1 /* Dead code elimination pass for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Ben Elliston <bje@redhat.com>
5 and Andrew MacLeod <amacleod@redhat.com>
6 Adapted to use control dependence by Steven Bosscher, SUSE Labs.
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published by the
12 Free Software Foundation; either version 3, or (at your option) any
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 /* Dead code elimination.
28 Building an Optimizing Compiler,
29 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
31 Advanced Compiler Design and Implementation,
32 Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
34 Dead-code elimination is the removal of statements which have no
35 impact on the program's output. "Dead statements" have no impact
36 on the program's output, while "necessary statements" may have
39 The algorithm consists of three phases:
40 1. Marking as necessary all statements known to be necessary,
41 e.g. most function calls, writing a value to memory, etc;
42 2. Propagating necessary statements, e.g., the statements
43 giving values to operands in necessary statements; and
44 3. Removing dead statements. */
48 #include "coretypes.h"
52 /* These RTL headers are needed for basic-block.h. */
55 #include "hard-reg-set.h"
57 #include "basic-block.h"
60 #include "diagnostic.h"
61 #include "tree-flow.h"
63 #include "tree-dump.h"
64 #include "tree-pass.h"
68 #include "tree-scalar-evolution.h"
70 static struct stmt_stats
78 #define STMT_NECESSARY GF_PLF_1
80 static VEC(gimple
,heap
) *worklist
;
82 /* Vector indicating an SSA name has already been processed and marked
84 static sbitmap processed
;
86 /* Vector indicating that last_stmt if a basic block has already been
87 marked as necessary. */
88 static sbitmap last_stmt_necessary
;
90 /* Before we can determine whether a control branch is dead, we need to
91 compute which blocks are control dependent on which edges.
93 We expect each block to be control dependent on very few edges so we
94 use a bitmap for each block recording its edges. An array holds the
95 bitmap. The Ith bit in the bitmap is set if that block is dependent
97 static bitmap
*control_dependence_map
;
99 /* Vector indicating that a basic block has already had all the edges
100 processed that it is control dependent on. */
101 static sbitmap visited_control_parents
;
103 /* TRUE if this pass alters the CFG (by removing control statements).
106 If this pass alters the CFG, then it will arrange for the dominators
108 static bool cfg_altered
;
110 /* Execute code that follows the macro for each edge (given number
111 EDGE_NUMBER within the CODE) for which the block with index N is
112 control dependent. */
113 #define EXECUTE_IF_CONTROL_DEPENDENT(BI, N, EDGE_NUMBER) \
114 EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[(N)], 0, \
118 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
120 set_control_dependence_map_bit (basic_block bb
, int edge_index
)
122 if (bb
== ENTRY_BLOCK_PTR
)
124 gcc_assert (bb
!= EXIT_BLOCK_PTR
);
125 bitmap_set_bit (control_dependence_map
[bb
->index
], edge_index
);
128 /* Clear all control dependences for block BB. */
130 clear_control_dependence_bitmap (basic_block bb
)
132 bitmap_clear (control_dependence_map
[bb
->index
]);
136 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
137 This function is necessary because some blocks have negative numbers. */
139 static inline basic_block
140 find_pdom (basic_block block
)
142 gcc_assert (block
!= ENTRY_BLOCK_PTR
);
144 if (block
== EXIT_BLOCK_PTR
)
145 return EXIT_BLOCK_PTR
;
148 basic_block bb
= get_immediate_dominator (CDI_POST_DOMINATORS
, block
);
150 return EXIT_BLOCK_PTR
;
156 /* Determine all blocks' control dependences on the given edge with edge_list
157 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
160 find_control_dependence (struct edge_list
*el
, int edge_index
)
162 basic_block current_block
;
163 basic_block ending_block
;
165 gcc_assert (INDEX_EDGE_PRED_BB (el
, edge_index
) != EXIT_BLOCK_PTR
);
167 if (INDEX_EDGE_PRED_BB (el
, edge_index
) == ENTRY_BLOCK_PTR
)
168 ending_block
= single_succ (ENTRY_BLOCK_PTR
);
170 ending_block
= find_pdom (INDEX_EDGE_PRED_BB (el
, edge_index
));
172 for (current_block
= INDEX_EDGE_SUCC_BB (el
, edge_index
);
173 current_block
!= ending_block
&& current_block
!= EXIT_BLOCK_PTR
;
174 current_block
= find_pdom (current_block
))
176 edge e
= INDEX_EDGE (el
, edge_index
);
178 /* For abnormal edges, we don't make current_block control
179 dependent because instructions that throw are always necessary
181 if (e
->flags
& EDGE_ABNORMAL
)
184 set_control_dependence_map_bit (current_block
, edge_index
);
189 /* Record all blocks' control dependences on all edges in the edge
190 list EL, ala Morgan, Section 3.6. */
193 find_all_control_dependences (struct edge_list
*el
)
197 for (i
= 0; i
< NUM_EDGES (el
); ++i
)
198 find_control_dependence (el
, i
);
201 /* If STMT is not already marked necessary, mark it, and add it to the
202 worklist if ADD_TO_WORKLIST is true. */
204 mark_stmt_necessary (gimple stmt
, bool add_to_worklist
)
208 if (gimple_plf (stmt
, STMT_NECESSARY
))
211 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
213 fprintf (dump_file
, "Marking useful stmt: ");
214 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
215 fprintf (dump_file
, "\n");
218 gimple_set_plf (stmt
, STMT_NECESSARY
, true);
220 VEC_safe_push (gimple
, heap
, worklist
, stmt
);
224 /* Mark the statement defining operand OP as necessary. */
227 mark_operand_necessary (tree op
)
234 ver
= SSA_NAME_VERSION (op
);
235 if (TEST_BIT (processed
, ver
))
237 stmt
= SSA_NAME_DEF_STMT (op
);
238 gcc_assert (gimple_nop_p (stmt
)
239 || gimple_plf (stmt
, STMT_NECESSARY
));
242 SET_BIT (processed
, ver
);
244 stmt
= SSA_NAME_DEF_STMT (op
);
247 if (gimple_plf (stmt
, STMT_NECESSARY
) || gimple_nop_p (stmt
))
250 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
252 fprintf (dump_file
, "marking necessary through ");
253 print_generic_expr (dump_file
, op
, 0);
254 fprintf (dump_file
, " stmt ");
255 print_gimple_stmt (dump_file
, stmt
, 0, 0);
258 gimple_set_plf (stmt
, STMT_NECESSARY
, true);
259 VEC_safe_push (gimple
, heap
, worklist
, stmt
);
263 /* Mark STMT as necessary if it obviously is. Add it to the worklist if
264 it can make other statements necessary.
266 If AGGRESSIVE is false, control statements are conservatively marked as
270 mark_stmt_if_obviously_necessary (gimple stmt
, bool aggressive
)
272 tree lhs
= NULL_TREE
;
273 /* With non-call exceptions, we have to assume that all statements could
274 throw. If a statement may throw, it is inherently necessary. */
275 if (flag_non_call_exceptions
276 && stmt_could_throw_p (stmt
))
278 mark_stmt_necessary (stmt
, true);
282 /* Statements that are implicitly live. Most function calls, asm
283 and return statements are required. Labels and GIMPLE_BIND nodes
284 are kept because they are control flow, and we have no way of
285 knowing whether they can be removed. DCE can eliminate all the
286 other statements in a block, and CFG can then remove the block
288 switch (gimple_code (stmt
))
292 mark_stmt_necessary (stmt
, false);
298 case GIMPLE_CHANGE_DYNAMIC_TYPE
:
299 mark_stmt_necessary (stmt
, true);
303 /* Most, but not all function calls are required. Function calls that
304 produce no result and have no side effects (i.e. const pure
305 functions) are unnecessary. */
306 if (gimple_has_side_effects (stmt
))
308 mark_stmt_necessary (stmt
, true);
311 if (!gimple_call_lhs (stmt
))
313 lhs
= gimple_call_lhs (stmt
);
318 lhs
= gimple_assign_lhs (stmt
);
319 /* These values are mildly magic bits of the EH runtime. We can't
320 see the entire lifetime of these values until landing pads are
322 if (TREE_CODE (lhs
) == EXC_PTR_EXPR
323 || TREE_CODE (lhs
) == FILTER_EXPR
)
325 mark_stmt_necessary (stmt
, true);
331 gcc_assert (!simple_goto_p (stmt
));
332 mark_stmt_necessary (stmt
, true);
336 gcc_assert (EDGE_COUNT (gimple_bb (stmt
)->succs
) == 2);
341 mark_stmt_necessary (stmt
, true);
348 /* If the statement has volatile operands, it needs to be preserved.
349 Same for statements that can alter control flow in unpredictable
351 if (gimple_has_volatile_ops (stmt
) || is_ctrl_altering_stmt (stmt
))
353 mark_stmt_necessary (stmt
, true);
357 if (is_hidden_global_store (stmt
))
359 mark_stmt_necessary (stmt
, true);
367 /* Make corresponding control dependent edges necessary. We only
368 have to do this once for each basic block, so we clear the bitmap
371 mark_control_dependent_edges_necessary (basic_block bb
, struct edge_list
*el
)
374 unsigned edge_number
;
376 gcc_assert (bb
!= EXIT_BLOCK_PTR
);
378 if (bb
== ENTRY_BLOCK_PTR
)
381 EXECUTE_IF_CONTROL_DEPENDENT (bi
, bb
->index
, edge_number
)
384 basic_block cd_bb
= INDEX_EDGE_PRED_BB (el
, edge_number
);
386 if (TEST_BIT (last_stmt_necessary
, cd_bb
->index
))
388 SET_BIT (last_stmt_necessary
, cd_bb
->index
);
390 stmt
= last_stmt (cd_bb
);
391 if (stmt
&& is_ctrl_stmt (stmt
))
392 mark_stmt_necessary (stmt
, true);
397 /* Find obviously necessary statements. These are things like most function
398 calls, and stores to file level variables.
400 If EL is NULL, control statements are conservatively marked as
401 necessary. Otherwise it contains the list of edges used by control
402 dependence analysis. */
405 find_obviously_necessary_stmts (struct edge_list
*el
)
408 gimple_stmt_iterator gsi
;
414 /* PHI nodes are never inherently necessary. */
415 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
417 phi
= gsi_stmt (gsi
);
418 gimple_set_plf (phi
, STMT_NECESSARY
, false);
421 /* Check all statements in the block. */
422 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
424 stmt
= gsi_stmt (gsi
);
425 gimple_set_plf (stmt
, STMT_NECESSARY
, false);
426 mark_stmt_if_obviously_necessary (stmt
, el
!= NULL
);
432 /* Prevent the loops from being removed. We must keep the infinite loops,
433 and we currently do not have a means to recognize the finite ones. */
437 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
438 if (e
->flags
& EDGE_DFS_BACK
)
439 mark_control_dependent_edges_necessary (e
->dest
, el
);
445 /* Return true if REF is based on an aliased base, otherwise false. */
448 ref_may_be_aliased (tree ref
)
450 while (handled_component_p (ref
))
451 ref
= TREE_OPERAND (ref
, 0);
452 return !(DECL_P (ref
)
453 && !may_be_aliased (ref
));
459 HOST_WIDE_INT offset
;
460 HOST_WIDE_INT max_size
;
463 static bitmap visited
= NULL
;
464 static unsigned int longest_chain
= 0;
465 static unsigned int total_chain
= 0;
466 static bool chain_ovfl
= false;
468 /* Worker for the walker that marks reaching definitions of REF,
469 which is based on a non-aliased decl, necessary. It returns
470 true whenever the defining statement of the current VDEF is
471 a kill for REF, as no dominating may-defs are necessary for REF
472 anymore. DATA points to cached get_ref_base_and_extent data for REF. */
475 mark_aliased_reaching_defs_necessary_1 (tree ref
, tree vdef
, void *data
)
477 gimple def_stmt
= SSA_NAME_DEF_STMT (vdef
);
478 struct ref_data
*refd
= (struct ref_data
*)data
;
480 /* All stmts we visit are necessary. */
481 mark_operand_necessary (vdef
);
483 /* If the stmt lhs kills ref, then we can stop walking. */
484 if (gimple_has_lhs (def_stmt
)
485 && TREE_CODE (gimple_get_lhs (def_stmt
)) != SSA_NAME
)
487 tree base
, lhs
= gimple_get_lhs (def_stmt
);
488 HOST_WIDE_INT size
, offset
, max_size
;
489 base
= get_ref_base_and_extent (lhs
, &offset
, &size
, &max_size
);
490 /* We can get MEM[symbol: sZ, index: D.8862_1] here,
491 so base == refd->base does not always hold. */
492 if (base
== refd
->base
)
494 /* For a must-alias check we need to be able to constrain
495 the accesses properly. */
496 if (size
!= -1 && size
== max_size
497 && refd
->max_size
!= -1)
499 if (offset
<= refd
->offset
500 && offset
+ size
>= refd
->offset
+ refd
->max_size
)
503 /* Or they need to be exactly the same. */
504 else if (operand_equal_p (ref
, lhs
, 0))
509 /* Otherwise keep walking. */
514 mark_aliased_reaching_defs_necessary (gimple stmt
, tree ref
)
516 struct ref_data refd
;
518 gcc_assert (!chain_ovfl
);
519 refd
.base
= get_ref_base_and_extent (ref
, &refd
.offset
, &refd
.size
,
521 chain
= walk_aliased_vdefs (ref
, gimple_vuse (stmt
),
522 mark_aliased_reaching_defs_necessary_1
,
524 if (chain
> longest_chain
)
525 longest_chain
= chain
;
526 total_chain
+= chain
;
529 /* Worker for the walker that marks reaching definitions of REF, which
530 is not based on a non-aliased decl. For simplicity we need to end
531 up marking all may-defs necessary that are not based on a non-aliased
532 decl. The only job of this walker is to skip may-defs based on
533 a non-aliased decl. */
536 mark_all_reaching_defs_necessary_1 (tree ref ATTRIBUTE_UNUSED
,
537 tree vdef
, void *data ATTRIBUTE_UNUSED
)
539 gimple def_stmt
= SSA_NAME_DEF_STMT (vdef
);
541 /* We have to skip already visited (and thus necessary) statements
542 to make the chaining work after we dropped back to simple mode. */
544 && TEST_BIT (processed
, SSA_NAME_VERSION (vdef
)))
546 gcc_assert (gimple_nop_p (def_stmt
)
547 || gimple_plf (def_stmt
, STMT_NECESSARY
));
551 /* We want to skip stores to non-aliased variables. */
553 && gimple_assign_single_p (def_stmt
))
555 tree lhs
= gimple_assign_lhs (def_stmt
);
556 if (!ref_may_be_aliased (lhs
))
560 /* But can stop after the first necessary statement. */
561 mark_operand_necessary (vdef
);
566 mark_all_reaching_defs_necessary (gimple stmt
)
568 walk_aliased_vdefs (NULL
, gimple_vuse (stmt
),
569 mark_all_reaching_defs_necessary_1
, NULL
, &visited
);
572 /* Propagate necessity using the operands of necessary statements.
573 Process the uses on each statement in the worklist, and add all
574 feeding statements which contribute to the calculation of this
575 value to the worklist.
577 In conservative mode, EL is NULL. */
580 propagate_necessity (struct edge_list
*el
)
583 bool aggressive
= (el
? true : false);
585 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
586 fprintf (dump_file
, "\nProcessing worklist:\n");
588 while (VEC_length (gimple
, worklist
) > 0)
590 /* Take STMT from worklist. */
591 stmt
= VEC_pop (gimple
, worklist
);
593 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
595 fprintf (dump_file
, "processing: ");
596 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
597 fprintf (dump_file
, "\n");
602 /* Mark the last statements of the basic blocks that the block
603 containing STMT is control dependent on, but only if we haven't
605 basic_block bb
= gimple_bb (stmt
);
606 if (bb
!= ENTRY_BLOCK_PTR
607 && ! TEST_BIT (visited_control_parents
, bb
->index
))
609 SET_BIT (visited_control_parents
, bb
->index
);
610 mark_control_dependent_edges_necessary (bb
, el
);
614 if (gimple_code (stmt
) == GIMPLE_PHI
615 /* We do not process virtual PHI nodes nor do we track their
617 && is_gimple_reg (gimple_phi_result (stmt
)))
619 /* PHI nodes are somewhat special in that each PHI alternative has
620 data and control dependencies. All the statements feeding the
621 PHI node's arguments are always necessary. In aggressive mode,
622 we also consider the control dependent edges leading to the
623 predecessor block associated with each PHI alternative as
627 for (k
= 0; k
< gimple_phi_num_args (stmt
); k
++)
629 tree arg
= PHI_ARG_DEF (stmt
, k
);
630 if (TREE_CODE (arg
) == SSA_NAME
)
631 mark_operand_necessary (arg
);
636 for (k
= 0; k
< gimple_phi_num_args (stmt
); k
++)
638 basic_block arg_bb
= gimple_phi_arg_edge (stmt
, k
)->src
;
639 if (arg_bb
!= ENTRY_BLOCK_PTR
640 && ! TEST_BIT (visited_control_parents
, arg_bb
->index
))
642 SET_BIT (visited_control_parents
, arg_bb
->index
);
643 mark_control_dependent_edges_necessary (arg_bb
, el
);
650 /* Propagate through the operands. Examine all the USE, VUSE and
651 VDEF operands in this statement. Mark all the statements
652 which feed this statement's uses as necessary. */
656 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
)
657 mark_operand_necessary (use
);
659 use
= gimple_vuse (stmt
);
663 /* If we dropped to simple mode make all immediately
664 reachable definitions necessary. */
667 mark_all_reaching_defs_necessary (stmt
);
671 /* For statements that may load from memory (have a VUSE) we
672 have to mark all reaching (may-)definitions as necessary.
673 We partition this task into two cases:
674 1) explicit loads based on decls that are not aliased
675 2) implicit loads (like calls) and explicit loads not
676 based on decls that are not aliased (like indirect
677 references or loads from globals)
678 For 1) we mark all reaching may-defs as necessary, stopping
679 at dominating kills. For 2) we want to mark all dominating
680 references necessary, but non-aliased ones which we handle
681 in 1). Instead of doing so for each load we rely on the
682 worklist to eventually reach all dominating references and
683 instead just mark the immediately dominating references
684 as necessary (but skipping non-aliased ones). */
686 if (is_gimple_call (stmt
))
690 /* Calls implicitly load from memory, their arguments
691 in addition may explicitly perform memory loads.
692 This also ensures propagation for case 2 for stores. */
693 mark_all_reaching_defs_necessary (stmt
);
694 for (i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
696 tree arg
= gimple_call_arg (stmt
, i
);
697 if (TREE_CODE (arg
) == SSA_NAME
698 || is_gimple_min_invariant (arg
))
700 if (!ref_may_be_aliased (arg
))
701 mark_aliased_reaching_defs_necessary (stmt
, arg
);
704 else if (gimple_assign_single_p (stmt
))
707 bool rhs_aliased
= false;
708 /* If this is a load mark things necessary. */
709 rhs
= gimple_assign_rhs1 (stmt
);
710 if (TREE_CODE (rhs
) != SSA_NAME
711 && !is_gimple_min_invariant (rhs
))
713 if (!ref_may_be_aliased (rhs
))
714 mark_aliased_reaching_defs_necessary (stmt
, rhs
);
718 /* If this is an aliased store, mark things necessary.
719 This is where we make sure to propagate for case 2. */
720 lhs
= gimple_assign_lhs (stmt
);
722 || (TREE_CODE (lhs
) != SSA_NAME
723 && ref_may_be_aliased (lhs
)))
724 mark_all_reaching_defs_necessary (stmt
);
726 else if (gimple_code (stmt
) == GIMPLE_RETURN
)
728 tree rhs
= gimple_return_retval (stmt
);
729 /* A return statement may perform a load. */
730 if (TREE_CODE (rhs
) != SSA_NAME
731 && !is_gimple_min_invariant (rhs
))
733 if (!ref_may_be_aliased (rhs
))
734 mark_aliased_reaching_defs_necessary (stmt
, rhs
);
736 mark_all_reaching_defs_necessary (stmt
);
739 else if (gimple_code (stmt
) == GIMPLE_ASM
)
742 mark_all_reaching_defs_necessary (stmt
);
743 /* Inputs may perform loads. */
744 for (i
= 0; i
< gimple_asm_ninputs (stmt
); ++i
)
746 tree op
= TREE_VALUE (gimple_asm_input_op (stmt
, i
));
747 if (TREE_CODE (op
) != SSA_NAME
748 && !is_gimple_min_invariant (op
)
749 && !ref_may_be_aliased (op
))
750 mark_aliased_reaching_defs_necessary (stmt
, op
);
756 /* If we over-used our alias oracle budget drop to simple
757 mode. The cost metric allows quadratic behavior up to
758 a constant maximal chain and after that falls back to
759 super-linear complexity. */
760 if (longest_chain
> 256
761 && total_chain
> 256 * longest_chain
)
765 bitmap_clear (visited
);
772 /* Remove dead PHI nodes from block BB. */
775 remove_dead_phis (basic_block bb
)
777 bool something_changed
= false;
780 gimple_stmt_iterator gsi
;
781 phis
= phi_nodes (bb
);
783 for (gsi
= gsi_start (phis
); !gsi_end_p (gsi
);)
786 phi
= gsi_stmt (gsi
);
788 /* We do not track necessity of virtual PHI nodes. Instead do
789 very simple dead PHI removal here. */
790 if (!is_gimple_reg (gimple_phi_result (phi
)))
795 /* Virtual PHI nodes with one or identical arguments
797 vuse
= gimple_phi_arg_def (phi
, 0);
798 for (i
= 1; i
< gimple_phi_num_args (phi
); ++i
)
800 if (gimple_phi_arg_def (phi
, i
) != vuse
)
806 if (vuse
!= NULL_TREE
)
808 tree vdef
= gimple_phi_result (phi
);
810 imm_use_iterator iter
;
812 FOR_EACH_IMM_USE_STMT (use_stmt
, iter
, vdef
)
813 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
814 SET_USE (use_p
, vuse
);
815 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vdef
))
816 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vuse
) = 1;
819 gimple_set_plf (phi
, STMT_NECESSARY
, true);
822 if (!gimple_plf (phi
, STMT_NECESSARY
))
824 something_changed
= true;
825 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
827 fprintf (dump_file
, "Deleting : ");
828 print_gimple_stmt (dump_file
, phi
, 0, TDF_SLIM
);
829 fprintf (dump_file
, "\n");
832 remove_phi_node (&gsi
, true);
833 stats
.removed_phis
++;
839 return something_changed
;
843 /* Remove dead statement pointed to by iterator I. Receives the basic block BB
844 containing I so that we don't have to look it up. */
847 remove_dead_stmt (gimple_stmt_iterator
*i
, basic_block bb
)
849 gimple stmt
= gsi_stmt (*i
);
851 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
853 fprintf (dump_file
, "Deleting : ");
854 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
855 fprintf (dump_file
, "\n");
860 /* If we have determined that a conditional branch statement contributes
861 nothing to the program, then we not only remove it, but we also change
862 the flow graph so that the current block will simply fall-thru to its
863 immediate post-dominator. The blocks we are circumventing will be
864 removed by cleanup_tree_cfg if this change in the flow graph makes them
866 if (is_ctrl_stmt (stmt
))
868 basic_block post_dom_bb
;
870 /* The post dominance info has to be up-to-date. */
871 gcc_assert (dom_info_state (CDI_POST_DOMINATORS
) == DOM_OK
);
872 /* Get the immediate post dominator of bb. */
873 post_dom_bb
= get_immediate_dominator (CDI_POST_DOMINATORS
, bb
);
875 /* There are three particularly problematical cases.
877 1. Blocks that do not have an immediate post dominator. This
878 can happen with infinite loops.
880 2. Blocks that are only post dominated by the exit block. These
881 can also happen for infinite loops as we create fake edges
882 in the dominator tree.
884 3. If the post dominator has PHI nodes we may be able to compute
885 the right PHI args for them.
887 In each of these cases we must remove the control statement
888 as it may reference SSA_NAMEs which are going to be removed and
889 we remove all but one outgoing edge from the block. */
891 || post_dom_bb
== EXIT_BLOCK_PTR
892 || phi_nodes (post_dom_bb
))
896 /* Redirect the first edge out of BB to reach POST_DOM_BB. */
897 redirect_edge_and_branch (EDGE_SUCC (bb
, 0), post_dom_bb
);
898 PENDING_STMT (EDGE_SUCC (bb
, 0)) = NULL
;
900 /* It is not sufficient to set cfg_altered below during edge
901 removal, in case BB has two successors and one of them
905 EDGE_SUCC (bb
, 0)->probability
= REG_BR_PROB_BASE
;
906 EDGE_SUCC (bb
, 0)->count
= bb
->count
;
908 /* The edge is no longer associated with a conditional, so it does
909 not have TRUE/FALSE flags. */
910 EDGE_SUCC (bb
, 0)->flags
&= ~(EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
);
912 /* The lone outgoing edge from BB will be a fallthru edge. */
913 EDGE_SUCC (bb
, 0)->flags
|= EDGE_FALLTHRU
;
915 /* Remove the remaining the outgoing edges. */
916 while (!single_succ_p (bb
))
918 /* FIXME. When we remove the edge, we modify the CFG, which
919 in turn modifies the dominator and post-dominator tree.
920 Is it safe to postpone recomputing the dominator and
921 post-dominator tree until the end of this pass given that
922 the post-dominators are used above? */
924 remove_edge (EDGE_SUCC (bb
, 1));
928 unlink_stmt_vdef (stmt
);
929 gsi_remove (i
, true);
934 /* Eliminate unnecessary statements. Any instruction not marked as necessary
935 contributes nothing to the program, and can be deleted. */
938 eliminate_unnecessary_stmts (void)
940 bool something_changed
= false;
942 gimple_stmt_iterator gsi
;
946 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
947 fprintf (dump_file
, "\nEliminating unnecessary statements:\n");
949 clear_special_calls ();
953 /* Remove dead statements. */
954 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
);)
956 stmt
= gsi_stmt (gsi
);
960 /* If GSI is not necessary then remove it. */
961 if (!gimple_plf (stmt
, STMT_NECESSARY
))
963 remove_dead_stmt (&gsi
, bb
);
964 something_changed
= true;
966 else if (is_gimple_call (stmt
))
968 call
= gimple_call_fndecl (stmt
);
973 /* When LHS of var = call (); is dead, simplify it into
974 call (); saving one operand. */
975 name
= gimple_call_lhs (stmt
);
976 if (name
&& TREE_CODE (name
) == SSA_NAME
977 && !TEST_BIT (processed
, SSA_NAME_VERSION (name
)))
979 something_changed
= true;
980 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
982 fprintf (dump_file
, "Deleting LHS of call: ");
983 print_gimple_stmt (dump_file
, stmt
, 0, TDF_SLIM
);
984 fprintf (dump_file
, "\n");
987 push_stmt_changes (gsi_stmt_ptr (&gsi
));
988 gimple_call_set_lhs (stmt
, NULL_TREE
);
989 maybe_clean_or_replace_eh_stmt (stmt
, stmt
);
990 pop_stmt_changes (gsi_stmt_ptr (&gsi
));
991 release_ssa_name (name
);
993 notice_special_calls (stmt
);
1006 /* Remove dead PHI nodes. */
1007 something_changed
|= remove_dead_phis (bb
);
1010 return something_changed
;
1014 /* Print out removed statement statistics. */
1021 percg
= ((float) stats
.removed
/ (float) stats
.total
) * 100;
1022 fprintf (dump_file
, "Removed %d of %d statements (%d%%)\n",
1023 stats
.removed
, stats
.total
, (int) percg
);
1025 if (stats
.total_phis
== 0)
1028 percg
= ((float) stats
.removed_phis
/ (float) stats
.total_phis
) * 100;
1030 fprintf (dump_file
, "Removed %d of %d PHI nodes (%d%%)\n",
1031 stats
.removed_phis
, stats
.total_phis
, (int) percg
);
1034 /* Initialization for this pass. Set up the used data structures. */
1037 tree_dce_init (bool aggressive
)
1039 memset ((void *) &stats
, 0, sizeof (stats
));
1045 control_dependence_map
= XNEWVEC (bitmap
, last_basic_block
);
1046 for (i
= 0; i
< last_basic_block
; ++i
)
1047 control_dependence_map
[i
] = BITMAP_ALLOC (NULL
);
1049 last_stmt_necessary
= sbitmap_alloc (last_basic_block
);
1050 sbitmap_zero (last_stmt_necessary
);
1053 processed
= sbitmap_alloc (num_ssa_names
+ 1);
1054 sbitmap_zero (processed
);
1056 worklist
= VEC_alloc (gimple
, heap
, 64);
1057 cfg_altered
= false;
1060 /* Cleanup after this pass. */
1063 tree_dce_done (bool aggressive
)
1069 for (i
= 0; i
< last_basic_block
; ++i
)
1070 BITMAP_FREE (control_dependence_map
[i
]);
1071 free (control_dependence_map
);
1073 sbitmap_free (visited_control_parents
);
1074 sbitmap_free (last_stmt_necessary
);
1077 sbitmap_free (processed
);
1079 VEC_free (gimple
, heap
, worklist
);
1082 /* Main routine to eliminate dead code.
1084 AGGRESSIVE controls the aggressiveness of the algorithm.
1085 In conservative mode, we ignore control dependence and simply declare
1086 all but the most trivially dead branches necessary. This mode is fast.
1087 In aggressive mode, control dependences are taken into account, which
1088 results in more dead code elimination, but at the cost of some time.
1090 FIXME: Aggressive mode before PRE doesn't work currently because
1091 the dominance info is not invalidated after DCE1. This is
1092 not an issue right now because we only run aggressive DCE
1093 as the last tree SSA pass, but keep this in mind when you
1094 start experimenting with pass ordering. */
1097 perform_tree_ssa_dce (bool aggressive
)
1099 struct edge_list
*el
= NULL
;
1100 bool something_changed
= 0;
1102 tree_dce_init (aggressive
);
1106 /* Compute control dependence. */
1107 timevar_push (TV_CONTROL_DEPENDENCES
);
1108 calculate_dominance_info (CDI_POST_DOMINATORS
);
1109 el
= create_edge_list ();
1110 find_all_control_dependences (el
);
1111 timevar_pop (TV_CONTROL_DEPENDENCES
);
1113 visited_control_parents
= sbitmap_alloc (last_basic_block
);
1114 sbitmap_zero (visited_control_parents
);
1116 mark_dfs_back_edges ();
1119 find_obviously_necessary_stmts (el
);
1124 propagate_necessity (el
);
1125 BITMAP_FREE (visited
);
1127 something_changed
|= eliminate_unnecessary_stmts ();
1128 something_changed
|= cfg_altered
;
1130 /* We do not update postdominators, so free them unconditionally. */
1131 free_dominance_info (CDI_POST_DOMINATORS
);
1133 /* If we removed paths in the CFG, then we need to update
1134 dominators as well. I haven't investigated the possibility
1135 of incrementally updating dominators. */
1137 free_dominance_info (CDI_DOMINATORS
);
1139 statistics_counter_event (cfun
, "Statements deleted", stats
.removed
);
1140 statistics_counter_event (cfun
, "PHI nodes deleted", stats
.removed_phis
);
1142 /* Debugging dumps. */
1143 if (dump_file
&& (dump_flags
& (TDF_STATS
|TDF_DETAILS
)))
1146 tree_dce_done (aggressive
);
1148 free_edge_list (el
);
1150 if (something_changed
)
1151 return (TODO_update_ssa
| TODO_cleanup_cfg
| TODO_ggc_collect
1152 | TODO_remove_unused_locals
);
1157 /* Pass entry points. */
1161 return perform_tree_ssa_dce (/*aggressive=*/false);
1165 tree_ssa_dce_loop (void)
1168 todo
= perform_tree_ssa_dce (/*aggressive=*/false);
1171 free_numbers_of_iterations_estimates ();
1178 tree_ssa_cd_dce (void)
1180 return perform_tree_ssa_dce (/*aggressive=*/optimize
>= 2);
1186 return flag_tree_dce
!= 0;
1189 struct gimple_opt_pass pass_dce
=
1194 gate_dce
, /* gate */
1195 tree_ssa_dce
, /* execute */
1198 0, /* static_pass_number */
1199 TV_TREE_DCE
, /* tv_id */
1200 PROP_cfg
| PROP_ssa
, /* properties_required */
1201 0, /* properties_provided */
1202 0, /* properties_destroyed */
1203 0, /* todo_flags_start */
1204 TODO_dump_func
| TODO_verify_ssa
/* todo_flags_finish */
1208 struct gimple_opt_pass pass_dce_loop
=
1212 "dceloop", /* name */
1213 gate_dce
, /* gate */
1214 tree_ssa_dce_loop
, /* execute */
1217 0, /* static_pass_number */
1218 TV_TREE_DCE
, /* tv_id */
1219 PROP_cfg
| PROP_ssa
, /* properties_required */
1220 0, /* properties_provided */
1221 0, /* properties_destroyed */
1222 0, /* todo_flags_start */
1223 TODO_dump_func
| TODO_verify_ssa
/* todo_flags_finish */
1227 struct gimple_opt_pass pass_cd_dce
=
1232 gate_dce
, /* gate */
1233 tree_ssa_cd_dce
, /* execute */
1236 0, /* static_pass_number */
1237 TV_TREE_CD_DCE
, /* tv_id */
1238 PROP_cfg
| PROP_ssa
, /* properties_required */
1239 0, /* properties_provided */
1240 0, /* properties_destroyed */
1241 0, /* todo_flags_start */
1242 TODO_dump_func
| TODO_verify_ssa
1243 | TODO_verify_flow
/* todo_flags_finish */