1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Aspects
; use Aspects
;
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Einfo
; use Einfo
;
30 with Errout
; use Errout
;
31 with Expander
; use Expander
;
32 with Exp_Ch6
; use Exp_Ch6
;
33 with Exp_Util
; use Exp_Util
;
34 with Freeze
; use Freeze
;
36 with Lib
.Xref
; use Lib
.Xref
;
37 with Namet
; use Namet
;
38 with Nlists
; use Nlists
;
39 with Nmake
; use Nmake
;
41 with Restrict
; use Restrict
;
42 with Rident
; use Rident
;
43 with Rtsfind
; use Rtsfind
;
45 with Sem_Aux
; use Sem_Aux
;
46 with Sem_Case
; use Sem_Case
;
47 with Sem_Ch3
; use Sem_Ch3
;
48 with Sem_Ch6
; use Sem_Ch6
;
49 with Sem_Ch8
; use Sem_Ch8
;
50 with Sem_Dim
; use Sem_Dim
;
51 with Sem_Disp
; use Sem_Disp
;
52 with Sem_Elab
; use Sem_Elab
;
53 with Sem_Eval
; use Sem_Eval
;
54 with Sem_Res
; use Sem_Res
;
55 with Sem_Type
; use Sem_Type
;
56 with Sem_Util
; use Sem_Util
;
57 with Sem_Warn
; use Sem_Warn
;
58 with Snames
; use Snames
;
59 with Stand
; use Stand
;
60 with Sinfo
; use Sinfo
;
61 with Targparm
; use Targparm
;
62 with Tbuild
; use Tbuild
;
63 with Uintp
; use Uintp
;
65 package body Sem_Ch5
is
67 Unblocked_Exit_Count
: Nat
:= 0;
68 -- This variable is used when processing if statements, case statements,
69 -- and block statements. It counts the number of exit points that are not
70 -- blocked by unconditional transfer instructions: for IF and CASE, these
71 -- are the branches of the conditional; for a block, they are the statement
72 -- sequence of the block, and the statement sequences of any exception
73 -- handlers that are part of the block. When processing is complete, if
74 -- this count is zero, it means that control cannot fall through the IF,
75 -- CASE or block statement. This is used for the generation of warning
76 -- messages. This variable is recursively saved on entry to processing the
77 -- construct, and restored on exit.
79 procedure Preanalyze_Range
(R_Copy
: Node_Id
);
80 -- Determine expected type of range or domain of iteration of Ada 2012
81 -- loop by analyzing separate copy. Do the analysis and resolution of the
82 -- copy of the bound(s) with expansion disabled, to prevent the generation
83 -- of finalization actions. This prevents memory leaks when the bounds
84 -- contain calls to functions returning controlled arrays or when the
85 -- domain of iteration is a container.
87 ------------------------
88 -- Analyze_Assignment --
89 ------------------------
91 procedure Analyze_Assignment
(N
: Node_Id
) is
92 Lhs
: constant Node_Id
:= Name
(N
);
93 Rhs
: constant Node_Id
:= Expression
(N
);
98 procedure Diagnose_Non_Variable_Lhs
(N
: Node_Id
);
99 -- N is the node for the left hand side of an assignment, and it is not
100 -- a variable. This routine issues an appropriate diagnostic.
103 -- This is called to kill current value settings of a simple variable
104 -- on the left hand side. We call it if we find any error in analyzing
105 -- the assignment, and at the end of processing before setting any new
106 -- current values in place.
108 procedure Set_Assignment_Type
110 Opnd_Type
: in out Entity_Id
);
111 -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type is the
112 -- nominal subtype. This procedure is used to deal with cases where the
113 -- nominal subtype must be replaced by the actual subtype.
115 -------------------------------
116 -- Diagnose_Non_Variable_Lhs --
117 -------------------------------
119 procedure Diagnose_Non_Variable_Lhs
(N
: Node_Id
) is
121 -- Not worth posting another error if left hand side already flagged
122 -- as being illegal in some respect.
124 if Error_Posted
(N
) then
127 -- Some special bad cases of entity names
129 elsif Is_Entity_Name
(N
) then
131 Ent
: constant Entity_Id
:= Entity
(N
);
134 if Ekind
(Ent
) = E_In_Parameter
then
136 ("assignment to IN mode parameter not allowed", N
);
139 -- Renamings of protected private components are turned into
140 -- constants when compiling a protected function. In the case
141 -- of single protected types, the private component appears
144 elsif (Is_Prival
(Ent
)
146 (Ekind
(Current_Scope
) = E_Function
147 or else Ekind
(Enclosing_Dynamic_Scope
148 (Current_Scope
)) = E_Function
))
150 (Ekind
(Ent
) = E_Component
151 and then Is_Protected_Type
(Scope
(Ent
)))
154 ("protected function cannot modify protected object", N
);
157 elsif Ekind
(Ent
) = E_Loop_Parameter
then
158 Error_Msg_N
("assignment to loop parameter not allowed", N
);
163 -- For indexed components, test prefix if it is in array. We do not
164 -- want to recurse for cases where the prefix is a pointer, since we
165 -- may get a message confusing the pointer and what it references.
167 elsif Nkind
(N
) = N_Indexed_Component
168 and then Is_Array_Type
(Etype
(Prefix
(N
)))
170 Diagnose_Non_Variable_Lhs
(Prefix
(N
));
173 -- Another special case for assignment to discriminant
175 elsif Nkind
(N
) = N_Selected_Component
then
176 if Present
(Entity
(Selector_Name
(N
)))
177 and then Ekind
(Entity
(Selector_Name
(N
))) = E_Discriminant
179 Error_Msg_N
("assignment to discriminant not allowed", N
);
182 -- For selection from record, diagnose prefix, but note that again
183 -- we only do this for a record, not e.g. for a pointer.
185 elsif Is_Record_Type
(Etype
(Prefix
(N
))) then
186 Diagnose_Non_Variable_Lhs
(Prefix
(N
));
191 -- If we fall through, we have no special message to issue
193 Error_Msg_N
("left hand side of assignment must be a variable", N
);
194 end Diagnose_Non_Variable_Lhs
;
200 procedure Kill_Lhs
is
202 if Is_Entity_Name
(Lhs
) then
204 Ent
: constant Entity_Id
:= Entity
(Lhs
);
206 if Present
(Ent
) then
207 Kill_Current_Values
(Ent
);
213 -------------------------
214 -- Set_Assignment_Type --
215 -------------------------
217 procedure Set_Assignment_Type
219 Opnd_Type
: in out Entity_Id
)
222 Require_Entity
(Opnd
);
224 -- If the assignment operand is an in-out or out parameter, then we
225 -- get the actual subtype (needed for the unconstrained case). If the
226 -- operand is the actual in an entry declaration, then within the
227 -- accept statement it is replaced with a local renaming, which may
228 -- also have an actual subtype.
230 if Is_Entity_Name
(Opnd
)
231 and then (Ekind
(Entity
(Opnd
)) = E_Out_Parameter
232 or else Ekind_In
(Entity
(Opnd
),
234 E_Generic_In_Out_Parameter
)
236 (Ekind
(Entity
(Opnd
)) = E_Variable
237 and then Nkind
(Parent
(Entity
(Opnd
))) =
238 N_Object_Renaming_Declaration
239 and then Nkind
(Parent
(Parent
(Entity
(Opnd
)))) =
242 Opnd_Type
:= Get_Actual_Subtype
(Opnd
);
244 -- If assignment operand is a component reference, then we get the
245 -- actual subtype of the component for the unconstrained case.
247 elsif Nkind_In
(Opnd
, N_Selected_Component
, N_Explicit_Dereference
)
248 and then not Is_Unchecked_Union
(Opnd_Type
)
250 Decl
:= Build_Actual_Subtype_Of_Component
(Opnd_Type
, Opnd
);
252 if Present
(Decl
) then
253 Insert_Action
(N
, Decl
);
254 Mark_Rewrite_Insertion
(Decl
);
256 Opnd_Type
:= Defining_Identifier
(Decl
);
257 Set_Etype
(Opnd
, Opnd_Type
);
258 Freeze_Itype
(Opnd_Type
, N
);
260 elsif Is_Constrained
(Etype
(Opnd
)) then
261 Opnd_Type
:= Etype
(Opnd
);
264 -- For slice, use the constrained subtype created for the slice
266 elsif Nkind
(Opnd
) = N_Slice
then
267 Opnd_Type
:= Etype
(Opnd
);
269 end Set_Assignment_Type
;
271 -- Start of processing for Analyze_Assignment
274 Mark_Coextensions
(N
, Rhs
);
276 -- Analyze the target of the assignment first in case the expression
277 -- contains references to Ghost entities. The checks that verify the
278 -- proper use of a Ghost entity need to know the enclosing context.
283 -- Ensure that we never do an assignment on a variable marked as
284 -- as Safe_To_Reevaluate.
286 pragma Assert
(not Is_Entity_Name
(Lhs
)
287 or else Ekind
(Entity
(Lhs
)) /= E_Variable
288 or else not Is_Safe_To_Reevaluate
(Entity
(Lhs
)));
290 -- Start type analysis for assignment
294 -- In the most general case, both Lhs and Rhs can be overloaded, and we
295 -- must compute the intersection of the possible types on each side.
297 if Is_Overloaded
(Lhs
) then
304 Get_First_Interp
(Lhs
, I
, It
);
306 while Present
(It
.Typ
) loop
307 if Has_Compatible_Type
(Rhs
, It
.Typ
) then
308 if T1
/= Any_Type
then
310 -- An explicit dereference is overloaded if the prefix
311 -- is. Try to remove the ambiguity on the prefix, the
312 -- error will be posted there if the ambiguity is real.
314 if Nkind
(Lhs
) = N_Explicit_Dereference
then
317 PI1
: Interp_Index
:= 0;
323 Get_First_Interp
(Prefix
(Lhs
), PI
, PIt
);
325 while Present
(PIt
.Typ
) loop
326 if Is_Access_Type
(PIt
.Typ
)
327 and then Has_Compatible_Type
328 (Rhs
, Designated_Type
(PIt
.Typ
))
332 Disambiguate
(Prefix
(Lhs
),
335 if PIt
= No_Interp
then
337 ("ambiguous left-hand side"
338 & " in assignment", Lhs
);
341 Resolve
(Prefix
(Lhs
), PIt
.Typ
);
351 Get_Next_Interp
(PI
, PIt
);
357 ("ambiguous left-hand side in assignment", Lhs
);
365 Get_Next_Interp
(I
, It
);
369 if T1
= Any_Type
then
371 ("no valid types for left-hand side for assignment", Lhs
);
377 -- The resulting assignment type is T1, so now we will resolve the left
378 -- hand side of the assignment using this determined type.
382 -- Cases where Lhs is not a variable
384 if not Is_Variable
(Lhs
) then
386 -- Ada 2005 (AI-327): Check assignment to the attribute Priority of a
394 if Ada_Version
>= Ada_2005
then
396 -- Handle chains of renamings
399 while Nkind
(Ent
) in N_Has_Entity
400 and then Present
(Entity
(Ent
))
401 and then Present
(Renamed_Object
(Entity
(Ent
)))
403 Ent
:= Renamed_Object
(Entity
(Ent
));
406 if (Nkind
(Ent
) = N_Attribute_Reference
407 and then Attribute_Name
(Ent
) = Name_Priority
)
409 -- Renamings of the attribute Priority applied to protected
410 -- objects have been previously expanded into calls to the
411 -- Get_Ceiling run-time subprogram.
414 (Nkind
(Ent
) = N_Function_Call
415 and then (Entity
(Name
(Ent
)) = RTE
(RE_Get_Ceiling
)
417 Entity
(Name
(Ent
)) = RTE
(RO_PE_Get_Ceiling
)))
419 -- The enclosing subprogram cannot be a protected function
422 while not (Is_Subprogram
(S
)
423 and then Convention
(S
) = Convention_Protected
)
424 and then S
/= Standard_Standard
429 if Ekind
(S
) = E_Function
430 and then Convention
(S
) = Convention_Protected
433 ("protected function cannot modify protected object",
437 -- Changes of the ceiling priority of the protected object
438 -- are only effective if the Ceiling_Locking policy is in
439 -- effect (AARM D.5.2 (5/2)).
441 if Locking_Policy
/= 'C' then
442 Error_Msg_N
("assignment to the attribute PRIORITY has " &
444 Error_Msg_N
("\since no Locking_Policy has been " &
453 Diagnose_Non_Variable_Lhs
(Lhs
);
456 -- Error of assigning to limited type. We do however allow this in
457 -- certain cases where the front end generates the assignments.
459 elsif Is_Limited_Type
(T1
)
460 and then not Assignment_OK
(Lhs
)
461 and then not Assignment_OK
(Original_Node
(Lhs
))
462 and then not Is_Value_Type
(T1
)
464 -- CPP constructors can only be called in declarations
466 if Is_CPP_Constructor_Call
(Rhs
) then
467 Error_Msg_N
("invalid use of 'C'P'P constructor", Rhs
);
470 ("left hand of assignment must not be limited type", Lhs
);
471 Explain_Limited_Type
(T1
, Lhs
);
475 -- Enforce RM 3.9.3 (8): the target of an assignment operation cannot be
476 -- abstract. This is only checked when the assignment Comes_From_Source,
477 -- because in some cases the expander generates such assignments (such
478 -- in the _assign operation for an abstract type).
480 elsif Is_Abstract_Type
(T1
) and then Comes_From_Source
(N
) then
482 ("target of assignment operation must not be abstract", Lhs
);
485 -- Resolution may have updated the subtype, in case the left-hand side
486 -- is a private protected component. Use the correct subtype to avoid
487 -- scoping issues in the back-end.
491 -- Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
492 -- type. For example:
496 -- type Acc is access P.T;
499 -- with Pkg; use Acc;
500 -- procedure Example is
503 -- A.all := B.all; -- ERROR
506 if Nkind
(Lhs
) = N_Explicit_Dereference
507 and then Ekind
(T1
) = E_Incomplete_Type
509 Error_Msg_N
("invalid use of incomplete type", Lhs
);
514 -- Now we can complete the resolution of the right hand side
516 Set_Assignment_Type
(Lhs
, T1
);
519 -- This is the point at which we check for an unset reference
521 Check_Unset_Reference
(Rhs
);
522 Check_Unprotected_Access
(Lhs
, Rhs
);
524 -- Remaining steps are skipped if Rhs was syntactically in error
533 if not Covers
(T1
, T2
) then
534 Wrong_Type
(Rhs
, Etype
(Lhs
));
539 -- Ada 2005 (AI-326): In case of explicit dereference of incomplete
540 -- types, use the non-limited view if available
542 if Nkind
(Rhs
) = N_Explicit_Dereference
543 and then Ekind
(T2
) = E_Incomplete_Type
544 and then Is_Tagged_Type
(T2
)
545 and then Present
(Non_Limited_View
(T2
))
547 T2
:= Non_Limited_View
(T2
);
550 Set_Assignment_Type
(Rhs
, T2
);
552 if Total_Errors_Detected
/= 0 then
562 if T1
= Any_Type
or else T2
= Any_Type
then
567 -- If the rhs is class-wide or dynamically tagged, then require the lhs
568 -- to be class-wide. The case where the rhs is a dynamically tagged call
569 -- to a dispatching operation with a controlling access result is
570 -- excluded from this check, since the target has an access type (and
571 -- no tag propagation occurs in that case).
573 if (Is_Class_Wide_Type
(T2
)
574 or else (Is_Dynamically_Tagged
(Rhs
)
575 and then not Is_Access_Type
(T1
)))
576 and then not Is_Class_Wide_Type
(T1
)
578 Error_Msg_N
("dynamically tagged expression not allowed!", Rhs
);
580 elsif Is_Class_Wide_Type
(T1
)
581 and then not Is_Class_Wide_Type
(T2
)
582 and then not Is_Tag_Indeterminate
(Rhs
)
583 and then not Is_Dynamically_Tagged
(Rhs
)
585 Error_Msg_N
("dynamically tagged expression required!", Rhs
);
588 -- Propagate the tag from a class-wide target to the rhs when the rhs
589 -- is a tag-indeterminate call.
591 if Is_Tag_Indeterminate
(Rhs
) then
592 if Is_Class_Wide_Type
(T1
) then
593 Propagate_Tag
(Lhs
, Rhs
);
595 elsif Nkind
(Rhs
) = N_Function_Call
596 and then Is_Entity_Name
(Name
(Rhs
))
597 and then Is_Abstract_Subprogram
(Entity
(Name
(Rhs
)))
600 ("call to abstract function must be dispatching", Name
(Rhs
));
602 elsif Nkind
(Rhs
) = N_Qualified_Expression
603 and then Nkind
(Expression
(Rhs
)) = N_Function_Call
604 and then Is_Entity_Name
(Name
(Expression
(Rhs
)))
606 Is_Abstract_Subprogram
(Entity
(Name
(Expression
(Rhs
))))
609 ("call to abstract function must be dispatching",
610 Name
(Expression
(Rhs
)));
614 -- Ada 2005 (AI-385): When the lhs type is an anonymous access type,
615 -- apply an implicit conversion of the rhs to that type to force
616 -- appropriate static and run-time accessibility checks. This applies
617 -- as well to anonymous access-to-subprogram types that are component
618 -- subtypes or formal parameters.
620 if Ada_Version
>= Ada_2005
and then Is_Access_Type
(T1
) then
621 if Is_Local_Anonymous_Access
(T1
)
622 or else Ekind
(T2
) = E_Anonymous_Access_Subprogram_Type
624 -- Handle assignment to an Ada 2012 stand-alone object
625 -- of an anonymous access type.
627 or else (Ekind
(T1
) = E_Anonymous_Access_Type
628 and then Nkind
(Associated_Node_For_Itype
(T1
)) =
629 N_Object_Declaration
)
632 Rewrite
(Rhs
, Convert_To
(T1
, Relocate_Node
(Rhs
)));
633 Analyze_And_Resolve
(Rhs
, T1
);
637 -- Ada 2005 (AI-231): Assignment to not null variable
639 if Ada_Version
>= Ada_2005
640 and then Can_Never_Be_Null
(T1
)
641 and then not Assignment_OK
(Lhs
)
643 -- Case where we know the right hand side is null
645 if Known_Null
(Rhs
) then
646 Apply_Compile_Time_Constraint_Error
649 "(Ada 2005) null not allowed in null-excluding objects??",
650 Reason
=> CE_Null_Not_Allowed
);
652 -- We still mark this as a possible modification, that's necessary
653 -- to reset Is_True_Constant, and desirable for xref purposes.
655 Note_Possible_Modification
(Lhs
, Sure
=> True);
658 -- If we know the right hand side is non-null, then we convert to the
659 -- target type, since we don't need a run time check in that case.
661 elsif not Can_Never_Be_Null
(T2
) then
662 Rewrite
(Rhs
, Convert_To
(T1
, Relocate_Node
(Rhs
)));
663 Analyze_And_Resolve
(Rhs
, T1
);
667 if Is_Scalar_Type
(T1
) then
668 Apply_Scalar_Range_Check
(Rhs
, Etype
(Lhs
));
670 -- For array types, verify that lengths match. If the right hand side
671 -- is a function call that has been inlined, the assignment has been
672 -- rewritten as a block, and the constraint check will be applied to the
673 -- assignment within the block.
675 elsif Is_Array_Type
(T1
)
676 and then (Nkind
(Rhs
) /= N_Type_Conversion
677 or else Is_Constrained
(Etype
(Rhs
)))
678 and then (Nkind
(Rhs
) /= N_Function_Call
679 or else Nkind
(N
) /= N_Block_Statement
)
681 -- Assignment verifies that the length of the Lsh and Rhs are equal,
682 -- but of course the indexes do not have to match. If the right-hand
683 -- side is a type conversion to an unconstrained type, a length check
684 -- is performed on the expression itself during expansion. In rare
685 -- cases, the redundant length check is computed on an index type
686 -- with a different representation, triggering incorrect code in the
689 Apply_Length_Check
(Rhs
, Etype
(Lhs
));
692 -- Discriminant checks are applied in the course of expansion
697 -- Note: modifications of the Lhs may only be recorded after
698 -- checks have been applied.
700 Note_Possible_Modification
(Lhs
, Sure
=> True);
702 -- ??? a real accessibility check is needed when ???
704 -- Post warning for redundant assignment or variable to itself
706 if Warn_On_Redundant_Constructs
708 -- We only warn for source constructs
710 and then Comes_From_Source
(N
)
712 -- Where the object is the same on both sides
714 and then Same_Object
(Lhs
, Original_Node
(Rhs
))
716 -- But exclude the case where the right side was an operation that
717 -- got rewritten (e.g. JUNK + K, where K was known to be zero). We
718 -- don't want to warn in such a case, since it is reasonable to write
719 -- such expressions especially when K is defined symbolically in some
722 and then Nkind
(Original_Node
(Rhs
)) not in N_Op
724 if Nkind
(Lhs
) in N_Has_Entity
then
725 Error_Msg_NE
-- CODEFIX
726 ("?r?useless assignment of & to itself!", N
, Entity
(Lhs
));
728 Error_Msg_N
-- CODEFIX
729 ("?r?useless assignment of object to itself!", N
);
733 -- Check for non-allowed composite assignment
735 if not Support_Composite_Assign_On_Target
736 and then (Is_Array_Type
(T1
) or else Is_Record_Type
(T1
))
737 and then (not Has_Size_Clause
(T1
) or else Esize
(T1
) > 64)
739 Error_Msg_CRT
("composite assignment", N
);
742 -- Check elaboration warning for left side if not in elab code
744 if not In_Subprogram_Or_Concurrent_Unit
then
745 Check_Elab_Assign
(Lhs
);
748 -- Set Referenced_As_LHS if appropriate. We only set this flag if the
749 -- assignment is a source assignment in the extended main source unit.
750 -- We are not interested in any reference information outside this
751 -- context, or in compiler generated assignment statements.
753 if Comes_From_Source
(N
)
754 and then In_Extended_Main_Source_Unit
(Lhs
)
756 Set_Referenced_Modified
(Lhs
, Out_Param
=> False);
759 -- Final step. If left side is an entity, then we may be able to reset
760 -- the current tracked values to new safe values. We only have something
761 -- to do if the left side is an entity name, and expansion has not
762 -- modified the node into something other than an assignment, and of
763 -- course we only capture values if it is safe to do so.
765 if Is_Entity_Name
(Lhs
)
766 and then Nkind
(N
) = N_Assignment_Statement
769 Ent
: constant Entity_Id
:= Entity
(Lhs
);
772 if Safe_To_Capture_Value
(N
, Ent
) then
774 -- If simple variable on left side, warn if this assignment
775 -- blots out another one (rendering it useless). We only do
776 -- this for source assignments, otherwise we can generate bogus
777 -- warnings when an assignment is rewritten as another
778 -- assignment, and gets tied up with itself.
780 if Warn_On_Modified_Unread
781 and then Is_Assignable
(Ent
)
782 and then Comes_From_Source
(N
)
783 and then In_Extended_Main_Source_Unit
(Ent
)
785 Warn_On_Useless_Assignment
(Ent
, N
);
788 -- If we are assigning an access type and the left side is an
789 -- entity, then make sure that the Is_Known_[Non_]Null flags
790 -- properly reflect the state of the entity after assignment.
792 if Is_Access_Type
(T1
) then
793 if Known_Non_Null
(Rhs
) then
794 Set_Is_Known_Non_Null
(Ent
, True);
796 elsif Known_Null
(Rhs
)
797 and then not Can_Never_Be_Null
(Ent
)
799 Set_Is_Known_Null
(Ent
, True);
802 Set_Is_Known_Null
(Ent
, False);
804 if not Can_Never_Be_Null
(Ent
) then
805 Set_Is_Known_Non_Null
(Ent
, False);
809 -- For discrete types, we may be able to set the current value
810 -- if the value is known at compile time.
812 elsif Is_Discrete_Type
(T1
)
813 and then Compile_Time_Known_Value
(Rhs
)
815 Set_Current_Value
(Ent
, Rhs
);
817 Set_Current_Value
(Ent
, Empty
);
820 -- If not safe to capture values, kill them
828 -- If assigning to an object in whole or in part, note location of
829 -- assignment in case no one references value. We only do this for
830 -- source assignments, otherwise we can generate bogus warnings when an
831 -- assignment is rewritten as another assignment, and gets tied up with
835 Ent
: constant Entity_Id
:= Get_Enclosing_Object
(Lhs
);
838 and then Safe_To_Capture_Value
(N
, Ent
)
839 and then Nkind
(N
) = N_Assignment_Statement
840 and then Warn_On_Modified_Unread
841 and then Is_Assignable
(Ent
)
842 and then Comes_From_Source
(N
)
843 and then In_Extended_Main_Source_Unit
(Ent
)
845 Set_Last_Assignment
(Ent
, Lhs
);
849 Analyze_Dimension
(N
);
850 end Analyze_Assignment
;
852 -----------------------------
853 -- Analyze_Block_Statement --
854 -----------------------------
856 procedure Analyze_Block_Statement
(N
: Node_Id
) is
857 procedure Install_Return_Entities
(Scop
: Entity_Id
);
858 -- Install all entities of return statement scope Scop in the visibility
859 -- chain except for the return object since its entity is reused in a
862 -----------------------------
863 -- Install_Return_Entities --
864 -----------------------------
866 procedure Install_Return_Entities
(Scop
: Entity_Id
) is
870 Id
:= First_Entity
(Scop
);
871 while Present
(Id
) loop
873 -- Do not install the return object
875 if not Ekind_In
(Id
, E_Constant
, E_Variable
)
876 or else not Is_Return_Object
(Id
)
883 end Install_Return_Entities
;
885 -- Local constants and variables
887 Decls
: constant List_Id
:= Declarations
(N
);
888 Id
: constant Node_Id
:= Identifier
(N
);
889 HSS
: constant Node_Id
:= Handled_Statement_Sequence
(N
);
891 Is_BIP_Return_Statement
: Boolean;
893 -- Start of processing for Analyze_Block_Statement
896 -- In SPARK mode, we reject block statements. Note that the case of
897 -- block statements generated by the expander is fine.
899 if Nkind
(Original_Node
(N
)) = N_Block_Statement
then
900 Check_SPARK_05_Restriction
("block statement is not allowed", N
);
903 -- If no handled statement sequence is present, things are really messed
904 -- up, and we just return immediately (defence against previous errors).
907 Check_Error_Detected
;
911 -- Detect whether the block is actually a rewritten return statement of
912 -- a build-in-place function.
914 Is_BIP_Return_Statement
:=
916 and then Present
(Entity
(Id
))
917 and then Ekind
(Entity
(Id
)) = E_Return_Statement
918 and then Is_Build_In_Place_Function
919 (Return_Applies_To
(Entity
(Id
)));
921 -- Normal processing with HSS present
924 EH
: constant List_Id
:= Exception_Handlers
(HSS
);
925 Ent
: Entity_Id
:= Empty
;
928 Save_Unblocked_Exit_Count
: constant Nat
:= Unblocked_Exit_Count
;
929 -- Recursively save value of this global, will be restored on exit
932 -- Initialize unblocked exit count for statements of begin block
933 -- plus one for each exception handler that is present.
935 Unblocked_Exit_Count
:= 1;
938 Unblocked_Exit_Count
:= Unblocked_Exit_Count
+ List_Length
(EH
);
941 -- If a label is present analyze it and mark it as referenced
947 -- An error defense. If we have an identifier, but no entity, then
948 -- something is wrong. If previous errors, then just remove the
949 -- identifier and continue, otherwise raise an exception.
952 Check_Error_Detected
;
953 Set_Identifier
(N
, Empty
);
956 Set_Ekind
(Ent
, E_Block
);
957 Generate_Reference
(Ent
, N
, ' ');
958 Generate_Definition
(Ent
);
960 if Nkind
(Parent
(Ent
)) = N_Implicit_Label_Declaration
then
961 Set_Label_Construct
(Parent
(Ent
), N
);
966 -- If no entity set, create a label entity
969 Ent
:= New_Internal_Entity
(E_Block
, Current_Scope
, Sloc
(N
), 'B');
970 Set_Identifier
(N
, New_Occurrence_Of
(Ent
, Sloc
(N
)));
974 Set_Etype
(Ent
, Standard_Void_Type
);
975 Set_Block_Node
(Ent
, Identifier
(N
));
978 -- The block served as an extended return statement. Ensure that any
979 -- entities created during the analysis and expansion of the return
980 -- object declaration are once again visible.
982 if Is_BIP_Return_Statement
then
983 Install_Return_Entities
(Ent
);
986 if Present
(Decls
) then
987 Analyze_Declarations
(Decls
);
989 Inspect_Deferred_Constant_Completion
(Decls
);
993 Process_End_Label
(HSS
, 'e', Ent
);
995 -- If exception handlers are present, then we indicate that enclosing
996 -- scopes contain a block with handlers. We only need to mark non-
1002 Set_Has_Nested_Block_With_Handler
(S
);
1003 exit when Is_Overloadable
(S
)
1004 or else Ekind
(S
) = E_Package
1005 or else Is_Generic_Unit
(S
);
1010 Check_References
(Ent
);
1011 Warn_On_Useless_Assignments
(Ent
);
1014 if Unblocked_Exit_Count
= 0 then
1015 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1016 Check_Unreachable_Code
(N
);
1018 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1021 end Analyze_Block_Statement
;
1023 --------------------------------
1024 -- Analyze_Compound_Statement --
1025 --------------------------------
1027 procedure Analyze_Compound_Statement
(N
: Node_Id
) is
1029 Analyze_List
(Actions
(N
));
1030 end Analyze_Compound_Statement
;
1032 ----------------------------
1033 -- Analyze_Case_Statement --
1034 ----------------------------
1036 procedure Analyze_Case_Statement
(N
: Node_Id
) is
1038 Exp_Type
: Entity_Id
;
1039 Exp_Btype
: Entity_Id
;
1042 Others_Present
: Boolean;
1043 -- Indicates if Others was present
1045 pragma Warnings
(Off
, Last_Choice
);
1046 -- Don't care about assigned value
1048 Statements_Analyzed
: Boolean := False;
1049 -- Set True if at least some statement sequences get analyzed. If False
1050 -- on exit, means we had a serious error that prevented full analysis of
1051 -- the case statement, and as a result it is not a good idea to output
1052 -- warning messages about unreachable code.
1054 Save_Unblocked_Exit_Count
: constant Nat
:= Unblocked_Exit_Count
;
1055 -- Recursively save value of this global, will be restored on exit
1057 procedure Non_Static_Choice_Error
(Choice
: Node_Id
);
1058 -- Error routine invoked by the generic instantiation below when the
1059 -- case statement has a non static choice.
1061 procedure Process_Statements
(Alternative
: Node_Id
);
1062 -- Analyzes the statements associated with a case alternative. Needed
1063 -- by instantiation below.
1065 package Analyze_Case_Choices
is new
1066 Generic_Analyze_Choices
1067 (Process_Associated_Node
=> Process_Statements
);
1068 use Analyze_Case_Choices
;
1069 -- Instantiation of the generic choice analysis package
1071 package Check_Case_Choices
is new
1072 Generic_Check_Choices
1073 (Process_Empty_Choice
=> No_OP
,
1074 Process_Non_Static_Choice
=> Non_Static_Choice_Error
,
1075 Process_Associated_Node
=> No_OP
);
1076 use Check_Case_Choices
;
1077 -- Instantiation of the generic choice processing package
1079 -----------------------------
1080 -- Non_Static_Choice_Error --
1081 -----------------------------
1083 procedure Non_Static_Choice_Error
(Choice
: Node_Id
) is
1085 Flag_Non_Static_Expr
1086 ("choice given in case statement is not static!", Choice
);
1087 end Non_Static_Choice_Error
;
1089 ------------------------
1090 -- Process_Statements --
1091 ------------------------
1093 procedure Process_Statements
(Alternative
: Node_Id
) is
1094 Choices
: constant List_Id
:= Discrete_Choices
(Alternative
);
1098 Unblocked_Exit_Count
:= Unblocked_Exit_Count
+ 1;
1099 Statements_Analyzed
:= True;
1101 -- An interesting optimization. If the case statement expression
1102 -- is a simple entity, then we can set the current value within an
1103 -- alternative if the alternative has one possible value.
1107 -- when 2 | 3 => beta
1108 -- when others => gamma
1110 -- Here we know that N is initially 1 within alpha, but for beta and
1111 -- gamma, we do not know anything more about the initial value.
1113 if Is_Entity_Name
(Exp
) then
1114 Ent
:= Entity
(Exp
);
1116 if Ekind_In
(Ent
, E_Variable
,
1120 if List_Length
(Choices
) = 1
1121 and then Nkind
(First
(Choices
)) in N_Subexpr
1122 and then Compile_Time_Known_Value
(First
(Choices
))
1124 Set_Current_Value
(Entity
(Exp
), First
(Choices
));
1127 Analyze_Statements
(Statements
(Alternative
));
1129 -- After analyzing the case, set the current value to empty
1130 -- since we won't know what it is for the next alternative
1131 -- (unless reset by this same circuit), or after the case.
1133 Set_Current_Value
(Entity
(Exp
), Empty
);
1138 -- Case where expression is not an entity name of a variable
1140 Analyze_Statements
(Statements
(Alternative
));
1141 end Process_Statements
;
1143 -- Start of processing for Analyze_Case_Statement
1146 Unblocked_Exit_Count
:= 0;
1147 Exp
:= Expression
(N
);
1150 -- The expression must be of any discrete type. In rare cases, the
1151 -- expander constructs a case statement whose expression has a private
1152 -- type whose full view is discrete. This can happen when generating
1153 -- a stream operation for a variant type after the type is frozen,
1154 -- when the partial of view of the type of the discriminant is private.
1155 -- In that case, use the full view to analyze case alternatives.
1157 if not Is_Overloaded
(Exp
)
1158 and then not Comes_From_Source
(N
)
1159 and then Is_Private_Type
(Etype
(Exp
))
1160 and then Present
(Full_View
(Etype
(Exp
)))
1161 and then Is_Discrete_Type
(Full_View
(Etype
(Exp
)))
1163 Resolve
(Exp
, Etype
(Exp
));
1164 Exp_Type
:= Full_View
(Etype
(Exp
));
1167 Analyze_And_Resolve
(Exp
, Any_Discrete
);
1168 Exp_Type
:= Etype
(Exp
);
1171 Check_Unset_Reference
(Exp
);
1172 Exp_Btype
:= Base_Type
(Exp_Type
);
1174 -- The expression must be of a discrete type which must be determinable
1175 -- independently of the context in which the expression occurs, but
1176 -- using the fact that the expression must be of a discrete type.
1177 -- Moreover, the type this expression must not be a character literal
1178 -- (which is always ambiguous) or, for Ada-83, a generic formal type.
1180 -- If error already reported by Resolve, nothing more to do
1182 if Exp_Btype
= Any_Discrete
or else Exp_Btype
= Any_Type
then
1185 elsif Exp_Btype
= Any_Character
then
1187 ("character literal as case expression is ambiguous", Exp
);
1190 elsif Ada_Version
= Ada_83
1191 and then (Is_Generic_Type
(Exp_Btype
)
1192 or else Is_Generic_Type
(Root_Type
(Exp_Btype
)))
1195 ("(Ada 83) case expression cannot be of a generic type", Exp
);
1199 -- If the case expression is a formal object of mode in out, then treat
1200 -- it as having a nonstatic subtype by forcing use of the base type
1201 -- (which has to get passed to Check_Case_Choices below). Also use base
1202 -- type when the case expression is parenthesized.
1204 if Paren_Count
(Exp
) > 0
1205 or else (Is_Entity_Name
(Exp
)
1206 and then Ekind
(Entity
(Exp
)) = E_Generic_In_Out_Parameter
)
1208 Exp_Type
:= Exp_Btype
;
1211 -- Call instantiated procedures to analyzwe and check discrete choices
1213 Analyze_Choices
(Alternatives
(N
), Exp_Type
);
1214 Check_Choices
(N
, Alternatives
(N
), Exp_Type
, Others_Present
);
1216 -- Case statement with single OTHERS alternative not allowed in SPARK
1218 if Others_Present
and then List_Length
(Alternatives
(N
)) = 1 then
1219 Check_SPARK_05_Restriction
1220 ("OTHERS as unique case alternative is not allowed", N
);
1223 if Exp_Type
= Universal_Integer
and then not Others_Present
then
1224 Error_Msg_N
("case on universal integer requires OTHERS choice", Exp
);
1227 -- If all our exits were blocked by unconditional transfers of control,
1228 -- then the entire CASE statement acts as an unconditional transfer of
1229 -- control, so treat it like one, and check unreachable code. Skip this
1230 -- test if we had serious errors preventing any statement analysis.
1232 if Unblocked_Exit_Count
= 0 and then Statements_Analyzed
then
1233 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1234 Check_Unreachable_Code
(N
);
1236 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1239 -- If the expander is active it will detect the case of a statically
1240 -- determined single alternative and remove warnings for the case, but
1241 -- if we are not doing expansion, that circuit won't be active. Here we
1242 -- duplicate the effect of removing warnings in the same way, so that
1243 -- we will get the same set of warnings in -gnatc mode.
1245 if not Expander_Active
1246 and then Compile_Time_Known_Value
(Expression
(N
))
1247 and then Serious_Errors_Detected
= 0
1250 Chosen
: constant Node_Id
:= Find_Static_Alternative
(N
);
1254 Alt
:= First
(Alternatives
(N
));
1255 while Present
(Alt
) loop
1256 if Alt
/= Chosen
then
1257 Remove_Warning_Messages
(Statements
(Alt
));
1264 end Analyze_Case_Statement
;
1266 ----------------------------
1267 -- Analyze_Exit_Statement --
1268 ----------------------------
1270 -- If the exit includes a name, it must be the name of a currently open
1271 -- loop. Otherwise there must be an innermost open loop on the stack, to
1272 -- which the statement implicitly refers.
1274 -- Additionally, in SPARK mode:
1276 -- The exit can only name the closest enclosing loop;
1278 -- An exit with a when clause must be directly contained in a loop;
1280 -- An exit without a when clause must be directly contained in an
1281 -- if-statement with no elsif or else, which is itself directly contained
1282 -- in a loop. The exit must be the last statement in the if-statement.
1284 procedure Analyze_Exit_Statement
(N
: Node_Id
) is
1285 Target
: constant Node_Id
:= Name
(N
);
1286 Cond
: constant Node_Id
:= Condition
(N
);
1287 Scope_Id
: Entity_Id
;
1293 Check_Unreachable_Code
(N
);
1296 if Present
(Target
) then
1298 U_Name
:= Entity
(Target
);
1300 if not In_Open_Scopes
(U_Name
) or else Ekind
(U_Name
) /= E_Loop
then
1301 Error_Msg_N
("invalid loop name in exit statement", N
);
1305 if Has_Loop_In_Inner_Open_Scopes
(U_Name
) then
1306 Check_SPARK_05_Restriction
1307 ("exit label must name the closest enclosing loop", N
);
1310 Set_Has_Exit
(U_Name
);
1317 for J
in reverse 0 .. Scope_Stack
.Last
loop
1318 Scope_Id
:= Scope_Stack
.Table
(J
).Entity
;
1319 Kind
:= Ekind
(Scope_Id
);
1321 if Kind
= E_Loop
and then (No
(Target
) or else Scope_Id
= U_Name
) then
1322 Set_Has_Exit
(Scope_Id
);
1325 elsif Kind
= E_Block
1326 or else Kind
= E_Loop
1327 or else Kind
= E_Return_Statement
1333 ("cannot exit from program unit or accept statement", N
);
1338 -- Verify that if present the condition is a Boolean expression
1340 if Present
(Cond
) then
1341 Analyze_And_Resolve
(Cond
, Any_Boolean
);
1342 Check_Unset_Reference
(Cond
);
1345 -- In SPARK mode, verify that the exit statement respects the SPARK
1348 if Present
(Cond
) then
1349 if Nkind
(Parent
(N
)) /= N_Loop_Statement
then
1350 Check_SPARK_05_Restriction
1351 ("exit with when clause must be directly in loop", N
);
1355 if Nkind
(Parent
(N
)) /= N_If_Statement
then
1356 if Nkind
(Parent
(N
)) = N_Elsif_Part
then
1357 Check_SPARK_05_Restriction
1358 ("exit must be in IF without ELSIF", N
);
1360 Check_SPARK_05_Restriction
("exit must be directly in IF", N
);
1363 elsif Nkind
(Parent
(Parent
(N
))) /= N_Loop_Statement
then
1364 Check_SPARK_05_Restriction
1365 ("exit must be in IF directly in loop", N
);
1367 -- First test the presence of ELSE, so that an exit in an ELSE leads
1368 -- to an error mentioning the ELSE.
1370 elsif Present
(Else_Statements
(Parent
(N
))) then
1371 Check_SPARK_05_Restriction
("exit must be in IF without ELSE", N
);
1373 -- An exit in an ELSIF does not reach here, as it would have been
1374 -- detected in the case (Nkind (Parent (N)) /= N_If_Statement).
1376 elsif Present
(Elsif_Parts
(Parent
(N
))) then
1377 Check_SPARK_05_Restriction
("exit must be in IF without ELSIF", N
);
1381 -- Chain exit statement to associated loop entity
1383 Set_Next_Exit_Statement
(N
, First_Exit_Statement
(Scope_Id
));
1384 Set_First_Exit_Statement
(Scope_Id
, N
);
1386 -- Since the exit may take us out of a loop, any previous assignment
1387 -- statement is not useless, so clear last assignment indications. It
1388 -- is OK to keep other current values, since if the exit statement
1389 -- does not exit, then the current values are still valid.
1391 Kill_Current_Values
(Last_Assignment_Only
=> True);
1392 end Analyze_Exit_Statement
;
1394 ----------------------------
1395 -- Analyze_Goto_Statement --
1396 ----------------------------
1398 procedure Analyze_Goto_Statement
(N
: Node_Id
) is
1399 Label
: constant Node_Id
:= Name
(N
);
1400 Scope_Id
: Entity_Id
;
1401 Label_Scope
: Entity_Id
;
1402 Label_Ent
: Entity_Id
;
1405 Check_SPARK_05_Restriction
("goto statement is not allowed", N
);
1407 -- Actual semantic checks
1409 Check_Unreachable_Code
(N
);
1410 Kill_Current_Values
(Last_Assignment_Only
=> True);
1413 Label_Ent
:= Entity
(Label
);
1415 -- Ignore previous error
1417 if Label_Ent
= Any_Id
then
1418 Check_Error_Detected
;
1421 -- We just have a label as the target of a goto
1423 elsif Ekind
(Label_Ent
) /= E_Label
then
1424 Error_Msg_N
("target of goto statement must be a label", Label
);
1427 -- Check that the target of the goto is reachable according to Ada
1428 -- scoping rules. Note: the special gotos we generate for optimizing
1429 -- local handling of exceptions would violate these rules, but we mark
1430 -- such gotos as analyzed when built, so this code is never entered.
1432 elsif not Reachable
(Label_Ent
) then
1433 Error_Msg_N
("target of goto statement is not reachable", Label
);
1437 -- Here if goto passes initial validity checks
1439 Label_Scope
:= Enclosing_Scope
(Label_Ent
);
1441 for J
in reverse 0 .. Scope_Stack
.Last
loop
1442 Scope_Id
:= Scope_Stack
.Table
(J
).Entity
;
1444 if Label_Scope
= Scope_Id
1445 or else not Ekind_In
(Scope_Id
, E_Block
, E_Loop
, E_Return_Statement
)
1447 if Scope_Id
/= Label_Scope
then
1449 ("cannot exit from program unit or accept statement", N
);
1456 raise Program_Error
;
1457 end Analyze_Goto_Statement
;
1459 --------------------------
1460 -- Analyze_If_Statement --
1461 --------------------------
1463 -- A special complication arises in the analysis of if statements
1465 -- The expander has circuitry to completely delete code that it can tell
1466 -- will not be executed (as a result of compile time known conditions). In
1467 -- the analyzer, we ensure that code that will be deleted in this manner
1468 -- is analyzed but not expanded. This is obviously more efficient, but
1469 -- more significantly, difficulties arise if code is expanded and then
1470 -- eliminated (e.g. exception table entries disappear). Similarly, itypes
1471 -- generated in deleted code must be frozen from start, because the nodes
1472 -- on which they depend will not be available at the freeze point.
1474 procedure Analyze_If_Statement
(N
: Node_Id
) is
1477 Save_Unblocked_Exit_Count
: constant Nat
:= Unblocked_Exit_Count
;
1478 -- Recursively save value of this global, will be restored on exit
1480 Save_In_Deleted_Code
: Boolean;
1482 Del
: Boolean := False;
1483 -- This flag gets set True if a True condition has been found, which
1484 -- means that remaining ELSE/ELSIF parts are deleted.
1486 procedure Analyze_Cond_Then
(Cnode
: Node_Id
);
1487 -- This is applied to either the N_If_Statement node itself or to an
1488 -- N_Elsif_Part node. It deals with analyzing the condition and the THEN
1489 -- statements associated with it.
1491 -----------------------
1492 -- Analyze_Cond_Then --
1493 -----------------------
1495 procedure Analyze_Cond_Then
(Cnode
: Node_Id
) is
1496 Cond
: constant Node_Id
:= Condition
(Cnode
);
1497 Tstm
: constant List_Id
:= Then_Statements
(Cnode
);
1500 Unblocked_Exit_Count
:= Unblocked_Exit_Count
+ 1;
1501 Analyze_And_Resolve
(Cond
, Any_Boolean
);
1502 Check_Unset_Reference
(Cond
);
1503 Set_Current_Value_Condition
(Cnode
);
1505 -- If already deleting, then just analyze then statements
1508 Analyze_Statements
(Tstm
);
1510 -- Compile time known value, not deleting yet
1512 elsif Compile_Time_Known_Value
(Cond
) then
1513 Save_In_Deleted_Code
:= In_Deleted_Code
;
1515 -- If condition is True, then analyze the THEN statements and set
1516 -- no expansion for ELSE and ELSIF parts.
1518 if Is_True
(Expr_Value
(Cond
)) then
1519 Analyze_Statements
(Tstm
);
1521 Expander_Mode_Save_And_Set
(False);
1522 In_Deleted_Code
:= True;
1524 -- If condition is False, analyze THEN with expansion off
1526 else -- Is_False (Expr_Value (Cond))
1527 Expander_Mode_Save_And_Set
(False);
1528 In_Deleted_Code
:= True;
1529 Analyze_Statements
(Tstm
);
1530 Expander_Mode_Restore
;
1531 In_Deleted_Code
:= Save_In_Deleted_Code
;
1534 -- Not known at compile time, not deleting, normal analysis
1537 Analyze_Statements
(Tstm
);
1539 end Analyze_Cond_Then
;
1541 -- Start of Analyze_If_Statement
1544 -- Initialize exit count for else statements. If there is no else part,
1545 -- this count will stay non-zero reflecting the fact that the uncovered
1546 -- else case is an unblocked exit.
1548 Unblocked_Exit_Count
:= 1;
1549 Analyze_Cond_Then
(N
);
1551 -- Now to analyze the elsif parts if any are present
1553 if Present
(Elsif_Parts
(N
)) then
1554 E
:= First
(Elsif_Parts
(N
));
1555 while Present
(E
) loop
1556 Analyze_Cond_Then
(E
);
1561 if Present
(Else_Statements
(N
)) then
1562 Analyze_Statements
(Else_Statements
(N
));
1565 -- If all our exits were blocked by unconditional transfers of control,
1566 -- then the entire IF statement acts as an unconditional transfer of
1567 -- control, so treat it like one, and check unreachable code.
1569 if Unblocked_Exit_Count
= 0 then
1570 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1571 Check_Unreachable_Code
(N
);
1573 Unblocked_Exit_Count
:= Save_Unblocked_Exit_Count
;
1577 Expander_Mode_Restore
;
1578 In_Deleted_Code
:= Save_In_Deleted_Code
;
1581 if not Expander_Active
1582 and then Compile_Time_Known_Value
(Condition
(N
))
1583 and then Serious_Errors_Detected
= 0
1585 if Is_True
(Expr_Value
(Condition
(N
))) then
1586 Remove_Warning_Messages
(Else_Statements
(N
));
1588 if Present
(Elsif_Parts
(N
)) then
1589 E
:= First
(Elsif_Parts
(N
));
1590 while Present
(E
) loop
1591 Remove_Warning_Messages
(Then_Statements
(E
));
1597 Remove_Warning_Messages
(Then_Statements
(N
));
1601 -- Warn on redundant if statement that has no effect
1603 -- Note, we could also check empty ELSIF parts ???
1605 if Warn_On_Redundant_Constructs
1607 -- If statement must be from source
1609 and then Comes_From_Source
(N
)
1611 -- Condition must not have obvious side effect
1613 and then Has_No_Obvious_Side_Effects
(Condition
(N
))
1615 -- No elsif parts of else part
1617 and then No
(Elsif_Parts
(N
))
1618 and then No
(Else_Statements
(N
))
1620 -- Then must be a single null statement
1622 and then List_Length
(Then_Statements
(N
)) = 1
1624 -- Go to original node, since we may have rewritten something as
1625 -- a null statement (e.g. a case we could figure the outcome of).
1628 T
: constant Node_Id
:= First
(Then_Statements
(N
));
1629 S
: constant Node_Id
:= Original_Node
(T
);
1632 if Comes_From_Source
(S
) and then Nkind
(S
) = N_Null_Statement
then
1633 Error_Msg_N
("if statement has no effect?r?", N
);
1637 end Analyze_If_Statement
;
1639 ----------------------------------------
1640 -- Analyze_Implicit_Label_Declaration --
1641 ----------------------------------------
1643 -- An implicit label declaration is generated in the innermost enclosing
1644 -- declarative part. This is done for labels, and block and loop names.
1646 -- Note: any changes in this routine may need to be reflected in
1647 -- Analyze_Label_Entity.
1649 procedure Analyze_Implicit_Label_Declaration
(N
: Node_Id
) is
1650 Id
: constant Node_Id
:= Defining_Identifier
(N
);
1653 Set_Ekind
(Id
, E_Label
);
1654 Set_Etype
(Id
, Standard_Void_Type
);
1655 Set_Enclosing_Scope
(Id
, Current_Scope
);
1656 end Analyze_Implicit_Label_Declaration
;
1658 ------------------------------
1659 -- Analyze_Iteration_Scheme --
1660 ------------------------------
1662 procedure Analyze_Iteration_Scheme
(N
: Node_Id
) is
1664 Iter_Spec
: Node_Id
;
1665 Loop_Spec
: Node_Id
;
1668 -- For an infinite loop, there is no iteration scheme
1674 Cond
:= Condition
(N
);
1675 Iter_Spec
:= Iterator_Specification
(N
);
1676 Loop_Spec
:= Loop_Parameter_Specification
(N
);
1678 if Present
(Cond
) then
1679 Analyze_And_Resolve
(Cond
, Any_Boolean
);
1680 Check_Unset_Reference
(Cond
);
1681 Set_Current_Value_Condition
(N
);
1683 elsif Present
(Iter_Spec
) then
1684 Analyze_Iterator_Specification
(Iter_Spec
);
1687 Analyze_Loop_Parameter_Specification
(Loop_Spec
);
1689 end Analyze_Iteration_Scheme
;
1691 ------------------------------------
1692 -- Analyze_Iterator_Specification --
1693 ------------------------------------
1695 procedure Analyze_Iterator_Specification
(N
: Node_Id
) is
1696 Loc
: constant Source_Ptr
:= Sloc
(N
);
1697 Def_Id
: constant Node_Id
:= Defining_Identifier
(N
);
1698 Subt
: constant Node_Id
:= Subtype_Indication
(N
);
1699 Iter_Name
: constant Node_Id
:= Name
(N
);
1705 procedure Check_Reverse_Iteration
(Typ
: Entity_Id
);
1706 -- For an iteration over a container, if the loop carries the Reverse
1707 -- indicator, verify that the container type has an Iterate aspect that
1708 -- implements the reversible iterator interface.
1710 -----------------------------
1711 -- Check_Reverse_Iteration --
1712 -----------------------------
1714 procedure Check_Reverse_Iteration
(Typ
: Entity_Id
) is
1716 if Reverse_Present
(N
)
1717 and then not Is_Array_Type
(Typ
)
1718 and then not Is_Reversible_Iterator
(Typ
)
1721 ("container type does not support reverse iteration", N
, Typ
);
1723 end Check_Reverse_Iteration
;
1725 -- Start of processing for Analyze_iterator_Specification
1728 Enter_Name
(Def_Id
);
1730 if Present
(Subt
) then
1733 -- Save type of subtype indication for subsequent check
1735 if Nkind
(Subt
) = N_Subtype_Indication
then
1736 Bas
:= Entity
(Subtype_Mark
(Subt
));
1738 Bas
:= Entity
(Subt
);
1742 Preanalyze_Range
(Iter_Name
);
1744 -- Set the kind of the loop variable, which is not visible within
1745 -- the iterator name.
1747 Set_Ekind
(Def_Id
, E_Variable
);
1749 -- Provide a link between the iterator variable and the container, for
1750 -- subsequent use in cross-reference and modification information.
1752 if Of_Present
(N
) then
1753 Set_Related_Expression
(Def_Id
, Iter_Name
);
1755 -- For a container, the iterator is specified through the aspect.
1757 if not Is_Array_Type
(Etype
(Iter_Name
)) then
1759 Iterator
: constant Entity_Id
:=
1760 Find_Value_Of_Aspect
1761 (Etype
(Iter_Name
), Aspect_Default_Iterator
);
1767 if No
(Iterator
) then
1768 null; -- error reported below.
1770 elsif not Is_Overloaded
(Iterator
) then
1771 Check_Reverse_Iteration
(Etype
(Iterator
));
1773 -- If Iterator is overloaded, use reversible iterator if
1774 -- one is available.
1776 elsif Is_Overloaded
(Iterator
) then
1777 Get_First_Interp
(Iterator
, I
, It
);
1778 while Present
(It
.Nam
) loop
1779 if Ekind
(It
.Nam
) = E_Function
1780 and then Is_Reversible_Iterator
(Etype
(It
.Nam
))
1782 Set_Etype
(Iterator
, It
.Typ
);
1783 Set_Entity
(Iterator
, It
.Nam
);
1787 Get_Next_Interp
(I
, It
);
1790 Check_Reverse_Iteration
(Etype
(Iterator
));
1796 -- If the domain of iteration is an expression, create a declaration for
1797 -- it, so that finalization actions are introduced outside of the loop.
1798 -- The declaration must be a renaming because the body of the loop may
1799 -- assign to elements.
1801 if not Is_Entity_Name
(Iter_Name
)
1803 -- When the context is a quantified expression, the renaming
1804 -- declaration is delayed until the expansion phase if we are
1807 and then (Nkind
(Parent
(N
)) /= N_Quantified_Expression
1808 or else Operating_Mode
= Check_Semantics
)
1810 -- Do not perform this expansion in SPARK mode, since the formal
1811 -- verification directly deals with the source form of the iterator.
1812 -- Ditto for ASIS, where the temporary may hide the transformation
1813 -- of a selected component into a prefixed function call.
1815 and then not GNATprove_Mode
1816 and then not ASIS_Mode
1819 Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'R', Iter_Name
);
1825 -- If the domain of iteration is an array component that depends
1826 -- on a discriminant, create actual subtype for it. Pre-analysis
1827 -- does not generate the actual subtype of a selected component.
1829 if Nkind
(Iter_Name
) = N_Selected_Component
1830 and then Is_Array_Type
(Etype
(Iter_Name
))
1833 Build_Actual_Subtype_Of_Component
1834 (Etype
(Selector_Name
(Iter_Name
)), Iter_Name
);
1835 Insert_Action
(N
, Act_S
);
1837 if Present
(Act_S
) then
1838 Typ
:= Defining_Identifier
(Act_S
);
1840 Typ
:= Etype
(Iter_Name
);
1844 Typ
:= Etype
(Iter_Name
);
1846 -- Verify that the expression produces an iterator
1848 if not Of_Present
(N
) and then not Is_Iterator
(Typ
)
1849 and then not Is_Array_Type
(Typ
)
1850 and then No
(Find_Aspect
(Typ
, Aspect_Iterable
))
1853 ("expect object that implements iterator interface",
1858 -- Protect against malformed iterator
1860 if Typ
= Any_Type
then
1861 Error_Msg_N
("invalid expression in loop iterator", Iter_Name
);
1865 if not Of_Present
(N
) then
1866 Check_Reverse_Iteration
(Typ
);
1869 -- The name in the renaming declaration may be a function call.
1870 -- Indicate that it does not come from source, to suppress
1871 -- spurious warnings on renamings of parameterless functions,
1872 -- a common enough idiom in user-defined iterators.
1875 Make_Object_Renaming_Declaration
(Loc
,
1876 Defining_Identifier
=> Id
,
1877 Subtype_Mark
=> New_Occurrence_Of
(Typ
, Loc
),
1879 New_Copy_Tree
(Iter_Name
, New_Sloc
=> Loc
));
1881 Insert_Actions
(Parent
(Parent
(N
)), New_List
(Decl
));
1882 Rewrite
(Name
(N
), New_Occurrence_Of
(Id
, Loc
));
1883 Set_Etype
(Id
, Typ
);
1884 Set_Etype
(Name
(N
), Typ
);
1887 -- Container is an entity or an array with uncontrolled components, or
1888 -- else it is a container iterator given by a function call, typically
1889 -- called Iterate in the case of predefined containers, even though
1890 -- Iterate is not a reserved name. What matters is that the return type
1891 -- of the function is an iterator type.
1893 elsif Is_Entity_Name
(Iter_Name
) then
1894 Analyze
(Iter_Name
);
1896 if Nkind
(Iter_Name
) = N_Function_Call
then
1898 C
: constant Node_Id
:= Name
(Iter_Name
);
1903 if not Is_Overloaded
(Iter_Name
) then
1904 Resolve
(Iter_Name
, Etype
(C
));
1907 Get_First_Interp
(C
, I
, It
);
1908 while It
.Typ
/= Empty
loop
1909 if Reverse_Present
(N
) then
1910 if Is_Reversible_Iterator
(It
.Typ
) then
1911 Resolve
(Iter_Name
, It
.Typ
);
1915 elsif Is_Iterator
(It
.Typ
) then
1916 Resolve
(Iter_Name
, It
.Typ
);
1920 Get_Next_Interp
(I
, It
);
1925 -- Domain of iteration is not overloaded
1928 Resolve
(Iter_Name
, Etype
(Iter_Name
));
1931 if not Of_Present
(N
) then
1932 Check_Reverse_Iteration
(Etype
(Iter_Name
));
1936 -- Get base type of container, for proper retrieval of Cursor type
1937 -- and primitive operations.
1939 Typ
:= Base_Type
(Etype
(Iter_Name
));
1941 if Is_Array_Type
(Typ
) then
1942 if Of_Present
(N
) then
1943 Set_Etype
(Def_Id
, Component_Type
(Typ
));
1946 and then Base_Type
(Bas
) /= Base_Type
(Component_Type
(Typ
))
1949 ("subtype indication does not match component type", Subt
);
1952 -- Here we have a missing Range attribute
1956 ("missing Range attribute in iteration over an array", N
);
1958 -- In Ada 2012 mode, this may be an attempt at an iterator
1960 if Ada_Version
>= Ada_2012
then
1962 ("\if& is meant to designate an element of the array, use OF",
1966 -- Prevent cascaded errors
1968 Set_Ekind
(Def_Id
, E_Loop_Parameter
);
1969 Set_Etype
(Def_Id
, Etype
(First_Index
(Typ
)));
1972 -- Check for type error in iterator
1974 elsif Typ
= Any_Type
then
1977 -- Iteration over a container
1980 Set_Ekind
(Def_Id
, E_Loop_Parameter
);
1981 Error_Msg_Ada_2012_Feature
("container iterator", Sloc
(N
));
1985 if Of_Present
(N
) then
1986 if Has_Aspect
(Typ
, Aspect_Iterable
) then
1988 Elt
: constant Entity_Id
:=
1989 Get_Iterable_Type_Primitive
(Typ
, Name_Element
);
1993 ("missing Element primitive for iteration", N
);
1995 Set_Etype
(Def_Id
, Etype
(Elt
));
1999 -- For a predefined container, The type of the loop variable is
2000 -- the Iterator_Element aspect of the container type.
2004 Element
: constant Entity_Id
:=
2005 Find_Value_Of_Aspect
(Typ
, Aspect_Iterator_Element
);
2008 if No
(Element
) then
2009 Error_Msg_NE
("cannot iterate over&", N
, Typ
);
2013 Set_Etype
(Def_Id
, Entity
(Element
));
2015 -- If subtype indication was given, verify that it
2016 -- covers the element type of the container.
2019 and then not Covers
(Bas
, Etype
(Def_Id
))
2022 ("subtype indication does not match element type",
2026 -- If the container has a variable indexing aspect, the
2027 -- element is a variable and is modifiable in the loop.
2029 if Has_Aspect
(Typ
, Aspect_Variable_Indexing
) then
2030 Set_Ekind
(Def_Id
, E_Variable
);
2039 -- For an iteration of the form IN, the name must denote an
2040 -- iterator, typically the result of a call to Iterate. Give a
2041 -- useful error message when the name is a container by itself.
2043 -- The type may be a formal container type, which has to have
2044 -- an Iterable aspect detailing the required primitives.
2046 if Is_Entity_Name
(Original_Node
(Name
(N
)))
2047 and then not Is_Iterator
(Typ
)
2049 if Has_Aspect
(Typ
, Aspect_Iterable
) then
2052 elsif not Has_Aspect
(Typ
, Aspect_Iterator_Element
) then
2054 ("cannot iterate over&", Name
(N
), Typ
);
2057 ("name must be an iterator, not a container", Name
(N
));
2060 if Has_Aspect
(Typ
, Aspect_Iterable
) then
2064 ("\to iterate directly over the elements of a container, "
2065 & "write `of &`", Name
(N
), Original_Node
(Name
(N
)));
2067 -- No point in continuing analysis of iterator spec.
2073 -- The result type of Iterate function is the classwide type of
2074 -- the interface parent. We need the specific Cursor type defined
2075 -- in the container package. We obtain it by name for a predefined
2076 -- container, or through the Iterable aspect for a formal one.
2078 if Has_Aspect
(Typ
, Aspect_Iterable
) then
2081 (Parent
(Find_Value_Of_Aspect
(Typ
, Aspect_Iterable
)),
2083 Ent
:= Etype
(Def_Id
);
2086 Ent
:= First_Entity
(Scope
(Typ
));
2087 while Present
(Ent
) loop
2088 if Chars
(Ent
) = Name_Cursor
then
2089 Set_Etype
(Def_Id
, Etype
(Ent
));
2099 -- A loop parameter cannot be effectively volatile. This check is
2100 -- peformed only when SPARK_Mode is on as it is not a standard Ada
2101 -- legality check (SPARK RM 7.1.3(6)).
2103 -- Not clear whether this applies to element iterators, where the
2104 -- cursor is not an explicit entity ???
2107 and then not Of_Present
(N
)
2108 and then Is_Effectively_Volatile
(Ent
)
2110 Error_Msg_N
("loop parameter cannot be volatile", Ent
);
2112 end Analyze_Iterator_Specification
;
2118 -- Note: the semantic work required for analyzing labels (setting them as
2119 -- reachable) was done in a prepass through the statements in the block,
2120 -- so that forward gotos would be properly handled. See Analyze_Statements
2121 -- for further details. The only processing required here is to deal with
2122 -- optimizations that depend on an assumption of sequential control flow,
2123 -- since of course the occurrence of a label breaks this assumption.
2125 procedure Analyze_Label
(N
: Node_Id
) is
2126 pragma Warnings
(Off
, N
);
2128 Kill_Current_Values
;
2131 --------------------------
2132 -- Analyze_Label_Entity --
2133 --------------------------
2135 procedure Analyze_Label_Entity
(E
: Entity_Id
) is
2137 Set_Ekind
(E
, E_Label
);
2138 Set_Etype
(E
, Standard_Void_Type
);
2139 Set_Enclosing_Scope
(E
, Current_Scope
);
2140 Set_Reachable
(E
, True);
2141 end Analyze_Label_Entity
;
2143 ------------------------------------------
2144 -- Analyze_Loop_Parameter_Specification --
2145 ------------------------------------------
2147 procedure Analyze_Loop_Parameter_Specification
(N
: Node_Id
) is
2148 Loop_Nod
: constant Node_Id
:= Parent
(Parent
(N
));
2150 procedure Check_Controlled_Array_Attribute
(DS
: Node_Id
);
2151 -- If the bounds are given by a 'Range reference on a function call
2152 -- that returns a controlled array, introduce an explicit declaration
2153 -- to capture the bounds, so that the function result can be finalized
2154 -- in timely fashion.
2156 procedure Check_Predicate_Use
(T
: Entity_Id
);
2157 -- Diagnose Attempt to iterate through non-static predicate. Note that
2158 -- a type with inherited predicates may have both static and dynamic
2159 -- forms. In this case it is not sufficent to check the static predicate
2160 -- function only, look for a dynamic predicate aspect as well.
2162 function Has_Call_Using_Secondary_Stack
(N
: Node_Id
) return Boolean;
2163 -- N is the node for an arbitrary construct. This function searches the
2164 -- construct N to see if any expressions within it contain function
2165 -- calls that use the secondary stack, returning True if any such call
2166 -- is found, and False otherwise.
2168 procedure Process_Bounds
(R
: Node_Id
);
2169 -- If the iteration is given by a range, create temporaries and
2170 -- assignment statements block to capture the bounds and perform
2171 -- required finalization actions in case a bound includes a function
2172 -- call that uses the temporary stack. We first pre-analyze a copy of
2173 -- the range in order to determine the expected type, and analyze and
2174 -- resolve the original bounds.
2176 --------------------------------------
2177 -- Check_Controlled_Array_Attribute --
2178 --------------------------------------
2180 procedure Check_Controlled_Array_Attribute
(DS
: Node_Id
) is
2182 if Nkind
(DS
) = N_Attribute_Reference
2183 and then Is_Entity_Name
(Prefix
(DS
))
2184 and then Ekind
(Entity
(Prefix
(DS
))) = E_Function
2185 and then Is_Array_Type
(Etype
(Entity
(Prefix
(DS
))))
2187 Is_Controlled
(Component_Type
(Etype
(Entity
(Prefix
(DS
)))))
2188 and then Expander_Active
2191 Loc
: constant Source_Ptr
:= Sloc
(N
);
2192 Arr
: constant Entity_Id
:= Etype
(Entity
(Prefix
(DS
)));
2193 Indx
: constant Entity_Id
:=
2194 Base_Type
(Etype
(First_Index
(Arr
)));
2195 Subt
: constant Entity_Id
:= Make_Temporary
(Loc
, 'S');
2200 Make_Subtype_Declaration
(Loc
,
2201 Defining_Identifier
=> Subt
,
2202 Subtype_Indication
=>
2203 Make_Subtype_Indication
(Loc
,
2204 Subtype_Mark
=> New_Occurrence_Of
(Indx
, Loc
),
2206 Make_Range_Constraint
(Loc
, Relocate_Node
(DS
))));
2207 Insert_Before
(Loop_Nod
, Decl
);
2211 Make_Attribute_Reference
(Loc
,
2212 Prefix
=> New_Occurrence_Of
(Subt
, Loc
),
2213 Attribute_Name
=> Attribute_Name
(DS
)));
2218 end Check_Controlled_Array_Attribute
;
2220 -------------------------
2221 -- Check_Predicate_Use --
2222 -------------------------
2224 procedure Check_Predicate_Use
(T
: Entity_Id
) is
2226 -- A predicated subtype is illegal in loops and related constructs
2227 -- if the predicate is not static, or if it is a non-static subtype
2228 -- of a statically predicated subtype.
2230 if Is_Discrete_Type
(T
)
2231 and then Has_Predicates
(T
)
2232 and then (not Has_Static_Predicate
(T
)
2233 or else not Is_Static_Subtype
(T
)
2234 or else Has_Dynamic_Predicate_Aspect
(T
))
2236 -- Seems a confusing message for the case of a static predicate
2237 -- with a non-static subtype???
2239 Bad_Predicated_Subtype_Use
2240 ("cannot use subtype& with non-static predicate for loop "
2241 & "iteration", Discrete_Subtype_Definition
(N
),
2242 T
, Suggest_Static
=> True);
2244 elsif Inside_A_Generic
and then Is_Generic_Formal
(T
) then
2245 Set_No_Dynamic_Predicate_On_Actual
(T
);
2247 end Check_Predicate_Use
;
2249 ------------------------------------
2250 -- Has_Call_Using_Secondary_Stack --
2251 ------------------------------------
2253 function Has_Call_Using_Secondary_Stack
(N
: Node_Id
) return Boolean is
2255 function Check_Call
(N
: Node_Id
) return Traverse_Result
;
2256 -- Check if N is a function call which uses the secondary stack
2262 function Check_Call
(N
: Node_Id
) return Traverse_Result
is
2265 Return_Typ
: Entity_Id
;
2268 if Nkind
(N
) = N_Function_Call
then
2271 -- Call using access to subprogram with explicit dereference
2273 if Nkind
(Nam
) = N_Explicit_Dereference
then
2274 Subp
:= Etype
(Nam
);
2276 -- Call using a selected component notation or Ada 2005 object
2277 -- operation notation
2279 elsif Nkind
(Nam
) = N_Selected_Component
then
2280 Subp
:= Entity
(Selector_Name
(Nam
));
2285 Subp
:= Entity
(Nam
);
2288 Return_Typ
:= Etype
(Subp
);
2290 if Is_Composite_Type
(Return_Typ
)
2291 and then not Is_Constrained
(Return_Typ
)
2295 elsif Sec_Stack_Needed_For_Return
(Subp
) then
2300 -- Continue traversing the tree
2305 function Check_Calls
is new Traverse_Func
(Check_Call
);
2307 -- Start of processing for Has_Call_Using_Secondary_Stack
2310 return Check_Calls
(N
) = Abandon
;
2311 end Has_Call_Using_Secondary_Stack
;
2313 --------------------
2314 -- Process_Bounds --
2315 --------------------
2317 procedure Process_Bounds
(R
: Node_Id
) is
2318 Loc
: constant Source_Ptr
:= Sloc
(N
);
2321 (Original_Bound
: Node_Id
;
2322 Analyzed_Bound
: Node_Id
;
2323 Typ
: Entity_Id
) return Node_Id
;
2324 -- Capture value of bound and return captured value
2331 (Original_Bound
: Node_Id
;
2332 Analyzed_Bound
: Node_Id
;
2333 Typ
: Entity_Id
) return Node_Id
2340 -- If the bound is a constant or an object, no need for a separate
2341 -- declaration. If the bound is the result of previous expansion
2342 -- it is already analyzed and should not be modified. Note that
2343 -- the Bound will be resolved later, if needed, as part of the
2344 -- call to Make_Index (literal bounds may need to be resolved to
2347 if Analyzed
(Original_Bound
) then
2348 return Original_Bound
;
2350 elsif Nkind_In
(Analyzed_Bound
, N_Integer_Literal
,
2351 N_Character_Literal
)
2352 or else Is_Entity_Name
(Analyzed_Bound
)
2354 Analyze_And_Resolve
(Original_Bound
, Typ
);
2355 return Original_Bound
;
2358 -- Normally, the best approach is simply to generate a constant
2359 -- declaration that captures the bound. However, there is a nasty
2360 -- case where this is wrong. If the bound is complex, and has a
2361 -- possible use of the secondary stack, we need to generate a
2362 -- separate assignment statement to ensure the creation of a block
2363 -- which will release the secondary stack.
2365 -- We prefer the constant declaration, since it leaves us with a
2366 -- proper trace of the value, useful in optimizations that get rid
2367 -- of junk range checks.
2369 if not Has_Call_Using_Secondary_Stack
(Analyzed_Bound
) then
2370 Analyze_And_Resolve
(Original_Bound
, Typ
);
2372 -- Ensure that the bound is valid. This check should not be
2373 -- generated when the range belongs to a quantified expression
2374 -- as the construct is still not expanded into its final form.
2376 if Nkind
(Parent
(R
)) /= N_Loop_Parameter_Specification
2377 or else Nkind
(Parent
(Parent
(R
))) /= N_Quantified_Expression
2379 Ensure_Valid
(Original_Bound
);
2382 Force_Evaluation
(Original_Bound
);
2383 return Original_Bound
;
2386 Id
:= Make_Temporary
(Loc
, 'R', Original_Bound
);
2388 -- Here we make a declaration with a separate assignment
2389 -- statement, and insert before loop header.
2392 Make_Object_Declaration
(Loc
,
2393 Defining_Identifier
=> Id
,
2394 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
));
2397 Make_Assignment_Statement
(Loc
,
2398 Name
=> New_Occurrence_Of
(Id
, Loc
),
2399 Expression
=> Relocate_Node
(Original_Bound
));
2401 Insert_Actions
(Loop_Nod
, New_List
(Decl
, Assign
));
2403 -- Now that this temporary variable is initialized we decorate it
2404 -- as safe-to-reevaluate to inform to the backend that no further
2405 -- asignment will be issued and hence it can be handled as side
2406 -- effect free. Note that this decoration must be done when the
2407 -- assignment has been analyzed because otherwise it will be
2408 -- rejected (see Analyze_Assignment).
2410 Set_Is_Safe_To_Reevaluate
(Id
);
2412 Rewrite
(Original_Bound
, New_Occurrence_Of
(Id
, Loc
));
2414 if Nkind
(Assign
) = N_Assignment_Statement
then
2415 return Expression
(Assign
);
2417 return Original_Bound
;
2421 Hi
: constant Node_Id
:= High_Bound
(R
);
2422 Lo
: constant Node_Id
:= Low_Bound
(R
);
2423 R_Copy
: constant Node_Id
:= New_Copy_Tree
(R
);
2428 -- Start of processing for Process_Bounds
2431 Set_Parent
(R_Copy
, Parent
(R
));
2432 Preanalyze_Range
(R_Copy
);
2433 Typ
:= Etype
(R_Copy
);
2435 -- If the type of the discrete range is Universal_Integer, then the
2436 -- bound's type must be resolved to Integer, and any object used to
2437 -- hold the bound must also have type Integer, unless the literal
2438 -- bounds are constant-folded expressions with a user-defined type.
2440 if Typ
= Universal_Integer
then
2441 if Nkind
(Lo
) = N_Integer_Literal
2442 and then Present
(Etype
(Lo
))
2443 and then Scope
(Etype
(Lo
)) /= Standard_Standard
2447 elsif Nkind
(Hi
) = N_Integer_Literal
2448 and then Present
(Etype
(Hi
))
2449 and then Scope
(Etype
(Hi
)) /= Standard_Standard
2454 Typ
:= Standard_Integer
;
2460 New_Lo
:= One_Bound
(Lo
, Low_Bound
(R_Copy
), Typ
);
2461 New_Hi
:= One_Bound
(Hi
, High_Bound
(R_Copy
), Typ
);
2463 -- Propagate staticness to loop range itself, in case the
2464 -- corresponding subtype is static.
2466 if New_Lo
/= Lo
and then Is_OK_Static_Expression
(New_Lo
) then
2467 Rewrite
(Low_Bound
(R
), New_Copy
(New_Lo
));
2470 if New_Hi
/= Hi
and then Is_OK_Static_Expression
(New_Hi
) then
2471 Rewrite
(High_Bound
(R
), New_Copy
(New_Hi
));
2477 DS
: constant Node_Id
:= Discrete_Subtype_Definition
(N
);
2478 Id
: constant Entity_Id
:= Defining_Identifier
(N
);
2482 -- Start of processing for Analyze_Loop_Parameter_Specification
2487 -- We always consider the loop variable to be referenced, since the loop
2488 -- may be used just for counting purposes.
2490 Generate_Reference
(Id
, N
, ' ');
2492 -- Check for the case of loop variable hiding a local variable (used
2493 -- later on to give a nice warning if the hidden variable is never
2497 H
: constant Entity_Id
:= Homonym
(Id
);
2500 and then Ekind
(H
) = E_Variable
2501 and then Is_Discrete_Type
(Etype
(H
))
2502 and then Enclosing_Dynamic_Scope
(H
) = Enclosing_Dynamic_Scope
(Id
)
2504 Set_Hiding_Loop_Variable
(H
, Id
);
2508 -- Loop parameter specification must include subtype mark in SPARK
2510 if Nkind
(DS
) = N_Range
then
2511 Check_SPARK_05_Restriction
2512 ("loop parameter specification must include subtype mark", N
);
2515 -- Analyze the subtype definition and create temporaries for the bounds.
2516 -- Do not evaluate the range when preanalyzing a quantified expression
2517 -- because bounds expressed as function calls with side effects will be
2518 -- incorrectly replicated.
2520 if Nkind
(DS
) = N_Range
2521 and then Expander_Active
2522 and then Nkind
(Parent
(N
)) /= N_Quantified_Expression
2524 Process_Bounds
(DS
);
2526 -- Either the expander not active or the range of iteration is a subtype
2527 -- indication, an entity, or a function call that yields an aggregate or
2531 DS_Copy
:= New_Copy_Tree
(DS
);
2532 Set_Parent
(DS_Copy
, Parent
(DS
));
2533 Preanalyze_Range
(DS_Copy
);
2535 -- Ada 2012: If the domain of iteration is:
2537 -- a) a function call,
2538 -- b) an identifier that is not a type,
2539 -- c) an attribute reference 'Old (within a postcondition)
2540 -- d) an unchecked conversion
2542 -- then it is an iteration over a container. It was classified as
2543 -- a loop specification by the parser, and must be rewritten now
2544 -- to activate container iteration. The last case will occur within
2545 -- an expanded inlined call, where the expansion wraps an actual in
2546 -- an unchecked conversion when needed. The expression of the
2547 -- conversion is always an object.
2549 if Nkind
(DS_Copy
) = N_Function_Call
2550 or else (Is_Entity_Name
(DS_Copy
)
2551 and then not Is_Type
(Entity
(DS_Copy
)))
2552 or else (Nkind
(DS_Copy
) = N_Attribute_Reference
2553 and then Nam_In
(Attribute_Name
(DS_Copy
),
2554 Name_Old
, Name_Loop_Entry
))
2555 or else Nkind
(DS_Copy
) = N_Unchecked_Type_Conversion
2556 or else Has_Aspect
(Etype
(DS_Copy
), Aspect_Iterable
)
2558 -- This is an iterator specification. Rewrite it as such and
2559 -- analyze it to capture function calls that may require
2560 -- finalization actions.
2563 I_Spec
: constant Node_Id
:=
2564 Make_Iterator_Specification
(Sloc
(N
),
2565 Defining_Identifier
=> Relocate_Node
(Id
),
2567 Subtype_Indication
=> Empty
,
2568 Reverse_Present
=> Reverse_Present
(N
));
2569 Scheme
: constant Node_Id
:= Parent
(N
);
2572 Set_Iterator_Specification
(Scheme
, I_Spec
);
2573 Set_Loop_Parameter_Specification
(Scheme
, Empty
);
2574 Analyze_Iterator_Specification
(I_Spec
);
2576 -- In a generic context, analyze the original domain of
2577 -- iteration, for name capture.
2579 if not Expander_Active
then
2583 -- Set kind of loop parameter, which may be used in the
2584 -- subsequent analysis of the condition in a quantified
2587 Set_Ekind
(Id
, E_Loop_Parameter
);
2591 -- Domain of iteration is not a function call, and is side-effect
2595 -- A quantified expression that appears in a pre/post condition
2596 -- is pre-analyzed several times. If the range is given by an
2597 -- attribute reference it is rewritten as a range, and this is
2598 -- done even with expansion disabled. If the type is already set
2599 -- do not reanalyze, because a range with static bounds may be
2600 -- typed Integer by default.
2602 if Nkind
(Parent
(N
)) = N_Quantified_Expression
2603 and then Present
(Etype
(DS
))
2616 -- Some additional checks if we are iterating through a type
2618 if Is_Entity_Name
(DS
)
2619 and then Present
(Entity
(DS
))
2620 and then Is_Type
(Entity
(DS
))
2622 -- The subtype indication may denote the completion of an incomplete
2623 -- type declaration.
2625 if Ekind
(Entity
(DS
)) = E_Incomplete_Type
then
2626 Set_Entity
(DS
, Get_Full_View
(Entity
(DS
)));
2627 Set_Etype
(DS
, Entity
(DS
));
2630 Check_Predicate_Use
(Entity
(DS
));
2633 -- Error if not discrete type
2635 if not Is_Discrete_Type
(Etype
(DS
)) then
2636 Wrong_Type
(DS
, Any_Discrete
);
2637 Set_Etype
(DS
, Any_Type
);
2640 Check_Controlled_Array_Attribute
(DS
);
2642 if Nkind
(DS
) = N_Subtype_Indication
then
2643 Check_Predicate_Use
(Entity
(Subtype_Mark
(DS
)));
2646 Make_Index
(DS
, N
, In_Iter_Schm
=> True);
2647 Set_Ekind
(Id
, E_Loop_Parameter
);
2649 -- A quantified expression which appears in a pre- or post-condition may
2650 -- be analyzed multiple times. The analysis of the range creates several
2651 -- itypes which reside in different scopes depending on whether the pre-
2652 -- or post-condition has been expanded. Update the type of the loop
2653 -- variable to reflect the proper itype at each stage of analysis.
2656 or else Etype
(Id
) = Any_Type
2658 (Present
(Etype
(Id
))
2659 and then Is_Itype
(Etype
(Id
))
2660 and then Nkind
(Parent
(Loop_Nod
)) = N_Expression_With_Actions
2661 and then Nkind
(Original_Node
(Parent
(Loop_Nod
))) =
2662 N_Quantified_Expression
)
2664 Set_Etype
(Id
, Etype
(DS
));
2667 -- Treat a range as an implicit reference to the type, to inhibit
2668 -- spurious warnings.
2670 Generate_Reference
(Base_Type
(Etype
(DS
)), N
, ' ');
2671 Set_Is_Known_Valid
(Id
, True);
2673 -- The loop is not a declarative part, so the loop variable must be
2674 -- frozen explicitly. Do not freeze while preanalyzing a quantified
2675 -- expression because the freeze node will not be inserted into the
2676 -- tree due to flag Is_Spec_Expression being set.
2678 if Nkind
(Parent
(N
)) /= N_Quantified_Expression
then
2680 Flist
: constant List_Id
:= Freeze_Entity
(Id
, N
);
2682 if Is_Non_Empty_List
(Flist
) then
2683 Insert_Actions
(N
, Flist
);
2688 -- Case where we have a range or a subtype, get type bounds
2690 if Nkind_In
(DS
, N_Range
, N_Subtype_Indication
)
2691 and then not Error_Posted
(DS
)
2692 and then Etype
(DS
) /= Any_Type
2693 and then Is_Discrete_Type
(Etype
(DS
))
2700 if Nkind
(DS
) = N_Range
then
2701 L
:= Low_Bound
(DS
);
2702 H
:= High_Bound
(DS
);
2705 Type_Low_Bound
(Underlying_Type
(Etype
(Subtype_Mark
(DS
))));
2707 Type_High_Bound
(Underlying_Type
(Etype
(Subtype_Mark
(DS
))));
2710 -- Check for null or possibly null range and issue warning. We
2711 -- suppress such messages in generic templates and instances,
2712 -- because in practice they tend to be dubious in these cases. The
2713 -- check applies as well to rewritten array element loops where a
2714 -- null range may be detected statically.
2716 if Compile_Time_Compare
(L
, H
, Assume_Valid
=> True) = GT
then
2718 -- Suppress the warning if inside a generic template or
2719 -- instance, since in practice they tend to be dubious in these
2720 -- cases since they can result from intended parameterization.
2722 if not Inside_A_Generic
and then not In_Instance
then
2724 -- Specialize msg if invalid values could make the loop
2725 -- non-null after all.
2727 if Compile_Time_Compare
2728 (L
, H
, Assume_Valid
=> False) = GT
2730 -- Since we know the range of the loop is null, set the
2731 -- appropriate flag to remove the loop entirely during
2734 Set_Is_Null_Loop
(Loop_Nod
);
2736 if Comes_From_Source
(N
) then
2738 ("??loop range is null, loop will not execute", DS
);
2741 -- Here is where the loop could execute because of
2742 -- invalid values, so issue appropriate message and in
2743 -- this case we do not set the Is_Null_Loop flag since
2744 -- the loop may execute.
2746 elsif Comes_From_Source
(N
) then
2748 ("??loop range may be null, loop may not execute",
2751 ("??can only execute if invalid values are present",
2756 -- In either case, suppress warnings in the body of the loop,
2757 -- since it is likely that these warnings will be inappropriate
2758 -- if the loop never actually executes, which is likely.
2760 Set_Suppress_Loop_Warnings
(Loop_Nod
);
2762 -- The other case for a warning is a reverse loop where the
2763 -- upper bound is the integer literal zero or one, and the
2764 -- lower bound may exceed this value.
2766 -- For example, we have
2768 -- for J in reverse N .. 1 loop
2770 -- In practice, this is very likely to be a case of reversing
2771 -- the bounds incorrectly in the range.
2773 elsif Reverse_Present
(N
)
2774 and then Nkind
(Original_Node
(H
)) = N_Integer_Literal
2776 (Intval
(Original_Node
(H
)) = Uint_0
2778 Intval
(Original_Node
(H
)) = Uint_1
)
2780 -- Lower bound may in fact be known and known not to exceed
2781 -- upper bound (e.g. reverse 0 .. 1) and that's OK.
2783 if Compile_Time_Known_Value
(L
)
2784 and then Expr_Value
(L
) <= Expr_Value
(H
)
2788 -- Otherwise warning is warranted
2791 Error_Msg_N
("??loop range may be null", DS
);
2792 Error_Msg_N
("\??bounds may be wrong way round", DS
);
2796 -- Check if either bound is known to be outside the range of the
2797 -- loop parameter type, this is e.g. the case of a loop from
2798 -- 20..X where the type is 1..19.
2800 -- Such a loop is dubious since either it raises CE or it executes
2801 -- zero times, and that cannot be useful!
2803 if Etype
(DS
) /= Any_Type
2804 and then not Error_Posted
(DS
)
2805 and then Nkind
(DS
) = N_Subtype_Indication
2806 and then Nkind
(Constraint
(DS
)) = N_Range_Constraint
2809 LLo
: constant Node_Id
:=
2810 Low_Bound
(Range_Expression
(Constraint
(DS
)));
2811 LHi
: constant Node_Id
:=
2812 High_Bound
(Range_Expression
(Constraint
(DS
)));
2814 Bad_Bound
: Node_Id
:= Empty
;
2815 -- Suspicious loop bound
2818 -- At this stage L, H are the bounds of the type, and LLo
2819 -- Lhi are the low bound and high bound of the loop.
2821 if Compile_Time_Compare
(LLo
, L
, Assume_Valid
=> True) = LT
2823 Compile_Time_Compare
(LLo
, H
, Assume_Valid
=> True) = GT
2828 if Compile_Time_Compare
(LHi
, L
, Assume_Valid
=> True) = LT
2830 Compile_Time_Compare
(LHi
, H
, Assume_Valid
=> True) = GT
2835 if Present
(Bad_Bound
) then
2837 ("suspicious loop bound out of range of "
2838 & "loop subtype??", Bad_Bound
);
2840 ("\loop executes zero times or raises "
2841 & "Constraint_Error??", Bad_Bound
);
2846 -- This declare block is about warnings, if we get an exception while
2847 -- testing for warnings, we simply abandon the attempt silently. This
2848 -- most likely occurs as the result of a previous error, but might
2849 -- just be an obscure case we have missed. In either case, not giving
2850 -- the warning is perfectly acceptable.
2853 when others => null;
2857 -- A loop parameter cannot be effectively volatile. This check is
2858 -- peformed only when SPARK_Mode is on as it is not a standard Ada
2859 -- legality check (SPARK RM 7.1.3(6)).
2861 if SPARK_Mode
= On
and then Is_Effectively_Volatile
(Id
) then
2862 Error_Msg_N
("loop parameter cannot be volatile", Id
);
2864 end Analyze_Loop_Parameter_Specification
;
2866 ----------------------------
2867 -- Analyze_Loop_Statement --
2868 ----------------------------
2870 procedure Analyze_Loop_Statement
(N
: Node_Id
) is
2872 function Is_Container_Iterator
(Iter
: Node_Id
) return Boolean;
2873 -- Given a loop iteration scheme, determine whether it is an Ada 2012
2874 -- container iteration.
2876 function Is_Wrapped_In_Block
(N
: Node_Id
) return Boolean;
2877 -- Determine whether loop statement N has been wrapped in a block to
2878 -- capture finalization actions that may be generated for container
2879 -- iterators. Prevents infinite recursion when block is analyzed.
2880 -- Routine is a noop if loop is single statement within source block.
2882 ---------------------------
2883 -- Is_Container_Iterator --
2884 ---------------------------
2886 function Is_Container_Iterator
(Iter
: Node_Id
) return Boolean is
2895 elsif Present
(Condition
(Iter
)) then
2898 -- for Def_Id in [reverse] Name loop
2899 -- for Def_Id [: Subtype_Indication] of [reverse] Name loop
2901 elsif Present
(Iterator_Specification
(Iter
)) then
2903 Nam
: constant Node_Id
:= Name
(Iterator_Specification
(Iter
));
2907 Nam_Copy
:= New_Copy_Tree
(Nam
);
2908 Set_Parent
(Nam_Copy
, Parent
(Nam
));
2909 Preanalyze_Range
(Nam_Copy
);
2911 -- The only two options here are iteration over a container or
2914 return not Is_Array_Type
(Etype
(Nam_Copy
));
2917 -- for Def_Id in [reverse] Discrete_Subtype_Definition loop
2921 LP
: constant Node_Id
:= Loop_Parameter_Specification
(Iter
);
2922 DS
: constant Node_Id
:= Discrete_Subtype_Definition
(LP
);
2926 DS_Copy
:= New_Copy_Tree
(DS
);
2927 Set_Parent
(DS_Copy
, Parent
(DS
));
2928 Preanalyze_Range
(DS_Copy
);
2930 -- Check for a call to Iterate ()
2933 Nkind
(DS_Copy
) = N_Function_Call
2934 and then Needs_Finalization
(Etype
(DS_Copy
));
2937 end Is_Container_Iterator
;
2939 -------------------------
2940 -- Is_Wrapped_In_Block --
2941 -------------------------
2943 function Is_Wrapped_In_Block
(N
: Node_Id
) return Boolean is
2949 -- Check if current scope is a block that is not a transient block.
2951 if Ekind
(Current_Scope
) /= E_Block
2952 or else No
(Block_Node
(Current_Scope
))
2958 Handled_Statement_Sequence
(Parent
(Block_Node
(Current_Scope
)));
2960 -- Skip leading pragmas that may be introduced for invariant and
2961 -- predicate checks.
2963 Stat
:= First
(Statements
(HSS
));
2964 while Present
(Stat
) and then Nkind
(Stat
) = N_Pragma
loop
2965 Stat
:= Next
(Stat
);
2968 return Stat
= N
and then No
(Next
(Stat
));
2970 end Is_Wrapped_In_Block
;
2972 -- Local declarations
2974 Id
: constant Node_Id
:= Identifier
(N
);
2975 Iter
: constant Node_Id
:= Iteration_Scheme
(N
);
2976 Loc
: constant Source_Ptr
:= Sloc
(N
);
2980 -- Start of processing for Analyze_Loop_Statement
2983 if Present
(Id
) then
2985 -- Make name visible, e.g. for use in exit statements. Loop labels
2986 -- are always considered to be referenced.
2991 -- Guard against serious error (typically, a scope mismatch when
2992 -- semantic analysis is requested) by creating loop entity to
2993 -- continue analysis.
2996 if Total_Errors_Detected
/= 0 then
2997 Ent
:= New_Internal_Entity
(E_Loop
, Current_Scope
, Loc
, 'L');
2999 raise Program_Error
;
3002 -- Verify that the loop name is hot hidden by an unrelated
3003 -- declaration in an inner scope.
3005 elsif Ekind
(Ent
) /= E_Label
and then Ekind
(Ent
) /= E_Loop
then
3006 Error_Msg_Sloc
:= Sloc
(Ent
);
3007 Error_Msg_N
("implicit label declaration for & is hidden#", Id
);
3009 if Present
(Homonym
(Ent
))
3010 and then Ekind
(Homonym
(Ent
)) = E_Label
3012 Set_Entity
(Id
, Ent
);
3013 Set_Ekind
(Ent
, E_Loop
);
3017 Generate_Reference
(Ent
, N
, ' ');
3018 Generate_Definition
(Ent
);
3020 -- If we found a label, mark its type. If not, ignore it, since it
3021 -- means we have a conflicting declaration, which would already
3022 -- have been diagnosed at declaration time. Set Label_Construct
3023 -- of the implicit label declaration, which is not created by the
3024 -- parser for generic units.
3026 if Ekind
(Ent
) = E_Label
then
3027 Set_Ekind
(Ent
, E_Loop
);
3029 if Nkind
(Parent
(Ent
)) = N_Implicit_Label_Declaration
then
3030 Set_Label_Construct
(Parent
(Ent
), N
);
3035 -- Case of no identifier present
3038 Ent
:= New_Internal_Entity
(E_Loop
, Current_Scope
, Loc
, 'L');
3039 Set_Etype
(Ent
, Standard_Void_Type
);
3040 Set_Parent
(Ent
, N
);
3043 -- Iteration over a container in Ada 2012 involves the creation of a
3044 -- controlled iterator object. Wrap the loop in a block to ensure the
3045 -- timely finalization of the iterator and release of container locks.
3046 -- The same applies to the use of secondary stack when obtaining an
3049 if Ada_Version
>= Ada_2012
3050 and then Is_Container_Iterator
(Iter
)
3051 and then not Is_Wrapped_In_Block
(N
)
3054 Block_Nod
: Node_Id
;
3055 Block_Id
: Entity_Id
;
3059 Make_Block_Statement
(Loc
,
3060 Declarations
=> New_List
,
3061 Handled_Statement_Sequence
=>
3062 Make_Handled_Sequence_Of_Statements
(Loc
,
3063 Statements
=> New_List
(Relocate_Node
(N
))));
3065 Add_Block_Identifier
(Block_Nod
, Block_Id
);
3067 -- The expansion of iterator loops generates an iterator in order
3068 -- to traverse the elements of a container:
3070 -- Iter : <iterator type> := Iterate (Container)'reference;
3072 -- The iterator is controlled and returned on the secondary stack.
3073 -- The analysis of the call to Iterate establishes a transient
3074 -- scope to deal with the secondary stack management, but never
3075 -- really creates a physical block as this would kill the iterator
3076 -- too early (see Wrap_Transient_Declaration). To address this
3077 -- case, mark the generated block as needing secondary stack
3080 Set_Uses_Sec_Stack
(Block_Id
);
3082 Rewrite
(N
, Block_Nod
);
3088 -- Kill current values on entry to loop, since statements in the body of
3089 -- the loop may have been executed before the loop is entered. Similarly
3090 -- we kill values after the loop, since we do not know that the body of
3091 -- the loop was executed.
3093 Kill_Current_Values
;
3095 Analyze_Iteration_Scheme
(Iter
);
3097 -- Check for following case which merits a warning if the type E of is
3098 -- a multi-dimensional array (and no explicit subscript ranges present).
3104 and then Present
(Loop_Parameter_Specification
(Iter
))
3107 LPS
: constant Node_Id
:= Loop_Parameter_Specification
(Iter
);
3108 DSD
: constant Node_Id
:=
3109 Original_Node
(Discrete_Subtype_Definition
(LPS
));
3111 if Nkind
(DSD
) = N_Attribute_Reference
3112 and then Attribute_Name
(DSD
) = Name_Range
3113 and then No
(Expressions
(DSD
))
3116 Typ
: constant Entity_Id
:= Etype
(Prefix
(DSD
));
3118 if Is_Array_Type
(Typ
)
3119 and then Number_Dimensions
(Typ
) > 1
3120 and then Nkind
(Parent
(N
)) = N_Loop_Statement
3121 and then Present
(Iteration_Scheme
(Parent
(N
)))
3124 OIter
: constant Node_Id
:=
3125 Iteration_Scheme
(Parent
(N
));
3126 OLPS
: constant Node_Id
:=
3127 Loop_Parameter_Specification
(OIter
);
3128 ODSD
: constant Node_Id
:=
3129 Original_Node
(Discrete_Subtype_Definition
(OLPS
));
3131 if Nkind
(ODSD
) = N_Attribute_Reference
3132 and then Attribute_Name
(ODSD
) = Name_Range
3133 and then No
(Expressions
(ODSD
))
3134 and then Etype
(Prefix
(ODSD
)) = Typ
3136 Error_Msg_Sloc
:= Sloc
(ODSD
);
3138 ("inner range same as outer range#??", DSD
);
3147 -- Analyze the statements of the body except in the case of an Ada 2012
3148 -- iterator with the expander active. In this case the expander will do
3149 -- a rewrite of the loop into a while loop. We will then analyze the
3150 -- loop body when we analyze this while loop.
3152 -- We need to do this delay because if the container is for indefinite
3153 -- types the actual subtype of the components will only be determined
3154 -- when the cursor declaration is analyzed.
3156 -- If the expander is not active, or in SPARK mode, then we want to
3157 -- analyze the loop body now even in the Ada 2012 iterator case, since
3158 -- the rewriting will not be done. Insert the loop variable in the
3159 -- current scope, if not done when analysing the iteration scheme.
3160 -- Set its kind properly to detect improper uses in the loop body.
3163 and then Present
(Iterator_Specification
(Iter
))
3165 if not Expander_Active
then
3167 I_Spec
: constant Node_Id
:= Iterator_Specification
(Iter
);
3168 Id
: constant Entity_Id
:= Defining_Identifier
(I_Spec
);
3171 if Scope
(Id
) /= Current_Scope
then
3175 -- In an element iterator, The loop parameter is a variable if
3176 -- the domain of iteration (container or array) is a variable.
3178 if not Of_Present
(I_Spec
)
3179 or else not Is_Variable
(Name
(I_Spec
))
3181 Set_Ekind
(Id
, E_Loop_Parameter
);
3185 Analyze_Statements
(Statements
(N
));
3190 -- Pre-Ada2012 for-loops and while loops.
3192 Analyze_Statements
(Statements
(N
));
3195 -- When the iteration scheme of a loop contains attribute 'Loop_Entry,
3196 -- the loop is transformed into a conditional block. Retrieve the loop.
3200 if Subject_To_Loop_Entry_Attributes
(Stmt
) then
3201 Stmt
:= Find_Loop_In_Conditional_Block
(Stmt
);
3204 -- Finish up processing for the loop. We kill all current values, since
3205 -- in general we don't know if the statements in the loop have been
3206 -- executed. We could do a bit better than this with a loop that we
3207 -- know will execute at least once, but it's not worth the trouble and
3208 -- the front end is not in the business of flow tracing.
3210 Process_End_Label
(Stmt
, 'e', Ent
);
3212 Kill_Current_Values
;
3214 -- Check for infinite loop. Skip check for generated code, since it
3215 -- justs waste time and makes debugging the routine called harder.
3217 -- Note that we have to wait till the body of the loop is fully analyzed
3218 -- before making this call, since Check_Infinite_Loop_Warning relies on
3219 -- being able to use semantic visibility information to find references.
3221 if Comes_From_Source
(Stmt
) then
3222 Check_Infinite_Loop_Warning
(Stmt
);
3225 -- Code after loop is unreachable if the loop has no WHILE or FOR and
3226 -- contains no EXIT statements within the body of the loop.
3228 if No
(Iter
) and then not Has_Exit
(Ent
) then
3229 Check_Unreachable_Code
(Stmt
);
3231 end Analyze_Loop_Statement
;
3233 ----------------------------
3234 -- Analyze_Null_Statement --
3235 ----------------------------
3237 -- Note: the semantics of the null statement is implemented by a single
3238 -- null statement, too bad everything isn't as simple as this.
3240 procedure Analyze_Null_Statement
(N
: Node_Id
) is
3241 pragma Warnings
(Off
, N
);
3244 end Analyze_Null_Statement
;
3246 ------------------------
3247 -- Analyze_Statements --
3248 ------------------------
3250 procedure Analyze_Statements
(L
: List_Id
) is
3255 -- The labels declared in the statement list are reachable from
3256 -- statements in the list. We do this as a prepass so that any goto
3257 -- statement will be properly flagged if its target is not reachable.
3258 -- This is not required, but is nice behavior.
3261 while Present
(S
) loop
3262 if Nkind
(S
) = N_Label
then
3263 Analyze
(Identifier
(S
));
3264 Lab
:= Entity
(Identifier
(S
));
3266 -- If we found a label mark it as reachable
3268 if Ekind
(Lab
) = E_Label
then
3269 Generate_Definition
(Lab
);
3270 Set_Reachable
(Lab
);
3272 if Nkind
(Parent
(Lab
)) = N_Implicit_Label_Declaration
then
3273 Set_Label_Construct
(Parent
(Lab
), S
);
3276 -- If we failed to find a label, it means the implicit declaration
3277 -- of the label was hidden. A for-loop parameter can do this to
3278 -- a label with the same name inside the loop, since the implicit
3279 -- label declaration is in the innermost enclosing body or block
3283 Error_Msg_Sloc
:= Sloc
(Lab
);
3285 ("implicit label declaration for & is hidden#",
3293 -- Perform semantic analysis on all statements
3295 Conditional_Statements_Begin
;
3298 while Present
(S
) loop
3301 -- Remove dimension in all statements
3303 Remove_Dimension_In_Statement
(S
);
3307 Conditional_Statements_End
;
3309 -- Make labels unreachable. Visibility is not sufficient, because labels
3310 -- in one if-branch for example are not reachable from the other branch,
3311 -- even though their declarations are in the enclosing declarative part.
3314 while Present
(S
) loop
3315 if Nkind
(S
) = N_Label
then
3316 Set_Reachable
(Entity
(Identifier
(S
)), False);
3321 end Analyze_Statements
;
3323 ----------------------------
3324 -- Check_Unreachable_Code --
3325 ----------------------------
3327 procedure Check_Unreachable_Code
(N
: Node_Id
) is
3328 Error_Node
: Node_Id
;
3332 if Is_List_Member
(N
) and then Comes_From_Source
(N
) then
3337 Nxt
:= Original_Node
(Next
(N
));
3339 -- Skip past pragmas
3341 while Nkind
(Nxt
) = N_Pragma
loop
3342 Nxt
:= Original_Node
(Next
(Nxt
));
3345 -- If a label follows us, then we never have dead code, since
3346 -- someone could branch to the label, so we just ignore it, unless
3347 -- we are in formal mode where goto statements are not allowed.
3349 if Nkind
(Nxt
) = N_Label
3350 and then not Restriction_Check_Required
(SPARK_05
)
3354 -- Otherwise see if we have a real statement following us
3357 and then Comes_From_Source
(Nxt
)
3358 and then Is_Statement
(Nxt
)
3360 -- Special very annoying exception. If we have a return that
3361 -- follows a raise, then we allow it without a warning, since
3362 -- the Ada RM annoyingly requires a useless return here.
3364 if Nkind
(Original_Node
(N
)) /= N_Raise_Statement
3365 or else Nkind
(Nxt
) /= N_Simple_Return_Statement
3367 -- The rather strange shenanigans with the warning message
3368 -- here reflects the fact that Kill_Dead_Code is very good
3369 -- at removing warnings in deleted code, and this is one
3370 -- warning we would prefer NOT to have removed.
3374 -- If we have unreachable code, analyze and remove the
3375 -- unreachable code, since it is useless and we don't
3376 -- want to generate junk warnings.
3378 -- We skip this step if we are not in code generation mode
3379 -- or CodePeer mode.
3381 -- This is the one case where we remove dead code in the
3382 -- semantics as opposed to the expander, and we do not want
3383 -- to remove code if we are not in code generation mode,
3384 -- since this messes up the ASIS trees or loses useful
3385 -- information in the CodePeer tree.
3387 -- Note that one might react by moving the whole circuit to
3388 -- exp_ch5, but then we lose the warning in -gnatc mode.
3390 if Operating_Mode
= Generate_Code
3391 and then not CodePeer_Mode
3396 -- Quit deleting when we have nothing more to delete
3397 -- or if we hit a label (since someone could transfer
3398 -- control to a label, so we should not delete it).
3400 exit when No
(Nxt
) or else Nkind
(Nxt
) = N_Label
;
3402 -- Statement/declaration is to be deleted
3406 Kill_Dead_Code
(Nxt
);
3410 -- Now issue the warning (or error in formal mode)
3412 if Restriction_Check_Required
(SPARK_05
) then
3413 Check_SPARK_05_Restriction
3414 ("unreachable code is not allowed", Error_Node
);
3416 Error_Msg
("??unreachable code!", Sloc
(Error_Node
));
3420 -- If the unconditional transfer of control instruction is the
3421 -- last statement of a sequence, then see if our parent is one of
3422 -- the constructs for which we count unblocked exits, and if so,
3423 -- adjust the count.
3428 -- Statements in THEN part or ELSE part of IF statement
3430 if Nkind
(P
) = N_If_Statement
then
3433 -- Statements in ELSIF part of an IF statement
3435 elsif Nkind
(P
) = N_Elsif_Part
then
3437 pragma Assert
(Nkind
(P
) = N_If_Statement
);
3439 -- Statements in CASE statement alternative
3441 elsif Nkind
(P
) = N_Case_Statement_Alternative
then
3443 pragma Assert
(Nkind
(P
) = N_Case_Statement
);
3445 -- Statements in body of block
3447 elsif Nkind
(P
) = N_Handled_Sequence_Of_Statements
3448 and then Nkind
(Parent
(P
)) = N_Block_Statement
3450 -- The original loop is now placed inside a block statement
3451 -- due to the expansion of attribute 'Loop_Entry. Return as
3452 -- this is not a "real" block for the purposes of exit
3455 if Nkind
(N
) = N_Loop_Statement
3456 and then Subject_To_Loop_Entry_Attributes
(N
)
3461 -- Statements in exception handler in a block
3463 elsif Nkind
(P
) = N_Exception_Handler
3464 and then Nkind
(Parent
(P
)) = N_Handled_Sequence_Of_Statements
3465 and then Nkind
(Parent
(Parent
(P
))) = N_Block_Statement
3469 -- None of these cases, so return
3475 -- This was one of the cases we are looking for (i.e. the
3476 -- parent construct was IF, CASE or block) so decrement count.
3478 Unblocked_Exit_Count
:= Unblocked_Exit_Count
- 1;
3482 end Check_Unreachable_Code
;
3484 ----------------------
3485 -- Preanalyze_Range --
3486 ----------------------
3488 procedure Preanalyze_Range
(R_Copy
: Node_Id
) is
3489 Save_Analysis
: constant Boolean := Full_Analysis
;
3493 Full_Analysis
:= False;
3494 Expander_Mode_Save_And_Set
(False);
3498 if Nkind
(R_Copy
) in N_Subexpr
and then Is_Overloaded
(R_Copy
) then
3500 -- Apply preference rules for range of predefined integer types, or
3501 -- diagnose true ambiguity.
3506 Found
: Entity_Id
:= Empty
;
3509 Get_First_Interp
(R_Copy
, I
, It
);
3510 while Present
(It
.Typ
) loop
3511 if Is_Discrete_Type
(It
.Typ
) then
3515 if Scope
(Found
) = Standard_Standard
then
3518 elsif Scope
(It
.Typ
) = Standard_Standard
then
3522 -- Both of them are user-defined
3525 ("ambiguous bounds in range of iteration", R_Copy
);
3526 Error_Msg_N
("\possible interpretations:", R_Copy
);
3527 Error_Msg_NE
("\\} ", R_Copy
, Found
);
3528 Error_Msg_NE
("\\} ", R_Copy
, It
.Typ
);
3534 Get_Next_Interp
(I
, It
);
3539 -- Subtype mark in iteration scheme
3541 if Is_Entity_Name
(R_Copy
) and then Is_Type
(Entity
(R_Copy
)) then
3544 -- Expression in range, or Ada 2012 iterator
3546 elsif Nkind
(R_Copy
) in N_Subexpr
then
3548 Typ
:= Etype
(R_Copy
);
3550 if Is_Discrete_Type
(Typ
) then
3553 -- Check that the resulting object is an iterable container
3555 elsif Has_Aspect
(Typ
, Aspect_Iterator_Element
)
3556 or else Has_Aspect
(Typ
, Aspect_Constant_Indexing
)
3557 or else Has_Aspect
(Typ
, Aspect_Variable_Indexing
)
3561 -- The expression may yield an implicit reference to an iterable
3562 -- container. Insert explicit dereference so that proper type is
3563 -- visible in the loop.
3565 elsif Has_Implicit_Dereference
(Etype
(R_Copy
)) then
3570 Disc
:= First_Discriminant
(Typ
);
3571 while Present
(Disc
) loop
3572 if Has_Implicit_Dereference
(Disc
) then
3573 Build_Explicit_Dereference
(R_Copy
, Disc
);
3577 Next_Discriminant
(Disc
);
3584 Expander_Mode_Restore
;
3585 Full_Analysis
:= Save_Analysis
;
3586 end Preanalyze_Range
;