expression in X (a memory reference) is killed
1395 in block BB before or after the insn with the CUID in UID_LIMIT.
1396 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1397 before UID_LIMIT.
1399 To check the entire block, set UID_LIMIT to max_uid + 1 and
1400 AVAIL_P to 0. */
1402 static int
1403 load_killed_in_block_p (basic_block bb, int uid_limit, rtx x, int avail_p)
1405 rtx list_entry = modify_mem_list[bb->index];
1406 while (list_entry)
1408 rtx setter;
1409 /* Ignore entries in the list that do not apply. */
1410 if ((avail_p
1411 && INSN_CUID (XEXP (list_entry, 0)) < uid_limit)
1412 || (! avail_p
1413 && INSN_CUID (XEXP (list_entry, 0)) > uid_limit))
1415 list_entry = XEXP (list_entry, 1);
1416 continue;
1419 setter = XEXP (list_entry, 0);
1421 /* If SETTER is a call everything is clobbered. Note that calls
1422 to pure functions are never put on the list, so we need not
1423 worry about them. */
1424 if (CALL_P (setter))
1425 return 1;
1427 /* SETTER must be an INSN of some kind that sets memory. Call
1428 note_stores to examine each hunk of memory that is modified.
1430 The note_stores interface is pretty limited, so we have to
1431 communicate via global variables. Yuk. */
1432 gcse_mem_operand = x;
1433 gcse_mems_conflict_p = 0;
1434 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
1435 if (gcse_mems_conflict_p)
1436 return 1;
1437 list_entry = XEXP (list_entry, 1);
1439 return 0;
1442 /* Return nonzero if the operands of expression X are unchanged from
1443 the start of INSN's basic block up to but not including INSN. */
1445 static int
1446 oprs_anticipatable_p (rtx x, rtx insn)
1448 return oprs_unchanged_p (x, insn, 0);
1451 /* Return nonzero if the operands of expression X are unchanged from
1452 INSN to the end of INSN's basic block. */
1454 static int
1455 oprs_available_p (rtx x, rtx insn)
1457 return oprs_unchanged_p (x, insn, 1);
1460 /* Hash expression X.
1462 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1463 indicating if a volatile operand is found or if the expression contains
1464 something we don't want to insert in the table. HASH_TABLE_SIZE is
1465 the current size of the hash table to be probed. */
1467 static unsigned int
1468 hash_expr (rtx x, enum machine_mode mode, int *do_not_record_p,
1469 int hash_table_size)
1471 unsigned int hash;
1473 *do_not_record_p = 0;
1475 hash = hash_rtx (x, mode, do_not_record_p,
1476 NULL, /*have_reg_qty=*/false);
1477 return hash % hash_table_size;
1480 /* Hash a set of register REGNO.
1482 Sets are hashed on the register that is set. This simplifies the PRE copy
1483 propagation code.
1485 ??? May need to make things more elaborate. Later, as necessary. */
1487 static unsigned int
1488 hash_set (int regno, int hash_table_size)
1490 unsigned int hash;
1492 hash = regno;
1493 return hash % hash_table_size;
1496 /* Return nonzero if exp1 is equivalent to exp2. */
1498 static int
1499 expr_equiv_p (rtx x, rtx y)
1501 return exp_equiv_p (x, y, 0, true);
1504 /* Insert expression X in INSN in the hash TABLE.
1505 If it is already present, record it as the last occurrence in INSN's
1506 basic block.
1508 MODE is the mode of the value X is being stored into.
1509 It is only used if X is a CONST_INT.
1511 ANTIC_P is nonzero if X is an anticipatable expression.
1512 AVAIL_P is nonzero if X is an available expression. */
1514 static void
1515 insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
1516 int avail_p, struct hash_table *table)
1518 int found, do_not_record_p;
1519 unsigned int hash;
1520 struct expr *cur_expr, *last_expr = NULL;
1521 struct occr *antic_occr, *avail_occr;
1522 struct occr *last_occr = NULL;
1524 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1526 /* Do not insert expression in table if it contains volatile operands,
1527 or if hash_expr determines the expression is something we don't want
1528 to or can't handle. */
1529 if (do_not_record_p)
1530 return;
1532 cur_expr = table->table[hash];
1533 found = 0;
1535 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1537 /* If the expression isn't found, save a pointer to the end of
1538 the list. */
1539 last_expr = cur_expr;
1540 cur_expr = cur_expr->next_same_hash;
1543 if (! found)
1545 cur_expr = gcse_alloc (sizeof (struct expr));
1546 bytes_used += sizeof (struct expr);
1547 if (table->table[hash] == NULL)
1548 /* This is the first pattern that hashed to this index. */
1549 table->table[hash] = cur_expr;
1550 else
1551 /* Add EXPR to end of this hash chain. */
1552 last_expr->next_same_hash = cur_expr;
1554 /* Set the fields of the expr element. */
1555 cur_expr->expr = x;
1556 cur_expr->bitmap_index = table->n_elems++;
1557 cur_expr->next_same_hash = NULL;
1558 cur_expr->antic_occr = NULL;
1559 cur_expr->avail_occr = NULL;
1562 /* Now record the occurrence(s). */
1563 if (antic_p)
1565 antic_occr = cur_expr->antic_occr;
1567 /* Search for another occurrence in the same basic block. */
1568 while (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
1570 /* If an occurrence isn't found, save a pointer to the end of
1571 the list. */
1572 last_occr = antic_occr;
1573 antic_occr = antic_occr->next;
1576 if (antic_occr)
1577 /* Found another instance of the expression in the same basic block.
1578 Prefer the currently recorded one. We want the first one in the
1579 block and the block is scanned from start to end. */
1580 ; /* nothing to do */
1581 else
1583 /* First occurrence of this expression in this basic block. */
1584 antic_occr = gcse_alloc (sizeof (struct occr));
1585 bytes_used += sizeof (struct occr);
1586 /* First occurrence of this expression in any block? */
1587 if (cur_expr->antic_occr == NULL)
1588 cur_expr->antic_occr = antic_occr;
1589 else
1590 last_occr->next = antic_occr;
1592 antic_occr->insn = insn;
1593 antic_occr->next = NULL;
1594 antic_occr->deleted_p = 0;
1598 if (avail_p)
1600 avail_occr = cur_expr->avail_occr;
1602 /* Search for another occurrence in the same basic block. */
1603 while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
1605 /* If an occurrence isn't found, save a pointer to the end of
1606 the list. */
1607 last_occr = avail_occr;
1608 avail_occr = avail_occr->next;
1611 if (avail_occr)
1612 /* Found another instance of the expression in the same basic block.
1613 Prefer this occurrence to the currently recorded one. We want
1614 the last one in the block and the block is scanned from start
1615 to end. */
1616 avail_occr->insn = insn;
1617 else
1619 /* First occurrence of this expression in this basic block. */
1620 avail_occr = gcse_alloc (sizeof (struct occr));
1621 bytes_used += sizeof (struct occr);
1623 /* First occurrence of this expression in any block? */
1624 if (cur_expr->avail_occr == NULL)
1625 cur_expr->avail_occr = avail_occr;
1626 else
1627 last_occr->next = avail_occr;
1629 avail_occr->insn = insn;
1630 avail_occr->next = NULL;
1631 avail_occr->deleted_p = 0;
1636 /* Insert pattern X in INSN in the hash table.
1637 X is a SET of a reg to either another reg or a constant.
1638 If it is already present, record it as the last occurrence in INSN's
1639 basic block. */
1641 static void
1642 insert_set_in_table (rtx x, rtx insn, struct hash_table *table)
1644 int found;
1645 unsigned int hash;
1646 struct expr *cur_expr, *last_expr = NULL;
1647 struct occr *cur_occr, *last_occr = NULL;
1649 gcc_assert (GET_CODE (x) == SET && REG_P (SET_DEST (x)));
1651 hash = hash_set (REGNO (SET_DEST (x)), table->size);
1653 cur_expr = table->table[hash];
1654 found = 0;
1656 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1658 /* If the expression isn't found, save a pointer to the end of
1659 the list. */
1660 last_expr = cur_expr;
1661 cur_expr = cur_expr->next_same_hash;
1664 if (! found)
1666 cur_expr = gcse_alloc (sizeof (struct expr));
1667 bytes_used += sizeof (struct expr);
1668 if (table->table[hash] == NULL)
1669 /* This is the first pattern that hashed to this index. */
1670 table->table[hash] = cur_expr;
1671 else
1672 /* Add EXPR to end of this hash chain. */
1673 last_expr->next_same_hash = cur_expr;
1675 /* Set the fields of the expr element.
1676 We must copy X because it can be modified when copy propagation is
1677 performed on its operands. */
1678 cur_expr->expr = copy_rtx (x);
1679 cur_expr->bitmap_index = table->n_elems++;
1680 cur_expr->next_same_hash = NULL;
1681 cur_expr->antic_occr = NULL;
1682 cur_expr->avail_occr = NULL;
1685 /* Now record the occurrence. */
1686 cur_occr = cur_expr->avail_occr;
1688 /* Search for another occurrence in the same basic block. */
1689 while (cur_occr && BLOCK_NUM (cur_occr->insn) != BLOCK_NUM (insn))
1691 /* If an occurrence isn't found, save a pointer to the end of
1692 the list. */
1693 last_occr = cur_occr;
1694 cur_occr = cur_occr->next;
1697 if (cur_occr)
1698 /* Found another instance of the expression in the same basic block.
1699 Prefer this occurrence to the currently recorded one. We want the
1700 last one in the block and the block is scanned from start to end. */
1701 cur_occr->insn = insn;
1702 else
1704 /* First occurrence of this expression in this basic block. */
1705 cur_occr = gcse_alloc (sizeof (struct occr));
1706 bytes_used += sizeof (struct occr);
1708 /* First occurrence of this expression in any block? */
1709 if (cur_expr->avail_occr == NULL)
1710 cur_expr->avail_occr = cur_occr;
1711 else
1712 last_occr->next = cur_occr;
1714 cur_occr->insn = insn;
1715 cur_occr->next = NULL;
1716 cur_occr->deleted_p = 0;
1720 /* Determine whether the rtx X should be treated as a constant for
1721 the purposes of GCSE's constant propagation. */
1723 static bool
1724 gcse_constant_p (rtx x)
1726 /* Consider a COMPARE of two integers constant. */
1727 if (GET_CODE (x) == COMPARE
1728 && GET_CODE (XEXP (x, 0)) == CONST_INT
1729 && GET_CODE (XEXP (x, 1)) == CONST_INT)
1730 return true;
1732 /* Consider a COMPARE of the same registers is a constant
1733 if they are not floating point registers. */
1734 if (GET_CODE(x) == COMPARE
1735 && REG_P (XEXP (x, 0)) && REG_P (XEXP (x, 1))
1736 && REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 1))
1737 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 0)))
1738 && ! FLOAT_MODE_P (GET_MODE (XEXP (x, 1))))
1739 return true;
1741 return CONSTANT_P (x);
1744 /* Scan pattern PAT of INSN and add an entry to the hash TABLE (set or
1745 expression one). */
1747 static void
1748 hash_scan_set (rtx pat, rtx insn, struct hash_table *table)
1750 rtx src = SET_SRC (pat);
1751 rtx dest = SET_DEST (pat);
1752 rtx note;
1754 if (GET_CODE (src) == CALL)
1755 hash_scan_call (src, insn, table);
1757 else if (REG_P (dest))
1759 unsigned int regno = REGNO (dest);
1760 rtx tmp;
1762 /* If this is a single set and we are doing constant propagation,
1763 see if a REG_NOTE shows this equivalent to a constant. */
1764 if (table->set_p && (note = find_reg_equal_equiv_note (insn)) != 0
1765 && gcse_constant_p (XEXP (note, 0)))
1766 src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
1768 /* Only record sets of pseudo-regs in the hash table. */
1769 if (! table->set_p
1770 && regno >= FIRST_PSEUDO_REGISTER
1771 /* Don't GCSE something if we can't do a reg/reg copy. */
1772 && can_copy_p (GET_MODE (dest))
1773 /* GCSE commonly inserts instruction after the insn. We can't
1774 do that easily for EH_REGION notes so disable GCSE on these
1775 for now. */
1776 && !find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1777 /* Is SET_SRC something we want to gcse? */
1778 && want_to_gcse_p (src)
1779 /* Don't CSE a nop. */
1780 && ! set_noop_p (pat)
1781 /* Don't GCSE if it has attached REG_EQUIV note.
1782 At this point this only function parameters should have
1783 REG_EQUIV notes and if the argument slot is used somewhere
1784 explicitly, it means address of parameter has been taken,
1785 so we should not extend the lifetime of the pseudo. */
1786 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1787 || ! MEM_P (XEXP (note, 0))))
1789 /* An expression is not anticipatable if its operands are
1790 modified before this insn or if this is not the only SET in
1791 this insn. */
1792 int antic_p = oprs_anticipatable_p (src, insn) && single_set (insn);
1793 /* An expression is not available if its operands are
1794 subsequently modified, including this insn. It's also not
1795 available if this is a branch, because we can't insert
1796 a set after the branch. */
1797 int avail_p = (oprs_available_p (src, insn)
1798 && ! JUMP_P (insn));
1800 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p, table);
1803 /* Record sets for constant/copy propagation. */
1804 else if (table->set_p
1805 && regno >= FIRST_PSEUDO_REGISTER
1806 && ((REG_P (src)
1807 && REGNO (src) >= FIRST_PSEUDO_REGISTER
1808 && can_copy_p (GET_MODE (dest))
1809 && REGNO (src) != regno)
1810 || gcse_constant_p (src))
1811 /* A copy is not available if its src or dest is subsequently
1812 modified. Here we want to search from INSN+1 on, but
1813 oprs_available_p searches from INSN on. */
1814 && (insn == BB_END (BLOCK_FOR_INSN (insn))
1815 || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
1816 && oprs_available_p (pat, tmp))))
1817 insert_set_in_table (pat, insn, table);
1819 /* In case of store we want to consider the memory value as available in
1820 the REG stored in that memory. This makes it possible to remove
1821 redundant loads from due to stores to the same location. */
1822 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1824 unsigned int regno = REGNO (src);
1826 /* Do not do this for constant/copy propagation. */
1827 if (! table->set_p
1828 /* Only record sets of pseudo-regs in the hash table. */
1829 && regno >= FIRST_PSEUDO_REGISTER
1830 /* Don't GCSE something if we can't do a reg/reg copy. */
1831 && can_copy_p (GET_MODE (src))
1832 /* GCSE commonly inserts instruction after the insn. We can't
1833 do that easily for EH_REGION notes so disable GCSE on these
1834 for now. */
1835 && ! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
1836 /* Is SET_DEST something we want to gcse? */
1837 && want_to_gcse_p (dest)
1838 /* Don't CSE a nop. */
1839 && ! set_noop_p (pat)
1840 /* Don't GCSE if it has attached REG_EQUIV note.
1841 At this point this only function parameters should have
1842 REG_EQUIV notes and if the argument slot is used somewhere
1843 explicitly, it means address of parameter has been taken,
1844 so we should not extend the lifetime of the pseudo. */
1845 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1846 || ! MEM_P (XEXP (note, 0))))
1848 /* Stores are never anticipatable. */
1849 int antic_p = 0;
1850 /* An expression is not available if its operands are
1851 subsequently modified, including this insn. It's also not
1852 available if this is a branch, because we can't insert
1853 a set after the branch. */
1854 int avail_p = oprs_available_p (dest, insn)
1855 && ! JUMP_P (insn);
1857 /* Record the memory expression (DEST) in the hash table. */
1858 insert_expr_in_table (dest, GET_MODE (dest), insn,
1859 antic_p, avail_p, table);
1864 static void
1865 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1866 struct hash_table *table ATTRIBUTE_UNUSED)
1868 /* Currently nothing to do. */
1871 static void
1872 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
1873 struct hash_table *table ATTRIBUTE_UNUSED)
1875 /* Currently nothing to do. */
1878 /* Process INSN and add hash table entries as appropriate.
1880 Only available expressions that set a single pseudo-reg are recorded.
1882 Single sets in a PARALLEL could be handled, but it's an extra complication
1883 that isn't dealt with right now. The trick is handling the CLOBBERs that
1884 are also in the PARALLEL. Later.
1886 If SET_P is nonzero, this is for the assignment hash table,
1887 otherwise it is for the expression hash table.
1888 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
1889 not record any expressions. */
1891 static void
1892 hash_scan_insn (rtx insn, struct hash_table *table, int in_libcall_block)
1894 rtx pat = PATTERN (insn);
1895 int i;
1897 if (in_libcall_block)
1898 return;
1900 /* Pick out the sets of INSN and for other forms of instructions record
1901 what's been modified. */
1903 if (GET_CODE (pat) == SET)
1904 hash_scan_set (pat, insn, table);
1905 else if (GET_CODE (pat) == PARALLEL)
1906 for (i = 0; i < XVECLEN (pat, 0); i++)
1908 rtx x = XVECEXP (pat, 0, i);
1910 if (GET_CODE (x) == SET)
1911 hash_scan_set (x, insn, table);
1912 else if (GET_CODE (x) == CLOBBER)
1913 hash_scan_clobber (x, insn, table);
1914 else if (GET_CODE (x) == CALL)
1915 hash_scan_call (x, insn, table);
1918 else if (GET_CODE (pat) == CLOBBER)
1919 hash_scan_clobber (pat, insn, table);
1920 else if (GET_CODE (pat) == CALL)
1921 hash_scan_call (pat, insn, table);
1924 static void
1925 dump_hash_table (FILE *file, const char *name, struct hash_table *table)
1927 int i;
1928 /* Flattened out table, so it's printed in proper order. */
1929 struct expr **flat_table;
1930 unsigned int *hash_val;
1931 struct expr *expr;
1933 flat_table = xcalloc (table->n_elems, sizeof (struct expr *));
1934 hash_val = xmalloc (table->n_elems * sizeof (unsigned int));
1936 for (i = 0; i < (int) table->size; i++)
1937 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1939 flat_table[expr->bitmap_index] = expr;
1940 hash_val[expr->bitmap_index] = i;
1943 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1944 name, table->size, table->n_elems);
1946 for (i = 0; i < (int) table->n_elems; i++)
1947 if (flat_table[i] != 0)
1949 expr = flat_table[i];
1950 fprintf (file, "Index %d (hash value %d)\n ",
1951 expr->bitmap_index, hash_val[i]);
1952 print_rtl (file, expr->expr);
1953 fprintf (file, "\n");
1956 fprintf (file, "\n");
1958 free (flat_table);
1959 free (hash_val);
1962 /* Record register first/last/block set information for REGNO in INSN.
1964 first_set records the first place in the block where the register
1965 is set and is used to compute "anticipatability".
1967 last_set records the last place in the block where the register
1968 is set and is used to compute "availability".
1970 last_bb records the block for which first_set and last_set are
1971 valid, as a quick test to invalidate them.
1973 reg_set_in_block records whether the register is set in the block
1974 and is used to compute "transparency". */
1976 static void
1977 record_last_reg_set_info (rtx insn, int regno)
1979 struct reg_avail_info *info = &reg_avail_info[regno];
1980 int cuid = INSN_CUID (insn);
1982 info->last_set = cuid;
1983 if (info->last_bb != current_bb)
1985 info->last_bb = current_bb;
1986 info->first_set = cuid;
1987 SET_BIT (reg_set_in_block[current_bb->index], regno);
1992 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1993 Note we store a pair of elements in the list, so they have to be
1994 taken off pairwise. */
1996 static void
1997 canon_list_insert (rtx dest ATTRIBUTE_UNUSED, rtx unused1 ATTRIBUTE_UNUSED,
1998 void * v_insn)
2000 rtx dest_addr, insn;
2001 int bb;
2003 while (GET_CODE (dest) == SUBREG
2004 || GET_CODE (dest) == ZERO_EXTRACT
2005 || GET_CODE (dest) == SIGN_EXTRACT
2006 || GET_CODE (dest) == STRICT_LOW_PART)
2007 dest = XEXP (dest, 0);
2009 /* If DEST is not a MEM, then it will not conflict with a load. Note
2010 that function calls are assumed to clobber memory, but are handled
2011 elsewhere. */
2013 if (! MEM_P (dest))
2014 return;
2016 dest_addr = get_addr (XEXP (dest, 0));
2017 dest_addr = canon_rtx (dest_addr);
2018 insn = (rtx) v_insn;
2019 bb = BLOCK_NUM (insn);
2021 canon_modify_mem_list[bb] =
2022 alloc_EXPR_LIST (VOIDmode, dest_addr, canon_modify_mem_list[bb]);
2023 canon_modify_mem_list[bb] =
2024 alloc_EXPR_LIST (VOIDmode, dest, canon_modify_mem_list[bb]);
2025 bitmap_set_bit (canon_modify_mem_list_set, bb);
2028 /* Record memory modification information for INSN. We do not actually care
2029 about the memory location(s) that are set, or even how they are set (consider
2030 a CALL_INSN). We merely need to record which insns modify memory. */
2032 static void
2033 record_last_mem_set_info (rtx insn)
2035 int bb = BLOCK_NUM (insn);
2037 /* load_killed_in_block_p will handle the case of calls clobbering
2038 everything. */
2039 modify_mem_list[bb] = alloc_INSN_LIST (insn, modify_mem_list[bb]);
2040 bitmap_set_bit (modify_mem_list_set, bb);
2042 if (CALL_P (insn))
2044 /* Note that traversals of this loop (other than for free-ing)
2045 will break after encountering a CALL_INSN. So, there's no
2046 need to insert a pair of items, as canon_list_insert does. */
2047 canon_modify_mem_list[bb] =
2048 alloc_INSN_LIST (insn, canon_modify_mem_list[bb]);
2049 bitmap_set_bit (canon_modify_mem_list_set, bb);
2051 else
2052 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
2055 /* Called from compute_hash_table via note_stores to handle one
2056 SET or CLOBBER in an insn. DATA is really the instruction in which
2057 the SET is taking place. */
2059 static void
2060 record_last_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED, void *data)
2062 rtx last_set_insn = (rtx) data;
2064 if (GET_CODE (dest) == SUBREG)
2065 dest = SUBREG_REG (dest);
2067 if (REG_P (dest))
2068 record_last_reg_set_info (last_set_insn, REGNO (dest));
2069 else if (MEM_P (dest)
2070 /* Ignore pushes, they clobber nothing. */
2071 && ! push_operand (dest, GET_MODE (dest)))
2072 record_last_mem_set_info (last_set_insn);
2075 /* Top level function to create an expression or assignment hash table.
2077 Expression entries are placed in the hash table if
2078 - they are of the form (set (pseudo-reg) src),
2079 - src is something we want to perform GCSE on,
2080 - none of the operands are subsequently modified in the block
2082 Assignment entries are placed in the hash table if
2083 - they are of the form (set (pseudo-reg) src),
2084 - src is something we want to perform const/copy propagation on,
2085 - none of the operands or target are subsequently modified in the block
2087 Currently src must be a pseudo-reg or a const_int.
2089 TABLE is the table computed. */
2091 static void
2092 compute_hash_table_work (struct hash_table *table)
2094 unsigned int i;
2096 /* While we compute the hash table we also compute a bit array of which
2097 registers are set in which blocks.
2098 ??? This isn't needed during const/copy propagation, but it's cheap to
2099 compute. Later. */
2100 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
2102 /* re-Cache any INSN_LIST nodes we have allocated. */
2103 clear_modify_mem_tables ();
2104 /* Some working arrays used to track first and last set in each block. */
2105 reg_avail_info = gmalloc (max_gcse_regno * sizeof (struct reg_avail_info));
2107 for (i = 0; i < max_gcse_regno; ++i)
2108 reg_avail_info[i].last_bb = NULL;
2110 FOR_EACH_BB (current_bb)
2112 rtx insn;
2113 unsigned int regno;
2114 int in_libcall_block;
2116 /* First pass over the instructions records information used to
2117 determine when registers and memory are first and last set.
2118 ??? hard-reg reg_set_in_block computation
2119 could be moved to compute_sets since they currently don't change. */
2121 for (insn = BB_HEAD (current_bb);
2122 insn && insn != NEXT_INSN (BB_END (current_bb));
2123 insn = NEXT_INSN (insn))
2125 if (! INSN_P (insn))
2126 continue;
2128 if (CALL_P (insn))
2130 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2131 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2132 record_last_reg_set_info (insn, regno);
2134 mark_call (insn);
2137 note_stores (PATTERN (insn), record_last_set_info, insn);
2140 /* Insert implicit sets in the hash table. */
2141 if (table->set_p
2142 && implicit_sets[current_bb->index] != NULL_RTX)
2143 hash_scan_set (implicit_sets[current_bb->index],
2144 BB_HEAD (current_bb), table);
2146 /* The next pass builds the hash table. */
2148 for (insn = BB_HEAD (current_bb), in_libcall_block = 0;
2149 insn && insn != NEXT_INSN (BB_END (current_bb));
2150 insn = NEXT_INSN (insn))
2151 if (INSN_P (insn))
2153 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2154 in_libcall_block = 1;
2155 else if (table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2156 in_libcall_block = 0;
2157 hash_scan_insn (insn, table, in_libcall_block);
2158 if (!table->set_p && find_reg_note (insn, REG_RETVAL, NULL_RTX))
2159 in_libcall_block = 0;
2163 free (reg_avail_info);
2164 reg_avail_info = NULL;
2167 /* Allocate space for the set/expr hash TABLE.
2168 N_INSNS is the number of instructions in the function.
2169 It is used to determine the number of buckets to use.
2170 SET_P determines whether set or expression table will
2171 be created. */
2173 static void
2174 alloc_hash_table (int n_insns, struct hash_table *table, int set_p)
2176 int n;
2178 table->size = n_insns / 4;
2179 if (table->size < 11)
2180 table->size = 11;
2182 /* Attempt to maintain efficient use of hash table.
2183 Making it an odd number is simplest for now.
2184 ??? Later take some measurements. */
2185 table->size |= 1;
2186 n = table->size * sizeof (struct expr *);
2187 table->table = gmalloc (n);
2188 table->set_p = set_p;
2191 /* Free things allocated by alloc_hash_table. */
2193 static void
2194 free_hash_table (struct hash_table *table)
2196 free (table->table);
2199 /* Compute the hash TABLE for doing copy/const propagation or
2200 expression hash table. */
2202 static void
2203 compute_hash_table (struct hash_table *table)
2205 /* Initialize count of number of entries in hash table. */
2206 table->n_elems = 0;
2207 memset (table->table, 0, table->size * sizeof (struct expr *));
2209 compute_hash_table_work (table);
2212 /* Expression tracking support. */
2214 /* Lookup REGNO in the set TABLE. The result is a pointer to the
2215 table entry, or NULL if not found. */
2217 static struct expr *
2218 lookup_set (unsigned int regno, struct hash_table *table)
2220 unsigned int hash = hash_set (regno, table->size);
2221 struct expr *expr;
2223 expr = table->table[hash];
2225 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
2226 expr = expr->next_same_hash;
2228 return expr;
2231 /* Return the next entry for REGNO in list EXPR. */
2233 static struct expr *
2234 next_set (unsigned int regno, struct expr *expr)
2237 expr = expr->next_same_hash;
2238 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
2240 return expr;
2243 /* Like free_INSN_LIST_list or free_EXPR_LIST_list, except that the node
2244 types may be mixed. */
2246 static void
2247 free_insn_expr_list_list (rtx *listp)
2249 rtx list, next;
2251 for (list = *listp; list ; list = next)
2253 next = XEXP (list, 1);
2254 if (GET_CODE (list) == EXPR_LIST)
2255 free_EXPR_LIST_node (list);
2256 else
2257 free_INSN_LIST_node (list);
2260 *listp = NULL;
2263 /* Clear canon_modify_mem_list and modify_mem_list tables. */
2264 static void
2265 clear_modify_mem_tables (void)
2267 unsigned i;
2268 bitmap_iterator bi;
2270 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
2272 free_INSN_LIST_list (modify_mem_list + i);
2274 bitmap_clear (modify_mem_list_set);
2276 EXECUTE_IF_SET_IN_BITMAP (canon_modify_mem_list_set, 0, i, bi)
2278 free_insn_expr_list_list (canon_modify_mem_list + i);
2280 bitmap_clear (canon_modify_mem_list_set);
2283 /* Release memory used by modify_mem_list_set and canon_modify_mem_list_set. */
2285 static void
2286 free_modify_mem_tables (void)
2288 clear_modify_mem_tables ();
2289 free (modify_mem_list);
2290 free (canon_modify_mem_list);
2291 modify_mem_list = 0;
2292 canon_modify_mem_list = 0;
2295 /* Reset tables used to keep track of what's still available [since the
2296 start of the block]. */
2298 static void
2299 reset_opr_set_tables (void)
2301 /* Maintain a bitmap of which regs have been set since beginning of
2302 the block. */
2303 CLEAR_REG_SET (reg_set_bitmap);
2305 /* Also keep a record of the last instruction to modify memory.
2306 For now this is very trivial, we only record whether any memory
2307 location has been modified. */
2308 clear_modify_mem_tables ();
2311 /* Return nonzero if the operands of X are not set before INSN in
2312 INSN's basic block. */
2314 static int
2315 oprs_not_set_p (rtx x, rtx insn)
2317 int i, j;
2318 enum rtx_code code;
2319 const char *fmt;
2321 if (x == 0)
2322 return 1;
2324 code = GET_CODE (x);
2325 switch (code)
2327 case PC:
2328 case CC0:
2329 case CONST:
2330 case CONST_INT:
2331 case CONST_DOUBLE:
2332 case CONST_VECTOR:
2333 case SYMBOL_REF:
2334 case LABEL_REF:
2335 case ADDR_VEC:
2336 case ADDR_DIFF_VEC:
2337 return 1;
2339 case MEM:
2340 if (load_killed_in_block_p (BLOCK_FOR_INSN (insn),
2341 INSN_CUID (insn), x, 0))
2342 return 0;
2343 else
2344 return oprs_not_set_p (XEXP (x, 0), insn);
2346 case REG:
2347 return ! REGNO_REG_SET_P (reg_set_bitmap, REGNO (x));
2349 default:
2350 break;
2353 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2355 if (fmt[i] == 'e')
2357 /* If we are about to do the last recursive call
2358 needed at this level, change it into iteration.
2359 This function is called enough to be worth it. */
2360 if (i == 0)
2361 return oprs_not_set_p (XEXP (x, i), insn);
2363 if (! oprs_not_set_p (XEXP (x, i), insn))
2364 return 0;
2366 else if (fmt[i] == 'E')
2367 for (j = 0; j < XVECLEN (x, i); j++)
2368 if (! oprs_not_set_p (XVECEXP (x, i, j), insn))
2369 return 0;
2372 return 1;
2375 /* Mark things set by a CALL. */
2377 static void
2378 mark_call (rtx insn)
2380 if (! CONST_OR_PURE_CALL_P (insn))
2381 record_last_mem_set_info (insn);
2384 /* Mark things set by a SET. */
2386 static void
2387 mark_set (rtx pat, rtx insn)
2389 rtx dest = SET_DEST (pat);
2391 while (GET_CODE (dest) == SUBREG
2392 || GET_CODE (dest) == ZERO_EXTRACT
2393 || GET_CODE (dest) == SIGN_EXTRACT
2394 || GET_CODE (dest) == STRICT_LOW_PART)
2395 dest = XEXP (dest, 0);
2397 if (REG_P (dest))
2398 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (dest));
2399 else if (MEM_P (dest))
2400 record_last_mem_set_info (insn);
2402 if (GET_CODE (SET_SRC (pat)) == CALL)
2403 mark_call (insn);
2406 /* Record things set by a CLOBBER. */
2408 static void
2409 mark_clobber (rtx pat, rtx insn)
2411 rtx clob = XEXP (pat, 0);
2413 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2414 clob = XEXP (clob, 0);
2416 if (REG_P (clob))
2417 SET_REGNO_REG_SET (reg_set_bitmap, REGNO (clob));
2418 else
2419 record_last_mem_set_info (insn);
2422 /* Record things set by INSN.
2423 This data is used by oprs_not_set_p. */
2425 static void
2426 mark_oprs_set (rtx insn)
2428 rtx pat = PATTERN (insn);
2429 int i;
2431 if (GET_CODE (pat) == SET)
2432 mark_set (pat, insn);
2433 else if (GET_CODE (pat) == PARALLEL)
2434 for (i = 0; i < XVECLEN (pat, 0); i++)
2436 rtx x = XVECEXP (pat, 0, i);
2438 if (GET_CODE (x) == SET)
2439 mark_set (x, insn);
2440 else if (GET_CODE (x) == CLOBBER)
2441 mark_clobber (x, insn);
2442 else if (GET_CODE (x) == CALL)
2443 mark_call (insn);
2446 else if (GET_CODE (pat) == CLOBBER)
2447 mark_clobber (pat, insn);
2448 else if (GET_CODE (pat) == CALL)
2449 mark_call (insn);
2453 /* Compute copy/constant propagation working variables. */
2455 /* Local properties of assignments. */
2456 static sbitmap *cprop_pavloc;
2457 static sbitmap *cprop_absaltered;
2459 /* Global properties of assignments (computed from the local properties). */
2460 static sbitmap *cprop_avin;
2461 static sbitmap *cprop_avout;
2463 /* Allocate vars used for copy/const propagation. N_BLOCKS is the number of
2464 basic blocks. N_SETS is the number of sets. */
2466 static void
2467 alloc_cprop_mem (int n_blocks, int n_sets)
2469 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
2470 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
2472 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
2473 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
2476 /* Free vars used by copy/const propagation. */
2478 static void
2479 free_cprop_mem (void)
2481 sbitmap_vector_free (cprop_pavloc);
2482 sbitmap_vector_free (cprop_absaltered);
2483 sbitmap_vector_free (cprop_avin);
2484 sbitmap_vector_free (cprop_avout);
2487 /* For each block, compute whether X is transparent. X is either an
2488 expression or an assignment [though we don't care which, for this context
2489 an assignment is treated as an expression]. For each block where an
2490 element of X is modified, set (SET_P == 1) or reset (SET_P == 0) the INDX
2491 bit in BMAP. */
2493 static void
2494 compute_transp (rtx x, int indx, sbitmap *bmap, int set_p)
2496 int i, j;
2497 basic_block bb;
2498 enum rtx_code code;
2499 reg_set *r;
2500 const char *fmt;
2502 /* repeat is used to turn tail-recursion into iteration since GCC
2503 can't do it when there's no return value. */
2504 repeat:
2506 if (x == 0)
2507 return;
2509 code = GET_CODE (x);
2510 switch (code)
2512 case REG:
2513 if (set_p)
2515 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2517 FOR_EACH_BB (bb)
2518 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2519 SET_BIT (bmap[bb->index], indx);
2521 else
2523 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2524 SET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
2527 else
2529 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
2531 FOR_EACH_BB (bb)
2532 if (TEST_BIT (reg_set_in_block[bb->index], REGNO (x)))
2533 RESET_BIT (bmap[bb->index], indx);
2535 else
2537 for (r = reg_set_table[REGNO (x)]; r != NULL; r = r->next)
2538 RESET_BIT (bmap[BLOCK_NUM (r->insn)], indx);
2542 return;
2544 case MEM:
2545 FOR_EACH_BB (bb)
2547 rtx list_entry = canon_modify_mem_list[bb->index];
2549 while (list_entry)
2551 rtx dest, dest_addr;
2553 if (CALL_P (XEXP (list_entry, 0)))
2555 if (set_p)
2556 SET_BIT (bmap[bb->index], indx);
2557 else
2558 RESET_BIT (bmap[bb->index], indx);
2559 break;
2561 /* LIST_ENTRY must be an INSN of some kind that sets memory.
2562 Examine each hunk of memory that is modified. */
2564 dest = XEXP (list_entry, 0);
2565 list_entry = XEXP (list_entry, 1);
2566 dest_addr = XEXP (list_entry, 0);
2568 if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
2569 x, rtx_addr_varies_p))
2571 if (set_p)
2572 SET_BIT (bmap[bb->index], indx);
2573 else
2574 RESET_BIT (bmap[bb->index], indx);
2575 break;
2577 list_entry = XEXP (list_entry, 1);
2581 x = XEXP (x, 0);
2582 goto repeat;
2584 case PC:
2585 case CC0: /*FIXME*/
2586 case CONST:
2587 case CONST_INT:
2588 case CONST_DOUBLE:
2589 case CONST_VECTOR:
2590 case SYMBOL_REF:
2591 case LABEL_REF:
2592 case ADDR_VEC:
2593 case ADDR_DIFF_VEC:
2594 return;
2596 default:
2597 break;
2600 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2602 if (fmt[i] == 'e')
2604 /* If we are about to do the last recursive call
2605 needed at this level, change it into iteration.
2606 This function is called enough to be worth it. */
2607 if (i == 0)
2609 x = XEXP (x, i);
2610 goto repeat;
2613 compute_transp (XEXP (x, i), indx, bmap, set_p);
2615 else if (fmt[i] == 'E')
2616 for (j = 0; j < XVECLEN (x, i); j++)
2617 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
2621 /* Top level routine to do the dataflow analysis needed by copy/const
2622 propagation. */
2624 static void
2625 compute_cprop_data (void)
2627 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, &set_hash_table);
2628 compute_available (cprop_pavloc, cprop_absaltered,
2629 cprop_avout, cprop_avin);
2632 /* Copy/constant propagation. */
2634 /* Maximum number of register uses in an insn that we handle. */
2635 #define MAX_USES 8
2637 /* Table of uses found in an insn.
2638 Allocated statically to avoid alloc/free complexity and overhead. */
2639 static struct reg_use reg_use_table[MAX_USES];
2641 /* Index into `reg_use_table' while building it. */
2642 static int reg_use_count;
2644 /* Set up a list of register numbers used in INSN. The found uses are stored
2645 in `reg_use_table'. `reg_use_count' is initialized to zero before entry,
2646 and contains the number of uses in the table upon exit.
2648 ??? If a register appears multiple times we will record it multiple times.
2649 This doesn't hurt anything but it will slow things down. */
2651 static void
2652 find_used_regs (rtx *xptr, void *data ATTRIBUTE_UNUSED)
2654 int i, j;
2655 enum rtx_code code;
2656 const char *fmt;
2657 rtx x = *xptr;
2659 /* repeat is used to turn tail-recursion into iteration since GCC
2660 can't do it when there's no return value. */
2661 repeat:
2662 if (x == 0)
2663 return;
2665 code = GET_CODE (x);
2666 if (REG_P (x))
2668 if (reg_use_count == MAX_USES)
2669 return;
2671 reg_use_table[reg_use_count].reg_rtx = x;
2672 reg_use_count++;
2675 /* Recursively scan the operands of this expression. */
2677 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2679 if (fmt[i] == 'e')
2681 /* If we are about to do the last recursive call
2682 needed at this level, change it into iteration.
2683 This function is called enough to be worth it. */
2684 if (i == 0)
2686 x = XEXP (x, 0);
2687 goto repeat;
2690 find_used_regs (&XEXP (x, i), data);
2692 else if (fmt[i] == 'E')
2693 for (j = 0; j < XVECLEN (x, i); j++)
2694 find_used_regs (&XVECEXP (x, i, j), data);
2698 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
2699 Returns nonzero is successful. */
2701 static int
2702 try_replace_reg (rtx from, rtx to, rtx insn)
2704 rtx note = find_reg_equal_equiv_note (insn);
2705 rtx src = 0;
2706 int success = 0;
2707 rtx set = single_set (insn);
2709 validate_replace_src_group (from, to, insn);
2710 if (num_changes_pending () && apply_change_group ())
2711 success = 1;
2713 /* Try to simplify SET_SRC if we have substituted a constant. */
2714 if (success && set && CONSTANT_P (to))
2716 src = simplify_rtx (SET_SRC (set));
2718 if (src)
2719 validate_change (insn, &SET_SRC (set), src, 0);
2722 /* If there is already a NOTE, update the expression in it with our
2723 replacement. */
2724 if (note != 0)
2725 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), from, to);
2727 if (!success && set && reg_mentioned_p (from, SET_SRC (set)))
2729 /* If above failed and this is a single set, try to simplify the source of
2730 the set given our substitution. We could perhaps try this for multiple
2731 SETs, but it probably won't buy us anything. */
2732 src = simplify_replace_rtx (SET_SRC (set), from, to);
2734 if (!rtx_equal_p (src, SET_SRC (set))
2735 && validate_change (insn, &SET_SRC (set), src, 0))
2736 success = 1;
2738 /* If we've failed to do replacement, have a single SET, don't already
2739 have a note, and have no special SET, add a REG_EQUAL note to not
2740 lose information. */
2741 if (!success && note == 0 && set != 0
2742 && GET_CODE (XEXP (set, 0)) != ZERO_EXTRACT
2743 && GET_CODE (XEXP (set, 0)) != SIGN_EXTRACT)
2744 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2747 /* REG_EQUAL may get simplified into register.
2748 We don't allow that. Remove that note. This code ought
2749 not to happen, because previous code ought to synthesize
2750 reg-reg move, but be on the safe side. */
2751 if (note && REG_P (XEXP (note, 0)))
2752 remove_note (insn, note);
2754 return success;
2757 /* Find a set of REGNOs that are available on entry to INSN's block. Returns
2758 NULL no such set is found. */
2760 static struct expr *
2761 find_avail_set (int regno, rtx insn)
2763 /* SET1 contains the last set found that can be returned to the caller for
2764 use in a substitution. */
2765 struct expr *set1 = 0;
2767 /* Loops are not possible here. To get a loop we would need two sets
2768 available at the start of the block containing INSN. i.e. we would
2769 need two sets like this available at the start of the block:
2771 (set (reg X) (reg Y))
2772 (set (reg Y) (reg X))
2774 This can not happen since the set of (reg Y) would have killed the
2775 set of (reg X) making it unavailable at the start of this block. */
2776 while (1)
2778 rtx src;
2779 struct expr *set = lookup_set (regno, &set_hash_table);
2781 /* Find a set that is available at the start of the block
2782 which contains INSN. */
2783 while (set)
2785 if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
2786 break;
2787 set = next_set (regno, set);
2790 /* If no available set was found we've reached the end of the
2791 (possibly empty) copy chain. */
2792 if (set == 0)
2793 break;
2795 gcc_assert (GET_CODE (set->expr) == SET);
2797 src = SET_SRC (set->expr);
2799 /* We know the set is available.
2800 Now check that SRC is ANTLOC (i.e. none of the source operands
2801 have changed since the start of the block).
2803 If the source operand changed, we may still use it for the next
2804 iteration of this loop, but we may not use it for substitutions. */
2806 if (gcse_constant_p (src) || oprs_not_set_p (src, insn))
2807 set1 = set;
2809 /* If the source of the set is anything except a register, then
2810 we have reached the end of the copy chain. */
2811 if (! REG_P (src))
2812 break;
2814 /* Follow the copy chain, i.e. start another iteration of the loop
2815 and see if we have an available copy into SRC. */
2816 regno = REGNO (src);
2819 /* SET1 holds the last set that was available and anticipatable at
2820 INSN. */
2821 return set1;
2824 /* Subroutine of cprop_insn that tries to propagate constants into
2825 JUMP_INSNS. JUMP must be a conditional jump. If SETCC is non-NULL
2826 it is the instruction that immediately precedes JUMP, and must be a
2827 single SET of a register. FROM is what we will try to replace,
2828 SRC is the constant we will try to substitute for it. Returns nonzero
2829 if a change was made. */
2831 static int
2832 cprop_jump (basic_block bb, rtx setcc, rtx jump, rtx from, rtx src)
2834 rtx new, set_src, note_src;
2835 rtx set = pc_set (jump);
2836 rtx note = find_reg_equal_equiv_note (jump);
2838 if (note)
2840 note_src = XEXP (note, 0);
2841 if (GET_CODE (note_src) == EXPR_LIST)
2842 note_src = NULL_RTX;
2844 else note_src = NULL_RTX;
2846 /* Prefer REG_EQUAL notes except those containing EXPR_LISTs. */
2847 set_src = note_src ? note_src : SET_SRC (set);
2849 /* First substitute the SETCC condition into the JUMP instruction,
2850 then substitute that given values into this expanded JUMP. */
2851 if (setcc != NULL_RTX
2852 && !modified_between_p (from, setcc, jump)
2853 && !modified_between_p (src, setcc, jump))
2855 rtx setcc_src;
2856 rtx setcc_set = single_set (setcc);
2857 rtx setcc_note = find_reg_equal_equiv_note (setcc);
2858 setcc_src = (setcc_note && GET_CODE (XEXP (setcc_note, 0)) != EXPR_LIST)
2859 ? XEXP (setcc_note, 0) : SET_SRC (setcc_set);
2860 set_src = simplify_replace_rtx (set_src, SET_DEST (setcc_set),
2861 setcc_src);
2863 else
2864 setcc = NULL_RTX;
2866 new = simplify_replace_rtx (set_src, from, src);
2868 /* If no simplification can be made, then try the next register. */
2869 if (rtx_equal_p (new, SET_SRC (set)))
2870 return 0;
2872 /* If this is now a no-op delete it, otherwise this must be a valid insn. */
2873 if (new == pc_rtx)
2874 delete_insn (jump);
2875 else
2877 /* Ensure the value computed inside the jump insn to be equivalent
2878 to one computed by setcc. */
2879 if (setcc && modified_in_p (new, setcc))
2880 return 0;
2881 if (! validate_change (jump, &SET_SRC (set), new, 0))
2883 /* When (some) constants are not valid in a comparison, and there
2884 are two registers to be replaced by constants before the entire
2885 comparison can be folded into a constant, we need to keep
2886 intermediate information in REG_EQUAL notes. For targets with
2887 separate compare insns, such notes are added by try_replace_reg.
2888 When we have a combined compare-and-branch instruction, however,
2889 we need to attach a note to the branch itself to make this
2890 optimization work. */
2892 if (!rtx_equal_p (new, note_src))
2893 set_unique_reg_note (jump, REG_EQUAL, copy_rtx (new));
2894 return 0;
2897 /* Remove REG_EQUAL note after simplification. */
2898 if (note_src)
2899 remove_note (jump, note);
2901 /* If this has turned into an unconditional jump,
2902 then put a barrier after it so that the unreachable
2903 code will be deleted. */
2904 if (GET_CODE (SET_SRC (set)) == LABEL_REF)
2905 emit_barrier_after (jump);
2908 #ifdef HAVE_cc0
2909 /* Delete the cc0 setter. */
2910 if (setcc != NULL && CC0_P (SET_DEST (single_set (setcc))))
2911 delete_insn (setcc);
2912 #endif
2914 run_jump_opt_after_gcse = 1;
2916 global_const_prop_count++;
2917 if (gcse_file != NULL)
2919 fprintf (gcse_file,
2920 "GLOBAL CONST-PROP: Replacing reg %d in jump_insn %d with constant ",
2921 REGNO (from), INSN_UID (jump));
2922 print_rtl (gcse_file, src);
2923 fprintf (gcse_file, "\n");
2925 purge_dead_edges (bb);
2927 return 1;
2930 static bool
2931 constprop_register (rtx insn, rtx from, rtx to, int alter_jumps)
2933 rtx sset;
2935 /* Check for reg or cc0 setting instructions followed by
2936 conditional branch instructions first. */
2937 if (alter_jumps
2938 && (sset = single_set (insn)) != NULL
2939 && NEXT_INSN (insn)
2940 && any_condjump_p (NEXT_INSN (insn)) && onlyjump_p (NEXT_INSN (insn)))
2942 rtx dest = SET_DEST (sset);
2943 if ((REG_P (dest) || CC0_P (dest))
2944 && cprop_jump (BLOCK_FOR_INSN (insn), insn, NEXT_INSN (insn), from, to))
2945 return 1;
2948 /* Handle normal insns next. */
2949 if (NONJUMP_INSN_P (insn)
2950 && try_replace_reg (from, to, insn))
2951 return 1;
2953 /* Try to propagate a CONST_INT into a conditional jump.
2954 We're pretty specific about what we will handle in this
2955 code, we can extend this as necessary over time.
2957 Right now the insn in question must look like
2958 (set (pc) (if_then_else ...)) */
2959 else if (alter_jumps && any_condjump_p (insn) && onlyjump_p (insn))
2960 return cprop_jump (BLOCK_FOR_INSN (insn), NULL, insn, from, to);
2961 return 0;
2964 /* Perform constant and copy propagation on INSN.
2965 The result is nonzero if a change was made. */
2967 static int
2968 cprop_insn (rtx insn, int alter_jumps)
2970 struct reg_use *reg_used;
2971 int changed = 0;
2972 rtx note;
2974 if (!INSN_P (insn))
2975 return 0;
2977 reg_use_count = 0;
2978 note_uses (&PATTERN (insn), find_used_regs, NULL);
2980 note = find_reg_equal_equiv_note (insn);
2982 /* We may win even when propagating constants into notes. */
2983 if (note)
2984 find_used_regs (&XEXP (note, 0), NULL);
2986 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
2987 reg_used++, reg_use_count--)
2989 unsigned int regno = REGNO (reg_used->reg_rtx);
2990 rtx pat, src;
2991 struct expr *set;
2993 /* Ignore registers created by GCSE.
2994 We do this because ... */
2995 if (regno >= max_gcse_regno)
2996 continue;
2998 /* If the register has already been set in this block, there's
2999 nothing we can do. */
3000 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
3001 continue;
3003 /* Find an assignment that sets reg_used and is available
3004 at the start of the block. */
3005 set = find_avail_set (regno, insn);
3006 if (! set)
3007 continue;
3009 pat = set->expr;
3010 /* ??? We might be able to handle PARALLELs. Later. */
3011 gcc_assert (GET_CODE (pat) == SET);
3013 src = SET_SRC (pat);
3015 /* Constant propagation. */
3016 if (gcse_constant_p (src))
3018 if (constprop_register (insn, reg_used->reg_rtx, src, alter_jumps))
3020 changed = 1;
3021 global_const_prop_count++;
3022 if (gcse_file != NULL)
3024 fprintf (gcse_file, "GLOBAL CONST-PROP: Replacing reg %d in ", regno);
3025 fprintf (gcse_file, "insn %d with constant ", INSN_UID (insn));
3026 print_rtl (gcse_file, src);
3027 fprintf (gcse_file, "\n");
3029 if (INSN_DELETED_P (insn))
3030 return 1;
3033 else if (REG_P (src)
3034 && REGNO (src) >= FIRST_PSEUDO_REGISTER
3035 && REGNO (src) != regno)
3037 if (try_replace_reg (reg_used->reg_rtx, src, insn))
3039 changed = 1;
3040 global_copy_prop_count++;
3041 if (gcse_file != NULL)
3043 fprintf (gcse_file, "GLOBAL COPY-PROP: Replacing reg %d in insn %d",
3044 regno, INSN_UID (insn));
3045 fprintf (gcse_file, " with reg %d\n", REGNO (src));
3048 /* The original insn setting reg_used may or may not now be
3049 deletable. We leave the deletion to flow. */
3050 /* FIXME: If it turns out that the insn isn't deletable,
3051 then we may have unnecessarily extended register lifetimes
3052 and made things worse. */
3057 return changed;
3060 /* Like find_used_regs, but avoid recording uses that appear in
3061 input-output contexts such as zero_extract or pre_dec. This
3062 restricts the cases we consider to those for which local cprop
3063 can legitimately make replacements. */
3065 static void
3066 local_cprop_find_used_regs (rtx *xptr, void *data)
3068 rtx x = *xptr;
3070 if (x == 0)
3071 return;
3073 switch (GET_CODE (x))
3075 case ZERO_EXTRACT:
3076 case SIGN_EXTRACT:
3077 case STRICT_LOW_PART:
3078 return;
3080 case PRE_DEC:
3081 case PRE_INC:
3082 case POST_DEC:
3083 case POST_INC:
3084 case PRE_MODIFY:
3085 case POST_MODIFY:
3086 /* Can only legitimately appear this early in the context of
3087 stack pushes for function arguments, but handle all of the
3088 codes nonetheless. */
3089 return;
3091 case SUBREG:
3092 /* Setting a subreg of a register larger than word_mode leaves
3093 the non-written words unchanged. */
3094 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) > BITS_PER_WORD)
3095 return;
3096 break;
3098 default:
3099 break;
3102 find_used_regs (xptr, data);
3105 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3106 their REG_EQUAL notes need updating. */
3108 static bool
3109 do_local_cprop (rtx x, rtx insn, int alter_jumps, rtx *libcall_sp)
3111 rtx newreg = NULL, newcnst = NULL;
3113 /* Rule out USE instructions and ASM statements as we don't want to
3114 change the hard registers mentioned. */
3115 if (REG_P (x)
3116 && (REGNO (x) >= FIRST_PSEUDO_REGISTER
3117 || (GET_CODE (PATTERN (insn)) != USE
3118 && asm_noperands (PATTERN (insn)) < 0)))
3120 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0);
3121 struct elt_loc_list *l;
3123 if (!val)
3124 return false;
3125 for (l = val->locs; l; l = l->next)
3127 rtx this_rtx = l->loc;
3128 rtx note;
3130 /* Don't CSE non-constant values out of libcall blocks. */
3131 if (l->in_libcall && ! CONSTANT_P (this_rtx))
3132 continue;
3134 if (gcse_constant_p (this_rtx))
3135 newcnst = this_rtx;
3136 if (REG_P (this_rtx) && REGNO (this_rtx) >= FIRST_PSEUDO_REGISTER
3137 /* Don't copy propagate if it has attached REG_EQUIV note.
3138 At this point this only function parameters should have
3139 REG_EQUIV notes and if the argument slot is used somewhere
3140 explicitly, it means address of parameter has been taken,
3141 so we should not extend the lifetime of the pseudo. */
3142 && (!(note = find_reg_note (l->setting_insn, REG_EQUIV, NULL_RTX))
3143 || ! MEM_P (XEXP (note, 0))))
3144 newreg = this_rtx;
3146 if (newcnst && constprop_register (insn, x, newcnst, alter_jumps))
3148 /* If we find a case where we can't fix the retval REG_EQUAL notes
3149 match the new register, we either have to abandon this replacement
3150 or fix delete_trivially_dead_insns to preserve the setting insn,
3151 or make it delete the REG_EUAQL note, and fix up all passes that
3152 require the REG_EQUAL note there. */
3153 bool adjusted;
3155 adjusted = adjust_libcall_notes (x, newcnst, insn, libcall_sp);
3156 gcc_assert (adjusted);
3158 if (gcse_file != NULL)
3160 fprintf (gcse_file, "LOCAL CONST-PROP: Replacing reg %d in ",
3161 REGNO (x));
3162 fprintf (gcse_file, "insn %d with constant ",
3163 INSN_UID (insn));
3164 print_rtl (gcse_file, newcnst);
3165 fprintf (gcse_file, "\n");
3167 local_const_prop_count++;
3168 return true;
3170 else if (newreg && newreg != x && try_replace_reg (x, newreg, insn))
3172 adjust_libcall_notes (x, newreg, insn, libcall_sp);
3173 if (gcse_file != NULL)
3175 fprintf (gcse_file,
3176 "LOCAL COPY-PROP: Replacing reg %d in insn %d",
3177 REGNO (x), INSN_UID (insn));
3178 fprintf (gcse_file, " with reg %d\n", REGNO (newreg));
3180 local_copy_prop_count++;
3181 return true;
3184 return false;
3187 /* LIBCALL_SP is a zero-terminated array of insns at the end of a libcall;
3188 their REG_EQUAL notes need updating to reflect that OLDREG has been
3189 replaced with NEWVAL in INSN. Return true if all substitutions could
3190 be made. */
3191 static bool
3192 adjust_libcall_notes (rtx oldreg, rtx newval, rtx insn, rtx *libcall_sp)
3194 rtx end;
3196 while ((end = *libcall_sp++))
3198 rtx note = find_reg_equal_equiv_note (end);
3200 if (! note)
3201 continue;
3203 if (REG_P (newval))
3205 if (reg_set_between_p (newval, PREV_INSN (insn), end))
3209 note = find_reg_equal_equiv_note (end);
3210 if (! note)
3211 continue;
3212 if (reg_mentioned_p (newval, XEXP (note, 0)))
3213 return false;
3215 while ((end = *libcall_sp++));
3216 return true;
3219 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0), oldreg, newval);
3220 insn = end;
3222 return true;
3225 #define MAX_NESTED_LIBCALLS 9
3227 static void
3228 local_cprop_pass (int alter_jumps)
3230 rtx insn;
3231 struct reg_use *reg_used;
3232 rtx libcall_stack[MAX_NESTED_LIBCALLS + 1], *libcall_sp;
3233 bool changed = false;
3235 cselib_init (false);
3236 libcall_sp = &libcall_stack[MAX_NESTED_LIBCALLS];
3237 *libcall_sp = 0;
3238 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3240 if (INSN_P (insn))
3242 rtx note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
3244 if (note)
3246 gcc_assert (libcall_sp != libcall_stack);
3247 *--libcall_sp = XEXP (note, 0);
3249 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
3250 if (note)
3251 libcall_sp++;
3252 note = find_reg_equal_equiv_note (insn);
3255 reg_use_count = 0;
3256 note_uses (&PATTERN (insn), local_cprop_find_used_regs, NULL);
3257 if (note)
3258 local_cprop_find_used_regs (&XEXP (note, 0), NULL);
3260 for (reg_used = &reg_use_table[0]; reg_use_count > 0;
3261 reg_used++, reg_use_count--)
3262 if (do_local_cprop (reg_used->reg_rtx, insn, alter_jumps,
3263 libcall_sp))
3265 changed = true;
3266 break;
3268 if (INSN_DELETED_P (insn))
3269 break;
3271 while (reg_use_count);
3273 cselib_process_insn (insn);
3275 cselib_finish ();
3276 /* Global analysis may get into infinite loops for unreachable blocks. */
3277 if (changed && alter_jumps)
3279 delete_unreachable_blocks ();
3280 free_reg_set_mem ();
3281 alloc_reg_set_mem (max_reg_num ());
3282 compute_sets (get_insns ());
3286 /* Forward propagate copies. This includes copies and constants. Return
3287 nonzero if a change was made. */
3289 static int
3290 cprop (int alter_jumps)
3292 int changed;
3293 basic_block bb;
3294 rtx insn;
3296 /* Note we start at block 1. */
3297 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3299 if (gcse_file != NULL)
3300 fprintf (gcse_file, "\n");
3301 return 0;
3304 changed = 0;
3305 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb, EXIT_BLOCK_PTR, next_bb)
3307 /* Reset tables used to keep track of what's still valid [since the
3308 start of the block]. */
3309 reset_opr_set_tables ();
3311 for (insn = BB_HEAD (bb);
3312 insn != NULL && insn != NEXT_INSN (BB_END (bb));
3313 insn = NEXT_INSN (insn))
3314 if (INSN_P (insn))
3316 changed |= cprop_insn (insn, alter_jumps);
3318 /* Keep track of everything modified by this insn. */
3319 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
3320 call mark_oprs_set if we turned the insn into a NOTE. */
3321 if (! NOTE_P (insn))
3322 mark_oprs_set (insn);
3326 if (gcse_file != NULL)
3327 fprintf (gcse_file, "\n");
3329 return changed;
3332 /* Similar to get_condition, only the resulting condition must be
3333 valid at JUMP, instead of at EARLIEST.
3335 This differs from noce_get_condition in ifcvt.c in that we prefer not to
3336 settle for the condition variable in the jump instruction being integral.
3337 We prefer to be able to record the value of a user variable, rather than
3338 the value of a temporary used in a condition. This could be solved by
3339 recording the value of *every* register scaned by canonicalize_condition,
3340 but this would require some code reorganization. */
3343 fis_get_condition (rtx jump)
3345 return get_condition (jump, NULL, false, true);
3348 /* Check the comparison COND to see if we can safely form an implicit set from
3349 it. COND is either an EQ or NE comparison. */
3351 static bool
3352 implicit_set_cond_p (rtx cond)
3354 enum machine_mode mode = GET_MODE (XEXP (cond, 0));
3355 rtx cst = XEXP (cond, 1);
3357 /* We can't perform this optimization if either operand might be or might
3358 contain a signed zero. */
3359 if (HONOR_SIGNED_ZEROS (mode))
3361 /* It is sufficient to check if CST is or contains a zero. We must
3362 handle float, complex, and vector. If any subpart is a zero, then
3363 the optimization can't be performed. */
3364 /* ??? The complex and vector checks are not implemented yet. We just
3365 always return zero for them. */
3366 if (GET_CODE (cst) == CONST_DOUBLE)
3368 REAL_VALUE_TYPE d;
3369 REAL_VALUE_FROM_CONST_DOUBLE (d, cst);
3370 if (REAL_VALUES_EQUAL (d, dconst0))
3371 return 0;
3373 else
3374 return 0;
3377 return gcse_constant_p (cst);
3380 /* Find the implicit sets of a function. An "implicit set" is a constraint
3381 on the value of a variable, implied by a conditional jump. For example,
3382 following "if (x == 2)", the then branch may be optimized as though the
3383 conditional performed an "explicit set", in this example, "x = 2". This
3384 function records the set patterns that are implicit at the start of each
3385 basic block. */
3387 static void
3388 find_implicit_sets (void)
3390 basic_block bb, dest;
3391 unsigned int count;
3392 rtx cond, new;
3394 count = 0;
3395 FOR_EACH_BB (bb)
3396 /* Check for more than one successor. */
3397 if (EDGE_COUNT (bb->succs) > 1)
3399 cond = fis_get_condition (BB_END (bb));
3401 if (cond
3402 && (GET_CODE (cond) == EQ || GET_CODE (cond) == NE)
3403 && REG_P (XEXP (cond, 0))
3404 && REGNO (XEXP (cond, 0)) >= FIRST_PSEUDO_REGISTER
3405 && implicit_set_cond_p (cond))
3407 dest = GET_CODE (cond) == EQ ? BRANCH_EDGE (bb)->dest
3408 : FALLTHRU_EDGE (bb)->dest;
3410 if (dest && EDGE_COUNT (dest->preds) == 1
3411 && dest != EXIT_BLOCK_PTR)
3413 new = gen_rtx_SET (VOIDmode, XEXP (cond, 0),
3414 XEXP (cond, 1));
3415 implicit_sets[dest->index] = new;
3416 if (gcse_file)
3418 fprintf(gcse_file, "Implicit set of reg %d in ",
3419 REGNO (XEXP (cond, 0)));
3420 fprintf(gcse_file, "basic block %d\n", dest->index);
3422 count++;
3427 if (gcse_file)
3428 fprintf (gcse_file, "Found %d implicit sets\n", count);
3431 /* Perform one copy/constant propagation pass.
3432 PASS is the pass count. If CPROP_JUMPS is true, perform constant
3433 propagation into conditional jumps. If BYPASS_JUMPS is true,
3434 perform conditional jump bypassing optimizations. */
3436 static int
3437 one_cprop_pass (int pass, int cprop_jumps, int bypass_jumps)
3439 int changed = 0;
3441 global_const_prop_count = local_const_prop_count = 0;
3442 global_copy_prop_count = local_copy_prop_count = 0;
3444 local_cprop_pass (cprop_jumps);
3446 /* Determine implicit sets. */
3447 implicit_sets = xcalloc (last_basic_block, sizeof (rtx));
3448 find_implicit_sets ();
3450 alloc_hash_table (max_cuid, &set_hash_table, 1);
3451 compute_hash_table (&set_hash_table);
3453 /* Free implicit_sets before peak usage. */
3454 free (implicit_sets);
3455 implicit_sets = NULL;
3457 if (gcse_file)
3458 dump_hash_table (gcse_file, "SET", &set_hash_table);
3459 if (set_hash_table.n_elems > 0)
3461 alloc_cprop_mem (last_basic_block, set_hash_table.n_elems);
3462 compute_cprop_data ();
3463 changed = cprop (cprop_jumps);
3464 if (bypass_jumps)
3465 changed |= bypass_conditional_jumps ();
3466 free_cprop_mem ();
3469 free_hash_table (&set_hash_table);
3471 if (gcse_file)
3473 fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, ",
3474 current_function_name (), pass, bytes_used);
3475 fprintf (gcse_file, "%d local const props, %d local copy props\n\n",
3476 local_const_prop_count, local_copy_prop_count);
3477 fprintf (gcse_file, "%d global const props, %d global copy props\n\n",
3478 global_const_prop_count, global_copy_prop_count);
3480 /* Global analysis may get into infinite loops for unreachable blocks. */
3481 if (changed && cprop_jumps)
3482 delete_unreachable_blocks ();
3484 return changed;
3487 /* Bypass conditional jumps. */
3489 /* The value of last_basic_block at the beginning of the jump_bypass
3490 pass. The use of redirect_edge_and_branch_force may introduce new
3491 basic blocks, but the data flow analysis is only valid for basic
3492 block indices less than bypass_last_basic_block. */
3494 static int bypass_last_basic_block;
3496 /* Find a set of REGNO to a constant that is available at the end of basic
3497 block BB. Returns NULL if no such set is found. Based heavily upon
3498 find_avail_set. */
3500 static struct expr *
3501 find_bypass_set (int regno, int bb)
3503 struct expr *result = 0;
3505 for (;;)
3507 rtx src;
3508 struct expr *set = lookup_set (regno, &set_hash_table);
3510 while (set)
3512 if (TEST_BIT (cprop_avout[bb], set->bitmap_index))
3513 break;
3514 set = next_set (regno, set);
3517 if (set == 0)
3518 break;
3520 gcc_assert (GET_CODE (set->expr) == SET);
3522 src = SET_SRC (set->expr);
3523 if (gcse_constant_p (src))
3524 result = set;
3526 if (! REG_P (src))
3527 break;
3529 regno = REGNO (src);
3531 return result;
3535 /* Subroutine of bypass_block that checks whether a pseudo is killed by
3536 any of the instructions inserted on an edge. Jump bypassing places
3537 condition code setters on CFG edges using insert_insn_on_edge. This
3538 function is required to check that our data flow analysis is still
3539 valid prior to commit_edge_insertions. */
3541 static bool
3542 reg_killed_on_edge (rtx reg, edge e)
3544 rtx insn;
3546 for (insn = e->insns.r; insn; insn = NEXT_INSN (insn))
3547 if (INSN_P (insn) && reg_set_p (reg, insn))
3548 return true;
3550 return false;
3553 /* Subroutine of bypass_conditional_jumps that attempts to bypass the given
3554 basic block BB which has more than one predecessor. If not NULL, SETCC
3555 is the first instruction of BB, which is immediately followed by JUMP_INSN
3556 JUMP. Otherwise, SETCC is NULL, and JUMP is the first insn of BB.
3557 Returns nonzero if a change was made.
3559 During the jump bypassing pass, we may place copies of SETCC instructions
3560 on CFG edges. The following routine must be careful to pay attention to
3561 these inserted insns when performing its transformations. */
3563 static int
3564 bypass_block (basic_block bb, rtx setcc, rtx jump)
3566 rtx insn, note;
3567 edge e, edest;
3568 int i, change;
3569 int may_be_loop_header;
3570 unsigned removed_p;
3571 edge_iterator ei;
3573 insn = (setcc != NULL) ? setcc : jump;
3575 /* Determine set of register uses in INSN. */
3576 reg_use_count = 0;
3577 note_uses (&PATTERN (insn), find_used_regs, NULL);
3578 note = find_reg_equal_equiv_note (insn);
3579 if (note)
3580 find_used_regs (&XEXP (note, 0), NULL);
3582 may_be_loop_header = false;
3583 FOR_EACH_EDGE (e, ei, bb->preds)
3584 if (e->flags & EDGE_DFS_BACK)
3586 may_be_loop_header = true;
3587 break;
3590 change = 0;
3591 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
3593 removed_p = 0;
3595 if (e->flags & EDGE_COMPLEX)
3597 ei_next (&ei);
3598 continue;
3601 /* We can't redirect edges from new basic blocks. */
3602 if (e->src->index >= bypass_last_basic_block)
3604 ei_next (&ei);
3605 continue;
3608 /* The irreducible loops created by redirecting of edges entering the
3609 loop from outside would decrease effectiveness of some of the following
3610 optimizations, so prevent this. */
3611 if (may_be_loop_header
3612 && !(e->flags & EDGE_DFS_BACK))
3614 ei_next (&ei);
3615 continue;
3618 for (i = 0; i < reg_use_count; i++)
3620 struct reg_use *reg_used = &reg_use_table[i];
3621 unsigned int regno = REGNO (reg_used->reg_rtx);
3622 basic_block dest, old_dest;
3623 struct expr *set;
3624 rtx src, new;
3626 if (regno >= max_gcse_regno)
3627 continue;
3629 set = find_bypass_set (regno, e->src->index);
3631 if (! set)
3632 continue;
3634 /* Check the data flow is valid after edge insertions. */
3635 if (e->insns.r && reg_killed_on_edge (reg_used->reg_rtx, e))
3636 continue;
3638 src = SET_SRC (pc_set (jump));
3640 if (setcc != NULL)
3641 src = simplify_replace_rtx (src,
3642 SET_DEST (PATTERN (setcc)),
3643 SET_SRC (PATTERN (setcc)));
3645 new = simplify_replace_rtx (src, reg_used->reg_rtx,
3646 SET_SRC (set->expr));
3648 /* Jump bypassing may have already placed instructions on
3649 edges of the CFG. We can't bypass an outgoing edge that
3650 has instructions associated with it, as these insns won't
3651 get executed if the incoming edge is redirected. */
3653 if (new == pc_rtx)
3655 edest = FALLTHRU_EDGE (bb);
3656 dest = edest->insns.r ? NULL : edest->dest;
3658 else if (GET_CODE (new) == LABEL_REF)
3660 edge_iterator ei2;
3662 dest = BLOCK_FOR_INSN (XEXP (new, 0));
3663 /* Don't bypass edges containing instructions. */
3664 FOR_EACH_EDGE (edest, ei2, bb->succs)
3665 if (edest->dest == dest && edest->insns.r)
3667 dest = NULL;
3668 break;
3671 else
3672 dest = NULL;
3674 /* Avoid unification of the edge with other edges from original
3675 branch. We would end up emitting the instruction on "both"
3676 edges. */
3678 if (dest && setcc && !CC0_P (SET_DEST (PATTERN (setcc))))
3680 edge e2;
3681 edge_iterator ei2;
3683 FOR_EACH_EDGE (e2, ei2, e->src->succs)
3684 if (e2->dest == dest)
3686 dest = NULL;
3687 break;
3691 old_dest = e->dest;
3692 if (dest != NULL
3693 && dest != old_dest
3694 && dest != EXIT_BLOCK_PTR)
3696 redirect_edge_and_branch_force (e, dest);
3698 /* Copy the register setter to the redirected edge.
3699 Don't copy CC0 setters, as CC0 is dead after jump. */
3700 if (setcc)
3702 rtx pat = PATTERN (setcc);
3703 if (!CC0_P (SET_DEST (pat)))
3704 insert_insn_on_edge (copy_insn (pat), e);
3707 if (gcse_file != NULL)
3709 fprintf (gcse_file, "JUMP-BYPASS: Proved reg %d "
3710 "in jump_insn %d equals constant ",
3711 regno, INSN_UID (jump));
3712 print_rtl (gcse_file, SET_SRC (set->expr));
3713 fprintf (gcse_file, "\nBypass edge from %d->%d to %d\n",
3714 e->src->index, old_dest->index, dest->index);
3716 change = 1;
3717 removed_p = 1;
3718 break;
3721 if (!removed_p)
3722 ei_next (&ei);
3724 return change;
3727 /* Find basic blocks with more than one predecessor that only contain a
3728 single conditional jump. If the result of the comparison is known at
3729 compile-time from any incoming edge, redirect that edge to the
3730 appropriate target. Returns nonzero if a change was made.
3732 This function is now mis-named, because we also handle indirect jumps. */
3734 static int
3735 bypass_conditional_jumps (void)
3737 basic_block bb;
3738 int changed;
3739 rtx setcc;
3740 rtx insn;
3741 rtx dest;
3743 /* Note we start at block 1. */
3744 if (ENTRY_BLOCK_PTR->next_bb == EXIT_BLOCK_PTR)
3745 return 0;
3747 bypass_last_basic_block = last_basic_block;
3748 mark_dfs_back_edges ();
3750 changed = 0;
3751 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb->next_bb,
3752 EXIT_BLOCK_PTR, next_bb)
3754 /* Check for more than one predecessor. */
3755 if (EDGE_COUNT (bb->preds) > 1)
3757 setcc = NULL_RTX;
3758 for (insn = BB_HEAD (bb);
3759 insn != NULL && insn != NEXT_INSN (BB_END (bb));
3760 insn = NEXT_INSN (insn))
3761 if (NONJUMP_INSN_P (insn))
3763 if (setcc)
3764 break;
3765 if (GET_CODE (PATTERN (insn)) != SET)
3766 break;
3768 dest = SET_DEST (PATTERN (insn));
3769 if (REG_P (dest) || CC0_P (dest))
3770 setcc = insn;
3771 else
3772 break;
3774 else if (JUMP_P (insn))
3776 if ((any_condjump_p (insn) || computed_jump_p (insn))
3777 && onlyjump_p (insn))
3778 changed |= bypass_block (bb, setcc, insn);
3779 break;
3781 else if (INSN_P (insn))
3782 break;
3786 /* If we bypassed any register setting insns, we inserted a
3787 copy on the redirected edge. These need to be committed. */
3788 if (changed)
3789 commit_edge_insertions();
3791 return changed;
3794 /* Compute PRE+LCM working variables. */
3796 /* Local properties of expressions. */
3797 /* Nonzero for expressions that are transparent in the block. */
3798 static sbitmap *transp;
3800 /* Nonzero for expressions that are transparent at the end of the block.
3801 This is only zero for expressions killed by abnormal critical edge
3802 created by a calls. */
3803 static sbitmap *transpout;
3805 /* Nonzero for expressions that are computed (available) in the block. */
3806 static sbitmap *comp;
3808 /* Nonzero for expressions that are locally anticipatable in the block. */
3809 static sbitmap *antloc;
3811 /* Nonzero for expressions where this block is an optimal computation
3812 point. */
3813 static sbitmap *pre_optimal;
3815 /* Nonzero for expressions which are redundant in a particular block. */
3816 static sbitmap *pre_redundant;
3818 /* Nonzero for expressions which should be inserted on a specific edge. */
3819 static sbitmap *pre_insert_map;
3821 /* Nonzero for expressions which should be deleted in a specific block. */
3822 static sbitmap *pre_delete_map;
3824 /* Contains the edge_list returned by pre_edge_lcm. */
3825 static struct edge_list *edge_list;
3827 /* Redundant insns. */
3828 static sbitmap pre_redundant_insns;
3830 /* Allocate vars used for PRE analysis. */
3832 static void
3833 alloc_pre_mem (int n_blocks, int n_exprs)
3835 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
3836 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
3837 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
3839 pre_optimal = NULL;
3840 pre_redundant = NULL;
3841 pre_insert_map = NULL;
3842 pre_delete_map = NULL;
3843 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
3845 /* pre_insert and pre_delete are allocated later. */
3848 /* Free vars used for PRE analysis. */
3850 static void
3851 free_pre_mem (void)
3853 sbitmap_vector_free (transp);
3854 sbitmap_vector_free (comp);
3856 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
3858 if (pre_optimal)
3859 sbitmap_vector_free (pre_optimal);
3860 if (pre_redundant)
3861 sbitmap_vector_free (pre_redundant);
3862 if (pre_insert_map)
3863 sbitmap_vector_free (pre_insert_map);
3864 if (pre_delete_map)
3865 sbitmap_vector_free (pre_delete_map);
3867 transp = comp = NULL;
3868 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
3871 /* Top level routine to do the dataflow analysis needed by PRE. */
3873 static void
3874 compute_pre_data (void)
3876 sbitmap trapping_expr;
3877 basic_block bb;
3878 unsigned int ui;
3880 compute_local_properties (transp, comp, antloc, &expr_hash_table);
3881 sbitmap_vector_zero (ae_kill, last_basic_block);
3883 /* Collect expressions which might trap. */
3884 trapping_expr = sbitmap_alloc (expr_hash_table.n_elems);
3885 sbitmap_zero (trapping_expr);
3886 for (ui = 0; ui < expr_hash_table.size; ui++)
3888 struct expr *e;
3889 for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash)
3890 if (may_trap_p (e->expr))
3891 SET_BIT (trapping_expr, e->bitmap_index);
3894 /* Compute ae_kill for each basic block using:
3896 ~(TRANSP | COMP)
3899 FOR_EACH_BB (bb)
3901 edge e;
3902 edge_iterator ei;
3904 /* If the current block is the destination of an abnormal edge, we
3905 kill all trapping expressions because we won't be able to properly
3906 place the instruction on the edge. So make them neither
3907 anticipatable nor transparent. This is fairly conservative. */
3908 FOR_EACH_EDGE (e, ei, bb->preds)
3909 if (e->flags & EDGE_ABNORMAL)
3911 sbitmap_difference (antloc[bb->index], antloc[bb->index], trapping_expr);
3912 sbitmap_difference (transp[bb->index], transp[bb->index], trapping_expr);
3913 break;
3916 sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
3917 sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
3920 edge_list = pre_edge_lcm (gcse_file, expr_hash_table.n_elems, transp, comp, antloc,
3921 ae_kill, &pre_insert_map, &pre_delete_map);
3922 sbitmap_vector_free (antloc);
3923 antloc = NULL;
3924 sbitmap_vector_free (ae_kill);
3925 ae_kill = NULL;
3926 sbitmap_free (trapping_expr);
3929 /* PRE utilities */
3931 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
3932 block BB.
3934 VISITED is a pointer to a working buffer for tracking which BB's have
3935 been visited. It is NULL for the top-level call.
3937 We treat reaching expressions that go through blocks containing the same
3938 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
3939 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
3940 2 as not reaching. The intent is to improve the probability of finding
3941 only one reaching expression and to reduce register lifetimes by picking
3942 the closest such expression. */
3944 static int
3945 pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr, basic_block bb, char *visited)
3947 edge pred;
3948 edge_iterator ei;
3950 FOR_EACH_EDGE (pred, ei, bb->preds)
3952 basic_block pred_bb = pred->src;
3954 if (pred->src == ENTRY_BLOCK_PTR
3955 /* Has predecessor has already been visited? */
3956 || visited[pred_bb->index])
3957 ;/* Nothing to do. */
3959 /* Does this predecessor generate this expression? */
3960 else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
3962 /* Is this the occurrence we're looking for?
3963 Note that there's only one generating occurrence per block
3964 so we just need to check the block number. */
3965 if (occr_bb == pred_bb)
3966 return 1;
3968 visited[pred_bb->index] = 1;
3970 /* Ignore this predecessor if it kills the expression. */
3971 else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
3972 visited[pred_bb->index] = 1;
3974 /* Neither gen nor kill. */
3975 else
3977 visited[pred_bb->index] = 1;
3978 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
3979 return 1;
3983 /* All paths have been checked. */
3984 return 0;
3987 /* The wrapper for pre_expr_reaches_here_work that ensures that any
3988 memory allocated for that function is returned. */
3990 static int
3991 pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
3993 int rval;
3994 char *visited = xcalloc (last_basic_block, 1);
3996 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
3998 free (visited);
3999 return rval;
4003 /* Given an expr, generate RTL which we can insert at the end of a BB,
4004 or on an edge. Set the block number of any insns generated to
4005 the value of BB. */
4007 static rtx
4008 process_insert_insn (struct expr *expr)
4010 rtx reg = expr->reaching_reg;
4011 rtx exp = copy_rtx (expr->expr);
4012 rtx pat;
4014 start_sequence ();
4016 /* If the expression is something that's an operand, like a constant,
4017 just copy it to a register. */
4018 if (general_operand (exp, GET_MODE (reg)))
4019 emit_move_insn (reg, exp);
4021 /* Otherwise, make a new insn to compute this expression and make sure the
4022 insn will be recognized (this also adds any needed CLOBBERs). Copy the
4023 expression to make sure we don't have any sharing issues. */
4024 else
4026 rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
4028 if (insn_invalid_p (insn))
4029 gcc_unreachable ();
4033 pat = get_insns ();
4034 end_sequence ();
4036 return pat;
4039 /* Add EXPR to the end of basic block BB.
4041 This is used by both the PRE and code hoisting.
4043 For PRE, we want to verify that the expr is either transparent
4044 or locally anticipatable in the target block. This check makes
4045 no sense for code hoisting. */
4047 static void
4048 insert_insn_end_bb (struct expr *expr, basic_block bb, int pre)
4050 rtx insn = BB_END (bb);
4051 rtx new_insn;
4052 rtx reg = expr->reaching_reg;
4053 int regno = REGNO (reg);
4054 rtx pat, pat_end;
4056 pat = process_insert_insn (expr);
4057 gcc_assert (pat && INSN_P (pat));
4059 pat_end = pat;
4060 while (NEXT_INSN (pat_end) != NULL_RTX)
4061 pat_end = NEXT_INSN (pat_end);
4063 /* If the last insn is a jump, insert EXPR in front [taking care to
4064 handle cc0, etc. properly]. Similarly we need to care trapping
4065 instructions in presence of non-call exceptions. */
4067 if (JUMP_P (insn)
4068 || (NONJUMP_INSN_P (insn)
4069 && (EDGE_COUNT (bb->succs) > 1
4070 || EDGE_SUCC (bb, 0)->flags & EDGE_ABNORMAL)))
4072 #ifdef HAVE_cc0
4073 rtx note;
4074 #endif
4075 /* It should always be the case that we can put these instructions
4076 anywhere in the basic block with performing PRE optimizations.
4077 Check this. */
4078 gcc_assert (!NONJUMP_INSN_P (insn) || !pre
4079 || TEST_BIT (antloc[bb->index], expr->bitmap_index)
4080 || TEST_BIT (transp[bb->index], expr->bitmap_index));
4082 /* If this is a jump table, then we can't insert stuff here. Since
4083 we know the previous real insn must be the tablejump, we insert
4084 the new instruction just before the tablejump. */
4085 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
4086 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
4087 insn = prev_real_insn (insn);
4089 #ifdef HAVE_cc0
4090 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
4091 if cc0 isn't set. */
4092 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
4093 if (note)
4094 insn = XEXP (note, 0);
4095 else
4097 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
4098 if (maybe_cc0_setter
4099 && INSN_P (maybe_cc0_setter)
4100 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
4101 insn = maybe_cc0_setter;
4103 #endif
4104 /* FIXME: What if something in cc0/jump uses value set in new insn? */
4105 new_insn = emit_insn_before_noloc (pat, insn);
4108 /* Likewise if the last insn is a call, as will happen in the presence
4109 of exception handling. */
4110 else if (CALL_P (insn)
4111 && (EDGE_COUNT (bb->succs) > 1 || EDGE_SUCC (bb, 0)->flags & EDGE_ABNORMAL))
4113 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4114 we search backward and place the instructions before the first
4115 parameter is loaded. Do this for everyone for consistency and a
4116 presumption that we'll get better code elsewhere as well.
4118 It should always be the case that we can put these instructions
4119 anywhere in the basic block with performing PRE optimizations.
4120 Check this. */
4122 gcc_assert (!pre
4123 || TEST_BIT (antloc[bb->index], expr->bitmap_index)
4124 || TEST_BIT (transp[bb->index], expr->bitmap_index));
4126 /* Since different machines initialize their parameter registers
4127 in different orders, assume nothing. Collect the set of all
4128 parameter registers. */
4129 insn = find_first_parameter_load (insn, BB_HEAD (bb));
4131 /* If we found all the parameter loads, then we want to insert
4132 before the first parameter load.
4134 If we did not find all the parameter loads, then we might have
4135 stopped on the head of the block, which could be a CODE_LABEL.
4136 If we inserted before the CODE_LABEL, then we would be putting
4137 the insn in the wrong basic block. In that case, put the insn
4138 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
4139 while (LABEL_P (insn)
4140 || NOTE_INSN_BASIC_BLOCK_P (insn))
4141 insn = NEXT_INSN (insn);
4143 new_insn = emit_insn_before_noloc (pat, insn);
4145 else
4146 new_insn = emit_insn_after_noloc (pat, insn);
4148 while (1)
4150 if (INSN_P (pat))
4152 add_label_notes (PATTERN (pat), new_insn);
4153 note_stores (PATTERN (pat), record_set_info, pat);
4155 if (pat == pat_end)
4156 break;
4157 pat = NEXT_INSN (pat);
4160 gcse_create_count++;
4162 if (gcse_file)
4164 fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, ",
4165 bb->index, INSN_UID (new_insn));
4166 fprintf (gcse_file, "copying expression %d to reg %d\n",
4167 expr->bitmap_index, regno);
4171 /* Insert partially redundant expressions on edges in the CFG to make
4172 the expressions fully redundant. */
4174 static int
4175 pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
4177 int e, i, j, num_edges, set_size, did_insert = 0;
4178 sbitmap *inserted;
4180 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
4181 if it reaches any of the deleted expressions. */
4183 set_size = pre_insert_map[0]->size;
4184 num_edges = NUM_EDGES (edge_list);
4185 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
4186 sbitmap_vector_zero (inserted, num_edges);
4188 for (e = 0; e < num_edges; e++)
4190 int indx;
4191 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
4193 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
4195 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
4197 for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1)
4198 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
4200 struct expr *expr = index_map[j];
4201 struct occr *occr;
4203 /* Now look at each deleted occurrence of this expression. */
4204 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4206 if (! occr->deleted_p)
4207 continue;
4209 /* Insert this expression on this edge if if it would
4210 reach the deleted occurrence in BB. */
4211 if (!TEST_BIT (inserted[e], j))
4213 rtx insn;
4214 edge eg = INDEX_EDGE (edge_list, e);
4216 /* We can't insert anything on an abnormal and
4217 critical edge, so we insert the insn at the end of
4218 the previous block. There are several alternatives
4219 detailed in Morgans book P277 (sec 10.5) for
4220 handling this situation. This one is easiest for
4221 now. */
4223 if (eg->flags & EDGE_ABNORMAL)
4224 insert_insn_end_bb (index_map[j], bb, 0);
4225 else
4227 insn = process_insert_insn (index_map[j]);
4228 insert_insn_on_edge (insn, eg);
4231 if (gcse_file)
4233 fprintf (gcse_file, "PRE/HOIST: edge (%d,%d), ",
4234 bb->index,
4235 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
4236 fprintf (gcse_file, "copy expression %d\n",
4237 expr->bitmap_index);
4240 update_ld_motion_stores (expr);
4241 SET_BIT (inserted[e], j);
4242 did_insert = 1;
4243 gcse_create_count++;
4250 sbitmap_vector_free (inserted);
4251 return did_insert;
4254 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
4255 Given "old_reg <- expr" (INSN), instead of adding after it
4256 reaching_reg <- old_reg
4257 it's better to do the following:
4258 reaching_reg <- expr
4259 old_reg <- reaching_reg
4260 because this way copy propagation can discover additional PRE
4261 opportunities. But if this fails, we try the old way.
4262 When "expr" is a store, i.e.
4263 given "MEM <- old_reg", instead of adding after it
4264 reaching_reg <- old_reg
4265 it's better to add it before as follows:
4266 reaching_reg <- old_reg
4267 MEM <- reaching_reg. */
4269 static void
4270 pre_insert_copy_insn (struct expr *expr, rtx insn)
4272 rtx reg = expr->reaching_reg;
4273 int regno = REGNO (reg);
4274 int indx = expr->bitmap_index;
4275 rtx pat = PATTERN (insn);
4276 rtx set, new_insn;
4277 rtx old_reg;
4278 int i;
4280 /* This block matches the logic in hash_scan_insn. */
4281 switch (GET_CODE (pat))
4283 case SET:
4284 set = pat;
4285 break;
4287 case PARALLEL:
4288 /* Search through the parallel looking for the set whose
4289 source was the expression that we're interested in. */
4290 set = NULL_RTX;
4291 for (i = 0; i < XVECLEN (pat, 0); i++)
4293 rtx x = XVECEXP (pat, 0, i);
4294 if (GET_CODE (x) == SET
4295 && expr_equiv_p (SET_SRC (x), expr->expr))
4297 set = x;
4298 break;
4301 break;
4303 default:
4304 gcc_unreachable ();
4307 if (REG_P (SET_DEST (set)))
4309 old_reg = SET_DEST (set);
4310 /* Check if we can modify the set destination in the original insn. */
4311 if (validate_change (insn, &SET_DEST (set), reg, 0))
4313 new_insn = gen_move_insn (old_reg, reg);
4314 new_insn = emit_insn_after (new_insn, insn);
4316 /* Keep register set table up to date. */
4317 replace_one_set (REGNO (old_reg), insn, new_insn);
4318 record_one_set (regno, insn);
4320 else
4322 new_insn = gen_move_insn (reg, old_reg);
4323 new_insn = emit_insn_after (new_insn, insn);
4325 /* Keep register set table up to date. */
4326 record_one_set (regno, new_insn);
4329 else /* This is possible only in case of a store to memory. */
4331 old_reg = SET_SRC (set);
4332 new_insn = gen_move_insn (reg, old_reg);
4334 /* Check if we can modify the set source in the original insn. */
4335 if (validate_change (insn, &SET_SRC (set), reg, 0))
4336 new_insn = emit_insn_before (new_insn, insn);
4337 else
4338 new_insn = emit_insn_after (new_insn, insn);
4340 /* Keep register set table up to date. */
4341 record_one_set (regno, new_insn);
4344 gcse_create_count++;
4346 if (gcse_file)
4347 fprintf (gcse_file,
4348 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
4349 BLOCK_NUM (insn), INSN_UID (new_insn), indx,
4350 INSN_UID (insn), regno);
4353 /* Copy available expressions that reach the redundant expression
4354 to `reaching_reg'. */
4356 static void
4357 pre_insert_copies (void)
4359 unsigned int i, added_copy;
4360 struct expr *expr;
4361 struct occr *occr;
4362 struct occr *avail;
4364 /* For each available expression in the table, copy the result to
4365 `reaching_reg' if the expression reaches a deleted one.
4367 ??? The current algorithm is rather brute force.
4368 Need to do some profiling. */
4370 for (i = 0; i < expr_hash_table.size; i++)
4371 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4373 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
4374 we don't want to insert a copy here because the expression may not
4375 really be redundant. So only insert an insn if the expression was
4376 deleted. This test also avoids further processing if the
4377 expression wasn't deleted anywhere. */
4378 if (expr->reaching_reg == NULL)
4379 continue;
4381 /* Set when we add a copy for that expression. */
4382 added_copy = 0;
4384 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4386 if (! occr->deleted_p)
4387 continue;
4389 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
4391 rtx insn = avail->insn;
4393 /* No need to handle this one if handled already. */
4394 if (avail->copied_p)
4395 continue;
4397 /* Don't handle this one if it's a redundant one. */
4398 if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
4399 continue;
4401 /* Or if the expression doesn't reach the deleted one. */
4402 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
4403 expr,
4404 BLOCK_FOR_INSN (occr->insn)))
4405 continue;
4407 added_copy = 1;
4409 /* Copy the result of avail to reaching_reg. */
4410 pre_insert_copy_insn (expr, insn);
4411 avail->copied_p = 1;
4415 if (added_copy)
4416 update_ld_motion_stores (expr);
4420 /* Emit move from SRC to DEST noting the equivalence with expression computed
4421 in INSN. */
4422 static rtx
4423 gcse_emit_move_after (rtx src, rtx dest, rtx insn)
4425 rtx new;
4426 rtx set = single_set (insn), set2;
4427 rtx note;
4428 rtx eqv;
4430 /* This should never fail since we're creating a reg->reg copy
4431 we've verified to be valid. */
4433 new = emit_insn_after (gen_move_insn (dest, src), insn);
4435 /* Note the equivalence for local CSE pass. */
4436 set2 = single_set (new);
4437 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
4438 return new;
4439 if ((note = find_reg_equal_equiv_note (insn)))
4440 eqv = XEXP (note, 0);
4441 else
4442 eqv = SET_SRC (set);
4444 set_unique_reg_note (new, REG_EQUAL, copy_insn_1 (eqv));
4446 return new;
4449 /* Delete redundant computations.
4450 Deletion is done by changing the insn to copy the `reaching_reg' of
4451 the expression into the result of the SET. It is left to later passes
4452 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
4454 Returns nonzero if a change is made. */
4456 static int
4457 pre_delete (void)
4459 unsigned int i;
4460 int changed;
4461 struct expr *expr;
4462 struct occr *occr;
4464 changed = 0;
4465 for (i = 0; i < expr_hash_table.size; i++)
4466 for (expr = expr_hash_table.table[i];
4467 expr != NULL;
4468 expr = expr->next_same_hash)
4470 int indx = expr->bitmap_index;
4472 /* We only need to search antic_occr since we require
4473 ANTLOC != 0. */
4475 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4477 rtx insn = occr->insn;
4478 rtx set;
4479 basic_block bb = BLOCK_FOR_INSN (insn);
4481 /* We only delete insns that have a single_set. */
4482 if (TEST_BIT (pre_delete_map[bb->index], indx)
4483 && (set = single_set (insn)) != 0)
4485 /* Create a pseudo-reg to store the result of reaching
4486 expressions into. Get the mode for the new pseudo from
4487 the mode of the original destination pseudo. */
4488 if (expr->reaching_reg == NULL)
4489 expr->reaching_reg
4490 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4492 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
4493 delete_insn (insn);
4494 occr->deleted_p = 1;
4495 SET_BIT (pre_redundant_insns, INSN_CUID (insn));
4496 changed = 1;
4497 gcse_subst_count++;
4499 if (gcse_file)
4501 fprintf (gcse_file,
4502 "PRE: redundant insn %d (expression %d) in ",
4503 INSN_UID (insn), indx);
4504 fprintf (gcse_file, "bb %d, reaching reg is %d\n",
4505 bb->index, REGNO (expr->reaching_reg));
4511 return changed;
4514 /* Perform GCSE optimizations using PRE.
4515 This is called by one_pre_gcse_pass after all the dataflow analysis
4516 has been done.
4518 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
4519 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
4520 Compiler Design and Implementation.
4522 ??? A new pseudo reg is created to hold the reaching expression. The nice
4523 thing about the classical approach is that it would try to use an existing
4524 reg. If the register can't be adequately optimized [i.e. we introduce
4525 reload problems], one could add a pass here to propagate the new register
4526 through the block.
4528 ??? We don't handle single sets in PARALLELs because we're [currently] not
4529 able to copy the rest of the parallel when we insert copies to create full
4530 redundancies from partial redundancies. However, there's no reason why we
4531 can't handle PARALLELs in the cases where there are no partial
4532 redundancies. */
4534 static int
4535 pre_gcse (void)
4537 unsigned int i;
4538 int did_insert, changed;
4539 struct expr **index_map;
4540 struct expr *expr;
4542 /* Compute a mapping from expression number (`bitmap_index') to
4543 hash table entry. */
4545 index_map = xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
4546 for (i = 0; i < expr_hash_table.size; i++)
4547 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4548 index_map[expr->bitmap_index] = expr;
4550 /* Reset bitmap used to track which insns are redundant. */
4551 pre_redundant_insns = sbitmap_alloc (max_cuid);
4552 sbitmap_zero (pre_redundant_insns);
4554 /* Delete the redundant insns first so that
4555 - we know what register to use for the new insns and for the other
4556 ones with reaching expressions
4557 - we know which insns are redundant when we go to create copies */
4559 changed = pre_delete ();
4561 did_insert = pre_edge_insert (edge_list, index_map);
4563 /* In other places with reaching expressions, copy the expression to the
4564 specially allocated pseudo-reg that reaches the redundant expr. */
4565 pre_insert_copies ();
4566 if (did_insert)
4568 commit_edge_insertions ();
4569 changed = 1;
4572 free (index_map);
4573 sbitmap_free (pre_redundant_insns);
4574 return changed;
4577 /* Top level routine to perform one PRE GCSE pass.
4579 Return nonzero if a change was made. */
4581 static int
4582 one_pre_gcse_pass (int pass)
4584 int changed = 0;
4586 gcse_subst_count = 0;
4587 gcse_create_count = 0;
4589 alloc_hash_table (max_cuid, &expr_hash_table, 0);
4590 add_noreturn_fake_exit_edges ();
4591 if (flag_gcse_lm)
4592 compute_ld_motion_mems ();
4594 compute_hash_table (&expr_hash_table);
4595 trim_ld_motion_mems ();
4596 if (gcse_file)
4597 dump_hash_table (gcse_file, "Expression", &expr_hash_table);
4599 if (expr_hash_table.n_elems > 0)
4601 alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
4602 compute_pre_data ();
4603 changed |= pre_gcse ();
4604 free_edge_list (edge_list);
4605 free_pre_mem ();
4608 free_ldst_mems ();
4609 remove_fake_exit_edges ();
4610 free_hash_table (&expr_hash_table);
4612 if (gcse_file)
4614 fprintf (gcse_file, "\nPRE GCSE of %s, pass %d: %d bytes needed, ",
4615 current_function_name (), pass, bytes_used);
4616 fprintf (gcse_file, "%d substs, %d insns created\n",
4617 gcse_subst_count, gcse_create_count);
4620 return changed;
4623 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
4624 If notes are added to an insn which references a CODE_LABEL, the
4625 LABEL_NUSES count is incremented. We have to add REG_LABEL notes,
4626 because the following loop optimization pass requires them. */
4628 /* ??? This is very similar to the loop.c add_label_notes function. We
4629 could probably share code here. */
4631 /* ??? If there was a jump optimization pass after gcse and before loop,
4632 then we would not need to do this here, because jump would add the
4633 necessary REG_LABEL notes. */
4635 static void
4636 add_label_notes (rtx x, rtx insn)
4638 enum rtx_code code = GET_CODE (x);
4639 int i, j;
4640 const char *fmt;
4642 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
4644 /* This code used to ignore labels that referred to dispatch tables to
4645 avoid flow generating (slightly) worse code.
4647 We no longer ignore such label references (see LABEL_REF handling in
4648 mark_jump_label for additional information). */
4650 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, XEXP (x, 0),
4651 REG_NOTES (insn));
4652 if (LABEL_P (XEXP (x, 0)))
4653 LABEL_NUSES (XEXP (x, 0))++;
4654 return;
4657 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
4659 if (fmt[i] == 'e')
4660 add_label_notes (XEXP (x, i), insn);
4661 else if (fmt[i] == 'E')
4662 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4663 add_label_notes (XVECEXP (x, i, j), insn);
4667 /* Compute transparent outgoing information for each block.
4669 An expression is transparent to an edge unless it is killed by
4670 the edge itself. This can only happen with abnormal control flow,
4671 when the edge is traversed through a call. This happens with
4672 non-local labels and exceptions.
4674 This would not be necessary if we split the edge. While this is
4675 normally impossible for abnormal critical edges, with some effort
4676 it should be possible with exception handling, since we still have
4677 control over which handler should be invoked. But due to increased
4678 EH table sizes, this may not be worthwhile. */
4680 static void
4681 compute_transpout (void)
4683 basic_block bb;
4684 unsigned int i;
4685 struct expr *expr;
4687 sbitmap_vector_ones (transpout, last_basic_block);
4689 FOR_EACH_BB (bb)
4691 /* Note that flow inserted a nop a the end of basic blocks that
4692 end in call instructions for reasons other than abnormal
4693 control flow. */
4694 if (! CALL_P (BB_END (bb)))
4695 continue;
4697 for (i = 0; i < expr_hash_table.size; i++)
4698 for (expr = expr_hash_table.table[i]; expr ; expr = expr->next_same_hash)
4699 if (MEM_P (expr->expr))
4701 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
4702 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
4703 continue;
4705 /* ??? Optimally, we would use interprocedural alias
4706 analysis to determine if this mem is actually killed
4707 by this call. */
4708 RESET_BIT (transpout[bb->index], expr->bitmap_index);
4713 /* Code Hoisting variables and subroutines. */
4715 /* Very busy expressions. */
4716 static sbitmap *hoist_vbein;
4717 static sbitmap *hoist_vbeout;
4719 /* Hoistable expressions. */
4720 static sbitmap *hoist_exprs;
4722 /* ??? We could compute post dominators and run this algorithm in
4723 reverse to perform tail merging, doing so would probably be
4724 more effective than the tail merging code in jump.c.
4726 It's unclear if tail merging could be run in parallel with
4727 code hoisting. It would be nice. */
4729 /* Allocate vars used for code hoisting analysis. */
4731 static void
4732 alloc_code_hoist_mem (int n_blocks, int n_exprs)
4734 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
4735 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4736 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4738 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
4739 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
4740 hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
4741 transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
4744 /* Free vars used for code hoisting analysis. */
4746 static void
4747 free_code_hoist_mem (void)
4749 sbitmap_vector_free (antloc);
4750 sbitmap_vector_free (transp);
4751 sbitmap_vector_free (comp);
4753 sbitmap_vector_free (hoist_vbein);
4754 sbitmap_vector_free (hoist_vbeout);
4755 sbitmap_vector_free (hoist_exprs);
4756 sbitmap_vector_free (transpout);
4758 free_dominance_info (CDI_DOMINATORS);
4761 /* Compute the very busy expressions at entry/exit from each block.
4763 An expression is very busy if all paths from a given point
4764 compute the expression. */
4766 static void
4767 compute_code_hoist_vbeinout (void)
4769 int changed, passes;
4770 basic_block bb;
4772 sbitmap_vector_zero (hoist_vbeout, last_basic_block);
4773 sbitmap_vector_zero (hoist_vbein, last_basic_block);
4775 passes = 0;
4776 changed = 1;
4778 while (changed)
4780 changed = 0;
4782 /* We scan the blocks in the reverse order to speed up
4783 the convergence. */
4784 FOR_EACH_BB_REVERSE (bb)
4786 changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index], antloc[bb->index],
4787 hoist_vbeout[bb->index], transp[bb->index]);
4788 if (bb->next_bb != EXIT_BLOCK_PTR)
4789 sbitmap_intersection_of_succs (hoist_vbeout[bb->index], hoist_vbein, bb->index);
4792 passes++;
4795 if (gcse_file)
4796 fprintf (gcse_file, "hoisting vbeinout computation: %d passes\n", passes);
4799 /* Top level routine to do the dataflow analysis needed by code hoisting. */
4801 static void
4802 compute_code_hoist_data (void)
4804 compute_local_properties (transp, comp, antloc, &expr_hash_table);
4805 compute_transpout ();
4806 compute_code_hoist_vbeinout ();
4807 calculate_dominance_info (CDI_DOMINATORS);
4808 if (gcse_file)
4809 fprintf (gcse_file, "\n");
4812 /* Determine if the expression identified by EXPR_INDEX would
4813 reach BB unimpared if it was placed at the end of EXPR_BB.
4815 It's unclear exactly what Muchnick meant by "unimpared". It seems
4816 to me that the expression must either be computed or transparent in
4817 *every* block in the path(s) from EXPR_BB to BB. Any other definition
4818 would allow the expression to be hoisted out of loops, even if
4819 the expression wasn't a loop invariant.
4821 Contrast this to reachability for PRE where an expression is
4822 considered reachable if *any* path reaches instead of *all*
4823 paths. */
4825 static int
4826 hoist_expr_reaches_here_p (basic_block expr_bb, int expr_index, basic_block bb, char *visited)
4828 edge pred;
4829 edge_iterator ei;
4830 int visited_allocated_locally = 0;
4833 if (visited == NULL)
4835 visited_allocated_locally = 1;
4836 visited = xcalloc (last_basic_block, 1);
4839 FOR_EACH_EDGE (pred, ei, bb->preds)
4841 basic_block pred_bb = pred->src;
4843 if (pred->src == ENTRY_BLOCK_PTR)
4844 break;
4845 else if (pred_bb == expr_bb)
4846 continue;
4847 else if (visited[pred_bb->index])
4848 continue;
4850 /* Does this predecessor generate this expression? */
4851 else if (TEST_BIT (comp[pred_bb->index], expr_index))
4852 break;
4853 else if (! TEST_BIT (transp[pred_bb->index], expr_index))
4854 break;
4856 /* Not killed. */
4857 else
4859 visited[pred_bb->index] = 1;
4860 if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
4861 pred_bb, visited))
4862 break;
4865 if (visited_allocated_locally)
4866 free (visited);
4868 return (pred == NULL);
4871 /* Actually perform code hoisting. */
4873 static void
4874 hoist_code (void)
4876 basic_block bb, dominated;
4877 basic_block *domby;
4878 unsigned int domby_len;
4879 unsigned int i,j;
4880 struct expr **index_map;
4881 struct expr *expr;
4883 sbitmap_vector_zero (hoist_exprs, last_basic_block);
4885 /* Compute a mapping from expression number (`bitmap_index') to
4886 hash table entry. */
4888 index_map = xcalloc (expr_hash_table.n_elems, sizeof (struct expr *));
4889 for (i = 0; i < expr_hash_table.size; i++)
4890 for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
4891 index_map[expr->bitmap_index] = expr;
4893 /* Walk over each basic block looking for potentially hoistable
4894 expressions, nothing gets hoisted from the entry block. */
4895 FOR_EACH_BB (bb)
4897 int found = 0;
4898 int insn_inserted_p;
4900 domby_len = get_dominated_by (CDI_DOMINATORS, bb, &domby);
4901 /* Examine each expression that is very busy at the exit of this
4902 block. These are the potentially hoistable expressions. */
4903 for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
4905 int hoistable = 0;
4907 if (TEST_BIT (hoist_vbeout[bb->index], i)
4908 && TEST_BIT (transpout[bb->index], i))
4910 /* We've found a potentially hoistable expression, now
4911 we look at every block BB dominates to see if it
4912 computes the expression. */
4913 for (j = 0; j < domby_len; j++)
4915 dominated = domby[j];
4916 /* Ignore self dominance. */
4917 if (bb == dominated)
4918 continue;
4919 /* We've found a dominated block, now see if it computes
4920 the busy expression and whether or not moving that
4921 expression to the "beginning" of that block is safe. */
4922 if (!TEST_BIT (antloc[dominated->index], i))
4923 continue;
4925 /* Note if the expression would reach the dominated block
4926 unimpared if it was placed at the end of BB.
4928 Keep track of how many times this expression is hoistable
4929 from a dominated block into BB. */
4930 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4931 hoistable++;
4934 /* If we found more than one hoistable occurrence of this
4935 expression, then note it in the bitmap of expressions to
4936 hoist. It makes no sense to hoist things which are computed
4937 in only one BB, and doing so tends to pessimize register
4938 allocation. One could increase this value to try harder
4939 to avoid any possible code expansion due to register
4940 allocation issues; however experiments have shown that
4941 the vast majority of hoistable expressions are only movable
4942 from two successors, so raising this threshold is likely
4943 to nullify any benefit we get from code hoisting. */
4944 if (hoistable > 1)
4946 SET_BIT (hoist_exprs[bb->index], i);
4947 found = 1;
4951 /* If we found nothing to hoist, then quit now. */
4952 if (! found)
4954 free (domby);
4955 continue;
4958 /* Loop over all the hoistable expressions. */
4959 for (i = 0; i < hoist_exprs[bb->index]->n_bits; i++)
4961 /* We want to insert the expression into BB only once, so
4962 note when we've inserted it. */
4963 insn_inserted_p = 0;
4965 /* These tests should be the same as the tests above. */
4966 if (TEST_BIT (hoist_vbeout[bb->index], i))
4968 /* We've found a potentially hoistable expression, now
4969 we look at every block BB dominates to see if it
4970 computes the expression. */
4971 for (j = 0; j < domby_len; j++)
4973 dominated = domby[j];
4974 /* Ignore self dominance. */
4975 if (bb == dominated)
4976 continue;
4978 /* We've found a dominated block, now see if it computes
4979 the busy expression and whether or not moving that
4980 expression to the "beginning" of that block is safe. */
4981 if (!TEST_BIT (antloc[dominated->index], i))
4982 continue;
4984 /* The expression is computed in the dominated block and
4985 it would be safe to compute it at the start of the
4986 dominated block. Now we have to determine if the
4987 expression would reach the dominated block if it was
4988 placed at the end of BB. */
4989 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
4991 struct expr *expr = index_map[i];
4992 struct occr *occr = expr->antic_occr;
4993 rtx insn;
4994 rtx set;
4996 /* Find the right occurrence of this expression. */
4997 while (BLOCK_FOR_INSN (occr->insn) != dominated && occr)
4998 occr = occr->next;
5000 gcc_assert (occr);
5001 insn = occr->insn;
5002 set = single_set (insn);
5003 gcc_assert (set);
5005 /* Create a pseudo-reg to store the result of reaching
5006 expressions into. Get the mode for the new pseudo
5007 from the mode of the original destination pseudo. */
5008 if (expr->reaching_reg == NULL)
5009 expr->reaching_reg
5010 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
5012 gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
5013 delete_insn (insn);
5014 occr->deleted_p = 1;
5015 if (!insn_inserted_p)
5017 insert_insn_end_bb (index_map[i], bb, 0);
5018 insn_inserted_p = 1;
5024 free (domby);
5027 free (index_map);
5030 /* Top level routine to perform one code hoisting (aka unification) pass
5032 Return nonzero if a change was made. */
5034 static int
5035 one_code_hoisting_pass (void)
5037 int changed = 0;
5039 alloc_hash_table (max_cuid, &expr_hash_table, 0);
5040 compute_hash_table (&expr_hash_table);
5041 if (gcse_file)
5042 dump_hash_table (gcse_file, "Code Hosting Expressions", &expr_hash_table);
5044 if (expr_hash_table.n_elems > 0)
5046 alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
5047 compute_code_hoist_data ();
5048 hoist_code ();
5049 free_code_hoist_mem ();
5052 free_hash_table (&expr_hash_table);
5054 return changed;
5057 /* Here we provide the things required to do store motion towards
5058 the exit. In order for this to be effective, gcse also needed to
5059 be taught how to move a load when it is kill only by a store to itself.
5061 int i;
5062 float a[10];
5064 void foo(float scale)
5066 for (i=0; i<10; i++)
5067 a[i] *= scale;
5070 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
5071 the load out since its live around the loop, and stored at the bottom
5072 of the loop.
5074 The 'Load Motion' referred to and implemented in this file is
5075 an enhancement to gcse which when using edge based lcm, recognizes
5076 this situation and allows gcse to move the load out of the loop.
5078 Once gcse has hoisted the load, store motion can then push this
5079 load towards the exit, and we end up with no loads or stores of 'i'
5080 in the loop. */
5082 /* This will search the ldst list for a matching expression. If it
5083 doesn't find one, we create one and initialize it. */
5085 static struct ls_expr *
5086 ldst_entry (rtx x)
5088 int do_not_record_p = 0;
5089 struct ls_expr * ptr;
5090 unsigned int hash;
5092 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
5093 NULL, /*have_reg_qty=*/false);
5095 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5096 if (ptr->hash_index == hash && expr_equiv_p (ptr->pattern, x))
5097 return ptr;
5099 ptr = xmalloc (sizeof (struct ls_expr));
5101 ptr->next = pre_ldst_mems;
5102 ptr->expr = NULL;
5103 ptr->pattern = x;
5104 ptr->pattern_regs = NULL_RTX;
5105 ptr->loads = NULL_RTX;
5106 ptr->stores = NULL_RTX;
5107 ptr->reaching_reg = NULL_RTX;
5108 ptr->invalid = 0;
5109 ptr->index = 0;
5110 ptr->hash_index = hash;
5111 pre_ldst_mems = ptr;
5113 return ptr;
5116 /* Free up an individual ldst entry. */
5118 static void
5119 free_ldst_entry (struct ls_expr * ptr)
5121 free_INSN_LIST_list (& ptr->loads);
5122 free_INSN_LIST_list (& ptr->stores);
5124 free (ptr);
5127 /* Free up all memory associated with the ldst list. */
5129 static void
5130 free_ldst_mems (void)
5132 while (pre_ldst_mems)
5134 struct ls_expr * tmp = pre_ldst_mems;
5136 pre_ldst_mems = pre_ldst_mems->next;
5138 free_ldst_entry (tmp);
5141 pre_ldst_mems = NULL;
5144 /* Dump debugging info about the ldst list. */
5146 static void
5147 print_ldst_list (FILE * file)
5149 struct ls_expr * ptr;
5151 fprintf (file, "LDST list: \n");
5153 for (ptr = first_ls_expr(); ptr != NULL; ptr = next_ls_expr (ptr))
5155 fprintf (file, " Pattern (%3d): ", ptr->index);
5157 print_rtl (file, ptr->pattern);
5159 fprintf (file, "\n Loads : ");
5161 if (ptr->loads)
5162 print_rtl (file, ptr->loads);
5163 else
5164 fprintf (file, "(nil)");
5166 fprintf (file, "\n Stores : ");
5168 if (ptr->stores)
5169 print_rtl (file, ptr->stores);
5170 else
5171 fprintf (file, "(nil)");
5173 fprintf (file, "\n\n");
5176 fprintf (file, "\n");
5179 /* Returns 1 if X is in the list of ldst only expressions. */
5181 static struct ls_expr *
5182 find_rtx_in_ldst (rtx x)
5184 struct ls_expr * ptr;
5186 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5187 if (expr_equiv_p (ptr->pattern, x) && ! ptr->invalid)
5188 return ptr;
5190 return NULL;
5193 /* Assign each element of the list of mems a monotonically increasing value. */
5195 static int
5196 enumerate_ldsts (void)
5198 struct ls_expr * ptr;
5199 int n = 0;
5201 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
5202 ptr->index = n++;
5204 return n;
5207 /* Return first item in the list. */
5209 static inline struct ls_expr *
5210 first_ls_expr (void)
5212 return pre_ldst_mems;
5215 /* Return the next item in the list after the specified one. */
5217 static inline struct ls_expr *
5218 next_ls_expr (struct ls_expr * ptr)
5220 return ptr->next;
5223 /* Load Motion for loads which only kill themselves. */
5225 /* Return true if x is a simple MEM operation, with no registers or
5226 side effects. These are the types of loads we consider for the
5227 ld_motion list, otherwise we let the usual aliasing take care of it. */
5229 static int
5230 simple_mem (rtx x)
5232 if (! MEM_P (x))
5233 return 0;
5235 if (MEM_VOLATILE_P (x))
5236 return 0;
5238 if (GET_MODE (x) == BLKmode)
5239 return 0;
5241 /* If we are handling exceptions, we must be careful with memory references
5242 that may trap. If we are not, the behavior is undefined, so we may just
5243 continue. */
5244 if (flag_non_call_exceptions && may_trap_p (x))
5245 return 0;
5247 if (side_effects_p (x))
5248 return 0;
5250 /* Do not consider function arguments passed on stack. */
5251 if (reg_mentioned_p (stack_pointer_rtx, x))
5252 return 0;
5254 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
5255 return 0;
5257 return 1;
5260 /* Make sure there isn't a buried reference in this pattern anywhere.
5261 If there is, invalidate the entry for it since we're not capable
5262 of fixing it up just yet.. We have to be sure we know about ALL
5263 loads since the aliasing code will allow all entries in the
5264 ld_motion list to not-alias itself. If we miss a load, we will get
5265 the wrong value since gcse might common it and we won't know to
5266 fix it up. */
5268 static void
5269 invalidate_any_buried_refs (rtx x)
5271 const char * fmt;
5272 int i, j;
5273 struct ls_expr * ptr;
5275 /* Invalidate it in the list. */
5276 if (MEM_P (x) && simple_mem (x))
5278 ptr = ldst_entry (x);
5279 ptr->invalid = 1;
5282 /* Recursively process the insn. */
5283 fmt = GET_RTX_FORMAT (GET_CODE (x));
5285 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
5287 if (fmt[i] == 'e')
5288 invalidate_any_buried_refs (XEXP (x, i));
5289 else if (fmt[i] == 'E')
5290 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5291 invalidate_any_buried_refs (XVECEXP (x, i, j));
5295 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
5296 being defined as MEM loads and stores to symbols, with no side effects
5297 and no registers in the expression. For a MEM destination, we also
5298 check that the insn is still valid if we replace the destination with a
5299 REG, as is done in update_ld_motion_stores. If there are any uses/defs
5300 which don't match this criteria, they are invalidated and trimmed out
5301 later. */
5303 static void
5304 compute_ld_motion_mems (void)
5306 struct ls_expr * ptr;
5307 basic_block bb;
5308 rtx insn;
5310 pre_ldst_mems = NULL;
5312 FOR_EACH_BB (bb)
5314 for (insn = BB_HEAD (bb);
5315 insn && insn != NEXT_INSN (BB_END (bb));
5316 insn = NEXT_INSN (insn))
5318 if (INSN_P (insn))
5320 if (GET_CODE (PATTERN (insn)) == SET)
5322 rtx src = SET_SRC (PATTERN (insn));
5323 rtx dest = SET_DEST (PATTERN (insn));
5325 /* Check for a simple LOAD... */
5326 if (MEM_P (src) && simple_mem (src))
5328 ptr = ldst_entry (src);
5329 if (REG_P (dest))
5330 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
5331 else
5332 ptr->invalid = 1;
5334 else
5336 /* Make sure there isn't a buried load somewhere. */
5337 invalidate_any_buried_refs (src);
5340 /* Check for stores. Don't worry about aliased ones, they
5341 will block any movement we might do later. We only care
5342 about this exact pattern since those are the only
5343 circumstance that we will ignore the aliasing info. */
5344 if (MEM_P (dest) && simple_mem (dest))
5346 ptr = ldst_entry (dest);
5348 if (! MEM_P (src)
5349 && GET_CODE (src) != ASM_OPERANDS
5350 /* Check for REG manually since want_to_gcse_p
5351 returns 0 for all REGs. */
5352 && can_assign_to_reg_p (src))
5353 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
5354 else
5355 ptr->invalid = 1;
5358 else
5359 invalidate_any_buried_refs (PATTERN (insn));
5365 /* Remove any references that have been either invalidated or are not in the
5366 expression list for pre gcse. */
5368 static void
5369 trim_ld_motion_mems (void)
5371 struct ls_expr * * last = & pre_ldst_mems;
5372 struct ls_expr * ptr = pre_ldst_mems;
5374 while (ptr != NULL)
5376 struct expr * expr;
5378 /* Delete if entry has been made invalid. */
5379 if (! ptr->invalid)
5381 /* Delete if we cannot find this mem in the expression list. */
5382 unsigned int hash = ptr->hash_index % expr_hash_table.size;
5384 for (expr = expr_hash_table.table[hash];
5385 expr != NULL;
5386 expr = expr->next_same_hash)
5387 if (expr_equiv_p (expr->expr, ptr->pattern))
5388 break;
5390 else
5391 expr = (struct expr *) 0;
5393 if (expr)
5395 /* Set the expression field if we are keeping it. */
5396 ptr->expr = expr;
5397 last = & ptr->next;
5398 ptr = ptr->next;
5400 else
5402 *last = ptr->next;
5403 free_ldst_entry (ptr);
5404 ptr = * last;
5408 /* Show the world what we've found. */
5409 if (gcse_file && pre_ldst_mems != NULL)
5410 print_ldst_list (gcse_file);
5413 /* This routine will take an expression which we are replacing with
5414 a reaching register, and update any stores that are needed if
5415 that expression is in the ld_motion list. Stores are updated by
5416 copying their SRC to the reaching register, and then storing
5417 the reaching register into the store location. These keeps the
5418 correct value in the reaching register for the loads. */
5420 static void
5421 update_ld_motion_stores (struct expr * expr)
5423 struct ls_expr * mem_ptr;
5425 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
5427 /* We can try to find just the REACHED stores, but is shouldn't
5428 matter to set the reaching reg everywhere... some might be
5429 dead and should be eliminated later. */
5431 /* We replace (set mem expr) with (set reg expr) (set mem reg)
5432 where reg is the reaching reg used in the load. We checked in
5433 compute_ld_motion_mems that we can replace (set mem expr) with
5434 (set reg expr) in that insn. */
5435 rtx list = mem_ptr->stores;
5437 for ( ; list != NULL_RTX; list = XEXP (list, 1))
5439 rtx insn = XEXP (list, 0);
5440 rtx pat = PATTERN (insn);
5441 rtx src = SET_SRC (pat);
5442 rtx reg = expr->reaching_reg;
5443 rtx copy, new;
5445 /* If we've already copied it, continue. */
5446 if (expr->reaching_reg == src)
5447 continue;
5449 if (gcse_file)
5451 fprintf (gcse_file, "PRE: store updated with reaching reg ");
5452 print_rtl (gcse_file, expr->reaching_reg);
5453 fprintf (gcse_file, ":\n ");
5454 print_inline_rtx (gcse_file, insn, 8);
5455 fprintf (gcse_file, "\n");
5458 copy = gen_move_insn ( reg, copy_rtx (SET_SRC (pat)));
5459 new = emit_insn_before (copy, insn);
5460 record_one_set (REGNO (reg), new);
5461 SET_SRC (pat) = reg;
5463 /* un-recognize this pattern since it's probably different now. */
5464 INSN_CODE (insn) = -1;
5465 gcse_create_count++;
5470 /* Store motion code. */
5472 #define ANTIC_STORE_LIST(x) ((x)->loads)
5473 #define AVAIL_STORE_LIST(x) ((x)->stores)
5474 #define LAST_AVAIL_CHECK_FAILURE(x) ((x)->reaching_reg)
5476 /* This is used to communicate the target bitvector we want to use in the
5477 reg_set_info routine when called via the note_stores mechanism. */
5478 static int * regvec;
5480 /* And current insn, for the same routine. */
5481 static rtx compute_store_table_current_insn;
5483 /* Used in computing the reverse edge graph bit vectors. */
5484 static sbitmap * st_antloc;
5486 /* Global holding the number of store expressions we are dealing with. */
5487 static int num_stores;
5489 /* Checks to set if we need to mark a register set. Called from
5490 note_stores. */
5492 static void
5493 reg_set_info (rtx dest, rtx setter ATTRIBUTE_UNUSED,
5494 void *data)
5496 sbitmap bb_reg = data;
5498 if (GET_CODE (dest) == SUBREG)
5499 dest = SUBREG_REG (dest);
5501 if (REG_P (dest))
5503 regvec[REGNO (dest)] = INSN_UID (compute_store_table_current_insn);
5504 if (bb_reg)
5505 SET_BIT (bb_reg, REGNO (dest));
5509 /* Clear any mark that says that this insn sets dest. Called from
5510 note_stores. */
5512 static void
5513 reg_clear_last_set (rtx dest, rtx setter ATTRIBUTE_UNUSED,
5514 void *data)
5516 int *dead_vec = data;
5518 if (GET_CODE (dest) == SUBREG)
5519 dest = SUBREG_REG (dest);
5521 if (REG_P (dest) &&
5522 dead_vec[REGNO (dest)] == INSN_UID (compute_store_table_current_insn))
5523 dead_vec[REGNO (dest)] = 0;
5526 /* Return zero if some of the registers in list X are killed
5527 due to set of registers in bitmap REGS_SET. */
5529 static bool
5530 store_ops_ok (rtx x, int *regs_set)
5532 rtx reg;
5534 for (; x; x = XEXP (x, 1))
5536 reg = XEXP (x, 0);
5537 if (regs_set[REGNO(reg)])
5538 return false;
5541 return true;
5544 /* Returns a list of registers mentioned in X. */
5545 static rtx
5546 extract_mentioned_regs (rtx x)
5548 return extract_mentioned_regs_helper (x, NULL_RTX);
5551 /* Helper for extract_mentioned_regs; ACCUM is used to accumulate used
5552 registers. */
5553 static rtx
5554 extract_mentioned_regs_helper (rtx x, rtx accum)
5556 int i;
5557 enum rtx_code code;
5558 const char * fmt;
5560 /* Repeat is used to turn tail-recursion into iteration. */
5561 repeat:
5563 if (x == 0)
5564 return accum;
5566 code = GET_CODE (x);
5567 switch (code)
5569 case REG:
5570 return alloc_EXPR_LIST (0, x, accum);
5572 case MEM:
5573 x = XEXP (x, 0);
5574 goto repeat;
5576 case PRE_DEC:
5577 case PRE_INC:
5578 case POST_DEC:
5579 case POST_INC:
5580 /* We do not run this function with arguments having side effects. */
5581 gcc_unreachable ();
5583 case PC:
5584 case CC0: /*FIXME*/
5585 case CONST:
5586 case CONST_INT:
5587 case CONST_DOUBLE:
5588 case CONST_VECTOR:
5589 case SYMBOL_REF:
5590 case LABEL_REF:
5591 case ADDR_VEC:
5592 case ADDR_DIFF_VEC:
5593 return accum;
5595 default:
5596 break;
5599 i = GET_RTX_LENGTH (code) - 1;
5600 fmt = GET_RTX_FORMAT (code);
5602 for (; i >= 0; i--)
5604 if (fmt[i] == 'e')
5606 rtx tem = XEXP (x, i);
5608 /* If we are about to do the last recursive call
5609 needed at this level, change it into iteration. */
5610 if (i == 0)
5612 x = tem;
5613 goto repeat;
5616 accum = extract_mentioned_regs_helper (tem, accum);
5618 else if (fmt[i] == 'E')
5620 int j;
5622 for (j = 0; j < XVECLEN (x, i); j++)
5623 accum = extract_mentioned_regs_helper (XVECEXP (x, i, j), accum);
5627 return accum;
5630 /* Determine whether INSN is MEM store pattern that we will consider moving.
5631 REGS_SET_BEFORE is bitmap of registers set before (and including) the
5632 current insn, REGS_SET_AFTER is bitmap of registers set after (and
5633 including) the insn in this basic block. We must be passing through BB from
5634 head to end, as we are using this fact to speed things up.
5636 The results are stored this way:
5638 -- the first anticipatable expression is added into ANTIC_STORE_LIST
5639 -- if the processed expression is not anticipatable, NULL_RTX is added
5640 there instead, so that we can use it as indicator that no further
5641 expression of this type may be anticipatable
5642 -- if the expression is available, it is added as head of AVAIL_STORE_LIST;
5643 consequently, all of them but this head are dead and may be deleted.
5644 -- if the expression is not available, the insn due to that it fails to be
5645 available is stored in reaching_reg.
5647 The things are complicated a bit by fact that there already may be stores
5648 to the same MEM from other blocks; also caller must take care of the
5649 necessary cleanup of the temporary markers after end of the basic block.
5652 static void
5653 find_moveable_store (rtx insn, int *regs_set_before, int *regs_set_after)
5655 struct ls_expr * ptr;
5656 rtx dest, set, tmp;
5657 int check_anticipatable, check_available;
5658 basic_block bb = BLOCK_FOR_INSN (insn);
5660 set = single_set (insn);
5661 if (!set)
5662 return;
5664 dest = SET_DEST (set);
5666 if (! MEM_P (dest) || MEM_VOLATILE_P (dest)
5667 || GET_MODE (dest) == BLKmode)
5668 return;
5670 if (side_effects_p (dest))
5671 return;
5673 /* If we are handling exceptions, we must be careful with memory references
5674 that may trap. If we are not, the behavior is undefined, so we may just
5675 continue. */
5676 if (flag_non_call_exceptions && may_trap_p (dest))
5677 return;
5679 /* Even if the destination cannot trap, the source may. In this case we'd
5680 need to handle updating the REG_EH_REGION note. */
5681 if (find_reg_note (insn, REG_EH_REGION, NULL_RTX))
5682 return;
5684 ptr = ldst_entry (dest);
5685 if (!ptr->pattern_regs)
5686 ptr->pattern_regs = extract_mentioned_regs (dest);
5688 /* Do not check for anticipatability if we either found one anticipatable
5689 store already, or tested for one and found out that it was killed. */
5690 check_anticipatable = 0;
5691 if (!ANTIC_STORE_LIST (ptr))
5692 check_anticipatable = 1;
5693 else
5695 tmp = XEXP (ANTIC_STORE_LIST (ptr), 0);
5696 if (tmp != NULL_RTX
5697 && BLOCK_FOR_INSN (tmp) != bb)
5698 check_anticipatable = 1;
5700 if (check_anticipatable)
5702 if (store_killed_before (dest, ptr->pattern_regs, insn, bb, regs_set_before))
5703 tmp = NULL_RTX;
5704 else
5705 tmp = insn;
5706 ANTIC_STORE_LIST (ptr) = alloc_INSN_LIST (tmp,
5707 ANTIC_STORE_LIST (ptr));
5710 /* It is not necessary to check whether store is available if we did
5711 it successfully before; if we failed before, do not bother to check
5712 until we reach the insn that caused us to fail. */
5713 check_available = 0;
5714 if (!AVAIL_STORE_LIST (ptr))
5715 check_available = 1;
5716 else
5718 tmp = XEXP (AVAIL_STORE_LIST (ptr), 0);
5719 if (BLOCK_FOR_INSN (tmp) != bb)
5720 check_available = 1;
5722 if (check_available)
5724 /* Check that we have already reached the insn at that the check
5725 failed last time. */
5726 if (LAST_AVAIL_CHECK_FAILURE (ptr))
5728 for (tmp = BB_END (bb);
5729 tmp != insn && tmp != LAST_AVAIL_CHECK_FAILURE (ptr);
5730 tmp = PREV_INSN (tmp))
5731 continue;
5732 if (tmp == insn)
5733 check_available = 0;
5735 else
5736 check_available = store_killed_after (dest, ptr->pattern_regs, insn,
5737 bb, regs_set_after,
5738 &LAST_AVAIL_CHECK_FAILURE (ptr));
5740 if (!check_available)
5741 AVAIL_STORE_LIST (ptr) = alloc_INSN_LIST (insn, AVAIL_STORE_LIST (ptr));
5744 /* Find available and anticipatable stores. */
5746 static int
5747 compute_store_table (void)
5749 int ret;
5750 basic_block bb;
5751 unsigned regno;
5752 rtx insn, pat, tmp;
5753 int *last_set_in, *already_set;
5754 struct ls_expr * ptr, **prev_next_ptr_ptr;
5756 max_gcse_regno = max_reg_num ();
5758 reg_set_in_block = sbitmap_vector_alloc (last_basic_block,
5759 max_gcse_regno);
5760 sbitmap_vector_zero (reg_set_in_block, last_basic_block);
5761 pre_ldst_mems = 0;
5762 last_set_in = xcalloc (max_gcse_regno, sizeof (int));
5763 already_set = xmalloc (sizeof (int) * max_gcse_regno);
5765 /* Find all the stores we care about. */
5766 FOR_EACH_BB (bb)
5768 /* First compute the registers set in this block. */
5769 regvec = last_set_in;
5771 for (insn = BB_HEAD (bb);
5772 insn != NEXT_INSN (BB_END (bb));
5773 insn = NEXT_INSN (insn))
5775 if (! INSN_P (insn))
5776 continue;
5778 if (CALL_P (insn))
5780 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5781 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5783 last_set_in[regno] = INSN_UID (insn);
5784 SET_BIT (reg_set_in_block[bb->index], regno);
5788 pat = PATTERN (insn);
5789 compute_store_table_current_insn = insn;
5790 note_stores (pat, reg_set_info, reg_set_in_block[bb->index]);
5793 /* Now find the stores. */
5794 memset (already_set, 0, sizeof (int) * max_gcse_regno);
5795 regvec = already_set;
5796 for (insn = BB_HEAD (bb);
5797 insn != NEXT_INSN (BB_END (bb));
5798 insn = NEXT_INSN (insn))
5800 if (! INSN_P (insn))
5801 continue;
5803 if (CALL_P (insn))
5805 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5806 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
5807 already_set[regno] = 1;
5810 pat = PATTERN (insn);
5811 note_stores (pat, reg_set_info, NULL);
5813 /* Now that we've marked regs, look for stores. */
5814 find_moveable_store (insn, already_set, last_set_in);
5816 /* Unmark regs that are no longer set. */
5817 compute_store_table_current_insn = insn;
5818 note_stores (pat, reg_clear_last_set, last_set_in);
5819 if (CALL_P (insn))
5821 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5822 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
5823 && last_set_in[regno] == INSN_UID (insn))
5824 last_set_in[regno] = 0;
5828 #ifdef ENABLE_CHECKING
5829 /* last_set_in should now be all-zero. */
5830 for (regno = 0; regno < max_gcse_regno; regno++)
5831 gcc_assert (!last_set_in[regno]);
5832 #endif
5834 /* Clear temporary marks. */
5835 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
5837 LAST_AVAIL_CHECK_FAILURE(ptr) = NULL_RTX;
5838 if (ANTIC_STORE_LIST (ptr)
5839 && (tmp = XEXP (ANTIC_STORE_LIST (ptr), 0)) == NULL_RTX)
5840 ANTIC_STORE_LIST (ptr) = XEXP (ANTIC_STORE_LIST (ptr), 1);
5844 /* Remove the stores that are not available anywhere, as there will
5845 be no opportunity to optimize them. */
5846 for (ptr = pre_ldst_mems, prev_next_ptr_ptr = &pre_ldst_mems;
5847 ptr != NULL;
5848 ptr = *prev_next_ptr_ptr)
5850 if (!AVAIL_STORE_LIST (ptr))
5852 *prev_next_ptr_ptr = ptr->next;
5853 free_ldst_entry (ptr);
5855 else
5856 prev_next_ptr_ptr = &ptr->next;
5859 ret = enumerate_ldsts ();
5861 if (gcse_file)
5863 fprintf (gcse_file, "ST_avail and ST_antic (shown under loads..)\n");
5864 print_ldst_list (gcse_file);
5867 free (last_set_in);
5868 free (already_set);
5869 return ret;
5872 /* Check to see if the load X is aliased with STORE_PATTERN.
5873 AFTER is true if we are checking the case when STORE_PATTERN occurs
5874 after the X. */
5876 static bool
5877 load_kills_store (rtx x, rtx store_pattern, int after)
5879 if (after)
5880 return anti_dependence (x, store_pattern);
5881 else
5882 return true_dependence (store_pattern, GET_MODE (store_pattern), x,
5883 rtx_addr_varies_p);
5886 /* Go through the entire insn X, looking for any loads which might alias
5887 STORE_PATTERN. Return true if found.
5888 AFTER is true if we are checking the case when STORE_PATTERN occurs
5889 after the insn X. */
5891 static bool
5892 find_loads (rtx x, rtx store_pattern, int after)
5894 const char * fmt;
5895 int i, j;
5896 int ret = false;
5898 if (!x)
5899 return false;
5901 if (GET_CODE (x) == SET)
5902 x = SET_SRC (x);
5904 if (MEM_P (x))
5906 if (load_kills_store (x, store_pattern, after))
5907 return true;
5910 /* Recursively process the insn. */
5911 fmt = GET_RTX_FORMAT (GET_CODE (x));
5913 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
5915 if (fmt[i] == 'e')
5916 ret |= find_loads (XEXP (x, i), store_pattern, after);
5917 else if (fmt[i] == 'E')
5918 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5919 ret |= find_loads (XVECEXP (x, i, j), store_pattern, after);
5921 return ret;
5924 /* Check if INSN kills the store pattern X (is aliased with it).
5925 AFTER is true if we are checking the case when store X occurs
5926 after the insn. Return true if it it does. */
5928 static bool
5929 store_killed_in_insn (rtx x, rtx x_regs, rtx insn, int after)
5931 rtx reg, base, note;
5933 if (!INSN_P (insn))
5934 return false;
5936 if (CALL_P (insn))
5938 /* A normal or pure call might read from pattern,
5939 but a const call will not. */
5940 if (! CONST_OR_PURE_CALL_P (insn) || pure_call_p (insn))
5941 return true;
5943 /* But even a const call reads its parameters. Check whether the
5944 base of some of registers used in mem is stack pointer. */
5945 for (reg = x_regs; reg; reg = XEXP (reg, 1))
5947 base = find_base_term (XEXP (reg, 0));
5948 if (!base
5949 || (GET_CODE (base) == ADDRESS
5950 && GET_MODE (base) == Pmode
5951 && XEXP (base, 0) == stack_pointer_rtx))
5952 return true;
5955 return false;
5958 if (GET_CODE (PATTERN (insn)) == SET)
5960 rtx pat = PATTERN (insn);
5961 rtx dest = SET_DEST (pat);
5963 if (GET_CODE (dest) == SIGN_EXTRACT
5964 || GET_CODE (dest) == ZERO_EXTRACT)
5965 dest = XEXP (dest, 0);
5967 /* Check for memory stores to aliased objects. */
5968 if (MEM_P (dest)
5969 && !expr_equiv_p (dest, x))
5971 if (after)
5973 if (output_dependence (dest, x))
5974 return true;
5976 else
5978 if (output_dependence (x, dest))
5979 return true;
5982 if (find_loads (SET_SRC (pat), x, after))
5983 return true;
5985 else if (find_loads (PATTERN (insn), x, after))
5986 return true;
5988 /* If this insn has a REG_EQUAL or REG_EQUIV note referencing a memory
5989 location aliased with X, then this insn kills X. */
5990 note = find_reg_equal_equiv_note (insn);
5991 if (! note)
5992 return false;
5993 note = XEXP (note, 0);
5995 /* However, if the note represents a must alias rather than a may
5996 alias relationship, then it does not kill X. */
5997 if (expr_equiv_p (note, x))
5998 return false;
6000 /* See if there are any aliased loads in the note. */
6001 return find_loads (note, x, after);
6004 /* Returns true if the expression X is loaded or clobbered on or after INSN
6005 within basic block BB. REGS_SET_AFTER is bitmap of registers set in
6006 or after the insn. X_REGS is list of registers mentioned in X. If the store
6007 is killed, return the last insn in that it occurs in FAIL_INSN. */
6009 static bool
6010 store_killed_after (rtx x, rtx x_regs, rtx insn, basic_block bb,
6011 int *regs_set_after, rtx *fail_insn)
6013 rtx last = BB_END (bb), act;
6015 if (!store_ops_ok (x_regs, regs_set_after))
6017 /* We do not know where it will happen. */
6018 if (fail_insn)
6019 *fail_insn = NULL_RTX;
6020 return true;
6023 /* Scan from the end, so that fail_insn is determined correctly. */
6024 for (act = last; act != PREV_INSN (insn); act = PREV_INSN (act))
6025 if (store_killed_in_insn (x, x_regs, act, false))
6027 if (fail_insn)
6028 *fail_insn = act;
6029 return true;
6032 return false;
6035 /* Returns true if the expression X is loaded or clobbered on or before INSN
6036 within basic block BB. X_REGS is list of registers mentioned in X.
6037 REGS_SET_BEFORE is bitmap of registers set before or in this insn. */
6038 static bool
6039 store_killed_before (rtx x, rtx x_regs, rtx insn, basic_block bb,
6040 int *regs_set_before)
6042 rtx first = BB_HEAD (bb);
6044 if (!store_ops_ok (x_regs, regs_set_before))
6045 return true;
6047 for ( ; insn != PREV_INSN (first); insn = PREV_INSN (insn))
6048 if (store_killed_in_insn (x, x_regs, insn, true))
6049 return true;
6051 return false;
6054 /* Fill in available, anticipatable, transparent and kill vectors in
6055 STORE_DATA, based on lists of available and anticipatable stores. */
6056 static void
6057 build_store_vectors (void)
6059 basic_block bb;
6060 int *regs_set_in_block;
6061 rtx insn, st;
6062 struct ls_expr * ptr;
6063 unsigned regno;
6065 /* Build the gen_vector. This is any store in the table which is not killed
6066 by aliasing later in its block. */
6067 ae_gen = sbitmap_vector_alloc (last_basic_block, num_stores);
6068 sbitmap_vector_zero (ae_gen, last_basic_block);
6070 st_antloc = sbitmap_vector_alloc (last_basic_block, num_stores);
6071 sbitmap_vector_zero (st_antloc, last_basic_block);
6073 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6075 for (st = AVAIL_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6077 insn = XEXP (st, 0);
6078 bb = BLOCK_FOR_INSN (insn);
6080 /* If we've already seen an available expression in this block,
6081 we can delete this one (It occurs earlier in the block). We'll
6082 copy the SRC expression to an unused register in case there
6083 are any side effects. */
6084 if (TEST_BIT (ae_gen[bb->index], ptr->index))
6086 rtx r = gen_reg_rtx (GET_MODE (ptr->pattern));
6087 if (gcse_file)
6088 fprintf (gcse_file, "Removing redundant store:\n");
6089 replace_store_insn (r, XEXP (st, 0), bb, ptr);
6090 continue;
6092 SET_BIT (ae_gen[bb->index], ptr->index);
6095 for (st = ANTIC_STORE_LIST (ptr); st != NULL; st = XEXP (st, 1))
6097 insn = XEXP (st, 0);
6098 bb = BLOCK_FOR_INSN (insn);
6099 SET_BIT (st_antloc[bb->index], ptr->index);
6103 ae_kill = sbitmap_vector_alloc (last_basic_block, num_stores);
6104 sbitmap_vector_zero (ae_kill, last_basic_block);
6106 transp = sbitmap_vector_alloc (last_basic_block, num_stores);
6107 sbitmap_vector_zero (transp, last_basic_block);
6108 regs_set_in_block = xmalloc (sizeof (int) * max_gcse_regno);
6110 FOR_EACH_BB (bb)
6112 for (regno = 0; regno < max_gcse_regno; regno++)
6113 regs_set_in_block[regno] = TEST_BIT (reg_set_in_block[bb->index], regno);
6115 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6117 if (store_killed_after (ptr->pattern, ptr->pattern_regs, BB_HEAD (bb),
6118 bb, regs_set_in_block, NULL))
6120 /* It should not be necessary to consider the expression
6121 killed if it is both anticipatable and available. */
6122 if (!TEST_BIT (st_antloc[bb->index], ptr->index)
6123 || !TEST_BIT (ae_gen[bb->index], ptr->index))
6124 SET_BIT (ae_kill[bb->index], ptr->index);
6126 else
6127 SET_BIT (transp[bb->index], ptr->index);
6131 free (regs_set_in_block);
6133 if (gcse_file)
6135 dump_sbitmap_vector (gcse_file, "st_antloc", "", st_antloc, last_basic_block);
6136 dump_sbitmap_vector (gcse_file, "st_kill", "", ae_kill, last_basic_block);
6137 dump_sbitmap_vector (gcse_file, "Transpt", "", transp, last_basic_block);
6138 dump_sbitmap_vector (gcse_file, "st_avloc", "", ae_gen, last_basic_block);
6142 /* Insert an instruction at the beginning of a basic block, and update
6143 the BB_HEAD if needed. */
6145 static void
6146 insert_insn_start_bb (rtx insn, basic_block bb)
6148 /* Insert at start of successor block. */
6149 rtx prev = PREV_INSN (BB_HEAD (bb));
6150 rtx before = BB_HEAD (bb);
6151 while (before != 0)
6153 if (! LABEL_P (before)
6154 && (! NOTE_P (before)
6155 || NOTE_LINE_NUMBER (before) != NOTE_INSN_BASIC_BLOCK))
6156 break;
6157 prev = before;
6158 if (prev == BB_END (bb))
6159 break;
6160 before = NEXT_INSN (before);
6163 insn = emit_insn_after_noloc (insn, prev);
6165 if (gcse_file)
6167 fprintf (gcse_file, "STORE_MOTION insert store at start of BB %d:\n",
6168 bb->index);
6169 print_inline_rtx (gcse_file, insn, 6);
6170 fprintf (gcse_file, "\n");
6174 /* This routine will insert a store on an edge. EXPR is the ldst entry for
6175 the memory reference, and E is the edge to insert it on. Returns nonzero
6176 if an edge insertion was performed. */
6178 static int
6179 insert_store (struct ls_expr * expr, edge e)
6181 rtx reg, insn;
6182 basic_block bb;
6183 edge tmp;
6184 edge_iterator ei;
6186 /* We did all the deleted before this insert, so if we didn't delete a
6187 store, then we haven't set the reaching reg yet either. */
6188 if (expr->reaching_reg == NULL_RTX)
6189 return 0;
6191 if (e->flags & EDGE_FAKE)
6192 return 0;
6194 reg = expr->reaching_reg;
6195 insn = gen_move_insn (copy_rtx (expr->pattern), reg);
6197 /* If we are inserting this expression on ALL predecessor edges of a BB,
6198 insert it at the start of the BB, and reset the insert bits on the other
6199 edges so we don't try to insert it on the other edges. */
6200 bb = e->dest;
6201 FOR_EACH_EDGE (tmp, ei, e->dest->preds)
6202 if (!(tmp->flags & EDGE_FAKE))
6204 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6206 gcc_assert (index != EDGE_INDEX_NO_EDGE);
6207 if (! TEST_BIT (pre_insert_map[index], expr->index))
6208 break;
6211 /* If tmp is NULL, we found an insertion on every edge, blank the
6212 insertion vector for these edges, and insert at the start of the BB. */
6213 if (!tmp && bb != EXIT_BLOCK_PTR)
6215 FOR_EACH_EDGE (tmp, ei, e->dest->preds)
6217 int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
6218 RESET_BIT (pre_insert_map[index], expr->index);
6220 insert_insn_start_bb (insn, bb);
6221 return 0;
6224 /* We can't put stores in the front of blocks pointed to by abnormal
6225 edges since that may put a store where one didn't used to be. */
6226 gcc_assert (!(e->flags & EDGE_ABNORMAL));
6228 insert_insn_on_edge (insn, e);
6230 if (gcse_file)
6232 fprintf (gcse_file, "STORE_MOTION insert insn on edge (%d, %d):\n",
6233 e->src->index, e->dest->index);
6234 print_inline_rtx (gcse_file, insn, 6);
6235 fprintf (gcse_file, "\n");
6238 return 1;
6241 /* Remove any REG_EQUAL or REG_EQUIV notes containing a reference to the
6242 memory location in SMEXPR set in basic block BB.
6244 This could be rather expensive. */
6246 static void
6247 remove_reachable_equiv_notes (basic_block bb, struct ls_expr *smexpr)
6249 edge_iterator *stack, ei;
6250 int sp;
6251 edge act;
6252 sbitmap visited = sbitmap_alloc (last_basic_block);
6253 rtx last, insn, note;
6254 rtx mem = smexpr->pattern;
6256 stack = xmalloc (sizeof (edge_iterator) * n_basic_blocks);
6257 sp = 0;
6258 ei = ei_start (bb->succs);
6260 sbitmap_zero (visited);
6262 act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
6263 while (1)
6265 if (!act)
6267 if (!sp)
6269 free (stack);
6270 sbitmap_free (visited);
6271 return;
6273 act = ei_edge (stack[--sp]);
6275 bb = act->dest;
6277 if (bb == EXIT_BLOCK_PTR
6278 || TEST_BIT (visited, bb->index))
6280 if (!ei_end_p (ei))
6281 ei_next (&ei);
6282 act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
6283 continue;
6285 SET_BIT (visited, bb->index);
6287 if (TEST_BIT (st_antloc[bb->index], smexpr->index))
6289 for (last = ANTIC_STORE_LIST (smexpr);
6290 BLOCK_FOR_INSN (XEXP (last, 0)) != bb;
6291 last = XEXP (last, 1))
6292 continue;
6293 last = XEXP (last, 0);
6295 else
6296 last = NEXT_INSN (BB_END (bb));
6298 for (insn = BB_HEAD (bb); insn != last; insn = NEXT_INSN (insn))
6299 if (INSN_P (insn))
6301 note = find_reg_equal_equiv_note (insn);
6302 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6303 continue;
6305 if (gcse_file)
6306 fprintf (gcse_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6307 INSN_UID (insn));
6308 remove_note (insn, note);
6311 if (!ei_end_p (ei))
6312 ei_next (&ei);
6313 act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
6315 if (EDGE_COUNT (bb->succs) > 0)
6317 if (act)
6318 stack[sp++] = ei;
6319 ei = ei_start (bb->succs);
6320 act = (EDGE_COUNT (ei_container (ei)) > 0 ? EDGE_I (ei_container (ei), 0) : NULL);
6325 /* This routine will replace a store with a SET to a specified register. */
6327 static void
6328 replace_store_insn (rtx reg, rtx del, basic_block bb, struct ls_expr *smexpr)
6330 rtx insn, mem, note, set, ptr, pair;
6332 mem = smexpr->pattern;
6333 insn = gen_move_insn (reg, SET_SRC (single_set (del)));
6334 insn = emit_insn_after (insn, del);
6336 if (gcse_file)
6338 fprintf (gcse_file,
6339 "STORE_MOTION delete insn in BB %d:\n ", bb->index);
6340 print_inline_rtx (gcse_file, del, 6);
6341 fprintf (gcse_file, "\nSTORE MOTION replaced with insn:\n ");
6342 print_inline_rtx (gcse_file, insn, 6);
6343 fprintf (gcse_file, "\n");
6346 for (ptr = ANTIC_STORE_LIST (smexpr); ptr; ptr = XEXP (ptr, 1))
6347 if (XEXP (ptr, 0) == del)
6349 XEXP (ptr, 0) = insn;
6350 break;
6353 /* Move the notes from the deleted insn to its replacement, and patch
6354 up the LIBCALL notes. */
6355 REG_NOTES (insn) = REG_NOTES (del);
6357 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
6358 if (note)
6360 pair = XEXP (note, 0);
6361 note = find_reg_note (pair, REG_LIBCALL, NULL_RTX);
6362 XEXP (note, 0) = insn;
6364 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
6365 if (note)
6367 pair = XEXP (note, 0);
6368 note = find_reg_note (pair, REG_RETVAL, NULL_RTX);
6369 XEXP (note, 0) = insn;
6372 delete_insn (del);
6374 /* Now we must handle REG_EQUAL notes whose contents is equal to the mem;
6375 they are no longer accurate provided that they are reached by this
6376 definition, so drop them. */
6377 for (; insn != NEXT_INSN (BB_END (bb)); insn = NEXT_INSN (insn))
6378 if (INSN_P (insn))
6380 set = single_set (insn);
6381 if (!set)
6382 continue;
6383 if (expr_equiv_p (SET_DEST (set), mem))
6384 return;
6385 note = find_reg_equal_equiv_note (insn);
6386 if (!note || !expr_equiv_p (XEXP (note, 0), mem))
6387 continue;
6389 if (gcse_file)
6390 fprintf (gcse_file, "STORE_MOTION drop REG_EQUAL note at insn %d:\n",
6391 INSN_UID (insn));
6392 remove_note (insn, note);
6394 remove_reachable_equiv_notes (bb, smexpr);
6398 /* Delete a store, but copy the value that would have been stored into
6399 the reaching_reg for later storing. */
6401 static void
6402 delete_store (struct ls_expr * expr, basic_block bb)
6404 rtx reg, i, del;
6406 if (expr->reaching_reg == NULL_RTX)
6407 expr->reaching_reg = gen_reg_rtx (GET_MODE (expr->pattern));
6409 reg = expr->reaching_reg;
6411 for (i = AVAIL_STORE_LIST (expr); i; i = XEXP (i, 1))
6413 del = XEXP (i, 0);
6414 if (BLOCK_FOR_INSN (del) == bb)
6416 /* We know there is only one since we deleted redundant
6417 ones during the available computation. */
6418 replace_store_insn (reg, del, bb, expr);
6419 break;
6424 /* Free memory used by store motion. */
6426 static void
6427 free_store_memory (void)
6429 free_ldst_mems ();
6431 if (ae_gen)
6432 sbitmap_vector_free (ae_gen);
6433 if (ae_kill)
6434 sbitmap_vector_free (ae_kill);
6435 if (transp)
6436 sbitmap_vector_free (transp);
6437 if (st_antloc)
6438 sbitmap_vector_free (st_antloc);
6439 if (pre_insert_map)
6440 sbitmap_vector_free (pre_insert_map);
6441 if (pre_delete_map)
6442 sbitmap_vector_free (pre_delete_map);
6443 if (reg_set_in_block)
6444 sbitmap_vector_free (reg_set_in_block);
6446 ae_gen = ae_kill = transp = st_antloc = NULL;
6447 pre_insert_map = pre_delete_map = reg_set_in_block = NULL;
6450 /* Perform store motion. Much like gcse, except we move expressions the
6451 other way by looking at the flowgraph in reverse. */
6453 static void
6454 store_motion (void)
6456 basic_block bb;
6457 int x;
6458 struct ls_expr * ptr;
6459 int update_flow = 0;
6461 if (gcse_file)
6463 fprintf (gcse_file, "before store motion\n");
6464 print_rtl (gcse_file, get_insns ());
6467 init_alias_analysis ();
6469 /* Find all the available and anticipatable stores. */
6470 num_stores = compute_store_table ();
6471 if (num_stores == 0)
6473 sbitmap_vector_free (reg_set_in_block);
6474 end_alias_analysis ();
6475 return;
6478 /* Now compute kill & transp vectors. */
6479 build_store_vectors ();
6480 add_noreturn_fake_exit_edges ();
6481 connect_infinite_loops_to_exit ();
6483 edge_list = pre_edge_rev_lcm (gcse_file, num_stores, transp, ae_gen,
6484 st_antloc, ae_kill, &pre_insert_map,
6485 &pre_delete_map);
6487 /* Now we want to insert the new stores which are going to be needed. */
6488 for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
6490 /* If any of the edges we have above are abnormal, we can't move this
6491 store. */
6492 for (x = NUM_EDGES (edge_list) - 1; x >= 0; x--)
6493 if (TEST_BIT (pre_insert_map[x], ptr->index)
6494 && (INDEX_EDGE (edge_list, x)->flags & EDGE_ABNORMAL))
6495 break;
6497 if (x >= 0)
6499 if (gcse_file != NULL)
6500 fprintf (gcse_file,
6501 "Can't replace store %d: abnormal edge from %d to %d\n",
6502 ptr->index, INDEX_EDGE (edge_list, x)->src->index,
6503 INDEX_EDGE (edge_list, x)->dest->index);
6504 continue;
6507 /* Now we want to insert the new stores which are going to be needed. */
6509 FOR_EACH_BB (bb)
6510 if (TEST_BIT (pre_delete_map[bb->index], ptr->index))
6511 delete_store (ptr, bb);
6513 for (x = 0; x < NUM_EDGES (edge_list); x++)
6514 if (TEST_BIT (pre_insert_map[x], ptr->index))
6515 update_flow |= insert_store (ptr, INDEX_EDGE (edge_list, x));
6518 if (update_flow)
6519 commit_edge_insertions ();
6521 free_store_memory ();
6522 free_edge_list (edge_list);
6523 remove_fake_exit_edges ();
6524 end_alias_analysis ();
6528 /* Entry point for jump bypassing optimization pass. */
6531 bypass_jumps (FILE *file)
6533 int changed;
6535 /* We do not construct an accurate cfg in functions which call
6536 setjmp, so just punt to be safe. */
6537 if (current_function_calls_setjmp)
6538 return 0;
6540 /* For calling dump_foo fns from gdb. */
6541 debug_stderr = stderr;
6542 gcse_file = file;
6544 /* Identify the basic block information for this function, including
6545 successors and predecessors. */
6546 max_gcse_regno = max_reg_num ();
6548 if (file)
6549 dump_flow_info (file);
6551 /* Return if there's nothing to do, or it is too expensive. */
6552 if (n_basic_blocks <= 1 || is_too_expensive (_ ("jump bypassing disabled")))
6553 return 0;
6555 gcc_obstack_init (&gcse_obstack);
6556 bytes_used = 0;
6558 /* We need alias. */
6559 init_alias_analysis ();
6561 /* Record where pseudo-registers are set. This data is kept accurate
6562 during each pass. ??? We could also record hard-reg information here
6563 [since it's unchanging], however it is currently done during hash table
6564 computation.
6566 It may be tempting to compute MEM set information here too, but MEM sets
6567 will be subject to code motion one day and thus we need to compute
6568 information about memory sets when we build the hash tables. */
6570 alloc_reg_set_mem (max_gcse_regno);
6571 compute_sets (get_insns ());
6573 max_gcse_regno = max_reg_num ();
6574 alloc_gcse_mem (get_insns ());
6575 changed = one_cprop_pass (MAX_GCSE_PASSES + 2, 1, 1);
6576 free_gcse_mem ();
6578 if (file)
6580 fprintf (file, "BYPASS of %s: %d basic blocks, ",
6581 current_function_name (), n_basic_blocks);
6582 fprintf (file, "%d bytes\n\n", bytes_used);
6585 obstack_free (&gcse_obstack, NULL);
6586 free_reg_set_mem ();
6588 /* We are finished with alias. */
6589 end_alias_analysis ();
6590 allocate_reg_info (max_reg_num (), FALSE, FALSE);
6592 return changed;
6595 /* Return true if the graph is too expensive to optimize. PASS is the
6596 optimization about to be performed. */
6598 static bool
6599 is_too_expensive (const char *pass)
6601 /* Trying to perform global optimizations on flow graphs which have
6602 a high connectivity will take a long time and is unlikely to be
6603 particularly useful.
6605 In normal circumstances a cfg should have about twice as many
6606 edges as blocks. But we do not want to punish small functions
6607 which have a couple switch statements. Rather than simply
6608 threshold the number of blocks, uses something with a more
6609 graceful degradation. */
6610 if (n_edges > 20000 + n_basic_blocks * 4)
6612 if (warn_disabled_optimization)
6613 warning ("%s: %d basic blocks and %d edges/basic block",
6614 pass, n_basic_blocks, n_edges / n_basic_blocks);
6616 return true;
6619 /* If allocating memory for the cprop bitmap would take up too much
6620 storage it's better just to disable the optimization. */
6621 if ((n_basic_blocks
6622 * SBITMAP_SET_SIZE (max_reg_num ())
6623 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
6625 if (warn_disabled_optimization)
6626 warning ("%s: %d basic blocks and %d registers",
6627 pass, n_basic_blocks, max_reg_num ());
6629 return true;
6632 return false;
6635 #include "gt-gcse.h"