libgo: update to Go 1.11
[official-gcc.git] / libgo / go / strconv / extfloat.go
blob32d3340f5f8c33e44f700fa65be6b057e5c9cb4b
1 // Copyright 2011 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 package strconv
7 import (
8 "math/bits"
11 // An extFloat represents an extended floating-point number, with more
12 // precision than a float64. It does not try to save bits: the
13 // number represented by the structure is mant*(2^exp), with a negative
14 // sign if neg is true.
15 type extFloat struct {
16 mant uint64
17 exp int
18 neg bool
21 // Powers of ten taken from double-conversion library.
22 // https://code.google.com/p/double-conversion/
23 const (
24 firstPowerOfTen = -348
25 stepPowerOfTen = 8
28 var smallPowersOfTen = [...]extFloat{
29 {1 << 63, -63, false}, // 1
30 {0xa << 60, -60, false}, // 1e1
31 {0x64 << 57, -57, false}, // 1e2
32 {0x3e8 << 54, -54, false}, // 1e3
33 {0x2710 << 50, -50, false}, // 1e4
34 {0x186a0 << 47, -47, false}, // 1e5
35 {0xf4240 << 44, -44, false}, // 1e6
36 {0x989680 << 40, -40, false}, // 1e7
39 var powersOfTen = [...]extFloat{
40 {0xfa8fd5a0081c0288, -1220, false}, // 10^-348
41 {0xbaaee17fa23ebf76, -1193, false}, // 10^-340
42 {0x8b16fb203055ac76, -1166, false}, // 10^-332
43 {0xcf42894a5dce35ea, -1140, false}, // 10^-324
44 {0x9a6bb0aa55653b2d, -1113, false}, // 10^-316
45 {0xe61acf033d1a45df, -1087, false}, // 10^-308
46 {0xab70fe17c79ac6ca, -1060, false}, // 10^-300
47 {0xff77b1fcbebcdc4f, -1034, false}, // 10^-292
48 {0xbe5691ef416bd60c, -1007, false}, // 10^-284
49 {0x8dd01fad907ffc3c, -980, false}, // 10^-276
50 {0xd3515c2831559a83, -954, false}, // 10^-268
51 {0x9d71ac8fada6c9b5, -927, false}, // 10^-260
52 {0xea9c227723ee8bcb, -901, false}, // 10^-252
53 {0xaecc49914078536d, -874, false}, // 10^-244
54 {0x823c12795db6ce57, -847, false}, // 10^-236
55 {0xc21094364dfb5637, -821, false}, // 10^-228
56 {0x9096ea6f3848984f, -794, false}, // 10^-220
57 {0xd77485cb25823ac7, -768, false}, // 10^-212
58 {0xa086cfcd97bf97f4, -741, false}, // 10^-204
59 {0xef340a98172aace5, -715, false}, // 10^-196
60 {0xb23867fb2a35b28e, -688, false}, // 10^-188
61 {0x84c8d4dfd2c63f3b, -661, false}, // 10^-180
62 {0xc5dd44271ad3cdba, -635, false}, // 10^-172
63 {0x936b9fcebb25c996, -608, false}, // 10^-164
64 {0xdbac6c247d62a584, -582, false}, // 10^-156
65 {0xa3ab66580d5fdaf6, -555, false}, // 10^-148
66 {0xf3e2f893dec3f126, -529, false}, // 10^-140
67 {0xb5b5ada8aaff80b8, -502, false}, // 10^-132
68 {0x87625f056c7c4a8b, -475, false}, // 10^-124
69 {0xc9bcff6034c13053, -449, false}, // 10^-116
70 {0x964e858c91ba2655, -422, false}, // 10^-108
71 {0xdff9772470297ebd, -396, false}, // 10^-100
72 {0xa6dfbd9fb8e5b88f, -369, false}, // 10^-92
73 {0xf8a95fcf88747d94, -343, false}, // 10^-84
74 {0xb94470938fa89bcf, -316, false}, // 10^-76
75 {0x8a08f0f8bf0f156b, -289, false}, // 10^-68
76 {0xcdb02555653131b6, -263, false}, // 10^-60
77 {0x993fe2c6d07b7fac, -236, false}, // 10^-52
78 {0xe45c10c42a2b3b06, -210, false}, // 10^-44
79 {0xaa242499697392d3, -183, false}, // 10^-36
80 {0xfd87b5f28300ca0e, -157, false}, // 10^-28
81 {0xbce5086492111aeb, -130, false}, // 10^-20
82 {0x8cbccc096f5088cc, -103, false}, // 10^-12
83 {0xd1b71758e219652c, -77, false}, // 10^-4
84 {0x9c40000000000000, -50, false}, // 10^4
85 {0xe8d4a51000000000, -24, false}, // 10^12
86 {0xad78ebc5ac620000, 3, false}, // 10^20
87 {0x813f3978f8940984, 30, false}, // 10^28
88 {0xc097ce7bc90715b3, 56, false}, // 10^36
89 {0x8f7e32ce7bea5c70, 83, false}, // 10^44
90 {0xd5d238a4abe98068, 109, false}, // 10^52
91 {0x9f4f2726179a2245, 136, false}, // 10^60
92 {0xed63a231d4c4fb27, 162, false}, // 10^68
93 {0xb0de65388cc8ada8, 189, false}, // 10^76
94 {0x83c7088e1aab65db, 216, false}, // 10^84
95 {0xc45d1df942711d9a, 242, false}, // 10^92
96 {0x924d692ca61be758, 269, false}, // 10^100
97 {0xda01ee641a708dea, 295, false}, // 10^108
98 {0xa26da3999aef774a, 322, false}, // 10^116
99 {0xf209787bb47d6b85, 348, false}, // 10^124
100 {0xb454e4a179dd1877, 375, false}, // 10^132
101 {0x865b86925b9bc5c2, 402, false}, // 10^140
102 {0xc83553c5c8965d3d, 428, false}, // 10^148
103 {0x952ab45cfa97a0b3, 455, false}, // 10^156
104 {0xde469fbd99a05fe3, 481, false}, // 10^164
105 {0xa59bc234db398c25, 508, false}, // 10^172
106 {0xf6c69a72a3989f5c, 534, false}, // 10^180
107 {0xb7dcbf5354e9bece, 561, false}, // 10^188
108 {0x88fcf317f22241e2, 588, false}, // 10^196
109 {0xcc20ce9bd35c78a5, 614, false}, // 10^204
110 {0x98165af37b2153df, 641, false}, // 10^212
111 {0xe2a0b5dc971f303a, 667, false}, // 10^220
112 {0xa8d9d1535ce3b396, 694, false}, // 10^228
113 {0xfb9b7cd9a4a7443c, 720, false}, // 10^236
114 {0xbb764c4ca7a44410, 747, false}, // 10^244
115 {0x8bab8eefb6409c1a, 774, false}, // 10^252
116 {0xd01fef10a657842c, 800, false}, // 10^260
117 {0x9b10a4e5e9913129, 827, false}, // 10^268
118 {0xe7109bfba19c0c9d, 853, false}, // 10^276
119 {0xac2820d9623bf429, 880, false}, // 10^284
120 {0x80444b5e7aa7cf85, 907, false}, // 10^292
121 {0xbf21e44003acdd2d, 933, false}, // 10^300
122 {0x8e679c2f5e44ff8f, 960, false}, // 10^308
123 {0xd433179d9c8cb841, 986, false}, // 10^316
124 {0x9e19db92b4e31ba9, 1013, false}, // 10^324
125 {0xeb96bf6ebadf77d9, 1039, false}, // 10^332
126 {0xaf87023b9bf0ee6b, 1066, false}, // 10^340
129 // floatBits returns the bits of the float64 that best approximates
130 // the extFloat passed as receiver. Overflow is set to true if
131 // the resulting float64 is ±Inf.
132 func (f *extFloat) floatBits(flt *floatInfo) (bits uint64, overflow bool) {
133 f.Normalize()
135 exp := f.exp + 63
137 // Exponent too small.
138 if exp < flt.bias+1 {
139 n := flt.bias + 1 - exp
140 f.mant >>= uint(n)
141 exp += n
144 // Extract 1+flt.mantbits bits from the 64-bit mantissa.
145 mant := f.mant >> (63 - flt.mantbits)
146 if f.mant&(1<<(62-flt.mantbits)) != 0 {
147 // Round up.
148 mant += 1
151 // Rounding might have added a bit; shift down.
152 if mant == 2<<flt.mantbits {
153 mant >>= 1
154 exp++
157 // Infinities.
158 if exp-flt.bias >= 1<<flt.expbits-1 {
159 // ±Inf
160 mant = 0
161 exp = 1<<flt.expbits - 1 + flt.bias
162 overflow = true
163 } else if mant&(1<<flt.mantbits) == 0 {
164 // Denormalized?
165 exp = flt.bias
167 // Assemble bits.
168 bits = mant & (uint64(1)<<flt.mantbits - 1)
169 bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbits
170 if f.neg {
171 bits |= 1 << (flt.mantbits + flt.expbits)
173 return
176 // AssignComputeBounds sets f to the floating point value
177 // defined by mant, exp and precision given by flt. It returns
178 // lower, upper such that any number in the closed interval
179 // [lower, upper] is converted back to the same floating point number.
180 func (f *extFloat) AssignComputeBounds(mant uint64, exp int, neg bool, flt *floatInfo) (lower, upper extFloat) {
181 f.mant = mant
182 f.exp = exp - int(flt.mantbits)
183 f.neg = neg
184 if f.exp <= 0 && mant == (mant>>uint(-f.exp))<<uint(-f.exp) {
185 // An exact integer
186 f.mant >>= uint(-f.exp)
187 f.exp = 0
188 return *f, *f
190 expBiased := exp - flt.bias
192 upper = extFloat{mant: 2*f.mant + 1, exp: f.exp - 1, neg: f.neg}
193 if mant != 1<<flt.mantbits || expBiased == 1 {
194 lower = extFloat{mant: 2*f.mant - 1, exp: f.exp - 1, neg: f.neg}
195 } else {
196 lower = extFloat{mant: 4*f.mant - 1, exp: f.exp - 2, neg: f.neg}
198 return
201 // Normalize normalizes f so that the highest bit of the mantissa is
202 // set, and returns the number by which the mantissa was left-shifted.
203 func (f *extFloat) Normalize() uint {
204 // bits.LeadingZeros64 would return 64
205 if f.mant == 0 {
206 return 0
208 shift := bits.LeadingZeros64(f.mant)
209 f.mant <<= uint(shift)
210 f.exp -= shift
211 return uint(shift)
214 // Multiply sets f to the product f*g: the result is correctly rounded,
215 // but not normalized.
216 func (f *extFloat) Multiply(g extFloat) {
217 fhi, flo := f.mant>>32, uint64(uint32(f.mant))
218 ghi, glo := g.mant>>32, uint64(uint32(g.mant))
220 // Cross products.
221 cross1 := fhi * glo
222 cross2 := flo * ghi
224 // f.mant*g.mant is fhi*ghi << 64 + (cross1+cross2) << 32 + flo*glo
225 f.mant = fhi*ghi + (cross1 >> 32) + (cross2 >> 32)
226 rem := uint64(uint32(cross1)) + uint64(uint32(cross2)) + ((flo * glo) >> 32)
227 // Round up.
228 rem += (1 << 31)
230 f.mant += (rem >> 32)
231 f.exp = f.exp + g.exp + 64
234 var uint64pow10 = [...]uint64{
235 1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
236 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
239 // AssignDecimal sets f to an approximate value mantissa*10^exp. It
240 // reports whether the value represented by f is guaranteed to be the
241 // best approximation of d after being rounded to a float64 or
242 // float32 depending on flt.
243 func (f *extFloat) AssignDecimal(mantissa uint64, exp10 int, neg bool, trunc bool, flt *floatInfo) (ok bool) {
244 const uint64digits = 19
245 const errorscale = 8
246 errors := 0 // An upper bound for error, computed in errorscale*ulp.
247 if trunc {
248 // the decimal number was truncated.
249 errors += errorscale / 2
252 f.mant = mantissa
253 f.exp = 0
254 f.neg = neg
256 // Multiply by powers of ten.
257 i := (exp10 - firstPowerOfTen) / stepPowerOfTen
258 if exp10 < firstPowerOfTen || i >= len(powersOfTen) {
259 return false
261 adjExp := (exp10 - firstPowerOfTen) % stepPowerOfTen
263 // We multiply by exp%step
264 if adjExp < uint64digits && mantissa < uint64pow10[uint64digits-adjExp] {
265 // We can multiply the mantissa exactly.
266 f.mant *= uint64pow10[adjExp]
267 f.Normalize()
268 } else {
269 f.Normalize()
270 f.Multiply(smallPowersOfTen[adjExp])
271 errors += errorscale / 2
274 // We multiply by 10 to the exp - exp%step.
275 f.Multiply(powersOfTen[i])
276 if errors > 0 {
277 errors += 1
279 errors += errorscale / 2
281 // Normalize
282 shift := f.Normalize()
283 errors <<= shift
285 // Now f is a good approximation of the decimal.
286 // Check whether the error is too large: that is, if the mantissa
287 // is perturbated by the error, the resulting float64 will change.
288 // The 64 bits mantissa is 1 + 52 bits for float64 + 11 extra bits.
290 // In many cases the approximation will be good enough.
291 denormalExp := flt.bias - 63
292 var extrabits uint
293 if f.exp <= denormalExp {
294 // f.mant * 2^f.exp is smaller than 2^(flt.bias+1).
295 extrabits = 63 - flt.mantbits + 1 + uint(denormalExp-f.exp)
296 } else {
297 extrabits = 63 - flt.mantbits
300 halfway := uint64(1) << (extrabits - 1)
301 mant_extra := f.mant & (1<<extrabits - 1)
303 // Do a signed comparison here! If the error estimate could make
304 // the mantissa round differently for the conversion to double,
305 // then we can't give a definite answer.
306 if int64(halfway)-int64(errors) < int64(mant_extra) &&
307 int64(mant_extra) < int64(halfway)+int64(errors) {
308 return false
310 return true
313 // Frexp10 is an analogue of math.Frexp for decimal powers. It scales
314 // f by an approximate power of ten 10^-exp, and returns exp10, so
315 // that f*10^exp10 has the same value as the old f, up to an ulp,
316 // as well as the index of 10^-exp in the powersOfTen table.
317 func (f *extFloat) frexp10() (exp10, index int) {
318 // The constants expMin and expMax constrain the final value of the
319 // binary exponent of f. We want a small integral part in the result
320 // because finding digits of an integer requires divisions, whereas
321 // digits of the fractional part can be found by repeatedly multiplying
322 // by 10.
323 const expMin = -60
324 const expMax = -32
325 // Find power of ten such that x * 10^n has a binary exponent
326 // between expMin and expMax.
327 approxExp10 := ((expMin+expMax)/2 - f.exp) * 28 / 93 // log(10)/log(2) is close to 93/28.
328 i := (approxExp10 - firstPowerOfTen) / stepPowerOfTen
329 Loop:
330 for {
331 exp := f.exp + powersOfTen[i].exp + 64
332 switch {
333 case exp < expMin:
335 case exp > expMax:
337 default:
338 break Loop
341 // Apply the desired decimal shift on f. It will have exponent
342 // in the desired range. This is multiplication by 10^-exp10.
343 f.Multiply(powersOfTen[i])
345 return -(firstPowerOfTen + i*stepPowerOfTen), i
348 // frexp10Many applies a common shift by a power of ten to a, b, c.
349 func frexp10Many(a, b, c *extFloat) (exp10 int) {
350 exp10, i := c.frexp10()
351 a.Multiply(powersOfTen[i])
352 b.Multiply(powersOfTen[i])
353 return
356 // FixedDecimal stores in d the first n significant digits
357 // of the decimal representation of f. It returns false
358 // if it cannot be sure of the answer.
359 func (f *extFloat) FixedDecimal(d *decimalSlice, n int) bool {
360 if f.mant == 0 {
361 d.nd = 0
362 d.dp = 0
363 d.neg = f.neg
364 return true
366 if n == 0 {
367 panic("strconv: internal error: extFloat.FixedDecimal called with n == 0")
369 // Multiply by an appropriate power of ten to have a reasonable
370 // number to process.
371 f.Normalize()
372 exp10, _ := f.frexp10()
374 shift := uint(-f.exp)
375 integer := uint32(f.mant >> shift)
376 fraction := f.mant - (uint64(integer) << shift)
377 ε := uint64(1) // ε is the uncertainty we have on the mantissa of f.
379 // Write exactly n digits to d.
380 needed := n // how many digits are left to write.
381 integerDigits := 0 // the number of decimal digits of integer.
382 pow10 := uint64(1) // the power of ten by which f was scaled.
383 for i, pow := 0, uint64(1); i < 20; i++ {
384 if pow > uint64(integer) {
385 integerDigits = i
386 break
388 pow *= 10
390 rest := integer
391 if integerDigits > needed {
392 // the integral part is already large, trim the last digits.
393 pow10 = uint64pow10[integerDigits-needed]
394 integer /= uint32(pow10)
395 rest -= integer * uint32(pow10)
396 } else {
397 rest = 0
400 // Write the digits of integer: the digits of rest are omitted.
401 var buf [32]byte
402 pos := len(buf)
403 for v := integer; v > 0; {
404 v1 := v / 10
405 v -= 10 * v1
406 pos--
407 buf[pos] = byte(v + '0')
408 v = v1
410 for i := pos; i < len(buf); i++ {
411 d.d[i-pos] = buf[i]
413 nd := len(buf) - pos
414 d.nd = nd
415 d.dp = integerDigits + exp10
416 needed -= nd
418 if needed > 0 {
419 if rest != 0 || pow10 != 1 {
420 panic("strconv: internal error, rest != 0 but needed > 0")
422 // Emit digits for the fractional part. Each time, 10*fraction
423 // fits in a uint64 without overflow.
424 for needed > 0 {
425 fraction *= 10
426 ε *= 10 // the uncertainty scales as we multiply by ten.
427 if 2*ε > 1<<shift {
428 // the error is so large it could modify which digit to write, abort.
429 return false
431 digit := fraction >> shift
432 d.d[nd] = byte(digit + '0')
433 fraction -= digit << shift
434 nd++
435 needed--
437 d.nd = nd
440 // We have written a truncation of f (a numerator / 10^d.dp). The remaining part
441 // can be interpreted as a small number (< 1) to be added to the last digit of the
442 // numerator.
444 // If rest > 0, the amount is:
445 // (rest<<shift | fraction) / (pow10 << shift)
446 // fraction being known with a ±ε uncertainty.
447 // The fact that n > 0 guarantees that pow10 << shift does not overflow a uint64.
449 // If rest = 0, pow10 == 1 and the amount is
450 // fraction / (1 << shift)
451 // fraction being known with a ±ε uncertainty.
453 // We pass this information to the rounding routine for adjustment.
455 ok := adjustLastDigitFixed(d, uint64(rest)<<shift|fraction, pow10, shift, ε)
456 if !ok {
457 return false
459 // Trim trailing zeros.
460 for i := d.nd - 1; i >= 0; i-- {
461 if d.d[i] != '0' {
462 d.nd = i + 1
463 break
466 return true
469 // adjustLastDigitFixed assumes d contains the representation of the integral part
470 // of some number, whose fractional part is num / (den << shift). The numerator
471 // num is only known up to an uncertainty of size ε, assumed to be less than
472 // (den << shift)/2.
474 // It will increase the last digit by one to account for correct rounding, typically
475 // when the fractional part is greater than 1/2, and will return false if ε is such
476 // that no correct answer can be given.
477 func adjustLastDigitFixed(d *decimalSlice, num, den uint64, shift uint, ε uint64) bool {
478 if num > den<<shift {
479 panic("strconv: num > den<<shift in adjustLastDigitFixed")
481 if 2*ε > den<<shift {
482 panic("strconv: ε > (den<<shift)/2")
484 if 2*(num+ε) < den<<shift {
485 return true
487 if 2*(num-ε) > den<<shift {
488 // increment d by 1.
489 i := d.nd - 1
490 for ; i >= 0; i-- {
491 if d.d[i] == '9' {
492 d.nd--
493 } else {
494 break
497 if i < 0 {
498 d.d[0] = '1'
499 d.nd = 1
500 d.dp++
501 } else {
502 d.d[i]++
504 return true
506 return false
509 // ShortestDecimal stores in d the shortest decimal representation of f
510 // which belongs to the open interval (lower, upper), where f is supposed
511 // to lie. It returns false whenever the result is unsure. The implementation
512 // uses the Grisu3 algorithm.
513 func (f *extFloat) ShortestDecimal(d *decimalSlice, lower, upper *extFloat) bool {
514 if f.mant == 0 {
515 d.nd = 0
516 d.dp = 0
517 d.neg = f.neg
518 return true
520 if f.exp == 0 && *lower == *f && *lower == *upper {
521 // an exact integer.
522 var buf [24]byte
523 n := len(buf) - 1
524 for v := f.mant; v > 0; {
525 v1 := v / 10
526 v -= 10 * v1
527 buf[n] = byte(v + '0')
529 v = v1
531 nd := len(buf) - n - 1
532 for i := 0; i < nd; i++ {
533 d.d[i] = buf[n+1+i]
535 d.nd, d.dp = nd, nd
536 for d.nd > 0 && d.d[d.nd-1] == '0' {
537 d.nd--
539 if d.nd == 0 {
540 d.dp = 0
542 d.neg = f.neg
543 return true
545 upper.Normalize()
546 // Uniformize exponents.
547 if f.exp > upper.exp {
548 f.mant <<= uint(f.exp - upper.exp)
549 f.exp = upper.exp
551 if lower.exp > upper.exp {
552 lower.mant <<= uint(lower.exp - upper.exp)
553 lower.exp = upper.exp
556 exp10 := frexp10Many(lower, f, upper)
557 // Take a safety margin due to rounding in frexp10Many, but we lose precision.
558 upper.mant++
559 lower.mant--
561 // The shortest representation of f is either rounded up or down, but
562 // in any case, it is a truncation of upper.
563 shift := uint(-upper.exp)
564 integer := uint32(upper.mant >> shift)
565 fraction := upper.mant - (uint64(integer) << shift)
567 // How far we can go down from upper until the result is wrong.
568 allowance := upper.mant - lower.mant
569 // How far we should go to get a very precise result.
570 targetDiff := upper.mant - f.mant
572 // Count integral digits: there are at most 10.
573 var integerDigits int
574 for i, pow := 0, uint64(1); i < 20; i++ {
575 if pow > uint64(integer) {
576 integerDigits = i
577 break
579 pow *= 10
581 for i := 0; i < integerDigits; i++ {
582 pow := uint64pow10[integerDigits-i-1]
583 digit := integer / uint32(pow)
584 d.d[i] = byte(digit + '0')
585 integer -= digit * uint32(pow)
586 // evaluate whether we should stop.
587 if currentDiff := uint64(integer)<<shift + fraction; currentDiff < allowance {
588 d.nd = i + 1
589 d.dp = integerDigits + exp10
590 d.neg = f.neg
591 // Sometimes allowance is so large the last digit might need to be
592 // decremented to get closer to f.
593 return adjustLastDigit(d, currentDiff, targetDiff, allowance, pow<<shift, 2)
596 d.nd = integerDigits
597 d.dp = d.nd + exp10
598 d.neg = f.neg
600 // Compute digits of the fractional part. At each step fraction does not
601 // overflow. The choice of minExp implies that fraction is less than 2^60.
602 var digit int
603 multiplier := uint64(1)
604 for {
605 fraction *= 10
606 multiplier *= 10
607 digit = int(fraction >> shift)
608 d.d[d.nd] = byte(digit + '0')
609 d.nd++
610 fraction -= uint64(digit) << shift
611 if fraction < allowance*multiplier {
612 // We are in the admissible range. Note that if allowance is about to
613 // overflow, that is, allowance > 2^64/10, the condition is automatically
614 // true due to the limited range of fraction.
615 return adjustLastDigit(d,
616 fraction, targetDiff*multiplier, allowance*multiplier,
617 1<<shift, multiplier*2)
622 // adjustLastDigit modifies d = x-currentDiff*ε, to get closest to
623 // d = x-targetDiff*ε, without becoming smaller than x-maxDiff*ε.
624 // It assumes that a decimal digit is worth ulpDecimal*ε, and that
625 // all data is known with an error estimate of ulpBinary*ε.
626 func adjustLastDigit(d *decimalSlice, currentDiff, targetDiff, maxDiff, ulpDecimal, ulpBinary uint64) bool {
627 if ulpDecimal < 2*ulpBinary {
628 // Approximation is too wide.
629 return false
631 for currentDiff+ulpDecimal/2+ulpBinary < targetDiff {
632 d.d[d.nd-1]--
633 currentDiff += ulpDecimal
635 if currentDiff+ulpDecimal <= targetDiff+ulpDecimal/2+ulpBinary {
636 // we have two choices, and don't know what to do.
637 return false
639 if currentDiff < ulpBinary || currentDiff > maxDiff-ulpBinary {
640 // we went too far
641 return false
643 if d.nd == 1 && d.d[0] == '0' {
644 // the number has actually reached zero.
645 d.nd = 0
646 d.dp = 0
648 return true