Merge trunk version 204345 into gupc branch.
[official-gcc.git] / gcc / function.c
blobba6f107de7001fb363374efd87c15ec97e8bccda
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl-error.h"
39 #include "tree.h"
40 #include "flags.h"
41 #include "except.h"
42 #include "function.h"
43 #include "expr.h"
44 #include "optabs.h"
45 #include "libfuncs.h"
46 #include "regs.h"
47 #include "hard-reg-set.h"
48 #include "insn-config.h"
49 #include "recog.h"
50 #include "output.h"
51 #include "basic-block.h"
52 #include "hashtab.h"
53 #include "ggc.h"
54 #include "tm_p.h"
55 #include "langhooks.h"
56 #include "target.h"
57 #include "common/common-target.h"
58 #include "gimple.h"
59 #include "tree-pass.h"
60 #include "predict.h"
61 #include "df.h"
62 #include "params.h"
63 #include "bb-reorder.h"
65 /* So we can assign to cfun in this file. */
66 #undef cfun
68 #ifndef STACK_ALIGNMENT_NEEDED
69 #define STACK_ALIGNMENT_NEEDED 1
70 #endif
72 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
74 /* Some systems use __main in a way incompatible with its use in gcc, in these
75 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
76 give the same symbol without quotes for an alternative entry point. You
77 must define both, or neither. */
78 #ifndef NAME__MAIN
79 #define NAME__MAIN "__main"
80 #endif
82 /* Round a value to the lowest integer less than it that is a multiple of
83 the required alignment. Avoid using division in case the value is
84 negative. Assume the alignment is a power of two. */
85 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
87 /* Similar, but round to the next highest integer that meets the
88 alignment. */
89 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
91 /* Nonzero once virtual register instantiation has been done.
92 assign_stack_local uses frame_pointer_rtx when this is nonzero.
93 calls.c:emit_library_call_value_1 uses it to set up
94 post-instantiation libcalls. */
95 int virtuals_instantiated;
97 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
98 static GTY(()) int funcdef_no;
100 /* These variables hold pointers to functions to create and destroy
101 target specific, per-function data structures. */
102 struct machine_function * (*init_machine_status) (void);
104 /* The currently compiled function. */
105 struct function *cfun = 0;
107 /* These hashes record the prologue and epilogue insns. */
108 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
109 htab_t prologue_insn_hash;
110 static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
111 htab_t epilogue_insn_hash;
114 htab_t types_used_by_vars_hash = NULL;
115 vec<tree, va_gc> *types_used_by_cur_var_decl;
117 /* Forward declarations. */
119 static struct temp_slot *find_temp_slot_from_address (rtx);
120 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
121 static void pad_below (struct args_size *, enum machine_mode, tree);
122 static void reorder_blocks_1 (rtx, tree, vec<tree> *);
123 static int all_blocks (tree, tree *);
124 static tree *get_block_vector (tree, int *);
125 extern tree debug_find_var_in_block_tree (tree, tree);
126 /* We always define `record_insns' even if it's not used so that we
127 can always export `prologue_epilogue_contains'. */
128 static void record_insns (rtx, rtx, htab_t *) ATTRIBUTE_UNUSED;
129 static bool contains (const_rtx, htab_t);
130 static void prepare_function_start (void);
131 static void do_clobber_return_reg (rtx, void *);
132 static void do_use_return_reg (rtx, void *);
133 static void set_insn_locations (rtx, int) ATTRIBUTE_UNUSED;
135 /* Stack of nested functions. */
136 /* Keep track of the cfun stack. */
138 typedef struct function *function_p;
140 static vec<function_p> function_context_stack;
142 /* Save the current context for compilation of a nested function.
143 This is called from language-specific code. */
145 void
146 push_function_context (void)
148 if (cfun == 0)
149 allocate_struct_function (NULL, false);
151 function_context_stack.safe_push (cfun);
152 set_cfun (NULL);
155 /* Restore the last saved context, at the end of a nested function.
156 This function is called from language-specific code. */
158 void
159 pop_function_context (void)
161 struct function *p = function_context_stack.pop ();
162 set_cfun (p);
163 current_function_decl = p->decl;
165 /* Reset variables that have known state during rtx generation. */
166 virtuals_instantiated = 0;
167 generating_concat_p = 1;
170 /* Clear out all parts of the state in F that can safely be discarded
171 after the function has been parsed, but not compiled, to let
172 garbage collection reclaim the memory. */
174 void
175 free_after_parsing (struct function *f)
177 f->language = 0;
180 /* Clear out all parts of the state in F that can safely be discarded
181 after the function has been compiled, to let garbage collection
182 reclaim the memory. */
184 void
185 free_after_compilation (struct function *f)
187 prologue_insn_hash = NULL;
188 epilogue_insn_hash = NULL;
190 free (crtl->emit.regno_pointer_align);
192 memset (crtl, 0, sizeof (struct rtl_data));
193 f->eh = NULL;
194 f->machine = NULL;
195 f->cfg = NULL;
197 regno_reg_rtx = NULL;
200 /* Return size needed for stack frame based on slots so far allocated.
201 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
202 the caller may have to do that. */
204 HOST_WIDE_INT
205 get_frame_size (void)
207 if (FRAME_GROWS_DOWNWARD)
208 return -frame_offset;
209 else
210 return frame_offset;
213 /* Issue an error message and return TRUE if frame OFFSET overflows in
214 the signed target pointer arithmetics for function FUNC. Otherwise
215 return FALSE. */
217 bool
218 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
220 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
222 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
223 /* Leave room for the fixed part of the frame. */
224 - 64 * UNITS_PER_WORD)
226 error_at (DECL_SOURCE_LOCATION (func),
227 "total size of local objects too large");
228 return TRUE;
231 return FALSE;
234 /* Return stack slot alignment in bits for TYPE and MODE. */
236 static unsigned int
237 get_stack_local_alignment (tree type, enum machine_mode mode)
239 unsigned int alignment;
241 if (mode == BLKmode)
242 alignment = BIGGEST_ALIGNMENT;
243 else
244 alignment = GET_MODE_ALIGNMENT (mode);
246 /* Allow the frond-end to (possibly) increase the alignment of this
247 stack slot. */
248 if (! type)
249 type = lang_hooks.types.type_for_mode (mode, 0);
251 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
254 /* Determine whether it is possible to fit a stack slot of size SIZE and
255 alignment ALIGNMENT into an area in the stack frame that starts at
256 frame offset START and has a length of LENGTH. If so, store the frame
257 offset to be used for the stack slot in *POFFSET and return true;
258 return false otherwise. This function will extend the frame size when
259 given a start/length pair that lies at the end of the frame. */
261 static bool
262 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
263 HOST_WIDE_INT size, unsigned int alignment,
264 HOST_WIDE_INT *poffset)
266 HOST_WIDE_INT this_frame_offset;
267 int frame_off, frame_alignment, frame_phase;
269 /* Calculate how many bytes the start of local variables is off from
270 stack alignment. */
271 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
272 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
273 frame_phase = frame_off ? frame_alignment - frame_off : 0;
275 /* Round the frame offset to the specified alignment. */
277 /* We must be careful here, since FRAME_OFFSET might be negative and
278 division with a negative dividend isn't as well defined as we might
279 like. So we instead assume that ALIGNMENT is a power of two and
280 use logical operations which are unambiguous. */
281 if (FRAME_GROWS_DOWNWARD)
282 this_frame_offset
283 = (FLOOR_ROUND (start + length - size - frame_phase,
284 (unsigned HOST_WIDE_INT) alignment)
285 + frame_phase);
286 else
287 this_frame_offset
288 = (CEIL_ROUND (start - frame_phase,
289 (unsigned HOST_WIDE_INT) alignment)
290 + frame_phase);
292 /* See if it fits. If this space is at the edge of the frame,
293 consider extending the frame to make it fit. Our caller relies on
294 this when allocating a new slot. */
295 if (frame_offset == start && this_frame_offset < frame_offset)
296 frame_offset = this_frame_offset;
297 else if (this_frame_offset < start)
298 return false;
299 else if (start + length == frame_offset
300 && this_frame_offset + size > start + length)
301 frame_offset = this_frame_offset + size;
302 else if (this_frame_offset + size > start + length)
303 return false;
305 *poffset = this_frame_offset;
306 return true;
309 /* Create a new frame_space structure describing free space in the stack
310 frame beginning at START and ending at END, and chain it into the
311 function's frame_space_list. */
313 static void
314 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
316 struct frame_space *space = ggc_alloc_frame_space ();
317 space->next = crtl->frame_space_list;
318 crtl->frame_space_list = space;
319 space->start = start;
320 space->length = end - start;
323 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
324 with machine mode MODE.
326 ALIGN controls the amount of alignment for the address of the slot:
327 0 means according to MODE,
328 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
329 -2 means use BITS_PER_UNIT,
330 positive specifies alignment boundary in bits.
332 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
333 alignment and ASLK_RECORD_PAD bit set if we should remember
334 extra space we allocated for alignment purposes. When we are
335 called from assign_stack_temp_for_type, it is not set so we don't
336 track the same stack slot in two independent lists.
338 We do not round to stack_boundary here. */
341 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size,
342 int align, int kind)
344 rtx x, addr;
345 int bigend_correction = 0;
346 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
347 unsigned int alignment, alignment_in_bits;
349 if (align == 0)
351 alignment = get_stack_local_alignment (NULL, mode);
352 alignment /= BITS_PER_UNIT;
354 else if (align == -1)
356 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
357 size = CEIL_ROUND (size, alignment);
359 else if (align == -2)
360 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
361 else
362 alignment = align / BITS_PER_UNIT;
364 alignment_in_bits = alignment * BITS_PER_UNIT;
366 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
367 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
369 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
370 alignment = alignment_in_bits / BITS_PER_UNIT;
373 if (SUPPORTS_STACK_ALIGNMENT)
375 if (crtl->stack_alignment_estimated < alignment_in_bits)
377 if (!crtl->stack_realign_processed)
378 crtl->stack_alignment_estimated = alignment_in_bits;
379 else
381 /* If stack is realigned and stack alignment value
382 hasn't been finalized, it is OK not to increase
383 stack_alignment_estimated. The bigger alignment
384 requirement is recorded in stack_alignment_needed
385 below. */
386 gcc_assert (!crtl->stack_realign_finalized);
387 if (!crtl->stack_realign_needed)
389 /* It is OK to reduce the alignment as long as the
390 requested size is 0 or the estimated stack
391 alignment >= mode alignment. */
392 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
393 || size == 0
394 || (crtl->stack_alignment_estimated
395 >= GET_MODE_ALIGNMENT (mode)));
396 alignment_in_bits = crtl->stack_alignment_estimated;
397 alignment = alignment_in_bits / BITS_PER_UNIT;
403 if (crtl->stack_alignment_needed < alignment_in_bits)
404 crtl->stack_alignment_needed = alignment_in_bits;
405 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
406 crtl->max_used_stack_slot_alignment = alignment_in_bits;
408 if (mode != BLKmode || size != 0)
410 if (kind & ASLK_RECORD_PAD)
412 struct frame_space **psp;
414 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
416 struct frame_space *space = *psp;
417 if (!try_fit_stack_local (space->start, space->length, size,
418 alignment, &slot_offset))
419 continue;
420 *psp = space->next;
421 if (slot_offset > space->start)
422 add_frame_space (space->start, slot_offset);
423 if (slot_offset + size < space->start + space->length)
424 add_frame_space (slot_offset + size,
425 space->start + space->length);
426 goto found_space;
430 else if (!STACK_ALIGNMENT_NEEDED)
432 slot_offset = frame_offset;
433 goto found_space;
436 old_frame_offset = frame_offset;
438 if (FRAME_GROWS_DOWNWARD)
440 frame_offset -= size;
441 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
443 if (kind & ASLK_RECORD_PAD)
445 if (slot_offset > frame_offset)
446 add_frame_space (frame_offset, slot_offset);
447 if (slot_offset + size < old_frame_offset)
448 add_frame_space (slot_offset + size, old_frame_offset);
451 else
453 frame_offset += size;
454 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
456 if (kind & ASLK_RECORD_PAD)
458 if (slot_offset > old_frame_offset)
459 add_frame_space (old_frame_offset, slot_offset);
460 if (slot_offset + size < frame_offset)
461 add_frame_space (slot_offset + size, frame_offset);
465 found_space:
466 /* On a big-endian machine, if we are allocating more space than we will use,
467 use the least significant bytes of those that are allocated. */
468 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
469 bigend_correction = size - GET_MODE_SIZE (mode);
471 /* If we have already instantiated virtual registers, return the actual
472 address relative to the frame pointer. */
473 if (virtuals_instantiated)
474 addr = plus_constant (Pmode, frame_pointer_rtx,
475 trunc_int_for_mode
476 (slot_offset + bigend_correction
477 + STARTING_FRAME_OFFSET, Pmode));
478 else
479 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
480 trunc_int_for_mode
481 (slot_offset + bigend_correction,
482 Pmode));
484 x = gen_rtx_MEM (mode, addr);
485 set_mem_align (x, alignment_in_bits);
486 MEM_NOTRAP_P (x) = 1;
488 stack_slot_list
489 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
491 if (frame_offset_overflow (frame_offset, current_function_decl))
492 frame_offset = 0;
494 return x;
497 /* Wrap up assign_stack_local_1 with last parameter as false. */
500 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
502 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
505 /* In order to evaluate some expressions, such as function calls returning
506 structures in memory, we need to temporarily allocate stack locations.
507 We record each allocated temporary in the following structure.
509 Associated with each temporary slot is a nesting level. When we pop up
510 one level, all temporaries associated with the previous level are freed.
511 Normally, all temporaries are freed after the execution of the statement
512 in which they were created. However, if we are inside a ({...}) grouping,
513 the result may be in a temporary and hence must be preserved. If the
514 result could be in a temporary, we preserve it if we can determine which
515 one it is in. If we cannot determine which temporary may contain the
516 result, all temporaries are preserved. A temporary is preserved by
517 pretending it was allocated at the previous nesting level. */
519 struct GTY(()) temp_slot {
520 /* Points to next temporary slot. */
521 struct temp_slot *next;
522 /* Points to previous temporary slot. */
523 struct temp_slot *prev;
524 /* The rtx to used to reference the slot. */
525 rtx slot;
526 /* The size, in units, of the slot. */
527 HOST_WIDE_INT size;
528 /* The type of the object in the slot, or zero if it doesn't correspond
529 to a type. We use this to determine whether a slot can be reused.
530 It can be reused if objects of the type of the new slot will always
531 conflict with objects of the type of the old slot. */
532 tree type;
533 /* The alignment (in bits) of the slot. */
534 unsigned int align;
535 /* Nonzero if this temporary is currently in use. */
536 char in_use;
537 /* Nesting level at which this slot is being used. */
538 int level;
539 /* The offset of the slot from the frame_pointer, including extra space
540 for alignment. This info is for combine_temp_slots. */
541 HOST_WIDE_INT base_offset;
542 /* The size of the slot, including extra space for alignment. This
543 info is for combine_temp_slots. */
544 HOST_WIDE_INT full_size;
547 /* A table of addresses that represent a stack slot. The table is a mapping
548 from address RTXen to a temp slot. */
549 static GTY((param_is(struct temp_slot_address_entry))) htab_t temp_slot_address_table;
550 static size_t n_temp_slots_in_use;
552 /* Entry for the above hash table. */
553 struct GTY(()) temp_slot_address_entry {
554 hashval_t hash;
555 rtx address;
556 struct temp_slot *temp_slot;
559 /* Removes temporary slot TEMP from LIST. */
561 static void
562 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
564 if (temp->next)
565 temp->next->prev = temp->prev;
566 if (temp->prev)
567 temp->prev->next = temp->next;
568 else
569 *list = temp->next;
571 temp->prev = temp->next = NULL;
574 /* Inserts temporary slot TEMP to LIST. */
576 static void
577 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
579 temp->next = *list;
580 if (*list)
581 (*list)->prev = temp;
582 temp->prev = NULL;
583 *list = temp;
586 /* Returns the list of used temp slots at LEVEL. */
588 static struct temp_slot **
589 temp_slots_at_level (int level)
591 if (level >= (int) vec_safe_length (used_temp_slots))
592 vec_safe_grow_cleared (used_temp_slots, level + 1);
594 return &(*used_temp_slots)[level];
597 /* Returns the maximal temporary slot level. */
599 static int
600 max_slot_level (void)
602 if (!used_temp_slots)
603 return -1;
605 return used_temp_slots->length () - 1;
608 /* Moves temporary slot TEMP to LEVEL. */
610 static void
611 move_slot_to_level (struct temp_slot *temp, int level)
613 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
614 insert_slot_to_list (temp, temp_slots_at_level (level));
615 temp->level = level;
618 /* Make temporary slot TEMP available. */
620 static void
621 make_slot_available (struct temp_slot *temp)
623 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
624 insert_slot_to_list (temp, &avail_temp_slots);
625 temp->in_use = 0;
626 temp->level = -1;
627 n_temp_slots_in_use--;
630 /* Compute the hash value for an address -> temp slot mapping.
631 The value is cached on the mapping entry. */
632 static hashval_t
633 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
635 int do_not_record = 0;
636 return hash_rtx (t->address, GET_MODE (t->address),
637 &do_not_record, NULL, false);
640 /* Return the hash value for an address -> temp slot mapping. */
641 static hashval_t
642 temp_slot_address_hash (const void *p)
644 const struct temp_slot_address_entry *t;
645 t = (const struct temp_slot_address_entry *) p;
646 return t->hash;
649 /* Compare two address -> temp slot mapping entries. */
650 static int
651 temp_slot_address_eq (const void *p1, const void *p2)
653 const struct temp_slot_address_entry *t1, *t2;
654 t1 = (const struct temp_slot_address_entry *) p1;
655 t2 = (const struct temp_slot_address_entry *) p2;
656 return exp_equiv_p (t1->address, t2->address, 0, true);
659 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
660 static void
661 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
663 void **slot;
664 struct temp_slot_address_entry *t = ggc_alloc_temp_slot_address_entry ();
665 t->address = address;
666 t->temp_slot = temp_slot;
667 t->hash = temp_slot_address_compute_hash (t);
668 slot = htab_find_slot_with_hash (temp_slot_address_table, t, t->hash, INSERT);
669 *slot = t;
672 /* Remove an address -> temp slot mapping entry if the temp slot is
673 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
674 static int
675 remove_unused_temp_slot_addresses_1 (void **slot, void *data ATTRIBUTE_UNUSED)
677 const struct temp_slot_address_entry *t;
678 t = (const struct temp_slot_address_entry *) *slot;
679 if (! t->temp_slot->in_use)
680 htab_clear_slot (temp_slot_address_table, slot);
681 return 1;
684 /* Remove all mappings of addresses to unused temp slots. */
685 static void
686 remove_unused_temp_slot_addresses (void)
688 /* Use quicker clearing if there aren't any active temp slots. */
689 if (n_temp_slots_in_use)
690 htab_traverse (temp_slot_address_table,
691 remove_unused_temp_slot_addresses_1,
692 NULL);
693 else
694 htab_empty (temp_slot_address_table);
697 /* Find the temp slot corresponding to the object at address X. */
699 static struct temp_slot *
700 find_temp_slot_from_address (rtx x)
702 struct temp_slot *p;
703 struct temp_slot_address_entry tmp, *t;
705 /* First try the easy way:
706 See if X exists in the address -> temp slot mapping. */
707 tmp.address = x;
708 tmp.temp_slot = NULL;
709 tmp.hash = temp_slot_address_compute_hash (&tmp);
710 t = (struct temp_slot_address_entry *)
711 htab_find_with_hash (temp_slot_address_table, &tmp, tmp.hash);
712 if (t)
713 return t->temp_slot;
715 /* If we have a sum involving a register, see if it points to a temp
716 slot. */
717 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
718 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
719 return p;
720 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
721 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
722 return p;
724 /* Last resort: Address is a virtual stack var address. */
725 if (GET_CODE (x) == PLUS
726 && XEXP (x, 0) == virtual_stack_vars_rtx
727 && CONST_INT_P (XEXP (x, 1)))
729 int i;
730 for (i = max_slot_level (); i >= 0; i--)
731 for (p = *temp_slots_at_level (i); p; p = p->next)
733 if (INTVAL (XEXP (x, 1)) >= p->base_offset
734 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
735 return p;
739 return NULL;
742 /* Allocate a temporary stack slot and record it for possible later
743 reuse.
745 MODE is the machine mode to be given to the returned rtx.
747 SIZE is the size in units of the space required. We do no rounding here
748 since assign_stack_local will do any required rounding.
750 TYPE is the type that will be used for the stack slot. */
753 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
754 tree type)
756 unsigned int align;
757 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
758 rtx slot;
760 /* If SIZE is -1 it means that somebody tried to allocate a temporary
761 of a variable size. */
762 gcc_assert (size != -1);
764 align = get_stack_local_alignment (type, mode);
766 /* Try to find an available, already-allocated temporary of the proper
767 mode which meets the size and alignment requirements. Choose the
768 smallest one with the closest alignment.
770 If assign_stack_temp is called outside of the tree->rtl expansion,
771 we cannot reuse the stack slots (that may still refer to
772 VIRTUAL_STACK_VARS_REGNUM). */
773 if (!virtuals_instantiated)
775 for (p = avail_temp_slots; p; p = p->next)
777 if (p->align >= align && p->size >= size
778 && GET_MODE (p->slot) == mode
779 && objects_must_conflict_p (p->type, type)
780 && (best_p == 0 || best_p->size > p->size
781 || (best_p->size == p->size && best_p->align > p->align)))
783 if (p->align == align && p->size == size)
785 selected = p;
786 cut_slot_from_list (selected, &avail_temp_slots);
787 best_p = 0;
788 break;
790 best_p = p;
795 /* Make our best, if any, the one to use. */
796 if (best_p)
798 selected = best_p;
799 cut_slot_from_list (selected, &avail_temp_slots);
801 /* If there are enough aligned bytes left over, make them into a new
802 temp_slot so that the extra bytes don't get wasted. Do this only
803 for BLKmode slots, so that we can be sure of the alignment. */
804 if (GET_MODE (best_p->slot) == BLKmode)
806 int alignment = best_p->align / BITS_PER_UNIT;
807 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
809 if (best_p->size - rounded_size >= alignment)
811 p = ggc_alloc_temp_slot ();
812 p->in_use = 0;
813 p->size = best_p->size - rounded_size;
814 p->base_offset = best_p->base_offset + rounded_size;
815 p->full_size = best_p->full_size - rounded_size;
816 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
817 p->align = best_p->align;
818 p->type = best_p->type;
819 insert_slot_to_list (p, &avail_temp_slots);
821 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
822 stack_slot_list);
824 best_p->size = rounded_size;
825 best_p->full_size = rounded_size;
830 /* If we still didn't find one, make a new temporary. */
831 if (selected == 0)
833 HOST_WIDE_INT frame_offset_old = frame_offset;
835 p = ggc_alloc_temp_slot ();
837 /* We are passing an explicit alignment request to assign_stack_local.
838 One side effect of that is assign_stack_local will not round SIZE
839 to ensure the frame offset remains suitably aligned.
841 So for requests which depended on the rounding of SIZE, we go ahead
842 and round it now. We also make sure ALIGNMENT is at least
843 BIGGEST_ALIGNMENT. */
844 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
845 p->slot = assign_stack_local_1 (mode,
846 (mode == BLKmode
847 ? CEIL_ROUND (size,
848 (int) align
849 / BITS_PER_UNIT)
850 : size),
851 align, 0);
853 p->align = align;
855 /* The following slot size computation is necessary because we don't
856 know the actual size of the temporary slot until assign_stack_local
857 has performed all the frame alignment and size rounding for the
858 requested temporary. Note that extra space added for alignment
859 can be either above or below this stack slot depending on which
860 way the frame grows. We include the extra space if and only if it
861 is above this slot. */
862 if (FRAME_GROWS_DOWNWARD)
863 p->size = frame_offset_old - frame_offset;
864 else
865 p->size = size;
867 /* Now define the fields used by combine_temp_slots. */
868 if (FRAME_GROWS_DOWNWARD)
870 p->base_offset = frame_offset;
871 p->full_size = frame_offset_old - frame_offset;
873 else
875 p->base_offset = frame_offset_old;
876 p->full_size = frame_offset - frame_offset_old;
879 selected = p;
882 p = selected;
883 p->in_use = 1;
884 p->type = type;
885 p->level = temp_slot_level;
886 n_temp_slots_in_use++;
888 pp = temp_slots_at_level (p->level);
889 insert_slot_to_list (p, pp);
890 insert_temp_slot_address (XEXP (p->slot, 0), p);
892 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
893 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
894 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
896 /* If we know the alias set for the memory that will be used, use
897 it. If there's no TYPE, then we don't know anything about the
898 alias set for the memory. */
899 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
900 set_mem_align (slot, align);
902 /* If a type is specified, set the relevant flags. */
903 if (type != 0)
904 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
905 MEM_NOTRAP_P (slot) = 1;
907 return slot;
910 /* Allocate a temporary stack slot and record it for possible later
911 reuse. First two arguments are same as in preceding function. */
914 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size)
916 return assign_stack_temp_for_type (mode, size, NULL_TREE);
919 /* Assign a temporary.
920 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
921 and so that should be used in error messages. In either case, we
922 allocate of the given type.
923 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
924 it is 0 if a register is OK.
925 DONT_PROMOTE is 1 if we should not promote values in register
926 to wider modes. */
929 assign_temp (tree type_or_decl, int memory_required,
930 int dont_promote ATTRIBUTE_UNUSED)
932 tree type, decl;
933 enum machine_mode mode;
934 #ifdef PROMOTE_MODE
935 int unsignedp;
936 #endif
938 if (DECL_P (type_or_decl))
939 decl = type_or_decl, type = TREE_TYPE (decl);
940 else
941 decl = NULL, type = type_or_decl;
943 mode = TYPE_MODE (type);
944 #ifdef PROMOTE_MODE
945 unsignedp = TYPE_UNSIGNED (type);
946 #endif
948 if (mode == BLKmode || memory_required)
950 HOST_WIDE_INT size = int_size_in_bytes (type);
951 rtx tmp;
953 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
954 problems with allocating the stack space. */
955 if (size == 0)
956 size = 1;
958 /* Unfortunately, we don't yet know how to allocate variable-sized
959 temporaries. However, sometimes we can find a fixed upper limit on
960 the size, so try that instead. */
961 else if (size == -1)
962 size = max_int_size_in_bytes (type);
964 /* The size of the temporary may be too large to fit into an integer. */
965 /* ??? Not sure this should happen except for user silliness, so limit
966 this to things that aren't compiler-generated temporaries. The
967 rest of the time we'll die in assign_stack_temp_for_type. */
968 if (decl && size == -1
969 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
971 error ("size of variable %q+D is too large", decl);
972 size = 1;
975 tmp = assign_stack_temp_for_type (mode, size, type);
976 return tmp;
979 #ifdef PROMOTE_MODE
980 if (! dont_promote)
981 mode = promote_mode (type, mode, &unsignedp);
982 #endif
984 return gen_reg_rtx (mode);
987 /* Combine temporary stack slots which are adjacent on the stack.
989 This allows for better use of already allocated stack space. This is only
990 done for BLKmode slots because we can be sure that we won't have alignment
991 problems in this case. */
993 static void
994 combine_temp_slots (void)
996 struct temp_slot *p, *q, *next, *next_q;
997 int num_slots;
999 /* We can't combine slots, because the information about which slot
1000 is in which alias set will be lost. */
1001 if (flag_strict_aliasing)
1002 return;
1004 /* If there are a lot of temp slots, don't do anything unless
1005 high levels of optimization. */
1006 if (! flag_expensive_optimizations)
1007 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1008 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1009 return;
1011 for (p = avail_temp_slots; p; p = next)
1013 int delete_p = 0;
1015 next = p->next;
1017 if (GET_MODE (p->slot) != BLKmode)
1018 continue;
1020 for (q = p->next; q; q = next_q)
1022 int delete_q = 0;
1024 next_q = q->next;
1026 if (GET_MODE (q->slot) != BLKmode)
1027 continue;
1029 if (p->base_offset + p->full_size == q->base_offset)
1031 /* Q comes after P; combine Q into P. */
1032 p->size += q->size;
1033 p->full_size += q->full_size;
1034 delete_q = 1;
1036 else if (q->base_offset + q->full_size == p->base_offset)
1038 /* P comes after Q; combine P into Q. */
1039 q->size += p->size;
1040 q->full_size += p->full_size;
1041 delete_p = 1;
1042 break;
1044 if (delete_q)
1045 cut_slot_from_list (q, &avail_temp_slots);
1048 /* Either delete P or advance past it. */
1049 if (delete_p)
1050 cut_slot_from_list (p, &avail_temp_slots);
1054 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1055 slot that previously was known by OLD_RTX. */
1057 void
1058 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1060 struct temp_slot *p;
1062 if (rtx_equal_p (old_rtx, new_rtx))
1063 return;
1065 p = find_temp_slot_from_address (old_rtx);
1067 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1068 NEW_RTX is a register, see if one operand of the PLUS is a
1069 temporary location. If so, NEW_RTX points into it. Otherwise,
1070 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1071 in common between them. If so, try a recursive call on those
1072 values. */
1073 if (p == 0)
1075 if (GET_CODE (old_rtx) != PLUS)
1076 return;
1078 if (REG_P (new_rtx))
1080 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1081 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1082 return;
1084 else if (GET_CODE (new_rtx) != PLUS)
1085 return;
1087 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1088 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1089 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1090 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1091 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1092 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1093 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1094 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1096 return;
1099 /* Otherwise add an alias for the temp's address. */
1100 insert_temp_slot_address (new_rtx, p);
1103 /* If X could be a reference to a temporary slot, mark that slot as
1104 belonging to the to one level higher than the current level. If X
1105 matched one of our slots, just mark that one. Otherwise, we can't
1106 easily predict which it is, so upgrade all of them.
1108 This is called when an ({...}) construct occurs and a statement
1109 returns a value in memory. */
1111 void
1112 preserve_temp_slots (rtx x)
1114 struct temp_slot *p = 0, *next;
1116 if (x == 0)
1117 return;
1119 /* If X is a register that is being used as a pointer, see if we have
1120 a temporary slot we know it points to. */
1121 if (REG_P (x) && REG_POINTER (x))
1122 p = find_temp_slot_from_address (x);
1124 /* If X is not in memory or is at a constant address, it cannot be in
1125 a temporary slot. */
1126 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1127 return;
1129 /* First see if we can find a match. */
1130 if (p == 0)
1131 p = find_temp_slot_from_address (XEXP (x, 0));
1133 if (p != 0)
1135 if (p->level == temp_slot_level)
1136 move_slot_to_level (p, temp_slot_level - 1);
1137 return;
1140 /* Otherwise, preserve all non-kept slots at this level. */
1141 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1143 next = p->next;
1144 move_slot_to_level (p, temp_slot_level - 1);
1148 /* Free all temporaries used so far. This is normally called at the
1149 end of generating code for a statement. */
1151 void
1152 free_temp_slots (void)
1154 struct temp_slot *p, *next;
1155 bool some_available = false;
1157 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1159 next = p->next;
1160 make_slot_available (p);
1161 some_available = true;
1164 if (some_available)
1166 remove_unused_temp_slot_addresses ();
1167 combine_temp_slots ();
1171 /* Push deeper into the nesting level for stack temporaries. */
1173 void
1174 push_temp_slots (void)
1176 temp_slot_level++;
1179 /* Pop a temporary nesting level. All slots in use in the current level
1180 are freed. */
1182 void
1183 pop_temp_slots (void)
1185 free_temp_slots ();
1186 temp_slot_level--;
1189 /* Initialize temporary slots. */
1191 void
1192 init_temp_slots (void)
1194 /* We have not allocated any temporaries yet. */
1195 avail_temp_slots = 0;
1196 vec_alloc (used_temp_slots, 0);
1197 temp_slot_level = 0;
1198 n_temp_slots_in_use = 0;
1200 /* Set up the table to map addresses to temp slots. */
1201 if (! temp_slot_address_table)
1202 temp_slot_address_table = htab_create_ggc (32,
1203 temp_slot_address_hash,
1204 temp_slot_address_eq,
1205 NULL);
1206 else
1207 htab_empty (temp_slot_address_table);
1210 /* Functions and data structures to keep track of the values hard regs
1211 had at the start of the function. */
1213 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1214 and has_hard_reg_initial_val.. */
1215 typedef struct GTY(()) initial_value_pair {
1216 rtx hard_reg;
1217 rtx pseudo;
1218 } initial_value_pair;
1219 /* ??? This could be a VEC but there is currently no way to define an
1220 opaque VEC type. This could be worked around by defining struct
1221 initial_value_pair in function.h. */
1222 typedef struct GTY(()) initial_value_struct {
1223 int num_entries;
1224 int max_entries;
1225 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1226 } initial_value_struct;
1228 /* If a pseudo represents an initial hard reg (or expression), return
1229 it, else return NULL_RTX. */
1232 get_hard_reg_initial_reg (rtx reg)
1234 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1235 int i;
1237 if (ivs == 0)
1238 return NULL_RTX;
1240 for (i = 0; i < ivs->num_entries; i++)
1241 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1242 return ivs->entries[i].hard_reg;
1244 return NULL_RTX;
1247 /* Make sure that there's a pseudo register of mode MODE that stores the
1248 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1251 get_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1253 struct initial_value_struct *ivs;
1254 rtx rv;
1256 rv = has_hard_reg_initial_val (mode, regno);
1257 if (rv)
1258 return rv;
1260 ivs = crtl->hard_reg_initial_vals;
1261 if (ivs == 0)
1263 ivs = ggc_alloc_initial_value_struct ();
1264 ivs->num_entries = 0;
1265 ivs->max_entries = 5;
1266 ivs->entries = ggc_alloc_vec_initial_value_pair (5);
1267 crtl->hard_reg_initial_vals = ivs;
1270 if (ivs->num_entries >= ivs->max_entries)
1272 ivs->max_entries += 5;
1273 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1274 ivs->max_entries);
1277 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1278 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1280 return ivs->entries[ivs->num_entries++].pseudo;
1283 /* See if get_hard_reg_initial_val has been used to create a pseudo
1284 for the initial value of hard register REGNO in mode MODE. Return
1285 the associated pseudo if so, otherwise return NULL. */
1288 has_hard_reg_initial_val (enum machine_mode mode, unsigned int regno)
1290 struct initial_value_struct *ivs;
1291 int i;
1293 ivs = crtl->hard_reg_initial_vals;
1294 if (ivs != 0)
1295 for (i = 0; i < ivs->num_entries; i++)
1296 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1297 && REGNO (ivs->entries[i].hard_reg) == regno)
1298 return ivs->entries[i].pseudo;
1300 return NULL_RTX;
1303 unsigned int
1304 emit_initial_value_sets (void)
1306 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1307 int i;
1308 rtx seq;
1310 if (ivs == 0)
1311 return 0;
1313 start_sequence ();
1314 for (i = 0; i < ivs->num_entries; i++)
1315 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1316 seq = get_insns ();
1317 end_sequence ();
1319 emit_insn_at_entry (seq);
1320 return 0;
1323 /* Return the hardreg-pseudoreg initial values pair entry I and
1324 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1325 bool
1326 initial_value_entry (int i, rtx *hreg, rtx *preg)
1328 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1329 if (!ivs || i >= ivs->num_entries)
1330 return false;
1332 *hreg = ivs->entries[i].hard_reg;
1333 *preg = ivs->entries[i].pseudo;
1334 return true;
1337 /* These routines are responsible for converting virtual register references
1338 to the actual hard register references once RTL generation is complete.
1340 The following four variables are used for communication between the
1341 routines. They contain the offsets of the virtual registers from their
1342 respective hard registers. */
1344 static int in_arg_offset;
1345 static int var_offset;
1346 static int dynamic_offset;
1347 static int out_arg_offset;
1348 static int cfa_offset;
1350 /* In most machines, the stack pointer register is equivalent to the bottom
1351 of the stack. */
1353 #ifndef STACK_POINTER_OFFSET
1354 #define STACK_POINTER_OFFSET 0
1355 #endif
1357 /* If not defined, pick an appropriate default for the offset of dynamically
1358 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1359 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1361 #ifndef STACK_DYNAMIC_OFFSET
1363 /* The bottom of the stack points to the actual arguments. If
1364 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1365 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1366 stack space for register parameters is not pushed by the caller, but
1367 rather part of the fixed stack areas and hence not included in
1368 `crtl->outgoing_args_size'. Nevertheless, we must allow
1369 for it when allocating stack dynamic objects. */
1371 #if defined(REG_PARM_STACK_SPACE)
1372 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1373 ((ACCUMULATE_OUTGOING_ARGS \
1374 ? (crtl->outgoing_args_size \
1375 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1376 : REG_PARM_STACK_SPACE (FNDECL))) \
1377 : 0) + (STACK_POINTER_OFFSET))
1378 #else
1379 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1380 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1381 + (STACK_POINTER_OFFSET))
1382 #endif
1383 #endif
1386 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1387 is a virtual register, return the equivalent hard register and set the
1388 offset indirectly through the pointer. Otherwise, return 0. */
1390 static rtx
1391 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1393 rtx new_rtx;
1394 HOST_WIDE_INT offset;
1396 if (x == virtual_incoming_args_rtx)
1398 if (stack_realign_drap)
1400 /* Replace virtual_incoming_args_rtx with internal arg
1401 pointer if DRAP is used to realign stack. */
1402 new_rtx = crtl->args.internal_arg_pointer;
1403 offset = 0;
1405 else
1406 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1408 else if (x == virtual_stack_vars_rtx)
1409 new_rtx = frame_pointer_rtx, offset = var_offset;
1410 else if (x == virtual_stack_dynamic_rtx)
1411 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1412 else if (x == virtual_outgoing_args_rtx)
1413 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1414 else if (x == virtual_cfa_rtx)
1416 #ifdef FRAME_POINTER_CFA_OFFSET
1417 new_rtx = frame_pointer_rtx;
1418 #else
1419 new_rtx = arg_pointer_rtx;
1420 #endif
1421 offset = cfa_offset;
1423 else if (x == virtual_preferred_stack_boundary_rtx)
1425 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1426 offset = 0;
1428 else
1429 return NULL_RTX;
1431 *poffset = offset;
1432 return new_rtx;
1435 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1436 Instantiate any virtual registers present inside of *LOC. The expression
1437 is simplified, as much as possible, but is not to be considered "valid"
1438 in any sense implied by the target. If any change is made, set CHANGED
1439 to true. */
1441 static int
1442 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1444 HOST_WIDE_INT offset;
1445 bool *changed = (bool *) data;
1446 rtx x, new_rtx;
1448 x = *loc;
1449 if (x == 0)
1450 return 0;
1452 switch (GET_CODE (x))
1454 case REG:
1455 new_rtx = instantiate_new_reg (x, &offset);
1456 if (new_rtx)
1458 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1459 if (changed)
1460 *changed = true;
1462 return -1;
1464 case PLUS:
1465 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1466 if (new_rtx)
1468 new_rtx = plus_constant (GET_MODE (x), new_rtx, offset);
1469 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new_rtx, XEXP (x, 1));
1470 if (changed)
1471 *changed = true;
1472 return -1;
1475 /* FIXME -- from old code */
1476 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1477 we can commute the PLUS and SUBREG because pointers into the
1478 frame are well-behaved. */
1479 break;
1481 default:
1482 break;
1485 return 0;
1488 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1489 matches the predicate for insn CODE operand OPERAND. */
1491 static int
1492 safe_insn_predicate (int code, int operand, rtx x)
1494 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1497 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1498 registers present inside of insn. The result will be a valid insn. */
1500 static void
1501 instantiate_virtual_regs_in_insn (rtx insn)
1503 HOST_WIDE_INT offset;
1504 int insn_code, i;
1505 bool any_change = false;
1506 rtx set, new_rtx, x, seq;
1508 /* There are some special cases to be handled first. */
1509 set = single_set (insn);
1510 if (set)
1512 /* We're allowed to assign to a virtual register. This is interpreted
1513 to mean that the underlying register gets assigned the inverse
1514 transformation. This is used, for example, in the handling of
1515 non-local gotos. */
1516 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1517 if (new_rtx)
1519 start_sequence ();
1521 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1522 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1523 gen_int_mode (-offset, GET_MODE (new_rtx)));
1524 x = force_operand (x, new_rtx);
1525 if (x != new_rtx)
1526 emit_move_insn (new_rtx, x);
1528 seq = get_insns ();
1529 end_sequence ();
1531 emit_insn_before (seq, insn);
1532 delete_insn (insn);
1533 return;
1536 /* Handle a straight copy from a virtual register by generating a
1537 new add insn. The difference between this and falling through
1538 to the generic case is avoiding a new pseudo and eliminating a
1539 move insn in the initial rtl stream. */
1540 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1541 if (new_rtx && offset != 0
1542 && REG_P (SET_DEST (set))
1543 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1545 start_sequence ();
1547 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1548 gen_int_mode (offset,
1549 GET_MODE (SET_DEST (set))),
1550 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1551 if (x != SET_DEST (set))
1552 emit_move_insn (SET_DEST (set), x);
1554 seq = get_insns ();
1555 end_sequence ();
1557 emit_insn_before (seq, insn);
1558 delete_insn (insn);
1559 return;
1562 extract_insn (insn);
1563 insn_code = INSN_CODE (insn);
1565 /* Handle a plus involving a virtual register by determining if the
1566 operands remain valid if they're modified in place. */
1567 if (GET_CODE (SET_SRC (set)) == PLUS
1568 && recog_data.n_operands >= 3
1569 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1570 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1571 && CONST_INT_P (recog_data.operand[2])
1572 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1574 offset += INTVAL (recog_data.operand[2]);
1576 /* If the sum is zero, then replace with a plain move. */
1577 if (offset == 0
1578 && REG_P (SET_DEST (set))
1579 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1581 start_sequence ();
1582 emit_move_insn (SET_DEST (set), new_rtx);
1583 seq = get_insns ();
1584 end_sequence ();
1586 emit_insn_before (seq, insn);
1587 delete_insn (insn);
1588 return;
1591 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1593 /* Using validate_change and apply_change_group here leaves
1594 recog_data in an invalid state. Since we know exactly what
1595 we want to check, do those two by hand. */
1596 if (safe_insn_predicate (insn_code, 1, new_rtx)
1597 && safe_insn_predicate (insn_code, 2, x))
1599 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1600 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1601 any_change = true;
1603 /* Fall through into the regular operand fixup loop in
1604 order to take care of operands other than 1 and 2. */
1608 else
1610 extract_insn (insn);
1611 insn_code = INSN_CODE (insn);
1614 /* In the general case, we expect virtual registers to appear only in
1615 operands, and then only as either bare registers or inside memories. */
1616 for (i = 0; i < recog_data.n_operands; ++i)
1618 x = recog_data.operand[i];
1619 switch (GET_CODE (x))
1621 case MEM:
1623 rtx addr = XEXP (x, 0);
1624 bool changed = false;
1626 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1627 if (!changed)
1628 continue;
1630 start_sequence ();
1631 x = replace_equiv_address (x, addr);
1632 /* It may happen that the address with the virtual reg
1633 was valid (e.g. based on the virtual stack reg, which might
1634 be acceptable to the predicates with all offsets), whereas
1635 the address now isn't anymore, for instance when the address
1636 is still offsetted, but the base reg isn't virtual-stack-reg
1637 anymore. Below we would do a force_reg on the whole operand,
1638 but this insn might actually only accept memory. Hence,
1639 before doing that last resort, try to reload the address into
1640 a register, so this operand stays a MEM. */
1641 if (!safe_insn_predicate (insn_code, i, x))
1643 addr = force_reg (GET_MODE (addr), addr);
1644 x = replace_equiv_address (x, addr);
1646 seq = get_insns ();
1647 end_sequence ();
1648 if (seq)
1649 emit_insn_before (seq, insn);
1651 break;
1653 case REG:
1654 new_rtx = instantiate_new_reg (x, &offset);
1655 if (new_rtx == NULL)
1656 continue;
1657 if (offset == 0)
1658 x = new_rtx;
1659 else
1661 start_sequence ();
1663 /* Careful, special mode predicates may have stuff in
1664 insn_data[insn_code].operand[i].mode that isn't useful
1665 to us for computing a new value. */
1666 /* ??? Recognize address_operand and/or "p" constraints
1667 to see if (plus new offset) is a valid before we put
1668 this through expand_simple_binop. */
1669 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1670 gen_int_mode (offset, GET_MODE (x)),
1671 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1672 seq = get_insns ();
1673 end_sequence ();
1674 emit_insn_before (seq, insn);
1676 break;
1678 case SUBREG:
1679 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1680 if (new_rtx == NULL)
1681 continue;
1682 if (offset != 0)
1684 start_sequence ();
1685 new_rtx = expand_simple_binop
1686 (GET_MODE (new_rtx), PLUS, new_rtx,
1687 gen_int_mode (offset, GET_MODE (new_rtx)),
1688 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1689 seq = get_insns ();
1690 end_sequence ();
1691 emit_insn_before (seq, insn);
1693 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1694 GET_MODE (new_rtx), SUBREG_BYTE (x));
1695 gcc_assert (x);
1696 break;
1698 default:
1699 continue;
1702 /* At this point, X contains the new value for the operand.
1703 Validate the new value vs the insn predicate. Note that
1704 asm insns will have insn_code -1 here. */
1705 if (!safe_insn_predicate (insn_code, i, x))
1707 start_sequence ();
1708 if (REG_P (x))
1710 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1711 x = copy_to_reg (x);
1713 else
1714 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1715 seq = get_insns ();
1716 end_sequence ();
1717 if (seq)
1718 emit_insn_before (seq, insn);
1721 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1722 any_change = true;
1725 if (any_change)
1727 /* Propagate operand changes into the duplicates. */
1728 for (i = 0; i < recog_data.n_dups; ++i)
1729 *recog_data.dup_loc[i]
1730 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1732 /* Force re-recognition of the instruction for validation. */
1733 INSN_CODE (insn) = -1;
1736 if (asm_noperands (PATTERN (insn)) >= 0)
1738 if (!check_asm_operands (PATTERN (insn)))
1740 error_for_asm (insn, "impossible constraint in %<asm%>");
1741 /* For asm goto, instead of fixing up all the edges
1742 just clear the template and clear input operands
1743 (asm goto doesn't have any output operands). */
1744 if (JUMP_P (insn))
1746 rtx asm_op = extract_asm_operands (PATTERN (insn));
1747 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1748 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1749 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1751 else
1752 delete_insn (insn);
1755 else
1757 if (recog_memoized (insn) < 0)
1758 fatal_insn_not_found (insn);
1762 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1763 do any instantiation required. */
1765 void
1766 instantiate_decl_rtl (rtx x)
1768 rtx addr;
1770 if (x == 0)
1771 return;
1773 /* If this is a CONCAT, recurse for the pieces. */
1774 if (GET_CODE (x) == CONCAT)
1776 instantiate_decl_rtl (XEXP (x, 0));
1777 instantiate_decl_rtl (XEXP (x, 1));
1778 return;
1781 /* If this is not a MEM, no need to do anything. Similarly if the
1782 address is a constant or a register that is not a virtual register. */
1783 if (!MEM_P (x))
1784 return;
1786 addr = XEXP (x, 0);
1787 if (CONSTANT_P (addr)
1788 || (REG_P (addr)
1789 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1790 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1791 return;
1793 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1796 /* Helper for instantiate_decls called via walk_tree: Process all decls
1797 in the given DECL_VALUE_EXPR. */
1799 static tree
1800 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1802 tree t = *tp;
1803 if (! EXPR_P (t))
1805 *walk_subtrees = 0;
1806 if (DECL_P (t))
1808 if (DECL_RTL_SET_P (t))
1809 instantiate_decl_rtl (DECL_RTL (t));
1810 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1811 && DECL_INCOMING_RTL (t))
1812 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1813 if ((TREE_CODE (t) == VAR_DECL
1814 || TREE_CODE (t) == RESULT_DECL)
1815 && DECL_HAS_VALUE_EXPR_P (t))
1817 tree v = DECL_VALUE_EXPR (t);
1818 walk_tree (&v, instantiate_expr, NULL, NULL);
1822 return NULL;
1825 /* Subroutine of instantiate_decls: Process all decls in the given
1826 BLOCK node and all its subblocks. */
1828 static void
1829 instantiate_decls_1 (tree let)
1831 tree t;
1833 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1835 if (DECL_RTL_SET_P (t))
1836 instantiate_decl_rtl (DECL_RTL (t));
1837 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1839 tree v = DECL_VALUE_EXPR (t);
1840 walk_tree (&v, instantiate_expr, NULL, NULL);
1844 /* Process all subblocks. */
1845 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1846 instantiate_decls_1 (t);
1849 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1850 all virtual registers in their DECL_RTL's. */
1852 static void
1853 instantiate_decls (tree fndecl)
1855 tree decl;
1856 unsigned ix;
1858 /* Process all parameters of the function. */
1859 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1861 instantiate_decl_rtl (DECL_RTL (decl));
1862 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1863 if (DECL_HAS_VALUE_EXPR_P (decl))
1865 tree v = DECL_VALUE_EXPR (decl);
1866 walk_tree (&v, instantiate_expr, NULL, NULL);
1870 if ((decl = DECL_RESULT (fndecl))
1871 && TREE_CODE (decl) == RESULT_DECL)
1873 if (DECL_RTL_SET_P (decl))
1874 instantiate_decl_rtl (DECL_RTL (decl));
1875 if (DECL_HAS_VALUE_EXPR_P (decl))
1877 tree v = DECL_VALUE_EXPR (decl);
1878 walk_tree (&v, instantiate_expr, NULL, NULL);
1882 /* Now process all variables defined in the function or its subblocks. */
1883 instantiate_decls_1 (DECL_INITIAL (fndecl));
1885 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1886 if (DECL_RTL_SET_P (decl))
1887 instantiate_decl_rtl (DECL_RTL (decl));
1888 vec_free (cfun->local_decls);
1891 /* Pass through the INSNS of function FNDECL and convert virtual register
1892 references to hard register references. */
1894 static unsigned int
1895 instantiate_virtual_regs (void)
1897 rtx insn;
1899 /* Compute the offsets to use for this function. */
1900 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1901 var_offset = STARTING_FRAME_OFFSET;
1902 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1903 out_arg_offset = STACK_POINTER_OFFSET;
1904 #ifdef FRAME_POINTER_CFA_OFFSET
1905 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1906 #else
1907 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1908 #endif
1910 /* Initialize recognition, indicating that volatile is OK. */
1911 init_recog ();
1913 /* Scan through all the insns, instantiating every virtual register still
1914 present. */
1915 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1916 if (INSN_P (insn))
1918 /* These patterns in the instruction stream can never be recognized.
1919 Fortunately, they shouldn't contain virtual registers either. */
1920 if (GET_CODE (PATTERN (insn)) == USE
1921 || GET_CODE (PATTERN (insn)) == CLOBBER
1922 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1923 continue;
1924 else if (DEBUG_INSN_P (insn))
1925 for_each_rtx (&INSN_VAR_LOCATION (insn),
1926 instantiate_virtual_regs_in_rtx, NULL);
1927 else
1928 instantiate_virtual_regs_in_insn (insn);
1930 if (INSN_DELETED_P (insn))
1931 continue;
1933 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1935 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1936 if (CALL_P (insn))
1937 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1938 instantiate_virtual_regs_in_rtx, NULL);
1941 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1942 instantiate_decls (current_function_decl);
1944 targetm.instantiate_decls ();
1946 /* Indicate that, from now on, assign_stack_local should use
1947 frame_pointer_rtx. */
1948 virtuals_instantiated = 1;
1950 return 0;
1953 namespace {
1955 const pass_data pass_data_instantiate_virtual_regs =
1957 RTL_PASS, /* type */
1958 "vregs", /* name */
1959 OPTGROUP_NONE, /* optinfo_flags */
1960 false, /* has_gate */
1961 true, /* has_execute */
1962 TV_NONE, /* tv_id */
1963 0, /* properties_required */
1964 0, /* properties_provided */
1965 0, /* properties_destroyed */
1966 0, /* todo_flags_start */
1967 0, /* todo_flags_finish */
1970 class pass_instantiate_virtual_regs : public rtl_opt_pass
1972 public:
1973 pass_instantiate_virtual_regs (gcc::context *ctxt)
1974 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
1977 /* opt_pass methods: */
1978 unsigned int execute () { return instantiate_virtual_regs (); }
1980 }; // class pass_instantiate_virtual_regs
1982 } // anon namespace
1984 rtl_opt_pass *
1985 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
1987 return new pass_instantiate_virtual_regs (ctxt);
1991 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1992 This means a type for which function calls must pass an address to the
1993 function or get an address back from the function.
1994 EXP may be a type node or an expression (whose type is tested). */
1997 aggregate_value_p (const_tree exp, const_tree fntype)
1999 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2000 int i, regno, nregs;
2001 rtx reg;
2003 if (fntype)
2004 switch (TREE_CODE (fntype))
2006 case CALL_EXPR:
2008 tree fndecl = get_callee_fndecl (fntype);
2009 fntype = (fndecl
2010 ? TREE_TYPE (fndecl)
2011 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
2013 break;
2014 case FUNCTION_DECL:
2015 fntype = TREE_TYPE (fntype);
2016 break;
2017 case FUNCTION_TYPE:
2018 case METHOD_TYPE:
2019 break;
2020 case IDENTIFIER_NODE:
2021 fntype = NULL_TREE;
2022 break;
2023 default:
2024 /* We don't expect other tree types here. */
2025 gcc_unreachable ();
2028 if (VOID_TYPE_P (type))
2029 return 0;
2031 /* If a record should be passed the same as its first (and only) member
2032 don't pass it as an aggregate. */
2033 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2034 return aggregate_value_p (first_field (type), fntype);
2036 /* If the front end has decided that this needs to be passed by
2037 reference, do so. */
2038 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2039 && DECL_BY_REFERENCE (exp))
2040 return 1;
2042 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2043 if (fntype && TREE_ADDRESSABLE (fntype))
2044 return 1;
2046 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2047 and thus can't be returned in registers. */
2048 if (TREE_ADDRESSABLE (type))
2049 return 1;
2051 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2052 return 1;
2054 /* Pointers-to-shared must be considered as aggregates for
2055 the purpose of passing them as return values, but only
2056 when the underlying mode of the representation would
2057 require that its value be passed on the stack.
2058 This occurs when using the 'struct' representation
2059 of a shared pointer. */
2060 if (flag_pcc_struct_return && POINTER_TYPE_P (type)
2061 && upc_shared_type_p (TREE_TYPE (type))
2062 && AGGREGATE_TYPE_P (upc_pts_rep_type_node))
2063 return 1;
2065 if (targetm.calls.return_in_memory (type, fntype))
2066 return 1;
2068 /* Make sure we have suitable call-clobbered regs to return
2069 the value in; if not, we must return it in memory. */
2070 reg = hard_function_value (type, 0, fntype, 0);
2072 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2073 it is OK. */
2074 if (!REG_P (reg))
2075 return 0;
2077 regno = REGNO (reg);
2078 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2079 for (i = 0; i < nregs; i++)
2080 if (! call_used_regs[regno + i])
2081 return 1;
2083 return 0;
2086 /* Return true if we should assign DECL a pseudo register; false if it
2087 should live on the local stack. */
2089 bool
2090 use_register_for_decl (const_tree decl)
2092 if (!targetm.calls.allocate_stack_slots_for_args ())
2093 return true;
2095 /* Honor volatile. */
2096 if (TREE_SIDE_EFFECTS (decl))
2097 return false;
2099 /* Honor addressability. */
2100 if (TREE_ADDRESSABLE (decl))
2101 return false;
2103 /* Only register-like things go in registers. */
2104 if (DECL_MODE (decl) == BLKmode)
2105 return false;
2107 /* If -ffloat-store specified, don't put explicit float variables
2108 into registers. */
2109 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2110 propagates values across these stores, and it probably shouldn't. */
2111 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2112 return false;
2114 /* If we're not interested in tracking debugging information for
2115 this decl, then we can certainly put it in a register. */
2116 if (DECL_IGNORED_P (decl))
2117 return true;
2119 if (optimize)
2120 return true;
2122 if (!DECL_REGISTER (decl))
2123 return false;
2125 switch (TREE_CODE (TREE_TYPE (decl)))
2127 case RECORD_TYPE:
2128 case UNION_TYPE:
2129 case QUAL_UNION_TYPE:
2130 /* When not optimizing, disregard register keyword for variables with
2131 types containing methods, otherwise the methods won't be callable
2132 from the debugger. */
2133 if (TYPE_METHODS (TREE_TYPE (decl)))
2134 return false;
2135 break;
2136 default:
2137 break;
2140 return true;
2143 /* Return true if TYPE should be passed by invisible reference. */
2145 bool
2146 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2147 tree type, bool named_arg)
2149 if (type)
2151 /* If this type contains non-trivial constructors, then it is
2152 forbidden for the middle-end to create any new copies. */
2153 if (TREE_ADDRESSABLE (type))
2154 return true;
2156 /* GCC post 3.4 passes *all* variable sized types by reference. */
2157 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2158 return true;
2160 /* If a record type should be passed the same as its first (and only)
2161 member, use the type and mode of that member. */
2162 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2164 type = TREE_TYPE (first_field (type));
2165 mode = TYPE_MODE (type);
2169 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2170 type, named_arg);
2173 /* Return true if TYPE, which is passed by reference, should be callee
2174 copied instead of caller copied. */
2176 bool
2177 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
2178 tree type, bool named_arg)
2180 if (type && TREE_ADDRESSABLE (type))
2181 return false;
2182 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2183 named_arg);
2186 /* Structures to communicate between the subroutines of assign_parms.
2187 The first holds data persistent across all parameters, the second
2188 is cleared out for each parameter. */
2190 struct assign_parm_data_all
2192 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2193 should become a job of the target or otherwise encapsulated. */
2194 CUMULATIVE_ARGS args_so_far_v;
2195 cumulative_args_t args_so_far;
2196 struct args_size stack_args_size;
2197 tree function_result_decl;
2198 tree orig_fnargs;
2199 rtx first_conversion_insn;
2200 rtx last_conversion_insn;
2201 HOST_WIDE_INT pretend_args_size;
2202 HOST_WIDE_INT extra_pretend_bytes;
2203 int reg_parm_stack_space;
2206 struct assign_parm_data_one
2208 tree nominal_type;
2209 tree passed_type;
2210 rtx entry_parm;
2211 rtx stack_parm;
2212 enum machine_mode nominal_mode;
2213 enum machine_mode passed_mode;
2214 enum machine_mode promoted_mode;
2215 struct locate_and_pad_arg_data locate;
2216 int partial;
2217 BOOL_BITFIELD named_arg : 1;
2218 BOOL_BITFIELD passed_pointer : 1;
2219 BOOL_BITFIELD on_stack : 1;
2220 BOOL_BITFIELD loaded_in_reg : 1;
2223 /* A subroutine of assign_parms. Initialize ALL. */
2225 static void
2226 assign_parms_initialize_all (struct assign_parm_data_all *all)
2228 tree fntype ATTRIBUTE_UNUSED;
2230 memset (all, 0, sizeof (*all));
2232 fntype = TREE_TYPE (current_function_decl);
2234 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2235 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2236 #else
2237 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2238 current_function_decl, -1);
2239 #endif
2240 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2242 #ifdef REG_PARM_STACK_SPACE
2243 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2244 #endif
2247 /* If ARGS contains entries with complex types, split the entry into two
2248 entries of the component type. Return a new list of substitutions are
2249 needed, else the old list. */
2251 static void
2252 split_complex_args (vec<tree> *args)
2254 unsigned i;
2255 tree p;
2257 FOR_EACH_VEC_ELT (*args, i, p)
2259 tree type = TREE_TYPE (p);
2260 if (TREE_CODE (type) == COMPLEX_TYPE
2261 && targetm.calls.split_complex_arg (type))
2263 tree decl;
2264 tree subtype = TREE_TYPE (type);
2265 bool addressable = TREE_ADDRESSABLE (p);
2267 /* Rewrite the PARM_DECL's type with its component. */
2268 p = copy_node (p);
2269 TREE_TYPE (p) = subtype;
2270 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2271 DECL_MODE (p) = VOIDmode;
2272 DECL_SIZE (p) = NULL;
2273 DECL_SIZE_UNIT (p) = NULL;
2274 /* If this arg must go in memory, put it in a pseudo here.
2275 We can't allow it to go in memory as per normal parms,
2276 because the usual place might not have the imag part
2277 adjacent to the real part. */
2278 DECL_ARTIFICIAL (p) = addressable;
2279 DECL_IGNORED_P (p) = addressable;
2280 TREE_ADDRESSABLE (p) = 0;
2281 layout_decl (p, 0);
2282 (*args)[i] = p;
2284 /* Build a second synthetic decl. */
2285 decl = build_decl (EXPR_LOCATION (p),
2286 PARM_DECL, NULL_TREE, subtype);
2287 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2288 DECL_ARTIFICIAL (decl) = addressable;
2289 DECL_IGNORED_P (decl) = addressable;
2290 layout_decl (decl, 0);
2291 args->safe_insert (++i, decl);
2296 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2297 the hidden struct return argument, and (abi willing) complex args.
2298 Return the new parameter list. */
2300 static vec<tree>
2301 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2303 tree fndecl = current_function_decl;
2304 tree fntype = TREE_TYPE (fndecl);
2305 vec<tree> fnargs = vNULL;
2306 tree arg;
2308 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2309 fnargs.safe_push (arg);
2311 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2313 /* If struct value address is treated as the first argument, make it so. */
2314 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2315 && ! cfun->returns_pcc_struct
2316 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2318 tree type = build_pointer_type (TREE_TYPE (fntype));
2319 tree decl;
2321 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2322 PARM_DECL, get_identifier (".result_ptr"), type);
2323 DECL_ARG_TYPE (decl) = type;
2324 DECL_ARTIFICIAL (decl) = 1;
2325 DECL_NAMELESS (decl) = 1;
2326 TREE_CONSTANT (decl) = 1;
2328 DECL_CHAIN (decl) = all->orig_fnargs;
2329 all->orig_fnargs = decl;
2330 fnargs.safe_insert (0, decl);
2332 all->function_result_decl = decl;
2335 /* If the target wants to split complex arguments into scalars, do so. */
2336 if (targetm.calls.split_complex_arg)
2337 split_complex_args (&fnargs);
2339 return fnargs;
2342 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2343 data for the parameter. Incorporate ABI specifics such as pass-by-
2344 reference and type promotion. */
2346 static void
2347 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2348 struct assign_parm_data_one *data)
2350 tree nominal_type, passed_type;
2351 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2352 int unsignedp;
2354 memset (data, 0, sizeof (*data));
2356 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2357 if (!cfun->stdarg)
2358 data->named_arg = 1; /* No variadic parms. */
2359 else if (DECL_CHAIN (parm))
2360 data->named_arg = 1; /* Not the last non-variadic parm. */
2361 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2362 data->named_arg = 1; /* Only variadic ones are unnamed. */
2363 else
2364 data->named_arg = 0; /* Treat as variadic. */
2366 nominal_type = TREE_TYPE (parm);
2367 passed_type = DECL_ARG_TYPE (parm);
2369 /* Look out for errors propagating this far. Also, if the parameter's
2370 type is void then its value doesn't matter. */
2371 if (TREE_TYPE (parm) == error_mark_node
2372 /* This can happen after weird syntax errors
2373 or if an enum type is defined among the parms. */
2374 || TREE_CODE (parm) != PARM_DECL
2375 || passed_type == NULL
2376 || VOID_TYPE_P (nominal_type))
2378 nominal_type = passed_type = void_type_node;
2379 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2380 goto egress;
2383 /* Find mode of arg as it is passed, and mode of arg as it should be
2384 during execution of this function. */
2385 passed_mode = TYPE_MODE (passed_type);
2386 nominal_mode = TYPE_MODE (nominal_type);
2388 /* If the parm is to be passed as a transparent union or record, use the
2389 type of the first field for the tests below. We have already verified
2390 that the modes are the same. */
2391 if ((TREE_CODE (passed_type) == UNION_TYPE
2392 || TREE_CODE (passed_type) == RECORD_TYPE)
2393 && TYPE_TRANSPARENT_AGGR (passed_type))
2394 passed_type = TREE_TYPE (first_field (passed_type));
2396 /* See if this arg was passed by invisible reference. */
2397 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2398 passed_type, data->named_arg))
2400 passed_type = nominal_type = build_pointer_type (passed_type);
2401 data->passed_pointer = true;
2402 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
2405 /* Find mode as it is passed by the ABI. */
2406 unsignedp = TYPE_UNSIGNED (passed_type);
2407 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2408 TREE_TYPE (current_function_decl), 0);
2410 egress:
2411 data->nominal_type = nominal_type;
2412 data->passed_type = passed_type;
2413 data->nominal_mode = nominal_mode;
2414 data->passed_mode = passed_mode;
2415 data->promoted_mode = promoted_mode;
2418 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2420 static void
2421 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2422 struct assign_parm_data_one *data, bool no_rtl)
2424 int varargs_pretend_bytes = 0;
2426 targetm.calls.setup_incoming_varargs (all->args_so_far,
2427 data->promoted_mode,
2428 data->passed_type,
2429 &varargs_pretend_bytes, no_rtl);
2431 /* If the back-end has requested extra stack space, record how much is
2432 needed. Do not change pretend_args_size otherwise since it may be
2433 nonzero from an earlier partial argument. */
2434 if (varargs_pretend_bytes > 0)
2435 all->pretend_args_size = varargs_pretend_bytes;
2438 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2439 the incoming location of the current parameter. */
2441 static void
2442 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2443 struct assign_parm_data_one *data)
2445 HOST_WIDE_INT pretend_bytes = 0;
2446 rtx entry_parm;
2447 bool in_regs;
2449 if (data->promoted_mode == VOIDmode)
2451 data->entry_parm = data->stack_parm = const0_rtx;
2452 return;
2455 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2456 data->promoted_mode,
2457 data->passed_type,
2458 data->named_arg);
2460 if (entry_parm == 0)
2461 data->promoted_mode = data->passed_mode;
2463 /* Determine parm's home in the stack, in case it arrives in the stack
2464 or we should pretend it did. Compute the stack position and rtx where
2465 the argument arrives and its size.
2467 There is one complexity here: If this was a parameter that would
2468 have been passed in registers, but wasn't only because it is
2469 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2470 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2471 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2472 as it was the previous time. */
2473 in_regs = entry_parm != 0;
2474 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2475 in_regs = true;
2476 #endif
2477 if (!in_regs && !data->named_arg)
2479 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2481 rtx tem;
2482 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2483 data->promoted_mode,
2484 data->passed_type, true);
2485 in_regs = tem != NULL;
2489 /* If this parameter was passed both in registers and in the stack, use
2490 the copy on the stack. */
2491 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2492 data->passed_type))
2493 entry_parm = 0;
2495 if (entry_parm)
2497 int partial;
2499 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2500 data->promoted_mode,
2501 data->passed_type,
2502 data->named_arg);
2503 data->partial = partial;
2505 /* The caller might already have allocated stack space for the
2506 register parameters. */
2507 if (partial != 0 && all->reg_parm_stack_space == 0)
2509 /* Part of this argument is passed in registers and part
2510 is passed on the stack. Ask the prologue code to extend
2511 the stack part so that we can recreate the full value.
2513 PRETEND_BYTES is the size of the registers we need to store.
2514 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2515 stack space that the prologue should allocate.
2517 Internally, gcc assumes that the argument pointer is aligned
2518 to STACK_BOUNDARY bits. This is used both for alignment
2519 optimizations (see init_emit) and to locate arguments that are
2520 aligned to more than PARM_BOUNDARY bits. We must preserve this
2521 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2522 a stack boundary. */
2524 /* We assume at most one partial arg, and it must be the first
2525 argument on the stack. */
2526 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2528 pretend_bytes = partial;
2529 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2531 /* We want to align relative to the actual stack pointer, so
2532 don't include this in the stack size until later. */
2533 all->extra_pretend_bytes = all->pretend_args_size;
2537 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2538 entry_parm ? data->partial : 0, current_function_decl,
2539 &all->stack_args_size, &data->locate);
2541 /* Update parm_stack_boundary if this parameter is passed in the
2542 stack. */
2543 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2544 crtl->parm_stack_boundary = data->locate.boundary;
2546 /* Adjust offsets to include the pretend args. */
2547 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2548 data->locate.slot_offset.constant += pretend_bytes;
2549 data->locate.offset.constant += pretend_bytes;
2551 data->entry_parm = entry_parm;
2554 /* A subroutine of assign_parms. If there is actually space on the stack
2555 for this parm, count it in stack_args_size and return true. */
2557 static bool
2558 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2559 struct assign_parm_data_one *data)
2561 /* Trivially true if we've no incoming register. */
2562 if (data->entry_parm == NULL)
2564 /* Also true if we're partially in registers and partially not,
2565 since we've arranged to drop the entire argument on the stack. */
2566 else if (data->partial != 0)
2568 /* Also true if the target says that it's passed in both registers
2569 and on the stack. */
2570 else if (GET_CODE (data->entry_parm) == PARALLEL
2571 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2573 /* Also true if the target says that there's stack allocated for
2574 all register parameters. */
2575 else if (all->reg_parm_stack_space > 0)
2577 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2578 else
2579 return false;
2581 all->stack_args_size.constant += data->locate.size.constant;
2582 if (data->locate.size.var)
2583 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2585 return true;
2588 /* A subroutine of assign_parms. Given that this parameter is allocated
2589 stack space by the ABI, find it. */
2591 static void
2592 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2594 rtx offset_rtx, stack_parm;
2595 unsigned int align, boundary;
2597 /* If we're passing this arg using a reg, make its stack home the
2598 aligned stack slot. */
2599 if (data->entry_parm)
2600 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2601 else
2602 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2604 stack_parm = crtl->args.internal_arg_pointer;
2605 if (offset_rtx != const0_rtx)
2606 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2607 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2609 if (!data->passed_pointer)
2611 set_mem_attributes (stack_parm, parm, 1);
2612 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2613 while promoted mode's size is needed. */
2614 if (data->promoted_mode != BLKmode
2615 && data->promoted_mode != DECL_MODE (parm))
2617 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2618 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2620 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2621 data->promoted_mode);
2622 if (offset)
2623 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2628 boundary = data->locate.boundary;
2629 align = BITS_PER_UNIT;
2631 /* If we're padding upward, we know that the alignment of the slot
2632 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2633 intentionally forcing upward padding. Otherwise we have to come
2634 up with a guess at the alignment based on OFFSET_RTX. */
2635 if (data->locate.where_pad != downward || data->entry_parm)
2636 align = boundary;
2637 else if (CONST_INT_P (offset_rtx))
2639 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2640 align = align & -align;
2642 set_mem_align (stack_parm, align);
2644 if (data->entry_parm)
2645 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2647 data->stack_parm = stack_parm;
2650 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2651 always valid and contiguous. */
2653 static void
2654 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2656 rtx entry_parm = data->entry_parm;
2657 rtx stack_parm = data->stack_parm;
2659 /* If this parm was passed part in regs and part in memory, pretend it
2660 arrived entirely in memory by pushing the register-part onto the stack.
2661 In the special case of a DImode or DFmode that is split, we could put
2662 it together in a pseudoreg directly, but for now that's not worth
2663 bothering with. */
2664 if (data->partial != 0)
2666 /* Handle calls that pass values in multiple non-contiguous
2667 locations. The Irix 6 ABI has examples of this. */
2668 if (GET_CODE (entry_parm) == PARALLEL)
2669 emit_group_store (validize_mem (stack_parm), entry_parm,
2670 data->passed_type,
2671 int_size_in_bytes (data->passed_type));
2672 else
2674 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2675 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2676 data->partial / UNITS_PER_WORD);
2679 entry_parm = stack_parm;
2682 /* If we didn't decide this parm came in a register, by default it came
2683 on the stack. */
2684 else if (entry_parm == NULL)
2685 entry_parm = stack_parm;
2687 /* When an argument is passed in multiple locations, we can't make use
2688 of this information, but we can save some copying if the whole argument
2689 is passed in a single register. */
2690 else if (GET_CODE (entry_parm) == PARALLEL
2691 && data->nominal_mode != BLKmode
2692 && data->passed_mode != BLKmode)
2694 size_t i, len = XVECLEN (entry_parm, 0);
2696 for (i = 0; i < len; i++)
2697 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2698 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2699 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2700 == data->passed_mode)
2701 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2703 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2704 break;
2708 data->entry_parm = entry_parm;
2711 /* A subroutine of assign_parms. Reconstitute any values which were
2712 passed in multiple registers and would fit in a single register. */
2714 static void
2715 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2717 rtx entry_parm = data->entry_parm;
2719 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2720 This can be done with register operations rather than on the
2721 stack, even if we will store the reconstituted parameter on the
2722 stack later. */
2723 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2725 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2726 emit_group_store (parmreg, entry_parm, data->passed_type,
2727 GET_MODE_SIZE (GET_MODE (entry_parm)));
2728 entry_parm = parmreg;
2731 data->entry_parm = entry_parm;
2734 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2735 always valid and properly aligned. */
2737 static void
2738 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2740 rtx stack_parm = data->stack_parm;
2742 /* If we can't trust the parm stack slot to be aligned enough for its
2743 ultimate type, don't use that slot after entry. We'll make another
2744 stack slot, if we need one. */
2745 if (stack_parm
2746 && ((STRICT_ALIGNMENT
2747 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2748 || (data->nominal_type
2749 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2750 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2751 stack_parm = NULL;
2753 /* If parm was passed in memory, and we need to convert it on entry,
2754 don't store it back in that same slot. */
2755 else if (data->entry_parm == stack_parm
2756 && data->nominal_mode != BLKmode
2757 && data->nominal_mode != data->passed_mode)
2758 stack_parm = NULL;
2760 /* If stack protection is in effect for this function, don't leave any
2761 pointers in their passed stack slots. */
2762 else if (crtl->stack_protect_guard
2763 && (flag_stack_protect == 2
2764 || data->passed_pointer
2765 || POINTER_TYPE_P (data->nominal_type)))
2766 stack_parm = NULL;
2768 data->stack_parm = stack_parm;
2771 /* A subroutine of assign_parms. Return true if the current parameter
2772 should be stored as a BLKmode in the current frame. */
2774 static bool
2775 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2777 if (data->nominal_mode == BLKmode)
2778 return true;
2779 if (GET_MODE (data->entry_parm) == BLKmode)
2780 return true;
2782 #ifdef BLOCK_REG_PADDING
2783 /* Only assign_parm_setup_block knows how to deal with register arguments
2784 that are padded at the least significant end. */
2785 if (REG_P (data->entry_parm)
2786 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2787 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2788 == (BYTES_BIG_ENDIAN ? upward : downward)))
2789 return true;
2790 #endif
2792 return false;
2795 /* A subroutine of assign_parms. Arrange for the parameter to be
2796 present and valid in DATA->STACK_RTL. */
2798 static void
2799 assign_parm_setup_block (struct assign_parm_data_all *all,
2800 tree parm, struct assign_parm_data_one *data)
2802 rtx entry_parm = data->entry_parm;
2803 rtx stack_parm = data->stack_parm;
2804 HOST_WIDE_INT size;
2805 HOST_WIDE_INT size_stored;
2807 if (GET_CODE (entry_parm) == PARALLEL)
2808 entry_parm = emit_group_move_into_temps (entry_parm);
2810 size = int_size_in_bytes (data->passed_type);
2811 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2812 if (stack_parm == 0)
2814 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2815 stack_parm = assign_stack_local (BLKmode, size_stored,
2816 DECL_ALIGN (parm));
2817 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2818 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2819 set_mem_attributes (stack_parm, parm, 1);
2822 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2823 calls that pass values in multiple non-contiguous locations. */
2824 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2826 rtx mem;
2828 /* Note that we will be storing an integral number of words.
2829 So we have to be careful to ensure that we allocate an
2830 integral number of words. We do this above when we call
2831 assign_stack_local if space was not allocated in the argument
2832 list. If it was, this will not work if PARM_BOUNDARY is not
2833 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2834 if it becomes a problem. Exception is when BLKmode arrives
2835 with arguments not conforming to word_mode. */
2837 if (data->stack_parm == 0)
2839 else if (GET_CODE (entry_parm) == PARALLEL)
2841 else
2842 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2844 mem = validize_mem (stack_parm);
2846 /* Handle values in multiple non-contiguous locations. */
2847 if (GET_CODE (entry_parm) == PARALLEL)
2849 push_to_sequence2 (all->first_conversion_insn,
2850 all->last_conversion_insn);
2851 emit_group_store (mem, entry_parm, data->passed_type, size);
2852 all->first_conversion_insn = get_insns ();
2853 all->last_conversion_insn = get_last_insn ();
2854 end_sequence ();
2857 else if (size == 0)
2860 /* If SIZE is that of a mode no bigger than a word, just use
2861 that mode's store operation. */
2862 else if (size <= UNITS_PER_WORD)
2864 enum machine_mode mode
2865 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2867 if (mode != BLKmode
2868 #ifdef BLOCK_REG_PADDING
2869 && (size == UNITS_PER_WORD
2870 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2871 != (BYTES_BIG_ENDIAN ? upward : downward)))
2872 #endif
2875 rtx reg;
2877 /* We are really truncating a word_mode value containing
2878 SIZE bytes into a value of mode MODE. If such an
2879 operation requires no actual instructions, we can refer
2880 to the value directly in mode MODE, otherwise we must
2881 start with the register in word_mode and explicitly
2882 convert it. */
2883 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2884 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2885 else
2887 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2888 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2890 emit_move_insn (change_address (mem, mode, 0), reg);
2893 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2894 machine must be aligned to the left before storing
2895 to memory. Note that the previous test doesn't
2896 handle all cases (e.g. SIZE == 3). */
2897 else if (size != UNITS_PER_WORD
2898 #ifdef BLOCK_REG_PADDING
2899 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2900 == downward)
2901 #else
2902 && BYTES_BIG_ENDIAN
2903 #endif
2906 rtx tem, x;
2907 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2908 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2910 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2911 tem = change_address (mem, word_mode, 0);
2912 emit_move_insn (tem, x);
2914 else
2915 move_block_from_reg (REGNO (entry_parm), mem,
2916 size_stored / UNITS_PER_WORD);
2918 else
2919 move_block_from_reg (REGNO (entry_parm), mem,
2920 size_stored / UNITS_PER_WORD);
2922 else if (data->stack_parm == 0)
2924 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2925 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2926 BLOCK_OP_NORMAL);
2927 all->first_conversion_insn = get_insns ();
2928 all->last_conversion_insn = get_last_insn ();
2929 end_sequence ();
2932 data->stack_parm = stack_parm;
2933 SET_DECL_RTL (parm, stack_parm);
2936 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2937 parameter. Get it there. Perform all ABI specified conversions. */
2939 static void
2940 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2941 struct assign_parm_data_one *data)
2943 rtx parmreg, validated_mem;
2944 rtx equiv_stack_parm;
2945 enum machine_mode promoted_nominal_mode;
2946 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2947 bool did_conversion = false;
2948 bool need_conversion, moved;
2950 /* Store the parm in a pseudoregister during the function, but we may
2951 need to do it in a wider mode. Using 2 here makes the result
2952 consistent with promote_decl_mode and thus expand_expr_real_1. */
2953 promoted_nominal_mode
2954 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
2955 TREE_TYPE (current_function_decl), 2);
2957 parmreg = gen_reg_rtx (promoted_nominal_mode);
2959 if (!DECL_ARTIFICIAL (parm))
2960 mark_user_reg (parmreg);
2962 /* If this was an item that we received a pointer to,
2963 set DECL_RTL appropriately. */
2964 if (data->passed_pointer)
2966 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2967 set_mem_attributes (x, parm, 1);
2968 SET_DECL_RTL (parm, x);
2970 else
2971 SET_DECL_RTL (parm, parmreg);
2973 assign_parm_remove_parallels (data);
2975 /* Copy the value into the register, thus bridging between
2976 assign_parm_find_data_types and expand_expr_real_1. */
2978 equiv_stack_parm = data->stack_parm;
2979 validated_mem = validize_mem (data->entry_parm);
2981 need_conversion = (data->nominal_mode != data->passed_mode
2982 || promoted_nominal_mode != data->promoted_mode);
2983 moved = false;
2985 if (need_conversion
2986 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2987 && data->nominal_mode == data->passed_mode
2988 && data->nominal_mode == GET_MODE (data->entry_parm))
2990 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2991 mode, by the caller. We now have to convert it to
2992 NOMINAL_MODE, if different. However, PARMREG may be in
2993 a different mode than NOMINAL_MODE if it is being stored
2994 promoted.
2996 If ENTRY_PARM is a hard register, it might be in a register
2997 not valid for operating in its mode (e.g., an odd-numbered
2998 register for a DFmode). In that case, moves are the only
2999 thing valid, so we can't do a convert from there. This
3000 occurs when the calling sequence allow such misaligned
3001 usages.
3003 In addition, the conversion may involve a call, which could
3004 clobber parameters which haven't been copied to pseudo
3005 registers yet.
3007 First, we try to emit an insn which performs the necessary
3008 conversion. We verify that this insn does not clobber any
3009 hard registers. */
3011 enum insn_code icode;
3012 rtx op0, op1;
3014 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3015 unsignedp);
3017 op0 = parmreg;
3018 op1 = validated_mem;
3019 if (icode != CODE_FOR_nothing
3020 && insn_operand_matches (icode, 0, op0)
3021 && insn_operand_matches (icode, 1, op1))
3023 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3024 rtx insn, insns, t = op1;
3025 HARD_REG_SET hardregs;
3027 start_sequence ();
3028 /* If op1 is a hard register that is likely spilled, first
3029 force it into a pseudo, otherwise combiner might extend
3030 its lifetime too much. */
3031 if (GET_CODE (t) == SUBREG)
3032 t = SUBREG_REG (t);
3033 if (REG_P (t)
3034 && HARD_REGISTER_P (t)
3035 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3036 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3038 t = gen_reg_rtx (GET_MODE (op1));
3039 emit_move_insn (t, op1);
3041 else
3042 t = op1;
3043 insn = gen_extend_insn (op0, t, promoted_nominal_mode,
3044 data->passed_mode, unsignedp);
3045 emit_insn (insn);
3046 insns = get_insns ();
3048 moved = true;
3049 CLEAR_HARD_REG_SET (hardregs);
3050 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3052 if (INSN_P (insn))
3053 note_stores (PATTERN (insn), record_hard_reg_sets,
3054 &hardregs);
3055 if (!hard_reg_set_empty_p (hardregs))
3056 moved = false;
3059 end_sequence ();
3061 if (moved)
3063 emit_insn (insns);
3064 if (equiv_stack_parm != NULL_RTX)
3065 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3066 equiv_stack_parm);
3071 if (moved)
3072 /* Nothing to do. */
3074 else if (need_conversion)
3076 /* We did not have an insn to convert directly, or the sequence
3077 generated appeared unsafe. We must first copy the parm to a
3078 pseudo reg, and save the conversion until after all
3079 parameters have been moved. */
3081 int save_tree_used;
3082 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3084 emit_move_insn (tempreg, validated_mem);
3086 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3087 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3089 if (GET_CODE (tempreg) == SUBREG
3090 && GET_MODE (tempreg) == data->nominal_mode
3091 && REG_P (SUBREG_REG (tempreg))
3092 && data->nominal_mode == data->passed_mode
3093 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3094 && GET_MODE_SIZE (GET_MODE (tempreg))
3095 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3097 /* The argument is already sign/zero extended, so note it
3098 into the subreg. */
3099 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3100 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
3103 /* TREE_USED gets set erroneously during expand_assignment. */
3104 save_tree_used = TREE_USED (parm);
3105 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3106 TREE_USED (parm) = save_tree_used;
3107 all->first_conversion_insn = get_insns ();
3108 all->last_conversion_insn = get_last_insn ();
3109 end_sequence ();
3111 did_conversion = true;
3113 else
3114 emit_move_insn (parmreg, validated_mem);
3116 /* If we were passed a pointer but the actual value can safely live
3117 in a register, retrieve it and use it directly. */
3118 if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3120 /* We can't use nominal_mode, because it will have been set to
3121 Pmode above. We must use the actual mode of the parm. */
3122 if (use_register_for_decl (parm))
3124 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3125 mark_user_reg (parmreg);
3127 else
3129 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3130 TYPE_MODE (TREE_TYPE (parm)),
3131 TYPE_ALIGN (TREE_TYPE (parm)));
3132 parmreg
3133 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3134 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3135 align);
3136 set_mem_attributes (parmreg, parm, 1);
3139 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3141 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3142 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3144 push_to_sequence2 (all->first_conversion_insn,
3145 all->last_conversion_insn);
3146 emit_move_insn (tempreg, DECL_RTL (parm));
3147 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3148 emit_move_insn (parmreg, tempreg);
3149 all->first_conversion_insn = get_insns ();
3150 all->last_conversion_insn = get_last_insn ();
3151 end_sequence ();
3153 did_conversion = true;
3155 else
3156 emit_move_insn (parmreg, DECL_RTL (parm));
3158 SET_DECL_RTL (parm, parmreg);
3160 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3161 now the parm. */
3162 data->stack_parm = NULL;
3165 /* Mark the register as eliminable if we did no conversion and it was
3166 copied from memory at a fixed offset, and the arg pointer was not
3167 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3168 offset formed an invalid address, such memory-equivalences as we
3169 make here would screw up life analysis for it. */
3170 if (data->nominal_mode == data->passed_mode
3171 && !did_conversion
3172 && data->stack_parm != 0
3173 && MEM_P (data->stack_parm)
3174 && data->locate.offset.var == 0
3175 && reg_mentioned_p (virtual_incoming_args_rtx,
3176 XEXP (data->stack_parm, 0)))
3178 rtx linsn = get_last_insn ();
3179 rtx sinsn, set;
3181 /* Mark complex types separately. */
3182 if (GET_CODE (parmreg) == CONCAT)
3184 enum machine_mode submode
3185 = GET_MODE_INNER (GET_MODE (parmreg));
3186 int regnor = REGNO (XEXP (parmreg, 0));
3187 int regnoi = REGNO (XEXP (parmreg, 1));
3188 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3189 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3190 GET_MODE_SIZE (submode));
3192 /* Scan backwards for the set of the real and
3193 imaginary parts. */
3194 for (sinsn = linsn; sinsn != 0;
3195 sinsn = prev_nonnote_insn (sinsn))
3197 set = single_set (sinsn);
3198 if (set == 0)
3199 continue;
3201 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3202 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3203 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3204 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3207 else
3208 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3211 /* For pointer data type, suggest pointer register. */
3212 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3213 mark_reg_pointer (parmreg,
3214 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3217 /* A subroutine of assign_parms. Allocate stack space to hold the current
3218 parameter. Get it there. Perform all ABI specified conversions. */
3220 static void
3221 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3222 struct assign_parm_data_one *data)
3224 /* Value must be stored in the stack slot STACK_PARM during function
3225 execution. */
3226 bool to_conversion = false;
3228 assign_parm_remove_parallels (data);
3230 if (data->promoted_mode != data->nominal_mode)
3232 /* Conversion is required. */
3233 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3235 emit_move_insn (tempreg, validize_mem (data->entry_parm));
3237 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3238 to_conversion = true;
3240 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3241 TYPE_UNSIGNED (TREE_TYPE (parm)));
3243 if (data->stack_parm)
3245 int offset = subreg_lowpart_offset (data->nominal_mode,
3246 GET_MODE (data->stack_parm));
3247 /* ??? This may need a big-endian conversion on sparc64. */
3248 data->stack_parm
3249 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3250 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3251 set_mem_offset (data->stack_parm,
3252 MEM_OFFSET (data->stack_parm) + offset);
3256 if (data->entry_parm != data->stack_parm)
3258 rtx src, dest;
3260 if (data->stack_parm == 0)
3262 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3263 GET_MODE (data->entry_parm),
3264 TYPE_ALIGN (data->passed_type));
3265 data->stack_parm
3266 = assign_stack_local (GET_MODE (data->entry_parm),
3267 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3268 align);
3269 set_mem_attributes (data->stack_parm, parm, 1);
3272 dest = validize_mem (data->stack_parm);
3273 src = validize_mem (data->entry_parm);
3275 if (MEM_P (src))
3277 /* Use a block move to handle potentially misaligned entry_parm. */
3278 if (!to_conversion)
3279 push_to_sequence2 (all->first_conversion_insn,
3280 all->last_conversion_insn);
3281 to_conversion = true;
3283 emit_block_move (dest, src,
3284 GEN_INT (int_size_in_bytes (data->passed_type)),
3285 BLOCK_OP_NORMAL);
3287 else
3288 emit_move_insn (dest, src);
3291 if (to_conversion)
3293 all->first_conversion_insn = get_insns ();
3294 all->last_conversion_insn = get_last_insn ();
3295 end_sequence ();
3298 SET_DECL_RTL (parm, data->stack_parm);
3301 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3302 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3304 static void
3305 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3306 vec<tree> fnargs)
3308 tree parm;
3309 tree orig_fnargs = all->orig_fnargs;
3310 unsigned i = 0;
3312 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3314 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3315 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3317 rtx tmp, real, imag;
3318 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3320 real = DECL_RTL (fnargs[i]);
3321 imag = DECL_RTL (fnargs[i + 1]);
3322 if (inner != GET_MODE (real))
3324 real = gen_lowpart_SUBREG (inner, real);
3325 imag = gen_lowpart_SUBREG (inner, imag);
3328 if (TREE_ADDRESSABLE (parm))
3330 rtx rmem, imem;
3331 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3332 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3333 DECL_MODE (parm),
3334 TYPE_ALIGN (TREE_TYPE (parm)));
3336 /* split_complex_arg put the real and imag parts in
3337 pseudos. Move them to memory. */
3338 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3339 set_mem_attributes (tmp, parm, 1);
3340 rmem = adjust_address_nv (tmp, inner, 0);
3341 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3342 push_to_sequence2 (all->first_conversion_insn,
3343 all->last_conversion_insn);
3344 emit_move_insn (rmem, real);
3345 emit_move_insn (imem, imag);
3346 all->first_conversion_insn = get_insns ();
3347 all->last_conversion_insn = get_last_insn ();
3348 end_sequence ();
3350 else
3351 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3352 SET_DECL_RTL (parm, tmp);
3354 real = DECL_INCOMING_RTL (fnargs[i]);
3355 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3356 if (inner != GET_MODE (real))
3358 real = gen_lowpart_SUBREG (inner, real);
3359 imag = gen_lowpart_SUBREG (inner, imag);
3361 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3362 set_decl_incoming_rtl (parm, tmp, false);
3363 i++;
3368 /* Assign RTL expressions to the function's parameters. This may involve
3369 copying them into registers and using those registers as the DECL_RTL. */
3371 static void
3372 assign_parms (tree fndecl)
3374 struct assign_parm_data_all all;
3375 tree parm;
3376 vec<tree> fnargs;
3377 unsigned i;
3379 crtl->args.internal_arg_pointer
3380 = targetm.calls.internal_arg_pointer ();
3382 assign_parms_initialize_all (&all);
3383 fnargs = assign_parms_augmented_arg_list (&all);
3385 FOR_EACH_VEC_ELT (fnargs, i, parm)
3387 struct assign_parm_data_one data;
3389 /* Extract the type of PARM; adjust it according to ABI. */
3390 assign_parm_find_data_types (&all, parm, &data);
3392 /* Early out for errors and void parameters. */
3393 if (data.passed_mode == VOIDmode)
3395 SET_DECL_RTL (parm, const0_rtx);
3396 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3397 continue;
3400 /* Estimate stack alignment from parameter alignment. */
3401 if (SUPPORTS_STACK_ALIGNMENT)
3403 unsigned int align
3404 = targetm.calls.function_arg_boundary (data.promoted_mode,
3405 data.passed_type);
3406 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3407 align);
3408 if (TYPE_ALIGN (data.nominal_type) > align)
3409 align = MINIMUM_ALIGNMENT (data.nominal_type,
3410 TYPE_MODE (data.nominal_type),
3411 TYPE_ALIGN (data.nominal_type));
3412 if (crtl->stack_alignment_estimated < align)
3414 gcc_assert (!crtl->stack_realign_processed);
3415 crtl->stack_alignment_estimated = align;
3419 if (cfun->stdarg && !DECL_CHAIN (parm))
3420 assign_parms_setup_varargs (&all, &data, false);
3422 /* Find out where the parameter arrives in this function. */
3423 assign_parm_find_entry_rtl (&all, &data);
3425 /* Find out where stack space for this parameter might be. */
3426 if (assign_parm_is_stack_parm (&all, &data))
3428 assign_parm_find_stack_rtl (parm, &data);
3429 assign_parm_adjust_entry_rtl (&data);
3432 /* Record permanently how this parm was passed. */
3433 if (data.passed_pointer)
3435 rtx incoming_rtl
3436 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3437 data.entry_parm);
3438 set_decl_incoming_rtl (parm, incoming_rtl, true);
3440 else
3441 set_decl_incoming_rtl (parm, data.entry_parm, false);
3443 /* Update info on where next arg arrives in registers. */
3444 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3445 data.passed_type, data.named_arg);
3447 assign_parm_adjust_stack_rtl (&data);
3449 if (assign_parm_setup_block_p (&data))
3450 assign_parm_setup_block (&all, parm, &data);
3451 else if (data.passed_pointer || use_register_for_decl (parm))
3452 assign_parm_setup_reg (&all, parm, &data);
3453 else
3454 assign_parm_setup_stack (&all, parm, &data);
3457 if (targetm.calls.split_complex_arg)
3458 assign_parms_unsplit_complex (&all, fnargs);
3460 fnargs.release ();
3462 /* Output all parameter conversion instructions (possibly including calls)
3463 now that all parameters have been copied out of hard registers. */
3464 emit_insn (all.first_conversion_insn);
3466 /* Estimate reload stack alignment from scalar return mode. */
3467 if (SUPPORTS_STACK_ALIGNMENT)
3469 if (DECL_RESULT (fndecl))
3471 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3472 enum machine_mode mode = TYPE_MODE (type);
3474 if (mode != BLKmode
3475 && mode != VOIDmode
3476 && !AGGREGATE_TYPE_P (type))
3478 unsigned int align = GET_MODE_ALIGNMENT (mode);
3479 if (crtl->stack_alignment_estimated < align)
3481 gcc_assert (!crtl->stack_realign_processed);
3482 crtl->stack_alignment_estimated = align;
3488 /* If we are receiving a struct value address as the first argument, set up
3489 the RTL for the function result. As this might require code to convert
3490 the transmitted address to Pmode, we do this here to ensure that possible
3491 preliminary conversions of the address have been emitted already. */
3492 if (all.function_result_decl)
3494 tree result = DECL_RESULT (current_function_decl);
3495 rtx addr = DECL_RTL (all.function_result_decl);
3496 rtx x;
3498 if (DECL_BY_REFERENCE (result))
3500 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3501 x = addr;
3503 else
3505 SET_DECL_VALUE_EXPR (result,
3506 build1 (INDIRECT_REF, TREE_TYPE (result),
3507 all.function_result_decl));
3508 addr = convert_memory_address (Pmode, addr);
3509 x = gen_rtx_MEM (DECL_MODE (result), addr);
3510 set_mem_attributes (x, result, 1);
3513 DECL_HAS_VALUE_EXPR_P (result) = 1;
3515 SET_DECL_RTL (result, x);
3518 /* We have aligned all the args, so add space for the pretend args. */
3519 crtl->args.pretend_args_size = all.pretend_args_size;
3520 all.stack_args_size.constant += all.extra_pretend_bytes;
3521 crtl->args.size = all.stack_args_size.constant;
3523 /* Adjust function incoming argument size for alignment and
3524 minimum length. */
3526 #ifdef REG_PARM_STACK_SPACE
3527 crtl->args.size = MAX (crtl->args.size,
3528 REG_PARM_STACK_SPACE (fndecl));
3529 #endif
3531 crtl->args.size = CEIL_ROUND (crtl->args.size,
3532 PARM_BOUNDARY / BITS_PER_UNIT);
3534 #ifdef ARGS_GROW_DOWNWARD
3535 crtl->args.arg_offset_rtx
3536 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3537 : expand_expr (size_diffop (all.stack_args_size.var,
3538 size_int (-all.stack_args_size.constant)),
3539 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3540 #else
3541 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3542 #endif
3544 /* See how many bytes, if any, of its args a function should try to pop
3545 on return. */
3547 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3548 TREE_TYPE (fndecl),
3549 crtl->args.size);
3551 /* For stdarg.h function, save info about
3552 regs and stack space used by the named args. */
3554 crtl->args.info = all.args_so_far_v;
3556 /* Set the rtx used for the function return value. Put this in its
3557 own variable so any optimizers that need this information don't have
3558 to include tree.h. Do this here so it gets done when an inlined
3559 function gets output. */
3561 crtl->return_rtx
3562 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3563 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3565 /* If scalar return value was computed in a pseudo-reg, or was a named
3566 return value that got dumped to the stack, copy that to the hard
3567 return register. */
3568 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3570 tree decl_result = DECL_RESULT (fndecl);
3571 rtx decl_rtl = DECL_RTL (decl_result);
3573 if (REG_P (decl_rtl)
3574 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3575 : DECL_REGISTER (decl_result))
3577 rtx real_decl_rtl;
3579 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3580 fndecl, true);
3581 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3582 /* The delay slot scheduler assumes that crtl->return_rtx
3583 holds the hard register containing the return value, not a
3584 temporary pseudo. */
3585 crtl->return_rtx = real_decl_rtl;
3590 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3591 For all seen types, gimplify their sizes. */
3593 static tree
3594 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3596 tree t = *tp;
3598 *walk_subtrees = 0;
3599 if (TYPE_P (t))
3601 if (POINTER_TYPE_P (t))
3602 *walk_subtrees = 1;
3603 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3604 && !TYPE_SIZES_GIMPLIFIED (t))
3606 gimplify_type_sizes (t, (gimple_seq *) data);
3607 *walk_subtrees = 1;
3611 return NULL;
3614 /* Gimplify the parameter list for current_function_decl. This involves
3615 evaluating SAVE_EXPRs of variable sized parameters and generating code
3616 to implement callee-copies reference parameters. Returns a sequence of
3617 statements to add to the beginning of the function. */
3619 gimple_seq
3620 gimplify_parameters (void)
3622 struct assign_parm_data_all all;
3623 tree parm;
3624 gimple_seq stmts = NULL;
3625 vec<tree> fnargs;
3626 unsigned i;
3628 assign_parms_initialize_all (&all);
3629 fnargs = assign_parms_augmented_arg_list (&all);
3631 FOR_EACH_VEC_ELT (fnargs, i, parm)
3633 struct assign_parm_data_one data;
3635 /* Extract the type of PARM; adjust it according to ABI. */
3636 assign_parm_find_data_types (&all, parm, &data);
3638 /* Early out for errors and void parameters. */
3639 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3640 continue;
3642 /* Update info on where next arg arrives in registers. */
3643 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3644 data.passed_type, data.named_arg);
3646 /* ??? Once upon a time variable_size stuffed parameter list
3647 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3648 turned out to be less than manageable in the gimple world.
3649 Now we have to hunt them down ourselves. */
3650 walk_tree_without_duplicates (&data.passed_type,
3651 gimplify_parm_type, &stmts);
3653 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3655 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3656 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3659 if (data.passed_pointer)
3661 tree type = TREE_TYPE (data.passed_type);
3662 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3663 type, data.named_arg))
3665 tree local, t;
3667 /* For constant-sized objects, this is trivial; for
3668 variable-sized objects, we have to play games. */
3669 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3670 && !(flag_stack_check == GENERIC_STACK_CHECK
3671 && compare_tree_int (DECL_SIZE_UNIT (parm),
3672 STACK_CHECK_MAX_VAR_SIZE) > 0))
3674 local = create_tmp_var (type, get_name (parm));
3675 DECL_IGNORED_P (local) = 0;
3676 /* If PARM was addressable, move that flag over
3677 to the local copy, as its address will be taken,
3678 not the PARMs. Keep the parms address taken
3679 as we'll query that flag during gimplification. */
3680 if (TREE_ADDRESSABLE (parm))
3681 TREE_ADDRESSABLE (local) = 1;
3682 else if (TREE_CODE (type) == COMPLEX_TYPE
3683 || TREE_CODE (type) == VECTOR_TYPE)
3684 DECL_GIMPLE_REG_P (local) = 1;
3686 else
3688 tree ptr_type, addr;
3690 ptr_type = build_pointer_type (type);
3691 addr = create_tmp_reg (ptr_type, get_name (parm));
3692 DECL_IGNORED_P (addr) = 0;
3693 local = build_fold_indirect_ref (addr);
3695 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3696 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3697 size_int (DECL_ALIGN (parm)));
3699 /* The call has been built for a variable-sized object. */
3700 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3701 t = fold_convert (ptr_type, t);
3702 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3703 gimplify_and_add (t, &stmts);
3706 gimplify_assign (local, parm, &stmts);
3708 SET_DECL_VALUE_EXPR (parm, local);
3709 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3714 fnargs.release ();
3716 return stmts;
3719 /* Compute the size and offset from the start of the stacked arguments for a
3720 parm passed in mode PASSED_MODE and with type TYPE.
3722 INITIAL_OFFSET_PTR points to the current offset into the stacked
3723 arguments.
3725 The starting offset and size for this parm are returned in
3726 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3727 nonzero, the offset is that of stack slot, which is returned in
3728 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3729 padding required from the initial offset ptr to the stack slot.
3731 IN_REGS is nonzero if the argument will be passed in registers. It will
3732 never be set if REG_PARM_STACK_SPACE is not defined.
3734 FNDECL is the function in which the argument was defined.
3736 There are two types of rounding that are done. The first, controlled by
3737 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3738 argument list to be aligned to the specific boundary (in bits). This
3739 rounding affects the initial and starting offsets, but not the argument
3740 size.
3742 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3743 optionally rounds the size of the parm to PARM_BOUNDARY. The
3744 initial offset is not affected by this rounding, while the size always
3745 is and the starting offset may be. */
3747 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3748 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3749 callers pass in the total size of args so far as
3750 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3752 void
3753 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3754 int partial, tree fndecl ATTRIBUTE_UNUSED,
3755 struct args_size *initial_offset_ptr,
3756 struct locate_and_pad_arg_data *locate)
3758 tree sizetree;
3759 enum direction where_pad;
3760 unsigned int boundary, round_boundary;
3761 int reg_parm_stack_space = 0;
3762 int part_size_in_regs;
3764 #ifdef REG_PARM_STACK_SPACE
3765 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3767 /* If we have found a stack parm before we reach the end of the
3768 area reserved for registers, skip that area. */
3769 if (! in_regs)
3771 if (reg_parm_stack_space > 0)
3773 if (initial_offset_ptr->var)
3775 initial_offset_ptr->var
3776 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3777 ssize_int (reg_parm_stack_space));
3778 initial_offset_ptr->constant = 0;
3780 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3781 initial_offset_ptr->constant = reg_parm_stack_space;
3784 #endif /* REG_PARM_STACK_SPACE */
3786 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3788 sizetree
3789 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3790 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3791 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
3792 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3793 type);
3794 locate->where_pad = where_pad;
3796 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3797 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3798 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3800 locate->boundary = boundary;
3802 if (SUPPORTS_STACK_ALIGNMENT)
3804 /* stack_alignment_estimated can't change after stack has been
3805 realigned. */
3806 if (crtl->stack_alignment_estimated < boundary)
3808 if (!crtl->stack_realign_processed)
3809 crtl->stack_alignment_estimated = boundary;
3810 else
3812 /* If stack is realigned and stack alignment value
3813 hasn't been finalized, it is OK not to increase
3814 stack_alignment_estimated. The bigger alignment
3815 requirement is recorded in stack_alignment_needed
3816 below. */
3817 gcc_assert (!crtl->stack_realign_finalized
3818 && crtl->stack_realign_needed);
3823 /* Remember if the outgoing parameter requires extra alignment on the
3824 calling function side. */
3825 if (crtl->stack_alignment_needed < boundary)
3826 crtl->stack_alignment_needed = boundary;
3827 if (crtl->preferred_stack_boundary < boundary)
3828 crtl->preferred_stack_boundary = boundary;
3830 #ifdef ARGS_GROW_DOWNWARD
3831 locate->slot_offset.constant = -initial_offset_ptr->constant;
3832 if (initial_offset_ptr->var)
3833 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3834 initial_offset_ptr->var);
3837 tree s2 = sizetree;
3838 if (where_pad != none
3839 && (!host_integerp (sizetree, 1)
3840 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3841 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
3842 SUB_PARM_SIZE (locate->slot_offset, s2);
3845 locate->slot_offset.constant += part_size_in_regs;
3847 if (!in_regs
3848 #ifdef REG_PARM_STACK_SPACE
3849 || REG_PARM_STACK_SPACE (fndecl) > 0
3850 #endif
3852 pad_to_arg_alignment (&locate->slot_offset, boundary,
3853 &locate->alignment_pad);
3855 locate->size.constant = (-initial_offset_ptr->constant
3856 - locate->slot_offset.constant);
3857 if (initial_offset_ptr->var)
3858 locate->size.var = size_binop (MINUS_EXPR,
3859 size_binop (MINUS_EXPR,
3860 ssize_int (0),
3861 initial_offset_ptr->var),
3862 locate->slot_offset.var);
3864 /* Pad_below needs the pre-rounded size to know how much to pad
3865 below. */
3866 locate->offset = locate->slot_offset;
3867 if (where_pad == downward)
3868 pad_below (&locate->offset, passed_mode, sizetree);
3870 #else /* !ARGS_GROW_DOWNWARD */
3871 if (!in_regs
3872 #ifdef REG_PARM_STACK_SPACE
3873 || REG_PARM_STACK_SPACE (fndecl) > 0
3874 #endif
3876 pad_to_arg_alignment (initial_offset_ptr, boundary,
3877 &locate->alignment_pad);
3878 locate->slot_offset = *initial_offset_ptr;
3880 #ifdef PUSH_ROUNDING
3881 if (passed_mode != BLKmode)
3882 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3883 #endif
3885 /* Pad_below needs the pre-rounded size to know how much to pad below
3886 so this must be done before rounding up. */
3887 locate->offset = locate->slot_offset;
3888 if (where_pad == downward)
3889 pad_below (&locate->offset, passed_mode, sizetree);
3891 if (where_pad != none
3892 && (!host_integerp (sizetree, 1)
3893 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % round_boundary))
3894 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
3896 ADD_PARM_SIZE (locate->size, sizetree);
3898 locate->size.constant -= part_size_in_regs;
3899 #endif /* ARGS_GROW_DOWNWARD */
3901 #ifdef FUNCTION_ARG_OFFSET
3902 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3903 #endif
3906 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3907 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3909 static void
3910 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3911 struct args_size *alignment_pad)
3913 tree save_var = NULL_TREE;
3914 HOST_WIDE_INT save_constant = 0;
3915 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3916 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3918 #ifdef SPARC_STACK_BOUNDARY_HACK
3919 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3920 the real alignment of %sp. However, when it does this, the
3921 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3922 if (SPARC_STACK_BOUNDARY_HACK)
3923 sp_offset = 0;
3924 #endif
3926 if (boundary > PARM_BOUNDARY)
3928 save_var = offset_ptr->var;
3929 save_constant = offset_ptr->constant;
3932 alignment_pad->var = NULL_TREE;
3933 alignment_pad->constant = 0;
3935 if (boundary > BITS_PER_UNIT)
3937 if (offset_ptr->var)
3939 tree sp_offset_tree = ssize_int (sp_offset);
3940 tree offset = size_binop (PLUS_EXPR,
3941 ARGS_SIZE_TREE (*offset_ptr),
3942 sp_offset_tree);
3943 #ifdef ARGS_GROW_DOWNWARD
3944 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3945 #else
3946 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3947 #endif
3949 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3950 /* ARGS_SIZE_TREE includes constant term. */
3951 offset_ptr->constant = 0;
3952 if (boundary > PARM_BOUNDARY)
3953 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3954 save_var);
3956 else
3958 offset_ptr->constant = -sp_offset +
3959 #ifdef ARGS_GROW_DOWNWARD
3960 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3961 #else
3962 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3963 #endif
3964 if (boundary > PARM_BOUNDARY)
3965 alignment_pad->constant = offset_ptr->constant - save_constant;
3970 static void
3971 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3973 if (passed_mode != BLKmode)
3975 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3976 offset_ptr->constant
3977 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3978 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3979 - GET_MODE_SIZE (passed_mode));
3981 else
3983 if (TREE_CODE (sizetree) != INTEGER_CST
3984 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3986 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3987 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3988 /* Add it in. */
3989 ADD_PARM_SIZE (*offset_ptr, s2);
3990 SUB_PARM_SIZE (*offset_ptr, sizetree);
3996 /* True if register REGNO was alive at a place where `setjmp' was
3997 called and was set more than once or is an argument. Such regs may
3998 be clobbered by `longjmp'. */
4000 static bool
4001 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
4003 /* There appear to be cases where some local vars never reach the
4004 backend but have bogus regnos. */
4005 if (regno >= max_reg_num ())
4006 return false;
4008 return ((REG_N_SETS (regno) > 1
4009 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
4010 && REGNO_REG_SET_P (setjmp_crosses, regno));
4013 /* Walk the tree of blocks describing the binding levels within a
4014 function and warn about variables the might be killed by setjmp or
4015 vfork. This is done after calling flow_analysis before register
4016 allocation since that will clobber the pseudo-regs to hard
4017 regs. */
4019 static void
4020 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4022 tree decl, sub;
4024 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4026 if (TREE_CODE (decl) == VAR_DECL
4027 && DECL_RTL_SET_P (decl)
4028 && REG_P (DECL_RTL (decl))
4029 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4030 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4031 " %<longjmp%> or %<vfork%>", decl);
4034 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4035 setjmp_vars_warning (setjmp_crosses, sub);
4038 /* Do the appropriate part of setjmp_vars_warning
4039 but for arguments instead of local variables. */
4041 static void
4042 setjmp_args_warning (bitmap setjmp_crosses)
4044 tree decl;
4045 for (decl = DECL_ARGUMENTS (current_function_decl);
4046 decl; decl = DECL_CHAIN (decl))
4047 if (DECL_RTL (decl) != 0
4048 && REG_P (DECL_RTL (decl))
4049 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4050 warning (OPT_Wclobbered,
4051 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4052 decl);
4055 /* Generate warning messages for variables live across setjmp. */
4057 void
4058 generate_setjmp_warnings (void)
4060 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4062 if (n_basic_blocks == NUM_FIXED_BLOCKS
4063 || bitmap_empty_p (setjmp_crosses))
4064 return;
4066 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4067 setjmp_args_warning (setjmp_crosses);
4071 /* Reverse the order of elements in the fragment chain T of blocks,
4072 and return the new head of the chain (old last element).
4073 In addition to that clear BLOCK_SAME_RANGE flags when needed
4074 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4075 its super fragment origin. */
4077 static tree
4078 block_fragments_nreverse (tree t)
4080 tree prev = 0, block, next, prev_super = 0;
4081 tree super = BLOCK_SUPERCONTEXT (t);
4082 if (BLOCK_FRAGMENT_ORIGIN (super))
4083 super = BLOCK_FRAGMENT_ORIGIN (super);
4084 for (block = t; block; block = next)
4086 next = BLOCK_FRAGMENT_CHAIN (block);
4087 BLOCK_FRAGMENT_CHAIN (block) = prev;
4088 if ((prev && !BLOCK_SAME_RANGE (prev))
4089 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4090 != prev_super))
4091 BLOCK_SAME_RANGE (block) = 0;
4092 prev_super = BLOCK_SUPERCONTEXT (block);
4093 BLOCK_SUPERCONTEXT (block) = super;
4094 prev = block;
4096 t = BLOCK_FRAGMENT_ORIGIN (t);
4097 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4098 != prev_super)
4099 BLOCK_SAME_RANGE (t) = 0;
4100 BLOCK_SUPERCONTEXT (t) = super;
4101 return prev;
4104 /* Reverse the order of elements in the chain T of blocks,
4105 and return the new head of the chain (old last element).
4106 Also do the same on subblocks and reverse the order of elements
4107 in BLOCK_FRAGMENT_CHAIN as well. */
4109 static tree
4110 blocks_nreverse_all (tree t)
4112 tree prev = 0, block, next;
4113 for (block = t; block; block = next)
4115 next = BLOCK_CHAIN (block);
4116 BLOCK_CHAIN (block) = prev;
4117 if (BLOCK_FRAGMENT_CHAIN (block)
4118 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4120 BLOCK_FRAGMENT_CHAIN (block)
4121 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4122 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4123 BLOCK_SAME_RANGE (block) = 0;
4125 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4126 prev = block;
4128 return prev;
4132 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4133 and create duplicate blocks. */
4134 /* ??? Need an option to either create block fragments or to create
4135 abstract origin duplicates of a source block. It really depends
4136 on what optimization has been performed. */
4138 void
4139 reorder_blocks (void)
4141 tree block = DECL_INITIAL (current_function_decl);
4143 if (block == NULL_TREE)
4144 return;
4146 stack_vec<tree, 10> block_stack;
4148 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4149 clear_block_marks (block);
4151 /* Prune the old trees away, so that they don't get in the way. */
4152 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4153 BLOCK_CHAIN (block) = NULL_TREE;
4155 /* Recreate the block tree from the note nesting. */
4156 reorder_blocks_1 (get_insns (), block, &block_stack);
4157 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4160 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4162 void
4163 clear_block_marks (tree block)
4165 while (block)
4167 TREE_ASM_WRITTEN (block) = 0;
4168 clear_block_marks (BLOCK_SUBBLOCKS (block));
4169 block = BLOCK_CHAIN (block);
4173 static void
4174 reorder_blocks_1 (rtx insns, tree current_block, vec<tree> *p_block_stack)
4176 rtx insn;
4177 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4179 for (insn = insns; insn; insn = NEXT_INSN (insn))
4181 if (NOTE_P (insn))
4183 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4185 tree block = NOTE_BLOCK (insn);
4186 tree origin;
4188 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4189 origin = block;
4191 if (prev_end)
4192 BLOCK_SAME_RANGE (prev_end) = 0;
4193 prev_end = NULL_TREE;
4195 /* If we have seen this block before, that means it now
4196 spans multiple address regions. Create a new fragment. */
4197 if (TREE_ASM_WRITTEN (block))
4199 tree new_block = copy_node (block);
4201 BLOCK_SAME_RANGE (new_block) = 0;
4202 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4203 BLOCK_FRAGMENT_CHAIN (new_block)
4204 = BLOCK_FRAGMENT_CHAIN (origin);
4205 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4207 NOTE_BLOCK (insn) = new_block;
4208 block = new_block;
4211 if (prev_beg == current_block && prev_beg)
4212 BLOCK_SAME_RANGE (block) = 1;
4214 prev_beg = origin;
4216 BLOCK_SUBBLOCKS (block) = 0;
4217 TREE_ASM_WRITTEN (block) = 1;
4218 /* When there's only one block for the entire function,
4219 current_block == block and we mustn't do this, it
4220 will cause infinite recursion. */
4221 if (block != current_block)
4223 tree super;
4224 if (block != origin)
4225 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4226 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4227 (origin))
4228 == current_block);
4229 if (p_block_stack->is_empty ())
4230 super = current_block;
4231 else
4233 super = p_block_stack->last ();
4234 gcc_assert (super == current_block
4235 || BLOCK_FRAGMENT_ORIGIN (super)
4236 == current_block);
4238 BLOCK_SUPERCONTEXT (block) = super;
4239 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4240 BLOCK_SUBBLOCKS (current_block) = block;
4241 current_block = origin;
4243 p_block_stack->safe_push (block);
4245 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4247 NOTE_BLOCK (insn) = p_block_stack->pop ();
4248 current_block = BLOCK_SUPERCONTEXT (current_block);
4249 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4250 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4251 prev_beg = NULL_TREE;
4252 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4253 ? NOTE_BLOCK (insn) : NULL_TREE;
4256 else
4258 prev_beg = NULL_TREE;
4259 if (prev_end)
4260 BLOCK_SAME_RANGE (prev_end) = 0;
4261 prev_end = NULL_TREE;
4266 /* Reverse the order of elements in the chain T of blocks,
4267 and return the new head of the chain (old last element). */
4269 tree
4270 blocks_nreverse (tree t)
4272 tree prev = 0, block, next;
4273 for (block = t; block; block = next)
4275 next = BLOCK_CHAIN (block);
4276 BLOCK_CHAIN (block) = prev;
4277 prev = block;
4279 return prev;
4282 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4283 by modifying the last node in chain 1 to point to chain 2. */
4285 tree
4286 block_chainon (tree op1, tree op2)
4288 tree t1;
4290 if (!op1)
4291 return op2;
4292 if (!op2)
4293 return op1;
4295 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4296 continue;
4297 BLOCK_CHAIN (t1) = op2;
4299 #ifdef ENABLE_TREE_CHECKING
4301 tree t2;
4302 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4303 gcc_assert (t2 != t1);
4305 #endif
4307 return op1;
4310 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4311 non-NULL, list them all into VECTOR, in a depth-first preorder
4312 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4313 blocks. */
4315 static int
4316 all_blocks (tree block, tree *vector)
4318 int n_blocks = 0;
4320 while (block)
4322 TREE_ASM_WRITTEN (block) = 0;
4324 /* Record this block. */
4325 if (vector)
4326 vector[n_blocks] = block;
4328 ++n_blocks;
4330 /* Record the subblocks, and their subblocks... */
4331 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4332 vector ? vector + n_blocks : 0);
4333 block = BLOCK_CHAIN (block);
4336 return n_blocks;
4339 /* Return a vector containing all the blocks rooted at BLOCK. The
4340 number of elements in the vector is stored in N_BLOCKS_P. The
4341 vector is dynamically allocated; it is the caller's responsibility
4342 to call `free' on the pointer returned. */
4344 static tree *
4345 get_block_vector (tree block, int *n_blocks_p)
4347 tree *block_vector;
4349 *n_blocks_p = all_blocks (block, NULL);
4350 block_vector = XNEWVEC (tree, *n_blocks_p);
4351 all_blocks (block, block_vector);
4353 return block_vector;
4356 static GTY(()) int next_block_index = 2;
4358 /* Set BLOCK_NUMBER for all the blocks in FN. */
4360 void
4361 number_blocks (tree fn)
4363 int i;
4364 int n_blocks;
4365 tree *block_vector;
4367 /* For SDB and XCOFF debugging output, we start numbering the blocks
4368 from 1 within each function, rather than keeping a running
4369 count. */
4370 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4371 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4372 next_block_index = 1;
4373 #endif
4375 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4377 /* The top-level BLOCK isn't numbered at all. */
4378 for (i = 1; i < n_blocks; ++i)
4379 /* We number the blocks from two. */
4380 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4382 free (block_vector);
4384 return;
4387 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4389 DEBUG_FUNCTION tree
4390 debug_find_var_in_block_tree (tree var, tree block)
4392 tree t;
4394 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4395 if (t == var)
4396 return block;
4398 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4400 tree ret = debug_find_var_in_block_tree (var, t);
4401 if (ret)
4402 return ret;
4405 return NULL_TREE;
4408 /* Keep track of whether we're in a dummy function context. If we are,
4409 we don't want to invoke the set_current_function hook, because we'll
4410 get into trouble if the hook calls target_reinit () recursively or
4411 when the initial initialization is not yet complete. */
4413 static bool in_dummy_function;
4415 /* Invoke the target hook when setting cfun. Update the optimization options
4416 if the function uses different options than the default. */
4418 static void
4419 invoke_set_current_function_hook (tree fndecl)
4421 if (!in_dummy_function)
4423 tree opts = ((fndecl)
4424 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4425 : optimization_default_node);
4427 if (!opts)
4428 opts = optimization_default_node;
4430 /* Change optimization options if needed. */
4431 if (optimization_current_node != opts)
4433 optimization_current_node = opts;
4434 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4437 targetm.set_current_function (fndecl);
4438 this_fn_optabs = this_target_optabs;
4440 if (opts != optimization_default_node)
4442 init_tree_optimization_optabs (opts);
4443 if (TREE_OPTIMIZATION_OPTABS (opts))
4444 this_fn_optabs = (struct target_optabs *)
4445 TREE_OPTIMIZATION_OPTABS (opts);
4450 /* cfun should never be set directly; use this function. */
4452 void
4453 set_cfun (struct function *new_cfun)
4455 if (cfun != new_cfun)
4457 cfun = new_cfun;
4458 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4462 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4464 static vec<function_p> cfun_stack;
4466 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4467 current_function_decl accordingly. */
4469 void
4470 push_cfun (struct function *new_cfun)
4472 gcc_assert ((!cfun && !current_function_decl)
4473 || (cfun && current_function_decl == cfun->decl));
4474 cfun_stack.safe_push (cfun);
4475 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4476 set_cfun (new_cfun);
4479 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4481 void
4482 pop_cfun (void)
4484 struct function *new_cfun = cfun_stack.pop ();
4485 /* When in_dummy_function, we do have a cfun but current_function_decl is
4486 NULL. We also allow pushing NULL cfun and subsequently changing
4487 current_function_decl to something else and have both restored by
4488 pop_cfun. */
4489 gcc_checking_assert (in_dummy_function
4490 || !cfun
4491 || current_function_decl == cfun->decl);
4492 set_cfun (new_cfun);
4493 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4496 /* Return value of funcdef and increase it. */
4498 get_next_funcdef_no (void)
4500 return funcdef_no++;
4503 /* Return value of funcdef. */
4505 get_last_funcdef_no (void)
4507 return funcdef_no;
4510 /* Allocate a function structure for FNDECL and set its contents
4511 to the defaults. Set cfun to the newly-allocated object.
4512 Some of the helper functions invoked during initialization assume
4513 that cfun has already been set. Therefore, assign the new object
4514 directly into cfun and invoke the back end hook explicitly at the
4515 very end, rather than initializing a temporary and calling set_cfun
4516 on it.
4518 ABSTRACT_P is true if this is a function that will never be seen by
4519 the middle-end. Such functions are front-end concepts (like C++
4520 function templates) that do not correspond directly to functions
4521 placed in object files. */
4523 void
4524 allocate_struct_function (tree fndecl, bool abstract_p)
4526 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4528 cfun = ggc_alloc_cleared_function ();
4530 init_eh_for_function ();
4532 if (init_machine_status)
4533 cfun->machine = (*init_machine_status) ();
4535 #ifdef OVERRIDE_ABI_FORMAT
4536 OVERRIDE_ABI_FORMAT (fndecl);
4537 #endif
4539 if (fndecl != NULL_TREE)
4541 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4542 cfun->decl = fndecl;
4543 current_function_funcdef_no = get_next_funcdef_no ();
4546 invoke_set_current_function_hook (fndecl);
4548 if (fndecl != NULL_TREE)
4550 tree result = DECL_RESULT (fndecl);
4551 if (!abstract_p && aggregate_value_p (result, fndecl))
4553 #ifdef PCC_STATIC_STRUCT_RETURN
4554 cfun->returns_pcc_struct = 1;
4555 #endif
4556 cfun->returns_struct = 1;
4559 cfun->stdarg = stdarg_p (fntype);
4561 /* Assume all registers in stdarg functions need to be saved. */
4562 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4563 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4565 /* ??? This could be set on a per-function basis by the front-end
4566 but is this worth the hassle? */
4567 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4571 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4572 instead of just setting it. */
4574 void
4575 push_struct_function (tree fndecl)
4577 /* When in_dummy_function we might be in the middle of a pop_cfun and
4578 current_function_decl and cfun may not match. */
4579 gcc_assert (in_dummy_function
4580 || (!cfun && !current_function_decl)
4581 || (cfun && current_function_decl == cfun->decl));
4582 cfun_stack.safe_push (cfun);
4583 current_function_decl = fndecl;
4584 allocate_struct_function (fndecl, false);
4587 /* Reset crtl and other non-struct-function variables to defaults as
4588 appropriate for emitting rtl at the start of a function. */
4590 static void
4591 prepare_function_start (void)
4593 gcc_assert (!crtl->emit.x_last_insn);
4594 init_temp_slots ();
4595 init_emit ();
4596 init_varasm_status ();
4597 init_expr ();
4598 default_rtl_profile ();
4600 if (flag_stack_usage_info)
4602 cfun->su = ggc_alloc_cleared_stack_usage ();
4603 cfun->su->static_stack_size = -1;
4606 cse_not_expected = ! optimize;
4608 /* Caller save not needed yet. */
4609 caller_save_needed = 0;
4611 /* We haven't done register allocation yet. */
4612 reg_renumber = 0;
4614 /* Indicate that we have not instantiated virtual registers yet. */
4615 virtuals_instantiated = 0;
4617 /* Indicate that we want CONCATs now. */
4618 generating_concat_p = 1;
4620 /* Indicate we have no need of a frame pointer yet. */
4621 frame_pointer_needed = 0;
4624 /* Initialize the rtl expansion mechanism so that we can do simple things
4625 like generate sequences. This is used to provide a context during global
4626 initialization of some passes. You must call expand_dummy_function_end
4627 to exit this context. */
4629 void
4630 init_dummy_function_start (void)
4632 gcc_assert (!in_dummy_function);
4633 in_dummy_function = true;
4634 push_struct_function (NULL_TREE);
4635 prepare_function_start ();
4638 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4639 and initialize static variables for generating RTL for the statements
4640 of the function. */
4642 void
4643 init_function_start (tree subr)
4645 if (subr && DECL_STRUCT_FUNCTION (subr))
4646 set_cfun (DECL_STRUCT_FUNCTION (subr));
4647 else
4648 allocate_struct_function (subr, false);
4649 prepare_function_start ();
4650 decide_function_section (subr);
4652 /* Warn if this value is an aggregate type,
4653 regardless of which calling convention we are using for it. */
4654 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4655 warning (OPT_Waggregate_return, "function returns an aggregate");
4659 void
4660 expand_main_function (void)
4662 #if (defined(INVOKE__main) \
4663 || (!defined(HAS_INIT_SECTION) \
4664 && !defined(INIT_SECTION_ASM_OP) \
4665 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4666 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4667 #endif
4670 /* Expand code to initialize the stack_protect_guard. This is invoked at
4671 the beginning of a function to be protected. */
4673 #ifndef HAVE_stack_protect_set
4674 # define HAVE_stack_protect_set 0
4675 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4676 #endif
4678 void
4679 stack_protect_prologue (void)
4681 tree guard_decl = targetm.stack_protect_guard ();
4682 rtx x, y;
4684 x = expand_normal (crtl->stack_protect_guard);
4685 y = expand_normal (guard_decl);
4687 /* Allow the target to copy from Y to X without leaking Y into a
4688 register. */
4689 if (HAVE_stack_protect_set)
4691 rtx insn = gen_stack_protect_set (x, y);
4692 if (insn)
4694 emit_insn (insn);
4695 return;
4699 /* Otherwise do a straight move. */
4700 emit_move_insn (x, y);
4703 /* Expand code to verify the stack_protect_guard. This is invoked at
4704 the end of a function to be protected. */
4706 #ifndef HAVE_stack_protect_test
4707 # define HAVE_stack_protect_test 0
4708 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4709 #endif
4711 void
4712 stack_protect_epilogue (void)
4714 tree guard_decl = targetm.stack_protect_guard ();
4715 rtx label = gen_label_rtx ();
4716 rtx x, y, tmp;
4718 x = expand_normal (crtl->stack_protect_guard);
4719 y = expand_normal (guard_decl);
4721 /* Allow the target to compare Y with X without leaking either into
4722 a register. */
4723 switch (HAVE_stack_protect_test != 0)
4725 case 1:
4726 tmp = gen_stack_protect_test (x, y, label);
4727 if (tmp)
4729 emit_insn (tmp);
4730 break;
4732 /* FALLTHRU */
4734 default:
4735 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4736 break;
4739 /* The noreturn predictor has been moved to the tree level. The rtl-level
4740 predictors estimate this branch about 20%, which isn't enough to get
4741 things moved out of line. Since this is the only extant case of adding
4742 a noreturn function at the rtl level, it doesn't seem worth doing ought
4743 except adding the prediction by hand. */
4744 tmp = get_last_insn ();
4745 if (JUMP_P (tmp))
4746 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4748 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4749 free_temp_slots ();
4750 emit_label (label);
4753 /* Start the RTL for a new function, and set variables used for
4754 emitting RTL.
4755 SUBR is the FUNCTION_DECL node.
4756 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4757 the function's parameters, which must be run at any return statement. */
4759 void
4760 expand_function_start (tree subr)
4762 /* Make sure volatile mem refs aren't considered
4763 valid operands of arithmetic insns. */
4764 init_recog_no_volatile ();
4766 crtl->profile
4767 = (profile_flag
4768 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4770 crtl->limit_stack
4771 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4773 /* Make the label for return statements to jump to. Do not special
4774 case machines with special return instructions -- they will be
4775 handled later during jump, ifcvt, or epilogue creation. */
4776 return_label = gen_label_rtx ();
4778 /* Initialize rtx used to return the value. */
4779 /* Do this before assign_parms so that we copy the struct value address
4780 before any library calls that assign parms might generate. */
4782 /* Decide whether to return the value in memory or in a register. */
4783 if (aggregate_value_p (DECL_RESULT (subr), subr))
4785 /* Returning something that won't go in a register. */
4786 rtx value_address = 0;
4788 #ifdef PCC_STATIC_STRUCT_RETURN
4789 if (cfun->returns_pcc_struct)
4791 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4792 value_address = assemble_static_space (size);
4794 else
4795 #endif
4797 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4798 /* Expect to be passed the address of a place to store the value.
4799 If it is passed as an argument, assign_parms will take care of
4800 it. */
4801 if (sv)
4803 value_address = gen_reg_rtx (Pmode);
4804 emit_move_insn (value_address, sv);
4807 if (value_address)
4809 rtx x = value_address;
4810 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4812 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4813 set_mem_attributes (x, DECL_RESULT (subr), 1);
4815 SET_DECL_RTL (DECL_RESULT (subr), x);
4818 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4819 /* If return mode is void, this decl rtl should not be used. */
4820 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4821 else
4823 /* Compute the return values into a pseudo reg, which we will copy
4824 into the true return register after the cleanups are done. */
4825 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4826 if (TYPE_MODE (return_type) != BLKmode
4827 && targetm.calls.return_in_msb (return_type))
4828 /* expand_function_end will insert the appropriate padding in
4829 this case. Use the return value's natural (unpadded) mode
4830 within the function proper. */
4831 SET_DECL_RTL (DECL_RESULT (subr),
4832 gen_reg_rtx (TYPE_MODE (return_type)));
4833 else
4835 /* In order to figure out what mode to use for the pseudo, we
4836 figure out what the mode of the eventual return register will
4837 actually be, and use that. */
4838 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4840 /* Structures that are returned in registers are not
4841 aggregate_value_p, so we may see a PARALLEL or a REG. */
4842 if (REG_P (hard_reg))
4843 SET_DECL_RTL (DECL_RESULT (subr),
4844 gen_reg_rtx (GET_MODE (hard_reg)));
4845 else
4847 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4848 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4852 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4853 result to the real return register(s). */
4854 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4857 /* Initialize rtx for parameters and local variables.
4858 In some cases this requires emitting insns. */
4859 assign_parms (subr);
4861 /* If function gets a static chain arg, store it. */
4862 if (cfun->static_chain_decl)
4864 tree parm = cfun->static_chain_decl;
4865 rtx local, chain, insn;
4867 local = gen_reg_rtx (Pmode);
4868 chain = targetm.calls.static_chain (current_function_decl, true);
4870 set_decl_incoming_rtl (parm, chain, false);
4871 SET_DECL_RTL (parm, local);
4872 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4874 insn = emit_move_insn (local, chain);
4876 /* Mark the register as eliminable, similar to parameters. */
4877 if (MEM_P (chain)
4878 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
4879 set_dst_reg_note (insn, REG_EQUIV, chain, local);
4882 /* If the function receives a non-local goto, then store the
4883 bits we need to restore the frame pointer. */
4884 if (cfun->nonlocal_goto_save_area)
4886 tree t_save;
4887 rtx r_save;
4889 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
4890 gcc_assert (DECL_RTL_SET_P (var));
4892 t_save = build4 (ARRAY_REF,
4893 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
4894 cfun->nonlocal_goto_save_area,
4895 integer_zero_node, NULL_TREE, NULL_TREE);
4896 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4897 gcc_assert (GET_MODE (r_save) == Pmode);
4899 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4900 update_nonlocal_goto_save_area ();
4903 /* The following was moved from init_function_start.
4904 The move is supposed to make sdb output more accurate. */
4905 /* Indicate the beginning of the function body,
4906 as opposed to parm setup. */
4907 emit_note (NOTE_INSN_FUNCTION_BEG);
4909 gcc_assert (NOTE_P (get_last_insn ()));
4911 parm_birth_insn = get_last_insn ();
4913 if (crtl->profile)
4915 #ifdef PROFILE_HOOK
4916 PROFILE_HOOK (current_function_funcdef_no);
4917 #endif
4920 /* If we are doing generic stack checking, the probe should go here. */
4921 if (flag_stack_check == GENERIC_STACK_CHECK)
4922 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4925 /* Undo the effects of init_dummy_function_start. */
4926 void
4927 expand_dummy_function_end (void)
4929 gcc_assert (in_dummy_function);
4931 /* End any sequences that failed to be closed due to syntax errors. */
4932 while (in_sequence_p ())
4933 end_sequence ();
4935 /* Outside function body, can't compute type's actual size
4936 until next function's body starts. */
4938 free_after_parsing (cfun);
4939 free_after_compilation (cfun);
4940 pop_cfun ();
4941 in_dummy_function = false;
4944 /* Call DOIT for each hard register used as a return value from
4945 the current function. */
4947 void
4948 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4950 rtx outgoing = crtl->return_rtx;
4952 if (! outgoing)
4953 return;
4955 if (REG_P (outgoing))
4956 (*doit) (outgoing, arg);
4957 else if (GET_CODE (outgoing) == PARALLEL)
4959 int i;
4961 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4963 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4965 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4966 (*doit) (x, arg);
4971 static void
4972 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4974 emit_clobber (reg);
4977 void
4978 clobber_return_register (void)
4980 diddle_return_value (do_clobber_return_reg, NULL);
4982 /* In case we do use pseudo to return value, clobber it too. */
4983 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4985 tree decl_result = DECL_RESULT (current_function_decl);
4986 rtx decl_rtl = DECL_RTL (decl_result);
4987 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4989 do_clobber_return_reg (decl_rtl, NULL);
4994 static void
4995 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4997 emit_use (reg);
5000 static void
5001 use_return_register (void)
5003 diddle_return_value (do_use_return_reg, NULL);
5006 /* Possibly warn about unused parameters. */
5007 void
5008 do_warn_unused_parameter (tree fn)
5010 tree decl;
5012 for (decl = DECL_ARGUMENTS (fn);
5013 decl; decl = DECL_CHAIN (decl))
5014 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
5015 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
5016 && !TREE_NO_WARNING (decl))
5017 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
5020 /* Generate RTL for the end of the current function. */
5022 void
5023 expand_function_end (void)
5025 rtx clobber_after;
5027 /* If arg_pointer_save_area was referenced only from a nested
5028 function, we will not have initialized it yet. Do that now. */
5029 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5030 get_arg_pointer_save_area ();
5032 /* If we are doing generic stack checking and this function makes calls,
5033 do a stack probe at the start of the function to ensure we have enough
5034 space for another stack frame. */
5035 if (flag_stack_check == GENERIC_STACK_CHECK)
5037 rtx insn, seq;
5039 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5040 if (CALL_P (insn))
5042 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5043 start_sequence ();
5044 if (STACK_CHECK_MOVING_SP)
5045 anti_adjust_stack_and_probe (max_frame_size, true);
5046 else
5047 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5048 seq = get_insns ();
5049 end_sequence ();
5050 set_insn_locations (seq, prologue_location);
5051 emit_insn_before (seq, stack_check_probe_note);
5052 break;
5056 /* End any sequences that failed to be closed due to syntax errors. */
5057 while (in_sequence_p ())
5058 end_sequence ();
5060 clear_pending_stack_adjust ();
5061 do_pending_stack_adjust ();
5063 /* Output a linenumber for the end of the function.
5064 SDB depends on this. */
5065 set_curr_insn_location (input_location);
5067 /* Before the return label (if any), clobber the return
5068 registers so that they are not propagated live to the rest of
5069 the function. This can only happen with functions that drop
5070 through; if there had been a return statement, there would
5071 have either been a return rtx, or a jump to the return label.
5073 We delay actual code generation after the current_function_value_rtx
5074 is computed. */
5075 clobber_after = get_last_insn ();
5077 /* Output the label for the actual return from the function. */
5078 emit_label (return_label);
5080 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5082 /* Let except.c know where it should emit the call to unregister
5083 the function context for sjlj exceptions. */
5084 if (flag_exceptions)
5085 sjlj_emit_function_exit_after (get_last_insn ());
5087 else
5089 /* We want to ensure that instructions that may trap are not
5090 moved into the epilogue by scheduling, because we don't
5091 always emit unwind information for the epilogue. */
5092 if (cfun->can_throw_non_call_exceptions)
5093 emit_insn (gen_blockage ());
5096 /* If this is an implementation of throw, do what's necessary to
5097 communicate between __builtin_eh_return and the epilogue. */
5098 expand_eh_return ();
5100 /* If scalar return value was computed in a pseudo-reg, or was a named
5101 return value that got dumped to the stack, copy that to the hard
5102 return register. */
5103 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5105 tree decl_result = DECL_RESULT (current_function_decl);
5106 rtx decl_rtl = DECL_RTL (decl_result);
5108 if (REG_P (decl_rtl)
5109 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5110 : DECL_REGISTER (decl_result))
5112 rtx real_decl_rtl = crtl->return_rtx;
5114 /* This should be set in assign_parms. */
5115 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5117 /* If this is a BLKmode structure being returned in registers,
5118 then use the mode computed in expand_return. Note that if
5119 decl_rtl is memory, then its mode may have been changed,
5120 but that crtl->return_rtx has not. */
5121 if (GET_MODE (real_decl_rtl) == BLKmode)
5122 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5124 /* If a non-BLKmode return value should be padded at the least
5125 significant end of the register, shift it left by the appropriate
5126 amount. BLKmode results are handled using the group load/store
5127 machinery. */
5128 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5129 && REG_P (real_decl_rtl)
5130 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5132 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5133 REGNO (real_decl_rtl)),
5134 decl_rtl);
5135 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5137 /* If a named return value dumped decl_return to memory, then
5138 we may need to re-do the PROMOTE_MODE signed/unsigned
5139 extension. */
5140 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5142 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5143 promote_function_mode (TREE_TYPE (decl_result),
5144 GET_MODE (decl_rtl), &unsignedp,
5145 TREE_TYPE (current_function_decl), 1);
5147 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5149 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5151 /* If expand_function_start has created a PARALLEL for decl_rtl,
5152 move the result to the real return registers. Otherwise, do
5153 a group load from decl_rtl for a named return. */
5154 if (GET_CODE (decl_rtl) == PARALLEL)
5155 emit_group_move (real_decl_rtl, decl_rtl);
5156 else
5157 emit_group_load (real_decl_rtl, decl_rtl,
5158 TREE_TYPE (decl_result),
5159 int_size_in_bytes (TREE_TYPE (decl_result)));
5161 /* In the case of complex integer modes smaller than a word, we'll
5162 need to generate some non-trivial bitfield insertions. Do that
5163 on a pseudo and not the hard register. */
5164 else if (GET_CODE (decl_rtl) == CONCAT
5165 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5166 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5168 int old_generating_concat_p;
5169 rtx tmp;
5171 old_generating_concat_p = generating_concat_p;
5172 generating_concat_p = 0;
5173 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5174 generating_concat_p = old_generating_concat_p;
5176 emit_move_insn (tmp, decl_rtl);
5177 emit_move_insn (real_decl_rtl, tmp);
5179 else
5180 emit_move_insn (real_decl_rtl, decl_rtl);
5184 /* If returning a structure, arrange to return the address of the value
5185 in a place where debuggers expect to find it.
5187 If returning a structure PCC style,
5188 the caller also depends on this value.
5189 And cfun->returns_pcc_struct is not necessarily set. */
5190 if (cfun->returns_struct
5191 || cfun->returns_pcc_struct)
5193 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5194 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5195 rtx outgoing;
5197 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5198 type = TREE_TYPE (type);
5199 else
5200 value_address = XEXP (value_address, 0);
5202 outgoing = targetm.calls.function_value (build_pointer_type (type),
5203 current_function_decl, true);
5205 /* Mark this as a function return value so integrate will delete the
5206 assignment and USE below when inlining this function. */
5207 REG_FUNCTION_VALUE_P (outgoing) = 1;
5209 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5210 value_address = convert_memory_address (GET_MODE (outgoing),
5211 value_address);
5213 emit_move_insn (outgoing, value_address);
5215 /* Show return register used to hold result (in this case the address
5216 of the result. */
5217 crtl->return_rtx = outgoing;
5220 /* Emit the actual code to clobber return register. */
5222 rtx seq;
5224 start_sequence ();
5225 clobber_return_register ();
5226 seq = get_insns ();
5227 end_sequence ();
5229 emit_insn_after (seq, clobber_after);
5232 /* Output the label for the naked return from the function. */
5233 if (naked_return_label)
5234 emit_label (naked_return_label);
5236 /* @@@ This is a kludge. We want to ensure that instructions that
5237 may trap are not moved into the epilogue by scheduling, because
5238 we don't always emit unwind information for the epilogue. */
5239 if (cfun->can_throw_non_call_exceptions
5240 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5241 emit_insn (gen_blockage ());
5243 /* If stack protection is enabled for this function, check the guard. */
5244 if (crtl->stack_protect_guard)
5245 stack_protect_epilogue ();
5247 /* If we had calls to alloca, and this machine needs
5248 an accurate stack pointer to exit the function,
5249 insert some code to save and restore the stack pointer. */
5250 if (! EXIT_IGNORE_STACK
5251 && cfun->calls_alloca)
5253 rtx tem = 0, seq;
5255 start_sequence ();
5256 emit_stack_save (SAVE_FUNCTION, &tem);
5257 seq = get_insns ();
5258 end_sequence ();
5259 emit_insn_before (seq, parm_birth_insn);
5261 emit_stack_restore (SAVE_FUNCTION, tem);
5264 /* ??? This should no longer be necessary since stupid is no longer with
5265 us, but there are some parts of the compiler (eg reload_combine, and
5266 sh mach_dep_reorg) that still try and compute their own lifetime info
5267 instead of using the general framework. */
5268 use_return_register ();
5272 get_arg_pointer_save_area (void)
5274 rtx ret = arg_pointer_save_area;
5276 if (! ret)
5278 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5279 arg_pointer_save_area = ret;
5282 if (! crtl->arg_pointer_save_area_init)
5284 rtx seq;
5286 /* Save the arg pointer at the beginning of the function. The
5287 generated stack slot may not be a valid memory address, so we
5288 have to check it and fix it if necessary. */
5289 start_sequence ();
5290 emit_move_insn (validize_mem (ret),
5291 crtl->args.internal_arg_pointer);
5292 seq = get_insns ();
5293 end_sequence ();
5295 push_topmost_sequence ();
5296 emit_insn_after (seq, entry_of_function ());
5297 pop_topmost_sequence ();
5299 crtl->arg_pointer_save_area_init = true;
5302 return ret;
5305 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5306 for the first time. */
5308 static void
5309 record_insns (rtx insns, rtx end, htab_t *hashp)
5311 rtx tmp;
5312 htab_t hash = *hashp;
5314 if (hash == NULL)
5315 *hashp = hash
5316 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5318 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5320 void **slot = htab_find_slot (hash, tmp, INSERT);
5321 gcc_assert (*slot == NULL);
5322 *slot = tmp;
5326 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5327 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5328 insn, then record COPY as well. */
5330 void
5331 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5333 htab_t hash;
5334 void **slot;
5336 hash = epilogue_insn_hash;
5337 if (!hash || !htab_find (hash, insn))
5339 hash = prologue_insn_hash;
5340 if (!hash || !htab_find (hash, insn))
5341 return;
5344 slot = htab_find_slot (hash, copy, INSERT);
5345 gcc_assert (*slot == NULL);
5346 *slot = copy;
5349 /* Set the location of the insn chain starting at INSN to LOC. */
5350 static void
5351 set_insn_locations (rtx insn, int loc)
5353 while (insn != NULL_RTX)
5355 if (INSN_P (insn))
5356 INSN_LOCATION (insn) = loc;
5357 insn = NEXT_INSN (insn);
5361 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5362 we can be running after reorg, SEQUENCE rtl is possible. */
5364 static bool
5365 contains (const_rtx insn, htab_t hash)
5367 if (hash == NULL)
5368 return false;
5370 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5372 int i;
5373 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
5374 if (htab_find (hash, XVECEXP (PATTERN (insn), 0, i)))
5375 return true;
5376 return false;
5379 return htab_find (hash, insn) != NULL;
5383 prologue_epilogue_contains (const_rtx insn)
5385 if (contains (insn, prologue_insn_hash))
5386 return 1;
5387 if (contains (insn, epilogue_insn_hash))
5388 return 1;
5389 return 0;
5392 #ifdef HAVE_simple_return
5394 /* Return true if INSN requires the stack frame to be set up.
5395 PROLOGUE_USED contains the hard registers used in the function
5396 prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
5397 prologue to set up for the function. */
5398 bool
5399 requires_stack_frame_p (rtx insn, HARD_REG_SET prologue_used,
5400 HARD_REG_SET set_up_by_prologue)
5402 df_ref *df_rec;
5403 HARD_REG_SET hardregs;
5404 unsigned regno;
5406 if (CALL_P (insn))
5407 return !SIBLING_CALL_P (insn);
5409 /* We need a frame to get the unique CFA expected by the unwinder. */
5410 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
5411 return true;
5413 CLEAR_HARD_REG_SET (hardregs);
5414 for (df_rec = DF_INSN_DEFS (insn); *df_rec; df_rec++)
5416 rtx dreg = DF_REF_REG (*df_rec);
5418 if (!REG_P (dreg))
5419 continue;
5421 add_to_hard_reg_set (&hardregs, GET_MODE (dreg),
5422 REGNO (dreg));
5424 if (hard_reg_set_intersect_p (hardregs, prologue_used))
5425 return true;
5426 AND_COMPL_HARD_REG_SET (hardregs, call_used_reg_set);
5427 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5428 if (TEST_HARD_REG_BIT (hardregs, regno)
5429 && df_regs_ever_live_p (regno))
5430 return true;
5432 for (df_rec = DF_INSN_USES (insn); *df_rec; df_rec++)
5434 rtx reg = DF_REF_REG (*df_rec);
5436 if (!REG_P (reg))
5437 continue;
5439 add_to_hard_reg_set (&hardregs, GET_MODE (reg),
5440 REGNO (reg));
5442 if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
5443 return true;
5445 return false;
5448 /* See whether BB has a single successor that uses [REGNO, END_REGNO),
5449 and if BB is its only predecessor. Return that block if so,
5450 otherwise return null. */
5452 static basic_block
5453 next_block_for_reg (basic_block bb, int regno, int end_regno)
5455 edge e, live_edge;
5456 edge_iterator ei;
5457 bitmap live;
5458 int i;
5460 live_edge = NULL;
5461 FOR_EACH_EDGE (e, ei, bb->succs)
5463 live = df_get_live_in (e->dest);
5464 for (i = regno; i < end_regno; i++)
5465 if (REGNO_REG_SET_P (live, i))
5467 if (live_edge && live_edge != e)
5468 return NULL;
5469 live_edge = e;
5473 /* We can sometimes encounter dead code. Don't try to move it
5474 into the exit block. */
5475 if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR)
5476 return NULL;
5478 /* Reject targets of abnormal edges. This is needed for correctness
5479 on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
5480 exception edges even though it is generally treated as call-saved
5481 for the majority of the compilation. Moving across abnormal edges
5482 isn't going to be interesting for shrink-wrap usage anyway. */
5483 if (live_edge->flags & EDGE_ABNORMAL)
5484 return NULL;
5486 if (EDGE_COUNT (live_edge->dest->preds) > 1)
5487 return NULL;
5489 return live_edge->dest;
5492 /* Try to move INSN from BB to a successor. Return true on success.
5493 USES and DEFS are the set of registers that are used and defined
5494 after INSN in BB. */
5496 static bool
5497 move_insn_for_shrink_wrap (basic_block bb, rtx insn,
5498 const HARD_REG_SET uses,
5499 const HARD_REG_SET defs)
5501 rtx set, src, dest;
5502 bitmap live_out, live_in, bb_uses, bb_defs;
5503 unsigned int i, dregno, end_dregno, sregno, end_sregno;
5504 basic_block next_block;
5506 /* Look for a simple register copy. */
5507 set = single_set (insn);
5508 if (!set)
5509 return false;
5510 src = SET_SRC (set);
5511 dest = SET_DEST (set);
5512 if (!REG_P (dest) || !REG_P (src))
5513 return false;
5515 /* Make sure that the source register isn't defined later in BB. */
5516 sregno = REGNO (src);
5517 end_sregno = END_REGNO (src);
5518 if (overlaps_hard_reg_set_p (defs, GET_MODE (src), sregno))
5519 return false;
5521 /* Make sure that the destination register isn't referenced later in BB. */
5522 dregno = REGNO (dest);
5523 end_dregno = END_REGNO (dest);
5524 if (overlaps_hard_reg_set_p (uses, GET_MODE (dest), dregno)
5525 || overlaps_hard_reg_set_p (defs, GET_MODE (dest), dregno))
5526 return false;
5528 /* See whether there is a successor block to which we could move INSN. */
5529 next_block = next_block_for_reg (bb, dregno, end_dregno);
5530 if (!next_block)
5531 return false;
5533 /* At this point we are committed to moving INSN, but let's try to
5534 move it as far as we can. */
5537 live_out = df_get_live_out (bb);
5538 live_in = df_get_live_in (next_block);
5539 bb = next_block;
5541 /* Check whether BB uses DEST or clobbers DEST. We need to add
5542 INSN to BB if so. Either way, DEST is no longer live on entry,
5543 except for any part that overlaps SRC (next loop). */
5544 bb_uses = &DF_LR_BB_INFO (bb)->use;
5545 bb_defs = &DF_LR_BB_INFO (bb)->def;
5546 if (df_live)
5548 for (i = dregno; i < end_dregno; i++)
5550 if (REGNO_REG_SET_P (bb_uses, i) || REGNO_REG_SET_P (bb_defs, i)
5551 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
5552 next_block = NULL;
5553 CLEAR_REGNO_REG_SET (live_out, i);
5554 CLEAR_REGNO_REG_SET (live_in, i);
5557 /* Check whether BB clobbers SRC. We need to add INSN to BB if so.
5558 Either way, SRC is now live on entry. */
5559 for (i = sregno; i < end_sregno; i++)
5561 if (REGNO_REG_SET_P (bb_defs, i)
5562 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
5563 next_block = NULL;
5564 SET_REGNO_REG_SET (live_out, i);
5565 SET_REGNO_REG_SET (live_in, i);
5568 else
5570 /* DF_LR_BB_INFO (bb)->def does not comprise the DF_REF_PARTIAL and
5571 DF_REF_CONDITIONAL defs. So if DF_LIVE doesn't exist, i.e.
5572 at -O1, just give up searching NEXT_BLOCK. */
5573 next_block = NULL;
5574 for (i = dregno; i < end_dregno; i++)
5576 CLEAR_REGNO_REG_SET (live_out, i);
5577 CLEAR_REGNO_REG_SET (live_in, i);
5580 for (i = sregno; i < end_sregno; i++)
5582 SET_REGNO_REG_SET (live_out, i);
5583 SET_REGNO_REG_SET (live_in, i);
5587 /* If we don't need to add the move to BB, look for a single
5588 successor block. */
5589 if (next_block)
5590 next_block = next_block_for_reg (next_block, dregno, end_dregno);
5592 while (next_block);
5594 /* BB now defines DEST. It only uses the parts of DEST that overlap SRC
5595 (next loop). */
5596 for (i = dregno; i < end_dregno; i++)
5598 CLEAR_REGNO_REG_SET (bb_uses, i);
5599 SET_REGNO_REG_SET (bb_defs, i);
5602 /* BB now uses SRC. */
5603 for (i = sregno; i < end_sregno; i++)
5604 SET_REGNO_REG_SET (bb_uses, i);
5606 emit_insn_after (PATTERN (insn), bb_note (bb));
5607 delete_insn (insn);
5608 return true;
5611 /* Look for register copies in the first block of the function, and move
5612 them down into successor blocks if the register is used only on one
5613 path. This exposes more opportunities for shrink-wrapping. These
5614 kinds of sets often occur when incoming argument registers are moved
5615 to call-saved registers because their values are live across one or
5616 more calls during the function. */
5618 static void
5619 prepare_shrink_wrap (basic_block entry_block)
5621 rtx insn, curr, x;
5622 HARD_REG_SET uses, defs;
5623 df_ref *ref;
5625 CLEAR_HARD_REG_SET (uses);
5626 CLEAR_HARD_REG_SET (defs);
5627 FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
5628 if (NONDEBUG_INSN_P (insn)
5629 && !move_insn_for_shrink_wrap (entry_block, insn, uses, defs))
5631 /* Add all defined registers to DEFs. */
5632 for (ref = DF_INSN_DEFS (insn); *ref; ref++)
5634 x = DF_REF_REG (*ref);
5635 if (REG_P (x) && HARD_REGISTER_P (x))
5636 SET_HARD_REG_BIT (defs, REGNO (x));
5639 /* Add all used registers to USESs. */
5640 for (ref = DF_INSN_USES (insn); *ref; ref++)
5642 x = DF_REF_REG (*ref);
5643 if (REG_P (x) && HARD_REGISTER_P (x))
5644 SET_HARD_REG_BIT (uses, REGNO (x));
5649 #endif
5651 #ifdef HAVE_return
5652 /* Insert use of return register before the end of BB. */
5654 static void
5655 emit_use_return_register_into_block (basic_block bb)
5657 rtx seq, insn;
5658 start_sequence ();
5659 use_return_register ();
5660 seq = get_insns ();
5661 end_sequence ();
5662 insn = BB_END (bb);
5663 #ifdef HAVE_cc0
5664 if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
5665 insn = prev_cc0_setter (insn);
5666 #endif
5667 emit_insn_before (seq, insn);
5671 /* Create a return pattern, either simple_return or return, depending on
5672 simple_p. */
5674 static rtx
5675 gen_return_pattern (bool simple_p)
5677 #ifdef HAVE_simple_return
5678 return simple_p ? gen_simple_return () : gen_return ();
5679 #else
5680 gcc_assert (!simple_p);
5681 return gen_return ();
5682 #endif
5685 /* Insert an appropriate return pattern at the end of block BB. This
5686 also means updating block_for_insn appropriately. SIMPLE_P is
5687 the same as in gen_return_pattern and passed to it. */
5689 static void
5690 emit_return_into_block (bool simple_p, basic_block bb)
5692 rtx jump, pat;
5693 jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5694 pat = PATTERN (jump);
5695 if (GET_CODE (pat) == PARALLEL)
5696 pat = XVECEXP (pat, 0, 0);
5697 gcc_assert (ANY_RETURN_P (pat));
5698 JUMP_LABEL (jump) = pat;
5700 #endif
5702 /* Set JUMP_LABEL for a return insn. */
5704 void
5705 set_return_jump_label (rtx returnjump)
5707 rtx pat = PATTERN (returnjump);
5708 if (GET_CODE (pat) == PARALLEL)
5709 pat = XVECEXP (pat, 0, 0);
5710 if (ANY_RETURN_P (pat))
5711 JUMP_LABEL (returnjump) = pat;
5712 else
5713 JUMP_LABEL (returnjump) = ret_rtx;
5716 #ifdef HAVE_simple_return
5717 /* Create a copy of BB instructions and insert at BEFORE. Redirect
5718 preds of BB to COPY_BB if they don't appear in NEED_PROLOGUE. */
5719 static void
5720 dup_block_and_redirect (basic_block bb, basic_block copy_bb, rtx before,
5721 bitmap_head *need_prologue)
5723 edge_iterator ei;
5724 edge e;
5725 rtx insn = BB_END (bb);
5727 /* We know BB has a single successor, so there is no need to copy a
5728 simple jump at the end of BB. */
5729 if (simplejump_p (insn))
5730 insn = PREV_INSN (insn);
5732 start_sequence ();
5733 duplicate_insn_chain (BB_HEAD (bb), insn);
5734 if (dump_file)
5736 unsigned count = 0;
5737 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5738 if (active_insn_p (insn))
5739 ++count;
5740 fprintf (dump_file, "Duplicating bb %d to bb %d, %u active insns.\n",
5741 bb->index, copy_bb->index, count);
5743 insn = get_insns ();
5744 end_sequence ();
5745 emit_insn_before (insn, before);
5747 /* Redirect all the paths that need no prologue into copy_bb. */
5748 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
5749 if (!bitmap_bit_p (need_prologue, e->src->index))
5751 int freq = EDGE_FREQUENCY (e);
5752 copy_bb->count += e->count;
5753 copy_bb->frequency += EDGE_FREQUENCY (e);
5754 e->dest->count -= e->count;
5755 if (e->dest->count < 0)
5756 e->dest->count = 0;
5757 e->dest->frequency -= freq;
5758 if (e->dest->frequency < 0)
5759 e->dest->frequency = 0;
5760 redirect_edge_and_branch_force (e, copy_bb);
5761 continue;
5763 else
5764 ei_next (&ei);
5766 #endif
5768 #if defined (HAVE_return) || defined (HAVE_simple_return)
5769 /* Return true if there are any active insns between HEAD and TAIL. */
5770 static bool
5771 active_insn_between (rtx head, rtx tail)
5773 while (tail)
5775 if (active_insn_p (tail))
5776 return true;
5777 if (tail == head)
5778 return false;
5779 tail = PREV_INSN (tail);
5781 return false;
5784 /* LAST_BB is a block that exits, and empty of active instructions.
5785 Examine its predecessors for jumps that can be converted to
5786 (conditional) returns. */
5787 static vec<edge>
5788 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5789 vec<edge> unconverted ATTRIBUTE_UNUSED)
5791 int i;
5792 basic_block bb;
5793 rtx label;
5794 edge_iterator ei;
5795 edge e;
5796 vec<basic_block> src_bbs;
5798 src_bbs.create (EDGE_COUNT (last_bb->preds));
5799 FOR_EACH_EDGE (e, ei, last_bb->preds)
5800 if (e->src != ENTRY_BLOCK_PTR)
5801 src_bbs.quick_push (e->src);
5803 label = BB_HEAD (last_bb);
5805 FOR_EACH_VEC_ELT (src_bbs, i, bb)
5807 rtx jump = BB_END (bb);
5809 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5810 continue;
5812 e = find_edge (bb, last_bb);
5814 /* If we have an unconditional jump, we can replace that
5815 with a simple return instruction. */
5816 if (simplejump_p (jump))
5818 /* The use of the return register might be present in the exit
5819 fallthru block. Either:
5820 - removing the use is safe, and we should remove the use in
5821 the exit fallthru block, or
5822 - removing the use is not safe, and we should add it here.
5823 For now, we conservatively choose the latter. Either of the
5824 2 helps in crossjumping. */
5825 emit_use_return_register_into_block (bb);
5827 emit_return_into_block (simple_p, bb);
5828 delete_insn (jump);
5831 /* If we have a conditional jump branching to the last
5832 block, we can try to replace that with a conditional
5833 return instruction. */
5834 else if (condjump_p (jump))
5836 rtx dest;
5838 if (simple_p)
5839 dest = simple_return_rtx;
5840 else
5841 dest = ret_rtx;
5842 if (!redirect_jump (jump, dest, 0))
5844 #ifdef HAVE_simple_return
5845 if (simple_p)
5847 if (dump_file)
5848 fprintf (dump_file,
5849 "Failed to redirect bb %d branch.\n", bb->index);
5850 unconverted.safe_push (e);
5852 #endif
5853 continue;
5856 /* See comment in simplejump_p case above. */
5857 emit_use_return_register_into_block (bb);
5859 /* If this block has only one successor, it both jumps
5860 and falls through to the fallthru block, so we can't
5861 delete the edge. */
5862 if (single_succ_p (bb))
5863 continue;
5865 else
5867 #ifdef HAVE_simple_return
5868 if (simple_p)
5870 if (dump_file)
5871 fprintf (dump_file,
5872 "Failed to redirect bb %d branch.\n", bb->index);
5873 unconverted.safe_push (e);
5875 #endif
5876 continue;
5879 /* Fix up the CFG for the successful change we just made. */
5880 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5881 e->flags &= ~EDGE_CROSSING;
5883 src_bbs.release ();
5884 return unconverted;
5887 /* Emit a return insn for the exit fallthru block. */
5888 static basic_block
5889 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5891 basic_block last_bb = exit_fallthru_edge->src;
5893 if (JUMP_P (BB_END (last_bb)))
5895 last_bb = split_edge (exit_fallthru_edge);
5896 exit_fallthru_edge = single_succ_edge (last_bb);
5898 emit_barrier_after (BB_END (last_bb));
5899 emit_return_into_block (simple_p, last_bb);
5900 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5901 return last_bb;
5903 #endif
5906 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5907 this into place with notes indicating where the prologue ends and where
5908 the epilogue begins. Update the basic block information when possible.
5910 Notes on epilogue placement:
5911 There are several kinds of edges to the exit block:
5912 * a single fallthru edge from LAST_BB
5913 * possibly, edges from blocks containing sibcalls
5914 * possibly, fake edges from infinite loops
5916 The epilogue is always emitted on the fallthru edge from the last basic
5917 block in the function, LAST_BB, into the exit block.
5919 If LAST_BB is empty except for a label, it is the target of every
5920 other basic block in the function that ends in a return. If a
5921 target has a return or simple_return pattern (possibly with
5922 conditional variants), these basic blocks can be changed so that a
5923 return insn is emitted into them, and their target is adjusted to
5924 the real exit block.
5926 Notes on shrink wrapping: We implement a fairly conservative
5927 version of shrink-wrapping rather than the textbook one. We only
5928 generate a single prologue and a single epilogue. This is
5929 sufficient to catch a number of interesting cases involving early
5930 exits.
5932 First, we identify the blocks that require the prologue to occur before
5933 them. These are the ones that modify a call-saved register, or reference
5934 any of the stack or frame pointer registers. To simplify things, we then
5935 mark everything reachable from these blocks as also requiring a prologue.
5936 This takes care of loops automatically, and avoids the need to examine
5937 whether MEMs reference the frame, since it is sufficient to check for
5938 occurrences of the stack or frame pointer.
5940 We then compute the set of blocks for which the need for a prologue
5941 is anticipatable (borrowing terminology from the shrink-wrapping
5942 description in Muchnick's book). These are the blocks which either
5943 require a prologue themselves, or those that have only successors
5944 where the prologue is anticipatable. The prologue needs to be
5945 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5946 is not. For the moment, we ensure that only one such edge exists.
5948 The epilogue is placed as described above, but we make a
5949 distinction between inserting return and simple_return patterns
5950 when modifying other blocks that end in a return. Blocks that end
5951 in a sibcall omit the sibcall_epilogue if the block is not in
5952 ANTIC. */
5954 static void
5955 thread_prologue_and_epilogue_insns (void)
5957 bool inserted;
5958 #ifdef HAVE_simple_return
5959 vec<edge> unconverted_simple_returns = vNULL;
5960 bool nonempty_prologue;
5961 bitmap_head bb_flags;
5962 unsigned max_grow_size;
5963 #endif
5964 rtx returnjump;
5965 rtx seq ATTRIBUTE_UNUSED, epilogue_end ATTRIBUTE_UNUSED;
5966 rtx prologue_seq ATTRIBUTE_UNUSED, split_prologue_seq ATTRIBUTE_UNUSED;
5967 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5968 edge_iterator ei;
5970 df_analyze ();
5972 rtl_profile_for_bb (ENTRY_BLOCK_PTR);
5974 inserted = false;
5975 seq = NULL_RTX;
5976 epilogue_end = NULL_RTX;
5977 returnjump = NULL_RTX;
5979 /* Can't deal with multiple successors of the entry block at the
5980 moment. Function should always have at least one entry
5981 point. */
5982 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5983 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
5984 orig_entry_edge = entry_edge;
5986 split_prologue_seq = NULL_RTX;
5987 if (flag_split_stack
5988 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5989 == NULL))
5991 #ifndef HAVE_split_stack_prologue
5992 gcc_unreachable ();
5993 #else
5994 gcc_assert (HAVE_split_stack_prologue);
5996 start_sequence ();
5997 emit_insn (gen_split_stack_prologue ());
5998 split_prologue_seq = get_insns ();
5999 end_sequence ();
6001 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
6002 set_insn_locations (split_prologue_seq, prologue_location);
6003 #endif
6006 prologue_seq = NULL_RTX;
6007 #ifdef HAVE_prologue
6008 if (HAVE_prologue)
6010 start_sequence ();
6011 seq = gen_prologue ();
6012 emit_insn (seq);
6014 /* Insert an explicit USE for the frame pointer
6015 if the profiling is on and the frame pointer is required. */
6016 if (crtl->profile && frame_pointer_needed)
6017 emit_use (hard_frame_pointer_rtx);
6019 /* Retain a map of the prologue insns. */
6020 record_insns (seq, NULL, &prologue_insn_hash);
6021 emit_note (NOTE_INSN_PROLOGUE_END);
6023 /* Ensure that instructions are not moved into the prologue when
6024 profiling is on. The call to the profiling routine can be
6025 emitted within the live range of a call-clobbered register. */
6026 if (!targetm.profile_before_prologue () && crtl->profile)
6027 emit_insn (gen_blockage ());
6029 prologue_seq = get_insns ();
6030 end_sequence ();
6031 set_insn_locations (prologue_seq, prologue_location);
6033 #endif
6035 #ifdef HAVE_simple_return
6036 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
6038 /* Try to perform a kind of shrink-wrapping, making sure the
6039 prologue/epilogue is emitted only around those parts of the
6040 function that require it. */
6042 nonempty_prologue = false;
6043 for (seq = prologue_seq; seq; seq = NEXT_INSN (seq))
6044 if (!NOTE_P (seq) || NOTE_KIND (seq) != NOTE_INSN_PROLOGUE_END)
6046 nonempty_prologue = true;
6047 break;
6050 if (flag_shrink_wrap && HAVE_simple_return
6051 && (targetm.profile_before_prologue () || !crtl->profile)
6052 && nonempty_prologue && !crtl->calls_eh_return)
6054 HARD_REG_SET prologue_clobbered, prologue_used, live_on_edge;
6055 struct hard_reg_set_container set_up_by_prologue;
6056 rtx p_insn;
6057 vec<basic_block> vec;
6058 basic_block bb;
6059 bitmap_head bb_antic_flags;
6060 bitmap_head bb_on_list;
6061 bitmap_head bb_tail;
6063 if (dump_file)
6064 fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");
6066 /* Compute the registers set and used in the prologue. */
6067 CLEAR_HARD_REG_SET (prologue_clobbered);
6068 CLEAR_HARD_REG_SET (prologue_used);
6069 for (p_insn = prologue_seq; p_insn; p_insn = NEXT_INSN (p_insn))
6071 HARD_REG_SET this_used;
6072 if (!NONDEBUG_INSN_P (p_insn))
6073 continue;
6075 CLEAR_HARD_REG_SET (this_used);
6076 note_uses (&PATTERN (p_insn), record_hard_reg_uses,
6077 &this_used);
6078 AND_COMPL_HARD_REG_SET (this_used, prologue_clobbered);
6079 IOR_HARD_REG_SET (prologue_used, this_used);
6080 note_stores (PATTERN (p_insn), record_hard_reg_sets,
6081 &prologue_clobbered);
6084 prepare_shrink_wrap (entry_edge->dest);
6086 bitmap_initialize (&bb_antic_flags, &bitmap_default_obstack);
6087 bitmap_initialize (&bb_on_list, &bitmap_default_obstack);
6088 bitmap_initialize (&bb_tail, &bitmap_default_obstack);
6090 /* Find the set of basic blocks that require a stack frame,
6091 and blocks that are too big to be duplicated. */
6093 vec.create (n_basic_blocks);
6095 CLEAR_HARD_REG_SET (set_up_by_prologue.set);
6096 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6097 STACK_POINTER_REGNUM);
6098 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
6099 if (frame_pointer_needed)
6100 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6101 HARD_FRAME_POINTER_REGNUM);
6102 if (pic_offset_table_rtx)
6103 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
6104 PIC_OFFSET_TABLE_REGNUM);
6105 if (crtl->drap_reg)
6106 add_to_hard_reg_set (&set_up_by_prologue.set,
6107 GET_MODE (crtl->drap_reg),
6108 REGNO (crtl->drap_reg));
6109 if (targetm.set_up_by_prologue)
6110 targetm.set_up_by_prologue (&set_up_by_prologue);
6112 /* We don't use a different max size depending on
6113 optimize_bb_for_speed_p because increasing shrink-wrapping
6114 opportunities by duplicating tail blocks can actually result
6115 in an overall decrease in code size. */
6116 max_grow_size = get_uncond_jump_length ();
6117 max_grow_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
6119 FOR_EACH_BB (bb)
6121 rtx insn;
6122 unsigned size = 0;
6124 FOR_BB_INSNS (bb, insn)
6125 if (NONDEBUG_INSN_P (insn))
6127 if (requires_stack_frame_p (insn, prologue_used,
6128 set_up_by_prologue.set))
6130 if (bb == entry_edge->dest)
6131 goto fail_shrinkwrap;
6132 bitmap_set_bit (&bb_flags, bb->index);
6133 vec.quick_push (bb);
6134 break;
6136 else if (size <= max_grow_size)
6138 size += get_attr_min_length (insn);
6139 if (size > max_grow_size)
6140 bitmap_set_bit (&bb_on_list, bb->index);
6145 /* Blocks that really need a prologue, or are too big for tails. */
6146 bitmap_ior_into (&bb_on_list, &bb_flags);
6148 /* For every basic block that needs a prologue, mark all blocks
6149 reachable from it, so as to ensure they are also seen as
6150 requiring a prologue. */
6151 while (!vec.is_empty ())
6153 basic_block tmp_bb = vec.pop ();
6155 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6156 if (e->dest != EXIT_BLOCK_PTR
6157 && bitmap_set_bit (&bb_flags, e->dest->index))
6158 vec.quick_push (e->dest);
6161 /* Find the set of basic blocks that need no prologue, have a
6162 single successor, can be duplicated, meet a max size
6163 requirement, and go to the exit via like blocks. */
6164 vec.quick_push (EXIT_BLOCK_PTR);
6165 while (!vec.is_empty ())
6167 basic_block tmp_bb = vec.pop ();
6169 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6170 if (single_succ_p (e->src)
6171 && !bitmap_bit_p (&bb_on_list, e->src->index)
6172 && can_duplicate_block_p (e->src))
6174 edge pe;
6175 edge_iterator pei;
6177 /* If there is predecessor of e->src which doesn't
6178 need prologue and the edge is complex,
6179 we might not be able to redirect the branch
6180 to a copy of e->src. */
6181 FOR_EACH_EDGE (pe, pei, e->src->preds)
6182 if ((pe->flags & EDGE_COMPLEX) != 0
6183 && !bitmap_bit_p (&bb_flags, pe->src->index))
6184 break;
6185 if (pe == NULL && bitmap_set_bit (&bb_tail, e->src->index))
6186 vec.quick_push (e->src);
6190 /* Now walk backwards from every block that is marked as needing
6191 a prologue to compute the bb_antic_flags bitmap. Exclude
6192 tail blocks; They can be duplicated to be used on paths not
6193 needing a prologue. */
6194 bitmap_clear (&bb_on_list);
6195 bitmap_and_compl (&bb_antic_flags, &bb_flags, &bb_tail);
6196 FOR_EACH_BB (bb)
6198 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6199 continue;
6200 FOR_EACH_EDGE (e, ei, bb->preds)
6201 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6202 && bitmap_set_bit (&bb_on_list, e->src->index))
6203 vec.quick_push (e->src);
6205 while (!vec.is_empty ())
6207 basic_block tmp_bb = vec.pop ();
6208 bool all_set = true;
6210 bitmap_clear_bit (&bb_on_list, tmp_bb->index);
6211 FOR_EACH_EDGE (e, ei, tmp_bb->succs)
6212 if (!bitmap_bit_p (&bb_antic_flags, e->dest->index))
6214 all_set = false;
6215 break;
6218 if (all_set)
6220 bitmap_set_bit (&bb_antic_flags, tmp_bb->index);
6221 FOR_EACH_EDGE (e, ei, tmp_bb->preds)
6222 if (!bitmap_bit_p (&bb_antic_flags, e->src->index)
6223 && bitmap_set_bit (&bb_on_list, e->src->index))
6224 vec.quick_push (e->src);
6227 /* Find exactly one edge that leads to a block in ANTIC from
6228 a block that isn't. */
6229 if (!bitmap_bit_p (&bb_antic_flags, entry_edge->dest->index))
6230 FOR_EACH_BB (bb)
6232 if (!bitmap_bit_p (&bb_antic_flags, bb->index))
6233 continue;
6234 FOR_EACH_EDGE (e, ei, bb->preds)
6235 if (!bitmap_bit_p (&bb_antic_flags, e->src->index))
6237 if (entry_edge != orig_entry_edge)
6239 entry_edge = orig_entry_edge;
6240 if (dump_file)
6241 fprintf (dump_file, "More than one candidate edge.\n");
6242 goto fail_shrinkwrap;
6244 if (dump_file)
6245 fprintf (dump_file, "Found candidate edge for "
6246 "shrink-wrapping, %d->%d.\n", e->src->index,
6247 e->dest->index);
6248 entry_edge = e;
6252 if (entry_edge != orig_entry_edge)
6254 /* Test whether the prologue is known to clobber any register
6255 (other than FP or SP) which are live on the edge. */
6256 CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
6257 if (frame_pointer_needed)
6258 CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);
6259 REG_SET_TO_HARD_REG_SET (live_on_edge,
6260 df_get_live_in (entry_edge->dest));
6261 if (hard_reg_set_intersect_p (live_on_edge, prologue_clobbered))
6263 entry_edge = orig_entry_edge;
6264 if (dump_file)
6265 fprintf (dump_file,
6266 "Shrink-wrapping aborted due to clobber.\n");
6269 if (entry_edge != orig_entry_edge)
6271 crtl->shrink_wrapped = true;
6272 if (dump_file)
6273 fprintf (dump_file, "Performing shrink-wrapping.\n");
6275 /* Find tail blocks reachable from both blocks needing a
6276 prologue and blocks not needing a prologue. */
6277 if (!bitmap_empty_p (&bb_tail))
6278 FOR_EACH_BB (bb)
6280 bool some_pro, some_no_pro;
6281 if (!bitmap_bit_p (&bb_tail, bb->index))
6282 continue;
6283 some_pro = some_no_pro = false;
6284 FOR_EACH_EDGE (e, ei, bb->preds)
6286 if (bitmap_bit_p (&bb_flags, e->src->index))
6287 some_pro = true;
6288 else
6289 some_no_pro = true;
6291 if (some_pro && some_no_pro)
6292 vec.quick_push (bb);
6293 else
6294 bitmap_clear_bit (&bb_tail, bb->index);
6296 /* Find the head of each tail. */
6297 while (!vec.is_empty ())
6299 basic_block tbb = vec.pop ();
6301 if (!bitmap_bit_p (&bb_tail, tbb->index))
6302 continue;
6304 while (single_succ_p (tbb))
6306 tbb = single_succ (tbb);
6307 bitmap_clear_bit (&bb_tail, tbb->index);
6310 /* Now duplicate the tails. */
6311 if (!bitmap_empty_p (&bb_tail))
6312 FOR_EACH_BB_REVERSE (bb)
6314 basic_block copy_bb, tbb;
6315 rtx insert_point;
6316 int eflags;
6318 if (!bitmap_clear_bit (&bb_tail, bb->index))
6319 continue;
6321 /* Create a copy of BB, instructions and all, for
6322 use on paths that don't need a prologue.
6323 Ideal placement of the copy is on a fall-thru edge
6324 or after a block that would jump to the copy. */
6325 FOR_EACH_EDGE (e, ei, bb->preds)
6326 if (!bitmap_bit_p (&bb_flags, e->src->index)
6327 && single_succ_p (e->src))
6328 break;
6329 if (e)
6331 /* Make sure we insert after any barriers. */
6332 rtx end = get_last_bb_insn (e->src);
6333 copy_bb = create_basic_block (NEXT_INSN (end),
6334 NULL_RTX, e->src);
6335 BB_COPY_PARTITION (copy_bb, e->src);
6337 else
6339 /* Otherwise put the copy at the end of the function. */
6340 copy_bb = create_basic_block (NULL_RTX, NULL_RTX,
6341 EXIT_BLOCK_PTR->prev_bb);
6342 BB_COPY_PARTITION (copy_bb, bb);
6345 insert_point = emit_note_after (NOTE_INSN_DELETED,
6346 BB_END (copy_bb));
6347 emit_barrier_after (BB_END (copy_bb));
6349 tbb = bb;
6350 while (1)
6352 dup_block_and_redirect (tbb, copy_bb, insert_point,
6353 &bb_flags);
6354 tbb = single_succ (tbb);
6355 if (tbb == EXIT_BLOCK_PTR)
6356 break;
6357 e = split_block (copy_bb, PREV_INSN (insert_point));
6358 copy_bb = e->dest;
6361 /* Quiet verify_flow_info by (ab)using EDGE_FAKE.
6362 We have yet to add a simple_return to the tails,
6363 as we'd like to first convert_jumps_to_returns in
6364 case the block is no longer used after that. */
6365 eflags = EDGE_FAKE;
6366 if (CALL_P (PREV_INSN (insert_point))
6367 && SIBLING_CALL_P (PREV_INSN (insert_point)))
6368 eflags = EDGE_SIBCALL | EDGE_ABNORMAL;
6369 make_single_succ_edge (copy_bb, EXIT_BLOCK_PTR, eflags);
6371 /* verify_flow_info doesn't like a note after a
6372 sibling call. */
6373 delete_insn (insert_point);
6374 if (bitmap_empty_p (&bb_tail))
6375 break;
6379 fail_shrinkwrap:
6380 bitmap_clear (&bb_tail);
6381 bitmap_clear (&bb_antic_flags);
6382 bitmap_clear (&bb_on_list);
6383 vec.release ();
6385 #endif
6387 if (split_prologue_seq != NULL_RTX)
6389 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6390 inserted = true;
6392 if (prologue_seq != NULL_RTX)
6394 insert_insn_on_edge (prologue_seq, entry_edge);
6395 inserted = true;
6398 /* If the exit block has no non-fake predecessors, we don't need
6399 an epilogue. */
6400 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6401 if ((e->flags & EDGE_FAKE) == 0)
6402 break;
6403 if (e == NULL)
6404 goto epilogue_done;
6406 rtl_profile_for_bb (EXIT_BLOCK_PTR);
6408 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR->preds);
6410 /* If we're allowed to generate a simple return instruction, then by
6411 definition we don't need a full epilogue. If the last basic
6412 block before the exit block does not contain active instructions,
6413 examine its predecessors and try to emit (conditional) return
6414 instructions. */
6415 #ifdef HAVE_simple_return
6416 if (entry_edge != orig_entry_edge)
6418 if (optimize)
6420 unsigned i, last;
6422 /* convert_jumps_to_returns may add to EXIT_BLOCK_PTR->preds
6423 (but won't remove). Stop at end of current preds. */
6424 last = EDGE_COUNT (EXIT_BLOCK_PTR->preds);
6425 for (i = 0; i < last; i++)
6427 e = EDGE_I (EXIT_BLOCK_PTR->preds, i);
6428 if (LABEL_P (BB_HEAD (e->src))
6429 && !bitmap_bit_p (&bb_flags, e->src->index)
6430 && !active_insn_between (BB_HEAD (e->src), BB_END (e->src)))
6431 unconverted_simple_returns
6432 = convert_jumps_to_returns (e->src, true,
6433 unconverted_simple_returns);
6437 if (exit_fallthru_edge != NULL
6438 && EDGE_COUNT (exit_fallthru_edge->src->preds) != 0
6439 && !bitmap_bit_p (&bb_flags, exit_fallthru_edge->src->index))
6441 basic_block last_bb;
6443 last_bb = emit_return_for_exit (exit_fallthru_edge, true);
6444 returnjump = BB_END (last_bb);
6445 exit_fallthru_edge = NULL;
6448 #endif
6449 #ifdef HAVE_return
6450 if (HAVE_return)
6452 if (exit_fallthru_edge == NULL)
6453 goto epilogue_done;
6455 if (optimize)
6457 basic_block last_bb = exit_fallthru_edge->src;
6459 if (LABEL_P (BB_HEAD (last_bb))
6460 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
6461 convert_jumps_to_returns (last_bb, false, vNULL);
6463 if (EDGE_COUNT (last_bb->preds) != 0
6464 && single_succ_p (last_bb))
6466 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
6467 epilogue_end = returnjump = BB_END (last_bb);
6468 #ifdef HAVE_simple_return
6469 /* Emitting the return may add a basic block.
6470 Fix bb_flags for the added block. */
6471 if (last_bb != exit_fallthru_edge->src)
6472 bitmap_set_bit (&bb_flags, last_bb->index);
6473 #endif
6474 goto epilogue_done;
6478 #endif
6480 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6481 this marker for the splits of EH_RETURN patterns, and nothing else
6482 uses the flag in the meantime. */
6483 epilogue_completed = 1;
6485 #ifdef HAVE_eh_return
6486 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6487 some targets, these get split to a special version of the epilogue
6488 code. In order to be able to properly annotate these with unwind
6489 info, try to split them now. If we get a valid split, drop an
6490 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6491 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6493 rtx prev, last, trial;
6495 if (e->flags & EDGE_FALLTHRU)
6496 continue;
6497 last = BB_END (e->src);
6498 if (!eh_returnjump_p (last))
6499 continue;
6501 prev = PREV_INSN (last);
6502 trial = try_split (PATTERN (last), last, 1);
6503 if (trial == last)
6504 continue;
6506 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6507 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6509 #endif
6511 /* If nothing falls through into the exit block, we don't need an
6512 epilogue. */
6514 if (exit_fallthru_edge == NULL)
6515 goto epilogue_done;
6517 #ifdef HAVE_epilogue
6518 if (HAVE_epilogue)
6520 start_sequence ();
6521 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
6522 seq = gen_epilogue ();
6523 if (seq)
6524 emit_jump_insn (seq);
6526 /* Retain a map of the epilogue insns. */
6527 record_insns (seq, NULL, &epilogue_insn_hash);
6528 set_insn_locations (seq, epilogue_location);
6530 seq = get_insns ();
6531 returnjump = get_last_insn ();
6532 end_sequence ();
6534 insert_insn_on_edge (seq, exit_fallthru_edge);
6535 inserted = true;
6537 if (JUMP_P (returnjump))
6538 set_return_jump_label (returnjump);
6540 else
6541 #endif
6543 basic_block cur_bb;
6545 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
6546 goto epilogue_done;
6547 /* We have a fall-through edge to the exit block, the source is not
6548 at the end of the function, and there will be an assembler epilogue
6549 at the end of the function.
6550 We can't use force_nonfallthru here, because that would try to
6551 use return. Inserting a jump 'by hand' is extremely messy, so
6552 we take advantage of cfg_layout_finalize using
6553 fixup_fallthru_exit_predecessor. */
6554 cfg_layout_initialize (0);
6555 FOR_EACH_BB (cur_bb)
6556 if (cur_bb->index >= NUM_FIXED_BLOCKS
6557 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6558 cur_bb->aux = cur_bb->next_bb;
6559 cfg_layout_finalize ();
6562 epilogue_done:
6564 default_rtl_profile ();
6566 if (inserted)
6568 sbitmap blocks;
6570 commit_edge_insertions ();
6572 /* Look for basic blocks within the prologue insns. */
6573 blocks = sbitmap_alloc (last_basic_block);
6574 bitmap_clear (blocks);
6575 bitmap_set_bit (blocks, entry_edge->dest->index);
6576 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
6577 find_many_sub_basic_blocks (blocks);
6578 sbitmap_free (blocks);
6580 /* The epilogue insns we inserted may cause the exit edge to no longer
6581 be fallthru. */
6582 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6584 if (((e->flags & EDGE_FALLTHRU) != 0)
6585 && returnjump_p (BB_END (e->src)))
6586 e->flags &= ~EDGE_FALLTHRU;
6590 #ifdef HAVE_simple_return
6591 /* If there were branches to an empty LAST_BB which we tried to
6592 convert to conditional simple_returns, but couldn't for some
6593 reason, create a block to hold a simple_return insn and redirect
6594 those remaining edges. */
6595 if (!unconverted_simple_returns.is_empty ())
6597 basic_block simple_return_block_hot = NULL;
6598 basic_block simple_return_block_cold = NULL;
6599 edge pending_edge_hot = NULL;
6600 edge pending_edge_cold = NULL;
6601 basic_block exit_pred;
6602 int i;
6604 gcc_assert (entry_edge != orig_entry_edge);
6606 /* See if we can reuse the last insn that was emitted for the
6607 epilogue. */
6608 if (returnjump != NULL_RTX
6609 && JUMP_LABEL (returnjump) == simple_return_rtx)
6611 e = split_block (BLOCK_FOR_INSN (returnjump), PREV_INSN (returnjump));
6612 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6613 simple_return_block_hot = e->dest;
6614 else
6615 simple_return_block_cold = e->dest;
6618 /* Also check returns we might need to add to tail blocks. */
6619 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6620 if (EDGE_COUNT (e->src->preds) != 0
6621 && (e->flags & EDGE_FAKE) != 0
6622 && !bitmap_bit_p (&bb_flags, e->src->index))
6624 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6625 pending_edge_hot = e;
6626 else
6627 pending_edge_cold = e;
6630 /* Save a pointer to the exit's predecessor BB for use in
6631 inserting new BBs at the end of the function. Do this
6632 after the call to split_block above which may split
6633 the original exit pred. */
6634 exit_pred = EXIT_BLOCK_PTR->prev_bb;
6636 FOR_EACH_VEC_ELT (unconverted_simple_returns, i, e)
6638 basic_block *pdest_bb;
6639 edge pending;
6641 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
6643 pdest_bb = &simple_return_block_hot;
6644 pending = pending_edge_hot;
6646 else
6648 pdest_bb = &simple_return_block_cold;
6649 pending = pending_edge_cold;
6652 if (*pdest_bb == NULL && pending != NULL)
6654 emit_return_into_block (true, pending->src);
6655 pending->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6656 *pdest_bb = pending->src;
6658 else if (*pdest_bb == NULL)
6660 basic_block bb;
6661 rtx start;
6663 bb = create_basic_block (NULL, NULL, exit_pred);
6664 BB_COPY_PARTITION (bb, e->src);
6665 start = emit_jump_insn_after (gen_simple_return (),
6666 BB_END (bb));
6667 JUMP_LABEL (start) = simple_return_rtx;
6668 emit_barrier_after (start);
6670 *pdest_bb = bb;
6671 make_edge (bb, EXIT_BLOCK_PTR, 0);
6673 redirect_edge_and_branch_force (e, *pdest_bb);
6675 unconverted_simple_returns.release ();
6678 if (entry_edge != orig_entry_edge)
6680 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6681 if (EDGE_COUNT (e->src->preds) != 0
6682 && (e->flags & EDGE_FAKE) != 0
6683 && !bitmap_bit_p (&bb_flags, e->src->index))
6685 emit_return_into_block (true, e->src);
6686 e->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
6689 #endif
6691 #ifdef HAVE_sibcall_epilogue
6692 /* Emit sibling epilogues before any sibling call sites. */
6693 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
6695 basic_block bb = e->src;
6696 rtx insn = BB_END (bb);
6697 rtx ep_seq;
6699 if (!CALL_P (insn)
6700 || ! SIBLING_CALL_P (insn)
6701 #ifdef HAVE_simple_return
6702 || (entry_edge != orig_entry_edge
6703 && !bitmap_bit_p (&bb_flags, bb->index))
6704 #endif
6707 ei_next (&ei);
6708 continue;
6711 ep_seq = gen_sibcall_epilogue ();
6712 if (ep_seq)
6714 start_sequence ();
6715 emit_note (NOTE_INSN_EPILOGUE_BEG);
6716 emit_insn (ep_seq);
6717 seq = get_insns ();
6718 end_sequence ();
6720 /* Retain a map of the epilogue insns. Used in life analysis to
6721 avoid getting rid of sibcall epilogue insns. Do this before we
6722 actually emit the sequence. */
6723 record_insns (seq, NULL, &epilogue_insn_hash);
6724 set_insn_locations (seq, epilogue_location);
6726 emit_insn_before (seq, insn);
6728 ei_next (&ei);
6730 #endif
6732 #ifdef HAVE_epilogue
6733 if (epilogue_end)
6735 rtx insn, next;
6737 /* Similarly, move any line notes that appear after the epilogue.
6738 There is no need, however, to be quite so anal about the existence
6739 of such a note. Also possibly move
6740 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6741 info generation. */
6742 for (insn = epilogue_end; insn; insn = next)
6744 next = NEXT_INSN (insn);
6745 if (NOTE_P (insn)
6746 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6747 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
6750 #endif
6752 #ifdef HAVE_simple_return
6753 bitmap_clear (&bb_flags);
6754 #endif
6756 /* Threading the prologue and epilogue changes the artificial refs
6757 in the entry and exit blocks. */
6758 epilogue_completed = 1;
6759 df_update_entry_exit_and_calls ();
6762 /* Reposition the prologue-end and epilogue-begin notes after
6763 instruction scheduling. */
6765 void
6766 reposition_prologue_and_epilogue_notes (void)
6768 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
6769 || defined (HAVE_sibcall_epilogue)
6770 /* Since the hash table is created on demand, the fact that it is
6771 non-null is a signal that it is non-empty. */
6772 if (prologue_insn_hash != NULL)
6774 size_t len = htab_elements (prologue_insn_hash);
6775 rtx insn, last = NULL, note = NULL;
6777 /* Scan from the beginning until we reach the last prologue insn. */
6778 /* ??? While we do have the CFG intact, there are two problems:
6779 (1) The prologue can contain loops (typically probing the stack),
6780 which means that the end of the prologue isn't in the first bb.
6781 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6782 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6784 if (NOTE_P (insn))
6786 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6787 note = insn;
6789 else if (contains (insn, prologue_insn_hash))
6791 last = insn;
6792 if (--len == 0)
6793 break;
6797 if (last)
6799 if (note == NULL)
6801 /* Scan forward looking for the PROLOGUE_END note. It should
6802 be right at the beginning of the block, possibly with other
6803 insn notes that got moved there. */
6804 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6806 if (NOTE_P (note)
6807 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6808 break;
6812 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6813 if (LABEL_P (last))
6814 last = NEXT_INSN (last);
6815 reorder_insns (note, note, last);
6819 if (epilogue_insn_hash != NULL)
6821 edge_iterator ei;
6822 edge e;
6824 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
6826 rtx insn, first = NULL, note = NULL;
6827 basic_block bb = e->src;
6829 /* Scan from the beginning until we reach the first epilogue insn. */
6830 FOR_BB_INSNS (bb, insn)
6832 if (NOTE_P (insn))
6834 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6836 note = insn;
6837 if (first != NULL)
6838 break;
6841 else if (first == NULL && contains (insn, epilogue_insn_hash))
6843 first = insn;
6844 if (note != NULL)
6845 break;
6849 if (note)
6851 /* If the function has a single basic block, and no real
6852 epilogue insns (e.g. sibcall with no cleanup), the
6853 epilogue note can get scheduled before the prologue
6854 note. If we have frame related prologue insns, having
6855 them scanned during the epilogue will result in a crash.
6856 In this case re-order the epilogue note to just before
6857 the last insn in the block. */
6858 if (first == NULL)
6859 first = BB_END (bb);
6861 if (PREV_INSN (first) != note)
6862 reorder_insns (note, note, PREV_INSN (first));
6866 #endif /* HAVE_prologue or HAVE_epilogue */
6869 /* Returns the name of function declared by FNDECL. */
6870 const char *
6871 fndecl_name (tree fndecl)
6873 if (fndecl == NULL)
6874 return "(nofn)";
6875 return lang_hooks.decl_printable_name (fndecl, 2);
6878 /* Returns the name of function FN. */
6879 const char *
6880 function_name (struct function *fn)
6882 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6883 return fndecl_name (fndecl);
6886 /* Returns the name of the current function. */
6887 const char *
6888 current_function_name (void)
6890 return function_name (cfun);
6894 static unsigned int
6895 rest_of_handle_check_leaf_regs (void)
6897 #ifdef LEAF_REGISTERS
6898 crtl->uses_only_leaf_regs
6899 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6900 #endif
6901 return 0;
6904 /* Insert a TYPE into the used types hash table of CFUN. */
6906 static void
6907 used_types_insert_helper (tree type, struct function *func)
6909 if (type != NULL && func != NULL)
6911 void **slot;
6913 if (func->used_types_hash == NULL)
6914 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
6915 htab_eq_pointer, NULL);
6916 slot = htab_find_slot (func->used_types_hash, type, INSERT);
6917 if (*slot == NULL)
6918 *slot = type;
6922 /* Given a type, insert it into the used hash table in cfun. */
6923 void
6924 used_types_insert (tree t)
6926 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6927 if (TYPE_NAME (t))
6928 break;
6929 else
6930 t = TREE_TYPE (t);
6931 if (TREE_CODE (t) == ERROR_MARK)
6932 return;
6933 if (TYPE_NAME (t) == NULL_TREE
6934 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6935 t = TYPE_MAIN_VARIANT (t);
6936 if (debug_info_level > DINFO_LEVEL_NONE)
6938 if (cfun)
6939 used_types_insert_helper (t, cfun);
6940 else
6942 /* So this might be a type referenced by a global variable.
6943 Record that type so that we can later decide to emit its
6944 debug information. */
6945 vec_safe_push (types_used_by_cur_var_decl, t);
6950 /* Helper to Hash a struct types_used_by_vars_entry. */
6952 static hashval_t
6953 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6955 gcc_assert (entry && entry->var_decl && entry->type);
6957 return iterative_hash_object (entry->type,
6958 iterative_hash_object (entry->var_decl, 0));
6961 /* Hash function of the types_used_by_vars_entry hash table. */
6963 hashval_t
6964 types_used_by_vars_do_hash (const void *x)
6966 const struct types_used_by_vars_entry *entry =
6967 (const struct types_used_by_vars_entry *) x;
6969 return hash_types_used_by_vars_entry (entry);
6972 /*Equality function of the types_used_by_vars_entry hash table. */
6975 types_used_by_vars_eq (const void *x1, const void *x2)
6977 const struct types_used_by_vars_entry *e1 =
6978 (const struct types_used_by_vars_entry *) x1;
6979 const struct types_used_by_vars_entry *e2 =
6980 (const struct types_used_by_vars_entry *)x2;
6982 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6985 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6987 void
6988 types_used_by_var_decl_insert (tree type, tree var_decl)
6990 if (type != NULL && var_decl != NULL)
6992 void **slot;
6993 struct types_used_by_vars_entry e;
6994 e.var_decl = var_decl;
6995 e.type = type;
6996 if (types_used_by_vars_hash == NULL)
6997 types_used_by_vars_hash =
6998 htab_create_ggc (37, types_used_by_vars_do_hash,
6999 types_used_by_vars_eq, NULL);
7000 slot = htab_find_slot_with_hash (types_used_by_vars_hash, &e,
7001 hash_types_used_by_vars_entry (&e), INSERT);
7002 if (*slot == NULL)
7004 struct types_used_by_vars_entry *entry;
7005 entry = ggc_alloc_types_used_by_vars_entry ();
7006 entry->type = type;
7007 entry->var_decl = var_decl;
7008 *slot = entry;
7013 namespace {
7015 const pass_data pass_data_leaf_regs =
7017 RTL_PASS, /* type */
7018 "*leaf_regs", /* name */
7019 OPTGROUP_NONE, /* optinfo_flags */
7020 false, /* has_gate */
7021 true, /* has_execute */
7022 TV_NONE, /* tv_id */
7023 0, /* properties_required */
7024 0, /* properties_provided */
7025 0, /* properties_destroyed */
7026 0, /* todo_flags_start */
7027 0, /* todo_flags_finish */
7030 class pass_leaf_regs : public rtl_opt_pass
7032 public:
7033 pass_leaf_regs (gcc::context *ctxt)
7034 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
7037 /* opt_pass methods: */
7038 unsigned int execute () { return rest_of_handle_check_leaf_regs (); }
7040 }; // class pass_leaf_regs
7042 } // anon namespace
7044 rtl_opt_pass *
7045 make_pass_leaf_regs (gcc::context *ctxt)
7047 return new pass_leaf_regs (ctxt);
7050 static unsigned int
7051 rest_of_handle_thread_prologue_and_epilogue (void)
7053 if (optimize)
7054 cleanup_cfg (CLEANUP_EXPENSIVE);
7056 /* On some machines, the prologue and epilogue code, or parts thereof,
7057 can be represented as RTL. Doing so lets us schedule insns between
7058 it and the rest of the code and also allows delayed branch
7059 scheduling to operate in the epilogue. */
7060 thread_prologue_and_epilogue_insns ();
7062 /* The stack usage info is finalized during prologue expansion. */
7063 if (flag_stack_usage_info)
7064 output_stack_usage ();
7066 return 0;
7069 namespace {
7071 const pass_data pass_data_thread_prologue_and_epilogue =
7073 RTL_PASS, /* type */
7074 "pro_and_epilogue", /* name */
7075 OPTGROUP_NONE, /* optinfo_flags */
7076 false, /* has_gate */
7077 true, /* has_execute */
7078 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
7079 0, /* properties_required */
7080 0, /* properties_provided */
7081 0, /* properties_destroyed */
7082 TODO_verify_flow, /* todo_flags_start */
7083 ( TODO_df_verify | TODO_df_finish
7084 | TODO_verify_rtl_sharing ), /* todo_flags_finish */
7087 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
7089 public:
7090 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
7091 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
7094 /* opt_pass methods: */
7095 unsigned int execute () {
7096 return rest_of_handle_thread_prologue_and_epilogue ();
7099 }; // class pass_thread_prologue_and_epilogue
7101 } // anon namespace
7103 rtl_opt_pass *
7104 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
7106 return new pass_thread_prologue_and_epilogue (ctxt);
7110 /* This mini-pass fixes fall-out from SSA in asm statements that have
7111 in-out constraints. Say you start with
7113 orig = inout;
7114 asm ("": "+mr" (inout));
7115 use (orig);
7117 which is transformed very early to use explicit output and match operands:
7119 orig = inout;
7120 asm ("": "=mr" (inout) : "0" (inout));
7121 use (orig);
7123 Or, after SSA and copyprop,
7125 asm ("": "=mr" (inout_2) : "0" (inout_1));
7126 use (inout_1);
7128 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
7129 they represent two separate values, so they will get different pseudo
7130 registers during expansion. Then, since the two operands need to match
7131 per the constraints, but use different pseudo registers, reload can
7132 only register a reload for these operands. But reloads can only be
7133 satisfied by hardregs, not by memory, so we need a register for this
7134 reload, just because we are presented with non-matching operands.
7135 So, even though we allow memory for this operand, no memory can be
7136 used for it, just because the two operands don't match. This can
7137 cause reload failures on register-starved targets.
7139 So it's a symptom of reload not being able to use memory for reloads
7140 or, alternatively it's also a symptom of both operands not coming into
7141 reload as matching (in which case the pseudo could go to memory just
7142 fine, as the alternative allows it, and no reload would be necessary).
7143 We fix the latter problem here, by transforming
7145 asm ("": "=mr" (inout_2) : "0" (inout_1));
7147 back to
7149 inout_2 = inout_1;
7150 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
7152 static void
7153 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
7155 int i;
7156 bool changed = false;
7157 rtx op = SET_SRC (p_sets[0]);
7158 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
7159 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
7160 bool *output_matched = XALLOCAVEC (bool, noutputs);
7162 memset (output_matched, 0, noutputs * sizeof (bool));
7163 for (i = 0; i < ninputs; i++)
7165 rtx input, output, insns;
7166 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
7167 char *end;
7168 int match, j;
7170 if (*constraint == '%')
7171 constraint++;
7173 match = strtoul (constraint, &end, 10);
7174 if (end == constraint)
7175 continue;
7177 gcc_assert (match < noutputs);
7178 output = SET_DEST (p_sets[match]);
7179 input = RTVEC_ELT (inputs, i);
7180 /* Only do the transformation for pseudos. */
7181 if (! REG_P (output)
7182 || rtx_equal_p (output, input)
7183 || (GET_MODE (input) != VOIDmode
7184 && GET_MODE (input) != GET_MODE (output)))
7185 continue;
7187 /* We can't do anything if the output is also used as input,
7188 as we're going to overwrite it. */
7189 for (j = 0; j < ninputs; j++)
7190 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
7191 break;
7192 if (j != ninputs)
7193 continue;
7195 /* Avoid changing the same input several times. For
7196 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
7197 only change in once (to out1), rather than changing it
7198 first to out1 and afterwards to out2. */
7199 if (i > 0)
7201 for (j = 0; j < noutputs; j++)
7202 if (output_matched[j] && input == SET_DEST (p_sets[j]))
7203 break;
7204 if (j != noutputs)
7205 continue;
7207 output_matched[match] = true;
7209 start_sequence ();
7210 emit_move_insn (output, input);
7211 insns = get_insns ();
7212 end_sequence ();
7213 emit_insn_before (insns, insn);
7215 /* Now replace all mentions of the input with output. We can't
7216 just replace the occurrence in inputs[i], as the register might
7217 also be used in some other input (or even in an address of an
7218 output), which would mean possibly increasing the number of
7219 inputs by one (namely 'output' in addition), which might pose
7220 a too complicated problem for reload to solve. E.g. this situation:
7222 asm ("" : "=r" (output), "=m" (input) : "0" (input))
7224 Here 'input' is used in two occurrences as input (once for the
7225 input operand, once for the address in the second output operand).
7226 If we would replace only the occurrence of the input operand (to
7227 make the matching) we would be left with this:
7229 output = input
7230 asm ("" : "=r" (output), "=m" (input) : "0" (output))
7232 Now we suddenly have two different input values (containing the same
7233 value, but different pseudos) where we formerly had only one.
7234 With more complicated asms this might lead to reload failures
7235 which wouldn't have happen without this pass. So, iterate over
7236 all operands and replace all occurrences of the register used. */
7237 for (j = 0; j < noutputs; j++)
7238 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
7239 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
7240 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
7241 input, output);
7242 for (j = 0; j < ninputs; j++)
7243 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
7244 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
7245 input, output);
7247 changed = true;
7250 if (changed)
7251 df_insn_rescan (insn);
7254 static unsigned
7255 rest_of_match_asm_constraints (void)
7257 basic_block bb;
7258 rtx insn, pat, *p_sets;
7259 int noutputs;
7261 if (!crtl->has_asm_statement)
7262 return 0;
7264 df_set_flags (DF_DEFER_INSN_RESCAN);
7265 FOR_EACH_BB (bb)
7267 FOR_BB_INSNS (bb, insn)
7269 if (!INSN_P (insn))
7270 continue;
7272 pat = PATTERN (insn);
7273 if (GET_CODE (pat) == PARALLEL)
7274 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
7275 else if (GET_CODE (pat) == SET)
7276 p_sets = &PATTERN (insn), noutputs = 1;
7277 else
7278 continue;
7280 if (GET_CODE (*p_sets) == SET
7281 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
7282 match_asm_constraints_1 (insn, p_sets, noutputs);
7286 return TODO_df_finish;
7289 namespace {
7291 const pass_data pass_data_match_asm_constraints =
7293 RTL_PASS, /* type */
7294 "asmcons", /* name */
7295 OPTGROUP_NONE, /* optinfo_flags */
7296 false, /* has_gate */
7297 true, /* has_execute */
7298 TV_NONE, /* tv_id */
7299 0, /* properties_required */
7300 0, /* properties_provided */
7301 0, /* properties_destroyed */
7302 0, /* todo_flags_start */
7303 0, /* todo_flags_finish */
7306 class pass_match_asm_constraints : public rtl_opt_pass
7308 public:
7309 pass_match_asm_constraints (gcc::context *ctxt)
7310 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
7313 /* opt_pass methods: */
7314 unsigned int execute () { return rest_of_match_asm_constraints (); }
7316 }; // class pass_match_asm_constraints
7318 } // anon namespace
7320 rtl_opt_pass *
7321 make_pass_match_asm_constraints (gcc::context *ctxt)
7323 return new pass_match_asm_constraints (ctxt);
7327 #include "gt-function.h"