2002-06-13 Akim Demaille <akim@epita.fr>
[official-gcc.git] / gcc / reload.c
blob6a18245f941e54e559afdbda442cbb6adc8e28c9
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
31 To scan an insn, call `find_reloads'. This does two things:
32 1. sets up tables describing which values must be reloaded
33 for this insn, and what kind of hard regs they must be reloaded into;
34 2. optionally record the locations where those values appear in
35 the data, so they can be replaced properly later.
36 This is done only if the second arg to `find_reloads' is nonzero.
38 The third arg to `find_reloads' specifies the number of levels
39 of indirect addressing supported by the machine. If it is zero,
40 indirect addressing is not valid. If it is one, (MEM (REG n))
41 is valid even if (REG n) did not get a hard register; if it is two,
42 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
43 hard register, and similarly for higher values.
45 Then you must choose the hard regs to reload those pseudo regs into,
46 and generate appropriate load insns before this insn and perhaps
47 also store insns after this insn. Set up the array `reload_reg_rtx'
48 to contain the REG rtx's for the registers you used. In some
49 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
50 for certain reloads. Then that tells you which register to use,
51 so you do not need to allocate one. But you still do need to add extra
52 instructions to copy the value into and out of that register.
54 Finally you must call `subst_reloads' to substitute the reload reg rtx's
55 into the locations already recorded.
57 NOTE SIDE EFFECTS:
59 find_reloads can alter the operands of the instruction it is called on.
61 1. Two operands of any sort may be interchanged, if they are in a
62 commutative instruction.
63 This happens only if find_reloads thinks the instruction will compile
64 better that way.
66 2. Pseudo-registers that are equivalent to constants are replaced
67 with those constants if they are not in hard registers.
69 1 happens every time find_reloads is called.
70 2 happens only when REPLACE is 1, which is only when
71 actually doing the reloads, not when just counting them.
73 Using a reload register for several reloads in one insn:
75 When an insn has reloads, it is considered as having three parts:
76 the input reloads, the insn itself after reloading, and the output reloads.
77 Reloads of values used in memory addresses are often needed for only one part.
79 When this is so, reload_when_needed records which part needs the reload.
80 Two reloads for different parts of the insn can share the same reload
81 register.
83 When a reload is used for addresses in multiple parts, or when it is
84 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
85 a register with any other reload. */
87 #define REG_OK_STRICT
89 #include "config.h"
90 #include "system.h"
91 #include "rtl.h"
92 #include "tm_p.h"
93 #include "insn-config.h"
94 #include "expr.h"
95 #include "optabs.h"
96 #include "recog.h"
97 #include "reload.h"
98 #include "regs.h"
99 #include "hard-reg-set.h"
100 #include "flags.h"
101 #include "real.h"
102 #include "output.h"
103 #include "function.h"
104 #include "toplev.h"
106 #ifndef REGISTER_MOVE_COST
107 #define REGISTER_MOVE_COST(m, x, y) 2
108 #endif
110 #ifndef REGNO_MODE_OK_FOR_BASE_P
111 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
112 #endif
114 #ifndef REG_MODE_OK_FOR_BASE_P
115 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
116 #endif
118 /* All reloads of the current insn are recorded here. See reload.h for
119 comments. */
120 int n_reloads;
121 struct reload rld[MAX_RELOADS];
123 /* All the "earlyclobber" operands of the current insn
124 are recorded here. */
125 int n_earlyclobbers;
126 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
128 int reload_n_operands;
130 /* Replacing reloads.
132 If `replace_reloads' is nonzero, then as each reload is recorded
133 an entry is made for it in the table `replacements'.
134 Then later `subst_reloads' can look through that table and
135 perform all the replacements needed. */
137 /* Nonzero means record the places to replace. */
138 static int replace_reloads;
140 /* Each replacement is recorded with a structure like this. */
141 struct replacement
143 rtx *where; /* Location to store in */
144 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
145 a SUBREG; 0 otherwise. */
146 int what; /* which reload this is for */
147 enum machine_mode mode; /* mode it must have */
150 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
152 /* Number of replacements currently recorded. */
153 static int n_replacements;
155 /* Used to track what is modified by an operand. */
156 struct decomposition
158 int reg_flag; /* Nonzero if referencing a register. */
159 int safe; /* Nonzero if this can't conflict with anything. */
160 rtx base; /* Base address for MEM. */
161 HOST_WIDE_INT start; /* Starting offset or register number. */
162 HOST_WIDE_INT end; /* Ending offset or register number. */
165 #ifdef SECONDARY_MEMORY_NEEDED
167 /* Save MEMs needed to copy from one class of registers to another. One MEM
168 is used per mode, but normally only one or two modes are ever used.
170 We keep two versions, before and after register elimination. The one
171 after register elimination is record separately for each operand. This
172 is done in case the address is not valid to be sure that we separately
173 reload each. */
175 static rtx secondary_memlocs[NUM_MACHINE_MODES];
176 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
177 #endif
179 /* The instruction we are doing reloads for;
180 so we can test whether a register dies in it. */
181 static rtx this_insn;
183 /* Nonzero if this instruction is a user-specified asm with operands. */
184 static int this_insn_is_asm;
186 /* If hard_regs_live_known is nonzero,
187 we can tell which hard regs are currently live,
188 at least enough to succeed in choosing dummy reloads. */
189 static int hard_regs_live_known;
191 /* Indexed by hard reg number,
192 element is nonnegative if hard reg has been spilled.
193 This vector is passed to `find_reloads' as an argument
194 and is not changed here. */
195 static short *static_reload_reg_p;
197 /* Set to 1 in subst_reg_equivs if it changes anything. */
198 static int subst_reg_equivs_changed;
200 /* On return from push_reload, holds the reload-number for the OUT
201 operand, which can be different for that from the input operand. */
202 static int output_reloadnum;
204 /* Compare two RTX's. */
205 #define MATCHES(x, y) \
206 (x == y || (x != 0 && (GET_CODE (x) == REG \
207 ? GET_CODE (y) == REG && REGNO (x) == REGNO (y) \
208 : rtx_equal_p (x, y) && ! side_effects_p (x))))
210 /* Indicates if two reloads purposes are for similar enough things that we
211 can merge their reloads. */
212 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
213 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
214 || ((when1) == (when2) && (op1) == (op2)) \
215 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
216 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
217 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
218 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
219 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
221 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
222 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
223 ((when1) != (when2) \
224 || ! ((op1) == (op2) \
225 || (when1) == RELOAD_FOR_INPUT \
226 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
227 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
229 /* If we are going to reload an address, compute the reload type to
230 use. */
231 #define ADDR_TYPE(type) \
232 ((type) == RELOAD_FOR_INPUT_ADDRESS \
233 ? RELOAD_FOR_INPADDR_ADDRESS \
234 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
235 ? RELOAD_FOR_OUTADDR_ADDRESS \
236 : (type)))
238 #ifdef HAVE_SECONDARY_RELOADS
239 static int push_secondary_reload PARAMS ((int, rtx, int, int, enum reg_class,
240 enum machine_mode, enum reload_type,
241 enum insn_code *));
242 #endif
243 static enum reg_class find_valid_class PARAMS ((enum machine_mode, int,
244 unsigned int));
245 static int reload_inner_reg_of_subreg PARAMS ((rtx, enum machine_mode));
246 static void push_replacement PARAMS ((rtx *, int, enum machine_mode));
247 static void combine_reloads PARAMS ((void));
248 static int find_reusable_reload PARAMS ((rtx *, rtx, enum reg_class,
249 enum reload_type, int, int));
250 static rtx find_dummy_reload PARAMS ((rtx, rtx, rtx *, rtx *,
251 enum machine_mode, enum machine_mode,
252 enum reg_class, int, int));
253 static int hard_reg_set_here_p PARAMS ((unsigned int, unsigned int, rtx));
254 static struct decomposition decompose PARAMS ((rtx));
255 static int immune_p PARAMS ((rtx, rtx, struct decomposition));
256 static int alternative_allows_memconst PARAMS ((const char *, int));
257 static rtx find_reloads_toplev PARAMS ((rtx, int, enum reload_type, int,
258 int, rtx, int *));
259 static rtx make_memloc PARAMS ((rtx, int));
260 static int find_reloads_address PARAMS ((enum machine_mode, rtx *, rtx, rtx *,
261 int, enum reload_type, int, rtx));
262 static rtx subst_reg_equivs PARAMS ((rtx, rtx));
263 static rtx subst_indexed_address PARAMS ((rtx));
264 static void update_auto_inc_notes PARAMS ((rtx, int, int));
265 static int find_reloads_address_1 PARAMS ((enum machine_mode, rtx, int, rtx *,
266 int, enum reload_type,int, rtx));
267 static void find_reloads_address_part PARAMS ((rtx, rtx *, enum reg_class,
268 enum machine_mode, int,
269 enum reload_type, int));
270 static rtx find_reloads_subreg_address PARAMS ((rtx, int, int,
271 enum reload_type, int, rtx));
272 static void copy_replacements_1 PARAMS ((rtx *, rtx *, int));
273 static int find_inc_amount PARAMS ((rtx, rtx));
275 #ifdef HAVE_SECONDARY_RELOADS
277 /* Determine if any secondary reloads are needed for loading (if IN_P is
278 non-zero) or storing (if IN_P is zero) X to or from a reload register of
279 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
280 are needed, push them.
282 Return the reload number of the secondary reload we made, or -1 if
283 we didn't need one. *PICODE is set to the insn_code to use if we do
284 need a secondary reload. */
286 static int
287 push_secondary_reload (in_p, x, opnum, optional, reload_class, reload_mode,
288 type, picode)
289 int in_p;
290 rtx x;
291 int opnum;
292 int optional;
293 enum reg_class reload_class;
294 enum machine_mode reload_mode;
295 enum reload_type type;
296 enum insn_code *picode;
298 enum reg_class class = NO_REGS;
299 enum machine_mode mode = reload_mode;
300 enum insn_code icode = CODE_FOR_nothing;
301 enum reg_class t_class = NO_REGS;
302 enum machine_mode t_mode = VOIDmode;
303 enum insn_code t_icode = CODE_FOR_nothing;
304 enum reload_type secondary_type;
305 int s_reload, t_reload = -1;
307 if (type == RELOAD_FOR_INPUT_ADDRESS
308 || type == RELOAD_FOR_OUTPUT_ADDRESS
309 || type == RELOAD_FOR_INPADDR_ADDRESS
310 || type == RELOAD_FOR_OUTADDR_ADDRESS)
311 secondary_type = type;
312 else
313 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
315 *picode = CODE_FOR_nothing;
317 /* If X is a paradoxical SUBREG, use the inner value to determine both the
318 mode and object being reloaded. */
319 if (GET_CODE (x) == SUBREG
320 && (GET_MODE_SIZE (GET_MODE (x))
321 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
323 x = SUBREG_REG (x);
324 reload_mode = GET_MODE (x);
327 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
328 is still a pseudo-register by now, it *must* have an equivalent MEM
329 but we don't want to assume that), use that equivalent when seeing if
330 a secondary reload is needed since whether or not a reload is needed
331 might be sensitive to the form of the MEM. */
333 if (GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER
334 && reg_equiv_mem[REGNO (x)] != 0)
335 x = reg_equiv_mem[REGNO (x)];
337 #ifdef SECONDARY_INPUT_RELOAD_CLASS
338 if (in_p)
339 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
340 #endif
342 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
343 if (! in_p)
344 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
345 #endif
347 /* If we don't need any secondary registers, done. */
348 if (class == NO_REGS)
349 return -1;
351 /* Get a possible insn to use. If the predicate doesn't accept X, don't
352 use the insn. */
354 icode = (in_p ? reload_in_optab[(int) reload_mode]
355 : reload_out_optab[(int) reload_mode]);
357 if (icode != CODE_FOR_nothing
358 && insn_data[(int) icode].operand[in_p].predicate
359 && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
360 icode = CODE_FOR_nothing;
362 /* If we will be using an insn, see if it can directly handle the reload
363 register we will be using. If it can, the secondary reload is for a
364 scratch register. If it can't, we will use the secondary reload for
365 an intermediate register and require a tertiary reload for the scratch
366 register. */
368 if (icode != CODE_FOR_nothing)
370 /* If IN_P is non-zero, the reload register will be the output in
371 operand 0. If IN_P is zero, the reload register will be the input
372 in operand 1. Outputs should have an initial "=", which we must
373 skip. */
375 enum reg_class insn_class;
377 if (insn_data[(int) icode].operand[!in_p].constraint[0] == 0)
378 insn_class = ALL_REGS;
379 else
381 char insn_letter
382 = insn_data[(int) icode].operand[!in_p].constraint[in_p];
383 insn_class
384 = (insn_letter == 'r' ? GENERAL_REGS
385 : REG_CLASS_FROM_LETTER ((unsigned char) insn_letter));
387 if (insn_class == NO_REGS)
388 abort ();
389 if (in_p
390 && insn_data[(int) icode].operand[!in_p].constraint[0] != '=')
391 abort ();
394 /* The scratch register's constraint must start with "=&". */
395 if (insn_data[(int) icode].operand[2].constraint[0] != '='
396 || insn_data[(int) icode].operand[2].constraint[1] != '&')
397 abort ();
399 if (reg_class_subset_p (reload_class, insn_class))
400 mode = insn_data[(int) icode].operand[2].mode;
401 else
403 char t_letter = insn_data[(int) icode].operand[2].constraint[2];
404 class = insn_class;
405 t_mode = insn_data[(int) icode].operand[2].mode;
406 t_class = (t_letter == 'r' ? GENERAL_REGS
407 : REG_CLASS_FROM_LETTER ((unsigned char) t_letter));
408 t_icode = icode;
409 icode = CODE_FOR_nothing;
413 /* This case isn't valid, so fail. Reload is allowed to use the same
414 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
415 in the case of a secondary register, we actually need two different
416 registers for correct code. We fail here to prevent the possibility of
417 silently generating incorrect code later.
419 The convention is that secondary input reloads are valid only if the
420 secondary_class is different from class. If you have such a case, you
421 can not use secondary reloads, you must work around the problem some
422 other way.
424 Allow this when a reload_in/out pattern is being used. I.e. assume
425 that the generated code handles this case. */
427 if (in_p && class == reload_class && icode == CODE_FOR_nothing
428 && t_icode == CODE_FOR_nothing)
429 abort ();
431 /* If we need a tertiary reload, see if we have one we can reuse or else
432 make a new one. */
434 if (t_class != NO_REGS)
436 for (t_reload = 0; t_reload < n_reloads; t_reload++)
437 if (rld[t_reload].secondary_p
438 && (reg_class_subset_p (t_class, rld[t_reload].class)
439 || reg_class_subset_p (rld[t_reload].class, t_class))
440 && ((in_p && rld[t_reload].inmode == t_mode)
441 || (! in_p && rld[t_reload].outmode == t_mode))
442 && ((in_p && (rld[t_reload].secondary_in_icode
443 == CODE_FOR_nothing))
444 || (! in_p &&(rld[t_reload].secondary_out_icode
445 == CODE_FOR_nothing)))
446 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
447 && MERGABLE_RELOADS (secondary_type,
448 rld[t_reload].when_needed,
449 opnum, rld[t_reload].opnum))
451 if (in_p)
452 rld[t_reload].inmode = t_mode;
453 if (! in_p)
454 rld[t_reload].outmode = t_mode;
456 if (reg_class_subset_p (t_class, rld[t_reload].class))
457 rld[t_reload].class = t_class;
459 rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
460 rld[t_reload].optional &= optional;
461 rld[t_reload].secondary_p = 1;
462 if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
463 opnum, rld[t_reload].opnum))
464 rld[t_reload].when_needed = RELOAD_OTHER;
467 if (t_reload == n_reloads)
469 /* We need to make a new tertiary reload for this register class. */
470 rld[t_reload].in = rld[t_reload].out = 0;
471 rld[t_reload].class = t_class;
472 rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
473 rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
474 rld[t_reload].reg_rtx = 0;
475 rld[t_reload].optional = optional;
476 rld[t_reload].inc = 0;
477 /* Maybe we could combine these, but it seems too tricky. */
478 rld[t_reload].nocombine = 1;
479 rld[t_reload].in_reg = 0;
480 rld[t_reload].out_reg = 0;
481 rld[t_reload].opnum = opnum;
482 rld[t_reload].when_needed = secondary_type;
483 rld[t_reload].secondary_in_reload = -1;
484 rld[t_reload].secondary_out_reload = -1;
485 rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
486 rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
487 rld[t_reload].secondary_p = 1;
489 n_reloads++;
493 /* See if we can reuse an existing secondary reload. */
494 for (s_reload = 0; s_reload < n_reloads; s_reload++)
495 if (rld[s_reload].secondary_p
496 && (reg_class_subset_p (class, rld[s_reload].class)
497 || reg_class_subset_p (rld[s_reload].class, class))
498 && ((in_p && rld[s_reload].inmode == mode)
499 || (! in_p && rld[s_reload].outmode == mode))
500 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
501 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
502 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
503 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
504 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
505 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
506 opnum, rld[s_reload].opnum))
508 if (in_p)
509 rld[s_reload].inmode = mode;
510 if (! in_p)
511 rld[s_reload].outmode = mode;
513 if (reg_class_subset_p (class, rld[s_reload].class))
514 rld[s_reload].class = class;
516 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
517 rld[s_reload].optional &= optional;
518 rld[s_reload].secondary_p = 1;
519 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
520 opnum, rld[s_reload].opnum))
521 rld[s_reload].when_needed = RELOAD_OTHER;
524 if (s_reload == n_reloads)
526 #ifdef SECONDARY_MEMORY_NEEDED
527 /* If we need a memory location to copy between the two reload regs,
528 set it up now. Note that we do the input case before making
529 the reload and the output case after. This is due to the
530 way reloads are output. */
532 if (in_p && icode == CODE_FOR_nothing
533 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
535 get_secondary_mem (x, reload_mode, opnum, type);
537 /* We may have just added new reloads. Make sure we add
538 the new reload at the end. */
539 s_reload = n_reloads;
541 #endif
543 /* We need to make a new secondary reload for this register class. */
544 rld[s_reload].in = rld[s_reload].out = 0;
545 rld[s_reload].class = class;
547 rld[s_reload].inmode = in_p ? mode : VOIDmode;
548 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
549 rld[s_reload].reg_rtx = 0;
550 rld[s_reload].optional = optional;
551 rld[s_reload].inc = 0;
552 /* Maybe we could combine these, but it seems too tricky. */
553 rld[s_reload].nocombine = 1;
554 rld[s_reload].in_reg = 0;
555 rld[s_reload].out_reg = 0;
556 rld[s_reload].opnum = opnum;
557 rld[s_reload].when_needed = secondary_type;
558 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
559 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
560 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
561 rld[s_reload].secondary_out_icode
562 = ! in_p ? t_icode : CODE_FOR_nothing;
563 rld[s_reload].secondary_p = 1;
565 n_reloads++;
567 #ifdef SECONDARY_MEMORY_NEEDED
568 if (! in_p && icode == CODE_FOR_nothing
569 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
570 get_secondary_mem (x, mode, opnum, type);
571 #endif
574 *picode = icode;
575 return s_reload;
577 #endif /* HAVE_SECONDARY_RELOADS */
579 #ifdef SECONDARY_MEMORY_NEEDED
581 /* Return a memory location that will be used to copy X in mode MODE.
582 If we haven't already made a location for this mode in this insn,
583 call find_reloads_address on the location being returned. */
586 get_secondary_mem (x, mode, opnum, type)
587 rtx x ATTRIBUTE_UNUSED;
588 enum machine_mode mode;
589 int opnum;
590 enum reload_type type;
592 rtx loc;
593 int mem_valid;
595 /* By default, if MODE is narrower than a word, widen it to a word.
596 This is required because most machines that require these memory
597 locations do not support short load and stores from all registers
598 (e.g., FP registers). */
600 #ifdef SECONDARY_MEMORY_NEEDED_MODE
601 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
602 #else
603 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
604 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
605 #endif
607 /* If we already have made a MEM for this operand in MODE, return it. */
608 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
609 return secondary_memlocs_elim[(int) mode][opnum];
611 /* If this is the first time we've tried to get a MEM for this mode,
612 allocate a new one. `something_changed' in reload will get set
613 by noticing that the frame size has changed. */
615 if (secondary_memlocs[(int) mode] == 0)
617 #ifdef SECONDARY_MEMORY_NEEDED_RTX
618 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
619 #else
620 secondary_memlocs[(int) mode]
621 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
622 #endif
625 /* Get a version of the address doing any eliminations needed. If that
626 didn't give us a new MEM, make a new one if it isn't valid. */
628 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
629 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
631 if (! mem_valid && loc == secondary_memlocs[(int) mode])
632 loc = copy_rtx (loc);
634 /* The only time the call below will do anything is if the stack
635 offset is too large. In that case IND_LEVELS doesn't matter, so we
636 can just pass a zero. Adjust the type to be the address of the
637 corresponding object. If the address was valid, save the eliminated
638 address. If it wasn't valid, we need to make a reload each time, so
639 don't save it. */
641 if (! mem_valid)
643 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
644 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
645 : RELOAD_OTHER);
647 find_reloads_address (mode, (rtx*) 0, XEXP (loc, 0), &XEXP (loc, 0),
648 opnum, type, 0, 0);
651 secondary_memlocs_elim[(int) mode][opnum] = loc;
652 return loc;
655 /* Clear any secondary memory locations we've made. */
657 void
658 clear_secondary_mem ()
660 memset ((char *) secondary_memlocs, 0, sizeof secondary_memlocs);
662 #endif /* SECONDARY_MEMORY_NEEDED */
664 /* Find the largest class for which every register number plus N is valid in
665 M1 (if in range) and is cheap to move into REGNO.
666 Abort if no such class exists. */
668 static enum reg_class
669 find_valid_class (m1, n, dest_regno)
670 enum machine_mode m1 ATTRIBUTE_UNUSED;
671 int n;
672 unsigned int dest_regno;
674 int best_cost = -1;
675 int class;
676 int regno;
677 enum reg_class best_class = NO_REGS;
678 enum reg_class dest_class = REGNO_REG_CLASS (dest_regno);
679 unsigned int best_size = 0;
680 int cost;
682 for (class = 1; class < N_REG_CLASSES; class++)
684 int bad = 0;
685 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
686 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
687 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
688 && ! HARD_REGNO_MODE_OK (regno + n, m1))
689 bad = 1;
691 if (bad)
692 continue;
693 cost = REGISTER_MOVE_COST (m1, class, dest_class);
695 if ((reg_class_size[class] > best_size
696 && (best_cost < 0 || best_cost >= cost))
697 || best_cost > cost)
699 best_class = class;
700 best_size = reg_class_size[class];
701 best_cost = REGISTER_MOVE_COST (m1, class, dest_class);
705 if (best_size == 0)
706 abort ();
708 return best_class;
711 /* Return the number of a previously made reload that can be combined with
712 a new one, or n_reloads if none of the existing reloads can be used.
713 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
714 push_reload, they determine the kind of the new reload that we try to
715 combine. P_IN points to the corresponding value of IN, which can be
716 modified by this function.
717 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
719 static int
720 find_reusable_reload (p_in, out, class, type, opnum, dont_share)
721 rtx *p_in, out;
722 enum reg_class class;
723 enum reload_type type;
724 int opnum, dont_share;
726 rtx in = *p_in;
727 int i;
728 /* We can't merge two reloads if the output of either one is
729 earlyclobbered. */
731 if (earlyclobber_operand_p (out))
732 return n_reloads;
734 /* We can use an existing reload if the class is right
735 and at least one of IN and OUT is a match
736 and the other is at worst neutral.
737 (A zero compared against anything is neutral.)
739 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
740 for the same thing since that can cause us to need more reload registers
741 than we otherwise would. */
743 for (i = 0; i < n_reloads; i++)
744 if ((reg_class_subset_p (class, rld[i].class)
745 || reg_class_subset_p (rld[i].class, class))
746 /* If the existing reload has a register, it must fit our class. */
747 && (rld[i].reg_rtx == 0
748 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
749 true_regnum (rld[i].reg_rtx)))
750 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
751 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
752 || (out != 0 && MATCHES (rld[i].out, out)
753 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
754 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
755 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
756 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
757 return i;
759 /* Reloading a plain reg for input can match a reload to postincrement
760 that reg, since the postincrement's value is the right value.
761 Likewise, it can match a preincrement reload, since we regard
762 the preincrementation as happening before any ref in this insn
763 to that register. */
764 for (i = 0; i < n_reloads; i++)
765 if ((reg_class_subset_p (class, rld[i].class)
766 || reg_class_subset_p (rld[i].class, class))
767 /* If the existing reload has a register, it must fit our
768 class. */
769 && (rld[i].reg_rtx == 0
770 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
771 true_regnum (rld[i].reg_rtx)))
772 && out == 0 && rld[i].out == 0 && rld[i].in != 0
773 && ((GET_CODE (in) == REG
774 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == 'a'
775 && MATCHES (XEXP (rld[i].in, 0), in))
776 || (GET_CODE (rld[i].in) == REG
777 && GET_RTX_CLASS (GET_CODE (in)) == 'a'
778 && MATCHES (XEXP (in, 0), rld[i].in)))
779 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
780 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
781 && MERGABLE_RELOADS (type, rld[i].when_needed,
782 opnum, rld[i].opnum))
784 /* Make sure reload_in ultimately has the increment,
785 not the plain register. */
786 if (GET_CODE (in) == REG)
787 *p_in = rld[i].in;
788 return i;
790 return n_reloads;
793 /* Return nonzero if X is a SUBREG which will require reloading of its
794 SUBREG_REG expression. */
796 static int
797 reload_inner_reg_of_subreg (x, mode)
798 rtx x;
799 enum machine_mode mode;
801 rtx inner;
803 /* Only SUBREGs are problematical. */
804 if (GET_CODE (x) != SUBREG)
805 return 0;
807 inner = SUBREG_REG (x);
809 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
810 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
811 return 1;
813 /* If INNER is not a hard register, then INNER will not need to
814 be reloaded. */
815 if (GET_CODE (inner) != REG
816 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
817 return 0;
819 /* If INNER is not ok for MODE, then INNER will need reloading. */
820 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
821 return 1;
823 /* If the outer part is a word or smaller, INNER larger than a
824 word and the number of regs for INNER is not the same as the
825 number of words in INNER, then INNER will need reloading. */
826 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
827 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
828 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
829 != HARD_REGNO_NREGS (REGNO (inner), GET_MODE (inner))));
832 /* Record one reload that needs to be performed.
833 IN is an rtx saying where the data are to be found before this instruction.
834 OUT says where they must be stored after the instruction.
835 (IN is zero for data not read, and OUT is zero for data not written.)
836 INLOC and OUTLOC point to the places in the instructions where
837 IN and OUT were found.
838 If IN and OUT are both non-zero, it means the same register must be used
839 to reload both IN and OUT.
841 CLASS is a register class required for the reloaded data.
842 INMODE is the machine mode that the instruction requires
843 for the reg that replaces IN and OUTMODE is likewise for OUT.
845 If IN is zero, then OUT's location and mode should be passed as
846 INLOC and INMODE.
848 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
850 OPTIONAL nonzero means this reload does not need to be performed:
851 it can be discarded if that is more convenient.
853 OPNUM and TYPE say what the purpose of this reload is.
855 The return value is the reload-number for this reload.
857 If both IN and OUT are nonzero, in some rare cases we might
858 want to make two separate reloads. (Actually we never do this now.)
859 Therefore, the reload-number for OUT is stored in
860 output_reloadnum when we return; the return value applies to IN.
861 Usually (presently always), when IN and OUT are nonzero,
862 the two reload-numbers are equal, but the caller should be careful to
863 distinguish them. */
866 push_reload (in, out, inloc, outloc, class,
867 inmode, outmode, strict_low, optional, opnum, type)
868 rtx in, out;
869 rtx *inloc, *outloc;
870 enum reg_class class;
871 enum machine_mode inmode, outmode;
872 int strict_low;
873 int optional;
874 int opnum;
875 enum reload_type type;
877 int i;
878 int dont_share = 0;
879 int dont_remove_subreg = 0;
880 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
881 int secondary_in_reload = -1, secondary_out_reload = -1;
882 enum insn_code secondary_in_icode = CODE_FOR_nothing;
883 enum insn_code secondary_out_icode = CODE_FOR_nothing;
885 /* INMODE and/or OUTMODE could be VOIDmode if no mode
886 has been specified for the operand. In that case,
887 use the operand's mode as the mode to reload. */
888 if (inmode == VOIDmode && in != 0)
889 inmode = GET_MODE (in);
890 if (outmode == VOIDmode && out != 0)
891 outmode = GET_MODE (out);
893 /* If IN is a pseudo register everywhere-equivalent to a constant, and
894 it is not in a hard register, reload straight from the constant,
895 since we want to get rid of such pseudo registers.
896 Often this is done earlier, but not always in find_reloads_address. */
897 if (in != 0 && GET_CODE (in) == REG)
899 int regno = REGNO (in);
901 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
902 && reg_equiv_constant[regno] != 0)
903 in = reg_equiv_constant[regno];
906 /* Likewise for OUT. Of course, OUT will never be equivalent to
907 an actual constant, but it might be equivalent to a memory location
908 (in the case of a parameter). */
909 if (out != 0 && GET_CODE (out) == REG)
911 int regno = REGNO (out);
913 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
914 && reg_equiv_constant[regno] != 0)
915 out = reg_equiv_constant[regno];
918 /* If we have a read-write operand with an address side-effect,
919 change either IN or OUT so the side-effect happens only once. */
920 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
921 switch (GET_CODE (XEXP (in, 0)))
923 case POST_INC: case POST_DEC: case POST_MODIFY:
924 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
925 break;
927 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
928 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
929 break;
931 default:
932 break;
935 /* If we are reloading a (SUBREG constant ...), really reload just the
936 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
937 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
938 a pseudo and hence will become a MEM) with M1 wider than M2 and the
939 register is a pseudo, also reload the inside expression.
940 For machines that extend byte loads, do this for any SUBREG of a pseudo
941 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
942 M2 is an integral mode that gets extended when loaded.
943 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
944 either M1 is not valid for R or M2 is wider than a word but we only
945 need one word to store an M2-sized quantity in R.
946 (However, if OUT is nonzero, we need to reload the reg *and*
947 the subreg, so do nothing here, and let following statement handle it.)
949 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
950 we can't handle it here because CONST_INT does not indicate a mode.
952 Similarly, we must reload the inside expression if we have a
953 STRICT_LOW_PART (presumably, in == out in the cas).
955 Also reload the inner expression if it does not require a secondary
956 reload but the SUBREG does.
958 Finally, reload the inner expression if it is a register that is in
959 the class whose registers cannot be referenced in a different size
960 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
961 cannot reload just the inside since we might end up with the wrong
962 register class. But if it is inside a STRICT_LOW_PART, we have
963 no choice, so we hope we do get the right register class there. */
965 if (in != 0 && GET_CODE (in) == SUBREG
966 && (subreg_lowpart_p (in) || strict_low)
967 #ifdef CLASS_CANNOT_CHANGE_MODE
968 && (class != CLASS_CANNOT_CHANGE_MODE
969 || ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (in)), inmode))
970 #endif
971 && (CONSTANT_P (SUBREG_REG (in))
972 || GET_CODE (SUBREG_REG (in)) == PLUS
973 || strict_low
974 || (((GET_CODE (SUBREG_REG (in)) == REG
975 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
976 || GET_CODE (SUBREG_REG (in)) == MEM)
977 && ((GET_MODE_SIZE (inmode)
978 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
979 #ifdef LOAD_EXTEND_OP
980 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
981 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
982 <= UNITS_PER_WORD)
983 && (GET_MODE_SIZE (inmode)
984 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
985 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
986 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
987 #endif
988 #ifdef WORD_REGISTER_OPERATIONS
989 || ((GET_MODE_SIZE (inmode)
990 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
991 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
992 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
993 / UNITS_PER_WORD)))
994 #endif
996 || (GET_CODE (SUBREG_REG (in)) == REG
997 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
998 /* The case where out is nonzero
999 is handled differently in the following statement. */
1000 && (out == 0 || subreg_lowpart_p (in))
1001 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1002 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1003 > UNITS_PER_WORD)
1004 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1005 / UNITS_PER_WORD)
1006 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (in)),
1007 GET_MODE (SUBREG_REG (in)))))
1008 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1009 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1010 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
1011 && (SECONDARY_INPUT_RELOAD_CLASS (class,
1012 GET_MODE (SUBREG_REG (in)),
1013 SUBREG_REG (in))
1014 == NO_REGS))
1015 #endif
1016 #ifdef CLASS_CANNOT_CHANGE_MODE
1017 || (GET_CODE (SUBREG_REG (in)) == REG
1018 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1019 && (TEST_HARD_REG_BIT
1020 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
1021 REGNO (SUBREG_REG (in))))
1022 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (in)),
1023 inmode))
1024 #endif
1027 in_subreg_loc = inloc;
1028 inloc = &SUBREG_REG (in);
1029 in = *inloc;
1030 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1031 if (GET_CODE (in) == MEM)
1032 /* This is supposed to happen only for paradoxical subregs made by
1033 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1034 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
1035 abort ();
1036 #endif
1037 inmode = GET_MODE (in);
1040 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1041 either M1 is not valid for R or M2 is wider than a word but we only
1042 need one word to store an M2-sized quantity in R.
1044 However, we must reload the inner reg *as well as* the subreg in
1045 that case. */
1047 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1048 code above. This can happen if SUBREG_BYTE != 0. */
1050 if (in != 0 && reload_inner_reg_of_subreg (in, inmode))
1052 enum reg_class in_class = class;
1054 if (GET_CODE (SUBREG_REG (in)) == REG)
1055 in_class
1056 = find_valid_class (inmode,
1057 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1058 GET_MODE (SUBREG_REG (in)),
1059 SUBREG_BYTE (in),
1060 GET_MODE (in)),
1061 REGNO (SUBREG_REG (in)));
1063 /* This relies on the fact that emit_reload_insns outputs the
1064 instructions for input reloads of type RELOAD_OTHER in the same
1065 order as the reloads. Thus if the outer reload is also of type
1066 RELOAD_OTHER, we are guaranteed that this inner reload will be
1067 output before the outer reload. */
1068 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1069 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1070 dont_remove_subreg = 1;
1073 /* Similarly for paradoxical and problematical SUBREGs on the output.
1074 Note that there is no reason we need worry about the previous value
1075 of SUBREG_REG (out); even if wider than out,
1076 storing in a subreg is entitled to clobber it all
1077 (except in the case of STRICT_LOW_PART,
1078 and in that case the constraint should label it input-output.) */
1079 if (out != 0 && GET_CODE (out) == SUBREG
1080 && (subreg_lowpart_p (out) || strict_low)
1081 #ifdef CLASS_CANNOT_CHANGE_MODE
1082 && (class != CLASS_CANNOT_CHANGE_MODE
1083 || ! CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (out)),
1084 outmode))
1085 #endif
1086 && (CONSTANT_P (SUBREG_REG (out))
1087 || strict_low
1088 || (((GET_CODE (SUBREG_REG (out)) == REG
1089 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1090 || GET_CODE (SUBREG_REG (out)) == MEM)
1091 && ((GET_MODE_SIZE (outmode)
1092 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1093 #ifdef WORD_REGISTER_OPERATIONS
1094 || ((GET_MODE_SIZE (outmode)
1095 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1096 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1097 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1098 / UNITS_PER_WORD)))
1099 #endif
1101 || (GET_CODE (SUBREG_REG (out)) == REG
1102 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1103 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1104 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1105 > UNITS_PER_WORD)
1106 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1107 / UNITS_PER_WORD)
1108 != HARD_REGNO_NREGS (REGNO (SUBREG_REG (out)),
1109 GET_MODE (SUBREG_REG (out)))))
1110 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1111 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1112 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1113 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1114 GET_MODE (SUBREG_REG (out)),
1115 SUBREG_REG (out))
1116 == NO_REGS))
1117 #endif
1118 #ifdef CLASS_CANNOT_CHANGE_MODE
1119 || (GET_CODE (SUBREG_REG (out)) == REG
1120 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1121 && (TEST_HARD_REG_BIT
1122 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
1123 REGNO (SUBREG_REG (out))))
1124 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (out)),
1125 outmode))
1126 #endif
1129 out_subreg_loc = outloc;
1130 outloc = &SUBREG_REG (out);
1131 out = *outloc;
1132 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1133 if (GET_CODE (out) == MEM
1134 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1135 abort ();
1136 #endif
1137 outmode = GET_MODE (out);
1140 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1141 either M1 is not valid for R or M2 is wider than a word but we only
1142 need one word to store an M2-sized quantity in R.
1144 However, we must reload the inner reg *as well as* the subreg in
1145 that case. In this case, the inner reg is an in-out reload. */
1147 if (out != 0 && reload_inner_reg_of_subreg (out, outmode))
1149 /* This relies on the fact that emit_reload_insns outputs the
1150 instructions for output reloads of type RELOAD_OTHER in reverse
1151 order of the reloads. Thus if the outer reload is also of type
1152 RELOAD_OTHER, we are guaranteed that this inner reload will be
1153 output after the outer reload. */
1154 dont_remove_subreg = 1;
1155 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1156 &SUBREG_REG (out),
1157 find_valid_class (outmode,
1158 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1159 GET_MODE (SUBREG_REG (out)),
1160 SUBREG_BYTE (out),
1161 GET_MODE (out)),
1162 REGNO (SUBREG_REG (out))),
1163 VOIDmode, VOIDmode, 0, 0,
1164 opnum, RELOAD_OTHER);
1167 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1168 if (in != 0 && out != 0 && GET_CODE (out) == MEM
1169 && (GET_CODE (in) == REG || GET_CODE (in) == MEM)
1170 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1171 dont_share = 1;
1173 /* If IN is a SUBREG of a hard register, make a new REG. This
1174 simplifies some of the cases below. */
1176 if (in != 0 && GET_CODE (in) == SUBREG && GET_CODE (SUBREG_REG (in)) == REG
1177 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1178 && ! dont_remove_subreg)
1179 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1181 /* Similarly for OUT. */
1182 if (out != 0 && GET_CODE (out) == SUBREG
1183 && GET_CODE (SUBREG_REG (out)) == REG
1184 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1185 && ! dont_remove_subreg)
1186 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1188 /* Narrow down the class of register wanted if that is
1189 desirable on this machine for efficiency. */
1190 if (in != 0)
1191 class = PREFERRED_RELOAD_CLASS (in, class);
1193 /* Output reloads may need analogous treatment, different in detail. */
1194 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1195 if (out != 0)
1196 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1197 #endif
1199 /* Make sure we use a class that can handle the actual pseudo
1200 inside any subreg. For example, on the 386, QImode regs
1201 can appear within SImode subregs. Although GENERAL_REGS
1202 can handle SImode, QImode needs a smaller class. */
1203 #ifdef LIMIT_RELOAD_CLASS
1204 if (in_subreg_loc)
1205 class = LIMIT_RELOAD_CLASS (inmode, class);
1206 else if (in != 0 && GET_CODE (in) == SUBREG)
1207 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1209 if (out_subreg_loc)
1210 class = LIMIT_RELOAD_CLASS (outmode, class);
1211 if (out != 0 && GET_CODE (out) == SUBREG)
1212 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1213 #endif
1215 /* Verify that this class is at least possible for the mode that
1216 is specified. */
1217 if (this_insn_is_asm)
1219 enum machine_mode mode;
1220 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1221 mode = inmode;
1222 else
1223 mode = outmode;
1224 if (mode == VOIDmode)
1226 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1227 mode = word_mode;
1228 if (in != 0)
1229 inmode = word_mode;
1230 if (out != 0)
1231 outmode = word_mode;
1233 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1234 if (HARD_REGNO_MODE_OK (i, mode)
1235 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1237 int nregs = HARD_REGNO_NREGS (i, mode);
1239 int j;
1240 for (j = 1; j < nregs; j++)
1241 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1242 break;
1243 if (j == nregs)
1244 break;
1246 if (i == FIRST_PSEUDO_REGISTER)
1248 error_for_asm (this_insn, "impossible register constraint in `asm'");
1249 class = ALL_REGS;
1253 /* Optional output reloads are always OK even if we have no register class,
1254 since the function of these reloads is only to have spill_reg_store etc.
1255 set, so that the storing insn can be deleted later. */
1256 if (class == NO_REGS
1257 && (optional == 0 || type != RELOAD_FOR_OUTPUT))
1258 abort ();
1260 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1262 if (i == n_reloads)
1264 /* See if we need a secondary reload register to move between CLASS
1265 and IN or CLASS and OUT. Get the icode and push any required reloads
1266 needed for each of them if so. */
1268 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1269 if (in != 0)
1270 secondary_in_reload
1271 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1272 &secondary_in_icode);
1273 #endif
1275 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1276 if (out != 0 && GET_CODE (out) != SCRATCH)
1277 secondary_out_reload
1278 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1279 type, &secondary_out_icode);
1280 #endif
1282 /* We found no existing reload suitable for re-use.
1283 So add an additional reload. */
1285 #ifdef SECONDARY_MEMORY_NEEDED
1286 /* If a memory location is needed for the copy, make one. */
1287 if (in != 0 && GET_CODE (in) == REG
1288 && REGNO (in) < FIRST_PSEUDO_REGISTER
1289 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (in)),
1290 class, inmode))
1291 get_secondary_mem (in, inmode, opnum, type);
1292 #endif
1294 i = n_reloads;
1295 rld[i].in = in;
1296 rld[i].out = out;
1297 rld[i].class = class;
1298 rld[i].inmode = inmode;
1299 rld[i].outmode = outmode;
1300 rld[i].reg_rtx = 0;
1301 rld[i].optional = optional;
1302 rld[i].inc = 0;
1303 rld[i].nocombine = 0;
1304 rld[i].in_reg = inloc ? *inloc : 0;
1305 rld[i].out_reg = outloc ? *outloc : 0;
1306 rld[i].opnum = opnum;
1307 rld[i].when_needed = type;
1308 rld[i].secondary_in_reload = secondary_in_reload;
1309 rld[i].secondary_out_reload = secondary_out_reload;
1310 rld[i].secondary_in_icode = secondary_in_icode;
1311 rld[i].secondary_out_icode = secondary_out_icode;
1312 rld[i].secondary_p = 0;
1314 n_reloads++;
1316 #ifdef SECONDARY_MEMORY_NEEDED
1317 if (out != 0 && GET_CODE (out) == REG
1318 && REGNO (out) < FIRST_PSEUDO_REGISTER
1319 && SECONDARY_MEMORY_NEEDED (class, REGNO_REG_CLASS (REGNO (out)),
1320 outmode))
1321 get_secondary_mem (out, outmode, opnum, type);
1322 #endif
1324 else
1326 /* We are reusing an existing reload,
1327 but we may have additional information for it.
1328 For example, we may now have both IN and OUT
1329 while the old one may have just one of them. */
1331 /* The modes can be different. If they are, we want to reload in
1332 the larger mode, so that the value is valid for both modes. */
1333 if (inmode != VOIDmode
1334 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1335 rld[i].inmode = inmode;
1336 if (outmode != VOIDmode
1337 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1338 rld[i].outmode = outmode;
1339 if (in != 0)
1341 rtx in_reg = inloc ? *inloc : 0;
1342 /* If we merge reloads for two distinct rtl expressions that
1343 are identical in content, there might be duplicate address
1344 reloads. Remove the extra set now, so that if we later find
1345 that we can inherit this reload, we can get rid of the
1346 address reloads altogether.
1348 Do not do this if both reloads are optional since the result
1349 would be an optional reload which could potentially leave
1350 unresolved address replacements.
1352 It is not sufficient to call transfer_replacements since
1353 choose_reload_regs will remove the replacements for address
1354 reloads of inherited reloads which results in the same
1355 problem. */
1356 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1357 && ! (rld[i].optional && optional))
1359 /* We must keep the address reload with the lower operand
1360 number alive. */
1361 if (opnum > rld[i].opnum)
1363 remove_address_replacements (in);
1364 in = rld[i].in;
1365 in_reg = rld[i].in_reg;
1367 else
1368 remove_address_replacements (rld[i].in);
1370 rld[i].in = in;
1371 rld[i].in_reg = in_reg;
1373 if (out != 0)
1375 rld[i].out = out;
1376 rld[i].out_reg = outloc ? *outloc : 0;
1378 if (reg_class_subset_p (class, rld[i].class))
1379 rld[i].class = class;
1380 rld[i].optional &= optional;
1381 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1382 opnum, rld[i].opnum))
1383 rld[i].when_needed = RELOAD_OTHER;
1384 rld[i].opnum = MIN (rld[i].opnum, opnum);
1387 /* If the ostensible rtx being reloaded differs from the rtx found
1388 in the location to substitute, this reload is not safe to combine
1389 because we cannot reliably tell whether it appears in the insn. */
1391 if (in != 0 && in != *inloc)
1392 rld[i].nocombine = 1;
1394 #if 0
1395 /* This was replaced by changes in find_reloads_address_1 and the new
1396 function inc_for_reload, which go with a new meaning of reload_inc. */
1398 /* If this is an IN/OUT reload in an insn that sets the CC,
1399 it must be for an autoincrement. It doesn't work to store
1400 the incremented value after the insn because that would clobber the CC.
1401 So we must do the increment of the value reloaded from,
1402 increment it, store it back, then decrement again. */
1403 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1405 out = 0;
1406 rld[i].out = 0;
1407 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1408 /* If we did not find a nonzero amount-to-increment-by,
1409 that contradicts the belief that IN is being incremented
1410 in an address in this insn. */
1411 if (rld[i].inc == 0)
1412 abort ();
1414 #endif
1416 /* If we will replace IN and OUT with the reload-reg,
1417 record where they are located so that substitution need
1418 not do a tree walk. */
1420 if (replace_reloads)
1422 if (inloc != 0)
1424 struct replacement *r = &replacements[n_replacements++];
1425 r->what = i;
1426 r->subreg_loc = in_subreg_loc;
1427 r->where = inloc;
1428 r->mode = inmode;
1430 if (outloc != 0 && outloc != inloc)
1432 struct replacement *r = &replacements[n_replacements++];
1433 r->what = i;
1434 r->where = outloc;
1435 r->subreg_loc = out_subreg_loc;
1436 r->mode = outmode;
1440 /* If this reload is just being introduced and it has both
1441 an incoming quantity and an outgoing quantity that are
1442 supposed to be made to match, see if either one of the two
1443 can serve as the place to reload into.
1445 If one of them is acceptable, set rld[i].reg_rtx
1446 to that one. */
1448 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1450 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1451 inmode, outmode,
1452 rld[i].class, i,
1453 earlyclobber_operand_p (out));
1455 /* If the outgoing register already contains the same value
1456 as the incoming one, we can dispense with loading it.
1457 The easiest way to tell the caller that is to give a phony
1458 value for the incoming operand (same as outgoing one). */
1459 if (rld[i].reg_rtx == out
1460 && (GET_CODE (in) == REG || CONSTANT_P (in))
1461 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1462 static_reload_reg_p, i, inmode))
1463 rld[i].in = out;
1466 /* If this is an input reload and the operand contains a register that
1467 dies in this insn and is used nowhere else, see if it is the right class
1468 to be used for this reload. Use it if so. (This occurs most commonly
1469 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1470 this if it is also an output reload that mentions the register unless
1471 the output is a SUBREG that clobbers an entire register.
1473 Note that the operand might be one of the spill regs, if it is a
1474 pseudo reg and we are in a block where spilling has not taken place.
1475 But if there is no spilling in this block, that is OK.
1476 An explicitly used hard reg cannot be a spill reg. */
1478 if (rld[i].reg_rtx == 0 && in != 0)
1480 rtx note;
1481 int regno;
1482 enum machine_mode rel_mode = inmode;
1484 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1485 rel_mode = outmode;
1487 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1488 if (REG_NOTE_KIND (note) == REG_DEAD
1489 && GET_CODE (XEXP (note, 0)) == REG
1490 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1491 && reg_mentioned_p (XEXP (note, 0), in)
1492 && ! refers_to_regno_for_reload_p (regno,
1493 (regno
1494 + HARD_REGNO_NREGS (regno,
1495 rel_mode)),
1496 PATTERN (this_insn), inloc)
1497 /* If this is also an output reload, IN cannot be used as
1498 the reload register if it is set in this insn unless IN
1499 is also OUT. */
1500 && (out == 0 || in == out
1501 || ! hard_reg_set_here_p (regno,
1502 (regno
1503 + HARD_REGNO_NREGS (regno,
1504 rel_mode)),
1505 PATTERN (this_insn)))
1506 /* ??? Why is this code so different from the previous?
1507 Is there any simple coherent way to describe the two together?
1508 What's going on here. */
1509 && (in != out
1510 || (GET_CODE (in) == SUBREG
1511 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1512 / UNITS_PER_WORD)
1513 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1514 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1515 /* Make sure the operand fits in the reg that dies. */
1516 && (GET_MODE_SIZE (rel_mode)
1517 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1518 && HARD_REGNO_MODE_OK (regno, inmode)
1519 && HARD_REGNO_MODE_OK (regno, outmode))
1521 unsigned int offs;
1522 unsigned int nregs = MAX (HARD_REGNO_NREGS (regno, inmode),
1523 HARD_REGNO_NREGS (regno, outmode));
1525 for (offs = 0; offs < nregs; offs++)
1526 if (fixed_regs[regno + offs]
1527 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1528 regno + offs))
1529 break;
1531 if (offs == nregs)
1533 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1534 break;
1539 if (out)
1540 output_reloadnum = i;
1542 return i;
1545 /* Record an additional place we must replace a value
1546 for which we have already recorded a reload.
1547 RELOADNUM is the value returned by push_reload
1548 when the reload was recorded.
1549 This is used in insn patterns that use match_dup. */
1551 static void
1552 push_replacement (loc, reloadnum, mode)
1553 rtx *loc;
1554 int reloadnum;
1555 enum machine_mode mode;
1557 if (replace_reloads)
1559 struct replacement *r = &replacements[n_replacements++];
1560 r->what = reloadnum;
1561 r->where = loc;
1562 r->subreg_loc = 0;
1563 r->mode = mode;
1567 /* Transfer all replacements that used to be in reload FROM to be in
1568 reload TO. */
1570 void
1571 transfer_replacements (to, from)
1572 int to, from;
1574 int i;
1576 for (i = 0; i < n_replacements; i++)
1577 if (replacements[i].what == from)
1578 replacements[i].what = to;
1581 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1582 or a subpart of it. If we have any replacements registered for IN_RTX,
1583 cancel the reloads that were supposed to load them.
1584 Return non-zero if we canceled any reloads. */
1586 remove_address_replacements (in_rtx)
1587 rtx in_rtx;
1589 int i, j;
1590 char reload_flags[MAX_RELOADS];
1591 int something_changed = 0;
1593 memset (reload_flags, 0, sizeof reload_flags);
1594 for (i = 0, j = 0; i < n_replacements; i++)
1596 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1597 reload_flags[replacements[i].what] |= 1;
1598 else
1600 replacements[j++] = replacements[i];
1601 reload_flags[replacements[i].what] |= 2;
1604 /* Note that the following store must be done before the recursive calls. */
1605 n_replacements = j;
1607 for (i = n_reloads - 1; i >= 0; i--)
1609 if (reload_flags[i] == 1)
1611 deallocate_reload_reg (i);
1612 remove_address_replacements (rld[i].in);
1613 rld[i].in = 0;
1614 something_changed = 1;
1617 return something_changed;
1620 /* If there is only one output reload, and it is not for an earlyclobber
1621 operand, try to combine it with a (logically unrelated) input reload
1622 to reduce the number of reload registers needed.
1624 This is safe if the input reload does not appear in
1625 the value being output-reloaded, because this implies
1626 it is not needed any more once the original insn completes.
1628 If that doesn't work, see we can use any of the registers that
1629 die in this insn as a reload register. We can if it is of the right
1630 class and does not appear in the value being output-reloaded. */
1632 static void
1633 combine_reloads ()
1635 int i;
1636 int output_reload = -1;
1637 int secondary_out = -1;
1638 rtx note;
1640 /* Find the output reload; return unless there is exactly one
1641 and that one is mandatory. */
1643 for (i = 0; i < n_reloads; i++)
1644 if (rld[i].out != 0)
1646 if (output_reload >= 0)
1647 return;
1648 output_reload = i;
1651 if (output_reload < 0 || rld[output_reload].optional)
1652 return;
1654 /* An input-output reload isn't combinable. */
1656 if (rld[output_reload].in != 0)
1657 return;
1659 /* If this reload is for an earlyclobber operand, we can't do anything. */
1660 if (earlyclobber_operand_p (rld[output_reload].out))
1661 return;
1663 /* If there is a reload for part of the address of this operand, we would
1664 need to chnage it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1665 its life to the point where doing this combine would not lower the
1666 number of spill registers needed. */
1667 for (i = 0; i < n_reloads; i++)
1668 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1669 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1670 && rld[i].opnum == rld[output_reload].opnum)
1671 return;
1673 /* Check each input reload; can we combine it? */
1675 for (i = 0; i < n_reloads; i++)
1676 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1677 /* Life span of this reload must not extend past main insn. */
1678 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1679 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1680 && rld[i].when_needed != RELOAD_OTHER
1681 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1682 == CLASS_MAX_NREGS (rld[output_reload].class,
1683 rld[output_reload].outmode))
1684 && rld[i].inc == 0
1685 && rld[i].reg_rtx == 0
1686 #ifdef SECONDARY_MEMORY_NEEDED
1687 /* Don't combine two reloads with different secondary
1688 memory locations. */
1689 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1690 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1691 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1692 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1693 #endif
1694 && (SMALL_REGISTER_CLASSES
1695 ? (rld[i].class == rld[output_reload].class)
1696 : (reg_class_subset_p (rld[i].class,
1697 rld[output_reload].class)
1698 || reg_class_subset_p (rld[output_reload].class,
1699 rld[i].class)))
1700 && (MATCHES (rld[i].in, rld[output_reload].out)
1701 /* Args reversed because the first arg seems to be
1702 the one that we imagine being modified
1703 while the second is the one that might be affected. */
1704 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1705 rld[i].in)
1706 /* However, if the input is a register that appears inside
1707 the output, then we also can't share.
1708 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1709 If the same reload reg is used for both reg 69 and the
1710 result to be stored in memory, then that result
1711 will clobber the address of the memory ref. */
1712 && ! (GET_CODE (rld[i].in) == REG
1713 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1714 rld[output_reload].out))))
1715 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode)
1716 && (reg_class_size[(int) rld[i].class]
1717 || SMALL_REGISTER_CLASSES)
1718 /* We will allow making things slightly worse by combining an
1719 input and an output, but no worse than that. */
1720 && (rld[i].when_needed == RELOAD_FOR_INPUT
1721 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1723 int j;
1725 /* We have found a reload to combine with! */
1726 rld[i].out = rld[output_reload].out;
1727 rld[i].out_reg = rld[output_reload].out_reg;
1728 rld[i].outmode = rld[output_reload].outmode;
1729 /* Mark the old output reload as inoperative. */
1730 rld[output_reload].out = 0;
1731 /* The combined reload is needed for the entire insn. */
1732 rld[i].when_needed = RELOAD_OTHER;
1733 /* If the output reload had a secondary reload, copy it. */
1734 if (rld[output_reload].secondary_out_reload != -1)
1736 rld[i].secondary_out_reload
1737 = rld[output_reload].secondary_out_reload;
1738 rld[i].secondary_out_icode
1739 = rld[output_reload].secondary_out_icode;
1742 #ifdef SECONDARY_MEMORY_NEEDED
1743 /* Copy any secondary MEM. */
1744 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1745 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1746 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1747 #endif
1748 /* If required, minimize the register class. */
1749 if (reg_class_subset_p (rld[output_reload].class,
1750 rld[i].class))
1751 rld[i].class = rld[output_reload].class;
1753 /* Transfer all replacements from the old reload to the combined. */
1754 for (j = 0; j < n_replacements; j++)
1755 if (replacements[j].what == output_reload)
1756 replacements[j].what = i;
1758 return;
1761 /* If this insn has only one operand that is modified or written (assumed
1762 to be the first), it must be the one corresponding to this reload. It
1763 is safe to use anything that dies in this insn for that output provided
1764 that it does not occur in the output (we already know it isn't an
1765 earlyclobber. If this is an asm insn, give up. */
1767 if (INSN_CODE (this_insn) == -1)
1768 return;
1770 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1771 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1772 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1773 return;
1775 /* See if some hard register that dies in this insn and is not used in
1776 the output is the right class. Only works if the register we pick
1777 up can fully hold our output reload. */
1778 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1779 if (REG_NOTE_KIND (note) == REG_DEAD
1780 && GET_CODE (XEXP (note, 0)) == REG
1781 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1782 rld[output_reload].out)
1783 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1784 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1785 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1786 REGNO (XEXP (note, 0)))
1787 && (HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1788 <= HARD_REGNO_NREGS (REGNO (XEXP (note, 0)), GET_MODE (XEXP (note, 0))))
1789 /* Ensure that a secondary or tertiary reload for this output
1790 won't want this register. */
1791 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1792 || (! (TEST_HARD_REG_BIT
1793 (reg_class_contents[(int) rld[secondary_out].class],
1794 REGNO (XEXP (note, 0))))
1795 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1796 || ! (TEST_HARD_REG_BIT
1797 (reg_class_contents[(int) rld[secondary_out].class],
1798 REGNO (XEXP (note, 0)))))))
1799 && ! fixed_regs[REGNO (XEXP (note, 0))])
1801 rld[output_reload].reg_rtx
1802 = gen_rtx_REG (rld[output_reload].outmode,
1803 REGNO (XEXP (note, 0)));
1804 return;
1808 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1809 See if one of IN and OUT is a register that may be used;
1810 this is desirable since a spill-register won't be needed.
1811 If so, return the register rtx that proves acceptable.
1813 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1814 CLASS is the register class required for the reload.
1816 If FOR_REAL is >= 0, it is the number of the reload,
1817 and in some cases when it can be discovered that OUT doesn't need
1818 to be computed, clear out rld[FOR_REAL].out.
1820 If FOR_REAL is -1, this should not be done, because this call
1821 is just to see if a register can be found, not to find and install it.
1823 EARLYCLOBBER is non-zero if OUT is an earlyclobber operand. This
1824 puts an additional constraint on being able to use IN for OUT since
1825 IN must not appear elsewhere in the insn (it is assumed that IN itself
1826 is safe from the earlyclobber). */
1828 static rtx
1829 find_dummy_reload (real_in, real_out, inloc, outloc,
1830 inmode, outmode, class, for_real, earlyclobber)
1831 rtx real_in, real_out;
1832 rtx *inloc, *outloc;
1833 enum machine_mode inmode, outmode;
1834 enum reg_class class;
1835 int for_real;
1836 int earlyclobber;
1838 rtx in = real_in;
1839 rtx out = real_out;
1840 int in_offset = 0;
1841 int out_offset = 0;
1842 rtx value = 0;
1844 /* If operands exceed a word, we can't use either of them
1845 unless they have the same size. */
1846 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1847 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1848 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1849 return 0;
1851 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1852 respectively refers to a hard register. */
1854 /* Find the inside of any subregs. */
1855 while (GET_CODE (out) == SUBREG)
1857 if (GET_CODE (SUBREG_REG (out)) == REG
1858 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1859 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1860 GET_MODE (SUBREG_REG (out)),
1861 SUBREG_BYTE (out),
1862 GET_MODE (out));
1863 out = SUBREG_REG (out);
1865 while (GET_CODE (in) == SUBREG)
1867 if (GET_CODE (SUBREG_REG (in)) == REG
1868 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1869 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1870 GET_MODE (SUBREG_REG (in)),
1871 SUBREG_BYTE (in),
1872 GET_MODE (in));
1873 in = SUBREG_REG (in);
1876 /* Narrow down the reg class, the same way push_reload will;
1877 otherwise we might find a dummy now, but push_reload won't. */
1878 class = PREFERRED_RELOAD_CLASS (in, class);
1880 /* See if OUT will do. */
1881 if (GET_CODE (out) == REG
1882 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1884 unsigned int regno = REGNO (out) + out_offset;
1885 unsigned int nwords = HARD_REGNO_NREGS (regno, outmode);
1886 rtx saved_rtx;
1888 /* When we consider whether the insn uses OUT,
1889 ignore references within IN. They don't prevent us
1890 from copying IN into OUT, because those refs would
1891 move into the insn that reloads IN.
1893 However, we only ignore IN in its role as this reload.
1894 If the insn uses IN elsewhere and it contains OUT,
1895 that counts. We can't be sure it's the "same" operand
1896 so it might not go through this reload. */
1897 saved_rtx = *inloc;
1898 *inloc = const0_rtx;
1900 if (regno < FIRST_PSEUDO_REGISTER
1901 && HARD_REGNO_MODE_OK (regno, outmode)
1902 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1903 PATTERN (this_insn), outloc))
1905 unsigned int i;
1907 for (i = 0; i < nwords; i++)
1908 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1909 regno + i))
1910 break;
1912 if (i == nwords)
1914 if (GET_CODE (real_out) == REG)
1915 value = real_out;
1916 else
1917 value = gen_rtx_REG (outmode, regno);
1921 *inloc = saved_rtx;
1924 /* Consider using IN if OUT was not acceptable
1925 or if OUT dies in this insn (like the quotient in a divmod insn).
1926 We can't use IN unless it is dies in this insn,
1927 which means we must know accurately which hard regs are live.
1928 Also, the result can't go in IN if IN is used within OUT,
1929 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1930 if (hard_regs_live_known
1931 && GET_CODE (in) == REG
1932 && REGNO (in) < FIRST_PSEUDO_REGISTER
1933 && (value == 0
1934 || find_reg_note (this_insn, REG_UNUSED, real_out))
1935 && find_reg_note (this_insn, REG_DEAD, real_in)
1936 && !fixed_regs[REGNO (in)]
1937 && HARD_REGNO_MODE_OK (REGNO (in),
1938 /* The only case where out and real_out might
1939 have different modes is where real_out
1940 is a subreg, and in that case, out
1941 has a real mode. */
1942 (GET_MODE (out) != VOIDmode
1943 ? GET_MODE (out) : outmode)))
1945 unsigned int regno = REGNO (in) + in_offset;
1946 unsigned int nwords = HARD_REGNO_NREGS (regno, inmode);
1948 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
1949 && ! hard_reg_set_here_p (regno, regno + nwords,
1950 PATTERN (this_insn))
1951 && (! earlyclobber
1952 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1953 PATTERN (this_insn), inloc)))
1955 unsigned int i;
1957 for (i = 0; i < nwords; i++)
1958 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1959 regno + i))
1960 break;
1962 if (i == nwords)
1964 /* If we were going to use OUT as the reload reg
1965 and changed our mind, it means OUT is a dummy that
1966 dies here. So don't bother copying value to it. */
1967 if (for_real >= 0 && value == real_out)
1968 rld[for_real].out = 0;
1969 if (GET_CODE (real_in) == REG)
1970 value = real_in;
1971 else
1972 value = gen_rtx_REG (inmode, regno);
1977 return value;
1980 /* This page contains subroutines used mainly for determining
1981 whether the IN or an OUT of a reload can serve as the
1982 reload register. */
1984 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
1987 earlyclobber_operand_p (x)
1988 rtx x;
1990 int i;
1992 for (i = 0; i < n_earlyclobbers; i++)
1993 if (reload_earlyclobbers[i] == x)
1994 return 1;
1996 return 0;
1999 /* Return 1 if expression X alters a hard reg in the range
2000 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2001 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2002 X should be the body of an instruction. */
2004 static int
2005 hard_reg_set_here_p (beg_regno, end_regno, x)
2006 unsigned int beg_regno, end_regno;
2007 rtx x;
2009 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2011 rtx op0 = SET_DEST (x);
2013 while (GET_CODE (op0) == SUBREG)
2014 op0 = SUBREG_REG (op0);
2015 if (GET_CODE (op0) == REG)
2017 unsigned int r = REGNO (op0);
2019 /* See if this reg overlaps range under consideration. */
2020 if (r < end_regno
2021 && r + HARD_REGNO_NREGS (r, GET_MODE (op0)) > beg_regno)
2022 return 1;
2025 else if (GET_CODE (x) == PARALLEL)
2027 int i = XVECLEN (x, 0) - 1;
2029 for (; i >= 0; i--)
2030 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2031 return 1;
2034 return 0;
2037 /* Return 1 if ADDR is a valid memory address for mode MODE,
2038 and check that each pseudo reg has the proper kind of
2039 hard reg. */
2042 strict_memory_address_p (mode, addr)
2043 enum machine_mode mode ATTRIBUTE_UNUSED;
2044 rtx addr;
2046 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2047 return 0;
2049 win:
2050 return 1;
2053 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2054 if they are the same hard reg, and has special hacks for
2055 autoincrement and autodecrement.
2056 This is specifically intended for find_reloads to use
2057 in determining whether two operands match.
2058 X is the operand whose number is the lower of the two.
2060 The value is 2 if Y contains a pre-increment that matches
2061 a non-incrementing address in X. */
2063 /* ??? To be completely correct, we should arrange to pass
2064 for X the output operand and for Y the input operand.
2065 For now, we assume that the output operand has the lower number
2066 because that is natural in (SET output (... input ...)). */
2069 operands_match_p (x, y)
2070 rtx x, y;
2072 int i;
2073 RTX_CODE code = GET_CODE (x);
2074 const char *fmt;
2075 int success_2;
2077 if (x == y)
2078 return 1;
2079 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
2080 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
2081 && GET_CODE (SUBREG_REG (y)) == REG)))
2083 int j;
2085 if (code == SUBREG)
2087 i = REGNO (SUBREG_REG (x));
2088 if (i >= FIRST_PSEUDO_REGISTER)
2089 goto slow;
2090 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2091 GET_MODE (SUBREG_REG (x)),
2092 SUBREG_BYTE (x),
2093 GET_MODE (x));
2095 else
2096 i = REGNO (x);
2098 if (GET_CODE (y) == SUBREG)
2100 j = REGNO (SUBREG_REG (y));
2101 if (j >= FIRST_PSEUDO_REGISTER)
2102 goto slow;
2103 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2104 GET_MODE (SUBREG_REG (y)),
2105 SUBREG_BYTE (y),
2106 GET_MODE (y));
2108 else
2109 j = REGNO (y);
2111 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2112 multiple hard register group, so that for example (reg:DI 0) and
2113 (reg:SI 1) will be considered the same register. */
2114 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2115 && i < FIRST_PSEUDO_REGISTER)
2116 i += (GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD) - 1;
2117 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2118 && j < FIRST_PSEUDO_REGISTER)
2119 j += (GET_MODE_SIZE (GET_MODE (y)) / UNITS_PER_WORD) - 1;
2121 return i == j;
2123 /* If two operands must match, because they are really a single
2124 operand of an assembler insn, then two postincrements are invalid
2125 because the assembler insn would increment only once.
2126 On the other hand, an postincrement matches ordinary indexing
2127 if the postincrement is the output operand. */
2128 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2129 return operands_match_p (XEXP (x, 0), y);
2130 /* Two preincrements are invalid
2131 because the assembler insn would increment only once.
2132 On the other hand, an preincrement matches ordinary indexing
2133 if the preincrement is the input operand.
2134 In this case, return 2, since some callers need to do special
2135 things when this happens. */
2136 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2137 || GET_CODE (y) == PRE_MODIFY)
2138 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2140 slow:
2142 /* Now we have disposed of all the cases
2143 in which different rtx codes can match. */
2144 if (code != GET_CODE (y))
2145 return 0;
2146 if (code == LABEL_REF)
2147 return XEXP (x, 0) == XEXP (y, 0);
2148 if (code == SYMBOL_REF)
2149 return XSTR (x, 0) == XSTR (y, 0);
2151 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2153 if (GET_MODE (x) != GET_MODE (y))
2154 return 0;
2156 /* Compare the elements. If any pair of corresponding elements
2157 fail to match, return 0 for the whole things. */
2159 success_2 = 0;
2160 fmt = GET_RTX_FORMAT (code);
2161 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2163 int val, j;
2164 switch (fmt[i])
2166 case 'w':
2167 if (XWINT (x, i) != XWINT (y, i))
2168 return 0;
2169 break;
2171 case 'i':
2172 if (XINT (x, i) != XINT (y, i))
2173 return 0;
2174 break;
2176 case 'e':
2177 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2178 if (val == 0)
2179 return 0;
2180 /* If any subexpression returns 2,
2181 we should return 2 if we are successful. */
2182 if (val == 2)
2183 success_2 = 1;
2184 break;
2186 case '0':
2187 break;
2189 case 'E':
2190 if (XVECLEN (x, i) != XVECLEN (y, i))
2191 return 0;
2192 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2194 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2195 if (val == 0)
2196 return 0;
2197 if (val == 2)
2198 success_2 = 1;
2200 break;
2202 /* It is believed that rtx's at this level will never
2203 contain anything but integers and other rtx's,
2204 except for within LABEL_REFs and SYMBOL_REFs. */
2205 default:
2206 abort ();
2209 return 1 + success_2;
2212 /* Describe the range of registers or memory referenced by X.
2213 If X is a register, set REG_FLAG and put the first register
2214 number into START and the last plus one into END.
2215 If X is a memory reference, put a base address into BASE
2216 and a range of integer offsets into START and END.
2217 If X is pushing on the stack, we can assume it causes no trouble,
2218 so we set the SAFE field. */
2220 static struct decomposition
2221 decompose (x)
2222 rtx x;
2224 struct decomposition val;
2225 int all_const = 0;
2227 val.reg_flag = 0;
2228 val.safe = 0;
2229 val.base = 0;
2230 if (GET_CODE (x) == MEM)
2232 rtx base = NULL_RTX, offset = 0;
2233 rtx addr = XEXP (x, 0);
2235 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2236 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2238 val.base = XEXP (addr, 0);
2239 val.start = -GET_MODE_SIZE (GET_MODE (x));
2240 val.end = GET_MODE_SIZE (GET_MODE (x));
2241 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2242 return val;
2245 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2247 if (GET_CODE (XEXP (addr, 1)) == PLUS
2248 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2249 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2251 val.base = XEXP (addr, 0);
2252 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2253 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2254 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2255 return val;
2259 if (GET_CODE (addr) == CONST)
2261 addr = XEXP (addr, 0);
2262 all_const = 1;
2264 if (GET_CODE (addr) == PLUS)
2266 if (CONSTANT_P (XEXP (addr, 0)))
2268 base = XEXP (addr, 1);
2269 offset = XEXP (addr, 0);
2271 else if (CONSTANT_P (XEXP (addr, 1)))
2273 base = XEXP (addr, 0);
2274 offset = XEXP (addr, 1);
2278 if (offset == 0)
2280 base = addr;
2281 offset = const0_rtx;
2283 if (GET_CODE (offset) == CONST)
2284 offset = XEXP (offset, 0);
2285 if (GET_CODE (offset) == PLUS)
2287 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2289 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2290 offset = XEXP (offset, 0);
2292 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2294 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2295 offset = XEXP (offset, 1);
2297 else
2299 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2300 offset = const0_rtx;
2303 else if (GET_CODE (offset) != CONST_INT)
2305 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2306 offset = const0_rtx;
2309 if (all_const && GET_CODE (base) == PLUS)
2310 base = gen_rtx_CONST (GET_MODE (base), base);
2312 if (GET_CODE (offset) != CONST_INT)
2313 abort ();
2315 val.start = INTVAL (offset);
2316 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2317 val.base = base;
2318 return val;
2320 else if (GET_CODE (x) == REG)
2322 val.reg_flag = 1;
2323 val.start = true_regnum (x);
2324 if (val.start < 0)
2326 /* A pseudo with no hard reg. */
2327 val.start = REGNO (x);
2328 val.end = val.start + 1;
2330 else
2331 /* A hard reg. */
2332 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2334 else if (GET_CODE (x) == SUBREG)
2336 if (GET_CODE (SUBREG_REG (x)) != REG)
2337 /* This could be more precise, but it's good enough. */
2338 return decompose (SUBREG_REG (x));
2339 val.reg_flag = 1;
2340 val.start = true_regnum (x);
2341 if (val.start < 0)
2342 return decompose (SUBREG_REG (x));
2343 else
2344 /* A hard reg. */
2345 val.end = val.start + HARD_REGNO_NREGS (val.start, GET_MODE (x));
2347 else if (CONSTANT_P (x)
2348 /* This hasn't been assigned yet, so it can't conflict yet. */
2349 || GET_CODE (x) == SCRATCH)
2350 val.safe = 1;
2351 else
2352 abort ();
2353 return val;
2356 /* Return 1 if altering Y will not modify the value of X.
2357 Y is also described by YDATA, which should be decompose (Y). */
2359 static int
2360 immune_p (x, y, ydata)
2361 rtx x, y;
2362 struct decomposition ydata;
2364 struct decomposition xdata;
2366 if (ydata.reg_flag)
2367 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2368 if (ydata.safe)
2369 return 1;
2371 if (GET_CODE (y) != MEM)
2372 abort ();
2373 /* If Y is memory and X is not, Y can't affect X. */
2374 if (GET_CODE (x) != MEM)
2375 return 1;
2377 xdata = decompose (x);
2379 if (! rtx_equal_p (xdata.base, ydata.base))
2381 /* If bases are distinct symbolic constants, there is no overlap. */
2382 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2383 return 1;
2384 /* Constants and stack slots never overlap. */
2385 if (CONSTANT_P (xdata.base)
2386 && (ydata.base == frame_pointer_rtx
2387 || ydata.base == hard_frame_pointer_rtx
2388 || ydata.base == stack_pointer_rtx))
2389 return 1;
2390 if (CONSTANT_P (ydata.base)
2391 && (xdata.base == frame_pointer_rtx
2392 || xdata.base == hard_frame_pointer_rtx
2393 || xdata.base == stack_pointer_rtx))
2394 return 1;
2395 /* If either base is variable, we don't know anything. */
2396 return 0;
2399 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2402 /* Similar, but calls decompose. */
2405 safe_from_earlyclobber (op, clobber)
2406 rtx op, clobber;
2408 struct decomposition early_data;
2410 early_data = decompose (clobber);
2411 return immune_p (op, clobber, early_data);
2414 /* Main entry point of this file: search the body of INSN
2415 for values that need reloading and record them with push_reload.
2416 REPLACE nonzero means record also where the values occur
2417 so that subst_reloads can be used.
2419 IND_LEVELS says how many levels of indirection are supported by this
2420 machine; a value of zero means that a memory reference is not a valid
2421 memory address.
2423 LIVE_KNOWN says we have valid information about which hard
2424 regs are live at each point in the program; this is true when
2425 we are called from global_alloc but false when stupid register
2426 allocation has been done.
2428 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2429 which is nonnegative if the reg has been commandeered for reloading into.
2430 It is copied into STATIC_RELOAD_REG_P and referenced from there
2431 by various subroutines.
2433 Return TRUE if some operands need to be changed, because of swapping
2434 commutative operands, reg_equiv_address substitution, or whatever. */
2437 find_reloads (insn, replace, ind_levels, live_known, reload_reg_p)
2438 rtx insn;
2439 int replace, ind_levels;
2440 int live_known;
2441 short *reload_reg_p;
2443 int insn_code_number;
2444 int i, j;
2445 int noperands;
2446 /* These start out as the constraints for the insn
2447 and they are chewed up as we consider alternatives. */
2448 char *constraints[MAX_RECOG_OPERANDS];
2449 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2450 a register. */
2451 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2452 char pref_or_nothing[MAX_RECOG_OPERANDS];
2453 /* Nonzero for a MEM operand whose entire address needs a reload. */
2454 int address_reloaded[MAX_RECOG_OPERANDS];
2455 /* Value of enum reload_type to use for operand. */
2456 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2457 /* Value of enum reload_type to use within address of operand. */
2458 enum reload_type address_type[MAX_RECOG_OPERANDS];
2459 /* Save the usage of each operand. */
2460 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2461 int no_input_reloads = 0, no_output_reloads = 0;
2462 int n_alternatives;
2463 int this_alternative[MAX_RECOG_OPERANDS];
2464 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2465 char this_alternative_win[MAX_RECOG_OPERANDS];
2466 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2467 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2468 int this_alternative_matches[MAX_RECOG_OPERANDS];
2469 int swapped;
2470 int goal_alternative[MAX_RECOG_OPERANDS];
2471 int this_alternative_number;
2472 int goal_alternative_number = 0;
2473 int operand_reloadnum[MAX_RECOG_OPERANDS];
2474 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2475 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2476 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2477 char goal_alternative_win[MAX_RECOG_OPERANDS];
2478 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2479 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2480 int goal_alternative_swapped;
2481 int best;
2482 int commutative;
2483 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2484 rtx substed_operand[MAX_RECOG_OPERANDS];
2485 rtx body = PATTERN (insn);
2486 rtx set = single_set (insn);
2487 int goal_earlyclobber = 0, this_earlyclobber;
2488 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2489 int retval = 0;
2491 this_insn = insn;
2492 n_reloads = 0;
2493 n_replacements = 0;
2494 n_earlyclobbers = 0;
2495 replace_reloads = replace;
2496 hard_regs_live_known = live_known;
2497 static_reload_reg_p = reload_reg_p;
2499 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2500 neither are insns that SET cc0. Insns that use CC0 are not allowed
2501 to have any input reloads. */
2502 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2503 no_output_reloads = 1;
2505 #ifdef HAVE_cc0
2506 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2507 no_input_reloads = 1;
2508 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2509 no_output_reloads = 1;
2510 #endif
2512 #ifdef SECONDARY_MEMORY_NEEDED
2513 /* The eliminated forms of any secondary memory locations are per-insn, so
2514 clear them out here. */
2516 memset ((char *) secondary_memlocs_elim, 0, sizeof secondary_memlocs_elim);
2517 #endif
2519 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2520 is cheap to move between them. If it is not, there may not be an insn
2521 to do the copy, so we may need a reload. */
2522 if (GET_CODE (body) == SET
2523 && GET_CODE (SET_DEST (body)) == REG
2524 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2525 && GET_CODE (SET_SRC (body)) == REG
2526 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2527 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2528 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2529 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2530 return 0;
2532 extract_insn (insn);
2534 noperands = reload_n_operands = recog_data.n_operands;
2535 n_alternatives = recog_data.n_alternatives;
2537 /* Just return "no reloads" if insn has no operands with constraints. */
2538 if (noperands == 0 || n_alternatives == 0)
2539 return 0;
2541 insn_code_number = INSN_CODE (insn);
2542 this_insn_is_asm = insn_code_number < 0;
2544 memcpy (operand_mode, recog_data.operand_mode,
2545 noperands * sizeof (enum machine_mode));
2546 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2548 commutative = -1;
2550 /* If we will need to know, later, whether some pair of operands
2551 are the same, we must compare them now and save the result.
2552 Reloading the base and index registers will clobber them
2553 and afterward they will fail to match. */
2555 for (i = 0; i < noperands; i++)
2557 char *p;
2558 int c;
2560 substed_operand[i] = recog_data.operand[i];
2561 p = constraints[i];
2563 modified[i] = RELOAD_READ;
2565 /* Scan this operand's constraint to see if it is an output operand,
2566 an in-out operand, is commutative, or should match another. */
2568 while ((c = *p++))
2570 if (c == '=')
2571 modified[i] = RELOAD_WRITE;
2572 else if (c == '+')
2573 modified[i] = RELOAD_READ_WRITE;
2574 else if (c == '%')
2576 /* The last operand should not be marked commutative. */
2577 if (i == noperands - 1)
2578 abort ();
2580 commutative = i;
2582 else if (ISDIGIT (c))
2584 c = strtoul (p - 1, &p, 10);
2586 operands_match[c][i]
2587 = operands_match_p (recog_data.operand[c],
2588 recog_data.operand[i]);
2590 /* An operand may not match itself. */
2591 if (c == i)
2592 abort ();
2594 /* If C can be commuted with C+1, and C might need to match I,
2595 then C+1 might also need to match I. */
2596 if (commutative >= 0)
2598 if (c == commutative || c == commutative + 1)
2600 int other = c + (c == commutative ? 1 : -1);
2601 operands_match[other][i]
2602 = operands_match_p (recog_data.operand[other],
2603 recog_data.operand[i]);
2605 if (i == commutative || i == commutative + 1)
2607 int other = i + (i == commutative ? 1 : -1);
2608 operands_match[c][other]
2609 = operands_match_p (recog_data.operand[c],
2610 recog_data.operand[other]);
2612 /* Note that C is supposed to be less than I.
2613 No need to consider altering both C and I because in
2614 that case we would alter one into the other. */
2620 /* Examine each operand that is a memory reference or memory address
2621 and reload parts of the addresses into index registers.
2622 Also here any references to pseudo regs that didn't get hard regs
2623 but are equivalent to constants get replaced in the insn itself
2624 with those constants. Nobody will ever see them again.
2626 Finally, set up the preferred classes of each operand. */
2628 for (i = 0; i < noperands; i++)
2630 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2632 address_reloaded[i] = 0;
2633 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2634 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2635 : RELOAD_OTHER);
2636 address_type[i]
2637 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2638 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2639 : RELOAD_OTHER);
2641 if (*constraints[i] == 0)
2642 /* Ignore things like match_operator operands. */
2644 else if (constraints[i][0] == 'p')
2646 find_reloads_address (VOIDmode, (rtx*) 0,
2647 recog_data.operand[i],
2648 recog_data.operand_loc[i],
2649 i, operand_type[i], ind_levels, insn);
2651 /* If we now have a simple operand where we used to have a
2652 PLUS or MULT, re-recognize and try again. */
2653 if ((GET_RTX_CLASS (GET_CODE (*recog_data.operand_loc[i])) == 'o'
2654 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2655 && (GET_CODE (recog_data.operand[i]) == MULT
2656 || GET_CODE (recog_data.operand[i]) == PLUS))
2658 INSN_CODE (insn) = -1;
2659 retval = find_reloads (insn, replace, ind_levels, live_known,
2660 reload_reg_p);
2661 return retval;
2664 recog_data.operand[i] = *recog_data.operand_loc[i];
2665 substed_operand[i] = recog_data.operand[i];
2667 else if (code == MEM)
2669 address_reloaded[i]
2670 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2671 recog_data.operand_loc[i],
2672 XEXP (recog_data.operand[i], 0),
2673 &XEXP (recog_data.operand[i], 0),
2674 i, address_type[i], ind_levels, insn);
2675 recog_data.operand[i] = *recog_data.operand_loc[i];
2676 substed_operand[i] = recog_data.operand[i];
2678 else if (code == SUBREG)
2680 rtx reg = SUBREG_REG (recog_data.operand[i]);
2681 rtx op
2682 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2683 ind_levels,
2684 set != 0
2685 && &SET_DEST (set) == recog_data.operand_loc[i],
2686 insn,
2687 &address_reloaded[i]);
2689 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2690 that didn't get a hard register, emit a USE with a REG_EQUAL
2691 note in front so that we might inherit a previous, possibly
2692 wider reload. */
2694 if (replace
2695 && GET_CODE (op) == MEM
2696 && GET_CODE (reg) == REG
2697 && (GET_MODE_SIZE (GET_MODE (reg))
2698 >= GET_MODE_SIZE (GET_MODE (op))))
2699 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2700 insn),
2701 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2703 substed_operand[i] = recog_data.operand[i] = op;
2705 else if (code == PLUS || GET_RTX_CLASS (code) == '1')
2706 /* We can get a PLUS as an "operand" as a result of register
2707 elimination. See eliminate_regs and gen_reload. We handle
2708 a unary operator by reloading the operand. */
2709 substed_operand[i] = recog_data.operand[i]
2710 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2711 ind_levels, 0, insn,
2712 &address_reloaded[i]);
2713 else if (code == REG)
2715 /* This is equivalent to calling find_reloads_toplev.
2716 The code is duplicated for speed.
2717 When we find a pseudo always equivalent to a constant,
2718 we replace it by the constant. We must be sure, however,
2719 that we don't try to replace it in the insn in which it
2720 is being set. */
2721 int regno = REGNO (recog_data.operand[i]);
2722 if (reg_equiv_constant[regno] != 0
2723 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2725 /* Record the existing mode so that the check if constants are
2726 allowed will work when operand_mode isn't specified. */
2728 if (operand_mode[i] == VOIDmode)
2729 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2731 substed_operand[i] = recog_data.operand[i]
2732 = reg_equiv_constant[regno];
2734 if (reg_equiv_memory_loc[regno] != 0
2735 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2736 /* We need not give a valid is_set_dest argument since the case
2737 of a constant equivalence was checked above. */
2738 substed_operand[i] = recog_data.operand[i]
2739 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2740 ind_levels, 0, insn,
2741 &address_reloaded[i]);
2743 /* If the operand is still a register (we didn't replace it with an
2744 equivalent), get the preferred class to reload it into. */
2745 code = GET_CODE (recog_data.operand[i]);
2746 preferred_class[i]
2747 = ((code == REG && REGNO (recog_data.operand[i])
2748 >= FIRST_PSEUDO_REGISTER)
2749 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2750 : NO_REGS);
2751 pref_or_nothing[i]
2752 = (code == REG
2753 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2754 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2757 /* If this is simply a copy from operand 1 to operand 0, merge the
2758 preferred classes for the operands. */
2759 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2760 && recog_data.operand[1] == SET_SRC (set))
2762 preferred_class[0] = preferred_class[1]
2763 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2764 pref_or_nothing[0] |= pref_or_nothing[1];
2765 pref_or_nothing[1] |= pref_or_nothing[0];
2768 /* Now see what we need for pseudo-regs that didn't get hard regs
2769 or got the wrong kind of hard reg. For this, we must consider
2770 all the operands together against the register constraints. */
2772 best = MAX_RECOG_OPERANDS * 2 + 600;
2774 swapped = 0;
2775 goal_alternative_swapped = 0;
2776 try_swapped:
2778 /* The constraints are made of several alternatives.
2779 Each operand's constraint looks like foo,bar,... with commas
2780 separating the alternatives. The first alternatives for all
2781 operands go together, the second alternatives go together, etc.
2783 First loop over alternatives. */
2785 for (this_alternative_number = 0;
2786 this_alternative_number < n_alternatives;
2787 this_alternative_number++)
2789 /* Loop over operands for one constraint alternative. */
2790 /* LOSERS counts those that don't fit this alternative
2791 and would require loading. */
2792 int losers = 0;
2793 /* BAD is set to 1 if it some operand can't fit this alternative
2794 even after reloading. */
2795 int bad = 0;
2796 /* REJECT is a count of how undesirable this alternative says it is
2797 if any reloading is required. If the alternative matches exactly
2798 then REJECT is ignored, but otherwise it gets this much
2799 counted against it in addition to the reloading needed. Each
2800 ? counts three times here since we want the disparaging caused by
2801 a bad register class to only count 1/3 as much. */
2802 int reject = 0;
2804 this_earlyclobber = 0;
2806 for (i = 0; i < noperands; i++)
2808 char *p = constraints[i];
2809 int win = 0;
2810 int did_match = 0;
2811 /* 0 => this operand can be reloaded somehow for this alternative. */
2812 int badop = 1;
2813 /* 0 => this operand can be reloaded if the alternative allows regs. */
2814 int winreg = 0;
2815 int c;
2816 rtx operand = recog_data.operand[i];
2817 int offset = 0;
2818 /* Nonzero means this is a MEM that must be reloaded into a reg
2819 regardless of what the constraint says. */
2820 int force_reload = 0;
2821 int offmemok = 0;
2822 /* Nonzero if a constant forced into memory would be OK for this
2823 operand. */
2824 int constmemok = 0;
2825 int earlyclobber = 0;
2827 /* If the predicate accepts a unary operator, it means that
2828 we need to reload the operand, but do not do this for
2829 match_operator and friends. */
2830 if (GET_RTX_CLASS (GET_CODE (operand)) == '1' && *p != 0)
2831 operand = XEXP (operand, 0);
2833 /* If the operand is a SUBREG, extract
2834 the REG or MEM (or maybe even a constant) within.
2835 (Constants can occur as a result of reg_equiv_constant.) */
2837 while (GET_CODE (operand) == SUBREG)
2839 /* Offset only matters when operand is a REG and
2840 it is a hard reg. This is because it is passed
2841 to reg_fits_class_p if it is a REG and all pseudos
2842 return 0 from that function. */
2843 if (GET_CODE (SUBREG_REG (operand)) == REG
2844 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2846 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2847 GET_MODE (SUBREG_REG (operand)),
2848 SUBREG_BYTE (operand),
2849 GET_MODE (operand));
2851 operand = SUBREG_REG (operand);
2852 /* Force reload if this is a constant or PLUS or if there may
2853 be a problem accessing OPERAND in the outer mode. */
2854 if (CONSTANT_P (operand)
2855 || GET_CODE (operand) == PLUS
2856 /* We must force a reload of paradoxical SUBREGs
2857 of a MEM because the alignment of the inner value
2858 may not be enough to do the outer reference. On
2859 big-endian machines, it may also reference outside
2860 the object.
2862 On machines that extend byte operations and we have a
2863 SUBREG where both the inner and outer modes are no wider
2864 than a word and the inner mode is narrower, is integral,
2865 and gets extended when loaded from memory, combine.c has
2866 made assumptions about the behavior of the machine in such
2867 register access. If the data is, in fact, in memory we
2868 must always load using the size assumed to be in the
2869 register and let the insn do the different-sized
2870 accesses.
2872 This is doubly true if WORD_REGISTER_OPERATIONS. In
2873 this case eliminate_regs has left non-paradoxical
2874 subregs for push_reloads to see. Make sure it does
2875 by forcing the reload.
2877 ??? When is it right at this stage to have a subreg
2878 of a mem that is _not_ to be handled specialy? IMO
2879 those should have been reduced to just a mem. */
2880 || ((GET_CODE (operand) == MEM
2881 || (GET_CODE (operand)== REG
2882 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2883 #ifndef WORD_REGISTER_OPERATIONS
2884 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2885 < BIGGEST_ALIGNMENT)
2886 && (GET_MODE_SIZE (operand_mode[i])
2887 > GET_MODE_SIZE (GET_MODE (operand))))
2888 || (GET_CODE (operand) == MEM && BYTES_BIG_ENDIAN)
2889 #ifdef LOAD_EXTEND_OP
2890 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2891 && (GET_MODE_SIZE (GET_MODE (operand))
2892 <= UNITS_PER_WORD)
2893 && (GET_MODE_SIZE (operand_mode[i])
2894 > GET_MODE_SIZE (GET_MODE (operand)))
2895 && INTEGRAL_MODE_P (GET_MODE (operand))
2896 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
2897 #endif
2899 #endif
2901 /* This following hunk of code should no longer be
2902 needed at all with SUBREG_BYTE. If you need this
2903 code back, please explain to me why so I can
2904 fix the real problem. -DaveM */
2905 #if 0
2906 /* Subreg of a hard reg which can't handle the subreg's mode
2907 or which would handle that mode in the wrong number of
2908 registers for subregging to work. */
2909 || (GET_CODE (operand) == REG
2910 && REGNO (operand) < FIRST_PSEUDO_REGISTER
2911 && ((GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2912 && (GET_MODE_SIZE (GET_MODE (operand))
2913 > UNITS_PER_WORD)
2914 && ((GET_MODE_SIZE (GET_MODE (operand))
2915 / UNITS_PER_WORD)
2916 != HARD_REGNO_NREGS (REGNO (operand),
2917 GET_MODE (operand))))
2918 || ! HARD_REGNO_MODE_OK (REGNO (operand) + offset,
2919 operand_mode[i])))
2920 #endif
2922 force_reload = 1;
2925 this_alternative[i] = (int) NO_REGS;
2926 this_alternative_win[i] = 0;
2927 this_alternative_match_win[i] = 0;
2928 this_alternative_offmemok[i] = 0;
2929 this_alternative_earlyclobber[i] = 0;
2930 this_alternative_matches[i] = -1;
2932 /* An empty constraint or empty alternative
2933 allows anything which matched the pattern. */
2934 if (*p == 0 || *p == ',')
2935 win = 1, badop = 0;
2937 /* Scan this alternative's specs for this operand;
2938 set WIN if the operand fits any letter in this alternative.
2939 Otherwise, clear BADOP if this operand could
2940 fit some letter after reloads,
2941 or set WINREG if this operand could fit after reloads
2942 provided the constraint allows some registers. */
2944 while (*p && (c = *p++) != ',')
2945 switch (c)
2947 case '=': case '+': case '*':
2948 break;
2950 case '%':
2951 /* The last operand should not be marked commutative. */
2952 if (i != noperands - 1)
2953 commutative = i;
2954 break;
2956 case '?':
2957 reject += 6;
2958 break;
2960 case '!':
2961 reject = 600;
2962 break;
2964 case '#':
2965 /* Ignore rest of this alternative as far as
2966 reloading is concerned. */
2967 while (*p && *p != ',')
2968 p++;
2969 break;
2971 case '0': case '1': case '2': case '3': case '4':
2972 case '5': case '6': case '7': case '8': case '9':
2973 c = strtoul (p - 1, &p, 10);
2975 this_alternative_matches[i] = c;
2976 /* We are supposed to match a previous operand.
2977 If we do, we win if that one did.
2978 If we do not, count both of the operands as losers.
2979 (This is too conservative, since most of the time
2980 only a single reload insn will be needed to make
2981 the two operands win. As a result, this alternative
2982 may be rejected when it is actually desirable.) */
2983 if ((swapped && (c != commutative || i != commutative + 1))
2984 /* If we are matching as if two operands were swapped,
2985 also pretend that operands_match had been computed
2986 with swapped.
2987 But if I is the second of those and C is the first,
2988 don't exchange them, because operands_match is valid
2989 only on one side of its diagonal. */
2990 ? (operands_match
2991 [(c == commutative || c == commutative + 1)
2992 ? 2 * commutative + 1 - c : c]
2993 [(i == commutative || i == commutative + 1)
2994 ? 2 * commutative + 1 - i : i])
2995 : operands_match[c][i])
2997 /* If we are matching a non-offsettable address where an
2998 offsettable address was expected, then we must reject
2999 this combination, because we can't reload it. */
3000 if (this_alternative_offmemok[c]
3001 && GET_CODE (recog_data.operand[c]) == MEM
3002 && this_alternative[c] == (int) NO_REGS
3003 && ! this_alternative_win[c])
3004 bad = 1;
3006 did_match = this_alternative_win[c];
3008 else
3010 /* Operands don't match. */
3011 rtx value;
3012 /* Retroactively mark the operand we had to match
3013 as a loser, if it wasn't already. */
3014 if (this_alternative_win[c])
3015 losers++;
3016 this_alternative_win[c] = 0;
3017 if (this_alternative[c] == (int) NO_REGS)
3018 bad = 1;
3019 /* But count the pair only once in the total badness of
3020 this alternative, if the pair can be a dummy reload. */
3021 value
3022 = find_dummy_reload (recog_data.operand[i],
3023 recog_data.operand[c],
3024 recog_data.operand_loc[i],
3025 recog_data.operand_loc[c],
3026 operand_mode[i], operand_mode[c],
3027 this_alternative[c], -1,
3028 this_alternative_earlyclobber[c]);
3030 if (value != 0)
3031 losers--;
3033 /* This can be fixed with reloads if the operand
3034 we are supposed to match can be fixed with reloads. */
3035 badop = 0;
3036 this_alternative[i] = this_alternative[c];
3038 /* If we have to reload this operand and some previous
3039 operand also had to match the same thing as this
3040 operand, we don't know how to do that. So reject this
3041 alternative. */
3042 if (! did_match || force_reload)
3043 for (j = 0; j < i; j++)
3044 if (this_alternative_matches[j]
3045 == this_alternative_matches[i])
3046 badop = 1;
3047 break;
3049 case 'p':
3050 /* All necessary reloads for an address_operand
3051 were handled in find_reloads_address. */
3052 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3053 win = 1;
3054 badop = 0;
3055 break;
3057 case 'm':
3058 if (force_reload)
3059 break;
3060 if (GET_CODE (operand) == MEM
3061 || (GET_CODE (operand) == REG
3062 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3063 && reg_renumber[REGNO (operand)] < 0))
3064 win = 1;
3065 if (CONSTANT_P (operand)
3066 /* force_const_mem does not accept HIGH. */
3067 && GET_CODE (operand) != HIGH)
3068 badop = 0;
3069 constmemok = 1;
3070 break;
3072 case '<':
3073 if (GET_CODE (operand) == MEM
3074 && ! address_reloaded[i]
3075 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3076 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3077 win = 1;
3078 break;
3080 case '>':
3081 if (GET_CODE (operand) == MEM
3082 && ! address_reloaded[i]
3083 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3084 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3085 win = 1;
3086 break;
3088 /* Memory operand whose address is not offsettable. */
3089 case 'V':
3090 if (force_reload)
3091 break;
3092 if (GET_CODE (operand) == MEM
3093 && ! (ind_levels ? offsettable_memref_p (operand)
3094 : offsettable_nonstrict_memref_p (operand))
3095 /* Certain mem addresses will become offsettable
3096 after they themselves are reloaded. This is important;
3097 we don't want our own handling of unoffsettables
3098 to override the handling of reg_equiv_address. */
3099 && !(GET_CODE (XEXP (operand, 0)) == REG
3100 && (ind_levels == 0
3101 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3102 win = 1;
3103 break;
3105 /* Memory operand whose address is offsettable. */
3106 case 'o':
3107 if (force_reload)
3108 break;
3109 if ((GET_CODE (operand) == MEM
3110 /* If IND_LEVELS, find_reloads_address won't reload a
3111 pseudo that didn't get a hard reg, so we have to
3112 reject that case. */
3113 && ((ind_levels ? offsettable_memref_p (operand)
3114 : offsettable_nonstrict_memref_p (operand))
3115 /* A reloaded address is offsettable because it is now
3116 just a simple register indirect. */
3117 || address_reloaded[i]))
3118 || (GET_CODE (operand) == REG
3119 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3120 && reg_renumber[REGNO (operand)] < 0
3121 /* If reg_equiv_address is nonzero, we will be
3122 loading it into a register; hence it will be
3123 offsettable, but we cannot say that reg_equiv_mem
3124 is offsettable without checking. */
3125 && ((reg_equiv_mem[REGNO (operand)] != 0
3126 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3127 || (reg_equiv_address[REGNO (operand)] != 0))))
3128 win = 1;
3129 /* force_const_mem does not accept HIGH. */
3130 if ((CONSTANT_P (operand) && GET_CODE (operand) != HIGH)
3131 || GET_CODE (operand) == MEM)
3132 badop = 0;
3133 constmemok = 1;
3134 offmemok = 1;
3135 break;
3137 case '&':
3138 /* Output operand that is stored before the need for the
3139 input operands (and their index registers) is over. */
3140 earlyclobber = 1, this_earlyclobber = 1;
3141 break;
3143 case 'E':
3144 case 'F':
3145 if (GET_CODE (operand) == CONST_DOUBLE)
3146 win = 1;
3147 break;
3149 case 'G':
3150 case 'H':
3151 if (GET_CODE (operand) == CONST_DOUBLE
3152 && CONST_DOUBLE_OK_FOR_LETTER_P (operand, c))
3153 win = 1;
3154 break;
3156 case 's':
3157 if (GET_CODE (operand) == CONST_INT
3158 || (GET_CODE (operand) == CONST_DOUBLE
3159 && GET_MODE (operand) == VOIDmode))
3160 break;
3161 case 'i':
3162 if (CONSTANT_P (operand)
3163 #ifdef LEGITIMATE_PIC_OPERAND_P
3164 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3165 #endif
3167 win = 1;
3168 break;
3170 case 'n':
3171 if (GET_CODE (operand) == CONST_INT
3172 || (GET_CODE (operand) == CONST_DOUBLE
3173 && GET_MODE (operand) == VOIDmode))
3174 win = 1;
3175 break;
3177 case 'I':
3178 case 'J':
3179 case 'K':
3180 case 'L':
3181 case 'M':
3182 case 'N':
3183 case 'O':
3184 case 'P':
3185 if (GET_CODE (operand) == CONST_INT
3186 && CONST_OK_FOR_LETTER_P (INTVAL (operand), c))
3187 win = 1;
3188 break;
3190 case 'X':
3191 win = 1;
3192 break;
3194 case 'g':
3195 if (! force_reload
3196 /* A PLUS is never a valid operand, but reload can make
3197 it from a register when eliminating registers. */
3198 && GET_CODE (operand) != PLUS
3199 /* A SCRATCH is not a valid operand. */
3200 && GET_CODE (operand) != SCRATCH
3201 #ifdef LEGITIMATE_PIC_OPERAND_P
3202 && (! CONSTANT_P (operand)
3203 || ! flag_pic
3204 || LEGITIMATE_PIC_OPERAND_P (operand))
3205 #endif
3206 && (GENERAL_REGS == ALL_REGS
3207 || GET_CODE (operand) != REG
3208 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3209 && reg_renumber[REGNO (operand)] < 0)))
3210 win = 1;
3211 /* Drop through into 'r' case. */
3213 case 'r':
3214 this_alternative[i]
3215 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3216 goto reg;
3218 default:
3219 if (REG_CLASS_FROM_LETTER (c) == NO_REGS)
3221 #ifdef EXTRA_CONSTRAINT
3222 if (EXTRA_CONSTRAINT (operand, c))
3223 win = 1;
3224 #endif
3225 break;
3228 this_alternative[i]
3229 = (int) reg_class_subunion[this_alternative[i]][(int) REG_CLASS_FROM_LETTER (c)];
3230 reg:
3231 if (GET_MODE (operand) == BLKmode)
3232 break;
3233 winreg = 1;
3234 if (GET_CODE (operand) == REG
3235 && reg_fits_class_p (operand, this_alternative[i],
3236 offset, GET_MODE (recog_data.operand[i])))
3237 win = 1;
3238 break;
3241 constraints[i] = p;
3243 /* If this operand could be handled with a reg,
3244 and some reg is allowed, then this operand can be handled. */
3245 if (winreg && this_alternative[i] != (int) NO_REGS)
3246 badop = 0;
3248 /* Record which operands fit this alternative. */
3249 this_alternative_earlyclobber[i] = earlyclobber;
3250 if (win && ! force_reload)
3251 this_alternative_win[i] = 1;
3252 else if (did_match && ! force_reload)
3253 this_alternative_match_win[i] = 1;
3254 else
3256 int const_to_mem = 0;
3258 this_alternative_offmemok[i] = offmemok;
3259 losers++;
3260 if (badop)
3261 bad = 1;
3262 /* Alternative loses if it has no regs for a reg operand. */
3263 if (GET_CODE (operand) == REG
3264 && this_alternative[i] == (int) NO_REGS
3265 && this_alternative_matches[i] < 0)
3266 bad = 1;
3268 /* If this is a constant that is reloaded into the desired
3269 class by copying it to memory first, count that as another
3270 reload. This is consistent with other code and is
3271 required to avoid choosing another alternative when
3272 the constant is moved into memory by this function on
3273 an early reload pass. Note that the test here is
3274 precisely the same as in the code below that calls
3275 force_const_mem. */
3276 if (CONSTANT_P (operand)
3277 /* force_const_mem does not accept HIGH. */
3278 && GET_CODE (operand) != HIGH
3279 && ((PREFERRED_RELOAD_CLASS (operand,
3280 (enum reg_class) this_alternative[i])
3281 == NO_REGS)
3282 || no_input_reloads)
3283 && operand_mode[i] != VOIDmode)
3285 const_to_mem = 1;
3286 if (this_alternative[i] != (int) NO_REGS)
3287 losers++;
3290 /* If we can't reload this value at all, reject this
3291 alternative. Note that we could also lose due to
3292 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3293 here. */
3295 if (! CONSTANT_P (operand)
3296 && (enum reg_class) this_alternative[i] != NO_REGS
3297 && (PREFERRED_RELOAD_CLASS (operand,
3298 (enum reg_class) this_alternative[i])
3299 == NO_REGS))
3300 bad = 1;
3302 /* Alternative loses if it requires a type of reload not
3303 permitted for this insn. We can always reload SCRATCH
3304 and objects with a REG_UNUSED note. */
3305 else if (GET_CODE (operand) != SCRATCH
3306 && modified[i] != RELOAD_READ && no_output_reloads
3307 && ! find_reg_note (insn, REG_UNUSED, operand))
3308 bad = 1;
3309 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3310 && ! const_to_mem)
3311 bad = 1;
3313 /* We prefer to reload pseudos over reloading other things,
3314 since such reloads may be able to be eliminated later.
3315 If we are reloading a SCRATCH, we won't be generating any
3316 insns, just using a register, so it is also preferred.
3317 So bump REJECT in other cases. Don't do this in the
3318 case where we are forcing a constant into memory and
3319 it will then win since we don't want to have a different
3320 alternative match then. */
3321 if (! (GET_CODE (operand) == REG
3322 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3323 && GET_CODE (operand) != SCRATCH
3324 && ! (const_to_mem && constmemok))
3325 reject += 2;
3327 /* Input reloads can be inherited more often than output
3328 reloads can be removed, so penalize output reloads. */
3329 if (operand_type[i] != RELOAD_FOR_INPUT
3330 && GET_CODE (operand) != SCRATCH)
3331 reject++;
3334 /* If this operand is a pseudo register that didn't get a hard
3335 reg and this alternative accepts some register, see if the
3336 class that we want is a subset of the preferred class for this
3337 register. If not, but it intersects that class, use the
3338 preferred class instead. If it does not intersect the preferred
3339 class, show that usage of this alternative should be discouraged;
3340 it will be discouraged more still if the register is `preferred
3341 or nothing'. We do this because it increases the chance of
3342 reusing our spill register in a later insn and avoiding a pair
3343 of memory stores and loads.
3345 Don't bother with this if this alternative will accept this
3346 operand.
3348 Don't do this for a multiword operand, since it is only a
3349 small win and has the risk of requiring more spill registers,
3350 which could cause a large loss.
3352 Don't do this if the preferred class has only one register
3353 because we might otherwise exhaust the class. */
3355 if (! win && ! did_match
3356 && this_alternative[i] != (int) NO_REGS
3357 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3358 && reg_class_size[(int) preferred_class[i]] > 1)
3360 if (! reg_class_subset_p (this_alternative[i],
3361 preferred_class[i]))
3363 /* Since we don't have a way of forming the intersection,
3364 we just do something special if the preferred class
3365 is a subset of the class we have; that's the most
3366 common case anyway. */
3367 if (reg_class_subset_p (preferred_class[i],
3368 this_alternative[i]))
3369 this_alternative[i] = (int) preferred_class[i];
3370 else
3371 reject += (2 + 2 * pref_or_nothing[i]);
3376 /* Now see if any output operands that are marked "earlyclobber"
3377 in this alternative conflict with any input operands
3378 or any memory addresses. */
3380 for (i = 0; i < noperands; i++)
3381 if (this_alternative_earlyclobber[i]
3382 && (this_alternative_win[i] || this_alternative_match_win[i]))
3384 struct decomposition early_data;
3386 early_data = decompose (recog_data.operand[i]);
3388 if (modified[i] == RELOAD_READ)
3389 abort ();
3391 if (this_alternative[i] == NO_REGS)
3393 this_alternative_earlyclobber[i] = 0;
3394 if (this_insn_is_asm)
3395 error_for_asm (this_insn,
3396 "`&' constraint used with no register class");
3397 else
3398 abort ();
3401 for (j = 0; j < noperands; j++)
3402 /* Is this an input operand or a memory ref? */
3403 if ((GET_CODE (recog_data.operand[j]) == MEM
3404 || modified[j] != RELOAD_WRITE)
3405 && j != i
3406 /* Ignore things like match_operator operands. */
3407 && *recog_data.constraints[j] != 0
3408 /* Don't count an input operand that is constrained to match
3409 the early clobber operand. */
3410 && ! (this_alternative_matches[j] == i
3411 && rtx_equal_p (recog_data.operand[i],
3412 recog_data.operand[j]))
3413 /* Is it altered by storing the earlyclobber operand? */
3414 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3415 early_data))
3417 /* If the output is in a single-reg class,
3418 it's costly to reload it, so reload the input instead. */
3419 if (reg_class_size[this_alternative[i]] == 1
3420 && (GET_CODE (recog_data.operand[j]) == REG
3421 || GET_CODE (recog_data.operand[j]) == SUBREG))
3423 losers++;
3424 this_alternative_win[j] = 0;
3425 this_alternative_match_win[j] = 0;
3427 else
3428 break;
3430 /* If an earlyclobber operand conflicts with something,
3431 it must be reloaded, so request this and count the cost. */
3432 if (j != noperands)
3434 losers++;
3435 this_alternative_win[i] = 0;
3436 this_alternative_match_win[j] = 0;
3437 for (j = 0; j < noperands; j++)
3438 if (this_alternative_matches[j] == i
3439 && this_alternative_match_win[j])
3441 this_alternative_win[j] = 0;
3442 this_alternative_match_win[j] = 0;
3443 losers++;
3448 /* If one alternative accepts all the operands, no reload required,
3449 choose that alternative; don't consider the remaining ones. */
3450 if (losers == 0)
3452 /* Unswap these so that they are never swapped at `finish'. */
3453 if (commutative >= 0)
3455 recog_data.operand[commutative] = substed_operand[commutative];
3456 recog_data.operand[commutative + 1]
3457 = substed_operand[commutative + 1];
3459 for (i = 0; i < noperands; i++)
3461 goal_alternative_win[i] = this_alternative_win[i];
3462 goal_alternative_match_win[i] = this_alternative_match_win[i];
3463 goal_alternative[i] = this_alternative[i];
3464 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3465 goal_alternative_matches[i] = this_alternative_matches[i];
3466 goal_alternative_earlyclobber[i]
3467 = this_alternative_earlyclobber[i];
3469 goal_alternative_number = this_alternative_number;
3470 goal_alternative_swapped = swapped;
3471 goal_earlyclobber = this_earlyclobber;
3472 goto finish;
3475 /* REJECT, set by the ! and ? constraint characters and when a register
3476 would be reloaded into a non-preferred class, discourages the use of
3477 this alternative for a reload goal. REJECT is incremented by six
3478 for each ? and two for each non-preferred class. */
3479 losers = losers * 6 + reject;
3481 /* If this alternative can be made to work by reloading,
3482 and it needs less reloading than the others checked so far,
3483 record it as the chosen goal for reloading. */
3484 if (! bad && best > losers)
3486 for (i = 0; i < noperands; i++)
3488 goal_alternative[i] = this_alternative[i];
3489 goal_alternative_win[i] = this_alternative_win[i];
3490 goal_alternative_match_win[i] = this_alternative_match_win[i];
3491 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3492 goal_alternative_matches[i] = this_alternative_matches[i];
3493 goal_alternative_earlyclobber[i]
3494 = this_alternative_earlyclobber[i];
3496 goal_alternative_swapped = swapped;
3497 best = losers;
3498 goal_alternative_number = this_alternative_number;
3499 goal_earlyclobber = this_earlyclobber;
3503 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3504 then we need to try each alternative twice,
3505 the second time matching those two operands
3506 as if we had exchanged them.
3507 To do this, really exchange them in operands.
3509 If we have just tried the alternatives the second time,
3510 return operands to normal and drop through. */
3512 if (commutative >= 0)
3514 swapped = !swapped;
3515 if (swapped)
3517 enum reg_class tclass;
3518 int t;
3520 recog_data.operand[commutative] = substed_operand[commutative + 1];
3521 recog_data.operand[commutative + 1] = substed_operand[commutative];
3522 /* Swap the duplicates too. */
3523 for (i = 0; i < recog_data.n_dups; i++)
3524 if (recog_data.dup_num[i] == commutative
3525 || recog_data.dup_num[i] == commutative + 1)
3526 *recog_data.dup_loc[i]
3527 = recog_data.operand[(int) recog_data.dup_num[i]];
3529 tclass = preferred_class[commutative];
3530 preferred_class[commutative] = preferred_class[commutative + 1];
3531 preferred_class[commutative + 1] = tclass;
3533 t = pref_or_nothing[commutative];
3534 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3535 pref_or_nothing[commutative + 1] = t;
3537 memcpy (constraints, recog_data.constraints,
3538 noperands * sizeof (char *));
3539 goto try_swapped;
3541 else
3543 recog_data.operand[commutative] = substed_operand[commutative];
3544 recog_data.operand[commutative + 1]
3545 = substed_operand[commutative + 1];
3546 /* Unswap the duplicates too. */
3547 for (i = 0; i < recog_data.n_dups; i++)
3548 if (recog_data.dup_num[i] == commutative
3549 || recog_data.dup_num[i] == commutative + 1)
3550 *recog_data.dup_loc[i]
3551 = recog_data.operand[(int) recog_data.dup_num[i]];
3555 /* The operands don't meet the constraints.
3556 goal_alternative describes the alternative
3557 that we could reach by reloading the fewest operands.
3558 Reload so as to fit it. */
3560 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3562 /* No alternative works with reloads?? */
3563 if (insn_code_number >= 0)
3564 fatal_insn ("unable to generate reloads for:", insn);
3565 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3566 /* Avoid further trouble with this insn. */
3567 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3568 n_reloads = 0;
3569 return 0;
3572 /* Jump to `finish' from above if all operands are valid already.
3573 In that case, goal_alternative_win is all 1. */
3574 finish:
3576 /* Right now, for any pair of operands I and J that are required to match,
3577 with I < J,
3578 goal_alternative_matches[J] is I.
3579 Set up goal_alternative_matched as the inverse function:
3580 goal_alternative_matched[I] = J. */
3582 for (i = 0; i < noperands; i++)
3583 goal_alternative_matched[i] = -1;
3585 for (i = 0; i < noperands; i++)
3586 if (! goal_alternative_win[i]
3587 && goal_alternative_matches[i] >= 0)
3588 goal_alternative_matched[goal_alternative_matches[i]] = i;
3590 for (i = 0; i < noperands; i++)
3591 goal_alternative_win[i] |= goal_alternative_match_win[i];
3593 /* If the best alternative is with operands 1 and 2 swapped,
3594 consider them swapped before reporting the reloads. Update the
3595 operand numbers of any reloads already pushed. */
3597 if (goal_alternative_swapped)
3599 rtx tem;
3601 tem = substed_operand[commutative];
3602 substed_operand[commutative] = substed_operand[commutative + 1];
3603 substed_operand[commutative + 1] = tem;
3604 tem = recog_data.operand[commutative];
3605 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3606 recog_data.operand[commutative + 1] = tem;
3607 tem = *recog_data.operand_loc[commutative];
3608 *recog_data.operand_loc[commutative]
3609 = *recog_data.operand_loc[commutative + 1];
3610 *recog_data.operand_loc[commutative + 1] = tem;
3612 for (i = 0; i < n_reloads; i++)
3614 if (rld[i].opnum == commutative)
3615 rld[i].opnum = commutative + 1;
3616 else if (rld[i].opnum == commutative + 1)
3617 rld[i].opnum = commutative;
3621 for (i = 0; i < noperands; i++)
3623 operand_reloadnum[i] = -1;
3625 /* If this is an earlyclobber operand, we need to widen the scope.
3626 The reload must remain valid from the start of the insn being
3627 reloaded until after the operand is stored into its destination.
3628 We approximate this with RELOAD_OTHER even though we know that we
3629 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3631 One special case that is worth checking is when we have an
3632 output that is earlyclobber but isn't used past the insn (typically
3633 a SCRATCH). In this case, we only need have the reload live
3634 through the insn itself, but not for any of our input or output
3635 reloads.
3636 But we must not accidentally narrow the scope of an existing
3637 RELOAD_OTHER reload - leave these alone.
3639 In any case, anything needed to address this operand can remain
3640 however they were previously categorized. */
3642 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3643 operand_type[i]
3644 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3645 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3648 /* Any constants that aren't allowed and can't be reloaded
3649 into registers are here changed into memory references. */
3650 for (i = 0; i < noperands; i++)
3651 if (! goal_alternative_win[i]
3652 && CONSTANT_P (recog_data.operand[i])
3653 /* force_const_mem does not accept HIGH. */
3654 && GET_CODE (recog_data.operand[i]) != HIGH
3655 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3656 (enum reg_class) goal_alternative[i])
3657 == NO_REGS)
3658 || no_input_reloads)
3659 && operand_mode[i] != VOIDmode)
3661 substed_operand[i] = recog_data.operand[i]
3662 = find_reloads_toplev (force_const_mem (operand_mode[i],
3663 recog_data.operand[i]),
3664 i, address_type[i], ind_levels, 0, insn,
3665 NULL);
3666 if (alternative_allows_memconst (recog_data.constraints[i],
3667 goal_alternative_number))
3668 goal_alternative_win[i] = 1;
3671 /* Record the values of the earlyclobber operands for the caller. */
3672 if (goal_earlyclobber)
3673 for (i = 0; i < noperands; i++)
3674 if (goal_alternative_earlyclobber[i])
3675 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3677 /* Now record reloads for all the operands that need them. */
3678 for (i = 0; i < noperands; i++)
3679 if (! goal_alternative_win[i])
3681 /* Operands that match previous ones have already been handled. */
3682 if (goal_alternative_matches[i] >= 0)
3684 /* Handle an operand with a nonoffsettable address
3685 appearing where an offsettable address will do
3686 by reloading the address into a base register.
3688 ??? We can also do this when the operand is a register and
3689 reg_equiv_mem is not offsettable, but this is a bit tricky,
3690 so we don't bother with it. It may not be worth doing. */
3691 else if (goal_alternative_matched[i] == -1
3692 && goal_alternative_offmemok[i]
3693 && GET_CODE (recog_data.operand[i]) == MEM)
3695 operand_reloadnum[i]
3696 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3697 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3698 MODE_BASE_REG_CLASS (VOIDmode),
3699 GET_MODE (XEXP (recog_data.operand[i], 0)),
3700 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3701 rld[operand_reloadnum[i]].inc
3702 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3704 /* If this operand is an output, we will have made any
3705 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3706 now we are treating part of the operand as an input, so
3707 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3709 if (modified[i] == RELOAD_WRITE)
3711 for (j = 0; j < n_reloads; j++)
3713 if (rld[j].opnum == i)
3715 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3716 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3717 else if (rld[j].when_needed
3718 == RELOAD_FOR_OUTADDR_ADDRESS)
3719 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3724 else if (goal_alternative_matched[i] == -1)
3726 operand_reloadnum[i]
3727 = push_reload ((modified[i] != RELOAD_WRITE
3728 ? recog_data.operand[i] : 0),
3729 (modified[i] != RELOAD_READ
3730 ? recog_data.operand[i] : 0),
3731 (modified[i] != RELOAD_WRITE
3732 ? recog_data.operand_loc[i] : 0),
3733 (modified[i] != RELOAD_READ
3734 ? recog_data.operand_loc[i] : 0),
3735 (enum reg_class) goal_alternative[i],
3736 (modified[i] == RELOAD_WRITE
3737 ? VOIDmode : operand_mode[i]),
3738 (modified[i] == RELOAD_READ
3739 ? VOIDmode : operand_mode[i]),
3740 (insn_code_number < 0 ? 0
3741 : insn_data[insn_code_number].operand[i].strict_low),
3742 0, i, operand_type[i]);
3744 /* In a matching pair of operands, one must be input only
3745 and the other must be output only.
3746 Pass the input operand as IN and the other as OUT. */
3747 else if (modified[i] == RELOAD_READ
3748 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3750 operand_reloadnum[i]
3751 = push_reload (recog_data.operand[i],
3752 recog_data.operand[goal_alternative_matched[i]],
3753 recog_data.operand_loc[i],
3754 recog_data.operand_loc[goal_alternative_matched[i]],
3755 (enum reg_class) goal_alternative[i],
3756 operand_mode[i],
3757 operand_mode[goal_alternative_matched[i]],
3758 0, 0, i, RELOAD_OTHER);
3759 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3761 else if (modified[i] == RELOAD_WRITE
3762 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3764 operand_reloadnum[goal_alternative_matched[i]]
3765 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3766 recog_data.operand[i],
3767 recog_data.operand_loc[goal_alternative_matched[i]],
3768 recog_data.operand_loc[i],
3769 (enum reg_class) goal_alternative[i],
3770 operand_mode[goal_alternative_matched[i]],
3771 operand_mode[i],
3772 0, 0, i, RELOAD_OTHER);
3773 operand_reloadnum[i] = output_reloadnum;
3775 else if (insn_code_number >= 0)
3776 abort ();
3777 else
3779 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3780 /* Avoid further trouble with this insn. */
3781 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3782 n_reloads = 0;
3783 return 0;
3786 else if (goal_alternative_matched[i] < 0
3787 && goal_alternative_matches[i] < 0
3788 && optimize)
3790 /* For each non-matching operand that's a MEM or a pseudo-register
3791 that didn't get a hard register, make an optional reload.
3792 This may get done even if the insn needs no reloads otherwise. */
3794 rtx operand = recog_data.operand[i];
3796 while (GET_CODE (operand) == SUBREG)
3797 operand = SUBREG_REG (operand);
3798 if ((GET_CODE (operand) == MEM
3799 || (GET_CODE (operand) == REG
3800 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3801 /* If this is only for an output, the optional reload would not
3802 actually cause us to use a register now, just note that
3803 something is stored here. */
3804 && ((enum reg_class) goal_alternative[i] != NO_REGS
3805 || modified[i] == RELOAD_WRITE)
3806 && ! no_input_reloads
3807 /* An optional output reload might allow to delete INSN later.
3808 We mustn't make in-out reloads on insns that are not permitted
3809 output reloads.
3810 If this is an asm, we can't delete it; we must not even call
3811 push_reload for an optional output reload in this case,
3812 because we can't be sure that the constraint allows a register,
3813 and push_reload verifies the constraints for asms. */
3814 && (modified[i] == RELOAD_READ
3815 || (! no_output_reloads && ! this_insn_is_asm)))
3816 operand_reloadnum[i]
3817 = push_reload ((modified[i] != RELOAD_WRITE
3818 ? recog_data.operand[i] : 0),
3819 (modified[i] != RELOAD_READ
3820 ? recog_data.operand[i] : 0),
3821 (modified[i] != RELOAD_WRITE
3822 ? recog_data.operand_loc[i] : 0),
3823 (modified[i] != RELOAD_READ
3824 ? recog_data.operand_loc[i] : 0),
3825 (enum reg_class) goal_alternative[i],
3826 (modified[i] == RELOAD_WRITE
3827 ? VOIDmode : operand_mode[i]),
3828 (modified[i] == RELOAD_READ
3829 ? VOIDmode : operand_mode[i]),
3830 (insn_code_number < 0 ? 0
3831 : insn_data[insn_code_number].operand[i].strict_low),
3832 1, i, operand_type[i]);
3833 /* If a memory reference remains (either as a MEM or a pseudo that
3834 did not get a hard register), yet we can't make an optional
3835 reload, check if this is actually a pseudo register reference;
3836 we then need to emit a USE and/or a CLOBBER so that reload
3837 inheritance will do the right thing. */
3838 else if (replace
3839 && (GET_CODE (operand) == MEM
3840 || (GET_CODE (operand) == REG
3841 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3842 && reg_renumber [REGNO (operand)] < 0)))
3844 operand = *recog_data.operand_loc[i];
3846 while (GET_CODE (operand) == SUBREG)
3847 operand = SUBREG_REG (operand);
3848 if (GET_CODE (operand) == REG)
3850 if (modified[i] != RELOAD_WRITE)
3851 /* We mark the USE with QImode so that we recognize
3852 it as one that can be safely deleted at the end
3853 of reload. */
3854 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
3855 insn), QImode);
3856 if (modified[i] != RELOAD_READ)
3857 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
3861 else if (goal_alternative_matches[i] >= 0
3862 && goal_alternative_win[goal_alternative_matches[i]]
3863 && modified[i] == RELOAD_READ
3864 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3865 && ! no_input_reloads && ! no_output_reloads
3866 && optimize)
3868 /* Similarly, make an optional reload for a pair of matching
3869 objects that are in MEM or a pseudo that didn't get a hard reg. */
3871 rtx operand = recog_data.operand[i];
3873 while (GET_CODE (operand) == SUBREG)
3874 operand = SUBREG_REG (operand);
3875 if ((GET_CODE (operand) == MEM
3876 || (GET_CODE (operand) == REG
3877 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3878 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3879 != NO_REGS))
3880 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3881 = push_reload (recog_data.operand[goal_alternative_matches[i]],
3882 recog_data.operand[i],
3883 recog_data.operand_loc[goal_alternative_matches[i]],
3884 recog_data.operand_loc[i],
3885 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3886 operand_mode[goal_alternative_matches[i]],
3887 operand_mode[i],
3888 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
3891 /* Perform whatever substitutions on the operands we are supposed
3892 to make due to commutativity or replacement of registers
3893 with equivalent constants or memory slots. */
3895 for (i = 0; i < noperands; i++)
3897 /* We only do this on the last pass through reload, because it is
3898 possible for some data (like reg_equiv_address) to be changed during
3899 later passes. Moreover, we loose the opportunity to get a useful
3900 reload_{in,out}_reg when we do these replacements. */
3902 if (replace)
3904 rtx substitution = substed_operand[i];
3906 *recog_data.operand_loc[i] = substitution;
3908 /* If we're replacing an operand with a LABEL_REF, we need
3909 to make sure that there's a REG_LABEL note attached to
3910 this instruction. */
3911 if (GET_CODE (insn) != JUMP_INSN
3912 && GET_CODE (substitution) == LABEL_REF
3913 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
3914 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
3915 XEXP (substitution, 0),
3916 REG_NOTES (insn));
3918 else
3919 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
3922 /* If this insn pattern contains any MATCH_DUP's, make sure that
3923 they will be substituted if the operands they match are substituted.
3924 Also do now any substitutions we already did on the operands.
3926 Don't do this if we aren't making replacements because we might be
3927 propagating things allocated by frame pointer elimination into places
3928 it doesn't expect. */
3930 if (insn_code_number >= 0 && replace)
3931 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
3933 int opno = recog_data.dup_num[i];
3934 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
3935 if (operand_reloadnum[opno] >= 0)
3936 push_replacement (recog_data.dup_loc[i], operand_reloadnum[opno],
3937 insn_data[insn_code_number].operand[opno].mode);
3940 #if 0
3941 /* This loses because reloading of prior insns can invalidate the equivalence
3942 (or at least find_equiv_reg isn't smart enough to find it any more),
3943 causing this insn to need more reload regs than it needed before.
3944 It may be too late to make the reload regs available.
3945 Now this optimization is done safely in choose_reload_regs. */
3947 /* For each reload of a reg into some other class of reg,
3948 search for an existing equivalent reg (same value now) in the right class.
3949 We can use it as long as we don't need to change its contents. */
3950 for (i = 0; i < n_reloads; i++)
3951 if (rld[i].reg_rtx == 0
3952 && rld[i].in != 0
3953 && GET_CODE (rld[i].in) == REG
3954 && rld[i].out == 0)
3956 rld[i].reg_rtx
3957 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
3958 static_reload_reg_p, 0, rld[i].inmode);
3959 /* Prevent generation of insn to load the value
3960 because the one we found already has the value. */
3961 if (rld[i].reg_rtx)
3962 rld[i].in = rld[i].reg_rtx;
3964 #endif
3966 /* Perhaps an output reload can be combined with another
3967 to reduce needs by one. */
3968 if (!goal_earlyclobber)
3969 combine_reloads ();
3971 /* If we have a pair of reloads for parts of an address, they are reloading
3972 the same object, the operands themselves were not reloaded, and they
3973 are for two operands that are supposed to match, merge the reloads and
3974 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
3976 for (i = 0; i < n_reloads; i++)
3978 int k;
3980 for (j = i + 1; j < n_reloads; j++)
3981 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
3982 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3983 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3984 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3985 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
3986 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
3987 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
3988 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
3989 && rtx_equal_p (rld[i].in, rld[j].in)
3990 && (operand_reloadnum[rld[i].opnum] < 0
3991 || rld[operand_reloadnum[rld[i].opnum]].optional)
3992 && (operand_reloadnum[rld[j].opnum] < 0
3993 || rld[operand_reloadnum[rld[j].opnum]].optional)
3994 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
3995 || (goal_alternative_matches[rld[j].opnum]
3996 == rld[i].opnum)))
3998 for (k = 0; k < n_replacements; k++)
3999 if (replacements[k].what == j)
4000 replacements[k].what = i;
4002 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4003 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4004 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4005 else
4006 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4007 rld[j].in = 0;
4011 /* Scan all the reloads and update their type.
4012 If a reload is for the address of an operand and we didn't reload
4013 that operand, change the type. Similarly, change the operand number
4014 of a reload when two operands match. If a reload is optional, treat it
4015 as though the operand isn't reloaded.
4017 ??? This latter case is somewhat odd because if we do the optional
4018 reload, it means the object is hanging around. Thus we need only
4019 do the address reload if the optional reload was NOT done.
4021 Change secondary reloads to be the address type of their operand, not
4022 the normal type.
4024 If an operand's reload is now RELOAD_OTHER, change any
4025 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4026 RELOAD_FOR_OTHER_ADDRESS. */
4028 for (i = 0; i < n_reloads; i++)
4030 if (rld[i].secondary_p
4031 && rld[i].when_needed == operand_type[rld[i].opnum])
4032 rld[i].when_needed = address_type[rld[i].opnum];
4034 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4035 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4036 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4037 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4038 && (operand_reloadnum[rld[i].opnum] < 0
4039 || rld[operand_reloadnum[rld[i].opnum]].optional))
4041 /* If we have a secondary reload to go along with this reload,
4042 change its type to RELOAD_FOR_OPADDR_ADDR. */
4044 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4045 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4046 && rld[i].secondary_in_reload != -1)
4048 int secondary_in_reload = rld[i].secondary_in_reload;
4050 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4052 /* If there's a tertiary reload we have to change it also. */
4053 if (secondary_in_reload > 0
4054 && rld[secondary_in_reload].secondary_in_reload != -1)
4055 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4056 = RELOAD_FOR_OPADDR_ADDR;
4059 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4060 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4061 && rld[i].secondary_out_reload != -1)
4063 int secondary_out_reload = rld[i].secondary_out_reload;
4065 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4067 /* If there's a tertiary reload we have to change it also. */
4068 if (secondary_out_reload
4069 && rld[secondary_out_reload].secondary_out_reload != -1)
4070 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4071 = RELOAD_FOR_OPADDR_ADDR;
4074 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4075 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4076 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4077 else
4078 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4081 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4082 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4083 && operand_reloadnum[rld[i].opnum] >= 0
4084 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4085 == RELOAD_OTHER))
4086 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4088 if (goal_alternative_matches[rld[i].opnum] >= 0)
4089 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4092 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4093 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4094 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4096 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4097 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4098 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4099 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4100 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4101 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4102 This is complicated by the fact that a single operand can have more
4103 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4104 choose_reload_regs without affecting code quality, and cases that
4105 actually fail are extremely rare, so it turns out to be better to fix
4106 the problem here by not generating cases that choose_reload_regs will
4107 fail for. */
4108 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4109 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4110 a single operand.
4111 We can reduce the register pressure by exploiting that a
4112 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4113 does not conflict with any of them, if it is only used for the first of
4114 the RELOAD_FOR_X_ADDRESS reloads. */
4116 int first_op_addr_num = -2;
4117 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4118 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4119 int need_change = 0;
4120 /* We use last_op_addr_reload and the contents of the above arrays
4121 first as flags - -2 means no instance encountered, -1 means exactly
4122 one instance encountered.
4123 If more than one instance has been encountered, we store the reload
4124 number of the first reload of the kind in question; reload numbers
4125 are known to be non-negative. */
4126 for (i = 0; i < noperands; i++)
4127 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4128 for (i = n_reloads - 1; i >= 0; i--)
4130 switch (rld[i].when_needed)
4132 case RELOAD_FOR_OPERAND_ADDRESS:
4133 if (++first_op_addr_num >= 0)
4135 first_op_addr_num = i;
4136 need_change = 1;
4138 break;
4139 case RELOAD_FOR_INPUT_ADDRESS:
4140 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4142 first_inpaddr_num[rld[i].opnum] = i;
4143 need_change = 1;
4145 break;
4146 case RELOAD_FOR_OUTPUT_ADDRESS:
4147 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4149 first_outpaddr_num[rld[i].opnum] = i;
4150 need_change = 1;
4152 break;
4153 default:
4154 break;
4158 if (need_change)
4160 for (i = 0; i < n_reloads; i++)
4162 int first_num;
4163 enum reload_type type;
4165 switch (rld[i].when_needed)
4167 case RELOAD_FOR_OPADDR_ADDR:
4168 first_num = first_op_addr_num;
4169 type = RELOAD_FOR_OPERAND_ADDRESS;
4170 break;
4171 case RELOAD_FOR_INPADDR_ADDRESS:
4172 first_num = first_inpaddr_num[rld[i].opnum];
4173 type = RELOAD_FOR_INPUT_ADDRESS;
4174 break;
4175 case RELOAD_FOR_OUTADDR_ADDRESS:
4176 first_num = first_outpaddr_num[rld[i].opnum];
4177 type = RELOAD_FOR_OUTPUT_ADDRESS;
4178 break;
4179 default:
4180 continue;
4182 if (first_num < 0)
4183 continue;
4184 else if (i > first_num)
4185 rld[i].when_needed = type;
4186 else
4188 /* Check if the only TYPE reload that uses reload I is
4189 reload FIRST_NUM. */
4190 for (j = n_reloads - 1; j > first_num; j--)
4192 if (rld[j].when_needed == type
4193 && (rld[i].secondary_p
4194 ? rld[j].secondary_in_reload == i
4195 : reg_mentioned_p (rld[i].in, rld[j].in)))
4197 rld[i].when_needed = type;
4198 break;
4206 /* See if we have any reloads that are now allowed to be merged
4207 because we've changed when the reload is needed to
4208 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4209 check for the most common cases. */
4211 for (i = 0; i < n_reloads; i++)
4212 if (rld[i].in != 0 && rld[i].out == 0
4213 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4214 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4215 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4216 for (j = 0; j < n_reloads; j++)
4217 if (i != j && rld[j].in != 0 && rld[j].out == 0
4218 && rld[j].when_needed == rld[i].when_needed
4219 && MATCHES (rld[i].in, rld[j].in)
4220 && rld[i].class == rld[j].class
4221 && !rld[i].nocombine && !rld[j].nocombine
4222 && rld[i].reg_rtx == rld[j].reg_rtx)
4224 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4225 transfer_replacements (i, j);
4226 rld[j].in = 0;
4229 #ifdef HAVE_cc0
4230 /* If we made any reloads for addresses, see if they violate a
4231 "no input reloads" requirement for this insn. But loads that we
4232 do after the insn (such as for output addresses) are fine. */
4233 if (no_input_reloads)
4234 for (i = 0; i < n_reloads; i++)
4235 if (rld[i].in != 0
4236 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
4237 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS)
4238 abort ();
4239 #endif
4241 /* Compute reload_mode and reload_nregs. */
4242 for (i = 0; i < n_reloads; i++)
4244 rld[i].mode
4245 = (rld[i].inmode == VOIDmode
4246 || (GET_MODE_SIZE (rld[i].outmode)
4247 > GET_MODE_SIZE (rld[i].inmode)))
4248 ? rld[i].outmode : rld[i].inmode;
4250 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4253 /* Special case a simple move with an input reload and a
4254 destination of a hard reg, if the hard reg is ok, use it. */
4255 for (i = 0; i < n_reloads; i++)
4256 if (rld[i].when_needed == RELOAD_FOR_INPUT
4257 && GET_CODE (PATTERN (insn)) == SET
4258 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
4259 && SET_SRC (PATTERN (insn)) == rld[i].in)
4261 rtx dest = SET_DEST (PATTERN (insn));
4262 unsigned int regno = REGNO (dest);
4264 if (regno < FIRST_PSEUDO_REGISTER
4265 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4266 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4267 rld[i].reg_rtx = dest;
4270 return retval;
4273 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4274 accepts a memory operand with constant address. */
4276 static int
4277 alternative_allows_memconst (constraint, altnum)
4278 const char *constraint;
4279 int altnum;
4281 int c;
4282 /* Skip alternatives before the one requested. */
4283 while (altnum > 0)
4285 while (*constraint++ != ',');
4286 altnum--;
4288 /* Scan the requested alternative for 'm' or 'o'.
4289 If one of them is present, this alternative accepts memory constants. */
4290 while ((c = *constraint++) && c != ',' && c != '#')
4291 if (c == 'm' || c == 'o')
4292 return 1;
4293 return 0;
4296 /* Scan X for memory references and scan the addresses for reloading.
4297 Also checks for references to "constant" regs that we want to eliminate
4298 and replaces them with the values they stand for.
4299 We may alter X destructively if it contains a reference to such.
4300 If X is just a constant reg, we return the equivalent value
4301 instead of X.
4303 IND_LEVELS says how many levels of indirect addressing this machine
4304 supports.
4306 OPNUM and TYPE identify the purpose of the reload.
4308 IS_SET_DEST is true if X is the destination of a SET, which is not
4309 appropriate to be replaced by a constant.
4311 INSN, if nonzero, is the insn in which we do the reload. It is used
4312 to determine if we may generate output reloads, and where to put USEs
4313 for pseudos that we have to replace with stack slots.
4315 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4316 result of find_reloads_address. */
4318 static rtx
4319 find_reloads_toplev (x, opnum, type, ind_levels, is_set_dest, insn,
4320 address_reloaded)
4321 rtx x;
4322 int opnum;
4323 enum reload_type type;
4324 int ind_levels;
4325 int is_set_dest;
4326 rtx insn;
4327 int *address_reloaded;
4329 RTX_CODE code = GET_CODE (x);
4331 const char *fmt = GET_RTX_FORMAT (code);
4332 int i;
4333 int copied;
4335 if (code == REG)
4337 /* This code is duplicated for speed in find_reloads. */
4338 int regno = REGNO (x);
4339 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4340 x = reg_equiv_constant[regno];
4341 #if 0
4342 /* This creates (subreg (mem...)) which would cause an unnecessary
4343 reload of the mem. */
4344 else if (reg_equiv_mem[regno] != 0)
4345 x = reg_equiv_mem[regno];
4346 #endif
4347 else if (reg_equiv_memory_loc[regno]
4348 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4350 rtx mem = make_memloc (x, regno);
4351 if (reg_equiv_address[regno]
4352 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4354 /* If this is not a toplevel operand, find_reloads doesn't see
4355 this substitution. We have to emit a USE of the pseudo so
4356 that delete_output_reload can see it. */
4357 if (replace_reloads && recog_data.operand[opnum] != x)
4358 /* We mark the USE with QImode so that we recognize it
4359 as one that can be safely deleted at the end of
4360 reload. */
4361 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4362 QImode);
4363 x = mem;
4364 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4365 opnum, type, ind_levels, insn);
4366 if (address_reloaded)
4367 *address_reloaded = i;
4370 return x;
4372 if (code == MEM)
4374 rtx tem = x;
4376 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4377 opnum, type, ind_levels, insn);
4378 if (address_reloaded)
4379 *address_reloaded = i;
4381 return tem;
4384 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG)
4386 /* Check for SUBREG containing a REG that's equivalent to a constant.
4387 If the constant has a known value, truncate it right now.
4388 Similarly if we are extracting a single-word of a multi-word
4389 constant. If the constant is symbolic, allow it to be substituted
4390 normally. push_reload will strip the subreg later. If the
4391 constant is VOIDmode, abort because we will lose the mode of
4392 the register (this should never happen because one of the cases
4393 above should handle it). */
4395 int regno = REGNO (SUBREG_REG (x));
4396 rtx tem;
4398 if (subreg_lowpart_p (x)
4399 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4400 && reg_equiv_constant[regno] != 0
4401 && (tem = gen_lowpart_common (GET_MODE (x),
4402 reg_equiv_constant[regno])) != 0)
4403 return tem;
4405 if (GET_MODE_BITSIZE (GET_MODE (x)) == BITS_PER_WORD
4406 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4407 && reg_equiv_constant[regno] != 0
4408 && (tem = operand_subword (reg_equiv_constant[regno],
4409 SUBREG_BYTE (x) / UNITS_PER_WORD, 0,
4410 GET_MODE (SUBREG_REG (x)))) != 0)
4412 /* TEM is now a word sized constant for the bits from X that
4413 we wanted. However, TEM may be the wrong representation.
4415 Use gen_lowpart_common to convert a CONST_INT into a
4416 CONST_DOUBLE and vice versa as needed according to by the mode
4417 of the SUBREG. */
4418 tem = gen_lowpart_common (GET_MODE (x), tem);
4419 if (!tem)
4420 abort ();
4421 return tem;
4424 /* If the SUBREG is wider than a word, the above test will fail.
4425 For example, we might have a SImode SUBREG of a DImode SUBREG_REG
4426 for a 16 bit target, or a DImode SUBREG of a TImode SUBREG_REG for
4427 a 32 bit target. We still can - and have to - handle this
4428 for non-paradoxical subregs of CONST_INTs. */
4429 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4430 && reg_equiv_constant[regno] != 0
4431 && GET_CODE (reg_equiv_constant[regno]) == CONST_INT
4432 && (GET_MODE_SIZE (GET_MODE (x))
4433 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
4435 int shift = SUBREG_BYTE (x) * BITS_PER_UNIT;
4436 if (WORDS_BIG_ENDIAN)
4437 shift = (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4438 - GET_MODE_BITSIZE (GET_MODE (x))
4439 - shift);
4440 /* Here we use the knowledge that CONST_INTs have a
4441 HOST_WIDE_INT field. */
4442 if (shift >= HOST_BITS_PER_WIDE_INT)
4443 shift = HOST_BITS_PER_WIDE_INT - 1;
4444 return GEN_INT (INTVAL (reg_equiv_constant[regno]) >> shift);
4447 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4448 && reg_equiv_constant[regno] != 0
4449 && GET_MODE (reg_equiv_constant[regno]) == VOIDmode)
4450 abort ();
4452 /* If the subreg contains a reg that will be converted to a mem,
4453 convert the subreg to a narrower memref now.
4454 Otherwise, we would get (subreg (mem ...) ...),
4455 which would force reload of the mem.
4457 We also need to do this if there is an equivalent MEM that is
4458 not offsettable. In that case, alter_subreg would produce an
4459 invalid address on big-endian machines.
4461 For machines that extend byte loads, we must not reload using
4462 a wider mode if we have a paradoxical SUBREG. find_reloads will
4463 force a reload in that case. So we should not do anything here. */
4465 else if (regno >= FIRST_PSEUDO_REGISTER
4466 #ifdef LOAD_EXTEND_OP
4467 && (GET_MODE_SIZE (GET_MODE (x))
4468 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4469 #endif
4470 && (reg_equiv_address[regno] != 0
4471 || (reg_equiv_mem[regno] != 0
4472 && (! strict_memory_address_p (GET_MODE (x),
4473 XEXP (reg_equiv_mem[regno], 0))
4474 || ! offsettable_memref_p (reg_equiv_mem[regno])
4475 || num_not_at_initial_offset))))
4476 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4477 insn);
4480 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4482 if (fmt[i] == 'e')
4484 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4485 ind_levels, is_set_dest, insn,
4486 address_reloaded);
4487 /* If we have replaced a reg with it's equivalent memory loc -
4488 that can still be handled here e.g. if it's in a paradoxical
4489 subreg - we must make the change in a copy, rather than using
4490 a destructive change. This way, find_reloads can still elect
4491 not to do the change. */
4492 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4494 x = shallow_copy_rtx (x);
4495 copied = 1;
4497 XEXP (x, i) = new_part;
4500 return x;
4503 /* Return a mem ref for the memory equivalent of reg REGNO.
4504 This mem ref is not shared with anything. */
4506 static rtx
4507 make_memloc (ad, regno)
4508 rtx ad;
4509 int regno;
4511 /* We must rerun eliminate_regs, in case the elimination
4512 offsets have changed. */
4513 rtx tem
4514 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4516 /* If TEM might contain a pseudo, we must copy it to avoid
4517 modifying it when we do the substitution for the reload. */
4518 if (rtx_varies_p (tem, 0))
4519 tem = copy_rtx (tem);
4521 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4522 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4524 /* Copy the result if it's still the same as the equivalence, to avoid
4525 modifying it when we do the substitution for the reload. */
4526 if (tem == reg_equiv_memory_loc[regno])
4527 tem = copy_rtx (tem);
4528 return tem;
4531 /* Record all reloads needed for handling memory address AD
4532 which appears in *LOC in a memory reference to mode MODE
4533 which itself is found in location *MEMREFLOC.
4534 Note that we take shortcuts assuming that no multi-reg machine mode
4535 occurs as part of an address.
4537 OPNUM and TYPE specify the purpose of this reload.
4539 IND_LEVELS says how many levels of indirect addressing this machine
4540 supports.
4542 INSN, if nonzero, is the insn in which we do the reload. It is used
4543 to determine if we may generate output reloads, and where to put USEs
4544 for pseudos that we have to replace with stack slots.
4546 Value is nonzero if this address is reloaded or replaced as a whole.
4547 This is interesting to the caller if the address is an autoincrement.
4549 Note that there is no verification that the address will be valid after
4550 this routine does its work. Instead, we rely on the fact that the address
4551 was valid when reload started. So we need only undo things that reload
4552 could have broken. These are wrong register types, pseudos not allocated
4553 to a hard register, and frame pointer elimination. */
4555 static int
4556 find_reloads_address (mode, memrefloc, ad, loc, opnum, type, ind_levels, insn)
4557 enum machine_mode mode;
4558 rtx *memrefloc;
4559 rtx ad;
4560 rtx *loc;
4561 int opnum;
4562 enum reload_type type;
4563 int ind_levels;
4564 rtx insn;
4566 int regno;
4567 int removed_and = 0;
4568 rtx tem;
4570 /* If the address is a register, see if it is a legitimate address and
4571 reload if not. We first handle the cases where we need not reload
4572 or where we must reload in a non-standard way. */
4574 if (GET_CODE (ad) == REG)
4576 regno = REGNO (ad);
4578 /* If the register is equivalent to an invariant expression, substitute
4579 the invariant, and eliminate any eliminable register references. */
4580 tem = reg_equiv_constant[regno];
4581 if (tem != 0
4582 && (tem = eliminate_regs (tem, mode, insn))
4583 && strict_memory_address_p (mode, tem))
4585 *loc = ad = tem;
4586 return 0;
4589 tem = reg_equiv_memory_loc[regno];
4590 if (tem != 0)
4592 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4594 tem = make_memloc (ad, regno);
4595 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4597 find_reloads_address (GET_MODE (tem), (rtx*) 0, XEXP (tem, 0),
4598 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
4599 ind_levels, insn);
4601 /* We can avoid a reload if the register's equivalent memory
4602 expression is valid as an indirect memory address.
4603 But not all addresses are valid in a mem used as an indirect
4604 address: only reg or reg+constant. */
4606 if (ind_levels > 0
4607 && strict_memory_address_p (mode, tem)
4608 && (GET_CODE (XEXP (tem, 0)) == REG
4609 || (GET_CODE (XEXP (tem, 0)) == PLUS
4610 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4611 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4613 /* TEM is not the same as what we'll be replacing the
4614 pseudo with after reload, put a USE in front of INSN
4615 in the final reload pass. */
4616 if (replace_reloads
4617 && num_not_at_initial_offset
4618 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4620 *loc = tem;
4621 /* We mark the USE with QImode so that we
4622 recognize it as one that can be safely
4623 deleted at the end of reload. */
4624 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4625 insn), QImode);
4627 /* This doesn't really count as replacing the address
4628 as a whole, since it is still a memory access. */
4630 return 0;
4632 ad = tem;
4636 /* The only remaining case where we can avoid a reload is if this is a
4637 hard register that is valid as a base register and which is not the
4638 subject of a CLOBBER in this insn. */
4640 else if (regno < FIRST_PSEUDO_REGISTER
4641 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4642 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4643 return 0;
4645 /* If we do not have one of the cases above, we must do the reload. */
4646 push_reload (ad, NULL_RTX, loc, (rtx*) 0, MODE_BASE_REG_CLASS (mode),
4647 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4648 return 1;
4651 if (strict_memory_address_p (mode, ad))
4653 /* The address appears valid, so reloads are not needed.
4654 But the address may contain an eliminable register.
4655 This can happen because a machine with indirect addressing
4656 may consider a pseudo register by itself a valid address even when
4657 it has failed to get a hard reg.
4658 So do a tree-walk to find and eliminate all such regs. */
4660 /* But first quickly dispose of a common case. */
4661 if (GET_CODE (ad) == PLUS
4662 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4663 && GET_CODE (XEXP (ad, 0)) == REG
4664 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4665 return 0;
4667 subst_reg_equivs_changed = 0;
4668 *loc = subst_reg_equivs (ad, insn);
4670 if (! subst_reg_equivs_changed)
4671 return 0;
4673 /* Check result for validity after substitution. */
4674 if (strict_memory_address_p (mode, ad))
4675 return 0;
4678 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4681 if (memrefloc)
4683 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4684 ind_levels, win);
4686 break;
4687 win:
4688 *memrefloc = copy_rtx (*memrefloc);
4689 XEXP (*memrefloc, 0) = ad;
4690 move_replacements (&ad, &XEXP (*memrefloc, 0));
4691 return 1;
4693 while (0);
4694 #endif
4696 /* The address is not valid. We have to figure out why. First see if
4697 we have an outer AND and remove it if so. Then analyze what's inside. */
4699 if (GET_CODE (ad) == AND)
4701 removed_and = 1;
4702 loc = &XEXP (ad, 0);
4703 ad = *loc;
4706 /* One possibility for why the address is invalid is that it is itself
4707 a MEM. This can happen when the frame pointer is being eliminated, a
4708 pseudo is not allocated to a hard register, and the offset between the
4709 frame and stack pointers is not its initial value. In that case the
4710 pseudo will have been replaced by a MEM referring to the
4711 stack pointer. */
4712 if (GET_CODE (ad) == MEM)
4714 /* First ensure that the address in this MEM is valid. Then, unless
4715 indirect addresses are valid, reload the MEM into a register. */
4716 tem = ad;
4717 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4718 opnum, ADDR_TYPE (type),
4719 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4721 /* If tem was changed, then we must create a new memory reference to
4722 hold it and store it back into memrefloc. */
4723 if (tem != ad && memrefloc)
4725 *memrefloc = copy_rtx (*memrefloc);
4726 copy_replacements (tem, XEXP (*memrefloc, 0));
4727 loc = &XEXP (*memrefloc, 0);
4728 if (removed_and)
4729 loc = &XEXP (*loc, 0);
4732 /* Check similar cases as for indirect addresses as above except
4733 that we can allow pseudos and a MEM since they should have been
4734 taken care of above. */
4736 if (ind_levels == 0
4737 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4738 || GET_CODE (XEXP (tem, 0)) == MEM
4739 || ! (GET_CODE (XEXP (tem, 0)) == REG
4740 || (GET_CODE (XEXP (tem, 0)) == PLUS
4741 && GET_CODE (XEXP (XEXP (tem, 0), 0)) == REG
4742 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4744 /* Must use TEM here, not AD, since it is the one that will
4745 have any subexpressions reloaded, if needed. */
4746 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4747 MODE_BASE_REG_CLASS (mode), GET_MODE (tem),
4748 VOIDmode, 0,
4749 0, opnum, type);
4750 return ! removed_and;
4752 else
4753 return 0;
4756 /* If we have address of a stack slot but it's not valid because the
4757 displacement is too large, compute the sum in a register.
4758 Handle all base registers here, not just fp/ap/sp, because on some
4759 targets (namely SH) we can also get too large displacements from
4760 big-endian corrections. */
4761 else if (GET_CODE (ad) == PLUS
4762 && GET_CODE (XEXP (ad, 0)) == REG
4763 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4764 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4765 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4767 /* Unshare the MEM rtx so we can safely alter it. */
4768 if (memrefloc)
4770 *memrefloc = copy_rtx (*memrefloc);
4771 loc = &XEXP (*memrefloc, 0);
4772 if (removed_and)
4773 loc = &XEXP (*loc, 0);
4776 if (double_reg_address_ok)
4778 /* Unshare the sum as well. */
4779 *loc = ad = copy_rtx (ad);
4781 /* Reload the displacement into an index reg.
4782 We assume the frame pointer or arg pointer is a base reg. */
4783 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4784 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4785 type, ind_levels);
4786 return 0;
4788 else
4790 /* If the sum of two regs is not necessarily valid,
4791 reload the sum into a base reg.
4792 That will at least work. */
4793 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4794 Pmode, opnum, type, ind_levels);
4796 return ! removed_and;
4799 /* If we have an indexed stack slot, there are three possible reasons why
4800 it might be invalid: The index might need to be reloaded, the address
4801 might have been made by frame pointer elimination and hence have a
4802 constant out of range, or both reasons might apply.
4804 We can easily check for an index needing reload, but even if that is the
4805 case, we might also have an invalid constant. To avoid making the
4806 conservative assumption and requiring two reloads, we see if this address
4807 is valid when not interpreted strictly. If it is, the only problem is
4808 that the index needs a reload and find_reloads_address_1 will take care
4809 of it.
4811 If we decide to do something here, it must be that
4812 `double_reg_address_ok' is true and that this address rtl was made by
4813 eliminate_regs. We generate a reload of the fp/sp/ap + constant and
4814 rework the sum so that the reload register will be added to the index.
4815 This is safe because we know the address isn't shared.
4817 We check for fp/ap/sp as both the first and second operand of the
4818 innermost PLUS. */
4820 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4821 && GET_CODE (XEXP (ad, 0)) == PLUS
4822 && (XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
4823 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4824 || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
4825 #endif
4826 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4827 || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
4828 #endif
4829 || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
4830 && ! memory_address_p (mode, ad))
4832 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4833 plus_constant (XEXP (XEXP (ad, 0), 0),
4834 INTVAL (XEXP (ad, 1))),
4835 XEXP (XEXP (ad, 0), 1));
4836 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0),
4837 MODE_BASE_REG_CLASS (mode),
4838 GET_MODE (ad), opnum, type, ind_levels);
4839 find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
4840 type, 0, insn);
4842 return 0;
4845 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4846 && GET_CODE (XEXP (ad, 0)) == PLUS
4847 && (XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
4848 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
4849 || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
4850 #endif
4851 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4852 || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
4853 #endif
4854 || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
4855 && ! memory_address_p (mode, ad))
4857 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4858 XEXP (XEXP (ad, 0), 0),
4859 plus_constant (XEXP (XEXP (ad, 0), 1),
4860 INTVAL (XEXP (ad, 1))));
4861 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4862 MODE_BASE_REG_CLASS (mode),
4863 GET_MODE (ad), opnum, type, ind_levels);
4864 find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
4865 type, 0, insn);
4867 return 0;
4870 /* See if address becomes valid when an eliminable register
4871 in a sum is replaced. */
4873 tem = ad;
4874 if (GET_CODE (ad) == PLUS)
4875 tem = subst_indexed_address (ad);
4876 if (tem != ad && strict_memory_address_p (mode, tem))
4878 /* Ok, we win that way. Replace any additional eliminable
4879 registers. */
4881 subst_reg_equivs_changed = 0;
4882 tem = subst_reg_equivs (tem, insn);
4884 /* Make sure that didn't make the address invalid again. */
4886 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4888 *loc = tem;
4889 return 0;
4893 /* If constants aren't valid addresses, reload the constant address
4894 into a register. */
4895 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
4897 /* If AD is an address in the constant pool, the MEM rtx may be shared.
4898 Unshare it so we can safely alter it. */
4899 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4900 && CONSTANT_POOL_ADDRESS_P (ad))
4902 *memrefloc = copy_rtx (*memrefloc);
4903 loc = &XEXP (*memrefloc, 0);
4904 if (removed_and)
4905 loc = &XEXP (*loc, 0);
4908 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4909 Pmode, opnum, type, ind_levels);
4910 return ! removed_and;
4913 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
4914 insn);
4917 /* Find all pseudo regs appearing in AD
4918 that are eliminable in favor of equivalent values
4919 and do not have hard regs; replace them by their equivalents.
4920 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
4921 front of it for pseudos that we have to replace with stack slots. */
4923 static rtx
4924 subst_reg_equivs (ad, insn)
4925 rtx ad;
4926 rtx insn;
4928 RTX_CODE code = GET_CODE (ad);
4929 int i;
4930 const char *fmt;
4932 switch (code)
4934 case HIGH:
4935 case CONST_INT:
4936 case CONST:
4937 case CONST_DOUBLE:
4938 case CONST_VECTOR:
4939 case SYMBOL_REF:
4940 case LABEL_REF:
4941 case PC:
4942 case CC0:
4943 return ad;
4945 case REG:
4947 int regno = REGNO (ad);
4949 if (reg_equiv_constant[regno] != 0)
4951 subst_reg_equivs_changed = 1;
4952 return reg_equiv_constant[regno];
4954 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
4956 rtx mem = make_memloc (ad, regno);
4957 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
4959 subst_reg_equivs_changed = 1;
4960 /* We mark the USE with QImode so that we recognize it
4961 as one that can be safely deleted at the end of
4962 reload. */
4963 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
4964 QImode);
4965 return mem;
4969 return ad;
4971 case PLUS:
4972 /* Quickly dispose of a common case. */
4973 if (XEXP (ad, 0) == frame_pointer_rtx
4974 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4975 return ad;
4976 break;
4978 default:
4979 break;
4982 fmt = GET_RTX_FORMAT (code);
4983 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4984 if (fmt[i] == 'e')
4985 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
4986 return ad;
4989 /* Compute the sum of X and Y, making canonicalizations assumed in an
4990 address, namely: sum constant integers, surround the sum of two
4991 constants with a CONST, put the constant as the second operand, and
4992 group the constant on the outermost sum.
4994 This routine assumes both inputs are already in canonical form. */
4997 form_sum (x, y)
4998 rtx x, y;
5000 rtx tem;
5001 enum machine_mode mode = GET_MODE (x);
5003 if (mode == VOIDmode)
5004 mode = GET_MODE (y);
5006 if (mode == VOIDmode)
5007 mode = Pmode;
5009 if (GET_CODE (x) == CONST_INT)
5010 return plus_constant (y, INTVAL (x));
5011 else if (GET_CODE (y) == CONST_INT)
5012 return plus_constant (x, INTVAL (y));
5013 else if (CONSTANT_P (x))
5014 tem = x, x = y, y = tem;
5016 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5017 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5019 /* Note that if the operands of Y are specified in the opposite
5020 order in the recursive calls below, infinite recursion will occur. */
5021 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5022 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5024 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5025 constant will have been placed second. */
5026 if (CONSTANT_P (x) && CONSTANT_P (y))
5028 if (GET_CODE (x) == CONST)
5029 x = XEXP (x, 0);
5030 if (GET_CODE (y) == CONST)
5031 y = XEXP (y, 0);
5033 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5036 return gen_rtx_PLUS (mode, x, y);
5039 /* If ADDR is a sum containing a pseudo register that should be
5040 replaced with a constant (from reg_equiv_constant),
5041 return the result of doing so, and also apply the associative
5042 law so that the result is more likely to be a valid address.
5043 (But it is not guaranteed to be one.)
5045 Note that at most one register is replaced, even if more are
5046 replaceable. Also, we try to put the result into a canonical form
5047 so it is more likely to be a valid address.
5049 In all other cases, return ADDR. */
5051 static rtx
5052 subst_indexed_address (addr)
5053 rtx addr;
5055 rtx op0 = 0, op1 = 0, op2 = 0;
5056 rtx tem;
5057 int regno;
5059 if (GET_CODE (addr) == PLUS)
5061 /* Try to find a register to replace. */
5062 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5063 if (GET_CODE (op0) == REG
5064 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5065 && reg_renumber[regno] < 0
5066 && reg_equiv_constant[regno] != 0)
5067 op0 = reg_equiv_constant[regno];
5068 else if (GET_CODE (op1) == REG
5069 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5070 && reg_renumber[regno] < 0
5071 && reg_equiv_constant[regno] != 0)
5072 op1 = reg_equiv_constant[regno];
5073 else if (GET_CODE (op0) == PLUS
5074 && (tem = subst_indexed_address (op0)) != op0)
5075 op0 = tem;
5076 else if (GET_CODE (op1) == PLUS
5077 && (tem = subst_indexed_address (op1)) != op1)
5078 op1 = tem;
5079 else
5080 return addr;
5082 /* Pick out up to three things to add. */
5083 if (GET_CODE (op1) == PLUS)
5084 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5085 else if (GET_CODE (op0) == PLUS)
5086 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5088 /* Compute the sum. */
5089 if (op2 != 0)
5090 op1 = form_sum (op1, op2);
5091 if (op1 != 0)
5092 op0 = form_sum (op0, op1);
5094 return op0;
5096 return addr;
5099 /* Update the REG_INC notes for an insn. It updates all REG_INC
5100 notes for the instruction which refer to REGNO the to refer
5101 to the reload number.
5103 INSN is the insn for which any REG_INC notes need updating.
5105 REGNO is the register number which has been reloaded.
5107 RELOADNUM is the reload number. */
5109 static void
5110 update_auto_inc_notes (insn, regno, reloadnum)
5111 rtx insn ATTRIBUTE_UNUSED;
5112 int regno ATTRIBUTE_UNUSED;
5113 int reloadnum ATTRIBUTE_UNUSED;
5115 #ifdef AUTO_INC_DEC
5116 rtx link;
5118 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5119 if (REG_NOTE_KIND (link) == REG_INC
5120 && REGNO (XEXP (link, 0)) == regno)
5121 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5122 #endif
5125 /* Record the pseudo registers we must reload into hard registers in a
5126 subexpression of a would-be memory address, X referring to a value
5127 in mode MODE. (This function is not called if the address we find
5128 is strictly valid.)
5130 CONTEXT = 1 means we are considering regs as index regs,
5131 = 0 means we are considering them as base regs.
5133 OPNUM and TYPE specify the purpose of any reloads made.
5135 IND_LEVELS says how many levels of indirect addressing are
5136 supported at this point in the address.
5138 INSN, if nonzero, is the insn in which we do the reload. It is used
5139 to determine if we may generate output reloads.
5141 We return nonzero if X, as a whole, is reloaded or replaced. */
5143 /* Note that we take shortcuts assuming that no multi-reg machine mode
5144 occurs as part of an address.
5145 Also, this is not fully machine-customizable; it works for machines
5146 such as VAXen and 68000's and 32000's, but other possible machines
5147 could have addressing modes that this does not handle right. */
5149 static int
5150 find_reloads_address_1 (mode, x, context, loc, opnum, type, ind_levels, insn)
5151 enum machine_mode mode;
5152 rtx x;
5153 int context;
5154 rtx *loc;
5155 int opnum;
5156 enum reload_type type;
5157 int ind_levels;
5158 rtx insn;
5160 RTX_CODE code = GET_CODE (x);
5162 switch (code)
5164 case PLUS:
5166 rtx orig_op0 = XEXP (x, 0);
5167 rtx orig_op1 = XEXP (x, 1);
5168 RTX_CODE code0 = GET_CODE (orig_op0);
5169 RTX_CODE code1 = GET_CODE (orig_op1);
5170 rtx op0 = orig_op0;
5171 rtx op1 = orig_op1;
5173 if (GET_CODE (op0) == SUBREG)
5175 op0 = SUBREG_REG (op0);
5176 code0 = GET_CODE (op0);
5177 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5178 op0 = gen_rtx_REG (word_mode,
5179 (REGNO (op0) +
5180 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5181 GET_MODE (SUBREG_REG (orig_op0)),
5182 SUBREG_BYTE (orig_op0),
5183 GET_MODE (orig_op0))));
5186 if (GET_CODE (op1) == SUBREG)
5188 op1 = SUBREG_REG (op1);
5189 code1 = GET_CODE (op1);
5190 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5191 /* ??? Why is this given op1's mode and above for
5192 ??? op0 SUBREGs we use word_mode? */
5193 op1 = gen_rtx_REG (GET_MODE (op1),
5194 (REGNO (op1) +
5195 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5196 GET_MODE (SUBREG_REG (orig_op1)),
5197 SUBREG_BYTE (orig_op1),
5198 GET_MODE (orig_op1))));
5201 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5202 || code0 == ZERO_EXTEND || code1 == MEM)
5204 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5205 type, ind_levels, insn);
5206 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5207 type, ind_levels, insn);
5210 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5211 || code1 == ZERO_EXTEND || code0 == MEM)
5213 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5214 type, ind_levels, insn);
5215 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5216 type, ind_levels, insn);
5219 else if (code0 == CONST_INT || code0 == CONST
5220 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5221 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5222 type, ind_levels, insn);
5224 else if (code1 == CONST_INT || code1 == CONST
5225 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5226 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5227 type, ind_levels, insn);
5229 else if (code0 == REG && code1 == REG)
5231 if (REG_OK_FOR_INDEX_P (op0)
5232 && REG_MODE_OK_FOR_BASE_P (op1, mode))
5233 return 0;
5234 else if (REG_OK_FOR_INDEX_P (op1)
5235 && REG_MODE_OK_FOR_BASE_P (op0, mode))
5236 return 0;
5237 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
5238 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5239 type, ind_levels, insn);
5240 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
5241 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5242 type, ind_levels, insn);
5243 else if (REG_OK_FOR_INDEX_P (op1))
5244 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5245 type, ind_levels, insn);
5246 else if (REG_OK_FOR_INDEX_P (op0))
5247 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5248 type, ind_levels, insn);
5249 else
5251 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5252 type, ind_levels, insn);
5253 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5254 type, ind_levels, insn);
5258 else if (code0 == REG)
5260 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5261 type, ind_levels, insn);
5262 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5263 type, ind_levels, insn);
5266 else if (code1 == REG)
5268 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5269 type, ind_levels, insn);
5270 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5271 type, ind_levels, insn);
5275 return 0;
5277 case POST_MODIFY:
5278 case PRE_MODIFY:
5280 rtx op0 = XEXP (x, 0);
5281 rtx op1 = XEXP (x, 1);
5283 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5284 return 0;
5286 /* Currently, we only support {PRE,POST}_MODIFY constructs
5287 where a base register is {inc,dec}remented by the contents
5288 of another register or by a constant value. Thus, these
5289 operands must match. */
5290 if (op0 != XEXP (op1, 0))
5291 abort ();
5293 /* Require index register (or constant). Let's just handle the
5294 register case in the meantime... If the target allows
5295 auto-modify by a constant then we could try replacing a pseudo
5296 register with its equivalent constant where applicable. */
5297 if (REG_P (XEXP (op1, 1)))
5298 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5299 find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5300 opnum, type, ind_levels, insn);
5302 if (REG_P (XEXP (op1, 0)))
5304 int regno = REGNO (XEXP (op1, 0));
5305 int reloadnum;
5307 /* A register that is incremented cannot be constant! */
5308 if (regno >= FIRST_PSEUDO_REGISTER
5309 && reg_equiv_constant[regno] != 0)
5310 abort ();
5312 /* Handle a register that is equivalent to a memory location
5313 which cannot be addressed directly. */
5314 if (reg_equiv_memory_loc[regno] != 0
5315 && (reg_equiv_address[regno] != 0
5316 || num_not_at_initial_offset))
5318 rtx tem = make_memloc (XEXP (x, 0), regno);
5320 if (reg_equiv_address[regno]
5321 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5323 /* First reload the memory location's address.
5324 We can't use ADDR_TYPE (type) here, because we need to
5325 write back the value after reading it, hence we actually
5326 need two registers. */
5327 find_reloads_address (GET_MODE (tem), 0, XEXP (tem, 0),
5328 &XEXP (tem, 0), opnum,
5329 RELOAD_OTHER,
5330 ind_levels, insn);
5332 /* Then reload the memory location into a base
5333 register. */
5334 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5335 &XEXP (op1, 0),
5336 MODE_BASE_REG_CLASS (mode),
5337 GET_MODE (x), GET_MODE (x), 0,
5338 0, opnum, RELOAD_OTHER);
5340 update_auto_inc_notes (this_insn, regno, reloadnum);
5341 return 0;
5345 if (reg_renumber[regno] >= 0)
5346 regno = reg_renumber[regno];
5348 /* We require a base register here... */
5349 if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5351 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5352 &XEXP (op1, 0), &XEXP (x, 0),
5353 MODE_BASE_REG_CLASS (mode),
5354 GET_MODE (x), GET_MODE (x), 0, 0,
5355 opnum, RELOAD_OTHER);
5357 update_auto_inc_notes (this_insn, regno, reloadnum);
5358 return 0;
5361 else
5362 abort ();
5364 return 0;
5366 case POST_INC:
5367 case POST_DEC:
5368 case PRE_INC:
5369 case PRE_DEC:
5370 if (GET_CODE (XEXP (x, 0)) == REG)
5372 int regno = REGNO (XEXP (x, 0));
5373 int value = 0;
5374 rtx x_orig = x;
5376 /* A register that is incremented cannot be constant! */
5377 if (regno >= FIRST_PSEUDO_REGISTER
5378 && reg_equiv_constant[regno] != 0)
5379 abort ();
5381 /* Handle a register that is equivalent to a memory location
5382 which cannot be addressed directly. */
5383 if (reg_equiv_memory_loc[regno] != 0
5384 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5386 rtx tem = make_memloc (XEXP (x, 0), regno);
5387 if (reg_equiv_address[regno]
5388 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5390 /* First reload the memory location's address.
5391 We can't use ADDR_TYPE (type) here, because we need to
5392 write back the value after reading it, hence we actually
5393 need two registers. */
5394 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5395 &XEXP (tem, 0), opnum, type,
5396 ind_levels, insn);
5397 /* Put this inside a new increment-expression. */
5398 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5399 /* Proceed to reload that, as if it contained a register. */
5403 /* If we have a hard register that is ok as an index,
5404 don't make a reload. If an autoincrement of a nice register
5405 isn't "valid", it must be that no autoincrement is "valid".
5406 If that is true and something made an autoincrement anyway,
5407 this must be a special context where one is allowed.
5408 (For example, a "push" instruction.)
5409 We can't improve this address, so leave it alone. */
5411 /* Otherwise, reload the autoincrement into a suitable hard reg
5412 and record how much to increment by. */
5414 if (reg_renumber[regno] >= 0)
5415 regno = reg_renumber[regno];
5416 if ((regno >= FIRST_PSEUDO_REGISTER
5417 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5418 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5420 int reloadnum;
5422 /* If we can output the register afterwards, do so, this
5423 saves the extra update.
5424 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5425 CALL_INSN - and it does not set CC0.
5426 But don't do this if we cannot directly address the
5427 memory location, since this will make it harder to
5428 reuse address reloads, and increases register pressure.
5429 Also don't do this if we can probably update x directly. */
5430 rtx equiv = (GET_CODE (XEXP (x, 0)) == MEM
5431 ? XEXP (x, 0)
5432 : reg_equiv_mem[regno]);
5433 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5434 if (insn && GET_CODE (insn) == INSN && equiv
5435 && memory_operand (equiv, GET_MODE (equiv))
5436 #ifdef HAVE_cc0
5437 && ! sets_cc0_p (PATTERN (insn))
5438 #endif
5439 && ! (icode != CODE_FOR_nothing
5440 && ((*insn_data[icode].operand[0].predicate)
5441 (equiv, Pmode))
5442 && ((*insn_data[icode].operand[1].predicate)
5443 (equiv, Pmode))))
5445 /* We use the original pseudo for loc, so that
5446 emit_reload_insns() knows which pseudo this
5447 reload refers to and updates the pseudo rtx, not
5448 its equivalent memory location, as well as the
5449 corresponding entry in reg_last_reload_reg. */
5450 loc = &XEXP (x_orig, 0);
5451 x = XEXP (x, 0);
5452 reloadnum
5453 = push_reload (x, x, loc, loc,
5454 (context ? INDEX_REG_CLASS :
5455 MODE_BASE_REG_CLASS (mode)),
5456 GET_MODE (x), GET_MODE (x), 0, 0,
5457 opnum, RELOAD_OTHER);
5459 else
5461 reloadnum
5462 = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5463 (context ? INDEX_REG_CLASS :
5464 MODE_BASE_REG_CLASS (mode)),
5465 GET_MODE (x), GET_MODE (x), 0, 0,
5466 opnum, type);
5467 rld[reloadnum].inc
5468 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5470 value = 1;
5473 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5474 reloadnum);
5476 return value;
5479 else if (GET_CODE (XEXP (x, 0)) == MEM)
5481 /* This is probably the result of a substitution, by eliminate_regs,
5482 of an equivalent address for a pseudo that was not allocated to a
5483 hard register. Verify that the specified address is valid and
5484 reload it into a register. */
5485 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5486 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5487 rtx link;
5488 int reloadnum;
5490 /* Since we know we are going to reload this item, don't decrement
5491 for the indirection level.
5493 Note that this is actually conservative: it would be slightly
5494 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5495 reload1.c here. */
5496 /* We can't use ADDR_TYPE (type) here, because we need to
5497 write back the value after reading it, hence we actually
5498 need two registers. */
5499 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5500 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5501 opnum, type, ind_levels, insn);
5503 reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5504 (context ? INDEX_REG_CLASS :
5505 MODE_BASE_REG_CLASS (mode)),
5506 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5507 rld[reloadnum].inc
5508 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5510 link = FIND_REG_INC_NOTE (this_insn, tem);
5511 if (link != 0)
5512 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5514 return 1;
5516 return 0;
5518 case MEM:
5519 /* This is probably the result of a substitution, by eliminate_regs, of
5520 an equivalent address for a pseudo that was not allocated to a hard
5521 register. Verify that the specified address is valid and reload it
5522 into a register.
5524 Since we know we are going to reload this item, don't decrement for
5525 the indirection level.
5527 Note that this is actually conservative: it would be slightly more
5528 efficient to use the value of SPILL_INDIRECT_LEVELS from
5529 reload1.c here. */
5531 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5532 opnum, ADDR_TYPE (type), ind_levels, insn);
5533 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5534 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5535 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5536 return 1;
5538 case REG:
5540 int regno = REGNO (x);
5542 if (reg_equiv_constant[regno] != 0)
5544 find_reloads_address_part (reg_equiv_constant[regno], loc,
5545 (context ? INDEX_REG_CLASS :
5546 MODE_BASE_REG_CLASS (mode)),
5547 GET_MODE (x), opnum, type, ind_levels);
5548 return 1;
5551 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5552 that feeds this insn. */
5553 if (reg_equiv_mem[regno] != 0)
5555 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5556 (context ? INDEX_REG_CLASS :
5557 MODE_BASE_REG_CLASS (mode)),
5558 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5559 return 1;
5561 #endif
5563 if (reg_equiv_memory_loc[regno]
5564 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5566 rtx tem = make_memloc (x, regno);
5567 if (reg_equiv_address[regno] != 0
5568 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5570 x = tem;
5571 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5572 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5573 ind_levels, insn);
5577 if (reg_renumber[regno] >= 0)
5578 regno = reg_renumber[regno];
5580 if ((regno >= FIRST_PSEUDO_REGISTER
5581 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5582 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5584 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5585 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5586 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5587 return 1;
5590 /* If a register appearing in an address is the subject of a CLOBBER
5591 in this insn, reload it into some other register to be safe.
5592 The CLOBBER is supposed to make the register unavailable
5593 from before this insn to after it. */
5594 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5596 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5597 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5598 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5599 return 1;
5602 return 0;
5604 case SUBREG:
5605 if (GET_CODE (SUBREG_REG (x)) == REG)
5607 /* If this is a SUBREG of a hard register and the resulting register
5608 is of the wrong class, reload the whole SUBREG. This avoids
5609 needless copies if SUBREG_REG is multi-word. */
5610 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5612 int regno = subreg_regno (x);
5614 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5615 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5617 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5618 (context ? INDEX_REG_CLASS :
5619 MODE_BASE_REG_CLASS (mode)),
5620 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5621 return 1;
5624 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5625 is larger than the class size, then reload the whole SUBREG. */
5626 else
5628 enum reg_class class = (context ? INDEX_REG_CLASS
5629 : MODE_BASE_REG_CLASS (mode));
5630 if (CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5631 > reg_class_size[class])
5633 x = find_reloads_subreg_address (x, 0, opnum, type,
5634 ind_levels, insn);
5635 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5636 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5637 return 1;
5641 break;
5643 default:
5644 break;
5648 const char *fmt = GET_RTX_FORMAT (code);
5649 int i;
5651 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5653 if (fmt[i] == 'e')
5654 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5655 opnum, type, ind_levels, insn);
5659 return 0;
5662 /* X, which is found at *LOC, is a part of an address that needs to be
5663 reloaded into a register of class CLASS. If X is a constant, or if
5664 X is a PLUS that contains a constant, check that the constant is a
5665 legitimate operand and that we are supposed to be able to load
5666 it into the register.
5668 If not, force the constant into memory and reload the MEM instead.
5670 MODE is the mode to use, in case X is an integer constant.
5672 OPNUM and TYPE describe the purpose of any reloads made.
5674 IND_LEVELS says how many levels of indirect addressing this machine
5675 supports. */
5677 static void
5678 find_reloads_address_part (x, loc, class, mode, opnum, type, ind_levels)
5679 rtx x;
5680 rtx *loc;
5681 enum reg_class class;
5682 enum machine_mode mode;
5683 int opnum;
5684 enum reload_type type;
5685 int ind_levels;
5687 if (CONSTANT_P (x)
5688 && (! LEGITIMATE_CONSTANT_P (x)
5689 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5691 rtx tem;
5693 tem = x = force_const_mem (mode, x);
5694 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5695 opnum, type, ind_levels, 0);
5698 else if (GET_CODE (x) == PLUS
5699 && CONSTANT_P (XEXP (x, 1))
5700 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5701 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5703 rtx tem;
5705 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5706 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5707 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5708 opnum, type, ind_levels, 0);
5711 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5712 mode, VOIDmode, 0, 0, opnum, type);
5715 /* X, a subreg of a pseudo, is a part of an address that needs to be
5716 reloaded.
5718 If the pseudo is equivalent to a memory location that cannot be directly
5719 addressed, make the necessary address reloads.
5721 If address reloads have been necessary, or if the address is changed
5722 by register elimination, return the rtx of the memory location;
5723 otherwise, return X.
5725 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5726 memory location.
5728 OPNUM and TYPE identify the purpose of the reload.
5730 IND_LEVELS says how many levels of indirect addressing are
5731 supported at this point in the address.
5733 INSN, if nonzero, is the insn in which we do the reload. It is used
5734 to determine where to put USEs for pseudos that we have to replace with
5735 stack slots. */
5737 static rtx
5738 find_reloads_subreg_address (x, force_replace, opnum, type,
5739 ind_levels, insn)
5740 rtx x;
5741 int force_replace;
5742 int opnum;
5743 enum reload_type type;
5744 int ind_levels;
5745 rtx insn;
5747 int regno = REGNO (SUBREG_REG (x));
5749 if (reg_equiv_memory_loc[regno])
5751 /* If the address is not directly addressable, or if the address is not
5752 offsettable, then it must be replaced. */
5753 if (! force_replace
5754 && (reg_equiv_address[regno]
5755 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5756 force_replace = 1;
5758 if (force_replace || num_not_at_initial_offset)
5760 rtx tem = make_memloc (SUBREG_REG (x), regno);
5762 /* If the address changes because of register elimination, then
5763 it must be replaced. */
5764 if (force_replace
5765 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5767 int offset = SUBREG_BYTE (x);
5768 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5769 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5771 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5772 PUT_MODE (tem, GET_MODE (x));
5774 /* If this was a paradoxical subreg that we replaced, the
5775 resulting memory must be sufficiently aligned to allow
5776 us to widen the mode of the memory. */
5777 if (outer_size > inner_size && STRICT_ALIGNMENT)
5779 rtx base;
5781 base = XEXP (tem, 0);
5782 if (GET_CODE (base) == PLUS)
5784 if (GET_CODE (XEXP (base, 1)) == CONST_INT
5785 && INTVAL (XEXP (base, 1)) % outer_size != 0)
5786 return x;
5787 base = XEXP (base, 0);
5789 if (GET_CODE (base) != REG
5790 || (REGNO_POINTER_ALIGN (REGNO (base))
5791 < outer_size * BITS_PER_UNIT))
5792 return x;
5795 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5796 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5797 ind_levels, insn);
5799 /* If this is not a toplevel operand, find_reloads doesn't see
5800 this substitution. We have to emit a USE of the pseudo so
5801 that delete_output_reload can see it. */
5802 if (replace_reloads && recog_data.operand[opnum] != x)
5803 /* We mark the USE with QImode so that we recognize it
5804 as one that can be safely deleted at the end of
5805 reload. */
5806 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
5807 SUBREG_REG (x)),
5808 insn), QImode);
5809 x = tem;
5813 return x;
5816 /* Substitute into the current INSN the registers into which we have reloaded
5817 the things that need reloading. The array `replacements'
5818 contains the locations of all pointers that must be changed
5819 and says what to replace them with.
5821 Return the rtx that X translates into; usually X, but modified. */
5823 void
5824 subst_reloads (insn)
5825 rtx insn;
5827 int i;
5829 for (i = 0; i < n_replacements; i++)
5831 struct replacement *r = &replacements[i];
5832 rtx reloadreg = rld[r->what].reg_rtx;
5833 if (reloadreg)
5835 #ifdef ENABLE_CHECKING
5836 /* Internal consistency test. Check that we don't modify
5837 anything in the equivalence arrays. Whenever something from
5838 those arrays needs to be reloaded, it must be unshared before
5839 being substituted into; the equivalence must not be modified.
5840 Otherwise, if the equivalence is used after that, it will
5841 have been modified, and the thing substituted (probably a
5842 register) is likely overwritten and not a usable equivalence. */
5843 int check_regno;
5845 for (check_regno = 0; check_regno < max_regno; check_regno++)
5847 #define CHECK_MODF(ARRAY) \
5848 if (ARRAY[check_regno] \
5849 && loc_mentioned_in_p (r->where, \
5850 ARRAY[check_regno])) \
5851 abort ()
5853 CHECK_MODF (reg_equiv_constant);
5854 CHECK_MODF (reg_equiv_memory_loc);
5855 CHECK_MODF (reg_equiv_address);
5856 CHECK_MODF (reg_equiv_mem);
5857 #undef CHECK_MODF
5859 #endif /* ENABLE_CHECKING */
5861 /* If we're replacing a LABEL_REF with a register, add a
5862 REG_LABEL note to indicate to flow which label this
5863 register refers to. */
5864 if (GET_CODE (*r->where) == LABEL_REF
5865 && GET_CODE (insn) == JUMP_INSN)
5866 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
5867 XEXP (*r->where, 0),
5868 REG_NOTES (insn));
5870 /* Encapsulate RELOADREG so its machine mode matches what
5871 used to be there. Note that gen_lowpart_common will
5872 do the wrong thing if RELOADREG is multi-word. RELOADREG
5873 will always be a REG here. */
5874 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5875 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
5877 /* If we are putting this into a SUBREG and RELOADREG is a
5878 SUBREG, we would be making nested SUBREGs, so we have to fix
5879 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5881 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5883 if (GET_MODE (*r->subreg_loc)
5884 == GET_MODE (SUBREG_REG (reloadreg)))
5885 *r->subreg_loc = SUBREG_REG (reloadreg);
5886 else
5888 int final_offset =
5889 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
5891 /* When working with SUBREGs the rule is that the byte
5892 offset must be a multiple of the SUBREG's mode. */
5893 final_offset = (final_offset /
5894 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5895 final_offset = (final_offset *
5896 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5898 *r->where = SUBREG_REG (reloadreg);
5899 SUBREG_BYTE (*r->subreg_loc) = final_offset;
5902 else
5903 *r->where = reloadreg;
5905 /* If reload got no reg and isn't optional, something's wrong. */
5906 else if (! rld[r->what].optional)
5907 abort ();
5911 /* Make a copy of any replacements being done into X and move those
5912 copies to locations in Y, a copy of X. */
5914 void
5915 copy_replacements (x, y)
5916 rtx x, y;
5918 /* We can't support X being a SUBREG because we might then need to know its
5919 location if something inside it was replaced. */
5920 if (GET_CODE (x) == SUBREG)
5921 abort ();
5923 copy_replacements_1 (&x, &y, n_replacements);
5926 static void
5927 copy_replacements_1 (px, py, orig_replacements)
5928 rtx *px;
5929 rtx *py;
5930 int orig_replacements;
5932 int i, j;
5933 rtx x, y;
5934 struct replacement *r;
5935 enum rtx_code code;
5936 const char *fmt;
5938 for (j = 0; j < orig_replacements; j++)
5940 if (replacements[j].subreg_loc == px)
5942 r = &replacements[n_replacements++];
5943 r->where = replacements[j].where;
5944 r->subreg_loc = py;
5945 r->what = replacements[j].what;
5946 r->mode = replacements[j].mode;
5948 else if (replacements[j].where == px)
5950 r = &replacements[n_replacements++];
5951 r->where = py;
5952 r->subreg_loc = 0;
5953 r->what = replacements[j].what;
5954 r->mode = replacements[j].mode;
5958 x = *px;
5959 y = *py;
5960 code = GET_CODE (x);
5961 fmt = GET_RTX_FORMAT (code);
5963 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5965 if (fmt[i] == 'e')
5966 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
5967 else if (fmt[i] == 'E')
5968 for (j = XVECLEN (x, i); --j >= 0; )
5969 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
5970 orig_replacements);
5974 /* Change any replacements being done to *X to be done to *Y */
5976 void
5977 move_replacements (x, y)
5978 rtx *x;
5979 rtx *y;
5981 int i;
5983 for (i = 0; i < n_replacements; i++)
5984 if (replacements[i].subreg_loc == x)
5985 replacements[i].subreg_loc = y;
5986 else if (replacements[i].where == x)
5988 replacements[i].where = y;
5989 replacements[i].subreg_loc = 0;
5993 /* If LOC was scheduled to be replaced by something, return the replacement.
5994 Otherwise, return *LOC. */
5997 find_replacement (loc)
5998 rtx *loc;
6000 struct replacement *r;
6002 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6004 rtx reloadreg = rld[r->what].reg_rtx;
6006 if (reloadreg && r->where == loc)
6008 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6009 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6011 return reloadreg;
6013 else if (reloadreg && r->subreg_loc == loc)
6015 /* RELOADREG must be either a REG or a SUBREG.
6017 ??? Is it actually still ever a SUBREG? If so, why? */
6019 if (GET_CODE (reloadreg) == REG)
6020 return gen_rtx_REG (GET_MODE (*loc),
6021 (REGNO (reloadreg) +
6022 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6023 GET_MODE (SUBREG_REG (*loc)),
6024 SUBREG_BYTE (*loc),
6025 GET_MODE (*loc))));
6026 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6027 return reloadreg;
6028 else
6030 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6032 /* When working with SUBREGs the rule is that the byte
6033 offset must be a multiple of the SUBREG's mode. */
6034 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6035 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6036 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6037 final_offset);
6042 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6043 what's inside and make a new rtl if so. */
6044 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6045 || GET_CODE (*loc) == MULT)
6047 rtx x = find_replacement (&XEXP (*loc, 0));
6048 rtx y = find_replacement (&XEXP (*loc, 1));
6050 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6051 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6054 return *loc;
6057 /* Return nonzero if register in range [REGNO, ENDREGNO)
6058 appears either explicitly or implicitly in X
6059 other than being stored into (except for earlyclobber operands).
6061 References contained within the substructure at LOC do not count.
6062 LOC may be zero, meaning don't ignore anything.
6064 This is similar to refers_to_regno_p in rtlanal.c except that we
6065 look at equivalences for pseudos that didn't get hard registers. */
6068 refers_to_regno_for_reload_p (regno, endregno, x, loc)
6069 unsigned int regno, endregno;
6070 rtx x;
6071 rtx *loc;
6073 int i;
6074 unsigned int r;
6075 RTX_CODE code;
6076 const char *fmt;
6078 if (x == 0)
6079 return 0;
6081 repeat:
6082 code = GET_CODE (x);
6084 switch (code)
6086 case REG:
6087 r = REGNO (x);
6089 /* If this is a pseudo, a hard register must not have been allocated.
6090 X must therefore either be a constant or be in memory. */
6091 if (r >= FIRST_PSEUDO_REGISTER)
6093 if (reg_equiv_memory_loc[r])
6094 return refers_to_regno_for_reload_p (regno, endregno,
6095 reg_equiv_memory_loc[r],
6096 (rtx*) 0);
6098 if (reg_equiv_constant[r])
6099 return 0;
6101 abort ();
6104 return (endregno > r
6105 && regno < r + (r < FIRST_PSEUDO_REGISTER
6106 ? HARD_REGNO_NREGS (r, GET_MODE (x))
6107 : 1));
6109 case SUBREG:
6110 /* If this is a SUBREG of a hard reg, we can see exactly which
6111 registers are being modified. Otherwise, handle normally. */
6112 if (GET_CODE (SUBREG_REG (x)) == REG
6113 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6115 unsigned int inner_regno = subreg_regno (x);
6116 unsigned int inner_endregno
6117 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6118 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6120 return endregno > inner_regno && regno < inner_endregno;
6122 break;
6124 case CLOBBER:
6125 case SET:
6126 if (&SET_DEST (x) != loc
6127 /* Note setting a SUBREG counts as referring to the REG it is in for
6128 a pseudo but not for hard registers since we can
6129 treat each word individually. */
6130 && ((GET_CODE (SET_DEST (x)) == SUBREG
6131 && loc != &SUBREG_REG (SET_DEST (x))
6132 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG
6133 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6134 && refers_to_regno_for_reload_p (regno, endregno,
6135 SUBREG_REG (SET_DEST (x)),
6136 loc))
6137 /* If the output is an earlyclobber operand, this is
6138 a conflict. */
6139 || ((GET_CODE (SET_DEST (x)) != REG
6140 || earlyclobber_operand_p (SET_DEST (x)))
6141 && refers_to_regno_for_reload_p (regno, endregno,
6142 SET_DEST (x), loc))))
6143 return 1;
6145 if (code == CLOBBER || loc == &SET_SRC (x))
6146 return 0;
6147 x = SET_SRC (x);
6148 goto repeat;
6150 default:
6151 break;
6154 /* X does not match, so try its subexpressions. */
6156 fmt = GET_RTX_FORMAT (code);
6157 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6159 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6161 if (i == 0)
6163 x = XEXP (x, 0);
6164 goto repeat;
6166 else
6167 if (refers_to_regno_for_reload_p (regno, endregno,
6168 XEXP (x, i), loc))
6169 return 1;
6171 else if (fmt[i] == 'E')
6173 int j;
6174 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6175 if (loc != &XVECEXP (x, i, j)
6176 && refers_to_regno_for_reload_p (regno, endregno,
6177 XVECEXP (x, i, j), loc))
6178 return 1;
6181 return 0;
6184 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6185 we check if any register number in X conflicts with the relevant register
6186 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6187 contains a MEM (we don't bother checking for memory addresses that can't
6188 conflict because we expect this to be a rare case.
6190 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6191 that we look at equivalences for pseudos that didn't get hard registers. */
6194 reg_overlap_mentioned_for_reload_p (x, in)
6195 rtx x, in;
6197 int regno, endregno;
6199 /* Overly conservative. */
6200 if (GET_CODE (x) == STRICT_LOW_PART
6201 || GET_RTX_CLASS (GET_CODE (x)) == 'a')
6202 x = XEXP (x, 0);
6204 /* If either argument is a constant, then modifying X can not affect IN. */
6205 if (CONSTANT_P (x) || CONSTANT_P (in))
6206 return 0;
6207 else if (GET_CODE (x) == SUBREG)
6209 regno = REGNO (SUBREG_REG (x));
6210 if (regno < FIRST_PSEUDO_REGISTER)
6211 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6212 GET_MODE (SUBREG_REG (x)),
6213 SUBREG_BYTE (x),
6214 GET_MODE (x));
6216 else if (GET_CODE (x) == REG)
6218 regno = REGNO (x);
6220 /* If this is a pseudo, it must not have been assigned a hard register.
6221 Therefore, it must either be in memory or be a constant. */
6223 if (regno >= FIRST_PSEUDO_REGISTER)
6225 if (reg_equiv_memory_loc[regno])
6226 return refers_to_mem_for_reload_p (in);
6227 else if (reg_equiv_constant[regno])
6228 return 0;
6229 abort ();
6232 else if (GET_CODE (x) == MEM)
6233 return refers_to_mem_for_reload_p (in);
6234 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6235 || GET_CODE (x) == CC0)
6236 return reg_mentioned_p (x, in);
6237 else if (GET_CODE (x) == PLUS)
6238 return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6239 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6240 else
6241 abort ();
6243 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6244 ? HARD_REGNO_NREGS (regno, GET_MODE (x)) : 1);
6246 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6249 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6250 registers. */
6253 refers_to_mem_for_reload_p (x)
6254 rtx x;
6256 const char *fmt;
6257 int i;
6259 if (GET_CODE (x) == MEM)
6260 return 1;
6262 if (GET_CODE (x) == REG)
6263 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6264 && reg_equiv_memory_loc[REGNO (x)]);
6266 fmt = GET_RTX_FORMAT (GET_CODE (x));
6267 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6268 if (fmt[i] == 'e'
6269 && (GET_CODE (XEXP (x, i)) == MEM
6270 || refers_to_mem_for_reload_p (XEXP (x, i))))
6271 return 1;
6273 return 0;
6276 /* Check the insns before INSN to see if there is a suitable register
6277 containing the same value as GOAL.
6278 If OTHER is -1, look for a register in class CLASS.
6279 Otherwise, just see if register number OTHER shares GOAL's value.
6281 Return an rtx for the register found, or zero if none is found.
6283 If RELOAD_REG_P is (short *)1,
6284 we reject any hard reg that appears in reload_reg_rtx
6285 because such a hard reg is also needed coming into this insn.
6287 If RELOAD_REG_P is any other nonzero value,
6288 it is a vector indexed by hard reg number
6289 and we reject any hard reg whose element in the vector is nonnegative
6290 as well as any that appears in reload_reg_rtx.
6292 If GOAL is zero, then GOALREG is a register number; we look
6293 for an equivalent for that register.
6295 MODE is the machine mode of the value we want an equivalence for.
6296 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6298 This function is used by jump.c as well as in the reload pass.
6300 If GOAL is the sum of the stack pointer and a constant, we treat it
6301 as if it were a constant except that sp is required to be unchanging. */
6304 find_equiv_reg (goal, insn, class, other, reload_reg_p, goalreg, mode)
6305 rtx goal;
6306 rtx insn;
6307 enum reg_class class;
6308 int other;
6309 short *reload_reg_p;
6310 int goalreg;
6311 enum machine_mode mode;
6313 rtx p = insn;
6314 rtx goaltry, valtry, value, where;
6315 rtx pat;
6316 int regno = -1;
6317 int valueno;
6318 int goal_mem = 0;
6319 int goal_const = 0;
6320 int goal_mem_addr_varies = 0;
6321 int need_stable_sp = 0;
6322 int nregs;
6323 int valuenregs;
6325 if (goal == 0)
6326 regno = goalreg;
6327 else if (GET_CODE (goal) == REG)
6328 regno = REGNO (goal);
6329 else if (GET_CODE (goal) == MEM)
6331 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6332 if (MEM_VOLATILE_P (goal))
6333 return 0;
6334 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6335 return 0;
6336 /* An address with side effects must be reexecuted. */
6337 switch (code)
6339 case POST_INC:
6340 case PRE_INC:
6341 case POST_DEC:
6342 case PRE_DEC:
6343 case POST_MODIFY:
6344 case PRE_MODIFY:
6345 return 0;
6346 default:
6347 break;
6349 goal_mem = 1;
6351 else if (CONSTANT_P (goal))
6352 goal_const = 1;
6353 else if (GET_CODE (goal) == PLUS
6354 && XEXP (goal, 0) == stack_pointer_rtx
6355 && CONSTANT_P (XEXP (goal, 1)))
6356 goal_const = need_stable_sp = 1;
6357 else if (GET_CODE (goal) == PLUS
6358 && XEXP (goal, 0) == frame_pointer_rtx
6359 && CONSTANT_P (XEXP (goal, 1)))
6360 goal_const = 1;
6361 else
6362 return 0;
6364 /* Scan insns back from INSN, looking for one that copies
6365 a value into or out of GOAL.
6366 Stop and give up if we reach a label. */
6368 while (1)
6370 p = PREV_INSN (p);
6371 if (p == 0 || GET_CODE (p) == CODE_LABEL)
6372 return 0;
6374 if (GET_CODE (p) == INSN
6375 /* If we don't want spill regs ... */
6376 && (! (reload_reg_p != 0
6377 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6378 /* ... then ignore insns introduced by reload; they aren't
6379 useful and can cause results in reload_as_needed to be
6380 different from what they were when calculating the need for
6381 spills. If we notice an input-reload insn here, we will
6382 reject it below, but it might hide a usable equivalent.
6383 That makes bad code. It may even abort: perhaps no reg was
6384 spilled for this insn because it was assumed we would find
6385 that equivalent. */
6386 || INSN_UID (p) < reload_first_uid))
6388 rtx tem;
6389 pat = single_set (p);
6391 /* First check for something that sets some reg equal to GOAL. */
6392 if (pat != 0
6393 && ((regno >= 0
6394 && true_regnum (SET_SRC (pat)) == regno
6395 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6397 (regno >= 0
6398 && true_regnum (SET_DEST (pat)) == regno
6399 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6401 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6402 /* When looking for stack pointer + const,
6403 make sure we don't use a stack adjust. */
6404 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6405 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6406 || (goal_mem
6407 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6408 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6409 || (goal_mem
6410 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6411 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6412 /* If we are looking for a constant,
6413 and something equivalent to that constant was copied
6414 into a reg, we can use that reg. */
6415 || (goal_const && REG_NOTES (p) != 0
6416 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6417 && ((rtx_equal_p (XEXP (tem, 0), goal)
6418 && (valueno
6419 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6420 || (GET_CODE (SET_DEST (pat)) == REG
6421 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6422 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6423 == MODE_FLOAT)
6424 && GET_CODE (goal) == CONST_INT
6425 && 0 != (goaltry
6426 = operand_subword (XEXP (tem, 0), 0, 0,
6427 VOIDmode))
6428 && rtx_equal_p (goal, goaltry)
6429 && (valtry
6430 = operand_subword (SET_DEST (pat), 0, 0,
6431 VOIDmode))
6432 && (valueno = true_regnum (valtry)) >= 0)))
6433 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6434 NULL_RTX))
6435 && GET_CODE (SET_DEST (pat)) == REG
6436 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6437 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6438 == MODE_FLOAT)
6439 && GET_CODE (goal) == CONST_INT
6440 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6441 VOIDmode))
6442 && rtx_equal_p (goal, goaltry)
6443 && (valtry
6444 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6445 && (valueno = true_regnum (valtry)) >= 0)))
6447 if (other >= 0)
6449 if (valueno != other)
6450 continue;
6452 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6453 continue;
6454 else
6456 int i;
6458 for (i = HARD_REGNO_NREGS (valueno, mode) - 1; i >= 0; i--)
6459 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6460 valueno + i))
6461 break;
6462 if (i >= 0)
6463 continue;
6465 value = valtry;
6466 where = p;
6467 break;
6472 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6473 (or copying VALUE into GOAL, if GOAL is also a register).
6474 Now verify that VALUE is really valid. */
6476 /* VALUENO is the register number of VALUE; a hard register. */
6478 /* Don't try to re-use something that is killed in this insn. We want
6479 to be able to trust REG_UNUSED notes. */
6480 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6481 return 0;
6483 /* If we propose to get the value from the stack pointer or if GOAL is
6484 a MEM based on the stack pointer, we need a stable SP. */
6485 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6486 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6487 goal)))
6488 need_stable_sp = 1;
6490 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6491 if (GET_MODE (value) != mode)
6492 return 0;
6494 /* Reject VALUE if it was loaded from GOAL
6495 and is also a register that appears in the address of GOAL. */
6497 if (goal_mem && value == SET_DEST (single_set (where))
6498 && refers_to_regno_for_reload_p (valueno,
6499 (valueno
6500 + HARD_REGNO_NREGS (valueno, mode)),
6501 goal, (rtx*) 0))
6502 return 0;
6504 /* Reject registers that overlap GOAL. */
6506 if (!goal_mem && !goal_const
6507 && regno + (int) HARD_REGNO_NREGS (regno, mode) > valueno
6508 && regno < valueno + (int) HARD_REGNO_NREGS (valueno, mode))
6509 return 0;
6511 nregs = HARD_REGNO_NREGS (regno, mode);
6512 valuenregs = HARD_REGNO_NREGS (valueno, mode);
6514 /* Reject VALUE if it is one of the regs reserved for reloads.
6515 Reload1 knows how to reuse them anyway, and it would get
6516 confused if we allocated one without its knowledge.
6517 (Now that insns introduced by reload are ignored above,
6518 this case shouldn't happen, but I'm not positive.) */
6520 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6522 int i;
6523 for (i = 0; i < valuenregs; ++i)
6524 if (reload_reg_p[valueno + i] >= 0)
6525 return 0;
6528 /* Reject VALUE if it is a register being used for an input reload
6529 even if it is not one of those reserved. */
6531 if (reload_reg_p != 0)
6533 int i;
6534 for (i = 0; i < n_reloads; i++)
6535 if (rld[i].reg_rtx != 0 && rld[i].in)
6537 int regno1 = REGNO (rld[i].reg_rtx);
6538 int nregs1 = HARD_REGNO_NREGS (regno1,
6539 GET_MODE (rld[i].reg_rtx));
6540 if (regno1 < valueno + valuenregs
6541 && regno1 + nregs1 > valueno)
6542 return 0;
6546 if (goal_mem)
6547 /* We must treat frame pointer as varying here,
6548 since it can vary--in a nonlocal goto as generated by expand_goto. */
6549 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6551 /* Now verify that the values of GOAL and VALUE remain unaltered
6552 until INSN is reached. */
6554 p = insn;
6555 while (1)
6557 p = PREV_INSN (p);
6558 if (p == where)
6559 return value;
6561 /* Don't trust the conversion past a function call
6562 if either of the two is in a call-clobbered register, or memory. */
6563 if (GET_CODE (p) == CALL_INSN)
6565 int i;
6567 if (goal_mem || need_stable_sp)
6568 return 0;
6570 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6571 for (i = 0; i < nregs; ++i)
6572 if (call_used_regs[regno + i])
6573 return 0;
6575 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6576 for (i = 0; i < valuenregs; ++i)
6577 if (call_used_regs[valueno + i])
6578 return 0;
6579 #ifdef NON_SAVING_SETJMP
6580 if (NON_SAVING_SETJMP && find_reg_note (p, REG_SETJMP, NULL))
6581 return 0;
6582 #endif
6585 if (INSN_P (p))
6587 pat = PATTERN (p);
6589 /* Watch out for unspec_volatile, and volatile asms. */
6590 if (volatile_insn_p (pat))
6591 return 0;
6593 /* If this insn P stores in either GOAL or VALUE, return 0.
6594 If GOAL is a memory ref and this insn writes memory, return 0.
6595 If GOAL is a memory ref and its address is not constant,
6596 and this insn P changes a register used in GOAL, return 0. */
6598 if (GET_CODE (pat) == COND_EXEC)
6599 pat = COND_EXEC_CODE (pat);
6600 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6602 rtx dest = SET_DEST (pat);
6603 while (GET_CODE (dest) == SUBREG
6604 || GET_CODE (dest) == ZERO_EXTRACT
6605 || GET_CODE (dest) == SIGN_EXTRACT
6606 || GET_CODE (dest) == STRICT_LOW_PART)
6607 dest = XEXP (dest, 0);
6608 if (GET_CODE (dest) == REG)
6610 int xregno = REGNO (dest);
6611 int xnregs;
6612 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6613 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6614 else
6615 xnregs = 1;
6616 if (xregno < regno + nregs && xregno + xnregs > regno)
6617 return 0;
6618 if (xregno < valueno + valuenregs
6619 && xregno + xnregs > valueno)
6620 return 0;
6621 if (goal_mem_addr_varies
6622 && reg_overlap_mentioned_for_reload_p (dest, goal))
6623 return 0;
6624 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6625 return 0;
6627 else if (goal_mem && GET_CODE (dest) == MEM
6628 && ! push_operand (dest, GET_MODE (dest)))
6629 return 0;
6630 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6631 && reg_equiv_memory_loc[regno] != 0)
6632 return 0;
6633 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6634 return 0;
6636 else if (GET_CODE (pat) == PARALLEL)
6638 int i;
6639 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6641 rtx v1 = XVECEXP (pat, 0, i);
6642 if (GET_CODE (v1) == COND_EXEC)
6643 v1 = COND_EXEC_CODE (v1);
6644 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6646 rtx dest = SET_DEST (v1);
6647 while (GET_CODE (dest) == SUBREG
6648 || GET_CODE (dest) == ZERO_EXTRACT
6649 || GET_CODE (dest) == SIGN_EXTRACT
6650 || GET_CODE (dest) == STRICT_LOW_PART)
6651 dest = XEXP (dest, 0);
6652 if (GET_CODE (dest) == REG)
6654 int xregno = REGNO (dest);
6655 int xnregs;
6656 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6657 xnregs = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6658 else
6659 xnregs = 1;
6660 if (xregno < regno + nregs
6661 && xregno + xnregs > regno)
6662 return 0;
6663 if (xregno < valueno + valuenregs
6664 && xregno + xnregs > valueno)
6665 return 0;
6666 if (goal_mem_addr_varies
6667 && reg_overlap_mentioned_for_reload_p (dest,
6668 goal))
6669 return 0;
6670 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6671 return 0;
6673 else if (goal_mem && GET_CODE (dest) == MEM
6674 && ! push_operand (dest, GET_MODE (dest)))
6675 return 0;
6676 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6677 && reg_equiv_memory_loc[regno] != 0)
6678 return 0;
6679 else if (need_stable_sp
6680 && push_operand (dest, GET_MODE (dest)))
6681 return 0;
6686 if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
6688 rtx link;
6690 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6691 link = XEXP (link, 1))
6693 pat = XEXP (link, 0);
6694 if (GET_CODE (pat) == CLOBBER)
6696 rtx dest = SET_DEST (pat);
6698 if (GET_CODE (dest) == REG)
6700 int xregno = REGNO (dest);
6701 int xnregs
6702 = HARD_REGNO_NREGS (xregno, GET_MODE (dest));
6704 if (xregno < regno + nregs
6705 && xregno + xnregs > regno)
6706 return 0;
6707 else if (xregno < valueno + valuenregs
6708 && xregno + xnregs > valueno)
6709 return 0;
6710 else if (goal_mem_addr_varies
6711 && reg_overlap_mentioned_for_reload_p (dest,
6712 goal))
6713 return 0;
6716 else if (goal_mem && GET_CODE (dest) == MEM
6717 && ! push_operand (dest, GET_MODE (dest)))
6718 return 0;
6719 else if (need_stable_sp
6720 && push_operand (dest, GET_MODE (dest)))
6721 return 0;
6726 #ifdef AUTO_INC_DEC
6727 /* If this insn auto-increments or auto-decrements
6728 either regno or valueno, return 0 now.
6729 If GOAL is a memory ref and its address is not constant,
6730 and this insn P increments a register used in GOAL, return 0. */
6732 rtx link;
6734 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6735 if (REG_NOTE_KIND (link) == REG_INC
6736 && GET_CODE (XEXP (link, 0)) == REG)
6738 int incno = REGNO (XEXP (link, 0));
6739 if (incno < regno + nregs && incno >= regno)
6740 return 0;
6741 if (incno < valueno + valuenregs && incno >= valueno)
6742 return 0;
6743 if (goal_mem_addr_varies
6744 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6745 goal))
6746 return 0;
6749 #endif
6754 /* Find a place where INCED appears in an increment or decrement operator
6755 within X, and return the amount INCED is incremented or decremented by.
6756 The value is always positive. */
6758 static int
6759 find_inc_amount (x, inced)
6760 rtx x, inced;
6762 enum rtx_code code = GET_CODE (x);
6763 const char *fmt;
6764 int i;
6766 if (code == MEM)
6768 rtx addr = XEXP (x, 0);
6769 if ((GET_CODE (addr) == PRE_DEC
6770 || GET_CODE (addr) == POST_DEC
6771 || GET_CODE (addr) == PRE_INC
6772 || GET_CODE (addr) == POST_INC)
6773 && XEXP (addr, 0) == inced)
6774 return GET_MODE_SIZE (GET_MODE (x));
6775 else if ((GET_CODE (addr) == PRE_MODIFY
6776 || GET_CODE (addr) == POST_MODIFY)
6777 && GET_CODE (XEXP (addr, 1)) == PLUS
6778 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6779 && XEXP (addr, 0) == inced
6780 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6782 i = INTVAL (XEXP (XEXP (addr, 1), 1));
6783 return i < 0 ? -i : i;
6787 fmt = GET_RTX_FORMAT (code);
6788 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6790 if (fmt[i] == 'e')
6792 int tem = find_inc_amount (XEXP (x, i), inced);
6793 if (tem != 0)
6794 return tem;
6796 if (fmt[i] == 'E')
6798 int j;
6799 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6801 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6802 if (tem != 0)
6803 return tem;
6808 return 0;
6811 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
6812 If SETS is nonzero, also consider SETs. */
6815 regno_clobbered_p (regno, insn, mode, sets)
6816 unsigned int regno;
6817 rtx insn;
6818 enum machine_mode mode;
6819 int sets;
6821 unsigned int nregs = HARD_REGNO_NREGS (regno, mode);
6822 unsigned int endregno = regno + nregs;
6824 if ((GET_CODE (PATTERN (insn)) == CLOBBER
6825 || (sets && GET_CODE (PATTERN (insn)) == SET))
6826 && GET_CODE (XEXP (PATTERN (insn), 0)) == REG)
6828 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
6830 return test >= regno && test < endregno;
6833 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6835 int i = XVECLEN (PATTERN (insn), 0) - 1;
6837 for (; i >= 0; i--)
6839 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6840 if ((GET_CODE (elt) == CLOBBER
6841 || (sets && GET_CODE (PATTERN (insn)) == SET))
6842 && GET_CODE (XEXP (elt, 0)) == REG)
6844 unsigned int test = REGNO (XEXP (elt, 0));
6846 if (test >= regno && test < endregno)
6847 return 1;
6852 return 0;
6855 static const char *const reload_when_needed_name[] =
6857 "RELOAD_FOR_INPUT",
6858 "RELOAD_FOR_OUTPUT",
6859 "RELOAD_FOR_INSN",
6860 "RELOAD_FOR_INPUT_ADDRESS",
6861 "RELOAD_FOR_INPADDR_ADDRESS",
6862 "RELOAD_FOR_OUTPUT_ADDRESS",
6863 "RELOAD_FOR_OUTADDR_ADDRESS",
6864 "RELOAD_FOR_OPERAND_ADDRESS",
6865 "RELOAD_FOR_OPADDR_ADDR",
6866 "RELOAD_OTHER",
6867 "RELOAD_FOR_OTHER_ADDRESS"
6870 static const char * const reg_class_names[] = REG_CLASS_NAMES;
6872 /* These functions are used to print the variables set by 'find_reloads' */
6874 void
6875 debug_reload_to_stream (f)
6876 FILE *f;
6878 int r;
6879 const char *prefix;
6881 if (! f)
6882 f = stderr;
6883 for (r = 0; r < n_reloads; r++)
6885 fprintf (f, "Reload %d: ", r);
6887 if (rld[r].in != 0)
6889 fprintf (f, "reload_in (%s) = ",
6890 GET_MODE_NAME (rld[r].inmode));
6891 print_inline_rtx (f, rld[r].in, 24);
6892 fprintf (f, "\n\t");
6895 if (rld[r].out != 0)
6897 fprintf (f, "reload_out (%s) = ",
6898 GET_MODE_NAME (rld[r].outmode));
6899 print_inline_rtx (f, rld[r].out, 24);
6900 fprintf (f, "\n\t");
6903 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
6905 fprintf (f, "%s (opnum = %d)",
6906 reload_when_needed_name[(int) rld[r].when_needed],
6907 rld[r].opnum);
6909 if (rld[r].optional)
6910 fprintf (f, ", optional");
6912 if (rld[r].nongroup)
6913 fprintf (f, ", nongroup");
6915 if (rld[r].inc != 0)
6916 fprintf (f, ", inc by %d", rld[r].inc);
6918 if (rld[r].nocombine)
6919 fprintf (f, ", can't combine");
6921 if (rld[r].secondary_p)
6922 fprintf (f, ", secondary_reload_p");
6924 if (rld[r].in_reg != 0)
6926 fprintf (f, "\n\treload_in_reg: ");
6927 print_inline_rtx (f, rld[r].in_reg, 24);
6930 if (rld[r].out_reg != 0)
6932 fprintf (f, "\n\treload_out_reg: ");
6933 print_inline_rtx (f, rld[r].out_reg, 24);
6936 if (rld[r].reg_rtx != 0)
6938 fprintf (f, "\n\treload_reg_rtx: ");
6939 print_inline_rtx (f, rld[r].reg_rtx, 24);
6942 prefix = "\n\t";
6943 if (rld[r].secondary_in_reload != -1)
6945 fprintf (f, "%ssecondary_in_reload = %d",
6946 prefix, rld[r].secondary_in_reload);
6947 prefix = ", ";
6950 if (rld[r].secondary_out_reload != -1)
6951 fprintf (f, "%ssecondary_out_reload = %d\n",
6952 prefix, rld[r].secondary_out_reload);
6954 prefix = "\n\t";
6955 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
6957 fprintf (f, "%ssecondary_in_icode = %s", prefix,
6958 insn_data[rld[r].secondary_in_icode].name);
6959 prefix = ", ";
6962 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
6963 fprintf (f, "%ssecondary_out_icode = %s", prefix,
6964 insn_data[rld[r].secondary_out_icode].name);
6966 fprintf (f, "\n");
6970 void
6971 debug_reload ()
6973 debug_reload_to_stream (stderr);