2002-06-13 Akim Demaille <akim@epita.fr>
[official-gcc.git] / gcc / sched-deps.c
blob985559fc9701e3ccd1c86c1035bb8262b699c22d
1 /* Instruction scheduling pass. This file computes dependencies between
2 instructions.
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
6 and currently maintained by, Jim Wilson (wilson@cygnus.com)
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
25 #include "config.h"
26 #include "system.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "hard-reg-set.h"
31 #include "basic-block.h"
32 #include "regs.h"
33 #include "function.h"
34 #include "flags.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 #include "except.h"
38 #include "toplev.h"
39 #include "recog.h"
40 #include "sched-int.h"
41 #include "params.h"
42 #include "cselib.h"
44 extern char *reg_known_equiv_p;
45 extern rtx *reg_known_value;
47 static regset_head reg_pending_sets_head;
48 static regset_head reg_pending_clobbers_head;
49 static regset_head reg_pending_uses_head;
51 static regset reg_pending_sets;
52 static regset reg_pending_clobbers;
53 static regset reg_pending_uses;
54 static bool reg_pending_barrier;
56 /* To speed up the test for duplicate dependency links we keep a
57 record of dependencies created by add_dependence when the average
58 number of instructions in a basic block is very large.
60 Studies have shown that there is typically around 5 instructions between
61 branches for typical C code. So we can make a guess that the average
62 basic block is approximately 5 instructions long; we will choose 100X
63 the average size as a very large basic block.
65 Each insn has associated bitmaps for its dependencies. Each bitmap
66 has enough entries to represent a dependency on any other insn in
67 the insn chain. All bitmap for true dependencies cache is
68 allocated then the rest two ones are also allocated. */
69 static sbitmap *true_dependency_cache;
70 static sbitmap *anti_dependency_cache;
71 static sbitmap *output_dependency_cache;
73 /* To speed up checking consistency of formed forward insn
74 dependencies we use the following cache. Another possible solution
75 could be switching off checking duplication of insns in forward
76 dependencies. */
77 #ifdef ENABLE_CHECKING
78 static sbitmap *forward_dependency_cache;
79 #endif
81 static int deps_may_trap_p PARAMS ((rtx));
82 static void add_dependence_list PARAMS ((rtx, rtx, enum reg_note));
83 static void add_dependence_list_and_free PARAMS ((rtx, rtx *, enum reg_note));
84 static void remove_dependence PARAMS ((rtx, rtx));
85 static void set_sched_group_p PARAMS ((rtx));
87 static void flush_pending_lists PARAMS ((struct deps *, rtx, int, int));
88 static void sched_analyze_1 PARAMS ((struct deps *, rtx, rtx));
89 static void sched_analyze_2 PARAMS ((struct deps *, rtx, rtx));
90 static void sched_analyze_insn PARAMS ((struct deps *, rtx, rtx, rtx));
91 static rtx group_leader PARAMS ((rtx));
93 static rtx get_condition PARAMS ((rtx));
94 static int conditions_mutex_p PARAMS ((rtx, rtx));
96 /* Return nonzero if a load of the memory reference MEM can cause a trap. */
98 static int
99 deps_may_trap_p (mem)
100 rtx mem;
102 rtx addr = XEXP (mem, 0);
104 if (REG_P (addr)
105 && REGNO (addr) >= FIRST_PSEUDO_REGISTER
106 && reg_known_value[REGNO (addr)])
107 addr = reg_known_value[REGNO (addr)];
108 return rtx_addr_can_trap_p (addr);
111 /* Return the INSN_LIST containing INSN in LIST, or NULL
112 if LIST does not contain INSN. */
115 find_insn_list (insn, list)
116 rtx insn;
117 rtx list;
119 while (list)
121 if (XEXP (list, 0) == insn)
122 return list;
123 list = XEXP (list, 1);
125 return 0;
128 /* Find the condition under which INSN is executed. */
130 static rtx
131 get_condition (insn)
132 rtx insn;
134 rtx pat = PATTERN (insn);
135 rtx cond;
137 if (pat == 0)
138 return 0;
139 if (GET_CODE (pat) == COND_EXEC)
140 return COND_EXEC_TEST (pat);
141 if (GET_CODE (insn) != JUMP_INSN)
142 return 0;
143 if (GET_CODE (pat) != SET || SET_SRC (pat) != pc_rtx)
144 return 0;
145 if (GET_CODE (SET_DEST (pat)) != IF_THEN_ELSE)
146 return 0;
147 pat = SET_DEST (pat);
148 cond = XEXP (pat, 0);
149 if (GET_CODE (XEXP (cond, 1)) == LABEL_REF
150 && XEXP (cond, 2) == pc_rtx)
151 return cond;
152 else if (GET_CODE (XEXP (cond, 2)) == LABEL_REF
153 && XEXP (cond, 1) == pc_rtx)
154 return gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)), GET_MODE (cond),
155 XEXP (cond, 0), XEXP (cond, 1));
156 else
157 return 0;
160 /* Return nonzero if conditions COND1 and COND2 can never be both true. */
162 static int
163 conditions_mutex_p (cond1, cond2)
164 rtx cond1, cond2;
166 if (GET_RTX_CLASS (GET_CODE (cond1)) == '<'
167 && GET_RTX_CLASS (GET_CODE (cond2)) == '<'
168 && GET_CODE (cond1) == reverse_condition (GET_CODE (cond2))
169 && XEXP (cond1, 0) == XEXP (cond2, 0)
170 && XEXP (cond1, 1) == XEXP (cond2, 1))
171 return 1;
172 return 0;
175 /* Add ELEM wrapped in an INSN_LIST with reg note kind DEP_TYPE to the
176 LOG_LINKS of INSN, if not already there. DEP_TYPE indicates the type
177 of dependence that this link represents. */
179 void
180 add_dependence (insn, elem, dep_type)
181 rtx insn;
182 rtx elem;
183 enum reg_note dep_type;
185 rtx link, next;
186 int present_p;
187 rtx cond1, cond2;
189 /* Don't depend an insn on itself. */
190 if (insn == elem)
191 return;
193 /* We can get a dependency on deleted insns due to optimizations in
194 the register allocation and reloading or due to splitting. Any
195 such dependency is useless and can be ignored. */
196 if (GET_CODE (elem) == NOTE)
197 return;
199 /* flow.c doesn't handle conditional lifetimes entirely correctly;
200 calls mess up the conditional lifetimes. */
201 /* ??? add_dependence is the wrong place to be eliding dependencies,
202 as that forgets that the condition expressions themselves may
203 be dependent. */
204 if (GET_CODE (insn) != CALL_INSN && GET_CODE (elem) != CALL_INSN)
206 cond1 = get_condition (insn);
207 cond2 = get_condition (elem);
208 if (cond1 && cond2
209 && conditions_mutex_p (cond1, cond2)
210 /* Make sure first instruction doesn't affect condition of second
211 instruction if switched. */
212 && !modified_in_p (cond1, elem)
213 /* Make sure second instruction doesn't affect condition of first
214 instruction if switched. */
215 && !modified_in_p (cond2, insn))
216 return;
219 /* If elem is part of a sequence that must be scheduled together, then
220 make the dependence point to the last insn of the sequence.
221 When HAVE_cc0, it is possible for NOTEs to exist between users and
222 setters of the condition codes, so we must skip past notes here.
223 Otherwise, NOTEs are impossible here. */
224 next = next_nonnote_insn (elem);
225 if (next && SCHED_GROUP_P (next)
226 && GET_CODE (next) != CODE_LABEL)
228 /* Notes will never intervene here though, so don't bother checking
229 for them. */
230 /* Hah! Wrong. */
231 /* We must reject CODE_LABELs, so that we don't get confused by one
232 that has LABEL_PRESERVE_P set, which is represented by the same
233 bit in the rtl as SCHED_GROUP_P. A CODE_LABEL can never be
234 SCHED_GROUP_P. */
236 rtx nnext;
237 while ((nnext = next_nonnote_insn (next)) != NULL
238 && SCHED_GROUP_P (nnext)
239 && GET_CODE (nnext) != CODE_LABEL)
240 next = nnext;
242 /* Again, don't depend an insn on itself. */
243 if (insn == next)
244 return;
246 /* Make the dependence to NEXT, the last insn of the group, instead
247 of the original ELEM. */
248 elem = next;
251 present_p = 1;
252 #ifdef INSN_SCHEDULING
253 /* ??? No good way to tell from here whether we're doing interblock
254 scheduling. Possibly add another callback. */
255 #if 0
256 /* (This code is guarded by INSN_SCHEDULING, otherwise INSN_BB is undefined.)
257 No need for interblock dependences with calls, since
258 calls are not moved between blocks. Note: the edge where
259 elem is a CALL is still required. */
260 if (GET_CODE (insn) == CALL_INSN
261 && (INSN_BB (elem) != INSN_BB (insn)))
262 return;
263 #endif
265 /* If we already have a dependency for ELEM, then we do not need to
266 do anything. Avoiding the list walk below can cut compile times
267 dramatically for some code. */
268 if (true_dependency_cache != NULL)
270 enum reg_note present_dep_type = 0;
272 if (anti_dependency_cache == NULL || output_dependency_cache == NULL)
273 abort ();
274 if (TEST_BIT (true_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem)))
275 /* Do nothing (present_set_type is already 0). */
277 else if (TEST_BIT (anti_dependency_cache[INSN_LUID (insn)],
278 INSN_LUID (elem)))
279 present_dep_type = REG_DEP_ANTI;
280 else if (TEST_BIT (output_dependency_cache[INSN_LUID (insn)],
281 INSN_LUID (elem)))
282 present_dep_type = REG_DEP_OUTPUT;
283 else
284 present_p = 0;
285 if (present_p && (int) dep_type >= (int) present_dep_type)
286 return;
288 #endif
290 /* Check that we don't already have this dependence. */
291 if (present_p)
292 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
293 if (XEXP (link, 0) == elem)
295 #ifdef INSN_SCHEDULING
296 /* Clear corresponding cache entry because type of the link
297 may be changed. */
298 if (true_dependency_cache != NULL)
300 if (REG_NOTE_KIND (link) == REG_DEP_ANTI)
301 RESET_BIT (anti_dependency_cache[INSN_LUID (insn)],
302 INSN_LUID (elem));
303 else if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT
304 && output_dependency_cache)
305 RESET_BIT (output_dependency_cache[INSN_LUID (insn)],
306 INSN_LUID (elem));
307 else
308 abort ();
310 #endif
312 /* If this is a more restrictive type of dependence than the existing
313 one, then change the existing dependence to this type. */
314 if ((int) dep_type < (int) REG_NOTE_KIND (link))
315 PUT_REG_NOTE_KIND (link, dep_type);
317 #ifdef INSN_SCHEDULING
318 /* If we are adding a dependency to INSN's LOG_LINKs, then
319 note that in the bitmap caches of dependency information. */
320 if (true_dependency_cache != NULL)
322 if ((int) REG_NOTE_KIND (link) == 0)
323 SET_BIT (true_dependency_cache[INSN_LUID (insn)],
324 INSN_LUID (elem));
325 else if (REG_NOTE_KIND (link) == REG_DEP_ANTI)
326 SET_BIT (anti_dependency_cache[INSN_LUID (insn)],
327 INSN_LUID (elem));
328 else if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
329 SET_BIT (output_dependency_cache[INSN_LUID (insn)],
330 INSN_LUID (elem));
332 #endif
333 return;
335 /* Might want to check one level of transitivity to save conses. */
337 link = alloc_INSN_LIST (elem, LOG_LINKS (insn));
338 LOG_LINKS (insn) = link;
340 /* Insn dependency, not data dependency. */
341 PUT_REG_NOTE_KIND (link, dep_type);
343 #ifdef INSN_SCHEDULING
344 /* If we are adding a dependency to INSN's LOG_LINKs, then note that
345 in the bitmap caches of dependency information. */
346 if (true_dependency_cache != NULL)
348 if ((int) dep_type == 0)
349 SET_BIT (true_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem));
350 else if (dep_type == REG_DEP_ANTI)
351 SET_BIT (anti_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem));
352 else if (dep_type == REG_DEP_OUTPUT)
353 SET_BIT (output_dependency_cache[INSN_LUID (insn)], INSN_LUID (elem));
355 #endif
358 /* A convenience wrapper to operate on an entire list. */
360 static void
361 add_dependence_list (insn, list, dep_type)
362 rtx insn, list;
363 enum reg_note dep_type;
365 for (; list; list = XEXP (list, 1))
366 add_dependence (insn, XEXP (list, 0), dep_type);
369 /* Similar, but free *LISTP at the same time. */
371 static void
372 add_dependence_list_and_free (insn, listp, dep_type)
373 rtx insn;
374 rtx *listp;
375 enum reg_note dep_type;
377 rtx list, next;
378 for (list = *listp, *listp = NULL; list ; list = next)
380 next = XEXP (list, 1);
381 add_dependence (insn, XEXP (list, 0), dep_type);
382 free_INSN_LIST_node (list);
386 /* Remove ELEM wrapped in an INSN_LIST from the LOG_LINKS
387 of INSN. Abort if not found. */
389 static void
390 remove_dependence (insn, elem)
391 rtx insn;
392 rtx elem;
394 rtx prev, link, next;
395 int found = 0;
397 for (prev = 0, link = LOG_LINKS (insn); link; link = next)
399 next = XEXP (link, 1);
400 if (XEXP (link, 0) == elem)
402 if (prev)
403 XEXP (prev, 1) = next;
404 else
405 LOG_LINKS (insn) = next;
407 #ifdef INSN_SCHEDULING
408 /* If we are removing a dependency from the LOG_LINKS list,
409 make sure to remove it from the cache too. */
410 if (true_dependency_cache != NULL)
412 if (REG_NOTE_KIND (link) == 0)
413 RESET_BIT (true_dependency_cache[INSN_LUID (insn)],
414 INSN_LUID (elem));
415 else if (REG_NOTE_KIND (link) == REG_DEP_ANTI)
416 RESET_BIT (anti_dependency_cache[INSN_LUID (insn)],
417 INSN_LUID (elem));
418 else if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
419 RESET_BIT (output_dependency_cache[INSN_LUID (insn)],
420 INSN_LUID (elem));
422 #endif
424 free_INSN_LIST_node (link);
426 found = 1;
428 else
429 prev = link;
432 if (!found)
433 abort ();
434 return;
437 /* Return an insn which represents a SCHED_GROUP, which is
438 the last insn in the group. */
440 static rtx
441 group_leader (insn)
442 rtx insn;
444 rtx prev;
448 prev = insn;
449 insn = next_nonnote_insn (insn);
451 while (insn && SCHED_GROUP_P (insn) && (GET_CODE (insn) != CODE_LABEL));
453 return prev;
456 /* Set SCHED_GROUP_P and care for the rest of the bookkeeping that
457 goes along with that. */
459 static void
460 set_sched_group_p (insn)
461 rtx insn;
463 rtx link, prev;
465 SCHED_GROUP_P (insn) = 1;
467 /* There may be a note before this insn now, but all notes will
468 be removed before we actually try to schedule the insns, so
469 it won't cause a problem later. We must avoid it here though. */
470 prev = prev_nonnote_insn (insn);
472 /* Make a copy of all dependencies on the immediately previous insn,
473 and add to this insn. This is so that all the dependencies will
474 apply to the group. Remove an explicit dependence on this insn
475 as SCHED_GROUP_P now represents it. */
477 if (find_insn_list (prev, LOG_LINKS (insn)))
478 remove_dependence (insn, prev);
480 for (link = LOG_LINKS (prev); link; link = XEXP (link, 1))
481 add_dependence (insn, XEXP (link, 0), REG_NOTE_KIND (link));
484 /* Process an insn's memory dependencies. There are four kinds of
485 dependencies:
487 (0) read dependence: read follows read
488 (1) true dependence: read follows write
489 (2) anti dependence: write follows read
490 (3) output dependence: write follows write
492 We are careful to build only dependencies which actually exist, and
493 use transitivity to avoid building too many links. */
495 /* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
496 The MEM is a memory reference contained within INSN, which we are saving
497 so that we can do memory aliasing on it. */
499 void
500 add_insn_mem_dependence (deps, insn_list, mem_list, insn, mem)
501 struct deps *deps;
502 rtx *insn_list, *mem_list, insn, mem;
504 rtx link;
506 link = alloc_INSN_LIST (insn, *insn_list);
507 *insn_list = link;
509 if (current_sched_info->use_cselib)
511 mem = shallow_copy_rtx (mem);
512 XEXP (mem, 0) = cselib_subst_to_values (XEXP (mem, 0));
514 link = alloc_EXPR_LIST (VOIDmode, mem, *mem_list);
515 *mem_list = link;
517 deps->pending_lists_length++;
520 /* Make a dependency between every memory reference on the pending lists
521 and INSN, thus flushing the pending lists. FOR_READ is true if emitting
522 dependencies for a read operation, similarly with FOR_WRITE. */
524 static void
525 flush_pending_lists (deps, insn, for_read, for_write)
526 struct deps *deps;
527 rtx insn;
528 int for_read, for_write;
530 if (for_write)
532 add_dependence_list_and_free (insn, &deps->pending_read_insns,
533 REG_DEP_ANTI);
534 free_EXPR_LIST_list (&deps->pending_read_mems);
537 add_dependence_list_and_free (insn, &deps->pending_write_insns,
538 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT);
539 free_EXPR_LIST_list (&deps->pending_write_mems);
540 deps->pending_lists_length = 0;
542 add_dependence_list_and_free (insn, &deps->last_pending_memory_flush,
543 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT);
544 deps->last_pending_memory_flush = alloc_INSN_LIST (insn, NULL_RTX);
545 deps->pending_flush_length = 1;
548 /* Analyze a single SET, CLOBBER, PRE_DEC, POST_DEC, PRE_INC or POST_INC
549 rtx, X, creating all dependencies generated by the write to the
550 destination of X, and reads of everything mentioned. */
552 static void
553 sched_analyze_1 (deps, x, insn)
554 struct deps *deps;
555 rtx x;
556 rtx insn;
558 int regno;
559 rtx dest = XEXP (x, 0);
560 enum rtx_code code = GET_CODE (x);
562 if (dest == 0)
563 return;
565 if (GET_CODE (dest) == PARALLEL)
567 int i;
569 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
570 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
571 sched_analyze_1 (deps,
572 gen_rtx_CLOBBER (VOIDmode,
573 XEXP (XVECEXP (dest, 0, i), 0)),
574 insn);
576 if (GET_CODE (x) == SET)
577 sched_analyze_2 (deps, SET_SRC (x), insn);
578 return;
581 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
582 || GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
584 if (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
586 /* The second and third arguments are values read by this insn. */
587 sched_analyze_2 (deps, XEXP (dest, 1), insn);
588 sched_analyze_2 (deps, XEXP (dest, 2), insn);
590 dest = XEXP (dest, 0);
593 if (GET_CODE (dest) == REG)
595 regno = REGNO (dest);
597 /* A hard reg in a wide mode may really be multiple registers.
598 If so, mark all of them just like the first. */
599 if (regno < FIRST_PSEUDO_REGISTER)
601 int i = HARD_REGNO_NREGS (regno, GET_MODE (dest));
602 if (code == SET)
604 while (--i >= 0)
605 SET_REGNO_REG_SET (reg_pending_sets, regno + i);
607 else
609 while (--i >= 0)
610 SET_REGNO_REG_SET (reg_pending_clobbers, regno + i);
613 /* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that
614 it does not reload. Ignore these as they have served their
615 purpose already. */
616 else if (regno >= deps->max_reg)
618 if (GET_CODE (PATTERN (insn)) != USE
619 && GET_CODE (PATTERN (insn)) != CLOBBER)
620 abort ();
622 else
624 if (code == SET)
625 SET_REGNO_REG_SET (reg_pending_sets, regno);
626 else
627 SET_REGNO_REG_SET (reg_pending_clobbers, regno);
629 /* Pseudos that are REG_EQUIV to something may be replaced
630 by that during reloading. We need only add dependencies for
631 the address in the REG_EQUIV note. */
632 if (!reload_completed
633 && reg_known_equiv_p[regno]
634 && GET_CODE (reg_known_value[regno]) == MEM)
635 sched_analyze_2 (deps, XEXP (reg_known_value[regno], 0), insn);
637 /* Don't let it cross a call after scheduling if it doesn't
638 already cross one. */
639 if (REG_N_CALLS_CROSSED (regno) == 0)
640 add_dependence_list (insn, deps->last_function_call, REG_DEP_ANTI);
643 else if (GET_CODE (dest) == MEM)
645 /* Writing memory. */
646 rtx t = dest;
648 if (current_sched_info->use_cselib)
650 t = shallow_copy_rtx (dest);
651 cselib_lookup (XEXP (t, 0), Pmode, 1);
652 XEXP (t, 0) = cselib_subst_to_values (XEXP (t, 0));
655 if (deps->pending_lists_length > MAX_PENDING_LIST_LENGTH)
657 /* Flush all pending reads and writes to prevent the pending lists
658 from getting any larger. Insn scheduling runs too slowly when
659 these lists get long. When compiling GCC with itself,
660 this flush occurs 8 times for sparc, and 10 times for m88k using
661 the default value of 32. */
662 flush_pending_lists (deps, insn, false, true);
664 else
666 rtx pending, pending_mem;
668 pending = deps->pending_read_insns;
669 pending_mem = deps->pending_read_mems;
670 while (pending)
672 if (anti_dependence (XEXP (pending_mem, 0), t))
673 add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI);
675 pending = XEXP (pending, 1);
676 pending_mem = XEXP (pending_mem, 1);
679 pending = deps->pending_write_insns;
680 pending_mem = deps->pending_write_mems;
681 while (pending)
683 if (output_dependence (XEXP (pending_mem, 0), t))
684 add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
686 pending = XEXP (pending, 1);
687 pending_mem = XEXP (pending_mem, 1);
690 add_dependence_list (insn, deps->last_pending_memory_flush,
691 REG_DEP_ANTI);
693 add_insn_mem_dependence (deps, &deps->pending_write_insns,
694 &deps->pending_write_mems, insn, dest);
696 sched_analyze_2 (deps, XEXP (dest, 0), insn);
699 /* Analyze reads. */
700 if (GET_CODE (x) == SET)
701 sched_analyze_2 (deps, SET_SRC (x), insn);
704 /* Analyze the uses of memory and registers in rtx X in INSN. */
706 static void
707 sched_analyze_2 (deps, x, insn)
708 struct deps *deps;
709 rtx x;
710 rtx insn;
712 int i;
713 int j;
714 enum rtx_code code;
715 const char *fmt;
717 if (x == 0)
718 return;
720 code = GET_CODE (x);
722 switch (code)
724 case CONST_INT:
725 case CONST_DOUBLE:
726 case CONST_VECTOR:
727 case SYMBOL_REF:
728 case CONST:
729 case LABEL_REF:
730 /* Ignore constants. Note that we must handle CONST_DOUBLE here
731 because it may have a cc0_rtx in its CONST_DOUBLE_CHAIN field, but
732 this does not mean that this insn is using cc0. */
733 return;
735 #ifdef HAVE_cc0
736 case CC0:
737 /* User of CC0 depends on immediately preceding insn. */
738 set_sched_group_p (insn);
739 return;
740 #endif
742 case REG:
744 int regno = REGNO (x);
745 if (regno < FIRST_PSEUDO_REGISTER)
747 int i = HARD_REGNO_NREGS (regno, GET_MODE (x));
748 while (--i >= 0)
749 SET_REGNO_REG_SET (reg_pending_uses, regno + i);
751 /* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that
752 it does not reload. Ignore these as they have served their
753 purpose already. */
754 else if (regno >= deps->max_reg)
756 if (GET_CODE (PATTERN (insn)) != USE
757 && GET_CODE (PATTERN (insn)) != CLOBBER)
758 abort ();
760 else
762 SET_REGNO_REG_SET (reg_pending_uses, regno);
764 /* Pseudos that are REG_EQUIV to something may be replaced
765 by that during reloading. We need only add dependencies for
766 the address in the REG_EQUIV note. */
767 if (!reload_completed
768 && reg_known_equiv_p[regno]
769 && GET_CODE (reg_known_value[regno]) == MEM)
770 sched_analyze_2 (deps, XEXP (reg_known_value[regno], 0), insn);
772 /* If the register does not already cross any calls, then add this
773 insn to the sched_before_next_call list so that it will still
774 not cross calls after scheduling. */
775 if (REG_N_CALLS_CROSSED (regno) == 0)
776 deps->sched_before_next_call
777 = alloc_INSN_LIST (insn, deps->sched_before_next_call);
779 return;
782 case MEM:
784 /* Reading memory. */
785 rtx u;
786 rtx pending, pending_mem;
787 rtx t = x;
789 if (current_sched_info->use_cselib)
791 t = shallow_copy_rtx (t);
792 cselib_lookup (XEXP (t, 0), Pmode, 1);
793 XEXP (t, 0) = cselib_subst_to_values (XEXP (t, 0));
795 pending = deps->pending_read_insns;
796 pending_mem = deps->pending_read_mems;
797 while (pending)
799 if (read_dependence (XEXP (pending_mem, 0), t))
800 add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI);
802 pending = XEXP (pending, 1);
803 pending_mem = XEXP (pending_mem, 1);
806 pending = deps->pending_write_insns;
807 pending_mem = deps->pending_write_mems;
808 while (pending)
810 if (true_dependence (XEXP (pending_mem, 0), VOIDmode,
811 t, rtx_varies_p))
812 add_dependence (insn, XEXP (pending, 0), 0);
814 pending = XEXP (pending, 1);
815 pending_mem = XEXP (pending_mem, 1);
818 for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
819 if (GET_CODE (XEXP (u, 0)) != JUMP_INSN
820 || deps_may_trap_p (x))
821 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
823 /* Always add these dependencies to pending_reads, since
824 this insn may be followed by a write. */
825 add_insn_mem_dependence (deps, &deps->pending_read_insns,
826 &deps->pending_read_mems, insn, x);
828 /* Take advantage of tail recursion here. */
829 sched_analyze_2 (deps, XEXP (x, 0), insn);
830 return;
833 /* Force pending stores to memory in case a trap handler needs them. */
834 case TRAP_IF:
835 flush_pending_lists (deps, insn, true, false);
836 break;
838 case ASM_OPERANDS:
839 case ASM_INPUT:
840 case UNSPEC_VOLATILE:
842 /* Traditional and volatile asm instructions must be considered to use
843 and clobber all hard registers, all pseudo-registers and all of
844 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
846 Consider for instance a volatile asm that changes the fpu rounding
847 mode. An insn should not be moved across this even if it only uses
848 pseudo-regs because it might give an incorrectly rounded result. */
849 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
850 reg_pending_barrier = true;
852 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
853 We can not just fall through here since then we would be confused
854 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
855 traditional asms unlike their normal usage. */
857 if (code == ASM_OPERANDS)
859 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
860 sched_analyze_2 (deps, ASM_OPERANDS_INPUT (x, j), insn);
861 return;
863 break;
866 case PRE_DEC:
867 case POST_DEC:
868 case PRE_INC:
869 case POST_INC:
870 /* These both read and modify the result. We must handle them as writes
871 to get proper dependencies for following instructions. We must handle
872 them as reads to get proper dependencies from this to previous
873 instructions. Thus we need to pass them to both sched_analyze_1
874 and sched_analyze_2. We must call sched_analyze_2 first in order
875 to get the proper antecedent for the read. */
876 sched_analyze_2 (deps, XEXP (x, 0), insn);
877 sched_analyze_1 (deps, x, insn);
878 return;
880 case POST_MODIFY:
881 case PRE_MODIFY:
882 /* op0 = op0 + op1 */
883 sched_analyze_2 (deps, XEXP (x, 0), insn);
884 sched_analyze_2 (deps, XEXP (x, 1), insn);
885 sched_analyze_1 (deps, x, insn);
886 return;
888 default:
889 break;
892 /* Other cases: walk the insn. */
893 fmt = GET_RTX_FORMAT (code);
894 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
896 if (fmt[i] == 'e')
897 sched_analyze_2 (deps, XEXP (x, i), insn);
898 else if (fmt[i] == 'E')
899 for (j = 0; j < XVECLEN (x, i); j++)
900 sched_analyze_2 (deps, XVECEXP (x, i, j), insn);
904 /* Analyze an INSN with pattern X to find all dependencies. */
906 static void
907 sched_analyze_insn (deps, x, insn, loop_notes)
908 struct deps *deps;
909 rtx x, insn;
910 rtx loop_notes;
912 RTX_CODE code = GET_CODE (x);
913 rtx link;
914 int i;
916 if (code == COND_EXEC)
918 sched_analyze_2 (deps, COND_EXEC_TEST (x), insn);
920 /* ??? Should be recording conditions so we reduce the number of
921 false dependencies. */
922 x = COND_EXEC_CODE (x);
923 code = GET_CODE (x);
925 if (code == SET || code == CLOBBER)
926 sched_analyze_1 (deps, x, insn);
927 else if (code == PARALLEL)
929 int i;
930 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
932 rtx sub = XVECEXP (x, 0, i);
933 code = GET_CODE (sub);
935 if (code == COND_EXEC)
937 sched_analyze_2 (deps, COND_EXEC_TEST (sub), insn);
938 sub = COND_EXEC_CODE (sub);
939 code = GET_CODE (sub);
941 if (code == SET || code == CLOBBER)
942 sched_analyze_1 (deps, sub, insn);
943 else
944 sched_analyze_2 (deps, sub, insn);
947 else
948 sched_analyze_2 (deps, x, insn);
950 /* Mark registers CLOBBERED or used by called function. */
951 if (GET_CODE (insn) == CALL_INSN)
953 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
955 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
956 sched_analyze_1 (deps, XEXP (link, 0), insn);
957 else
958 sched_analyze_2 (deps, XEXP (link, 0), insn);
960 if (find_reg_note (insn, REG_SETJMP, NULL))
961 reg_pending_barrier = true;
964 if (GET_CODE (insn) == JUMP_INSN)
966 rtx next;
967 next = next_nonnote_insn (insn);
968 if (next && GET_CODE (next) == BARRIER)
969 reg_pending_barrier = true;
970 else
972 rtx pending, pending_mem;
973 regset_head tmp;
974 INIT_REG_SET (&tmp);
976 (*current_sched_info->compute_jump_reg_dependencies) (insn, &tmp);
977 IOR_REG_SET (reg_pending_uses, &tmp);
978 CLEAR_REG_SET (&tmp);
980 /* All memory writes and volatile reads must happen before the
981 jump. Non-volatile reads must happen before the jump iff
982 the result is needed by the above register used mask. */
984 pending = deps->pending_write_insns;
985 pending_mem = deps->pending_write_mems;
986 while (pending)
988 add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
989 pending = XEXP (pending, 1);
990 pending_mem = XEXP (pending_mem, 1);
993 pending = deps->pending_read_insns;
994 pending_mem = deps->pending_read_mems;
995 while (pending)
997 if (MEM_VOLATILE_P (XEXP (pending_mem, 0)))
998 add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
999 pending = XEXP (pending, 1);
1000 pending_mem = XEXP (pending_mem, 1);
1003 add_dependence_list (insn, deps->last_pending_memory_flush,
1004 REG_DEP_ANTI);
1008 /* If there is a {LOOP,EHREGION}_{BEG,END} note in the middle of a basic
1009 block, then we must be sure that no instructions are scheduled across it.
1010 Otherwise, the reg_n_refs info (which depends on loop_depth) would
1011 become incorrect. */
1012 if (loop_notes)
1014 rtx link;
1016 /* Update loop_notes with any notes from this insn. Also determine
1017 if any of the notes on the list correspond to instruction scheduling
1018 barriers (loop, eh & setjmp notes, but not range notes). */
1019 link = loop_notes;
1020 while (XEXP (link, 1))
1022 if (INTVAL (XEXP (link, 0)) == NOTE_INSN_LOOP_BEG
1023 || INTVAL (XEXP (link, 0)) == NOTE_INSN_LOOP_END
1024 || INTVAL (XEXP (link, 0)) == NOTE_INSN_EH_REGION_BEG
1025 || INTVAL (XEXP (link, 0)) == NOTE_INSN_EH_REGION_END)
1026 reg_pending_barrier = true;
1028 link = XEXP (link, 1);
1030 XEXP (link, 1) = REG_NOTES (insn);
1031 REG_NOTES (insn) = loop_notes;
1034 /* If this instruction can throw an exception, then moving it changes
1035 where block boundaries fall. This is mighty confusing elsewhere.
1036 Therefore, prevent such an instruction from being moved. */
1037 if (can_throw_internal (insn))
1038 reg_pending_barrier = true;
1040 /* Add dependencies if a scheduling barrier was found. */
1041 if (reg_pending_barrier)
1043 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1045 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i,
1047 struct deps_reg *reg_last = &deps->reg_last[i];
1048 add_dependence_list (insn, reg_last->uses, REG_DEP_ANTI);
1049 add_dependence_list (insn, reg_last->sets, 0);
1050 add_dependence_list (insn, reg_last->clobbers, 0);
1053 else
1055 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i,
1057 struct deps_reg *reg_last = &deps->reg_last[i];
1058 add_dependence_list_and_free (insn, &reg_last->uses,
1059 REG_DEP_ANTI);
1060 add_dependence_list_and_free (insn, &reg_last->sets, 0);
1061 add_dependence_list_and_free (insn, &reg_last->clobbers, 0);
1062 reg_last->uses_length = 0;
1063 reg_last->clobbers_length = 0;
1067 for (i = 0; i < deps->max_reg; i++)
1069 struct deps_reg *reg_last = &deps->reg_last[i];
1070 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
1071 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
1074 flush_pending_lists (deps, insn, true, true);
1075 reg_pending_barrier = false;
1077 else
1079 /* If the current insn is conditional, we can't free any
1080 of the lists. */
1081 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1083 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i,
1085 struct deps_reg *reg_last = &deps->reg_last[i];
1086 add_dependence_list (insn, reg_last->sets, 0);
1087 add_dependence_list (insn, reg_last->clobbers, 0);
1088 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
1089 reg_last->uses_length++;
1091 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i,
1093 struct deps_reg *reg_last = &deps->reg_last[i];
1094 add_dependence_list (insn, reg_last->sets, REG_DEP_OUTPUT);
1095 add_dependence_list (insn, reg_last->uses, REG_DEP_ANTI);
1096 reg_last->clobbers = alloc_INSN_LIST (insn, reg_last->clobbers);
1097 reg_last->clobbers_length++;
1099 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i,
1101 struct deps_reg *reg_last = &deps->reg_last[i];
1102 add_dependence_list (insn, reg_last->sets, REG_DEP_OUTPUT);
1103 add_dependence_list (insn, reg_last->clobbers, REG_DEP_OUTPUT);
1104 add_dependence_list (insn, reg_last->uses, REG_DEP_ANTI);
1105 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
1108 else
1110 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i,
1112 struct deps_reg *reg_last = &deps->reg_last[i];
1113 add_dependence_list (insn, reg_last->sets, 0);
1114 add_dependence_list (insn, reg_last->clobbers, 0);
1115 reg_last->uses_length++;
1116 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
1118 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i,
1120 struct deps_reg *reg_last = &deps->reg_last[i];
1121 add_dependence_list (insn, reg_last->sets, REG_DEP_OUTPUT);
1122 add_dependence_list (insn, reg_last->uses, REG_DEP_ANTI);
1123 if (reg_last->uses_length > MAX_PENDING_LIST_LENGTH
1124 || reg_last->clobbers_length > MAX_PENDING_LIST_LENGTH)
1126 add_dependence_list_and_free (insn, &reg_last->sets,
1127 REG_DEP_OUTPUT);
1128 add_dependence_list_and_free (insn, &reg_last->uses,
1129 REG_DEP_ANTI);
1130 add_dependence_list_and_free (insn, &reg_last->clobbers,
1131 REG_DEP_OUTPUT);
1132 reg_last->clobbers_length = 0;
1133 reg_last->uses_length = 0;
1135 else
1137 add_dependence_list (insn, reg_last->sets, REG_DEP_OUTPUT);
1138 add_dependence_list (insn, reg_last->uses, REG_DEP_ANTI);
1140 reg_last->clobbers_length++;
1141 reg_last->clobbers = alloc_INSN_LIST (insn, reg_last->clobbers);
1143 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i,
1145 struct deps_reg *reg_last = &deps->reg_last[i];
1146 add_dependence_list_and_free (insn, &reg_last->sets,
1147 REG_DEP_OUTPUT);
1148 add_dependence_list_and_free (insn, &reg_last->clobbers,
1149 REG_DEP_OUTPUT);
1150 add_dependence_list_and_free (insn, &reg_last->uses,
1151 REG_DEP_ANTI);
1152 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
1153 reg_last->uses_length = 0;
1154 reg_last->clobbers_length = 0;
1158 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_uses);
1159 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_clobbers);
1160 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_sets);
1162 CLEAR_REG_SET (reg_pending_uses);
1163 CLEAR_REG_SET (reg_pending_clobbers);
1164 CLEAR_REG_SET (reg_pending_sets);
1166 /* If we are currently in a libcall scheduling group, then mark the
1167 current insn as being in a scheduling group and that it can not
1168 be moved into a different basic block. */
1170 if (deps->libcall_block_tail_insn)
1172 set_sched_group_p (insn);
1173 CANT_MOVE (insn) = 1;
1176 /* If a post-call group is still open, see if it should remain so.
1177 This insn must be a simple move of a hard reg to a pseudo or
1178 vice-versa.
1180 We must avoid moving these insns for correctness on
1181 SMALL_REGISTER_CLASS machines, and for special registers like
1182 PIC_OFFSET_TABLE_REGNUM. For simplicity, extend this to all
1183 hard regs for all targets. */
1185 if (deps->in_post_call_group_p)
1187 rtx tmp, set = single_set (insn);
1188 int src_regno, dest_regno;
1190 if (set == NULL)
1191 goto end_call_group;
1193 tmp = SET_DEST (set);
1194 if (GET_CODE (tmp) == SUBREG)
1195 tmp = SUBREG_REG (tmp);
1196 if (GET_CODE (tmp) == REG)
1197 dest_regno = REGNO (tmp);
1198 else
1199 goto end_call_group;
1201 tmp = SET_SRC (set);
1202 if (GET_CODE (tmp) == SUBREG)
1203 tmp = SUBREG_REG (tmp);
1204 if (GET_CODE (tmp) == REG)
1205 src_regno = REGNO (tmp);
1206 else
1207 goto end_call_group;
1209 if (src_regno < FIRST_PSEUDO_REGISTER
1210 || dest_regno < FIRST_PSEUDO_REGISTER)
1212 set_sched_group_p (insn);
1213 CANT_MOVE (insn) = 1;
1215 else
1217 end_call_group:
1218 deps->in_post_call_group_p = false;
1223 /* Analyze every insn between HEAD and TAIL inclusive, creating LOG_LINKS
1224 for every dependency. */
1226 void
1227 sched_analyze (deps, head, tail)
1228 struct deps *deps;
1229 rtx head, tail;
1231 rtx insn;
1232 rtx loop_notes = 0;
1234 if (current_sched_info->use_cselib)
1235 cselib_init ();
1237 for (insn = head;; insn = NEXT_INSN (insn))
1239 rtx link, end_seq, r0, set;
1241 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1243 /* Clear out the stale LOG_LINKS from flow. */
1244 free_INSN_LIST_list (&LOG_LINKS (insn));
1246 /* Make each JUMP_INSN a scheduling barrier for memory
1247 references. */
1248 if (GET_CODE (insn) == JUMP_INSN)
1250 /* Keep the list a reasonable size. */
1251 if (deps->pending_flush_length++ > MAX_PENDING_LIST_LENGTH)
1252 flush_pending_lists (deps, insn, true, true);
1253 else
1254 deps->last_pending_memory_flush
1255 = alloc_INSN_LIST (insn, deps->last_pending_memory_flush);
1257 sched_analyze_insn (deps, PATTERN (insn), insn, loop_notes);
1258 loop_notes = 0;
1260 else if (GET_CODE (insn) == CALL_INSN)
1262 int i;
1264 CANT_MOVE (insn) = 1;
1266 /* Clear out the stale LOG_LINKS from flow. */
1267 free_INSN_LIST_list (&LOG_LINKS (insn));
1269 if (find_reg_note (insn, REG_SETJMP, NULL))
1271 /* This is setjmp. Assume that all registers, not just
1272 hard registers, may be clobbered by this call. */
1273 reg_pending_barrier = true;
1275 else
1277 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1278 /* A call may read and modify global register variables. */
1279 if (global_regs[i])
1281 SET_REGNO_REG_SET (reg_pending_sets, i);
1282 SET_REGNO_REG_SET (reg_pending_uses, i);
1284 /* Other call-clobbered hard regs may be clobbered. */
1285 else if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1286 SET_REGNO_REG_SET (reg_pending_clobbers, i);
1287 /* We don't know what set of fixed registers might be used
1288 by the function, but it is certain that the stack pointer
1289 is among them, but be conservative. */
1290 else if (fixed_regs[i])
1291 SET_REGNO_REG_SET (reg_pending_uses, i);
1292 /* The frame pointer is normally not used by the function
1293 itself, but by the debugger. */
1294 /* ??? MIPS o32 is an exception. It uses the frame pointer
1295 in the macro expansion of jal but does not represent this
1296 fact in the call_insn rtl. */
1297 else if (i == FRAME_POINTER_REGNUM
1298 || (i == HARD_FRAME_POINTER_REGNUM
1299 && (! reload_completed || frame_pointer_needed)))
1300 SET_REGNO_REG_SET (reg_pending_uses, i);
1303 /* For each insn which shouldn't cross a call, add a dependence
1304 between that insn and this call insn. */
1305 add_dependence_list_and_free (insn, &deps->sched_before_next_call,
1306 REG_DEP_ANTI);
1308 sched_analyze_insn (deps, PATTERN (insn), insn, loop_notes);
1309 loop_notes = 0;
1311 /* In the absence of interprocedural alias analysis, we must flush
1312 all pending reads and writes, and start new dependencies starting
1313 from here. But only flush writes for constant calls (which may
1314 be passed a pointer to something we haven't written yet). */
1315 flush_pending_lists (deps, insn, true, !CONST_OR_PURE_CALL_P (insn));
1317 /* Remember the last function call for limiting lifetimes. */
1318 free_INSN_LIST_list (&deps->last_function_call);
1319 deps->last_function_call = alloc_INSN_LIST (insn, NULL_RTX);
1321 /* Before reload, begin a post-call group, so as to keep the
1322 lifetimes of hard registers correct. */
1323 if (! reload_completed)
1324 deps->in_post_call_group_p = true;
1327 /* See comments on reemit_notes as to why we do this.
1328 ??? Actually, the reemit_notes just say what is done, not why. */
1330 if (GET_CODE (insn) == NOTE
1331 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
1332 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END
1333 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
1334 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
1336 rtx rtx_region;
1338 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG
1339 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END)
1340 rtx_region = GEN_INT (NOTE_EH_HANDLER (insn));
1341 else
1342 rtx_region = GEN_INT (0);
1344 loop_notes = alloc_EXPR_LIST (REG_SAVE_NOTE,
1345 rtx_region,
1346 loop_notes);
1347 loop_notes = alloc_EXPR_LIST (REG_SAVE_NOTE,
1348 GEN_INT (NOTE_LINE_NUMBER (insn)),
1349 loop_notes);
1350 CONST_OR_PURE_CALL_P (loop_notes) = CONST_OR_PURE_CALL_P (insn);
1353 if (current_sched_info->use_cselib)
1354 cselib_process_insn (insn);
1356 /* Now that we have completed handling INSN, check and see if it is
1357 a CLOBBER beginning a libcall block. If it is, record the
1358 end of the libcall sequence.
1360 We want to schedule libcall blocks as a unit before reload. While
1361 this restricts scheduling, it preserves the meaning of a libcall
1362 block.
1364 As a side effect, we may get better code due to decreased register
1365 pressure as well as less chance of a foreign insn appearing in
1366 a libcall block. */
1367 if (!reload_completed
1368 /* Note we may have nested libcall sequences. We only care about
1369 the outermost libcall sequence. */
1370 && deps->libcall_block_tail_insn == 0
1371 /* The sequence must start with a clobber of a register. */
1372 && GET_CODE (insn) == INSN
1373 && GET_CODE (PATTERN (insn)) == CLOBBER
1374 && (r0 = XEXP (PATTERN (insn), 0), GET_CODE (r0) == REG)
1375 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG
1376 /* The CLOBBER must also have a REG_LIBCALL note attached. */
1377 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
1378 && (end_seq = XEXP (link, 0)) != 0
1379 /* The insn referenced by the REG_LIBCALL note must be a
1380 simple nop copy with the same destination as the register
1381 mentioned in the clobber. */
1382 && (set = single_set (end_seq)) != 0
1383 && SET_DEST (set) == r0 && SET_SRC (set) == r0
1384 /* And finally the insn referenced by the REG_LIBCALL must
1385 also contain a REG_EQUAL note and a REG_RETVAL note. */
1386 && find_reg_note (end_seq, REG_EQUAL, NULL_RTX) != 0
1387 && find_reg_note (end_seq, REG_RETVAL, NULL_RTX) != 0)
1388 deps->libcall_block_tail_insn = XEXP (link, 0);
1390 /* If we have reached the end of a libcall block, then close the
1391 block. */
1392 if (deps->libcall_block_tail_insn == insn)
1393 deps->libcall_block_tail_insn = 0;
1395 if (insn == tail)
1397 if (current_sched_info->use_cselib)
1398 cselib_finish ();
1399 return;
1402 abort ();
1405 /* Examine insns in the range [ HEAD, TAIL ] and Use the backward
1406 dependences from LOG_LINKS to build forward dependences in
1407 INSN_DEPEND. */
1409 void
1410 compute_forward_dependences (head, tail)
1411 rtx head, tail;
1413 rtx insn, link;
1414 rtx next_tail;
1415 enum reg_note dep_type;
1417 next_tail = NEXT_INSN (tail);
1418 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1420 if (! INSN_P (insn))
1421 continue;
1423 insn = group_leader (insn);
1425 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
1427 rtx x = group_leader (XEXP (link, 0));
1428 rtx new_link;
1430 if (x != XEXP (link, 0))
1431 continue;
1433 #ifdef ENABLE_CHECKING
1434 /* If add_dependence is working properly there should never
1435 be notes, deleted insns or duplicates in the backward
1436 links. Thus we need not check for them here.
1438 However, if we have enabled checking we might as well go
1439 ahead and verify that add_dependence worked properly. */
1440 if (GET_CODE (x) == NOTE
1441 || INSN_DELETED_P (x)
1442 || (forward_dependency_cache != NULL
1443 && TEST_BIT (forward_dependency_cache[INSN_LUID (x)],
1444 INSN_LUID (insn)))
1445 || (forward_dependency_cache == NULL
1446 && find_insn_list (insn, INSN_DEPEND (x))))
1447 abort ();
1448 if (forward_dependency_cache != NULL)
1449 SET_BIT (forward_dependency_cache[INSN_LUID (x)],
1450 INSN_LUID (insn));
1451 #endif
1453 new_link = alloc_INSN_LIST (insn, INSN_DEPEND (x));
1455 dep_type = REG_NOTE_KIND (link);
1456 PUT_REG_NOTE_KIND (new_link, dep_type);
1458 INSN_DEPEND (x) = new_link;
1459 INSN_DEP_COUNT (insn) += 1;
1464 /* Initialize variables for region data dependence analysis.
1465 n_bbs is the number of region blocks. */
1467 void
1468 init_deps (deps)
1469 struct deps *deps;
1471 int max_reg = (reload_completed ? FIRST_PSEUDO_REGISTER : max_reg_num ());
1473 deps->max_reg = max_reg;
1474 deps->reg_last = (struct deps_reg *)
1475 xcalloc (max_reg, sizeof (struct deps_reg));
1476 INIT_REG_SET (&deps->reg_last_in_use);
1478 deps->pending_read_insns = 0;
1479 deps->pending_read_mems = 0;
1480 deps->pending_write_insns = 0;
1481 deps->pending_write_mems = 0;
1482 deps->pending_lists_length = 0;
1483 deps->pending_flush_length = 0;
1484 deps->last_pending_memory_flush = 0;
1485 deps->last_function_call = 0;
1486 deps->sched_before_next_call = 0;
1487 deps->in_post_call_group_p = false;
1488 deps->libcall_block_tail_insn = 0;
1491 /* Free insn lists found in DEPS. */
1493 void
1494 free_deps (deps)
1495 struct deps *deps;
1497 int i;
1499 free_INSN_LIST_list (&deps->pending_read_insns);
1500 free_EXPR_LIST_list (&deps->pending_read_mems);
1501 free_INSN_LIST_list (&deps->pending_write_insns);
1502 free_EXPR_LIST_list (&deps->pending_write_mems);
1503 free_INSN_LIST_list (&deps->last_pending_memory_flush);
1505 /* Without the EXECUTE_IF_SET, this loop is executed max_reg * nr_regions
1506 times. For a test case with 42000 regs and 8000 small basic blocks,
1507 this loop accounted for nearly 60% (84 sec) of the total -O2 runtime. */
1508 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i,
1510 struct deps_reg *reg_last = &deps->reg_last[i];
1511 if (reg_last->uses)
1512 free_INSN_LIST_list (&reg_last->uses);
1513 if (reg_last->sets)
1514 free_INSN_LIST_list (&reg_last->sets);
1515 if (reg_last->clobbers)
1516 free_INSN_LIST_list (&reg_last->clobbers);
1518 CLEAR_REG_SET (&deps->reg_last_in_use);
1520 free (deps->reg_last);
1523 /* If it is profitable to use them, initialize caches for tracking
1524 dependency informatino. LUID is the number of insns to be scheduled,
1525 it is used in the estimate of profitability. */
1527 void
1528 init_dependency_caches (luid)
1529 int luid;
1531 /* ?!? We could save some memory by computing a per-region luid mapping
1532 which could reduce both the number of vectors in the cache and the size
1533 of each vector. Instead we just avoid the cache entirely unless the
1534 average number of instructions in a basic block is very high. See
1535 the comment before the declaration of true_dependency_cache for
1536 what we consider "very high". */
1537 if (luid / n_basic_blocks > 100 * 5)
1539 true_dependency_cache = sbitmap_vector_alloc (luid, luid);
1540 sbitmap_vector_zero (true_dependency_cache, luid);
1541 anti_dependency_cache = sbitmap_vector_alloc (luid, luid);
1542 sbitmap_vector_zero (anti_dependency_cache, luid);
1543 output_dependency_cache = sbitmap_vector_alloc (luid, luid);
1544 sbitmap_vector_zero (output_dependency_cache, luid);
1545 #ifdef ENABLE_CHECKING
1546 forward_dependency_cache = sbitmap_vector_alloc (luid, luid);
1547 sbitmap_vector_zero (forward_dependency_cache, luid);
1548 #endif
1552 /* Free the caches allocated in init_dependency_caches. */
1554 void
1555 free_dependency_caches ()
1557 if (true_dependency_cache)
1559 sbitmap_vector_free (true_dependency_cache);
1560 true_dependency_cache = NULL;
1561 sbitmap_vector_free (anti_dependency_cache);
1562 anti_dependency_cache = NULL;
1563 sbitmap_vector_free (output_dependency_cache);
1564 output_dependency_cache = NULL;
1565 #ifdef ENABLE_CHECKING
1566 sbitmap_vector_free (forward_dependency_cache);
1567 forward_dependency_cache = NULL;
1568 #endif
1572 /* Initialize some global variables needed by the dependency analysis
1573 code. */
1575 void
1576 init_deps_global ()
1578 reg_pending_sets = INITIALIZE_REG_SET (reg_pending_sets_head);
1579 reg_pending_clobbers = INITIALIZE_REG_SET (reg_pending_clobbers_head);
1580 reg_pending_uses = INITIALIZE_REG_SET (reg_pending_uses_head);
1581 reg_pending_barrier = false;
1584 /* Free everything used by the dependency analysis code. */
1586 void
1587 finish_deps_global ()
1589 FREE_REG_SET (reg_pending_sets);
1590 FREE_REG_SET (reg_pending_clobbers);
1591 FREE_REG_SET (reg_pending_uses);