pretty-print.h (pp_base): Remove.
[official-gcc.git] / gcc / ira-costs.c
blob5f998f7aefb9c49b9308132bc17d7b5ab0198ead
1 /* IRA hard register and memory cost calculation for allocnos or pseudos.
2 Copyright (C) 2006-2013 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "hash-table.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "expr.h"
29 #include "tm_p.h"
30 #include "flags.h"
31 #include "basic-block.h"
32 #include "regs.h"
33 #include "addresses.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "reload.h"
37 #include "diagnostic-core.h"
38 #include "target.h"
39 #include "params.h"
40 #include "ira-int.h"
42 /* The flags is set up every time when we calculate pseudo register
43 classes through function ira_set_pseudo_classes. */
44 static bool pseudo_classes_defined_p = false;
46 /* TRUE if we work with allocnos. Otherwise we work with pseudos. */
47 static bool allocno_p;
49 /* Number of elements in array `costs'. */
50 static int cost_elements_num;
52 /* The `costs' struct records the cost of using hard registers of each
53 class considered for the calculation and of using memory for each
54 allocno or pseudo. */
55 struct costs
57 int mem_cost;
58 /* Costs for register classes start here. We process only some
59 allocno classes. */
60 int cost[1];
63 #define max_struct_costs_size \
64 (this_target_ira_int->x_max_struct_costs_size)
65 #define init_cost \
66 (this_target_ira_int->x_init_cost)
67 #define temp_costs \
68 (this_target_ira_int->x_temp_costs)
69 #define op_costs \
70 (this_target_ira_int->x_op_costs)
71 #define this_op_costs \
72 (this_target_ira_int->x_this_op_costs)
74 /* Costs of each class for each allocno or pseudo. */
75 static struct costs *costs;
77 /* Accumulated costs of each class for each allocno. */
78 static struct costs *total_allocno_costs;
80 /* It is the current size of struct costs. */
81 static int struct_costs_size;
83 /* Return pointer to structure containing costs of allocno or pseudo
84 with given NUM in array ARR. */
85 #define COSTS(arr, num) \
86 ((struct costs *) ((char *) (arr) + (num) * struct_costs_size))
88 /* Return index in COSTS when processing reg with REGNO. */
89 #define COST_INDEX(regno) (allocno_p \
90 ? ALLOCNO_NUM (ira_curr_regno_allocno_map[regno]) \
91 : (int) regno)
93 /* Record register class preferences of each allocno or pseudo. Null
94 value means no preferences. It happens on the 1st iteration of the
95 cost calculation. */
96 static enum reg_class *pref;
98 /* Allocated buffers for pref. */
99 static enum reg_class *pref_buffer;
101 /* Record allocno class of each allocno with the same regno. */
102 static enum reg_class *regno_aclass;
104 /* Record cost gains for not allocating a register with an invariant
105 equivalence. */
106 static int *regno_equiv_gains;
108 /* Execution frequency of the current insn. */
109 static int frequency;
113 /* Info about reg classes whose costs are calculated for a pseudo. */
114 struct cost_classes
116 /* Number of the cost classes in the subsequent array. */
117 int num;
118 /* Container of the cost classes. */
119 enum reg_class classes[N_REG_CLASSES];
120 /* Map reg class -> index of the reg class in the previous array.
121 -1 if it is not a cost classe. */
122 int index[N_REG_CLASSES];
123 /* Map hard regno index of first class in array CLASSES containing
124 the hard regno, -1 otherwise. */
125 int hard_regno_index[FIRST_PSEUDO_REGISTER];
128 /* Types of pointers to the structure above. */
129 typedef struct cost_classes *cost_classes_t;
130 typedef const struct cost_classes *const_cost_classes_t;
132 /* Info about cost classes for each pseudo. */
133 static cost_classes_t *regno_cost_classes;
135 /* Helper for cost_classes hashing. */
137 struct cost_classes_hasher
139 typedef cost_classes value_type;
140 typedef cost_classes compare_type;
141 static inline hashval_t hash (const value_type *);
142 static inline bool equal (const value_type *, const compare_type *);
143 static inline void remove (value_type *);
146 /* Returns hash value for cost classes info HV. */
147 inline hashval_t
148 cost_classes_hasher::hash (const value_type *hv)
150 return iterative_hash (&hv->classes, sizeof (enum reg_class) * hv->num, 0);
153 /* Compares cost classes info HV1 and HV2. */
154 inline bool
155 cost_classes_hasher::equal (const value_type *hv1, const compare_type *hv2)
157 return hv1->num == hv2->num && memcmp (hv1->classes, hv2->classes,
158 sizeof (enum reg_class) * hv1->num);
161 /* Delete cost classes info V from the hash table. */
162 inline void
163 cost_classes_hasher::remove (value_type *v)
165 ira_free (v);
168 /* Hash table of unique cost classes. */
169 static hash_table <cost_classes_hasher> cost_classes_htab;
171 /* Map allocno class -> cost classes for pseudo of given allocno
172 class. */
173 static cost_classes_t cost_classes_aclass_cache[N_REG_CLASSES];
175 /* Map mode -> cost classes for pseudo of give mode. */
176 static cost_classes_t cost_classes_mode_cache[MAX_MACHINE_MODE];
178 /* Initialize info about the cost classes for each pseudo. */
179 static void
180 initiate_regno_cost_classes (void)
182 int size = sizeof (cost_classes_t) * max_reg_num ();
184 regno_cost_classes = (cost_classes_t *) ira_allocate (size);
185 memset (regno_cost_classes, 0, size);
186 memset (cost_classes_aclass_cache, 0,
187 sizeof (cost_classes_t) * N_REG_CLASSES);
188 memset (cost_classes_mode_cache, 0,
189 sizeof (cost_classes_t) * MAX_MACHINE_MODE);
190 cost_classes_htab.create (200);
193 /* Create new cost classes from cost classes FROM and set up members
194 index and hard_regno_index. Return the new classes. The function
195 implements some common code of two functions
196 setup_regno_cost_classes_by_aclass and
197 setup_regno_cost_classes_by_mode. */
198 static cost_classes_t
199 setup_cost_classes (cost_classes_t from)
201 cost_classes_t classes_ptr;
202 enum reg_class cl;
203 int i, j, hard_regno;
205 classes_ptr = (cost_classes_t) ira_allocate (sizeof (struct cost_classes));
206 classes_ptr->num = from->num;
207 for (i = 0; i < N_REG_CLASSES; i++)
208 classes_ptr->index[i] = -1;
209 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
210 classes_ptr->hard_regno_index[i] = -1;
211 for (i = 0; i < from->num; i++)
213 cl = classes_ptr->classes[i] = from->classes[i];
214 classes_ptr->index[cl] = i;
215 for (j = ira_class_hard_regs_num[cl] - 1; j >= 0; j--)
217 hard_regno = ira_class_hard_regs[cl][j];
218 if (classes_ptr->hard_regno_index[hard_regno] < 0)
219 classes_ptr->hard_regno_index[hard_regno] = i;
222 return classes_ptr;
225 /* Setup cost classes for pseudo REGNO whose allocno class is ACLASS.
226 This function is used when we know an initial approximation of
227 allocno class of the pseudo already, e.g. on the second iteration
228 of class cost calculation or after class cost calculation in
229 register-pressure sensitive insn scheduling or register-pressure
230 sensitive loop-invariant motion. */
231 static void
232 setup_regno_cost_classes_by_aclass (int regno, enum reg_class aclass)
234 static struct cost_classes classes;
235 cost_classes_t classes_ptr;
236 enum reg_class cl;
237 int i;
238 cost_classes **slot;
239 HARD_REG_SET temp, temp2;
240 bool exclude_p;
242 if ((classes_ptr = cost_classes_aclass_cache[aclass]) == NULL)
244 COPY_HARD_REG_SET (temp, reg_class_contents[aclass]);
245 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
246 /* We exclude classes from consideration which are subsets of
247 ACLASS only if ACLASS is an uniform class. */
248 exclude_p = ira_uniform_class_p[aclass];
249 classes.num = 0;
250 for (i = 0; i < ira_important_classes_num; i++)
252 cl = ira_important_classes[i];
253 if (exclude_p)
255 /* Exclude non-uniform classes which are subsets of
256 ACLASS. */
257 COPY_HARD_REG_SET (temp2, reg_class_contents[cl]);
258 AND_COMPL_HARD_REG_SET (temp2, ira_no_alloc_regs);
259 if (hard_reg_set_subset_p (temp2, temp) && cl != aclass)
260 continue;
262 classes.classes[classes.num++] = cl;
264 slot = cost_classes_htab.find_slot (&classes, INSERT);
265 if (*slot == NULL)
267 classes_ptr = setup_cost_classes (&classes);
268 *slot = classes_ptr;
270 classes_ptr = cost_classes_aclass_cache[aclass] = (cost_classes_t) *slot;
272 regno_cost_classes[regno] = classes_ptr;
275 /* Setup cost classes for pseudo REGNO with MODE. Usage of MODE can
276 decrease number of cost classes for the pseudo, if hard registers
277 of some important classes can not hold a value of MODE. So the
278 pseudo can not get hard register of some important classes and cost
279 calculation for such important classes is only waisting CPU
280 time. */
281 static void
282 setup_regno_cost_classes_by_mode (int regno, enum machine_mode mode)
284 static struct cost_classes classes;
285 cost_classes_t classes_ptr;
286 enum reg_class cl;
287 int i;
288 cost_classes **slot;
289 HARD_REG_SET temp;
291 if ((classes_ptr = cost_classes_mode_cache[mode]) == NULL)
293 classes.num = 0;
294 for (i = 0; i < ira_important_classes_num; i++)
296 cl = ira_important_classes[i];
297 COPY_HARD_REG_SET (temp, ira_prohibited_class_mode_regs[cl][mode]);
298 IOR_HARD_REG_SET (temp, ira_no_alloc_regs);
299 if (hard_reg_set_subset_p (reg_class_contents[cl], temp))
300 continue;
301 classes.classes[classes.num++] = cl;
303 slot = cost_classes_htab.find_slot (&classes, INSERT);
304 if (*slot == NULL)
306 classes_ptr = setup_cost_classes (&classes);
307 *slot = classes_ptr;
309 else
310 classes_ptr = (cost_classes_t) *slot;
311 cost_classes_mode_cache[mode] = (cost_classes_t) *slot;
313 regno_cost_classes[regno] = classes_ptr;
316 /* Finilize info about the cost classes for each pseudo. */
317 static void
318 finish_regno_cost_classes (void)
320 ira_free (regno_cost_classes);
321 cost_classes_htab.dispose ();
326 /* Compute the cost of loading X into (if TO_P is TRUE) or from (if
327 TO_P is FALSE) a register of class RCLASS in mode MODE. X must not
328 be a pseudo register. */
329 static int
330 copy_cost (rtx x, enum machine_mode mode, reg_class_t rclass, bool to_p,
331 secondary_reload_info *prev_sri)
333 secondary_reload_info sri;
334 reg_class_t secondary_class = NO_REGS;
336 /* If X is a SCRATCH, there is actually nothing to move since we are
337 assuming optimal allocation. */
338 if (GET_CODE (x) == SCRATCH)
339 return 0;
341 /* Get the class we will actually use for a reload. */
342 rclass = targetm.preferred_reload_class (x, rclass);
344 /* If we need a secondary reload for an intermediate, the cost is
345 that to load the input into the intermediate register, then to
346 copy it. */
347 sri.prev_sri = prev_sri;
348 sri.extra_cost = 0;
349 secondary_class = targetm.secondary_reload (to_p, x, rclass, mode, &sri);
351 if (secondary_class != NO_REGS)
353 ira_init_register_move_cost_if_necessary (mode);
354 return (ira_register_move_cost[mode][(int) secondary_class][(int) rclass]
355 + sri.extra_cost
356 + copy_cost (x, mode, secondary_class, to_p, &sri));
359 /* For memory, use the memory move cost, for (hard) registers, use
360 the cost to move between the register classes, and use 2 for
361 everything else (constants). */
362 if (MEM_P (x) || rclass == NO_REGS)
363 return sri.extra_cost
364 + ira_memory_move_cost[mode][(int) rclass][to_p != 0];
365 else if (REG_P (x))
367 reg_class_t x_class = REGNO_REG_CLASS (REGNO (x));
369 ira_init_register_move_cost_if_necessary (mode);
370 return (sri.extra_cost
371 + ira_register_move_cost[mode][(int) x_class][(int) rclass]);
373 else
374 /* If this is a constant, we may eventually want to call rtx_cost
375 here. */
376 return sri.extra_cost + COSTS_N_INSNS (1);
381 /* Record the cost of using memory or hard registers of various
382 classes for the operands in INSN.
384 N_ALTS is the number of alternatives.
385 N_OPS is the number of operands.
386 OPS is an array of the operands.
387 MODES are the modes of the operands, in case any are VOIDmode.
388 CONSTRAINTS are the constraints to use for the operands. This array
389 is modified by this procedure.
391 This procedure works alternative by alternative. For each
392 alternative we assume that we will be able to allocate all allocnos
393 to their ideal register class and calculate the cost of using that
394 alternative. Then we compute, for each operand that is a
395 pseudo-register, the cost of having the allocno allocated to each
396 register class and using it in that alternative. To this cost is
397 added the cost of the alternative.
399 The cost of each class for this insn is its lowest cost among all
400 the alternatives. */
401 static void
402 record_reg_classes (int n_alts, int n_ops, rtx *ops,
403 enum machine_mode *modes, const char **constraints,
404 rtx insn, enum reg_class *pref)
406 int alt;
407 int i, j, k;
408 rtx set;
409 int insn_allows_mem[MAX_RECOG_OPERANDS];
411 for (i = 0; i < n_ops; i++)
412 insn_allows_mem[i] = 0;
414 /* Process each alternative, each time minimizing an operand's cost
415 with the cost for each operand in that alternative. */
416 for (alt = 0; alt < n_alts; alt++)
418 enum reg_class classes[MAX_RECOG_OPERANDS];
419 int allows_mem[MAX_RECOG_OPERANDS];
420 enum reg_class rclass;
421 int alt_fail = 0;
422 int alt_cost = 0, op_cost_add;
424 if (!recog_data.alternative_enabled_p[alt])
426 for (i = 0; i < recog_data.n_operands; i++)
427 constraints[i] = skip_alternative (constraints[i]);
429 continue;
432 for (i = 0; i < n_ops; i++)
434 unsigned char c;
435 const char *p = constraints[i];
436 rtx op = ops[i];
437 enum machine_mode mode = modes[i];
438 int allows_addr = 0;
439 int win = 0;
441 /* Initially show we know nothing about the register class. */
442 classes[i] = NO_REGS;
443 allows_mem[i] = 0;
445 /* If this operand has no constraints at all, we can
446 conclude nothing about it since anything is valid. */
447 if (*p == 0)
449 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
450 memset (this_op_costs[i], 0, struct_costs_size);
451 continue;
454 /* If this alternative is only relevant when this operand
455 matches a previous operand, we do different things
456 depending on whether this operand is a allocno-reg or not.
457 We must process any modifiers for the operand before we
458 can make this test. */
459 while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
460 p++;
462 if (p[0] >= '0' && p[0] <= '0' + i && (p[1] == ',' || p[1] == 0))
464 /* Copy class and whether memory is allowed from the
465 matching alternative. Then perform any needed cost
466 computations and/or adjustments. */
467 j = p[0] - '0';
468 classes[i] = classes[j];
469 allows_mem[i] = allows_mem[j];
470 if (allows_mem[i])
471 insn_allows_mem[i] = 1;
473 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
475 /* If this matches the other operand, we have no
476 added cost and we win. */
477 if (rtx_equal_p (ops[j], op))
478 win = 1;
479 /* If we can put the other operand into a register,
480 add to the cost of this alternative the cost to
481 copy this operand to the register used for the
482 other operand. */
483 else if (classes[j] != NO_REGS)
485 alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
486 win = 1;
489 else if (! REG_P (ops[j])
490 || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
492 /* This op is an allocno but the one it matches is
493 not. */
495 /* If we can't put the other operand into a
496 register, this alternative can't be used. */
498 if (classes[j] == NO_REGS)
499 alt_fail = 1;
500 /* Otherwise, add to the cost of this alternative
501 the cost to copy the other operand to the hard
502 register used for this operand. */
503 else
504 alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
506 else
508 /* The costs of this operand are not the same as the
509 other operand since move costs are not symmetric.
510 Moreover, if we cannot tie them, this alternative
511 needs to do a copy, which is one insn. */
512 struct costs *pp = this_op_costs[i];
513 int *pp_costs = pp->cost;
514 cost_classes_t cost_classes_ptr
515 = regno_cost_classes[REGNO (op)];
516 enum reg_class *cost_classes = cost_classes_ptr->classes;
517 bool in_p = recog_data.operand_type[i] != OP_OUT;
518 bool out_p = recog_data.operand_type[i] != OP_IN;
519 enum reg_class op_class = classes[i];
520 move_table *move_in_cost, *move_out_cost;
522 ira_init_register_move_cost_if_necessary (mode);
523 if (! in_p)
525 ira_assert (out_p);
526 move_out_cost = ira_may_move_out_cost[mode];
527 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
529 rclass = cost_classes[k];
530 pp_costs[k]
531 = move_out_cost[op_class][rclass] * frequency;
534 else if (! out_p)
536 ira_assert (in_p);
537 move_in_cost = ira_may_move_in_cost[mode];
538 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
540 rclass = cost_classes[k];
541 pp_costs[k]
542 = move_in_cost[rclass][op_class] * frequency;
545 else
547 move_in_cost = ira_may_move_in_cost[mode];
548 move_out_cost = ira_may_move_out_cost[mode];
549 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
551 rclass = cost_classes[k];
552 pp_costs[k] = ((move_in_cost[rclass][op_class]
553 + move_out_cost[op_class][rclass])
554 * frequency);
558 /* If the alternative actually allows memory, make
559 things a bit cheaper since we won't need an extra
560 insn to load it. */
561 pp->mem_cost
562 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
563 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
564 - allows_mem[i]) * frequency;
566 /* If we have assigned a class to this allocno in
567 our first pass, add a cost to this alternative
568 corresponding to what we would add if this
569 allocno were not in the appropriate class. */
570 if (pref)
572 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
574 if (pref_class == NO_REGS)
575 alt_cost
576 += ((out_p
577 ? ira_memory_move_cost[mode][op_class][0] : 0)
578 + (in_p
579 ? ira_memory_move_cost[mode][op_class][1]
580 : 0));
581 else if (ira_reg_class_intersect
582 [pref_class][op_class] == NO_REGS)
583 alt_cost
584 += ira_register_move_cost[mode][pref_class][op_class];
586 if (REGNO (ops[i]) != REGNO (ops[j])
587 && ! find_reg_note (insn, REG_DEAD, op))
588 alt_cost += 2;
590 /* This is in place of ordinary cost computation for
591 this operand, so skip to the end of the
592 alternative (should be just one character). */
593 while (*p && *p++ != ',')
596 constraints[i] = p;
597 continue;
601 /* Scan all the constraint letters. See if the operand
602 matches any of the constraints. Collect the valid
603 register classes and see if this operand accepts
604 memory. */
605 while ((c = *p))
607 switch (c)
609 case ',':
610 break;
611 case '*':
612 /* Ignore the next letter for this pass. */
613 c = *++p;
614 break;
616 case '?':
617 alt_cost += 2;
618 case '!': case '#': case '&':
619 case '0': case '1': case '2': case '3': case '4':
620 case '5': case '6': case '7': case '8': case '9':
621 break;
623 case 'p':
624 allows_addr = 1;
625 win = address_operand (op, GET_MODE (op));
626 /* We know this operand is an address, so we want it
627 to be allocated to a register that can be the
628 base of an address, i.e. BASE_REG_CLASS. */
629 classes[i]
630 = ira_reg_class_subunion[classes[i]]
631 [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
632 ADDRESS, SCRATCH)];
633 break;
635 case 'm': case 'o': case 'V':
636 /* It doesn't seem worth distinguishing between
637 offsettable and non-offsettable addresses
638 here. */
639 insn_allows_mem[i] = allows_mem[i] = 1;
640 if (MEM_P (op))
641 win = 1;
642 break;
644 case '<':
645 if (MEM_P (op)
646 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
647 || GET_CODE (XEXP (op, 0)) == POST_DEC))
648 win = 1;
649 break;
651 case '>':
652 if (MEM_P (op)
653 && (GET_CODE (XEXP (op, 0)) == PRE_INC
654 || GET_CODE (XEXP (op, 0)) == POST_INC))
655 win = 1;
656 break;
658 case 'E':
659 case 'F':
660 if (CONST_DOUBLE_AS_FLOAT_P (op)
661 || (GET_CODE (op) == CONST_VECTOR
662 && (GET_MODE_CLASS (GET_MODE (op))
663 == MODE_VECTOR_FLOAT)))
664 win = 1;
665 break;
667 case 'G':
668 case 'H':
669 if (CONST_DOUBLE_AS_FLOAT_P (op)
670 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
671 win = 1;
672 break;
674 case 's':
675 if (CONST_SCALAR_INT_P (op))
676 break;
678 case 'i':
679 if (CONSTANT_P (op)
680 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
681 win = 1;
682 break;
684 case 'n':
685 if (CONST_SCALAR_INT_P (op))
686 win = 1;
687 break;
689 case 'I':
690 case 'J':
691 case 'K':
692 case 'L':
693 case 'M':
694 case 'N':
695 case 'O':
696 case 'P':
697 if (CONST_INT_P (op)
698 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
699 win = 1;
700 break;
702 case 'X':
703 win = 1;
704 break;
706 case 'g':
707 if (MEM_P (op)
708 || (CONSTANT_P (op)
709 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
710 win = 1;
711 insn_allows_mem[i] = allows_mem[i] = 1;
712 case 'r':
713 classes[i] = ira_reg_class_subunion[classes[i]][GENERAL_REGS];
714 break;
716 default:
717 if (REG_CLASS_FROM_CONSTRAINT (c, p) != NO_REGS)
718 classes[i] = ira_reg_class_subunion[classes[i]]
719 [REG_CLASS_FROM_CONSTRAINT (c, p)];
720 #ifdef EXTRA_CONSTRAINT_STR
721 else if (EXTRA_CONSTRAINT_STR (op, c, p))
722 win = 1;
724 if (EXTRA_MEMORY_CONSTRAINT (c, p))
726 /* Every MEM can be reloaded to fit. */
727 insn_allows_mem[i] = allows_mem[i] = 1;
728 if (MEM_P (op))
729 win = 1;
731 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
733 /* Every address can be reloaded to fit. */
734 allows_addr = 1;
735 if (address_operand (op, GET_MODE (op)))
736 win = 1;
737 /* We know this operand is an address, so we
738 want it to be allocated to a hard register
739 that can be the base of an address,
740 i.e. BASE_REG_CLASS. */
741 classes[i]
742 = ira_reg_class_subunion[classes[i]]
743 [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
744 ADDRESS, SCRATCH)];
746 #endif
747 break;
749 p += CONSTRAINT_LEN (c, p);
750 if (c == ',')
751 break;
754 constraints[i] = p;
756 /* How we account for this operand now depends on whether it
757 is a pseudo register or not. If it is, we first check if
758 any register classes are valid. If not, we ignore this
759 alternative, since we want to assume that all allocnos get
760 allocated for register preferencing. If some register
761 class is valid, compute the costs of moving the allocno
762 into that class. */
763 if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
765 if (classes[i] == NO_REGS)
767 /* We must always fail if the operand is a REG, but
768 we did not find a suitable class.
770 Otherwise we may perform an uninitialized read
771 from this_op_costs after the `continue' statement
772 below. */
773 alt_fail = 1;
775 else
777 unsigned int regno = REGNO (op);
778 struct costs *pp = this_op_costs[i];
779 int *pp_costs = pp->cost;
780 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
781 enum reg_class *cost_classes = cost_classes_ptr->classes;
782 bool in_p = recog_data.operand_type[i] != OP_OUT;
783 bool out_p = recog_data.operand_type[i] != OP_IN;
784 enum reg_class op_class = classes[i];
785 move_table *move_in_cost, *move_out_cost;
787 ira_init_register_move_cost_if_necessary (mode);
788 if (! in_p)
790 ira_assert (out_p);
791 move_out_cost = ira_may_move_out_cost[mode];
792 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
794 rclass = cost_classes[k];
795 pp_costs[k]
796 = move_out_cost[op_class][rclass] * frequency;
799 else if (! out_p)
801 ira_assert (in_p);
802 move_in_cost = ira_may_move_in_cost[mode];
803 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
805 rclass = cost_classes[k];
806 pp_costs[k]
807 = move_in_cost[rclass][op_class] * frequency;
810 else
812 move_in_cost = ira_may_move_in_cost[mode];
813 move_out_cost = ira_may_move_out_cost[mode];
814 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
816 rclass = cost_classes[k];
817 pp_costs[k] = ((move_in_cost[rclass][op_class]
818 + move_out_cost[op_class][rclass])
819 * frequency);
823 /* If the alternative actually allows memory, make
824 things a bit cheaper since we won't need an extra
825 insn to load it. */
826 pp->mem_cost
827 = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
828 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
829 - allows_mem[i]) * frequency;
830 /* If we have assigned a class to this allocno in
831 our first pass, add a cost to this alternative
832 corresponding to what we would add if this
833 allocno were not in the appropriate class. */
834 if (pref)
836 enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
838 if (pref_class == NO_REGS)
839 alt_cost
840 += ((out_p
841 ? ira_memory_move_cost[mode][op_class][0] : 0)
842 + (in_p
843 ? ira_memory_move_cost[mode][op_class][1]
844 : 0));
845 else if (ira_reg_class_intersect[pref_class][op_class]
846 == NO_REGS)
847 alt_cost += ira_register_move_cost[mode][pref_class][op_class];
852 /* Otherwise, if this alternative wins, either because we
853 have already determined that or if we have a hard
854 register of the proper class, there is no cost for this
855 alternative. */
856 else if (win || (REG_P (op)
857 && reg_fits_class_p (op, classes[i],
858 0, GET_MODE (op))))
861 /* If registers are valid, the cost of this alternative
862 includes copying the object to and/or from a
863 register. */
864 else if (classes[i] != NO_REGS)
866 if (recog_data.operand_type[i] != OP_OUT)
867 alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
869 if (recog_data.operand_type[i] != OP_IN)
870 alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
872 /* The only other way this alternative can be used is if
873 this is a constant that could be placed into memory. */
874 else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
875 alt_cost += ira_memory_move_cost[mode][classes[i]][1];
876 else
877 alt_fail = 1;
880 if (alt_fail)
881 continue;
883 op_cost_add = alt_cost * frequency;
884 /* Finally, update the costs with the information we've
885 calculated about this alternative. */
886 for (i = 0; i < n_ops; i++)
887 if (REG_P (ops[i]) && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
889 struct costs *pp = op_costs[i], *qq = this_op_costs[i];
890 int *pp_costs = pp->cost, *qq_costs = qq->cost;
891 int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
892 cost_classes_t cost_classes_ptr
893 = regno_cost_classes[REGNO (ops[i])];
895 pp->mem_cost = MIN (pp->mem_cost,
896 (qq->mem_cost + op_cost_add) * scale);
898 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
899 pp_costs[k]
900 = MIN (pp_costs[k], (qq_costs[k] + op_cost_add) * scale);
904 if (allocno_p)
905 for (i = 0; i < n_ops; i++)
907 ira_allocno_t a;
908 rtx op = ops[i];
910 if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
911 continue;
912 a = ira_curr_regno_allocno_map [REGNO (op)];
913 if (! ALLOCNO_BAD_SPILL_P (a) && insn_allows_mem[i] == 0)
914 ALLOCNO_BAD_SPILL_P (a) = true;
917 /* If this insn is a single set copying operand 1 to operand 0 and
918 one operand is an allocno with the other a hard reg or an allocno
919 that prefers a hard register that is in its own register class
920 then we may want to adjust the cost of that register class to -1.
922 Avoid the adjustment if the source does not die to avoid
923 stressing of register allocator by preferrencing two colliding
924 registers into single class.
926 Also avoid the adjustment if a copy between hard registers of the
927 class is expensive (ten times the cost of a default copy is
928 considered arbitrarily expensive). This avoids losing when the
929 preferred class is very expensive as the source of a copy
930 instruction. */
931 if ((set = single_set (insn)) != 0
932 && ops[0] == SET_DEST (set) && ops[1] == SET_SRC (set)
933 && REG_P (ops[0]) && REG_P (ops[1])
934 && find_regno_note (insn, REG_DEAD, REGNO (ops[1])))
935 for (i = 0; i <= 1; i++)
936 if (REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER
937 && REGNO (ops[!i]) < FIRST_PSEUDO_REGISTER)
939 unsigned int regno = REGNO (ops[i]);
940 unsigned int other_regno = REGNO (ops[!i]);
941 enum machine_mode mode = GET_MODE (ops[!i]);
942 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
943 enum reg_class *cost_classes = cost_classes_ptr->classes;
944 reg_class_t rclass;
945 int nr;
947 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
949 rclass = cost_classes[k];
950 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], other_regno)
951 && (reg_class_size[(int) rclass]
952 == ira_reg_class_max_nregs [(int) rclass][(int) mode]))
954 if (reg_class_size[rclass] == 1)
955 op_costs[i]->cost[k] = -frequency;
956 else
958 for (nr = 0;
959 nr < hard_regno_nregs[other_regno][mode];
960 nr++)
961 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass],
962 other_regno + nr))
963 break;
965 if (nr == hard_regno_nregs[other_regno][mode])
966 op_costs[i]->cost[k] = -frequency;
975 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
976 static inline bool
977 ok_for_index_p_nonstrict (rtx reg)
979 unsigned regno = REGNO (reg);
981 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
984 /* A version of regno_ok_for_base_p for use here, when all
985 pseudo-registers should count as OK. Arguments as for
986 regno_ok_for_base_p. */
987 static inline bool
988 ok_for_base_p_nonstrict (rtx reg, enum machine_mode mode, addr_space_t as,
989 enum rtx_code outer_code, enum rtx_code index_code)
991 unsigned regno = REGNO (reg);
993 if (regno >= FIRST_PSEUDO_REGISTER)
994 return true;
995 return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
998 /* Record the pseudo registers we must reload into hard registers in a
999 subexpression of a memory address, X.
1001 If CONTEXT is 0, we are looking at the base part of an address,
1002 otherwise we are looking at the index part.
1004 MODE and AS are the mode and address space of the memory reference;
1005 OUTER_CODE and INDEX_CODE give the context that the rtx appears in.
1006 These four arguments are passed down to base_reg_class.
1008 SCALE is twice the amount to multiply the cost by (it is twice so
1009 we can represent half-cost adjustments). */
1010 static void
1011 record_address_regs (enum machine_mode mode, addr_space_t as, rtx x,
1012 int context, enum rtx_code outer_code,
1013 enum rtx_code index_code, int scale)
1015 enum rtx_code code = GET_CODE (x);
1016 enum reg_class rclass;
1018 if (context == 1)
1019 rclass = INDEX_REG_CLASS;
1020 else
1021 rclass = base_reg_class (mode, as, outer_code, index_code);
1023 switch (code)
1025 case CONST_INT:
1026 case CONST:
1027 case CC0:
1028 case PC:
1029 case SYMBOL_REF:
1030 case LABEL_REF:
1031 return;
1033 case PLUS:
1034 /* When we have an address that is a sum, we must determine
1035 whether registers are "base" or "index" regs. If there is a
1036 sum of two registers, we must choose one to be the "base".
1037 Luckily, we can use the REG_POINTER to make a good choice
1038 most of the time. We only need to do this on machines that
1039 can have two registers in an address and where the base and
1040 index register classes are different.
1042 ??? This code used to set REGNO_POINTER_FLAG in some cases,
1043 but that seems bogus since it should only be set when we are
1044 sure the register is being used as a pointer. */
1046 rtx arg0 = XEXP (x, 0);
1047 rtx arg1 = XEXP (x, 1);
1048 enum rtx_code code0 = GET_CODE (arg0);
1049 enum rtx_code code1 = GET_CODE (arg1);
1051 /* Look inside subregs. */
1052 if (code0 == SUBREG)
1053 arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1054 if (code1 == SUBREG)
1055 arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1057 /* If this machine only allows one register per address, it
1058 must be in the first operand. */
1059 if (MAX_REGS_PER_ADDRESS == 1)
1060 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1062 /* If index and base registers are the same on this machine,
1063 just record registers in any non-constant operands. We
1064 assume here, as well as in the tests below, that all
1065 addresses are in canonical form. */
1066 else if (INDEX_REG_CLASS
1067 == base_reg_class (VOIDmode, as, PLUS, SCRATCH))
1069 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1070 if (! CONSTANT_P (arg1))
1071 record_address_regs (mode, as, arg1, context, PLUS, code0, scale);
1074 /* If the second operand is a constant integer, it doesn't
1075 change what class the first operand must be. */
1076 else if (CONST_SCALAR_INT_P (arg1))
1077 record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1078 /* If the second operand is a symbolic constant, the first
1079 operand must be an index register. */
1080 else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1081 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1082 /* If both operands are registers but one is already a hard
1083 register of index or reg-base class, give the other the
1084 class that the hard register is not. */
1085 else if (code0 == REG && code1 == REG
1086 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1087 && (ok_for_base_p_nonstrict (arg0, mode, as, PLUS, REG)
1088 || ok_for_index_p_nonstrict (arg0)))
1089 record_address_regs (mode, as, arg1,
1090 ok_for_base_p_nonstrict (arg0, mode, as,
1091 PLUS, REG) ? 1 : 0,
1092 PLUS, REG, scale);
1093 else if (code0 == REG && code1 == REG
1094 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1095 && (ok_for_base_p_nonstrict (arg1, mode, as, PLUS, REG)
1096 || ok_for_index_p_nonstrict (arg1)))
1097 record_address_regs (mode, as, arg0,
1098 ok_for_base_p_nonstrict (arg1, mode, as,
1099 PLUS, REG) ? 1 : 0,
1100 PLUS, REG, scale);
1101 /* If one operand is known to be a pointer, it must be the
1102 base with the other operand the index. Likewise if the
1103 other operand is a MULT. */
1104 else if ((code0 == REG && REG_POINTER (arg0)) || code1 == MULT)
1106 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1107 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale);
1109 else if ((code1 == REG && REG_POINTER (arg1)) || code0 == MULT)
1111 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1112 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale);
1114 /* Otherwise, count equal chances that each might be a base or
1115 index register. This case should be rare. */
1116 else
1118 record_address_regs (mode, as, arg0, 0, PLUS, code1, scale / 2);
1119 record_address_regs (mode, as, arg0, 1, PLUS, code1, scale / 2);
1120 record_address_regs (mode, as, arg1, 0, PLUS, code0, scale / 2);
1121 record_address_regs (mode, as, arg1, 1, PLUS, code0, scale / 2);
1124 break;
1126 /* Double the importance of an allocno that is incremented or
1127 decremented, since it would take two extra insns if it ends
1128 up in the wrong place. */
1129 case POST_MODIFY:
1130 case PRE_MODIFY:
1131 record_address_regs (mode, as, XEXP (x, 0), 0, code,
1132 GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
1133 if (REG_P (XEXP (XEXP (x, 1), 1)))
1134 record_address_regs (mode, as, XEXP (XEXP (x, 1), 1), 1, code, REG,
1135 2 * scale);
1136 break;
1138 case POST_INC:
1139 case PRE_INC:
1140 case POST_DEC:
1141 case PRE_DEC:
1142 /* Double the importance of an allocno that is incremented or
1143 decremented, since it would take two extra insns if it ends
1144 up in the wrong place. */
1145 record_address_regs (mode, as, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
1146 break;
1148 case REG:
1150 struct costs *pp;
1151 int *pp_costs;
1152 enum reg_class i;
1153 int k, regno, add_cost;
1154 cost_classes_t cost_classes_ptr;
1155 enum reg_class *cost_classes;
1156 move_table *move_in_cost;
1158 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
1159 break;
1161 regno = REGNO (x);
1162 if (allocno_p)
1163 ALLOCNO_BAD_SPILL_P (ira_curr_regno_allocno_map[regno]) = true;
1164 pp = COSTS (costs, COST_INDEX (regno));
1165 add_cost = (ira_memory_move_cost[Pmode][rclass][1] * scale) / 2;
1166 if (INT_MAX - add_cost < pp->mem_cost)
1167 pp->mem_cost = INT_MAX;
1168 else
1169 pp->mem_cost += add_cost;
1170 cost_classes_ptr = regno_cost_classes[regno];
1171 cost_classes = cost_classes_ptr->classes;
1172 pp_costs = pp->cost;
1173 ira_init_register_move_cost_if_necessary (Pmode);
1174 move_in_cost = ira_may_move_in_cost[Pmode];
1175 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1177 i = cost_classes[k];
1178 add_cost = (move_in_cost[i][rclass] * scale) / 2;
1179 if (INT_MAX - add_cost < pp_costs[k])
1180 pp_costs[k] = INT_MAX;
1181 else
1182 pp_costs[k] += add_cost;
1185 break;
1187 default:
1189 const char *fmt = GET_RTX_FORMAT (code);
1190 int i;
1191 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1192 if (fmt[i] == 'e')
1193 record_address_regs (mode, as, XEXP (x, i), context, code, SCRATCH,
1194 scale);
1201 /* Calculate the costs of insn operands. */
1202 static void
1203 record_operand_costs (rtx insn, enum reg_class *pref)
1205 const char *constraints[MAX_RECOG_OPERANDS];
1206 enum machine_mode modes[MAX_RECOG_OPERANDS];
1207 int i;
1209 for (i = 0; i < recog_data.n_operands; i++)
1211 constraints[i] = recog_data.constraints[i];
1212 modes[i] = recog_data.operand_mode[i];
1215 /* If we get here, we are set up to record the costs of all the
1216 operands for this insn. Start by initializing the costs. Then
1217 handle any address registers. Finally record the desired classes
1218 for any allocnos, doing it twice if some pair of operands are
1219 commutative. */
1220 for (i = 0; i < recog_data.n_operands; i++)
1222 memcpy (op_costs[i], init_cost, struct_costs_size);
1224 if (GET_CODE (recog_data.operand[i]) == SUBREG)
1225 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1227 if (MEM_P (recog_data.operand[i]))
1228 record_address_regs (GET_MODE (recog_data.operand[i]),
1229 MEM_ADDR_SPACE (recog_data.operand[i]),
1230 XEXP (recog_data.operand[i], 0),
1231 0, MEM, SCRATCH, frequency * 2);
1232 else if (constraints[i][0] == 'p'
1233 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0],
1234 constraints[i]))
1235 record_address_regs (VOIDmode, ADDR_SPACE_GENERIC,
1236 recog_data.operand[i], 0, ADDRESS, SCRATCH,
1237 frequency * 2);
1240 /* Check for commutative in a separate loop so everything will have
1241 been initialized. We must do this even if one operand is a
1242 constant--see addsi3 in m68k.md. */
1243 for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1244 if (constraints[i][0] == '%')
1246 const char *xconstraints[MAX_RECOG_OPERANDS];
1247 int j;
1249 /* Handle commutative operands by swapping the constraints.
1250 We assume the modes are the same. */
1251 for (j = 0; j < recog_data.n_operands; j++)
1252 xconstraints[j] = constraints[j];
1254 xconstraints[i] = constraints[i+1];
1255 xconstraints[i+1] = constraints[i];
1256 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1257 recog_data.operand, modes,
1258 xconstraints, insn, pref);
1260 record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1261 recog_data.operand, modes,
1262 constraints, insn, pref);
1267 /* Process one insn INSN. Scan it and record each time it would save
1268 code to put a certain allocnos in a certain class. Return the last
1269 insn processed, so that the scan can be continued from there. */
1270 static rtx
1271 scan_one_insn (rtx insn)
1273 enum rtx_code pat_code;
1274 rtx set, note;
1275 int i, k;
1276 bool counted_mem;
1278 if (!NONDEBUG_INSN_P (insn))
1279 return insn;
1281 pat_code = GET_CODE (PATTERN (insn));
1282 if (pat_code == USE || pat_code == CLOBBER || pat_code == ASM_INPUT)
1283 return insn;
1285 counted_mem = false;
1286 set = single_set (insn);
1287 extract_insn (insn);
1289 /* If this insn loads a parameter from its stack slot, then it
1290 represents a savings, rather than a cost, if the parameter is
1291 stored in memory. Record this fact.
1293 Similarly if we're loading other constants from memory (constant
1294 pool, TOC references, small data areas, etc) and this is the only
1295 assignment to the destination pseudo.
1297 Don't do this if SET_SRC (set) isn't a general operand, if it is
1298 a memory requiring special instructions to load it, decreasing
1299 mem_cost might result in it being loaded using the specialized
1300 instruction into a register, then stored into stack and loaded
1301 again from the stack. See PR52208.
1303 Don't do this if SET_SRC (set) has side effect. See PR56124. */
1304 if (set != 0 && REG_P (SET_DEST (set)) && MEM_P (SET_SRC (set))
1305 && (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL_RTX
1306 && ((MEM_P (XEXP (note, 0))
1307 && !side_effects_p (SET_SRC (set)))
1308 || (CONSTANT_P (XEXP (note, 0))
1309 && targetm.legitimate_constant_p (GET_MODE (SET_DEST (set)),
1310 XEXP (note, 0))
1311 && REG_N_SETS (REGNO (SET_DEST (set))) == 1))
1312 && general_operand (SET_SRC (set), GET_MODE (SET_SRC (set))))
1314 enum reg_class cl = GENERAL_REGS;
1315 rtx reg = SET_DEST (set);
1316 int num = COST_INDEX (REGNO (reg));
1318 COSTS (costs, num)->mem_cost
1319 -= ira_memory_move_cost[GET_MODE (reg)][cl][1] * frequency;
1320 record_address_regs (GET_MODE (SET_SRC (set)),
1321 MEM_ADDR_SPACE (SET_SRC (set)),
1322 XEXP (SET_SRC (set), 0), 0, MEM, SCRATCH,
1323 frequency * 2);
1324 counted_mem = true;
1327 record_operand_costs (insn, pref);
1329 /* Now add the cost for each operand to the total costs for its
1330 allocno. */
1331 for (i = 0; i < recog_data.n_operands; i++)
1332 if (REG_P (recog_data.operand[i])
1333 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER)
1335 int regno = REGNO (recog_data.operand[i]);
1336 struct costs *p = COSTS (costs, COST_INDEX (regno));
1337 struct costs *q = op_costs[i];
1338 int *p_costs = p->cost, *q_costs = q->cost;
1339 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1340 int add_cost;
1342 /* If the already accounted for the memory "cost" above, don't
1343 do so again. */
1344 if (!counted_mem)
1346 add_cost = q->mem_cost;
1347 if (add_cost > 0 && INT_MAX - add_cost < p->mem_cost)
1348 p->mem_cost = INT_MAX;
1349 else
1350 p->mem_cost += add_cost;
1352 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1354 add_cost = q_costs[k];
1355 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1356 p_costs[k] = INT_MAX;
1357 else
1358 p_costs[k] += add_cost;
1362 return insn;
1367 /* Print allocnos costs to file F. */
1368 static void
1369 print_allocno_costs (FILE *f)
1371 int k;
1372 ira_allocno_t a;
1373 ira_allocno_iterator ai;
1375 ira_assert (allocno_p);
1376 fprintf (f, "\n");
1377 FOR_EACH_ALLOCNO (a, ai)
1379 int i, rclass;
1380 basic_block bb;
1381 int regno = ALLOCNO_REGNO (a);
1382 cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1383 enum reg_class *cost_classes = cost_classes_ptr->classes;
1385 i = ALLOCNO_NUM (a);
1386 fprintf (f, " a%d(r%d,", i, regno);
1387 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1388 fprintf (f, "b%d", bb->index);
1389 else
1390 fprintf (f, "l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1391 fprintf (f, ") costs:");
1392 for (k = 0; k < cost_classes_ptr->num; k++)
1394 rclass = cost_classes[k];
1395 if (contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (regno)]
1396 #ifdef CANNOT_CHANGE_MODE_CLASS
1397 && ! invalid_mode_change_p (regno, (enum reg_class) rclass)
1398 #endif
1401 fprintf (f, " %s:%d", reg_class_names[rclass],
1402 COSTS (costs, i)->cost[k]);
1403 if (flag_ira_region == IRA_REGION_ALL
1404 || flag_ira_region == IRA_REGION_MIXED)
1405 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->cost[k]);
1408 fprintf (f, " MEM:%i", COSTS (costs, i)->mem_cost);
1409 if (flag_ira_region == IRA_REGION_ALL
1410 || flag_ira_region == IRA_REGION_MIXED)
1411 fprintf (f, ",%d", COSTS (total_allocno_costs, i)->mem_cost);
1412 fprintf (f, "\n");
1416 /* Print pseudo costs to file F. */
1417 static void
1418 print_pseudo_costs (FILE *f)
1420 int regno, k;
1421 int rclass;
1422 cost_classes_t cost_classes_ptr;
1423 enum reg_class *cost_classes;
1425 ira_assert (! allocno_p);
1426 fprintf (f, "\n");
1427 for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
1429 if (REG_N_REFS (regno) <= 0)
1430 continue;
1431 cost_classes_ptr = regno_cost_classes[regno];
1432 cost_classes = cost_classes_ptr->classes;
1433 fprintf (f, " r%d costs:", regno);
1434 for (k = 0; k < cost_classes_ptr->num; k++)
1436 rclass = cost_classes[k];
1437 if (contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (regno)]
1438 #ifdef CANNOT_CHANGE_MODE_CLASS
1439 && ! invalid_mode_change_p (regno, (enum reg_class) rclass)
1440 #endif
1442 fprintf (f, " %s:%d", reg_class_names[rclass],
1443 COSTS (costs, regno)->cost[k]);
1445 fprintf (f, " MEM:%i\n", COSTS (costs, regno)->mem_cost);
1449 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1450 costs. */
1451 static void
1452 process_bb_for_costs (basic_block bb)
1454 rtx insn;
1456 frequency = REG_FREQ_FROM_BB (bb);
1457 if (frequency == 0)
1458 frequency = 1;
1459 FOR_BB_INSNS (bb, insn)
1460 insn = scan_one_insn (insn);
1463 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1464 costs. */
1465 static void
1466 process_bb_node_for_costs (ira_loop_tree_node_t loop_tree_node)
1468 basic_block bb;
1470 bb = loop_tree_node->bb;
1471 if (bb != NULL)
1472 process_bb_for_costs (bb);
1475 /* Find costs of register classes and memory for allocnos or pseudos
1476 and their best costs. Set up preferred, alternative and allocno
1477 classes for pseudos. */
1478 static void
1479 find_costs_and_classes (FILE *dump_file)
1481 int i, k, start, max_cost_classes_num;
1482 int pass;
1483 basic_block bb;
1484 enum reg_class *regno_best_class;
1486 init_recog ();
1487 regno_best_class
1488 = (enum reg_class *) ira_allocate (max_reg_num ()
1489 * sizeof (enum reg_class));
1490 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1491 regno_best_class[i] = NO_REGS;
1492 if (!resize_reg_info () && allocno_p
1493 && pseudo_classes_defined_p && flag_expensive_optimizations)
1495 ira_allocno_t a;
1496 ira_allocno_iterator ai;
1498 pref = pref_buffer;
1499 max_cost_classes_num = 1;
1500 FOR_EACH_ALLOCNO (a, ai)
1502 pref[ALLOCNO_NUM (a)] = reg_preferred_class (ALLOCNO_REGNO (a));
1503 setup_regno_cost_classes_by_aclass
1504 (ALLOCNO_REGNO (a), pref[ALLOCNO_NUM (a)]);
1505 max_cost_classes_num
1506 = MAX (max_cost_classes_num,
1507 regno_cost_classes[ALLOCNO_REGNO (a)]->num);
1509 start = 1;
1511 else
1513 pref = NULL;
1514 max_cost_classes_num = ira_important_classes_num;
1515 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1516 if (regno_reg_rtx[i] != NULL_RTX)
1517 setup_regno_cost_classes_by_mode (i, PSEUDO_REGNO_MODE (i));
1518 else
1519 setup_regno_cost_classes_by_aclass (i, ALL_REGS);
1520 start = 0;
1522 if (allocno_p)
1523 /* Clear the flag for the next compiled function. */
1524 pseudo_classes_defined_p = false;
1525 /* Normally we scan the insns once and determine the best class to
1526 use for each allocno. However, if -fexpensive-optimizations are
1527 on, we do so twice, the second time using the tentative best
1528 classes to guide the selection. */
1529 for (pass = start; pass <= flag_expensive_optimizations; pass++)
1531 if ((!allocno_p || internal_flag_ira_verbose > 0) && dump_file)
1532 fprintf (dump_file,
1533 "\nPass %i for finding pseudo/allocno costs\n\n", pass);
1535 if (pass != start)
1537 max_cost_classes_num = 1;
1538 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1540 setup_regno_cost_classes_by_aclass (i, regno_best_class[i]);
1541 max_cost_classes_num
1542 = MAX (max_cost_classes_num, regno_cost_classes[i]->num);
1546 struct_costs_size
1547 = sizeof (struct costs) + sizeof (int) * (max_cost_classes_num - 1);
1548 /* Zero out our accumulation of the cost of each class for each
1549 allocno. */
1550 memset (costs, 0, cost_elements_num * struct_costs_size);
1552 if (allocno_p)
1554 /* Scan the instructions and record each time it would save code
1555 to put a certain allocno in a certain class. */
1556 ira_traverse_loop_tree (true, ira_loop_tree_root,
1557 process_bb_node_for_costs, NULL);
1559 memcpy (total_allocno_costs, costs,
1560 max_struct_costs_size * ira_allocnos_num);
1562 else
1564 basic_block bb;
1566 FOR_EACH_BB (bb)
1567 process_bb_for_costs (bb);
1570 if (pass == 0)
1571 pref = pref_buffer;
1573 /* Now for each allocno look at how desirable each class is and
1574 find which class is preferred. */
1575 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1577 ira_allocno_t a, parent_a;
1578 int rclass, a_num, parent_a_num, add_cost;
1579 ira_loop_tree_node_t parent;
1580 int best_cost, allocno_cost;
1581 enum reg_class best, alt_class;
1582 cost_classes_t cost_classes_ptr = regno_cost_classes[i];
1583 enum reg_class *cost_classes = cost_classes_ptr->classes;
1584 int *i_costs = temp_costs->cost;
1585 int i_mem_cost;
1586 int equiv_savings = regno_equiv_gains[i];
1588 if (! allocno_p)
1590 if (regno_reg_rtx[i] == NULL_RTX)
1591 continue;
1592 memcpy (temp_costs, COSTS (costs, i), struct_costs_size);
1593 i_mem_cost = temp_costs->mem_cost;
1595 else
1597 if (ira_regno_allocno_map[i] == NULL)
1598 continue;
1599 memset (temp_costs, 0, struct_costs_size);
1600 i_mem_cost = 0;
1601 /* Find cost of all allocnos with the same regno. */
1602 for (a = ira_regno_allocno_map[i];
1603 a != NULL;
1604 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1606 int *a_costs, *p_costs;
1608 a_num = ALLOCNO_NUM (a);
1609 if ((flag_ira_region == IRA_REGION_ALL
1610 || flag_ira_region == IRA_REGION_MIXED)
1611 && (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
1612 && (parent_a = parent->regno_allocno_map[i]) != NULL
1613 /* There are no caps yet. */
1614 && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE
1615 (a)->border_allocnos,
1616 ALLOCNO_NUM (a)))
1618 /* Propagate costs to upper levels in the region
1619 tree. */
1620 parent_a_num = ALLOCNO_NUM (parent_a);
1621 a_costs = COSTS (total_allocno_costs, a_num)->cost;
1622 p_costs = COSTS (total_allocno_costs, parent_a_num)->cost;
1623 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1625 add_cost = a_costs[k];
1626 if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1627 p_costs[k] = INT_MAX;
1628 else
1629 p_costs[k] += add_cost;
1631 add_cost = COSTS (total_allocno_costs, a_num)->mem_cost;
1632 if (add_cost > 0
1633 && (INT_MAX - add_cost
1634 < COSTS (total_allocno_costs,
1635 parent_a_num)->mem_cost))
1636 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1637 = INT_MAX;
1638 else
1639 COSTS (total_allocno_costs, parent_a_num)->mem_cost
1640 += add_cost;
1642 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1643 COSTS (total_allocno_costs, parent_a_num)->mem_cost = 0;
1645 a_costs = COSTS (costs, a_num)->cost;
1646 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1648 add_cost = a_costs[k];
1649 if (add_cost > 0 && INT_MAX - add_cost < i_costs[k])
1650 i_costs[k] = INT_MAX;
1651 else
1652 i_costs[k] += add_cost;
1654 add_cost = COSTS (costs, a_num)->mem_cost;
1655 if (add_cost > 0 && INT_MAX - add_cost < i_mem_cost)
1656 i_mem_cost = INT_MAX;
1657 else
1658 i_mem_cost += add_cost;
1661 if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1662 i_mem_cost = 0;
1663 else if (equiv_savings < 0)
1664 i_mem_cost = -equiv_savings;
1665 else if (equiv_savings > 0)
1667 i_mem_cost = 0;
1668 for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1669 i_costs[k] += equiv_savings;
1672 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1673 best = ALL_REGS;
1674 alt_class = NO_REGS;
1675 /* Find best common class for all allocnos with the same
1676 regno. */
1677 for (k = 0; k < cost_classes_ptr->num; k++)
1679 rclass = cost_classes[k];
1680 /* Ignore classes that are too small or invalid for this
1681 operand. */
1682 if (! contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (i)]
1683 #ifdef CANNOT_CHANGE_MODE_CLASS
1684 || invalid_mode_change_p (i, (enum reg_class) rclass)
1685 #endif
1687 continue;
1688 if (i_costs[k] < best_cost)
1690 best_cost = i_costs[k];
1691 best = (enum reg_class) rclass;
1693 else if (i_costs[k] == best_cost)
1694 best = ira_reg_class_subunion[best][rclass];
1695 if (pass == flag_expensive_optimizations
1696 /* We still prefer registers to memory even at this
1697 stage if their costs are the same. We will make
1698 a final decision during assigning hard registers
1699 when we have all info including more accurate
1700 costs which might be affected by assigning hard
1701 registers to other pseudos because the pseudos
1702 involved in moves can be coalesced. */
1703 && i_costs[k] <= i_mem_cost
1704 && (reg_class_size[reg_class_subunion[alt_class][rclass]]
1705 > reg_class_size[alt_class]))
1706 alt_class = reg_class_subunion[alt_class][rclass];
1708 alt_class = ira_allocno_class_translate[alt_class];
1709 if (best_cost > i_mem_cost)
1710 regno_aclass[i] = NO_REGS;
1711 else
1713 /* Make the common class the biggest class of best and
1714 alt_class. */
1715 regno_aclass[i]
1716 = ira_reg_class_superunion[best][alt_class];
1717 ira_assert (regno_aclass[i] != NO_REGS
1718 && ira_reg_allocno_class_p[regno_aclass[i]]);
1720 if (pass == flag_expensive_optimizations)
1722 if (best_cost > i_mem_cost)
1723 best = alt_class = NO_REGS;
1724 else if (best == alt_class)
1725 alt_class = NO_REGS;
1726 setup_reg_classes (i, best, alt_class, regno_aclass[i]);
1727 if ((!allocno_p || internal_flag_ira_verbose > 2)
1728 && dump_file != NULL)
1729 fprintf (dump_file,
1730 " r%d: preferred %s, alternative %s, allocno %s\n",
1731 i, reg_class_names[best], reg_class_names[alt_class],
1732 reg_class_names[regno_aclass[i]]);
1734 regno_best_class[i] = best;
1735 if (! allocno_p)
1737 pref[i] = best_cost > i_mem_cost ? NO_REGS : best;
1738 continue;
1740 for (a = ira_regno_allocno_map[i];
1741 a != NULL;
1742 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1744 a_num = ALLOCNO_NUM (a);
1745 if (regno_aclass[i] == NO_REGS)
1746 best = NO_REGS;
1747 else
1749 int *total_a_costs = COSTS (total_allocno_costs, a_num)->cost;
1750 int *a_costs = COSTS (costs, a_num)->cost;
1752 /* Finding best class which is subset of the common
1753 class. */
1754 best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1755 allocno_cost = best_cost;
1756 best = ALL_REGS;
1757 for (k = 0; k < cost_classes_ptr->num; k++)
1759 rclass = cost_classes[k];
1760 if (! ira_class_subset_p[rclass][regno_aclass[i]])
1761 continue;
1762 /* Ignore classes that are too small or invalid
1763 for this operand. */
1764 if (! contains_reg_of_mode[rclass][PSEUDO_REGNO_MODE (i)]
1765 #ifdef CANNOT_CHANGE_MODE_CLASS
1766 || invalid_mode_change_p (i, (enum reg_class) rclass)
1767 #endif
1770 else if (total_a_costs[k] < best_cost)
1772 best_cost = total_a_costs[k];
1773 allocno_cost = a_costs[k];
1774 best = (enum reg_class) rclass;
1776 else if (total_a_costs[k] == best_cost)
1778 best = ira_reg_class_subunion[best][rclass];
1779 allocno_cost = MAX (allocno_cost, a_costs[k]);
1782 ALLOCNO_CLASS_COST (a) = allocno_cost;
1784 if (internal_flag_ira_verbose > 2 && dump_file != NULL
1785 && (pass == 0 || pref[a_num] != best))
1787 fprintf (dump_file, " a%d (r%d,", a_num, i);
1788 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1789 fprintf (dump_file, "b%d", bb->index);
1790 else
1791 fprintf (dump_file, "l%d",
1792 ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1793 fprintf (dump_file, ") best %s, allocno %s\n",
1794 reg_class_names[best],
1795 reg_class_names[regno_aclass[i]]);
1797 pref[a_num] = best;
1801 if (internal_flag_ira_verbose > 4 && dump_file)
1803 if (allocno_p)
1804 print_allocno_costs (dump_file);
1805 else
1806 print_pseudo_costs (dump_file);
1807 fprintf (dump_file,"\n");
1810 ira_free (regno_best_class);
1815 /* Process moves involving hard regs to modify allocno hard register
1816 costs. We can do this only after determining allocno class. If a
1817 hard register forms a register class, than moves with the hard
1818 register are already taken into account in class costs for the
1819 allocno. */
1820 static void
1821 process_bb_node_for_hard_reg_moves (ira_loop_tree_node_t loop_tree_node)
1823 int i, freq, cost, src_regno, dst_regno, hard_regno;
1824 bool to_p;
1825 ira_allocno_t a;
1826 enum reg_class rclass, hard_reg_class;
1827 enum machine_mode mode;
1828 basic_block bb;
1829 rtx insn, set, src, dst;
1831 bb = loop_tree_node->bb;
1832 if (bb == NULL)
1833 return;
1834 freq = REG_FREQ_FROM_BB (bb);
1835 if (freq == 0)
1836 freq = 1;
1837 FOR_BB_INSNS (bb, insn)
1839 if (!NONDEBUG_INSN_P (insn))
1840 continue;
1841 set = single_set (insn);
1842 if (set == NULL_RTX)
1843 continue;
1844 dst = SET_DEST (set);
1845 src = SET_SRC (set);
1846 if (! REG_P (dst) || ! REG_P (src))
1847 continue;
1848 dst_regno = REGNO (dst);
1849 src_regno = REGNO (src);
1850 if (dst_regno >= FIRST_PSEUDO_REGISTER
1851 && src_regno < FIRST_PSEUDO_REGISTER)
1853 hard_regno = src_regno;
1854 to_p = true;
1855 a = ira_curr_regno_allocno_map[dst_regno];
1857 else if (src_regno >= FIRST_PSEUDO_REGISTER
1858 && dst_regno < FIRST_PSEUDO_REGISTER)
1860 hard_regno = dst_regno;
1861 to_p = false;
1862 a = ira_curr_regno_allocno_map[src_regno];
1864 else
1865 continue;
1866 rclass = ALLOCNO_CLASS (a);
1867 if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], hard_regno))
1868 continue;
1869 i = ira_class_hard_reg_index[rclass][hard_regno];
1870 if (i < 0)
1871 continue;
1872 mode = ALLOCNO_MODE (a);
1873 hard_reg_class = REGNO_REG_CLASS (hard_regno);
1874 ira_init_register_move_cost_if_necessary (mode);
1875 cost
1876 = (to_p ? ira_register_move_cost[mode][hard_reg_class][rclass]
1877 : ira_register_move_cost[mode][rclass][hard_reg_class]) * freq;
1878 ira_allocate_and_set_costs (&ALLOCNO_HARD_REG_COSTS (a), rclass,
1879 ALLOCNO_CLASS_COST (a));
1880 ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
1881 rclass, 0);
1882 ALLOCNO_HARD_REG_COSTS (a)[i] -= cost;
1883 ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[i] -= cost;
1884 ALLOCNO_CLASS_COST (a) = MIN (ALLOCNO_CLASS_COST (a),
1885 ALLOCNO_HARD_REG_COSTS (a)[i]);
1889 /* After we find hard register and memory costs for allocnos, define
1890 its class and modify hard register cost because insns moving
1891 allocno to/from hard registers. */
1892 static void
1893 setup_allocno_class_and_costs (void)
1895 int i, j, n, regno, hard_regno, num;
1896 int *reg_costs;
1897 enum reg_class aclass, rclass;
1898 ira_allocno_t a;
1899 ira_allocno_iterator ai;
1900 cost_classes_t cost_classes_ptr;
1902 ira_assert (allocno_p);
1903 FOR_EACH_ALLOCNO (a, ai)
1905 i = ALLOCNO_NUM (a);
1906 regno = ALLOCNO_REGNO (a);
1907 aclass = regno_aclass[regno];
1908 cost_classes_ptr = regno_cost_classes[regno];
1909 ira_assert (pref[i] == NO_REGS || aclass != NO_REGS);
1910 ALLOCNO_MEMORY_COST (a) = COSTS (costs, i)->mem_cost;
1911 ira_set_allocno_class (a, aclass);
1912 if (aclass == NO_REGS)
1913 continue;
1914 if (optimize && ALLOCNO_CLASS (a) != pref[i])
1916 n = ira_class_hard_regs_num[aclass];
1917 ALLOCNO_HARD_REG_COSTS (a)
1918 = reg_costs = ira_allocate_cost_vector (aclass);
1919 for (j = n - 1; j >= 0; j--)
1921 hard_regno = ira_class_hard_regs[aclass][j];
1922 if (TEST_HARD_REG_BIT (reg_class_contents[pref[i]], hard_regno))
1923 reg_costs[j] = ALLOCNO_CLASS_COST (a);
1924 else
1926 rclass = REGNO_REG_CLASS (hard_regno);
1927 num = cost_classes_ptr->index[rclass];
1928 if (num < 0)
1930 num = cost_classes_ptr->hard_regno_index[hard_regno];
1931 ira_assert (num >= 0);
1933 reg_costs[j] = COSTS (costs, i)->cost[num];
1938 if (optimize)
1939 ira_traverse_loop_tree (true, ira_loop_tree_root,
1940 process_bb_node_for_hard_reg_moves, NULL);
1945 /* Function called once during compiler work. */
1946 void
1947 ira_init_costs_once (void)
1949 int i;
1951 init_cost = NULL;
1952 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
1954 op_costs[i] = NULL;
1955 this_op_costs[i] = NULL;
1957 temp_costs = NULL;
1960 /* Free allocated temporary cost vectors. */
1961 static void
1962 free_ira_costs (void)
1964 int i;
1966 free (init_cost);
1967 init_cost = NULL;
1968 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
1970 free (op_costs[i]);
1971 free (this_op_costs[i]);
1972 op_costs[i] = this_op_costs[i] = NULL;
1974 free (temp_costs);
1975 temp_costs = NULL;
1978 /* This is called each time register related information is
1979 changed. */
1980 void
1981 ira_init_costs (void)
1983 int i;
1985 free_ira_costs ();
1986 max_struct_costs_size
1987 = sizeof (struct costs) + sizeof (int) * (ira_important_classes_num - 1);
1988 /* Don't use ira_allocate because vectors live through several IRA
1989 calls. */
1990 init_cost = (struct costs *) xmalloc (max_struct_costs_size);
1991 init_cost->mem_cost = 1000000;
1992 for (i = 0; i < ira_important_classes_num; i++)
1993 init_cost->cost[i] = 1000000;
1994 for (i = 0; i < MAX_RECOG_OPERANDS; i++)
1996 op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
1997 this_op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
1999 temp_costs = (struct costs *) xmalloc (max_struct_costs_size);
2002 /* Function called once at the end of compiler work. */
2003 void
2004 ira_finish_costs_once (void)
2006 free_ira_costs ();
2011 /* Common initialization function for ira_costs and
2012 ira_set_pseudo_classes. */
2013 static void
2014 init_costs (void)
2016 init_subregs_of_mode ();
2017 costs = (struct costs *) ira_allocate (max_struct_costs_size
2018 * cost_elements_num);
2019 pref_buffer = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2020 * cost_elements_num);
2021 regno_aclass = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2022 * max_reg_num ());
2023 regno_equiv_gains = (int *) ira_allocate (sizeof (int) * max_reg_num ());
2024 memset (regno_equiv_gains, 0, sizeof (int) * max_reg_num ());
2027 /* Common finalization function for ira_costs and
2028 ira_set_pseudo_classes. */
2029 static void
2030 finish_costs (void)
2032 finish_subregs_of_mode ();
2033 ira_free (regno_equiv_gains);
2034 ira_free (regno_aclass);
2035 ira_free (pref_buffer);
2036 ira_free (costs);
2039 /* Entry function which defines register class, memory and hard
2040 register costs for each allocno. */
2041 void
2042 ira_costs (void)
2044 allocno_p = true;
2045 cost_elements_num = ira_allocnos_num;
2046 init_costs ();
2047 total_allocno_costs = (struct costs *) ira_allocate (max_struct_costs_size
2048 * ira_allocnos_num);
2049 initiate_regno_cost_classes ();
2050 calculate_elim_costs_all_insns ();
2051 find_costs_and_classes (ira_dump_file);
2052 setup_allocno_class_and_costs ();
2053 finish_regno_cost_classes ();
2054 finish_costs ();
2055 ira_free (total_allocno_costs);
2058 /* Entry function which defines classes for pseudos.
2059 Set pseudo_classes_defined_p only if DEFINE_PSEUDO_CLASSES is true. */
2060 void
2061 ira_set_pseudo_classes (bool define_pseudo_classes, FILE *dump_file)
2063 allocno_p = false;
2064 internal_flag_ira_verbose = flag_ira_verbose;
2065 cost_elements_num = max_reg_num ();
2066 init_costs ();
2067 initiate_regno_cost_classes ();
2068 find_costs_and_classes (dump_file);
2069 finish_regno_cost_classes ();
2070 if (define_pseudo_classes)
2071 pseudo_classes_defined_p = true;
2073 finish_costs ();
2078 /* Change hard register costs for allocnos which lives through
2079 function calls. This is called only when we found all intersected
2080 calls during building allocno live ranges. */
2081 void
2082 ira_tune_allocno_costs (void)
2084 int j, n, regno;
2085 int cost, min_cost, *reg_costs;
2086 enum reg_class aclass, rclass;
2087 enum machine_mode mode;
2088 ira_allocno_t a;
2089 ira_allocno_iterator ai;
2090 ira_allocno_object_iterator oi;
2091 ira_object_t obj;
2092 bool skip_p;
2094 FOR_EACH_ALLOCNO (a, ai)
2096 aclass = ALLOCNO_CLASS (a);
2097 if (aclass == NO_REGS)
2098 continue;
2099 mode = ALLOCNO_MODE (a);
2100 n = ira_class_hard_regs_num[aclass];
2101 min_cost = INT_MAX;
2102 if (ALLOCNO_CALLS_CROSSED_NUM (a)
2103 != ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2105 ira_allocate_and_set_costs
2106 (&ALLOCNO_HARD_REG_COSTS (a), aclass,
2107 ALLOCNO_CLASS_COST (a));
2108 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2109 for (j = n - 1; j >= 0; j--)
2111 regno = ira_class_hard_regs[aclass][j];
2112 skip_p = false;
2113 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
2115 if (ira_hard_reg_set_intersection_p (regno, mode,
2116 OBJECT_CONFLICT_HARD_REGS
2117 (obj)))
2119 skip_p = true;
2120 break;
2123 if (skip_p)
2124 continue;
2125 rclass = REGNO_REG_CLASS (regno);
2126 cost = 0;
2127 if (ira_hard_reg_set_intersection_p (regno, mode, call_used_reg_set)
2128 || HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
2129 cost += (ALLOCNO_CALL_FREQ (a)
2130 * (ira_memory_move_cost[mode][rclass][0]
2131 + ira_memory_move_cost[mode][rclass][1]));
2132 #ifdef IRA_HARD_REGNO_ADD_COST_MULTIPLIER
2133 cost += ((ira_memory_move_cost[mode][rclass][0]
2134 + ira_memory_move_cost[mode][rclass][1])
2135 * ALLOCNO_FREQ (a)
2136 * IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno) / 2);
2137 #endif
2138 if (INT_MAX - cost < reg_costs[j])
2139 reg_costs[j] = INT_MAX;
2140 else
2141 reg_costs[j] += cost;
2142 if (min_cost > reg_costs[j])
2143 min_cost = reg_costs[j];
2146 if (min_cost != INT_MAX)
2147 ALLOCNO_CLASS_COST (a) = min_cost;
2149 /* Some targets allow pseudos to be allocated to unaligned sequences
2150 of hard registers. However, selecting an unaligned sequence can
2151 unnecessarily restrict later allocations. So increase the cost of
2152 unaligned hard regs to encourage the use of aligned hard regs. */
2154 const int nregs = ira_reg_class_max_nregs[aclass][ALLOCNO_MODE (a)];
2156 if (nregs > 1)
2158 ira_allocate_and_set_costs
2159 (&ALLOCNO_HARD_REG_COSTS (a), aclass, ALLOCNO_CLASS_COST (a));
2160 reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2161 for (j = n - 1; j >= 0; j--)
2163 regno = ira_non_ordered_class_hard_regs[aclass][j];
2164 if ((regno % nregs) != 0)
2166 int index = ira_class_hard_reg_index[aclass][regno];
2167 ira_assert (index != -1);
2168 reg_costs[index] += ALLOCNO_FREQ (a);
2176 /* Add COST to the estimated gain for eliminating REGNO with its
2177 equivalence. If COST is zero, record that no such elimination is
2178 possible. */
2180 void
2181 ira_adjust_equiv_reg_cost (unsigned regno, int cost)
2183 if (cost == 0)
2184 regno_equiv_gains[regno] = 0;
2185 else
2186 regno_equiv_gains[regno] += cost;