libgo: update to Go 1.11
[official-gcc.git] / libgo / go / strings / search.go
blobe5bffbbfe8e8acc75e393ab57a5adea3f5e22a40
1 // Copyright 2012 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 package strings
7 // stringFinder efficiently finds strings in a source text. It's implemented
8 // using the Boyer-Moore string search algorithm:
9 // https://en.wikipedia.org/wiki/Boyer-Moore_string_search_algorithm
10 // https://www.cs.utexas.edu/~moore/publications/fstrpos.pdf (note: this aged
11 // document uses 1-based indexing)
12 type stringFinder struct {
13 // pattern is the string that we are searching for in the text.
14 pattern string
16 // badCharSkip[b] contains the distance between the last byte of pattern
17 // and the rightmost occurrence of b in pattern. If b is not in pattern,
18 // badCharSkip[b] is len(pattern).
20 // Whenever a mismatch is found with byte b in the text, we can safely
21 // shift the matching frame at least badCharSkip[b] until the next time
22 // the matching char could be in alignment.
23 badCharSkip [256]int
25 // goodSuffixSkip[i] defines how far we can shift the matching frame given
26 // that the suffix pattern[i+1:] matches, but the byte pattern[i] does
27 // not. There are two cases to consider:
29 // 1. The matched suffix occurs elsewhere in pattern (with a different
30 // byte preceding it that we might possibly match). In this case, we can
31 // shift the matching frame to align with the next suffix chunk. For
32 // example, the pattern "mississi" has the suffix "issi" next occurring
33 // (in right-to-left order) at index 1, so goodSuffixSkip[3] ==
34 // shift+len(suffix) == 3+4 == 7.
36 // 2. If the matched suffix does not occur elsewhere in pattern, then the
37 // matching frame may share part of its prefix with the end of the
38 // matching suffix. In this case, goodSuffixSkip[i] will contain how far
39 // to shift the frame to align this portion of the prefix to the
40 // suffix. For example, in the pattern "abcxxxabc", when the first
41 // mismatch from the back is found to be in position 3, the matching
42 // suffix "xxabc" is not found elsewhere in the pattern. However, its
43 // rightmost "abc" (at position 6) is a prefix of the whole pattern, so
44 // goodSuffixSkip[3] == shift+len(suffix) == 6+5 == 11.
45 goodSuffixSkip []int
48 func makeStringFinder(pattern string) *stringFinder {
49 f := &stringFinder{
50 pattern: pattern,
51 goodSuffixSkip: make([]int, len(pattern)),
53 // last is the index of the last character in the pattern.
54 last := len(pattern) - 1
56 // Build bad character table.
57 // Bytes not in the pattern can skip one pattern's length.
58 for i := range f.badCharSkip {
59 f.badCharSkip[i] = len(pattern)
61 // The loop condition is < instead of <= so that the last byte does not
62 // have a zero distance to itself. Finding this byte out of place implies
63 // that it is not in the last position.
64 for i := 0; i < last; i++ {
65 f.badCharSkip[pattern[i]] = last - i
68 // Build good suffix table.
69 // First pass: set each value to the next index which starts a prefix of
70 // pattern.
71 lastPrefix := last
72 for i := last; i >= 0; i-- {
73 if HasPrefix(pattern, pattern[i+1:]) {
74 lastPrefix = i + 1
76 // lastPrefix is the shift, and (last-i) is len(suffix).
77 f.goodSuffixSkip[i] = lastPrefix + last - i
79 // Second pass: find repeats of pattern's suffix starting from the front.
80 for i := 0; i < last; i++ {
81 lenSuffix := longestCommonSuffix(pattern, pattern[1:i+1])
82 if pattern[i-lenSuffix] != pattern[last-lenSuffix] {
83 // (last-i) is the shift, and lenSuffix is len(suffix).
84 f.goodSuffixSkip[last-lenSuffix] = lenSuffix + last - i
88 return f
91 func longestCommonSuffix(a, b string) (i int) {
92 for ; i < len(a) && i < len(b); i++ {
93 if a[len(a)-1-i] != b[len(b)-1-i] {
94 break
97 return
100 // next returns the index in text of the first occurrence of the pattern. If
101 // the pattern is not found, it returns -1.
102 func (f *stringFinder) next(text string) int {
103 i := len(f.pattern) - 1
104 for i < len(text) {
105 // Compare backwards from the end until the first unmatching character.
106 j := len(f.pattern) - 1
107 for j >= 0 && text[i] == f.pattern[j] {
111 if j < 0 {
112 return i + 1 // match
114 i += max(f.badCharSkip[text[i]], f.goodSuffixSkip[j])
116 return -1
119 func max(a, b int) int {
120 if a > b {
121 return a
123 return b