2002-06-13 Akim Demaille <akim@epita.fr>
[official-gcc.git] / gcc / function.c
blob95306777038e1422de2263dda1ee44fd55fb1fe8
1 /* Expands front end tree to back end RTL for GNU C-Compiler
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register.
36 Call `put_var_into_stack' when you learn, belatedly, that a variable
37 previously given a pseudo-register must in fact go in the stack.
38 This function changes the DECL_RTL to be a stack slot instead of a reg
39 then scans all the RTL instructions so far generated to correct them. */
41 #include "config.h"
42 #include "system.h"
43 #include "rtl.h"
44 #include "tree.h"
45 #include "flags.h"
46 #include "except.h"
47 #include "function.h"
48 #include "expr.h"
49 #include "libfuncs.h"
50 #include "regs.h"
51 #include "hard-reg-set.h"
52 #include "insn-config.h"
53 #include "recog.h"
54 #include "output.h"
55 #include "basic-block.h"
56 #include "obstack.h"
57 #include "toplev.h"
58 #include "hashtab.h"
59 #include "ggc.h"
60 #include "tm_p.h"
61 #include "integrate.h"
62 #include "langhooks.h"
64 #ifndef TRAMPOLINE_ALIGNMENT
65 #define TRAMPOLINE_ALIGNMENT FUNCTION_BOUNDARY
66 #endif
68 #ifndef LOCAL_ALIGNMENT
69 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
70 #endif
72 /* Some systems use __main in a way incompatible with its use in gcc, in these
73 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
74 give the same symbol without quotes for an alternative entry point. You
75 must define both, or neither. */
76 #ifndef NAME__MAIN
77 #define NAME__MAIN "__main"
78 #define SYMBOL__MAIN __main
79 #endif
81 /* Round a value to the lowest integer less than it that is a multiple of
82 the required alignment. Avoid using division in case the value is
83 negative. Assume the alignment is a power of two. */
84 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
86 /* Similar, but round to the next highest integer that meets the
87 alignment. */
88 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
90 /* NEED_SEPARATE_AP means that we cannot derive ap from the value of fp
91 during rtl generation. If they are different register numbers, this is
92 always true. It may also be true if
93 FIRST_PARM_OFFSET - STARTING_FRAME_OFFSET is not a constant during rtl
94 generation. See fix_lexical_addr for details. */
96 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
97 #define NEED_SEPARATE_AP
98 #endif
100 /* Nonzero if function being compiled doesn't contain any calls
101 (ignoring the prologue and epilogue). This is set prior to
102 local register allocation and is valid for the remaining
103 compiler passes. */
104 int current_function_is_leaf;
106 /* Nonzero if function being compiled doesn't contain any instructions
107 that can throw an exception. This is set prior to final. */
109 int current_function_nothrow;
111 /* Nonzero if function being compiled doesn't modify the stack pointer
112 (ignoring the prologue and epilogue). This is only valid after
113 life_analysis has run. */
114 int current_function_sp_is_unchanging;
116 /* Nonzero if the function being compiled is a leaf function which only
117 uses leaf registers. This is valid after reload (specifically after
118 sched2) and is useful only if the port defines LEAF_REGISTERS. */
119 int current_function_uses_only_leaf_regs;
121 /* Nonzero once virtual register instantiation has been done.
122 assign_stack_local uses frame_pointer_rtx when this is nonzero.
123 calls.c:emit_library_call_value_1 uses it to set up
124 post-instantiation libcalls. */
125 int virtuals_instantiated;
127 /* Assign unique numbers to labels generated for profiling. */
128 static int profile_label_no;
130 /* These variables hold pointers to functions to create and destroy
131 target specific, per-function data structures. */
132 struct machine_function * (*init_machine_status) PARAMS ((void));
134 /* The FUNCTION_DECL for an inline function currently being expanded. */
135 tree inline_function_decl;
137 /* The currently compiled function. */
138 struct function *cfun = 0;
140 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
141 static GTY(()) varray_type prologue;
142 static GTY(()) varray_type epilogue;
144 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
145 in this function. */
146 static GTY(()) varray_type sibcall_epilogue;
148 /* In order to evaluate some expressions, such as function calls returning
149 structures in memory, we need to temporarily allocate stack locations.
150 We record each allocated temporary in the following structure.
152 Associated with each temporary slot is a nesting level. When we pop up
153 one level, all temporaries associated with the previous level are freed.
154 Normally, all temporaries are freed after the execution of the statement
155 in which they were created. However, if we are inside a ({...}) grouping,
156 the result may be in a temporary and hence must be preserved. If the
157 result could be in a temporary, we preserve it if we can determine which
158 one it is in. If we cannot determine which temporary may contain the
159 result, all temporaries are preserved. A temporary is preserved by
160 pretending it was allocated at the previous nesting level.
162 Automatic variables are also assigned temporary slots, at the nesting
163 level where they are defined. They are marked a "kept" so that
164 free_temp_slots will not free them. */
166 struct temp_slot GTY(())
168 /* Points to next temporary slot. */
169 struct temp_slot *next;
170 /* The rtx to used to reference the slot. */
171 rtx slot;
172 /* The rtx used to represent the address if not the address of the
173 slot above. May be an EXPR_LIST if multiple addresses exist. */
174 rtx address;
175 /* The alignment (in bits) of the slot. */
176 unsigned int align;
177 /* The size, in units, of the slot. */
178 HOST_WIDE_INT size;
179 /* The type of the object in the slot, or zero if it doesn't correspond
180 to a type. We use this to determine whether a slot can be reused.
181 It can be reused if objects of the type of the new slot will always
182 conflict with objects of the type of the old slot. */
183 tree type;
184 /* The value of `sequence_rtl_expr' when this temporary is allocated. */
185 tree rtl_expr;
186 /* Non-zero if this temporary is currently in use. */
187 char in_use;
188 /* Non-zero if this temporary has its address taken. */
189 char addr_taken;
190 /* Nesting level at which this slot is being used. */
191 int level;
192 /* Non-zero if this should survive a call to free_temp_slots. */
193 int keep;
194 /* The offset of the slot from the frame_pointer, including extra space
195 for alignment. This info is for combine_temp_slots. */
196 HOST_WIDE_INT base_offset;
197 /* The size of the slot, including extra space for alignment. This
198 info is for combine_temp_slots. */
199 HOST_WIDE_INT full_size;
202 /* This structure is used to record MEMs or pseudos used to replace VAR, any
203 SUBREGs of VAR, and any MEMs containing VAR as an address. We need to
204 maintain this list in case two operands of an insn were required to match;
205 in that case we must ensure we use the same replacement. */
207 struct fixup_replacement GTY(())
209 rtx old;
210 rtx new;
211 struct fixup_replacement *next;
214 struct insns_for_mem_entry
216 /* A MEM. */
217 rtx key;
218 /* These are the INSNs which reference the MEM. */
219 rtx insns;
222 /* Forward declarations. */
224 static rtx assign_stack_local_1 PARAMS ((enum machine_mode, HOST_WIDE_INT,
225 int, struct function *));
226 static struct temp_slot *find_temp_slot_from_address PARAMS ((rtx));
227 static void put_reg_into_stack PARAMS ((struct function *, rtx, tree,
228 enum machine_mode, enum machine_mode,
229 int, unsigned int, int,
230 htab_t));
231 static void schedule_fixup_var_refs PARAMS ((struct function *, rtx, tree,
232 enum machine_mode,
233 htab_t));
234 static void fixup_var_refs PARAMS ((rtx, enum machine_mode, int, rtx,
235 htab_t));
236 static struct fixup_replacement
237 *find_fixup_replacement PARAMS ((struct fixup_replacement **, rtx));
238 static void fixup_var_refs_insns PARAMS ((rtx, rtx, enum machine_mode,
239 int, int, rtx));
240 static void fixup_var_refs_insns_with_hash
241 PARAMS ((htab_t, rtx,
242 enum machine_mode, int, rtx));
243 static void fixup_var_refs_insn PARAMS ((rtx, rtx, enum machine_mode,
244 int, int, rtx));
245 static void fixup_var_refs_1 PARAMS ((rtx, enum machine_mode, rtx *, rtx,
246 struct fixup_replacement **, rtx));
247 static rtx fixup_memory_subreg PARAMS ((rtx, rtx, enum machine_mode, int));
248 static rtx walk_fixup_memory_subreg PARAMS ((rtx, rtx, enum machine_mode,
249 int));
250 static rtx fixup_stack_1 PARAMS ((rtx, rtx));
251 static void optimize_bit_field PARAMS ((rtx, rtx, rtx *));
252 static void instantiate_decls PARAMS ((tree, int));
253 static void instantiate_decls_1 PARAMS ((tree, int));
254 static void instantiate_decl PARAMS ((rtx, HOST_WIDE_INT, int));
255 static rtx instantiate_new_reg PARAMS ((rtx, HOST_WIDE_INT *));
256 static int instantiate_virtual_regs_1 PARAMS ((rtx *, rtx, int));
257 static void delete_handlers PARAMS ((void));
258 static void pad_to_arg_alignment PARAMS ((struct args_size *, int,
259 struct args_size *));
260 #ifndef ARGS_GROW_DOWNWARD
261 static void pad_below PARAMS ((struct args_size *, enum machine_mode,
262 tree));
263 #endif
264 static rtx round_trampoline_addr PARAMS ((rtx));
265 static rtx adjust_trampoline_addr PARAMS ((rtx));
266 static tree *identify_blocks_1 PARAMS ((rtx, tree *, tree *, tree *));
267 static void reorder_blocks_0 PARAMS ((tree));
268 static void reorder_blocks_1 PARAMS ((rtx, tree, varray_type *));
269 static void reorder_fix_fragments PARAMS ((tree));
270 static tree blocks_nreverse PARAMS ((tree));
271 static int all_blocks PARAMS ((tree, tree *));
272 static tree *get_block_vector PARAMS ((tree, int *));
273 extern tree debug_find_var_in_block_tree PARAMS ((tree, tree));
274 /* We always define `record_insns' even if its not used so that we
275 can always export `prologue_epilogue_contains'. */
276 static void record_insns PARAMS ((rtx, varray_type *)) ATTRIBUTE_UNUSED;
277 static int contains PARAMS ((rtx, varray_type));
278 #ifdef HAVE_return
279 static void emit_return_into_block PARAMS ((basic_block, rtx));
280 #endif
281 static void put_addressof_into_stack PARAMS ((rtx, htab_t));
282 static bool purge_addressof_1 PARAMS ((rtx *, rtx, int, int,
283 htab_t));
284 static void purge_single_hard_subreg_set PARAMS ((rtx));
285 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
286 static rtx keep_stack_depressed PARAMS ((rtx));
287 #endif
288 static int is_addressof PARAMS ((rtx *, void *));
289 static hashval_t insns_for_mem_hash PARAMS ((const void *));
290 static int insns_for_mem_comp PARAMS ((const void *, const void *));
291 static int insns_for_mem_walk PARAMS ((rtx *, void *));
292 static void compute_insns_for_mem PARAMS ((rtx, rtx, htab_t));
293 static void prepare_function_start PARAMS ((void));
294 static void do_clobber_return_reg PARAMS ((rtx, void *));
295 static void do_use_return_reg PARAMS ((rtx, void *));
297 /* Pointer to chain of `struct function' for containing functions. */
298 static GTY(()) struct function *outer_function_chain;
300 /* Given a function decl for a containing function,
301 return the `struct function' for it. */
303 struct function *
304 find_function_data (decl)
305 tree decl;
307 struct function *p;
309 for (p = outer_function_chain; p; p = p->outer)
310 if (p->decl == decl)
311 return p;
313 abort ();
316 /* Save the current context for compilation of a nested function.
317 This is called from language-specific code. The caller should use
318 the enter_nested langhook to save any language-specific state,
319 since this function knows only about language-independent
320 variables. */
322 void
323 push_function_context_to (context)
324 tree context;
326 struct function *p;
328 if (context)
330 if (context == current_function_decl)
331 cfun->contains_functions = 1;
332 else
334 struct function *containing = find_function_data (context);
335 containing->contains_functions = 1;
339 if (cfun == 0)
340 init_dummy_function_start ();
341 p = cfun;
343 p->outer = outer_function_chain;
344 outer_function_chain = p;
345 p->fixup_var_refs_queue = 0;
347 (*lang_hooks.function.enter_nested) (p);
349 cfun = 0;
352 void
353 push_function_context ()
355 push_function_context_to (current_function_decl);
358 /* Restore the last saved context, at the end of a nested function.
359 This function is called from language-specific code. */
361 void
362 pop_function_context_from (context)
363 tree context ATTRIBUTE_UNUSED;
365 struct function *p = outer_function_chain;
366 struct var_refs_queue *queue;
368 cfun = p;
369 outer_function_chain = p->outer;
371 current_function_decl = p->decl;
372 reg_renumber = 0;
374 restore_emit_status (p);
376 (*lang_hooks.function.leave_nested) (p);
378 /* Finish doing put_var_into_stack for any of our variables which became
379 addressable during the nested function. If only one entry has to be
380 fixed up, just do that one. Otherwise, first make a list of MEMs that
381 are not to be unshared. */
382 if (p->fixup_var_refs_queue == 0)
384 else if (p->fixup_var_refs_queue->next == 0)
385 fixup_var_refs (p->fixup_var_refs_queue->modified,
386 p->fixup_var_refs_queue->promoted_mode,
387 p->fixup_var_refs_queue->unsignedp,
388 p->fixup_var_refs_queue->modified, 0);
389 else
391 rtx list = 0;
393 for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
394 list = gen_rtx_EXPR_LIST (VOIDmode, queue->modified, list);
396 for (queue = p->fixup_var_refs_queue; queue; queue = queue->next)
397 fixup_var_refs (queue->modified, queue->promoted_mode,
398 queue->unsignedp, list, 0);
402 p->fixup_var_refs_queue = 0;
404 /* Reset variables that have known state during rtx generation. */
405 rtx_equal_function_value_matters = 1;
406 virtuals_instantiated = 0;
407 generating_concat_p = 1;
410 void
411 pop_function_context ()
413 pop_function_context_from (current_function_decl);
416 /* Clear out all parts of the state in F that can safely be discarded
417 after the function has been parsed, but not compiled, to let
418 garbage collection reclaim the memory. */
420 void
421 free_after_parsing (f)
422 struct function *f;
424 /* f->expr->forced_labels is used by code generation. */
425 /* f->emit->regno_reg_rtx is used by code generation. */
426 /* f->varasm is used by code generation. */
427 /* f->eh->eh_return_stub_label is used by code generation. */
429 (*lang_hooks.function.final) (f);
430 f->stmt = NULL;
433 /* Clear out all parts of the state in F that can safely be discarded
434 after the function has been compiled, to let garbage collection
435 reclaim the memory. */
437 void
438 free_after_compilation (f)
439 struct function *f;
441 f->eh = NULL;
442 f->expr = NULL;
443 f->emit = NULL;
444 f->varasm = NULL;
445 f->machine = NULL;
447 f->x_temp_slots = NULL;
448 f->arg_offset_rtx = NULL;
449 f->return_rtx = NULL;
450 f->internal_arg_pointer = NULL;
451 f->x_nonlocal_labels = NULL;
452 f->x_nonlocal_goto_handler_slots = NULL;
453 f->x_nonlocal_goto_handler_labels = NULL;
454 f->x_nonlocal_goto_stack_level = NULL;
455 f->x_cleanup_label = NULL;
456 f->x_return_label = NULL;
457 f->x_save_expr_regs = NULL;
458 f->x_stack_slot_list = NULL;
459 f->x_rtl_expr_chain = NULL;
460 f->x_tail_recursion_label = NULL;
461 f->x_tail_recursion_reentry = NULL;
462 f->x_arg_pointer_save_area = NULL;
463 f->x_clobber_return_insn = NULL;
464 f->x_context_display = NULL;
465 f->x_trampoline_list = NULL;
466 f->x_parm_birth_insn = NULL;
467 f->x_last_parm_insn = NULL;
468 f->x_parm_reg_stack_loc = NULL;
469 f->fixup_var_refs_queue = NULL;
470 f->original_arg_vector = NULL;
471 f->original_decl_initial = NULL;
472 f->inl_last_parm_insn = NULL;
473 f->epilogue_delay_list = NULL;
476 /* Allocate fixed slots in the stack frame of the current function. */
478 /* Return size needed for stack frame based on slots so far allocated in
479 function F.
480 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
481 the caller may have to do that. */
483 HOST_WIDE_INT
484 get_func_frame_size (f)
485 struct function *f;
487 #ifdef FRAME_GROWS_DOWNWARD
488 return -f->x_frame_offset;
489 #else
490 return f->x_frame_offset;
491 #endif
494 /* Return size needed for stack frame based on slots so far allocated.
495 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
496 the caller may have to do that. */
497 HOST_WIDE_INT
498 get_frame_size ()
500 return get_func_frame_size (cfun);
503 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
504 with machine mode MODE.
506 ALIGN controls the amount of alignment for the address of the slot:
507 0 means according to MODE,
508 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
509 positive specifies alignment boundary in bits.
511 We do not round to stack_boundary here.
513 FUNCTION specifies the function to allocate in. */
515 static rtx
516 assign_stack_local_1 (mode, size, align, function)
517 enum machine_mode mode;
518 HOST_WIDE_INT size;
519 int align;
520 struct function *function;
522 rtx x, addr;
523 int bigend_correction = 0;
524 int alignment;
525 int frame_off, frame_alignment, frame_phase;
527 if (align == 0)
529 tree type;
531 if (mode == BLKmode)
532 alignment = BIGGEST_ALIGNMENT;
533 else
534 alignment = GET_MODE_ALIGNMENT (mode);
536 /* Allow the target to (possibly) increase the alignment of this
537 stack slot. */
538 type = (*lang_hooks.types.type_for_mode) (mode, 0);
539 if (type)
540 alignment = LOCAL_ALIGNMENT (type, alignment);
542 alignment /= BITS_PER_UNIT;
544 else if (align == -1)
546 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
547 size = CEIL_ROUND (size, alignment);
549 else
550 alignment = align / BITS_PER_UNIT;
552 #ifdef FRAME_GROWS_DOWNWARD
553 function->x_frame_offset -= size;
554 #endif
556 /* Ignore alignment we can't do with expected alignment of the boundary. */
557 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
558 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
560 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
561 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
563 /* Calculate how many bytes the start of local variables is off from
564 stack alignment. */
565 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
566 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
567 frame_phase = frame_off ? frame_alignment - frame_off : 0;
569 /* Round frame offset to that alignment.
570 We must be careful here, since FRAME_OFFSET might be negative and
571 division with a negative dividend isn't as well defined as we might
572 like. So we instead assume that ALIGNMENT is a power of two and
573 use logical operations which are unambiguous. */
574 #ifdef FRAME_GROWS_DOWNWARD
575 function->x_frame_offset = FLOOR_ROUND (function->x_frame_offset - frame_phase, alignment) + frame_phase;
576 #else
577 function->x_frame_offset = CEIL_ROUND (function->x_frame_offset - frame_phase, alignment) + frame_phase;
578 #endif
580 /* On a big-endian machine, if we are allocating more space than we will use,
581 use the least significant bytes of those that are allocated. */
582 if (BYTES_BIG_ENDIAN && mode != BLKmode)
583 bigend_correction = size - GET_MODE_SIZE (mode);
585 /* If we have already instantiated virtual registers, return the actual
586 address relative to the frame pointer. */
587 if (function == cfun && virtuals_instantiated)
588 addr = plus_constant (frame_pointer_rtx,
589 (frame_offset + bigend_correction
590 + STARTING_FRAME_OFFSET));
591 else
592 addr = plus_constant (virtual_stack_vars_rtx,
593 function->x_frame_offset + bigend_correction);
595 #ifndef FRAME_GROWS_DOWNWARD
596 function->x_frame_offset += size;
597 #endif
599 x = gen_rtx_MEM (mode, addr);
601 function->x_stack_slot_list
602 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
604 return x;
607 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
608 current function. */
611 assign_stack_local (mode, size, align)
612 enum machine_mode mode;
613 HOST_WIDE_INT size;
614 int align;
616 return assign_stack_local_1 (mode, size, align, cfun);
619 /* Allocate a temporary stack slot and record it for possible later
620 reuse.
622 MODE is the machine mode to be given to the returned rtx.
624 SIZE is the size in units of the space required. We do no rounding here
625 since assign_stack_local will do any required rounding.
627 KEEP is 1 if this slot is to be retained after a call to
628 free_temp_slots. Automatic variables for a block are allocated
629 with this flag. KEEP is 2 if we allocate a longer term temporary,
630 whose lifetime is controlled by CLEANUP_POINT_EXPRs. KEEP is 3
631 if we are to allocate something at an inner level to be treated as
632 a variable in the block (e.g., a SAVE_EXPR).
634 TYPE is the type that will be used for the stack slot. */
637 assign_stack_temp_for_type (mode, size, keep, type)
638 enum machine_mode mode;
639 HOST_WIDE_INT size;
640 int keep;
641 tree type;
643 unsigned int align;
644 struct temp_slot *p, *best_p = 0;
646 /* If SIZE is -1 it means that somebody tried to allocate a temporary
647 of a variable size. */
648 if (size == -1)
649 abort ();
651 if (mode == BLKmode)
652 align = BIGGEST_ALIGNMENT;
653 else
654 align = GET_MODE_ALIGNMENT (mode);
656 if (! type)
657 type = (*lang_hooks.types.type_for_mode) (mode, 0);
659 if (type)
660 align = LOCAL_ALIGNMENT (type, align);
662 /* Try to find an available, already-allocated temporary of the proper
663 mode which meets the size and alignment requirements. Choose the
664 smallest one with the closest alignment. */
665 for (p = temp_slots; p; p = p->next)
666 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
667 && ! p->in_use
668 && objects_must_conflict_p (p->type, type)
669 && (best_p == 0 || best_p->size > p->size
670 || (best_p->size == p->size && best_p->align > p->align)))
672 if (p->align == align && p->size == size)
674 best_p = 0;
675 break;
677 best_p = p;
680 /* Make our best, if any, the one to use. */
681 if (best_p)
683 /* If there are enough aligned bytes left over, make them into a new
684 temp_slot so that the extra bytes don't get wasted. Do this only
685 for BLKmode slots, so that we can be sure of the alignment. */
686 if (GET_MODE (best_p->slot) == BLKmode)
688 int alignment = best_p->align / BITS_PER_UNIT;
689 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
691 if (best_p->size - rounded_size >= alignment)
693 p = (struct temp_slot *) ggc_alloc (sizeof (struct temp_slot));
694 p->in_use = p->addr_taken = 0;
695 p->size = best_p->size - rounded_size;
696 p->base_offset = best_p->base_offset + rounded_size;
697 p->full_size = best_p->full_size - rounded_size;
698 p->slot = gen_rtx_MEM (BLKmode,
699 plus_constant (XEXP (best_p->slot, 0),
700 rounded_size));
701 p->align = best_p->align;
702 p->address = 0;
703 p->rtl_expr = 0;
704 p->type = best_p->type;
705 p->next = temp_slots;
706 temp_slots = p;
708 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
709 stack_slot_list);
711 best_p->size = rounded_size;
712 best_p->full_size = rounded_size;
716 p = best_p;
719 /* If we still didn't find one, make a new temporary. */
720 if (p == 0)
722 HOST_WIDE_INT frame_offset_old = frame_offset;
724 p = (struct temp_slot *) ggc_alloc (sizeof (struct temp_slot));
726 /* We are passing an explicit alignment request to assign_stack_local.
727 One side effect of that is assign_stack_local will not round SIZE
728 to ensure the frame offset remains suitably aligned.
730 So for requests which depended on the rounding of SIZE, we go ahead
731 and round it now. We also make sure ALIGNMENT is at least
732 BIGGEST_ALIGNMENT. */
733 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
734 abort ();
735 p->slot = assign_stack_local (mode,
736 (mode == BLKmode
737 ? CEIL_ROUND (size, align / BITS_PER_UNIT)
738 : size),
739 align);
741 p->align = align;
743 /* The following slot size computation is necessary because we don't
744 know the actual size of the temporary slot until assign_stack_local
745 has performed all the frame alignment and size rounding for the
746 requested temporary. Note that extra space added for alignment
747 can be either above or below this stack slot depending on which
748 way the frame grows. We include the extra space if and only if it
749 is above this slot. */
750 #ifdef FRAME_GROWS_DOWNWARD
751 p->size = frame_offset_old - frame_offset;
752 #else
753 p->size = size;
754 #endif
756 /* Now define the fields used by combine_temp_slots. */
757 #ifdef FRAME_GROWS_DOWNWARD
758 p->base_offset = frame_offset;
759 p->full_size = frame_offset_old - frame_offset;
760 #else
761 p->base_offset = frame_offset_old;
762 p->full_size = frame_offset - frame_offset_old;
763 #endif
764 p->address = 0;
765 p->next = temp_slots;
766 temp_slots = p;
769 p->in_use = 1;
770 p->addr_taken = 0;
771 p->rtl_expr = seq_rtl_expr;
772 p->type = type;
774 if (keep == 2)
776 p->level = target_temp_slot_level;
777 p->keep = 0;
779 else if (keep == 3)
781 p->level = var_temp_slot_level;
782 p->keep = 0;
784 else
786 p->level = temp_slot_level;
787 p->keep = keep;
790 /* We may be reusing an old slot, so clear any MEM flags that may have been
791 set from before. */
792 RTX_UNCHANGING_P (p->slot) = 0;
793 MEM_IN_STRUCT_P (p->slot) = 0;
794 MEM_SCALAR_P (p->slot) = 0;
795 MEM_VOLATILE_P (p->slot) = 0;
796 set_mem_alias_set (p->slot, 0);
798 /* If we know the alias set for the memory that will be used, use
799 it. If there's no TYPE, then we don't know anything about the
800 alias set for the memory. */
801 set_mem_alias_set (p->slot, type ? get_alias_set (type) : 0);
802 set_mem_align (p->slot, align);
804 /* If a type is specified, set the relevant flags. */
805 if (type != 0)
807 RTX_UNCHANGING_P (p->slot) = TYPE_READONLY (type);
808 MEM_VOLATILE_P (p->slot) = TYPE_VOLATILE (type);
809 MEM_SET_IN_STRUCT_P (p->slot, AGGREGATE_TYPE_P (type));
812 return p->slot;
815 /* Allocate a temporary stack slot and record it for possible later
816 reuse. First three arguments are same as in preceding function. */
819 assign_stack_temp (mode, size, keep)
820 enum machine_mode mode;
821 HOST_WIDE_INT size;
822 int keep;
824 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
827 /* Assign a temporary.
828 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
829 and so that should be used in error messages. In either case, we
830 allocate of the given type.
831 KEEP is as for assign_stack_temp.
832 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
833 it is 0 if a register is OK.
834 DONT_PROMOTE is 1 if we should not promote values in register
835 to wider modes. */
838 assign_temp (type_or_decl, keep, memory_required, dont_promote)
839 tree type_or_decl;
840 int keep;
841 int memory_required;
842 int dont_promote ATTRIBUTE_UNUSED;
844 tree type, decl;
845 enum machine_mode mode;
846 #ifndef PROMOTE_FOR_CALL_ONLY
847 int unsignedp;
848 #endif
850 if (DECL_P (type_or_decl))
851 decl = type_or_decl, type = TREE_TYPE (decl);
852 else
853 decl = NULL, type = type_or_decl;
855 mode = TYPE_MODE (type);
856 #ifndef PROMOTE_FOR_CALL_ONLY
857 unsignedp = TREE_UNSIGNED (type);
858 #endif
860 if (mode == BLKmode || memory_required)
862 HOST_WIDE_INT size = int_size_in_bytes (type);
863 rtx tmp;
865 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
866 problems with allocating the stack space. */
867 if (size == 0)
868 size = 1;
870 /* Unfortunately, we don't yet know how to allocate variable-sized
871 temporaries. However, sometimes we have a fixed upper limit on
872 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
873 instead. This is the case for Chill variable-sized strings. */
874 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
875 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
876 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
877 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
879 /* The size of the temporary may be too large to fit into an integer. */
880 /* ??? Not sure this should happen except for user silliness, so limit
881 this to things that aren't compiler-generated temporaries. The
882 rest of the time we'll abort in assign_stack_temp_for_type. */
883 if (decl && size == -1
884 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
886 error_with_decl (decl, "size of variable `%s' is too large");
887 size = 1;
890 tmp = assign_stack_temp_for_type (mode, size, keep, type);
891 return tmp;
894 #ifndef PROMOTE_FOR_CALL_ONLY
895 if (! dont_promote)
896 mode = promote_mode (type, mode, &unsignedp, 0);
897 #endif
899 return gen_reg_rtx (mode);
902 /* Combine temporary stack slots which are adjacent on the stack.
904 This allows for better use of already allocated stack space. This is only
905 done for BLKmode slots because we can be sure that we won't have alignment
906 problems in this case. */
908 void
909 combine_temp_slots ()
911 struct temp_slot *p, *q;
912 struct temp_slot *prev_p, *prev_q;
913 int num_slots;
915 /* We can't combine slots, because the information about which slot
916 is in which alias set will be lost. */
917 if (flag_strict_aliasing)
918 return;
920 /* If there are a lot of temp slots, don't do anything unless
921 high levels of optimization. */
922 if (! flag_expensive_optimizations)
923 for (p = temp_slots, num_slots = 0; p; p = p->next, num_slots++)
924 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
925 return;
927 for (p = temp_slots, prev_p = 0; p; p = prev_p ? prev_p->next : temp_slots)
929 int delete_p = 0;
931 if (! p->in_use && GET_MODE (p->slot) == BLKmode)
932 for (q = p->next, prev_q = p; q; q = prev_q->next)
934 int delete_q = 0;
935 if (! q->in_use && GET_MODE (q->slot) == BLKmode)
937 if (p->base_offset + p->full_size == q->base_offset)
939 /* Q comes after P; combine Q into P. */
940 p->size += q->size;
941 p->full_size += q->full_size;
942 delete_q = 1;
944 else if (q->base_offset + q->full_size == p->base_offset)
946 /* P comes after Q; combine P into Q. */
947 q->size += p->size;
948 q->full_size += p->full_size;
949 delete_p = 1;
950 break;
953 /* Either delete Q or advance past it. */
954 if (delete_q)
955 prev_q->next = q->next;
956 else
957 prev_q = q;
959 /* Either delete P or advance past it. */
960 if (delete_p)
962 if (prev_p)
963 prev_p->next = p->next;
964 else
965 temp_slots = p->next;
967 else
968 prev_p = p;
972 /* Find the temp slot corresponding to the object at address X. */
974 static struct temp_slot *
975 find_temp_slot_from_address (x)
976 rtx x;
978 struct temp_slot *p;
979 rtx next;
981 for (p = temp_slots; p; p = p->next)
983 if (! p->in_use)
984 continue;
986 else if (XEXP (p->slot, 0) == x
987 || p->address == x
988 || (GET_CODE (x) == PLUS
989 && XEXP (x, 0) == virtual_stack_vars_rtx
990 && GET_CODE (XEXP (x, 1)) == CONST_INT
991 && INTVAL (XEXP (x, 1)) >= p->base_offset
992 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
993 return p;
995 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
996 for (next = p->address; next; next = XEXP (next, 1))
997 if (XEXP (next, 0) == x)
998 return p;
1001 /* If we have a sum involving a register, see if it points to a temp
1002 slot. */
1003 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == REG
1004 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
1005 return p;
1006 else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == REG
1007 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
1008 return p;
1010 return 0;
1013 /* Indicate that NEW is an alternate way of referring to the temp slot
1014 that previously was known by OLD. */
1016 void
1017 update_temp_slot_address (old, new)
1018 rtx old, new;
1020 struct temp_slot *p;
1022 if (rtx_equal_p (old, new))
1023 return;
1025 p = find_temp_slot_from_address (old);
1027 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
1028 is a register, see if one operand of the PLUS is a temporary
1029 location. If so, NEW points into it. Otherwise, if both OLD and
1030 NEW are a PLUS and if there is a register in common between them.
1031 If so, try a recursive call on those values. */
1032 if (p == 0)
1034 if (GET_CODE (old) != PLUS)
1035 return;
1037 if (GET_CODE (new) == REG)
1039 update_temp_slot_address (XEXP (old, 0), new);
1040 update_temp_slot_address (XEXP (old, 1), new);
1041 return;
1043 else if (GET_CODE (new) != PLUS)
1044 return;
1046 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
1047 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
1048 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
1049 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
1050 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1051 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1052 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1053 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1055 return;
1058 /* Otherwise add an alias for the temp's address. */
1059 else if (p->address == 0)
1060 p->address = new;
1061 else
1063 if (GET_CODE (p->address) != EXPR_LIST)
1064 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1066 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1070 /* If X could be a reference to a temporary slot, mark the fact that its
1071 address was taken. */
1073 void
1074 mark_temp_addr_taken (x)
1075 rtx x;
1077 struct temp_slot *p;
1079 if (x == 0)
1080 return;
1082 /* If X is not in memory or is at a constant address, it cannot be in
1083 a temporary slot. */
1084 if (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1085 return;
1087 p = find_temp_slot_from_address (XEXP (x, 0));
1088 if (p != 0)
1089 p->addr_taken = 1;
1092 /* If X could be a reference to a temporary slot, mark that slot as
1093 belonging to the to one level higher than the current level. If X
1094 matched one of our slots, just mark that one. Otherwise, we can't
1095 easily predict which it is, so upgrade all of them. Kept slots
1096 need not be touched.
1098 This is called when an ({...}) construct occurs and a statement
1099 returns a value in memory. */
1101 void
1102 preserve_temp_slots (x)
1103 rtx x;
1105 struct temp_slot *p = 0;
1107 /* If there is no result, we still might have some objects whose address
1108 were taken, so we need to make sure they stay around. */
1109 if (x == 0)
1111 for (p = temp_slots; p; p = p->next)
1112 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1113 p->level--;
1115 return;
1118 /* If X is a register that is being used as a pointer, see if we have
1119 a temporary slot we know it points to. To be consistent with
1120 the code below, we really should preserve all non-kept slots
1121 if we can't find a match, but that seems to be much too costly. */
1122 if (GET_CODE (x) == REG && REG_POINTER (x))
1123 p = find_temp_slot_from_address (x);
1125 /* If X is not in memory or is at a constant address, it cannot be in
1126 a temporary slot, but it can contain something whose address was
1127 taken. */
1128 if (p == 0 && (GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0))))
1130 for (p = temp_slots; p; p = p->next)
1131 if (p->in_use && p->level == temp_slot_level && p->addr_taken)
1132 p->level--;
1134 return;
1137 /* First see if we can find a match. */
1138 if (p == 0)
1139 p = find_temp_slot_from_address (XEXP (x, 0));
1141 if (p != 0)
1143 /* Move everything at our level whose address was taken to our new
1144 level in case we used its address. */
1145 struct temp_slot *q;
1147 if (p->level == temp_slot_level)
1149 for (q = temp_slots; q; q = q->next)
1150 if (q != p && q->addr_taken && q->level == p->level)
1151 q->level--;
1153 p->level--;
1154 p->addr_taken = 0;
1156 return;
1159 /* Otherwise, preserve all non-kept slots at this level. */
1160 for (p = temp_slots; p; p = p->next)
1161 if (p->in_use && p->level == temp_slot_level && ! p->keep)
1162 p->level--;
1165 /* X is the result of an RTL_EXPR. If it is a temporary slot associated
1166 with that RTL_EXPR, promote it into a temporary slot at the present
1167 level so it will not be freed when we free slots made in the
1168 RTL_EXPR. */
1170 void
1171 preserve_rtl_expr_result (x)
1172 rtx x;
1174 struct temp_slot *p;
1176 /* If X is not in memory or is at a constant address, it cannot be in
1177 a temporary slot. */
1178 if (x == 0 || GET_CODE (x) != MEM || CONSTANT_P (XEXP (x, 0)))
1179 return;
1181 /* If we can find a match, move it to our level unless it is already at
1182 an upper level. */
1183 p = find_temp_slot_from_address (XEXP (x, 0));
1184 if (p != 0)
1186 p->level = MIN (p->level, temp_slot_level);
1187 p->rtl_expr = 0;
1190 return;
1193 /* Free all temporaries used so far. This is normally called at the end
1194 of generating code for a statement. Don't free any temporaries
1195 currently in use for an RTL_EXPR that hasn't yet been emitted.
1196 We could eventually do better than this since it can be reused while
1197 generating the same RTL_EXPR, but this is complex and probably not
1198 worthwhile. */
1200 void
1201 free_temp_slots ()
1203 struct temp_slot *p;
1205 for (p = temp_slots; p; p = p->next)
1206 if (p->in_use && p->level == temp_slot_level && ! p->keep
1207 && p->rtl_expr == 0)
1208 p->in_use = 0;
1210 combine_temp_slots ();
1213 /* Free all temporary slots used in T, an RTL_EXPR node. */
1215 void
1216 free_temps_for_rtl_expr (t)
1217 tree t;
1219 struct temp_slot *p;
1221 for (p = temp_slots; p; p = p->next)
1222 if (p->rtl_expr == t)
1224 /* If this slot is below the current TEMP_SLOT_LEVEL, then it
1225 needs to be preserved. This can happen if a temporary in
1226 the RTL_EXPR was addressed; preserve_temp_slots will move
1227 the temporary into a higher level. */
1228 if (temp_slot_level <= p->level)
1229 p->in_use = 0;
1230 else
1231 p->rtl_expr = NULL_TREE;
1234 combine_temp_slots ();
1237 /* Mark all temporaries ever allocated in this function as not suitable
1238 for reuse until the current level is exited. */
1240 void
1241 mark_all_temps_used ()
1243 struct temp_slot *p;
1245 for (p = temp_slots; p; p = p->next)
1247 p->in_use = p->keep = 1;
1248 p->level = MIN (p->level, temp_slot_level);
1252 /* Push deeper into the nesting level for stack temporaries. */
1254 void
1255 push_temp_slots ()
1257 temp_slot_level++;
1260 /* Likewise, but save the new level as the place to allocate variables
1261 for blocks. */
1263 #if 0
1264 void
1265 push_temp_slots_for_block ()
1267 push_temp_slots ();
1269 var_temp_slot_level = temp_slot_level;
1272 /* Likewise, but save the new level as the place to allocate temporaries
1273 for TARGET_EXPRs. */
1275 void
1276 push_temp_slots_for_target ()
1278 push_temp_slots ();
1280 target_temp_slot_level = temp_slot_level;
1283 /* Set and get the value of target_temp_slot_level. The only
1284 permitted use of these functions is to save and restore this value. */
1287 get_target_temp_slot_level ()
1289 return target_temp_slot_level;
1292 void
1293 set_target_temp_slot_level (level)
1294 int level;
1296 target_temp_slot_level = level;
1298 #endif
1300 /* Pop a temporary nesting level. All slots in use in the current level
1301 are freed. */
1303 void
1304 pop_temp_slots ()
1306 struct temp_slot *p;
1308 for (p = temp_slots; p; p = p->next)
1309 if (p->in_use && p->level == temp_slot_level && p->rtl_expr == 0)
1310 p->in_use = 0;
1312 combine_temp_slots ();
1314 temp_slot_level--;
1317 /* Initialize temporary slots. */
1319 void
1320 init_temp_slots ()
1322 /* We have not allocated any temporaries yet. */
1323 temp_slots = 0;
1324 temp_slot_level = 0;
1325 var_temp_slot_level = 0;
1326 target_temp_slot_level = 0;
1329 /* Retroactively move an auto variable from a register to a stack slot.
1330 This is done when an address-reference to the variable is seen. */
1332 void
1333 put_var_into_stack (decl)
1334 tree decl;
1336 rtx reg;
1337 enum machine_mode promoted_mode, decl_mode;
1338 struct function *function = 0;
1339 tree context;
1340 int can_use_addressof;
1341 int volatilep = TREE_CODE (decl) != SAVE_EXPR && TREE_THIS_VOLATILE (decl);
1342 int usedp = (TREE_USED (decl)
1343 || (TREE_CODE (decl) != SAVE_EXPR && DECL_INITIAL (decl) != 0));
1345 context = decl_function_context (decl);
1347 /* Get the current rtl used for this object and its original mode. */
1348 reg = (TREE_CODE (decl) == SAVE_EXPR
1349 ? SAVE_EXPR_RTL (decl)
1350 : DECL_RTL_IF_SET (decl));
1352 /* No need to do anything if decl has no rtx yet
1353 since in that case caller is setting TREE_ADDRESSABLE
1354 and a stack slot will be assigned when the rtl is made. */
1355 if (reg == 0)
1356 return;
1358 /* Get the declared mode for this object. */
1359 decl_mode = (TREE_CODE (decl) == SAVE_EXPR ? TYPE_MODE (TREE_TYPE (decl))
1360 : DECL_MODE (decl));
1361 /* Get the mode it's actually stored in. */
1362 promoted_mode = GET_MODE (reg);
1364 /* If this variable comes from an outer function, find that
1365 function's saved context. Don't use find_function_data here,
1366 because it might not be in any active function.
1367 FIXME: Is that really supposed to happen?
1368 It does in ObjC at least. */
1369 if (context != current_function_decl && context != inline_function_decl)
1370 for (function = outer_function_chain; function; function = function->outer)
1371 if (function->decl == context)
1372 break;
1374 /* If this is a variable-size object with a pseudo to address it,
1375 put that pseudo into the stack, if the var is nonlocal. */
1376 if (TREE_CODE (decl) != SAVE_EXPR && DECL_NONLOCAL (decl)
1377 && GET_CODE (reg) == MEM
1378 && GET_CODE (XEXP (reg, 0)) == REG
1379 && REGNO (XEXP (reg, 0)) > LAST_VIRTUAL_REGISTER)
1381 reg = XEXP (reg, 0);
1382 decl_mode = promoted_mode = GET_MODE (reg);
1385 can_use_addressof
1386 = (function == 0
1387 && optimize > 0
1388 /* FIXME make it work for promoted modes too */
1389 && decl_mode == promoted_mode
1390 #ifdef NON_SAVING_SETJMP
1391 && ! (NON_SAVING_SETJMP && current_function_calls_setjmp)
1392 #endif
1395 /* If we can't use ADDRESSOF, make sure we see through one we already
1396 generated. */
1397 if (! can_use_addressof && GET_CODE (reg) == MEM
1398 && GET_CODE (XEXP (reg, 0)) == ADDRESSOF)
1399 reg = XEXP (XEXP (reg, 0), 0);
1401 /* Now we should have a value that resides in one or more pseudo regs. */
1403 if (GET_CODE (reg) == REG)
1405 /* If this variable lives in the current function and we don't need
1406 to put things in the stack for the sake of setjmp, try to keep it
1407 in a register until we know we actually need the address. */
1408 if (can_use_addressof)
1409 gen_mem_addressof (reg, decl);
1410 else
1411 put_reg_into_stack (function, reg, TREE_TYPE (decl), promoted_mode,
1412 decl_mode, volatilep, 0, usedp, 0);
1414 else if (GET_CODE (reg) == CONCAT)
1416 /* A CONCAT contains two pseudos; put them both in the stack.
1417 We do it so they end up consecutive.
1418 We fixup references to the parts only after we fixup references
1419 to the whole CONCAT, lest we do double fixups for the latter
1420 references. */
1421 enum machine_mode part_mode = GET_MODE (XEXP (reg, 0));
1422 tree part_type = (*lang_hooks.types.type_for_mode) (part_mode, 0);
1423 rtx lopart = XEXP (reg, 0);
1424 rtx hipart = XEXP (reg, 1);
1425 #ifdef FRAME_GROWS_DOWNWARD
1426 /* Since part 0 should have a lower address, do it second. */
1427 put_reg_into_stack (function, hipart, part_type, part_mode,
1428 part_mode, volatilep, 0, 0, 0);
1429 put_reg_into_stack (function, lopart, part_type, part_mode,
1430 part_mode, volatilep, 0, 0, 0);
1431 #else
1432 put_reg_into_stack (function, lopart, part_type, part_mode,
1433 part_mode, volatilep, 0, 0, 0);
1434 put_reg_into_stack (function, hipart, part_type, part_mode,
1435 part_mode, volatilep, 0, 0, 0);
1436 #endif
1438 /* Change the CONCAT into a combined MEM for both parts. */
1439 PUT_CODE (reg, MEM);
1440 MEM_ATTRS (reg) = 0;
1442 /* set_mem_attributes uses DECL_RTL to avoid re-generating of
1443 already computed alias sets. Here we want to re-generate. */
1444 if (DECL_P (decl))
1445 SET_DECL_RTL (decl, NULL);
1446 set_mem_attributes (reg, decl, 1);
1447 if (DECL_P (decl))
1448 SET_DECL_RTL (decl, reg);
1450 /* The two parts are in memory order already.
1451 Use the lower parts address as ours. */
1452 XEXP (reg, 0) = XEXP (XEXP (reg, 0), 0);
1453 /* Prevent sharing of rtl that might lose. */
1454 if (GET_CODE (XEXP (reg, 0)) == PLUS)
1455 XEXP (reg, 0) = copy_rtx (XEXP (reg, 0));
1456 if (usedp)
1458 schedule_fixup_var_refs (function, reg, TREE_TYPE (decl),
1459 promoted_mode, 0);
1460 schedule_fixup_var_refs (function, lopart, part_type, part_mode, 0);
1461 schedule_fixup_var_refs (function, hipart, part_type, part_mode, 0);
1464 else
1465 return;
1468 /* Subroutine of put_var_into_stack. This puts a single pseudo reg REG
1469 into the stack frame of FUNCTION (0 means the current function).
1470 DECL_MODE is the machine mode of the user-level data type.
1471 PROMOTED_MODE is the machine mode of the register.
1472 VOLATILE_P is nonzero if this is for a "volatile" decl.
1473 USED_P is nonzero if this reg might have already been used in an insn. */
1475 static void
1476 put_reg_into_stack (function, reg, type, promoted_mode, decl_mode, volatile_p,
1477 original_regno, used_p, ht)
1478 struct function *function;
1479 rtx reg;
1480 tree type;
1481 enum machine_mode promoted_mode, decl_mode;
1482 int volatile_p;
1483 unsigned int original_regno;
1484 int used_p;
1485 htab_t ht;
1487 struct function *func = function ? function : cfun;
1488 rtx new = 0;
1489 unsigned int regno = original_regno;
1491 if (regno == 0)
1492 regno = REGNO (reg);
1494 if (regno < func->x_max_parm_reg)
1495 new = func->x_parm_reg_stack_loc[regno];
1497 if (new == 0)
1498 new = assign_stack_local_1 (decl_mode, GET_MODE_SIZE (decl_mode), 0, func);
1500 PUT_CODE (reg, MEM);
1501 PUT_MODE (reg, decl_mode);
1502 XEXP (reg, 0) = XEXP (new, 0);
1503 MEM_ATTRS (reg) = 0;
1504 /* `volatil' bit means one thing for MEMs, another entirely for REGs. */
1505 MEM_VOLATILE_P (reg) = volatile_p;
1507 /* If this is a memory ref that contains aggregate components,
1508 mark it as such for cse and loop optimize. If we are reusing a
1509 previously generated stack slot, then we need to copy the bit in
1510 case it was set for other reasons. For instance, it is set for
1511 __builtin_va_alist. */
1512 if (type)
1514 MEM_SET_IN_STRUCT_P (reg,
1515 AGGREGATE_TYPE_P (type) || MEM_IN_STRUCT_P (new));
1516 set_mem_alias_set (reg, get_alias_set (type));
1519 if (used_p)
1520 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht);
1523 /* Make sure that all refs to the variable, previously made
1524 when it was a register, are fixed up to be valid again.
1525 See function above for meaning of arguments. */
1527 static void
1528 schedule_fixup_var_refs (function, reg, type, promoted_mode, ht)
1529 struct function *function;
1530 rtx reg;
1531 tree type;
1532 enum machine_mode promoted_mode;
1533 htab_t ht;
1535 int unsigned_p = type ? TREE_UNSIGNED (type) : 0;
1537 if (function != 0)
1539 struct var_refs_queue *temp;
1541 temp
1542 = (struct var_refs_queue *) ggc_alloc (sizeof (struct var_refs_queue));
1543 temp->modified = reg;
1544 temp->promoted_mode = promoted_mode;
1545 temp->unsignedp = unsigned_p;
1546 temp->next = function->fixup_var_refs_queue;
1547 function->fixup_var_refs_queue = temp;
1549 else
1550 /* Variable is local; fix it up now. */
1551 fixup_var_refs (reg, promoted_mode, unsigned_p, reg, ht);
1554 static void
1555 fixup_var_refs (var, promoted_mode, unsignedp, may_share, ht)
1556 rtx var;
1557 enum machine_mode promoted_mode;
1558 int unsignedp;
1559 htab_t ht;
1560 rtx may_share;
1562 tree pending;
1563 rtx first_insn = get_insns ();
1564 struct sequence_stack *stack = seq_stack;
1565 tree rtl_exps = rtl_expr_chain;
1567 /* If there's a hash table, it must record all uses of VAR. */
1568 if (ht)
1570 if (stack != 0)
1571 abort ();
1572 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp,
1573 may_share);
1574 return;
1577 fixup_var_refs_insns (first_insn, var, promoted_mode, unsignedp,
1578 stack == 0, may_share);
1580 /* Scan all pending sequences too. */
1581 for (; stack; stack = stack->next)
1583 push_to_full_sequence (stack->first, stack->last);
1584 fixup_var_refs_insns (stack->first, var, promoted_mode, unsignedp,
1585 stack->next != 0, may_share);
1586 /* Update remembered end of sequence
1587 in case we added an insn at the end. */
1588 stack->last = get_last_insn ();
1589 end_sequence ();
1592 /* Scan all waiting RTL_EXPRs too. */
1593 for (pending = rtl_exps; pending; pending = TREE_CHAIN (pending))
1595 rtx seq = RTL_EXPR_SEQUENCE (TREE_VALUE (pending));
1596 if (seq != const0_rtx && seq != 0)
1598 push_to_sequence (seq);
1599 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
1600 may_share);
1601 end_sequence ();
1606 /* REPLACEMENTS is a pointer to a list of the struct fixup_replacement and X is
1607 some part of an insn. Return a struct fixup_replacement whose OLD
1608 value is equal to X. Allocate a new structure if no such entry exists. */
1610 static struct fixup_replacement *
1611 find_fixup_replacement (replacements, x)
1612 struct fixup_replacement **replacements;
1613 rtx x;
1615 struct fixup_replacement *p;
1617 /* See if we have already replaced this. */
1618 for (p = *replacements; p != 0 && ! rtx_equal_p (p->old, x); p = p->next)
1621 if (p == 0)
1623 p = (struct fixup_replacement *) xmalloc (sizeof (struct fixup_replacement));
1624 p->old = x;
1625 p->new = 0;
1626 p->next = *replacements;
1627 *replacements = p;
1630 return p;
1633 /* Scan the insn-chain starting with INSN for refs to VAR and fix them
1634 up. TOPLEVEL is nonzero if this chain is the main chain of insns
1635 for the current function. MAY_SHARE is either a MEM that is not
1636 to be unshared or a list of them. */
1638 static void
1639 fixup_var_refs_insns (insn, var, promoted_mode, unsignedp, toplevel, may_share)
1640 rtx insn;
1641 rtx var;
1642 enum machine_mode promoted_mode;
1643 int unsignedp;
1644 int toplevel;
1645 rtx may_share;
1647 while (insn)
1649 /* fixup_var_refs_insn might modify insn, so save its next
1650 pointer now. */
1651 rtx next = NEXT_INSN (insn);
1653 /* CALL_PLACEHOLDERs are special; we have to switch into each of
1654 the three sequences they (potentially) contain, and process
1655 them recursively. The CALL_INSN itself is not interesting. */
1657 if (GET_CODE (insn) == CALL_INSN
1658 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
1660 int i;
1662 /* Look at the Normal call, sibling call and tail recursion
1663 sequences attached to the CALL_PLACEHOLDER. */
1664 for (i = 0; i < 3; i++)
1666 rtx seq = XEXP (PATTERN (insn), i);
1667 if (seq)
1669 push_to_sequence (seq);
1670 fixup_var_refs_insns (seq, var, promoted_mode, unsignedp, 0,
1671 may_share);
1672 XEXP (PATTERN (insn), i) = get_insns ();
1673 end_sequence ();
1678 else if (INSN_P (insn))
1679 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel,
1680 may_share);
1682 insn = next;
1686 /* Look up the insns which reference VAR in HT and fix them up. Other
1687 arguments are the same as fixup_var_refs_insns.
1689 N.B. No need for special processing of CALL_PLACEHOLDERs here,
1690 because the hash table will point straight to the interesting insn
1691 (inside the CALL_PLACEHOLDER). */
1693 static void
1694 fixup_var_refs_insns_with_hash (ht, var, promoted_mode, unsignedp, may_share)
1695 htab_t ht;
1696 rtx var;
1697 enum machine_mode promoted_mode;
1698 int unsignedp;
1699 rtx may_share;
1701 struct insns_for_mem_entry tmp;
1702 struct insns_for_mem_entry *ime;
1703 rtx insn_list;
1705 tmp.key = var;
1706 ime = (struct insns_for_mem_entry *) htab_find (ht, &tmp);
1707 for (insn_list = ime->insns; insn_list != 0; insn_list = XEXP (insn_list, 1))
1708 if (INSN_P (XEXP (insn_list, 0)))
1709 fixup_var_refs_insn (XEXP (insn_list, 0), var, promoted_mode,
1710 unsignedp, 1, may_share);
1714 /* Per-insn processing by fixup_var_refs_insns(_with_hash). INSN is
1715 the insn under examination, VAR is the variable to fix up
1716 references to, PROMOTED_MODE and UNSIGNEDP describe VAR, and
1717 TOPLEVEL is nonzero if this is the main insn chain for this
1718 function. */
1720 static void
1721 fixup_var_refs_insn (insn, var, promoted_mode, unsignedp, toplevel, no_share)
1722 rtx insn;
1723 rtx var;
1724 enum machine_mode promoted_mode;
1725 int unsignedp;
1726 int toplevel;
1727 rtx no_share;
1729 rtx call_dest = 0;
1730 rtx set, prev, prev_set;
1731 rtx note;
1733 /* Remember the notes in case we delete the insn. */
1734 note = REG_NOTES (insn);
1736 /* If this is a CLOBBER of VAR, delete it.
1738 If it has a REG_LIBCALL note, delete the REG_LIBCALL
1739 and REG_RETVAL notes too. */
1740 if (GET_CODE (PATTERN (insn)) == CLOBBER
1741 && (XEXP (PATTERN (insn), 0) == var
1742 || (GET_CODE (XEXP (PATTERN (insn), 0)) == CONCAT
1743 && (XEXP (XEXP (PATTERN (insn), 0), 0) == var
1744 || XEXP (XEXP (PATTERN (insn), 0), 1) == var))))
1746 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0)
1747 /* The REG_LIBCALL note will go away since we are going to
1748 turn INSN into a NOTE, so just delete the
1749 corresponding REG_RETVAL note. */
1750 remove_note (XEXP (note, 0),
1751 find_reg_note (XEXP (note, 0), REG_RETVAL,
1752 NULL_RTX));
1754 delete_insn (insn);
1757 /* The insn to load VAR from a home in the arglist
1758 is now a no-op. When we see it, just delete it.
1759 Similarly if this is storing VAR from a register from which
1760 it was loaded in the previous insn. This will occur
1761 when an ADDRESSOF was made for an arglist slot. */
1762 else if (toplevel
1763 && (set = single_set (insn)) != 0
1764 && SET_DEST (set) == var
1765 /* If this represents the result of an insn group,
1766 don't delete the insn. */
1767 && find_reg_note (insn, REG_RETVAL, NULL_RTX) == 0
1768 && (rtx_equal_p (SET_SRC (set), var)
1769 || (GET_CODE (SET_SRC (set)) == REG
1770 && (prev = prev_nonnote_insn (insn)) != 0
1771 && (prev_set = single_set (prev)) != 0
1772 && SET_DEST (prev_set) == SET_SRC (set)
1773 && rtx_equal_p (SET_SRC (prev_set), var))))
1775 delete_insn (insn);
1777 else
1779 struct fixup_replacement *replacements = 0;
1780 rtx next_insn = NEXT_INSN (insn);
1782 if (SMALL_REGISTER_CLASSES)
1784 /* If the insn that copies the results of a CALL_INSN
1785 into a pseudo now references VAR, we have to use an
1786 intermediate pseudo since we want the life of the
1787 return value register to be only a single insn.
1789 If we don't use an intermediate pseudo, such things as
1790 address computations to make the address of VAR valid
1791 if it is not can be placed between the CALL_INSN and INSN.
1793 To make sure this doesn't happen, we record the destination
1794 of the CALL_INSN and see if the next insn uses both that
1795 and VAR. */
1797 if (call_dest != 0 && GET_CODE (insn) == INSN
1798 && reg_mentioned_p (var, PATTERN (insn))
1799 && reg_mentioned_p (call_dest, PATTERN (insn)))
1801 rtx temp = gen_reg_rtx (GET_MODE (call_dest));
1803 emit_insn_before (gen_move_insn (temp, call_dest), insn);
1805 PATTERN (insn) = replace_rtx (PATTERN (insn),
1806 call_dest, temp);
1809 if (GET_CODE (insn) == CALL_INSN
1810 && GET_CODE (PATTERN (insn)) == SET)
1811 call_dest = SET_DEST (PATTERN (insn));
1812 else if (GET_CODE (insn) == CALL_INSN
1813 && GET_CODE (PATTERN (insn)) == PARALLEL
1814 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1815 call_dest = SET_DEST (XVECEXP (PATTERN (insn), 0, 0));
1816 else
1817 call_dest = 0;
1820 /* See if we have to do anything to INSN now that VAR is in
1821 memory. If it needs to be loaded into a pseudo, use a single
1822 pseudo for the entire insn in case there is a MATCH_DUP
1823 between two operands. We pass a pointer to the head of
1824 a list of struct fixup_replacements. If fixup_var_refs_1
1825 needs to allocate pseudos or replacement MEMs (for SUBREGs),
1826 it will record them in this list.
1828 If it allocated a pseudo for any replacement, we copy into
1829 it here. */
1831 fixup_var_refs_1 (var, promoted_mode, &PATTERN (insn), insn,
1832 &replacements, no_share);
1834 /* If this is last_parm_insn, and any instructions were output
1835 after it to fix it up, then we must set last_parm_insn to
1836 the last such instruction emitted. */
1837 if (insn == last_parm_insn)
1838 last_parm_insn = PREV_INSN (next_insn);
1840 while (replacements)
1842 struct fixup_replacement *next;
1844 if (GET_CODE (replacements->new) == REG)
1846 rtx insert_before;
1847 rtx seq;
1849 /* OLD might be a (subreg (mem)). */
1850 if (GET_CODE (replacements->old) == SUBREG)
1851 replacements->old
1852 = fixup_memory_subreg (replacements->old, insn,
1853 promoted_mode, 0);
1854 else
1855 replacements->old
1856 = fixup_stack_1 (replacements->old, insn);
1858 insert_before = insn;
1860 /* If we are changing the mode, do a conversion.
1861 This might be wasteful, but combine.c will
1862 eliminate much of the waste. */
1864 if (GET_MODE (replacements->new)
1865 != GET_MODE (replacements->old))
1867 start_sequence ();
1868 convert_move (replacements->new,
1869 replacements->old, unsignedp);
1870 seq = get_insns ();
1871 end_sequence ();
1873 else
1874 seq = gen_move_insn (replacements->new,
1875 replacements->old);
1877 emit_insn_before (seq, insert_before);
1880 next = replacements->next;
1881 free (replacements);
1882 replacements = next;
1886 /* Also fix up any invalid exprs in the REG_NOTES of this insn.
1887 But don't touch other insns referred to by reg-notes;
1888 we will get them elsewhere. */
1889 while (note)
1891 if (GET_CODE (note) != INSN_LIST)
1892 XEXP (note, 0)
1893 = walk_fixup_memory_subreg (XEXP (note, 0), insn,
1894 promoted_mode, 1);
1895 note = XEXP (note, 1);
1899 /* VAR is a MEM that used to be a pseudo register with mode PROMOTED_MODE.
1900 See if the rtx expression at *LOC in INSN needs to be changed.
1902 REPLACEMENTS is a pointer to a list head that starts out zero, but may
1903 contain a list of original rtx's and replacements. If we find that we need
1904 to modify this insn by replacing a memory reference with a pseudo or by
1905 making a new MEM to implement a SUBREG, we consult that list to see if
1906 we have already chosen a replacement. If none has already been allocated,
1907 we allocate it and update the list. fixup_var_refs_insn will copy VAR
1908 or the SUBREG, as appropriate, to the pseudo. */
1910 static void
1911 fixup_var_refs_1 (var, promoted_mode, loc, insn, replacements, no_share)
1912 rtx var;
1913 enum machine_mode promoted_mode;
1914 rtx *loc;
1915 rtx insn;
1916 struct fixup_replacement **replacements;
1917 rtx no_share;
1919 int i;
1920 rtx x = *loc;
1921 RTX_CODE code = GET_CODE (x);
1922 const char *fmt;
1923 rtx tem, tem1;
1924 struct fixup_replacement *replacement;
1926 switch (code)
1928 case ADDRESSOF:
1929 if (XEXP (x, 0) == var)
1931 /* Prevent sharing of rtl that might lose. */
1932 rtx sub = copy_rtx (XEXP (var, 0));
1934 if (! validate_change (insn, loc, sub, 0))
1936 rtx y = gen_reg_rtx (GET_MODE (sub));
1937 rtx seq, new_insn;
1939 /* We should be able to replace with a register or all is lost.
1940 Note that we can't use validate_change to verify this, since
1941 we're not caring for replacing all dups simultaneously. */
1942 if (! validate_replace_rtx (*loc, y, insn))
1943 abort ();
1945 /* Careful! First try to recognize a direct move of the
1946 value, mimicking how things are done in gen_reload wrt
1947 PLUS. Consider what happens when insn is a conditional
1948 move instruction and addsi3 clobbers flags. */
1950 start_sequence ();
1951 new_insn = emit_insn (gen_rtx_SET (VOIDmode, y, sub));
1952 seq = get_insns ();
1953 end_sequence ();
1955 if (recog_memoized (new_insn) < 0)
1957 /* That failed. Fall back on force_operand and hope. */
1959 start_sequence ();
1960 sub = force_operand (sub, y);
1961 if (sub != y)
1962 emit_insn (gen_move_insn (y, sub));
1963 seq = get_insns ();
1964 end_sequence ();
1967 #ifdef HAVE_cc0
1968 /* Don't separate setter from user. */
1969 if (PREV_INSN (insn) && sets_cc0_p (PREV_INSN (insn)))
1970 insn = PREV_INSN (insn);
1971 #endif
1973 emit_insn_before (seq, insn);
1976 return;
1978 case MEM:
1979 if (var == x)
1981 /* If we already have a replacement, use it. Otherwise,
1982 try to fix up this address in case it is invalid. */
1984 replacement = find_fixup_replacement (replacements, var);
1985 if (replacement->new)
1987 *loc = replacement->new;
1988 return;
1991 *loc = replacement->new = x = fixup_stack_1 (x, insn);
1993 /* Unless we are forcing memory to register or we changed the mode,
1994 we can leave things the way they are if the insn is valid. */
1996 INSN_CODE (insn) = -1;
1997 if (! flag_force_mem && GET_MODE (x) == promoted_mode
1998 && recog_memoized (insn) >= 0)
1999 return;
2001 *loc = replacement->new = gen_reg_rtx (promoted_mode);
2002 return;
2005 /* If X contains VAR, we need to unshare it here so that we update
2006 each occurrence separately. But all identical MEMs in one insn
2007 must be replaced with the same rtx because of the possibility of
2008 MATCH_DUPs. */
2010 if (reg_mentioned_p (var, x))
2012 replacement = find_fixup_replacement (replacements, x);
2013 if (replacement->new == 0)
2014 replacement->new = copy_most_rtx (x, no_share);
2016 *loc = x = replacement->new;
2017 code = GET_CODE (x);
2019 break;
2021 case REG:
2022 case CC0:
2023 case PC:
2024 case CONST_INT:
2025 case CONST:
2026 case SYMBOL_REF:
2027 case LABEL_REF:
2028 case CONST_DOUBLE:
2029 case CONST_VECTOR:
2030 return;
2032 case SIGN_EXTRACT:
2033 case ZERO_EXTRACT:
2034 /* Note that in some cases those types of expressions are altered
2035 by optimize_bit_field, and do not survive to get here. */
2036 if (XEXP (x, 0) == var
2037 || (GET_CODE (XEXP (x, 0)) == SUBREG
2038 && SUBREG_REG (XEXP (x, 0)) == var))
2040 /* Get TEM as a valid MEM in the mode presently in the insn.
2042 We don't worry about the possibility of MATCH_DUP here; it
2043 is highly unlikely and would be tricky to handle. */
2045 tem = XEXP (x, 0);
2046 if (GET_CODE (tem) == SUBREG)
2048 if (GET_MODE_BITSIZE (GET_MODE (tem))
2049 > GET_MODE_BITSIZE (GET_MODE (var)))
2051 replacement = find_fixup_replacement (replacements, var);
2052 if (replacement->new == 0)
2053 replacement->new = gen_reg_rtx (GET_MODE (var));
2054 SUBREG_REG (tem) = replacement->new;
2056 /* The following code works only if we have a MEM, so we
2057 need to handle the subreg here. We directly substitute
2058 it assuming that a subreg must be OK here. We already
2059 scheduled a replacement to copy the mem into the
2060 subreg. */
2061 XEXP (x, 0) = tem;
2062 return;
2064 else
2065 tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
2067 else
2068 tem = fixup_stack_1 (tem, insn);
2070 /* Unless we want to load from memory, get TEM into the proper mode
2071 for an extract from memory. This can only be done if the
2072 extract is at a constant position and length. */
2074 if (! flag_force_mem && GET_CODE (XEXP (x, 1)) == CONST_INT
2075 && GET_CODE (XEXP (x, 2)) == CONST_INT
2076 && ! mode_dependent_address_p (XEXP (tem, 0))
2077 && ! MEM_VOLATILE_P (tem))
2079 enum machine_mode wanted_mode = VOIDmode;
2080 enum machine_mode is_mode = GET_MODE (tem);
2081 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
2083 if (GET_CODE (x) == ZERO_EXTRACT)
2085 enum machine_mode new_mode
2086 = mode_for_extraction (EP_extzv, 1);
2087 if (new_mode != MAX_MACHINE_MODE)
2088 wanted_mode = new_mode;
2090 else if (GET_CODE (x) == SIGN_EXTRACT)
2092 enum machine_mode new_mode
2093 = mode_for_extraction (EP_extv, 1);
2094 if (new_mode != MAX_MACHINE_MODE)
2095 wanted_mode = new_mode;
2098 /* If we have a narrower mode, we can do something. */
2099 if (wanted_mode != VOIDmode
2100 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2102 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2103 rtx old_pos = XEXP (x, 2);
2104 rtx newmem;
2106 /* If the bytes and bits are counted differently, we
2107 must adjust the offset. */
2108 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2109 offset = (GET_MODE_SIZE (is_mode)
2110 - GET_MODE_SIZE (wanted_mode) - offset);
2112 pos %= GET_MODE_BITSIZE (wanted_mode);
2114 newmem = adjust_address_nv (tem, wanted_mode, offset);
2116 /* Make the change and see if the insn remains valid. */
2117 INSN_CODE (insn) = -1;
2118 XEXP (x, 0) = newmem;
2119 XEXP (x, 2) = GEN_INT (pos);
2121 if (recog_memoized (insn) >= 0)
2122 return;
2124 /* Otherwise, restore old position. XEXP (x, 0) will be
2125 restored later. */
2126 XEXP (x, 2) = old_pos;
2130 /* If we get here, the bitfield extract insn can't accept a memory
2131 reference. Copy the input into a register. */
2133 tem1 = gen_reg_rtx (GET_MODE (tem));
2134 emit_insn_before (gen_move_insn (tem1, tem), insn);
2135 XEXP (x, 0) = tem1;
2136 return;
2138 break;
2140 case SUBREG:
2141 if (SUBREG_REG (x) == var)
2143 /* If this is a special SUBREG made because VAR was promoted
2144 from a wider mode, replace it with VAR and call ourself
2145 recursively, this time saying that the object previously
2146 had its current mode (by virtue of the SUBREG). */
2148 if (SUBREG_PROMOTED_VAR_P (x))
2150 *loc = var;
2151 fixup_var_refs_1 (var, GET_MODE (var), loc, insn, replacements,
2152 no_share);
2153 return;
2156 /* If this SUBREG makes VAR wider, it has become a paradoxical
2157 SUBREG with VAR in memory, but these aren't allowed at this
2158 stage of the compilation. So load VAR into a pseudo and take
2159 a SUBREG of that pseudo. */
2160 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (GET_MODE (var)))
2162 replacement = find_fixup_replacement (replacements, var);
2163 if (replacement->new == 0)
2164 replacement->new = gen_reg_rtx (promoted_mode);
2165 SUBREG_REG (x) = replacement->new;
2166 return;
2169 /* See if we have already found a replacement for this SUBREG.
2170 If so, use it. Otherwise, make a MEM and see if the insn
2171 is recognized. If not, or if we should force MEM into a register,
2172 make a pseudo for this SUBREG. */
2173 replacement = find_fixup_replacement (replacements, x);
2174 if (replacement->new)
2176 *loc = replacement->new;
2177 return;
2180 replacement->new = *loc = fixup_memory_subreg (x, insn,
2181 promoted_mode, 0);
2183 INSN_CODE (insn) = -1;
2184 if (! flag_force_mem && recog_memoized (insn) >= 0)
2185 return;
2187 *loc = replacement->new = gen_reg_rtx (GET_MODE (x));
2188 return;
2190 break;
2192 case SET:
2193 /* First do special simplification of bit-field references. */
2194 if (GET_CODE (SET_DEST (x)) == SIGN_EXTRACT
2195 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2196 optimize_bit_field (x, insn, 0);
2197 if (GET_CODE (SET_SRC (x)) == SIGN_EXTRACT
2198 || GET_CODE (SET_SRC (x)) == ZERO_EXTRACT)
2199 optimize_bit_field (x, insn, 0);
2201 /* For a paradoxical SUBREG inside a ZERO_EXTRACT, load the object
2202 into a register and then store it back out. */
2203 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
2204 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG
2205 && SUBREG_REG (XEXP (SET_DEST (x), 0)) == var
2206 && (GET_MODE_SIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
2207 > GET_MODE_SIZE (GET_MODE (var))))
2209 replacement = find_fixup_replacement (replacements, var);
2210 if (replacement->new == 0)
2211 replacement->new = gen_reg_rtx (GET_MODE (var));
2213 SUBREG_REG (XEXP (SET_DEST (x), 0)) = replacement->new;
2214 emit_insn_after (gen_move_insn (var, replacement->new), insn);
2217 /* If SET_DEST is now a paradoxical SUBREG, put the result of this
2218 insn into a pseudo and store the low part of the pseudo into VAR. */
2219 if (GET_CODE (SET_DEST (x)) == SUBREG
2220 && SUBREG_REG (SET_DEST (x)) == var
2221 && (GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
2222 > GET_MODE_SIZE (GET_MODE (var))))
2224 SET_DEST (x) = tem = gen_reg_rtx (GET_MODE (SET_DEST (x)));
2225 emit_insn_after (gen_move_insn (var, gen_lowpart (GET_MODE (var),
2226 tem)),
2227 insn);
2228 break;
2232 rtx dest = SET_DEST (x);
2233 rtx src = SET_SRC (x);
2234 rtx outerdest = dest;
2236 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
2237 || GET_CODE (dest) == SIGN_EXTRACT
2238 || GET_CODE (dest) == ZERO_EXTRACT)
2239 dest = XEXP (dest, 0);
2241 if (GET_CODE (src) == SUBREG)
2242 src = SUBREG_REG (src);
2244 /* If VAR does not appear at the top level of the SET
2245 just scan the lower levels of the tree. */
2247 if (src != var && dest != var)
2248 break;
2250 /* We will need to rerecognize this insn. */
2251 INSN_CODE (insn) = -1;
2253 if (GET_CODE (outerdest) == ZERO_EXTRACT && dest == var
2254 && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
2256 /* Since this case will return, ensure we fixup all the
2257 operands here. */
2258 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 1),
2259 insn, replacements, no_share);
2260 fixup_var_refs_1 (var, promoted_mode, &XEXP (outerdest, 2),
2261 insn, replacements, no_share);
2262 fixup_var_refs_1 (var, promoted_mode, &SET_SRC (x),
2263 insn, replacements, no_share);
2265 tem = XEXP (outerdest, 0);
2267 /* Clean up (SUBREG:SI (MEM:mode ...) 0)
2268 that may appear inside a ZERO_EXTRACT.
2269 This was legitimate when the MEM was a REG. */
2270 if (GET_CODE (tem) == SUBREG
2271 && SUBREG_REG (tem) == var)
2272 tem = fixup_memory_subreg (tem, insn, promoted_mode, 0);
2273 else
2274 tem = fixup_stack_1 (tem, insn);
2276 if (GET_CODE (XEXP (outerdest, 1)) == CONST_INT
2277 && GET_CODE (XEXP (outerdest, 2)) == CONST_INT
2278 && ! mode_dependent_address_p (XEXP (tem, 0))
2279 && ! MEM_VOLATILE_P (tem))
2281 enum machine_mode wanted_mode;
2282 enum machine_mode is_mode = GET_MODE (tem);
2283 HOST_WIDE_INT pos = INTVAL (XEXP (outerdest, 2));
2285 wanted_mode = mode_for_extraction (EP_insv, 0);
2287 /* If we have a narrower mode, we can do something. */
2288 if (GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
2290 HOST_WIDE_INT offset = pos / BITS_PER_UNIT;
2291 rtx old_pos = XEXP (outerdest, 2);
2292 rtx newmem;
2294 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
2295 offset = (GET_MODE_SIZE (is_mode)
2296 - GET_MODE_SIZE (wanted_mode) - offset);
2298 pos %= GET_MODE_BITSIZE (wanted_mode);
2300 newmem = adjust_address_nv (tem, wanted_mode, offset);
2302 /* Make the change and see if the insn remains valid. */
2303 INSN_CODE (insn) = -1;
2304 XEXP (outerdest, 0) = newmem;
2305 XEXP (outerdest, 2) = GEN_INT (pos);
2307 if (recog_memoized (insn) >= 0)
2308 return;
2310 /* Otherwise, restore old position. XEXP (x, 0) will be
2311 restored later. */
2312 XEXP (outerdest, 2) = old_pos;
2316 /* If we get here, the bit-field store doesn't allow memory
2317 or isn't located at a constant position. Load the value into
2318 a register, do the store, and put it back into memory. */
2320 tem1 = gen_reg_rtx (GET_MODE (tem));
2321 emit_insn_before (gen_move_insn (tem1, tem), insn);
2322 emit_insn_after (gen_move_insn (tem, tem1), insn);
2323 XEXP (outerdest, 0) = tem1;
2324 return;
2327 /* STRICT_LOW_PART is a no-op on memory references
2328 and it can cause combinations to be unrecognizable,
2329 so eliminate it. */
2331 if (dest == var && GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2332 SET_DEST (x) = XEXP (SET_DEST (x), 0);
2334 /* A valid insn to copy VAR into or out of a register
2335 must be left alone, to avoid an infinite loop here.
2336 If the reference to VAR is by a subreg, fix that up,
2337 since SUBREG is not valid for a memref.
2338 Also fix up the address of the stack slot.
2340 Note that we must not try to recognize the insn until
2341 after we know that we have valid addresses and no
2342 (subreg (mem ...) ...) constructs, since these interfere
2343 with determining the validity of the insn. */
2345 if ((SET_SRC (x) == var
2346 || (GET_CODE (SET_SRC (x)) == SUBREG
2347 && SUBREG_REG (SET_SRC (x)) == var))
2348 && (GET_CODE (SET_DEST (x)) == REG
2349 || (GET_CODE (SET_DEST (x)) == SUBREG
2350 && GET_CODE (SUBREG_REG (SET_DEST (x))) == REG))
2351 && GET_MODE (var) == promoted_mode
2352 && x == single_set (insn))
2354 rtx pat, last;
2356 if (GET_CODE (SET_SRC (x)) == SUBREG
2357 && (GET_MODE_SIZE (GET_MODE (SET_SRC (x)))
2358 > GET_MODE_SIZE (GET_MODE (var))))
2360 /* This (subreg VAR) is now a paradoxical subreg. We need
2361 to replace VAR instead of the subreg. */
2362 replacement = find_fixup_replacement (replacements, var);
2363 if (replacement->new == NULL_RTX)
2364 replacement->new = gen_reg_rtx (GET_MODE (var));
2365 SUBREG_REG (SET_SRC (x)) = replacement->new;
2367 else
2369 replacement = find_fixup_replacement (replacements, SET_SRC (x));
2370 if (replacement->new)
2371 SET_SRC (x) = replacement->new;
2372 else if (GET_CODE (SET_SRC (x)) == SUBREG)
2373 SET_SRC (x) = replacement->new
2374 = fixup_memory_subreg (SET_SRC (x), insn, promoted_mode,
2376 else
2377 SET_SRC (x) = replacement->new
2378 = fixup_stack_1 (SET_SRC (x), insn);
2381 if (recog_memoized (insn) >= 0)
2382 return;
2384 /* INSN is not valid, but we know that we want to
2385 copy SET_SRC (x) to SET_DEST (x) in some way. So
2386 we generate the move and see whether it requires more
2387 than one insn. If it does, we emit those insns and
2388 delete INSN. Otherwise, we an just replace the pattern
2389 of INSN; we have already verified above that INSN has
2390 no other function that to do X. */
2392 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2393 if (NEXT_INSN (pat) != NULL_RTX)
2395 last = emit_insn_before (pat, insn);
2397 /* INSN might have REG_RETVAL or other important notes, so
2398 we need to store the pattern of the last insn in the
2399 sequence into INSN similarly to the normal case. LAST
2400 should not have REG_NOTES, but we allow them if INSN has
2401 no REG_NOTES. */
2402 if (REG_NOTES (last) && REG_NOTES (insn))
2403 abort ();
2404 if (REG_NOTES (last))
2405 REG_NOTES (insn) = REG_NOTES (last);
2406 PATTERN (insn) = PATTERN (last);
2408 delete_insn (last);
2410 else
2411 PATTERN (insn) = PATTERN (pat);
2413 return;
2416 if ((SET_DEST (x) == var
2417 || (GET_CODE (SET_DEST (x)) == SUBREG
2418 && SUBREG_REG (SET_DEST (x)) == var))
2419 && (GET_CODE (SET_SRC (x)) == REG
2420 || (GET_CODE (SET_SRC (x)) == SUBREG
2421 && GET_CODE (SUBREG_REG (SET_SRC (x))) == REG))
2422 && GET_MODE (var) == promoted_mode
2423 && x == single_set (insn))
2425 rtx pat, last;
2427 if (GET_CODE (SET_DEST (x)) == SUBREG)
2428 SET_DEST (x) = fixup_memory_subreg (SET_DEST (x), insn,
2429 promoted_mode, 0);
2430 else
2431 SET_DEST (x) = fixup_stack_1 (SET_DEST (x), insn);
2433 if (recog_memoized (insn) >= 0)
2434 return;
2436 pat = gen_move_insn (SET_DEST (x), SET_SRC (x));
2437 if (NEXT_INSN (pat) != NULL_RTX)
2439 last = emit_insn_before (pat, insn);
2441 /* INSN might have REG_RETVAL or other important notes, so
2442 we need to store the pattern of the last insn in the
2443 sequence into INSN similarly to the normal case. LAST
2444 should not have REG_NOTES, but we allow them if INSN has
2445 no REG_NOTES. */
2446 if (REG_NOTES (last) && REG_NOTES (insn))
2447 abort ();
2448 if (REG_NOTES (last))
2449 REG_NOTES (insn) = REG_NOTES (last);
2450 PATTERN (insn) = PATTERN (last);
2452 delete_insn (last);
2454 else
2455 PATTERN (insn) = PATTERN (pat);
2457 return;
2460 /* Otherwise, storing into VAR must be handled specially
2461 by storing into a temporary and copying that into VAR
2462 with a new insn after this one. Note that this case
2463 will be used when storing into a promoted scalar since
2464 the insn will now have different modes on the input
2465 and output and hence will be invalid (except for the case
2466 of setting it to a constant, which does not need any
2467 change if it is valid). We generate extra code in that case,
2468 but combine.c will eliminate it. */
2470 if (dest == var)
2472 rtx temp;
2473 rtx fixeddest = SET_DEST (x);
2474 enum machine_mode temp_mode;
2476 /* STRICT_LOW_PART can be discarded, around a MEM. */
2477 if (GET_CODE (fixeddest) == STRICT_LOW_PART)
2478 fixeddest = XEXP (fixeddest, 0);
2479 /* Convert (SUBREG (MEM)) to a MEM in a changed mode. */
2480 if (GET_CODE (fixeddest) == SUBREG)
2482 fixeddest = fixup_memory_subreg (fixeddest, insn,
2483 promoted_mode, 0);
2484 temp_mode = GET_MODE (fixeddest);
2486 else
2488 fixeddest = fixup_stack_1 (fixeddest, insn);
2489 temp_mode = promoted_mode;
2492 temp = gen_reg_rtx (temp_mode);
2494 emit_insn_after (gen_move_insn (fixeddest,
2495 gen_lowpart (GET_MODE (fixeddest),
2496 temp)),
2497 insn);
2499 SET_DEST (x) = temp;
2503 default:
2504 break;
2507 /* Nothing special about this RTX; fix its operands. */
2509 fmt = GET_RTX_FORMAT (code);
2510 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2512 if (fmt[i] == 'e')
2513 fixup_var_refs_1 (var, promoted_mode, &XEXP (x, i), insn, replacements,
2514 no_share);
2515 else if (fmt[i] == 'E')
2517 int j;
2518 for (j = 0; j < XVECLEN (x, i); j++)
2519 fixup_var_refs_1 (var, promoted_mode, &XVECEXP (x, i, j),
2520 insn, replacements, no_share);
2525 /* Previously, X had the form (SUBREG:m1 (REG:PROMOTED_MODE ...)).
2526 The REG was placed on the stack, so X now has the form (SUBREG:m1
2527 (MEM:m2 ...)).
2529 Return an rtx (MEM:m1 newaddr) which is equivalent. If any insns
2530 must be emitted to compute NEWADDR, put them before INSN.
2532 UNCRITICAL nonzero means accept paradoxical subregs.
2533 This is used for subregs found inside REG_NOTES. */
2535 static rtx
2536 fixup_memory_subreg (x, insn, promoted_mode, uncritical)
2537 rtx x;
2538 rtx insn;
2539 enum machine_mode promoted_mode;
2540 int uncritical;
2542 int offset;
2543 rtx mem = SUBREG_REG (x);
2544 rtx addr = XEXP (mem, 0);
2545 enum machine_mode mode = GET_MODE (x);
2546 rtx result, seq;
2548 /* Paradoxical SUBREGs are usually invalid during RTL generation. */
2549 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (mem)) && ! uncritical)
2550 abort ();
2552 offset = SUBREG_BYTE (x);
2553 if (BYTES_BIG_ENDIAN)
2554 /* If the PROMOTED_MODE is wider than the mode of the MEM, adjust
2555 the offset so that it points to the right location within the
2556 MEM. */
2557 offset -= (GET_MODE_SIZE (promoted_mode) - GET_MODE_SIZE (GET_MODE (mem)));
2559 if (!flag_force_addr
2560 && memory_address_p (mode, plus_constant (addr, offset)))
2561 /* Shortcut if no insns need be emitted. */
2562 return adjust_address (mem, mode, offset);
2564 start_sequence ();
2565 result = adjust_address (mem, mode, offset);
2566 seq = get_insns ();
2567 end_sequence ();
2569 emit_insn_before (seq, insn);
2570 return result;
2573 /* Do fixup_memory_subreg on all (SUBREG (MEM ...) ...) contained in X.
2574 Replace subexpressions of X in place.
2575 If X itself is a (SUBREG (MEM ...) ...), return the replacement expression.
2576 Otherwise return X, with its contents possibly altered.
2578 INSN, PROMOTED_MODE and UNCRITICAL are as for
2579 fixup_memory_subreg. */
2581 static rtx
2582 walk_fixup_memory_subreg (x, insn, promoted_mode, uncritical)
2583 rtx x;
2584 rtx insn;
2585 enum machine_mode promoted_mode;
2586 int uncritical;
2588 enum rtx_code code;
2589 const char *fmt;
2590 int i;
2592 if (x == 0)
2593 return 0;
2595 code = GET_CODE (x);
2597 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
2598 return fixup_memory_subreg (x, insn, promoted_mode, uncritical);
2600 /* Nothing special about this RTX; fix its operands. */
2602 fmt = GET_RTX_FORMAT (code);
2603 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2605 if (fmt[i] == 'e')
2606 XEXP (x, i) = walk_fixup_memory_subreg (XEXP (x, i), insn,
2607 promoted_mode, uncritical);
2608 else if (fmt[i] == 'E')
2610 int j;
2611 for (j = 0; j < XVECLEN (x, i); j++)
2612 XVECEXP (x, i, j)
2613 = walk_fixup_memory_subreg (XVECEXP (x, i, j), insn,
2614 promoted_mode, uncritical);
2617 return x;
2620 /* For each memory ref within X, if it refers to a stack slot
2621 with an out of range displacement, put the address in a temp register
2622 (emitting new insns before INSN to load these registers)
2623 and alter the memory ref to use that register.
2624 Replace each such MEM rtx with a copy, to avoid clobberage. */
2626 static rtx
2627 fixup_stack_1 (x, insn)
2628 rtx x;
2629 rtx insn;
2631 int i;
2632 RTX_CODE code = GET_CODE (x);
2633 const char *fmt;
2635 if (code == MEM)
2637 rtx ad = XEXP (x, 0);
2638 /* If we have address of a stack slot but it's not valid
2639 (displacement is too large), compute the sum in a register. */
2640 if (GET_CODE (ad) == PLUS
2641 && GET_CODE (XEXP (ad, 0)) == REG
2642 && ((REGNO (XEXP (ad, 0)) >= FIRST_VIRTUAL_REGISTER
2643 && REGNO (XEXP (ad, 0)) <= LAST_VIRTUAL_REGISTER)
2644 || REGNO (XEXP (ad, 0)) == FRAME_POINTER_REGNUM
2645 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2646 || REGNO (XEXP (ad, 0)) == HARD_FRAME_POINTER_REGNUM
2647 #endif
2648 || REGNO (XEXP (ad, 0)) == STACK_POINTER_REGNUM
2649 || REGNO (XEXP (ad, 0)) == ARG_POINTER_REGNUM
2650 || XEXP (ad, 0) == current_function_internal_arg_pointer)
2651 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
2653 rtx temp, seq;
2654 if (memory_address_p (GET_MODE (x), ad))
2655 return x;
2657 start_sequence ();
2658 temp = copy_to_reg (ad);
2659 seq = get_insns ();
2660 end_sequence ();
2661 emit_insn_before (seq, insn);
2662 return replace_equiv_address (x, temp);
2664 return x;
2667 fmt = GET_RTX_FORMAT (code);
2668 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2670 if (fmt[i] == 'e')
2671 XEXP (x, i) = fixup_stack_1 (XEXP (x, i), insn);
2672 else if (fmt[i] == 'E')
2674 int j;
2675 for (j = 0; j < XVECLEN (x, i); j++)
2676 XVECEXP (x, i, j) = fixup_stack_1 (XVECEXP (x, i, j), insn);
2679 return x;
2682 /* Optimization: a bit-field instruction whose field
2683 happens to be a byte or halfword in memory
2684 can be changed to a move instruction.
2686 We call here when INSN is an insn to examine or store into a bit-field.
2687 BODY is the SET-rtx to be altered.
2689 EQUIV_MEM is the table `reg_equiv_mem' if that is available; else 0.
2690 (Currently this is called only from function.c, and EQUIV_MEM
2691 is always 0.) */
2693 static void
2694 optimize_bit_field (body, insn, equiv_mem)
2695 rtx body;
2696 rtx insn;
2697 rtx *equiv_mem;
2699 rtx bitfield;
2700 int destflag;
2701 rtx seq = 0;
2702 enum machine_mode mode;
2704 if (GET_CODE (SET_DEST (body)) == SIGN_EXTRACT
2705 || GET_CODE (SET_DEST (body)) == ZERO_EXTRACT)
2706 bitfield = SET_DEST (body), destflag = 1;
2707 else
2708 bitfield = SET_SRC (body), destflag = 0;
2710 /* First check that the field being stored has constant size and position
2711 and is in fact a byte or halfword suitably aligned. */
2713 if (GET_CODE (XEXP (bitfield, 1)) == CONST_INT
2714 && GET_CODE (XEXP (bitfield, 2)) == CONST_INT
2715 && ((mode = mode_for_size (INTVAL (XEXP (bitfield, 1)), MODE_INT, 1))
2716 != BLKmode)
2717 && INTVAL (XEXP (bitfield, 2)) % INTVAL (XEXP (bitfield, 1)) == 0)
2719 rtx memref = 0;
2721 /* Now check that the containing word is memory, not a register,
2722 and that it is safe to change the machine mode. */
2724 if (GET_CODE (XEXP (bitfield, 0)) == MEM)
2725 memref = XEXP (bitfield, 0);
2726 else if (GET_CODE (XEXP (bitfield, 0)) == REG
2727 && equiv_mem != 0)
2728 memref = equiv_mem[REGNO (XEXP (bitfield, 0))];
2729 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2730 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == MEM)
2731 memref = SUBREG_REG (XEXP (bitfield, 0));
2732 else if (GET_CODE (XEXP (bitfield, 0)) == SUBREG
2733 && equiv_mem != 0
2734 && GET_CODE (SUBREG_REG (XEXP (bitfield, 0))) == REG)
2735 memref = equiv_mem[REGNO (SUBREG_REG (XEXP (bitfield, 0)))];
2737 if (memref
2738 && ! mode_dependent_address_p (XEXP (memref, 0))
2739 && ! MEM_VOLATILE_P (memref))
2741 /* Now adjust the address, first for any subreg'ing
2742 that we are now getting rid of,
2743 and then for which byte of the word is wanted. */
2745 HOST_WIDE_INT offset = INTVAL (XEXP (bitfield, 2));
2746 rtx insns;
2748 /* Adjust OFFSET to count bits from low-address byte. */
2749 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2750 offset = (GET_MODE_BITSIZE (GET_MODE (XEXP (bitfield, 0)))
2751 - offset - INTVAL (XEXP (bitfield, 1)));
2753 /* Adjust OFFSET to count bytes from low-address byte. */
2754 offset /= BITS_PER_UNIT;
2755 if (GET_CODE (XEXP (bitfield, 0)) == SUBREG)
2757 offset += (SUBREG_BYTE (XEXP (bitfield, 0))
2758 / UNITS_PER_WORD) * UNITS_PER_WORD;
2759 if (BYTES_BIG_ENDIAN)
2760 offset -= (MIN (UNITS_PER_WORD,
2761 GET_MODE_SIZE (GET_MODE (XEXP (bitfield, 0))))
2762 - MIN (UNITS_PER_WORD,
2763 GET_MODE_SIZE (GET_MODE (memref))));
2766 start_sequence ();
2767 memref = adjust_address (memref, mode, offset);
2768 insns = get_insns ();
2769 end_sequence ();
2770 emit_insn_before (insns, insn);
2772 /* Store this memory reference where
2773 we found the bit field reference. */
2775 if (destflag)
2777 validate_change (insn, &SET_DEST (body), memref, 1);
2778 if (! CONSTANT_ADDRESS_P (SET_SRC (body)))
2780 rtx src = SET_SRC (body);
2781 while (GET_CODE (src) == SUBREG
2782 && SUBREG_BYTE (src) == 0)
2783 src = SUBREG_REG (src);
2784 if (GET_MODE (src) != GET_MODE (memref))
2785 src = gen_lowpart (GET_MODE (memref), SET_SRC (body));
2786 validate_change (insn, &SET_SRC (body), src, 1);
2788 else if (GET_MODE (SET_SRC (body)) != VOIDmode
2789 && GET_MODE (SET_SRC (body)) != GET_MODE (memref))
2790 /* This shouldn't happen because anything that didn't have
2791 one of these modes should have got converted explicitly
2792 and then referenced through a subreg.
2793 This is so because the original bit-field was
2794 handled by agg_mode and so its tree structure had
2795 the same mode that memref now has. */
2796 abort ();
2798 else
2800 rtx dest = SET_DEST (body);
2802 while (GET_CODE (dest) == SUBREG
2803 && SUBREG_BYTE (dest) == 0
2804 && (GET_MODE_CLASS (GET_MODE (dest))
2805 == GET_MODE_CLASS (GET_MODE (SUBREG_REG (dest))))
2806 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2807 <= UNITS_PER_WORD))
2808 dest = SUBREG_REG (dest);
2810 validate_change (insn, &SET_DEST (body), dest, 1);
2812 if (GET_MODE (dest) == GET_MODE (memref))
2813 validate_change (insn, &SET_SRC (body), memref, 1);
2814 else
2816 /* Convert the mem ref to the destination mode. */
2817 rtx newreg = gen_reg_rtx (GET_MODE (dest));
2819 start_sequence ();
2820 convert_move (newreg, memref,
2821 GET_CODE (SET_SRC (body)) == ZERO_EXTRACT);
2822 seq = get_insns ();
2823 end_sequence ();
2825 validate_change (insn, &SET_SRC (body), newreg, 1);
2829 /* See if we can convert this extraction or insertion into
2830 a simple move insn. We might not be able to do so if this
2831 was, for example, part of a PARALLEL.
2833 If we succeed, write out any needed conversions. If we fail,
2834 it is hard to guess why we failed, so don't do anything
2835 special; just let the optimization be suppressed. */
2837 if (apply_change_group () && seq)
2838 emit_insn_before (seq, insn);
2843 /* These routines are responsible for converting virtual register references
2844 to the actual hard register references once RTL generation is complete.
2846 The following four variables are used for communication between the
2847 routines. They contain the offsets of the virtual registers from their
2848 respective hard registers. */
2850 static int in_arg_offset;
2851 static int var_offset;
2852 static int dynamic_offset;
2853 static int out_arg_offset;
2854 static int cfa_offset;
2856 /* In most machines, the stack pointer register is equivalent to the bottom
2857 of the stack. */
2859 #ifndef STACK_POINTER_OFFSET
2860 #define STACK_POINTER_OFFSET 0
2861 #endif
2863 /* If not defined, pick an appropriate default for the offset of dynamically
2864 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
2865 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
2867 #ifndef STACK_DYNAMIC_OFFSET
2869 /* The bottom of the stack points to the actual arguments. If
2870 REG_PARM_STACK_SPACE is defined, this includes the space for the register
2871 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
2872 stack space for register parameters is not pushed by the caller, but
2873 rather part of the fixed stack areas and hence not included in
2874 `current_function_outgoing_args_size'. Nevertheless, we must allow
2875 for it when allocating stack dynamic objects. */
2877 #if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
2878 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2879 ((ACCUMULATE_OUTGOING_ARGS \
2880 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
2881 + (STACK_POINTER_OFFSET)) \
2883 #else
2884 #define STACK_DYNAMIC_OFFSET(FNDECL) \
2885 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
2886 + (STACK_POINTER_OFFSET))
2887 #endif
2888 #endif
2890 /* On most machines, the CFA coincides with the first incoming parm. */
2892 #ifndef ARG_POINTER_CFA_OFFSET
2893 #define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
2894 #endif
2896 /* Build up a (MEM (ADDRESSOF (REG))) rtx for a register REG that just had its
2897 address taken. DECL is the decl or SAVE_EXPR for the object stored in the
2898 register, for later use if we do need to force REG into the stack. REG is
2899 overwritten by the MEM like in put_reg_into_stack. */
2902 gen_mem_addressof (reg, decl)
2903 rtx reg;
2904 tree decl;
2906 rtx r = gen_rtx_ADDRESSOF (Pmode, gen_reg_rtx (GET_MODE (reg)),
2907 REGNO (reg), decl);
2909 /* Calculate this before we start messing with decl's RTL. */
2910 HOST_WIDE_INT set = decl ? get_alias_set (decl) : 0;
2912 /* If the original REG was a user-variable, then so is the REG whose
2913 address is being taken. Likewise for unchanging. */
2914 REG_USERVAR_P (XEXP (r, 0)) = REG_USERVAR_P (reg);
2915 RTX_UNCHANGING_P (XEXP (r, 0)) = RTX_UNCHANGING_P (reg);
2917 PUT_CODE (reg, MEM);
2918 MEM_ATTRS (reg) = 0;
2919 XEXP (reg, 0) = r;
2921 if (decl)
2923 tree type = TREE_TYPE (decl);
2924 enum machine_mode decl_mode
2925 = (DECL_P (decl) ? DECL_MODE (decl) : TYPE_MODE (TREE_TYPE (decl)));
2926 rtx decl_rtl = (TREE_CODE (decl) == SAVE_EXPR ? SAVE_EXPR_RTL (decl)
2927 : DECL_RTL_IF_SET (decl));
2929 PUT_MODE (reg, decl_mode);
2931 /* Clear DECL_RTL momentarily so functions below will work
2932 properly, then set it again. */
2933 if (DECL_P (decl) && decl_rtl == reg)
2934 SET_DECL_RTL (decl, 0);
2936 set_mem_attributes (reg, decl, 1);
2937 set_mem_alias_set (reg, set);
2939 if (DECL_P (decl) && decl_rtl == reg)
2940 SET_DECL_RTL (decl, reg);
2942 if (TREE_USED (decl) || (DECL_P (decl) && DECL_INITIAL (decl) != 0))
2943 fixup_var_refs (reg, GET_MODE (reg), TREE_UNSIGNED (type), reg, 0);
2945 else
2946 fixup_var_refs (reg, GET_MODE (reg), 0, reg, 0);
2948 return reg;
2951 /* If DECL has an RTL that is an ADDRESSOF rtx, put it into the stack. */
2953 void
2954 flush_addressof (decl)
2955 tree decl;
2957 if ((TREE_CODE (decl) == PARM_DECL || TREE_CODE (decl) == VAR_DECL)
2958 && DECL_RTL (decl) != 0
2959 && GET_CODE (DECL_RTL (decl)) == MEM
2960 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF
2961 && GET_CODE (XEXP (XEXP (DECL_RTL (decl), 0), 0)) == REG)
2962 put_addressof_into_stack (XEXP (DECL_RTL (decl), 0), 0);
2965 /* Force the register pointed to by R, an ADDRESSOF rtx, into the stack. */
2967 static void
2968 put_addressof_into_stack (r, ht)
2969 rtx r;
2970 htab_t ht;
2972 tree decl, type;
2973 int volatile_p, used_p;
2975 rtx reg = XEXP (r, 0);
2977 if (GET_CODE (reg) != REG)
2978 abort ();
2980 decl = ADDRESSOF_DECL (r);
2981 if (decl)
2983 type = TREE_TYPE (decl);
2984 volatile_p = (TREE_CODE (decl) != SAVE_EXPR
2985 && TREE_THIS_VOLATILE (decl));
2986 used_p = (TREE_USED (decl)
2987 || (DECL_P (decl) && DECL_INITIAL (decl) != 0));
2989 else
2991 type = NULL_TREE;
2992 volatile_p = 0;
2993 used_p = 1;
2996 put_reg_into_stack (0, reg, type, GET_MODE (reg), GET_MODE (reg),
2997 volatile_p, ADDRESSOF_REGNO (r), used_p, ht);
3000 /* List of replacements made below in purge_addressof_1 when creating
3001 bitfield insertions. */
3002 static rtx purge_bitfield_addressof_replacements;
3004 /* List of replacements made below in purge_addressof_1 for patterns
3005 (MEM (ADDRESSOF (REG ...))). The key of the list entry is the
3006 corresponding (ADDRESSOF (REG ...)) and value is a substitution for
3007 the all pattern. List PURGE_BITFIELD_ADDRESSOF_REPLACEMENTS is not
3008 enough in complex cases, e.g. when some field values can be
3009 extracted by usage MEM with narrower mode. */
3010 static rtx purge_addressof_replacements;
3012 /* Helper function for purge_addressof. See if the rtx expression at *LOC
3013 in INSN needs to be changed. If FORCE, always put any ADDRESSOFs into
3014 the stack. If the function returns FALSE then the replacement could not
3015 be made. */
3017 static bool
3018 purge_addressof_1 (loc, insn, force, store, ht)
3019 rtx *loc;
3020 rtx insn;
3021 int force, store;
3022 htab_t ht;
3024 rtx x;
3025 RTX_CODE code;
3026 int i, j;
3027 const char *fmt;
3028 bool result = true;
3030 /* Re-start here to avoid recursion in common cases. */
3031 restart:
3033 x = *loc;
3034 if (x == 0)
3035 return true;
3037 code = GET_CODE (x);
3039 /* If we don't return in any of the cases below, we will recurse inside
3040 the RTX, which will normally result in any ADDRESSOF being forced into
3041 memory. */
3042 if (code == SET)
3044 result = purge_addressof_1 (&SET_DEST (x), insn, force, 1, ht);
3045 result &= purge_addressof_1 (&SET_SRC (x), insn, force, 0, ht);
3046 return result;
3048 else if (code == ADDRESSOF)
3050 rtx sub, insns;
3052 if (GET_CODE (XEXP (x, 0)) != MEM)
3054 put_addressof_into_stack (x, ht);
3055 return true;
3058 /* We must create a copy of the rtx because it was created by
3059 overwriting a REG rtx which is always shared. */
3060 sub = copy_rtx (XEXP (XEXP (x, 0), 0));
3061 if (validate_change (insn, loc, sub, 0)
3062 || validate_replace_rtx (x, sub, insn))
3063 return true;
3065 start_sequence ();
3066 sub = force_operand (sub, NULL_RTX);
3067 if (! validate_change (insn, loc, sub, 0)
3068 && ! validate_replace_rtx (x, sub, insn))
3069 abort ();
3071 insns = get_insns ();
3072 end_sequence ();
3073 emit_insn_before (insns, insn);
3074 return true;
3077 else if (code == MEM && GET_CODE (XEXP (x, 0)) == ADDRESSOF && ! force)
3079 rtx sub = XEXP (XEXP (x, 0), 0);
3081 if (GET_CODE (sub) == MEM)
3082 sub = adjust_address_nv (sub, GET_MODE (x), 0);
3083 else if (GET_CODE (sub) == REG
3084 && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
3086 else if (GET_CODE (sub) == REG && GET_MODE (x) != GET_MODE (sub))
3088 int size_x, size_sub;
3090 if (!insn)
3092 /* When processing REG_NOTES look at the list of
3093 replacements done on the insn to find the register that X
3094 was replaced by. */
3095 rtx tem;
3097 for (tem = purge_bitfield_addressof_replacements;
3098 tem != NULL_RTX;
3099 tem = XEXP (XEXP (tem, 1), 1))
3100 if (rtx_equal_p (x, XEXP (tem, 0)))
3102 *loc = XEXP (XEXP (tem, 1), 0);
3103 return true;
3106 /* See comment for purge_addressof_replacements. */
3107 for (tem = purge_addressof_replacements;
3108 tem != NULL_RTX;
3109 tem = XEXP (XEXP (tem, 1), 1))
3110 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3112 rtx z = XEXP (XEXP (tem, 1), 0);
3114 if (GET_MODE (x) == GET_MODE (z)
3115 || (GET_CODE (XEXP (XEXP (tem, 1), 0)) != REG
3116 && GET_CODE (XEXP (XEXP (tem, 1), 0)) != SUBREG))
3117 abort ();
3119 /* It can happen that the note may speak of things
3120 in a wider (or just different) mode than the
3121 code did. This is especially true of
3122 REG_RETVAL. */
3124 if (GET_CODE (z) == SUBREG && SUBREG_BYTE (z) == 0)
3125 z = SUBREG_REG (z);
3127 if (GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
3128 && (GET_MODE_SIZE (GET_MODE (x))
3129 > GET_MODE_SIZE (GET_MODE (z))))
3131 /* This can occur as a result in invalid
3132 pointer casts, e.g. float f; ...
3133 *(long long int *)&f.
3134 ??? We could emit a warning here, but
3135 without a line number that wouldn't be
3136 very helpful. */
3137 z = gen_rtx_SUBREG (GET_MODE (x), z, 0);
3139 else
3140 z = gen_lowpart (GET_MODE (x), z);
3142 *loc = z;
3143 return true;
3146 /* Sometimes we may not be able to find the replacement. For
3147 example when the original insn was a MEM in a wider mode,
3148 and the note is part of a sign extension of a narrowed
3149 version of that MEM. Gcc testcase compile/990829-1.c can
3150 generate an example of this situation. Rather than complain
3151 we return false, which will prompt our caller to remove the
3152 offending note. */
3153 return false;
3156 size_x = GET_MODE_BITSIZE (GET_MODE (x));
3157 size_sub = GET_MODE_BITSIZE (GET_MODE (sub));
3159 /* Don't even consider working with paradoxical subregs,
3160 or the moral equivalent seen here. */
3161 if (size_x <= size_sub
3162 && int_mode_for_mode (GET_MODE (sub)) != BLKmode)
3164 /* Do a bitfield insertion to mirror what would happen
3165 in memory. */
3167 rtx val, seq;
3169 if (store)
3171 rtx p = PREV_INSN (insn);
3173 start_sequence ();
3174 val = gen_reg_rtx (GET_MODE (x));
3175 if (! validate_change (insn, loc, val, 0))
3177 /* Discard the current sequence and put the
3178 ADDRESSOF on stack. */
3179 end_sequence ();
3180 goto give_up;
3182 seq = get_insns ();
3183 end_sequence ();
3184 emit_insn_before (seq, insn);
3185 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3186 insn, ht);
3188 start_sequence ();
3189 store_bit_field (sub, size_x, 0, GET_MODE (x),
3190 val, GET_MODE_SIZE (GET_MODE (sub)));
3192 /* Make sure to unshare any shared rtl that store_bit_field
3193 might have created. */
3194 unshare_all_rtl_again (get_insns ());
3196 seq = get_insns ();
3197 end_sequence ();
3198 p = emit_insn_after (seq, insn);
3199 if (NEXT_INSN (insn))
3200 compute_insns_for_mem (NEXT_INSN (insn),
3201 p ? NEXT_INSN (p) : NULL_RTX,
3202 ht);
3204 else
3206 rtx p = PREV_INSN (insn);
3208 start_sequence ();
3209 val = extract_bit_field (sub, size_x, 0, 1, NULL_RTX,
3210 GET_MODE (x), GET_MODE (x),
3211 GET_MODE_SIZE (GET_MODE (sub)));
3213 if (! validate_change (insn, loc, val, 0))
3215 /* Discard the current sequence and put the
3216 ADDRESSOF on stack. */
3217 end_sequence ();
3218 goto give_up;
3221 seq = get_insns ();
3222 end_sequence ();
3223 emit_insn_before (seq, insn);
3224 compute_insns_for_mem (p ? NEXT_INSN (p) : get_insns (),
3225 insn, ht);
3228 /* Remember the replacement so that the same one can be done
3229 on the REG_NOTES. */
3230 purge_bitfield_addressof_replacements
3231 = gen_rtx_EXPR_LIST (VOIDmode, x,
3232 gen_rtx_EXPR_LIST
3233 (VOIDmode, val,
3234 purge_bitfield_addressof_replacements));
3236 /* We replaced with a reg -- all done. */
3237 return true;
3241 else if (validate_change (insn, loc, sub, 0))
3243 /* Remember the replacement so that the same one can be done
3244 on the REG_NOTES. */
3245 if (GET_CODE (sub) == REG || GET_CODE (sub) == SUBREG)
3247 rtx tem;
3249 for (tem = purge_addressof_replacements;
3250 tem != NULL_RTX;
3251 tem = XEXP (XEXP (tem, 1), 1))
3252 if (rtx_equal_p (XEXP (x, 0), XEXP (tem, 0)))
3254 XEXP (XEXP (tem, 1), 0) = sub;
3255 return true;
3257 purge_addressof_replacements
3258 = gen_rtx (EXPR_LIST, VOIDmode, XEXP (x, 0),
3259 gen_rtx_EXPR_LIST (VOIDmode, sub,
3260 purge_addressof_replacements));
3261 return true;
3263 goto restart;
3267 give_up:
3268 /* Scan all subexpressions. */
3269 fmt = GET_RTX_FORMAT (code);
3270 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3272 if (*fmt == 'e')
3273 result &= purge_addressof_1 (&XEXP (x, i), insn, force, 0, ht);
3274 else if (*fmt == 'E')
3275 for (j = 0; j < XVECLEN (x, i); j++)
3276 result &= purge_addressof_1 (&XVECEXP (x, i, j), insn, force, 0, ht);
3279 return result;
3282 /* Return a hash value for K, a REG. */
3284 static hashval_t
3285 insns_for_mem_hash (k)
3286 const void * k;
3288 /* Use the address of the key for the hash value. */
3289 struct insns_for_mem_entry *m = (struct insns_for_mem_entry *) k;
3290 return (hashval_t) m->key;
3293 /* Return non-zero if K1 and K2 (two REGs) are the same. */
3295 static int
3296 insns_for_mem_comp (k1, k2)
3297 const void * k1;
3298 const void * k2;
3300 struct insns_for_mem_entry *m1 = (struct insns_for_mem_entry *) k1;
3301 struct insns_for_mem_entry *m2 = (struct insns_for_mem_entry *) k2;
3302 return m1->key == m2->key;
3305 struct insns_for_mem_walk_info
3307 /* The hash table that we are using to record which INSNs use which
3308 MEMs. */
3309 htab_t ht;
3311 /* The INSN we are currently processing. */
3312 rtx insn;
3314 /* Zero if we are walking to find ADDRESSOFs, one if we are walking
3315 to find the insns that use the REGs in the ADDRESSOFs. */
3316 int pass;
3319 /* Called from compute_insns_for_mem via for_each_rtx. If R is a REG
3320 that might be used in an ADDRESSOF expression, record this INSN in
3321 the hash table given by DATA (which is really a pointer to an
3322 insns_for_mem_walk_info structure). */
3324 static int
3325 insns_for_mem_walk (r, data)
3326 rtx *r;
3327 void *data;
3329 struct insns_for_mem_walk_info *ifmwi
3330 = (struct insns_for_mem_walk_info *) data;
3331 struct insns_for_mem_entry tmp;
3332 tmp.insns = NULL_RTX;
3334 if (ifmwi->pass == 0 && *r && GET_CODE (*r) == ADDRESSOF
3335 && GET_CODE (XEXP (*r, 0)) == REG)
3337 PTR *e;
3338 tmp.key = XEXP (*r, 0);
3339 e = htab_find_slot (ifmwi->ht, &tmp, INSERT);
3340 if (*e == NULL)
3342 *e = ggc_alloc (sizeof (tmp));
3343 memcpy (*e, &tmp, sizeof (tmp));
3346 else if (ifmwi->pass == 1 && *r && GET_CODE (*r) == REG)
3348 struct insns_for_mem_entry *ifme;
3349 tmp.key = *r;
3350 ifme = (struct insns_for_mem_entry *) htab_find (ifmwi->ht, &tmp);
3352 /* If we have not already recorded this INSN, do so now. Since
3353 we process the INSNs in order, we know that if we have
3354 recorded it it must be at the front of the list. */
3355 if (ifme && (!ifme->insns || XEXP (ifme->insns, 0) != ifmwi->insn))
3356 ifme->insns = gen_rtx_EXPR_LIST (VOIDmode, ifmwi->insn,
3357 ifme->insns);
3360 return 0;
3363 /* Walk the INSNS, until we reach LAST_INSN, recording which INSNs use
3364 which REGs in HT. */
3366 static void
3367 compute_insns_for_mem (insns, last_insn, ht)
3368 rtx insns;
3369 rtx last_insn;
3370 htab_t ht;
3372 rtx insn;
3373 struct insns_for_mem_walk_info ifmwi;
3374 ifmwi.ht = ht;
3376 for (ifmwi.pass = 0; ifmwi.pass < 2; ++ifmwi.pass)
3377 for (insn = insns; insn != last_insn; insn = NEXT_INSN (insn))
3378 if (INSN_P (insn))
3380 ifmwi.insn = insn;
3381 for_each_rtx (&insn, insns_for_mem_walk, &ifmwi);
3385 /* Helper function for purge_addressof called through for_each_rtx.
3386 Returns true iff the rtl is an ADDRESSOF. */
3388 static int
3389 is_addressof (rtl, data)
3390 rtx *rtl;
3391 void *data ATTRIBUTE_UNUSED;
3393 return GET_CODE (*rtl) == ADDRESSOF;
3396 /* Eliminate all occurrences of ADDRESSOF from INSNS. Elide any remaining
3397 (MEM (ADDRESSOF)) patterns, and force any needed registers into the
3398 stack. */
3400 void
3401 purge_addressof (insns)
3402 rtx insns;
3404 rtx insn;
3405 htab_t ht;
3407 /* When we actually purge ADDRESSOFs, we turn REGs into MEMs. That
3408 requires a fixup pass over the instruction stream to correct
3409 INSNs that depended on the REG being a REG, and not a MEM. But,
3410 these fixup passes are slow. Furthermore, most MEMs are not
3411 mentioned in very many instructions. So, we speed up the process
3412 by pre-calculating which REGs occur in which INSNs; that allows
3413 us to perform the fixup passes much more quickly. */
3414 ht = htab_create_ggc (1000, insns_for_mem_hash, insns_for_mem_comp, NULL);
3415 compute_insns_for_mem (insns, NULL_RTX, ht);
3417 for (insn = insns; insn; insn = NEXT_INSN (insn))
3418 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3419 || GET_CODE (insn) == CALL_INSN)
3421 if (! purge_addressof_1 (&PATTERN (insn), insn,
3422 asm_noperands (PATTERN (insn)) > 0, 0, ht))
3423 /* If we could not replace the ADDRESSOFs in the insn,
3424 something is wrong. */
3425 abort ();
3427 if (! purge_addressof_1 (&REG_NOTES (insn), NULL_RTX, 0, 0, ht))
3429 /* If we could not replace the ADDRESSOFs in the insn's notes,
3430 we can just remove the offending notes instead. */
3431 rtx note;
3433 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3435 /* If we find a REG_RETVAL note then the insn is a libcall.
3436 Such insns must have REG_EQUAL notes as well, in order
3437 for later passes of the compiler to work. So it is not
3438 safe to delete the notes here, and instead we abort. */
3439 if (REG_NOTE_KIND (note) == REG_RETVAL)
3440 abort ();
3441 if (for_each_rtx (&note, is_addressof, NULL))
3442 remove_note (insn, note);
3447 /* Clean up. */
3448 purge_bitfield_addressof_replacements = 0;
3449 purge_addressof_replacements = 0;
3451 /* REGs are shared. purge_addressof will destructively replace a REG
3452 with a MEM, which creates shared MEMs.
3454 Unfortunately, the children of put_reg_into_stack assume that MEMs
3455 referring to the same stack slot are shared (fixup_var_refs and
3456 the associated hash table code).
3458 So, we have to do another unsharing pass after we have flushed any
3459 REGs that had their address taken into the stack.
3461 It may be worth tracking whether or not we converted any REGs into
3462 MEMs to avoid this overhead when it is not needed. */
3463 unshare_all_rtl_again (get_insns ());
3466 /* Convert a SET of a hard subreg to a set of the appropriate hard
3467 register. A subroutine of purge_hard_subreg_sets. */
3469 static void
3470 purge_single_hard_subreg_set (pattern)
3471 rtx pattern;
3473 rtx reg = SET_DEST (pattern);
3474 enum machine_mode mode = GET_MODE (SET_DEST (pattern));
3475 int offset = 0;
3477 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG
3478 && REGNO (SUBREG_REG (reg)) < FIRST_PSEUDO_REGISTER)
3480 offset = subreg_regno_offset (REGNO (SUBREG_REG (reg)),
3481 GET_MODE (SUBREG_REG (reg)),
3482 SUBREG_BYTE (reg),
3483 GET_MODE (reg));
3484 reg = SUBREG_REG (reg);
3488 if (GET_CODE (reg) == REG && REGNO (reg) < FIRST_PSEUDO_REGISTER)
3490 reg = gen_rtx_REG (mode, REGNO (reg) + offset);
3491 SET_DEST (pattern) = reg;
3495 /* Eliminate all occurrences of SETs of hard subregs from INSNS. The
3496 only such SETs that we expect to see are those left in because
3497 integrate can't handle sets of parts of a return value register.
3499 We don't use alter_subreg because we only want to eliminate subregs
3500 of hard registers. */
3502 void
3503 purge_hard_subreg_sets (insn)
3504 rtx insn;
3506 for (; insn; insn = NEXT_INSN (insn))
3508 if (INSN_P (insn))
3510 rtx pattern = PATTERN (insn);
3511 switch (GET_CODE (pattern))
3513 case SET:
3514 if (GET_CODE (SET_DEST (pattern)) == SUBREG)
3515 purge_single_hard_subreg_set (pattern);
3516 break;
3517 case PARALLEL:
3519 int j;
3520 for (j = XVECLEN (pattern, 0) - 1; j >= 0; j--)
3522 rtx inner_pattern = XVECEXP (pattern, 0, j);
3523 if (GET_CODE (inner_pattern) == SET
3524 && GET_CODE (SET_DEST (inner_pattern)) == SUBREG)
3525 purge_single_hard_subreg_set (inner_pattern);
3528 break;
3529 default:
3530 break;
3536 /* Pass through the INSNS of function FNDECL and convert virtual register
3537 references to hard register references. */
3539 void
3540 instantiate_virtual_regs (fndecl, insns)
3541 tree fndecl;
3542 rtx insns;
3544 rtx insn;
3545 unsigned int i;
3547 /* Compute the offsets to use for this function. */
3548 in_arg_offset = FIRST_PARM_OFFSET (fndecl);
3549 var_offset = STARTING_FRAME_OFFSET;
3550 dynamic_offset = STACK_DYNAMIC_OFFSET (fndecl);
3551 out_arg_offset = STACK_POINTER_OFFSET;
3552 cfa_offset = ARG_POINTER_CFA_OFFSET (fndecl);
3554 /* Scan all variables and parameters of this function. For each that is
3555 in memory, instantiate all virtual registers if the result is a valid
3556 address. If not, we do it later. That will handle most uses of virtual
3557 regs on many machines. */
3558 instantiate_decls (fndecl, 1);
3560 /* Initialize recognition, indicating that volatile is OK. */
3561 init_recog ();
3563 /* Scan through all the insns, instantiating every virtual register still
3564 present. */
3565 for (insn = insns; insn; insn = NEXT_INSN (insn))
3566 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
3567 || GET_CODE (insn) == CALL_INSN)
3569 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
3570 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
3571 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
3572 if (GET_CODE (insn) == CALL_INSN)
3573 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
3574 NULL_RTX, 0);
3577 /* Instantiate the stack slots for the parm registers, for later use in
3578 addressof elimination. */
3579 for (i = 0; i < max_parm_reg; ++i)
3580 if (parm_reg_stack_loc[i])
3581 instantiate_virtual_regs_1 (&parm_reg_stack_loc[i], NULL_RTX, 0);
3583 /* Now instantiate the remaining register equivalences for debugging info.
3584 These will not be valid addresses. */
3585 instantiate_decls (fndecl, 0);
3587 /* Indicate that, from now on, assign_stack_local should use
3588 frame_pointer_rtx. */
3589 virtuals_instantiated = 1;
3592 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
3593 all virtual registers in their DECL_RTL's.
3595 If VALID_ONLY, do this only if the resulting address is still valid.
3596 Otherwise, always do it. */
3598 static void
3599 instantiate_decls (fndecl, valid_only)
3600 tree fndecl;
3601 int valid_only;
3603 tree decl;
3605 /* Process all parameters of the function. */
3606 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
3608 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
3609 HOST_WIDE_INT size_rtl;
3611 instantiate_decl (DECL_RTL (decl), size, valid_only);
3613 /* If the parameter was promoted, then the incoming RTL mode may be
3614 larger than the declared type size. We must use the larger of
3615 the two sizes. */
3616 size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
3617 size = MAX (size_rtl, size);
3618 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
3621 /* Now process all variables defined in the function or its subblocks. */
3622 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
3625 /* Subroutine of instantiate_decls: Process all decls in the given
3626 BLOCK node and all its subblocks. */
3628 static void
3629 instantiate_decls_1 (let, valid_only)
3630 tree let;
3631 int valid_only;
3633 tree t;
3635 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
3636 if (DECL_RTL_SET_P (t))
3637 instantiate_decl (DECL_RTL (t),
3638 int_size_in_bytes (TREE_TYPE (t)),
3639 valid_only);
3641 /* Process all subblocks. */
3642 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
3643 instantiate_decls_1 (t, valid_only);
3646 /* Subroutine of the preceding procedures: Given RTL representing a
3647 decl and the size of the object, do any instantiation required.
3649 If VALID_ONLY is non-zero, it means that the RTL should only be
3650 changed if the new address is valid. */
3652 static void
3653 instantiate_decl (x, size, valid_only)
3654 rtx x;
3655 HOST_WIDE_INT size;
3656 int valid_only;
3658 enum machine_mode mode;
3659 rtx addr;
3661 /* If this is not a MEM, no need to do anything. Similarly if the
3662 address is a constant or a register that is not a virtual register. */
3664 if (x == 0 || GET_CODE (x) != MEM)
3665 return;
3667 addr = XEXP (x, 0);
3668 if (CONSTANT_P (addr)
3669 || (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == REG)
3670 || (GET_CODE (addr) == REG
3671 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
3672 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
3673 return;
3675 /* If we should only do this if the address is valid, copy the address.
3676 We need to do this so we can undo any changes that might make the
3677 address invalid. This copy is unfortunate, but probably can't be
3678 avoided. */
3680 if (valid_only)
3681 addr = copy_rtx (addr);
3683 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
3685 if (valid_only && size >= 0)
3687 unsigned HOST_WIDE_INT decl_size = size;
3689 /* Now verify that the resulting address is valid for every integer or
3690 floating-point mode up to and including SIZE bytes long. We do this
3691 since the object might be accessed in any mode and frame addresses
3692 are shared. */
3694 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
3695 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3696 mode = GET_MODE_WIDER_MODE (mode))
3697 if (! memory_address_p (mode, addr))
3698 return;
3700 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3701 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
3702 mode = GET_MODE_WIDER_MODE (mode))
3703 if (! memory_address_p (mode, addr))
3704 return;
3707 /* Put back the address now that we have updated it and we either know
3708 it is valid or we don't care whether it is valid. */
3710 XEXP (x, 0) = addr;
3713 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
3714 is a virtual register, return the equivalent hard register and set the
3715 offset indirectly through the pointer. Otherwise, return 0. */
3717 static rtx
3718 instantiate_new_reg (x, poffset)
3719 rtx x;
3720 HOST_WIDE_INT *poffset;
3722 rtx new;
3723 HOST_WIDE_INT offset;
3725 if (x == virtual_incoming_args_rtx)
3726 new = arg_pointer_rtx, offset = in_arg_offset;
3727 else if (x == virtual_stack_vars_rtx)
3728 new = frame_pointer_rtx, offset = var_offset;
3729 else if (x == virtual_stack_dynamic_rtx)
3730 new = stack_pointer_rtx, offset = dynamic_offset;
3731 else if (x == virtual_outgoing_args_rtx)
3732 new = stack_pointer_rtx, offset = out_arg_offset;
3733 else if (x == virtual_cfa_rtx)
3734 new = arg_pointer_rtx, offset = cfa_offset;
3735 else
3736 return 0;
3738 *poffset = offset;
3739 return new;
3742 /* Given a pointer to a piece of rtx and an optional pointer to the
3743 containing object, instantiate any virtual registers present in it.
3745 If EXTRA_INSNS, we always do the replacement and generate
3746 any extra insns before OBJECT. If it zero, we do nothing if replacement
3747 is not valid.
3749 Return 1 if we either had nothing to do or if we were able to do the
3750 needed replacement. Return 0 otherwise; we only return zero if
3751 EXTRA_INSNS is zero.
3753 We first try some simple transformations to avoid the creation of extra
3754 pseudos. */
3756 static int
3757 instantiate_virtual_regs_1 (loc, object, extra_insns)
3758 rtx *loc;
3759 rtx object;
3760 int extra_insns;
3762 rtx x;
3763 RTX_CODE code;
3764 rtx new = 0;
3765 HOST_WIDE_INT offset = 0;
3766 rtx temp;
3767 rtx seq;
3768 int i, j;
3769 const char *fmt;
3771 /* Re-start here to avoid recursion in common cases. */
3772 restart:
3774 x = *loc;
3775 if (x == 0)
3776 return 1;
3778 code = GET_CODE (x);
3780 /* Check for some special cases. */
3781 switch (code)
3783 case CONST_INT:
3784 case CONST_DOUBLE:
3785 case CONST_VECTOR:
3786 case CONST:
3787 case SYMBOL_REF:
3788 case CODE_LABEL:
3789 case PC:
3790 case CC0:
3791 case ASM_INPUT:
3792 case ADDR_VEC:
3793 case ADDR_DIFF_VEC:
3794 case RETURN:
3795 return 1;
3797 case SET:
3798 /* We are allowed to set the virtual registers. This means that
3799 the actual register should receive the source minus the
3800 appropriate offset. This is used, for example, in the handling
3801 of non-local gotos. */
3802 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
3804 rtx src = SET_SRC (x);
3806 /* We are setting the register, not using it, so the relevant
3807 offset is the negative of the offset to use were we using
3808 the register. */
3809 offset = - offset;
3810 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
3812 /* The only valid sources here are PLUS or REG. Just do
3813 the simplest possible thing to handle them. */
3814 if (GET_CODE (src) != REG && GET_CODE (src) != PLUS)
3815 abort ();
3817 start_sequence ();
3818 if (GET_CODE (src) != REG)
3819 temp = force_operand (src, NULL_RTX);
3820 else
3821 temp = src;
3822 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
3823 seq = get_insns ();
3824 end_sequence ();
3826 emit_insn_before (seq, object);
3827 SET_DEST (x) = new;
3829 if (! validate_change (object, &SET_SRC (x), temp, 0)
3830 || ! extra_insns)
3831 abort ();
3833 return 1;
3836 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
3837 loc = &SET_SRC (x);
3838 goto restart;
3840 case PLUS:
3841 /* Handle special case of virtual register plus constant. */
3842 if (CONSTANT_P (XEXP (x, 1)))
3844 rtx old, new_offset;
3846 /* Check for (plus (plus VIRT foo) (const_int)) first. */
3847 if (GET_CODE (XEXP (x, 0)) == PLUS)
3849 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
3851 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
3852 extra_insns);
3853 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
3855 else
3857 loc = &XEXP (x, 0);
3858 goto restart;
3862 #ifdef POINTERS_EXTEND_UNSIGNED
3863 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
3864 we can commute the PLUS and SUBREG because pointers into the
3865 frame are well-behaved. */
3866 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
3867 && GET_CODE (XEXP (x, 1)) == CONST_INT
3868 && 0 != (new
3869 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
3870 &offset))
3871 && validate_change (object, loc,
3872 plus_constant (gen_lowpart (ptr_mode,
3873 new),
3874 offset
3875 + INTVAL (XEXP (x, 1))),
3877 return 1;
3878 #endif
3879 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
3881 /* We know the second operand is a constant. Unless the
3882 first operand is a REG (which has been already checked),
3883 it needs to be checked. */
3884 if (GET_CODE (XEXP (x, 0)) != REG)
3886 loc = &XEXP (x, 0);
3887 goto restart;
3889 return 1;
3892 new_offset = plus_constant (XEXP (x, 1), offset);
3894 /* If the new constant is zero, try to replace the sum with just
3895 the register. */
3896 if (new_offset == const0_rtx
3897 && validate_change (object, loc, new, 0))
3898 return 1;
3900 /* Next try to replace the register and new offset.
3901 There are two changes to validate here and we can't assume that
3902 in the case of old offset equals new just changing the register
3903 will yield a valid insn. In the interests of a little efficiency,
3904 however, we only call validate change once (we don't queue up the
3905 changes and then call apply_change_group). */
3907 old = XEXP (x, 0);
3908 if (offset == 0
3909 ? ! validate_change (object, &XEXP (x, 0), new, 0)
3910 : (XEXP (x, 0) = new,
3911 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
3913 if (! extra_insns)
3915 XEXP (x, 0) = old;
3916 return 0;
3919 /* Otherwise copy the new constant into a register and replace
3920 constant with that register. */
3921 temp = gen_reg_rtx (Pmode);
3922 XEXP (x, 0) = new;
3923 if (validate_change (object, &XEXP (x, 1), temp, 0))
3924 emit_insn_before (gen_move_insn (temp, new_offset), object);
3925 else
3927 /* If that didn't work, replace this expression with a
3928 register containing the sum. */
3930 XEXP (x, 0) = old;
3931 new = gen_rtx_PLUS (Pmode, new, new_offset);
3933 start_sequence ();
3934 temp = force_operand (new, NULL_RTX);
3935 seq = get_insns ();
3936 end_sequence ();
3938 emit_insn_before (seq, object);
3939 if (! validate_change (object, loc, temp, 0)
3940 && ! validate_replace_rtx (x, temp, object))
3941 abort ();
3945 return 1;
3948 /* Fall through to generic two-operand expression case. */
3949 case EXPR_LIST:
3950 case CALL:
3951 case COMPARE:
3952 case MINUS:
3953 case MULT:
3954 case DIV: case UDIV:
3955 case MOD: case UMOD:
3956 case AND: case IOR: case XOR:
3957 case ROTATERT: case ROTATE:
3958 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
3959 case NE: case EQ:
3960 case GE: case GT: case GEU: case GTU:
3961 case LE: case LT: case LEU: case LTU:
3962 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
3963 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
3964 loc = &XEXP (x, 0);
3965 goto restart;
3967 case MEM:
3968 /* Most cases of MEM that convert to valid addresses have already been
3969 handled by our scan of decls. The only special handling we
3970 need here is to make a copy of the rtx to ensure it isn't being
3971 shared if we have to change it to a pseudo.
3973 If the rtx is a simple reference to an address via a virtual register,
3974 it can potentially be shared. In such cases, first try to make it
3975 a valid address, which can also be shared. Otherwise, copy it and
3976 proceed normally.
3978 First check for common cases that need no processing. These are
3979 usually due to instantiation already being done on a previous instance
3980 of a shared rtx. */
3982 temp = XEXP (x, 0);
3983 if (CONSTANT_ADDRESS_P (temp)
3984 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3985 || temp == arg_pointer_rtx
3986 #endif
3987 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3988 || temp == hard_frame_pointer_rtx
3989 #endif
3990 || temp == frame_pointer_rtx)
3991 return 1;
3993 if (GET_CODE (temp) == PLUS
3994 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
3995 && (XEXP (temp, 0) == frame_pointer_rtx
3996 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
3997 || XEXP (temp, 0) == hard_frame_pointer_rtx
3998 #endif
3999 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4000 || XEXP (temp, 0) == arg_pointer_rtx
4001 #endif
4003 return 1;
4005 if (temp == virtual_stack_vars_rtx
4006 || temp == virtual_incoming_args_rtx
4007 || (GET_CODE (temp) == PLUS
4008 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
4009 && (XEXP (temp, 0) == virtual_stack_vars_rtx
4010 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
4012 /* This MEM may be shared. If the substitution can be done without
4013 the need to generate new pseudos, we want to do it in place
4014 so all copies of the shared rtx benefit. The call below will
4015 only make substitutions if the resulting address is still
4016 valid.
4018 Note that we cannot pass X as the object in the recursive call
4019 since the insn being processed may not allow all valid
4020 addresses. However, if we were not passed on object, we can
4021 only modify X without copying it if X will have a valid
4022 address.
4024 ??? Also note that this can still lose if OBJECT is an insn that
4025 has less restrictions on an address that some other insn.
4026 In that case, we will modify the shared address. This case
4027 doesn't seem very likely, though. One case where this could
4028 happen is in the case of a USE or CLOBBER reference, but we
4029 take care of that below. */
4031 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
4032 object ? object : x, 0))
4033 return 1;
4035 /* Otherwise make a copy and process that copy. We copy the entire
4036 RTL expression since it might be a PLUS which could also be
4037 shared. */
4038 *loc = x = copy_rtx (x);
4041 /* Fall through to generic unary operation case. */
4042 case PREFETCH:
4043 case SUBREG:
4044 case STRICT_LOW_PART:
4045 case NEG: case NOT:
4046 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
4047 case SIGN_EXTEND: case ZERO_EXTEND:
4048 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
4049 case FLOAT: case FIX:
4050 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
4051 case ABS:
4052 case SQRT:
4053 case FFS:
4054 /* These case either have just one operand or we know that we need not
4055 check the rest of the operands. */
4056 loc = &XEXP (x, 0);
4057 goto restart;
4059 case USE:
4060 case CLOBBER:
4061 /* If the operand is a MEM, see if the change is a valid MEM. If not,
4062 go ahead and make the invalid one, but do it to a copy. For a REG,
4063 just make the recursive call, since there's no chance of a problem. */
4065 if ((GET_CODE (XEXP (x, 0)) == MEM
4066 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
4068 || (GET_CODE (XEXP (x, 0)) == REG
4069 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
4070 return 1;
4072 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
4073 loc = &XEXP (x, 0);
4074 goto restart;
4076 case REG:
4077 /* Try to replace with a PLUS. If that doesn't work, compute the sum
4078 in front of this insn and substitute the temporary. */
4079 if ((new = instantiate_new_reg (x, &offset)) != 0)
4081 temp = plus_constant (new, offset);
4082 if (!validate_change (object, loc, temp, 0))
4084 if (! extra_insns)
4085 return 0;
4087 start_sequence ();
4088 temp = force_operand (temp, NULL_RTX);
4089 seq = get_insns ();
4090 end_sequence ();
4092 emit_insn_before (seq, object);
4093 if (! validate_change (object, loc, temp, 0)
4094 && ! validate_replace_rtx (x, temp, object))
4095 abort ();
4099 return 1;
4101 case ADDRESSOF:
4102 if (GET_CODE (XEXP (x, 0)) == REG)
4103 return 1;
4105 else if (GET_CODE (XEXP (x, 0)) == MEM)
4107 /* If we have a (addressof (mem ..)), do any instantiation inside
4108 since we know we'll be making the inside valid when we finally
4109 remove the ADDRESSOF. */
4110 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), NULL_RTX, 0);
4111 return 1;
4113 break;
4115 default:
4116 break;
4119 /* Scan all subexpressions. */
4120 fmt = GET_RTX_FORMAT (code);
4121 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
4122 if (*fmt == 'e')
4124 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
4125 return 0;
4127 else if (*fmt == 'E')
4128 for (j = 0; j < XVECLEN (x, i); j++)
4129 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
4130 extra_insns))
4131 return 0;
4133 return 1;
4136 /* Optimization: assuming this function does not receive nonlocal gotos,
4137 delete the handlers for such, as well as the insns to establish
4138 and disestablish them. */
4140 static void
4141 delete_handlers ()
4143 rtx insn;
4144 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4146 /* Delete the handler by turning off the flag that would
4147 prevent jump_optimize from deleting it.
4148 Also permit deletion of the nonlocal labels themselves
4149 if nothing local refers to them. */
4150 if (GET_CODE (insn) == CODE_LABEL)
4152 tree t, last_t;
4154 LABEL_PRESERVE_P (insn) = 0;
4156 /* Remove it from the nonlocal_label list, to avoid confusing
4157 flow. */
4158 for (t = nonlocal_labels, last_t = 0; t;
4159 last_t = t, t = TREE_CHAIN (t))
4160 if (DECL_RTL (TREE_VALUE (t)) == insn)
4161 break;
4162 if (t)
4164 if (! last_t)
4165 nonlocal_labels = TREE_CHAIN (nonlocal_labels);
4166 else
4167 TREE_CHAIN (last_t) = TREE_CHAIN (t);
4170 if (GET_CODE (insn) == INSN)
4172 int can_delete = 0;
4173 rtx t;
4174 for (t = nonlocal_goto_handler_slots; t != 0; t = XEXP (t, 1))
4175 if (reg_mentioned_p (t, PATTERN (insn)))
4177 can_delete = 1;
4178 break;
4180 if (can_delete
4181 || (nonlocal_goto_stack_level != 0
4182 && reg_mentioned_p (nonlocal_goto_stack_level,
4183 PATTERN (insn))))
4184 delete_related_insns (insn);
4190 max_parm_reg_num ()
4192 return max_parm_reg;
4195 /* Return the first insn following those generated by `assign_parms'. */
4198 get_first_nonparm_insn ()
4200 if (last_parm_insn)
4201 return NEXT_INSN (last_parm_insn);
4202 return get_insns ();
4205 /* Return the first NOTE_INSN_BLOCK_BEG note in the function.
4206 Crash if there is none. */
4209 get_first_block_beg ()
4211 rtx searcher;
4212 rtx insn = get_first_nonparm_insn ();
4214 for (searcher = insn; searcher; searcher = NEXT_INSN (searcher))
4215 if (GET_CODE (searcher) == NOTE
4216 && NOTE_LINE_NUMBER (searcher) == NOTE_INSN_BLOCK_BEG)
4217 return searcher;
4219 abort (); /* Invalid call to this function. (See comments above.) */
4220 return NULL_RTX;
4223 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
4224 This means a type for which function calls must pass an address to the
4225 function or get an address back from the function.
4226 EXP may be a type node or an expression (whose type is tested). */
4229 aggregate_value_p (exp)
4230 tree exp;
4232 int i, regno, nregs;
4233 rtx reg;
4235 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
4237 if (TREE_CODE (type) == VOID_TYPE)
4238 return 0;
4239 if (RETURN_IN_MEMORY (type))
4240 return 1;
4241 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
4242 and thus can't be returned in registers. */
4243 if (TREE_ADDRESSABLE (type))
4244 return 1;
4245 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
4246 return 1;
4247 /* Make sure we have suitable call-clobbered regs to return
4248 the value in; if not, we must return it in memory. */
4249 reg = hard_function_value (type, 0, 0);
4251 /* If we have something other than a REG (e.g. a PARALLEL), then assume
4252 it is OK. */
4253 if (GET_CODE (reg) != REG)
4254 return 0;
4256 regno = REGNO (reg);
4257 nregs = HARD_REGNO_NREGS (regno, TYPE_MODE (type));
4258 for (i = 0; i < nregs; i++)
4259 if (! call_used_regs[regno + i])
4260 return 1;
4261 return 0;
4264 /* Assign RTL expressions to the function's parameters.
4265 This may involve copying them into registers and using
4266 those registers as the RTL for them. */
4268 void
4269 assign_parms (fndecl)
4270 tree fndecl;
4272 tree parm;
4273 rtx entry_parm = 0;
4274 rtx stack_parm = 0;
4275 CUMULATIVE_ARGS args_so_far;
4276 enum machine_mode promoted_mode, passed_mode;
4277 enum machine_mode nominal_mode, promoted_nominal_mode;
4278 int unsignedp;
4279 /* Total space needed so far for args on the stack,
4280 given as a constant and a tree-expression. */
4281 struct args_size stack_args_size;
4282 tree fntype = TREE_TYPE (fndecl);
4283 tree fnargs = DECL_ARGUMENTS (fndecl);
4284 /* This is used for the arg pointer when referring to stack args. */
4285 rtx internal_arg_pointer;
4286 /* This is a dummy PARM_DECL that we used for the function result if
4287 the function returns a structure. */
4288 tree function_result_decl = 0;
4289 #ifdef SETUP_INCOMING_VARARGS
4290 int varargs_setup = 0;
4291 #endif
4292 rtx conversion_insns = 0;
4293 struct args_size alignment_pad;
4295 /* Nonzero if the last arg is named `__builtin_va_alist',
4296 which is used on some machines for old-fashioned non-ANSI varargs.h;
4297 this should be stuck onto the stack as if it had arrived there. */
4298 int hide_last_arg
4299 = (current_function_varargs
4300 && fnargs
4301 && (parm = tree_last (fnargs)) != 0
4302 && DECL_NAME (parm)
4303 && (! strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
4304 "__builtin_va_alist")));
4306 /* Nonzero if function takes extra anonymous args.
4307 This means the last named arg must be on the stack
4308 right before the anonymous ones. */
4309 int stdarg
4310 = (TYPE_ARG_TYPES (fntype) != 0
4311 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
4312 != void_type_node));
4314 current_function_stdarg = stdarg;
4316 /* If the reg that the virtual arg pointer will be translated into is
4317 not a fixed reg or is the stack pointer, make a copy of the virtual
4318 arg pointer, and address parms via the copy. The frame pointer is
4319 considered fixed even though it is not marked as such.
4321 The second time through, simply use ap to avoid generating rtx. */
4323 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
4324 || ! (fixed_regs[ARG_POINTER_REGNUM]
4325 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
4326 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
4327 else
4328 internal_arg_pointer = virtual_incoming_args_rtx;
4329 current_function_internal_arg_pointer = internal_arg_pointer;
4331 stack_args_size.constant = 0;
4332 stack_args_size.var = 0;
4334 /* If struct value address is treated as the first argument, make it so. */
4335 if (aggregate_value_p (DECL_RESULT (fndecl))
4336 && ! current_function_returns_pcc_struct
4337 && struct_value_incoming_rtx == 0)
4339 tree type = build_pointer_type (TREE_TYPE (fntype));
4341 function_result_decl = build_decl (PARM_DECL, NULL_TREE, type);
4343 DECL_ARG_TYPE (function_result_decl) = type;
4344 TREE_CHAIN (function_result_decl) = fnargs;
4345 fnargs = function_result_decl;
4348 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
4349 parm_reg_stack_loc = (rtx *) ggc_alloc_cleared (max_parm_reg * sizeof (rtx));
4351 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
4352 INIT_CUMULATIVE_INCOMING_ARGS (args_so_far, fntype, NULL_RTX);
4353 #else
4354 INIT_CUMULATIVE_ARGS (args_so_far, fntype, NULL_RTX, 0);
4355 #endif
4357 /* We haven't yet found an argument that we must push and pretend the
4358 caller did. */
4359 current_function_pretend_args_size = 0;
4361 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
4363 struct args_size stack_offset;
4364 struct args_size arg_size;
4365 int passed_pointer = 0;
4366 int did_conversion = 0;
4367 tree passed_type = DECL_ARG_TYPE (parm);
4368 tree nominal_type = TREE_TYPE (parm);
4369 int pretend_named;
4370 int last_named = 0, named_arg;
4372 /* Set LAST_NAMED if this is last named arg before last
4373 anonymous args. */
4374 if (stdarg || current_function_varargs)
4376 tree tem;
4378 for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem))
4379 if (DECL_NAME (tem))
4380 break;
4382 if (tem == 0)
4383 last_named = 1;
4385 /* Set NAMED_ARG if this arg should be treated as a named arg. For
4386 most machines, if this is a varargs/stdarg function, then we treat
4387 the last named arg as if it were anonymous too. */
4388 named_arg = STRICT_ARGUMENT_NAMING ? 1 : ! last_named;
4390 if (TREE_TYPE (parm) == error_mark_node
4391 /* This can happen after weird syntax errors
4392 or if an enum type is defined among the parms. */
4393 || TREE_CODE (parm) != PARM_DECL
4394 || passed_type == NULL)
4396 SET_DECL_RTL (parm, gen_rtx_MEM (BLKmode, const0_rtx));
4397 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4398 TREE_USED (parm) = 1;
4399 continue;
4402 /* For varargs.h function, save info about regs and stack space
4403 used by the individual args, not including the va_alist arg. */
4404 if (hide_last_arg && last_named)
4405 current_function_args_info = args_so_far;
4407 /* Find mode of arg as it is passed, and mode of arg
4408 as it should be during execution of this function. */
4409 passed_mode = TYPE_MODE (passed_type);
4410 nominal_mode = TYPE_MODE (nominal_type);
4412 /* If the parm's mode is VOID, its value doesn't matter,
4413 and avoid the usual things like emit_move_insn that could crash. */
4414 if (nominal_mode == VOIDmode)
4416 SET_DECL_RTL (parm, const0_rtx);
4417 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
4418 continue;
4421 /* If the parm is to be passed as a transparent union, use the
4422 type of the first field for the tests below. We have already
4423 verified that the modes are the same. */
4424 if (DECL_TRANSPARENT_UNION (parm)
4425 || (TREE_CODE (passed_type) == UNION_TYPE
4426 && TYPE_TRANSPARENT_UNION (passed_type)))
4427 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
4429 /* See if this arg was passed by invisible reference. It is if
4430 it is an object whose size depends on the contents of the
4431 object itself or if the machine requires these objects be passed
4432 that way. */
4434 if ((TREE_CODE (TYPE_SIZE (passed_type)) != INTEGER_CST
4435 && contains_placeholder_p (TYPE_SIZE (passed_type)))
4436 || TREE_ADDRESSABLE (passed_type)
4437 #ifdef FUNCTION_ARG_PASS_BY_REFERENCE
4438 || FUNCTION_ARG_PASS_BY_REFERENCE (args_so_far, passed_mode,
4439 passed_type, named_arg)
4440 #endif
4443 passed_type = nominal_type = build_pointer_type (passed_type);
4444 passed_pointer = 1;
4445 passed_mode = nominal_mode = Pmode;
4448 promoted_mode = passed_mode;
4450 #ifdef PROMOTE_FUNCTION_ARGS
4451 /* Compute the mode in which the arg is actually extended to. */
4452 unsignedp = TREE_UNSIGNED (passed_type);
4453 promoted_mode = promote_mode (passed_type, promoted_mode, &unsignedp, 1);
4454 #endif
4456 /* Let machine desc say which reg (if any) the parm arrives in.
4457 0 means it arrives on the stack. */
4458 #ifdef FUNCTION_INCOMING_ARG
4459 entry_parm = FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4460 passed_type, named_arg);
4461 #else
4462 entry_parm = FUNCTION_ARG (args_so_far, promoted_mode,
4463 passed_type, named_arg);
4464 #endif
4466 if (entry_parm == 0)
4467 promoted_mode = passed_mode;
4469 #ifdef SETUP_INCOMING_VARARGS
4470 /* If this is the last named parameter, do any required setup for
4471 varargs or stdargs. We need to know about the case of this being an
4472 addressable type, in which case we skip the registers it
4473 would have arrived in.
4475 For stdargs, LAST_NAMED will be set for two parameters, the one that
4476 is actually the last named, and the dummy parameter. We only
4477 want to do this action once.
4479 Also, indicate when RTL generation is to be suppressed. */
4480 if (last_named && !varargs_setup)
4482 SETUP_INCOMING_VARARGS (args_so_far, promoted_mode, passed_type,
4483 current_function_pretend_args_size, 0);
4484 varargs_setup = 1;
4486 #endif
4488 /* Determine parm's home in the stack,
4489 in case it arrives in the stack or we should pretend it did.
4491 Compute the stack position and rtx where the argument arrives
4492 and its size.
4494 There is one complexity here: If this was a parameter that would
4495 have been passed in registers, but wasn't only because it is
4496 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
4497 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
4498 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of
4499 0 as it was the previous time. */
4501 pretend_named = named_arg || PRETEND_OUTGOING_VARARGS_NAMED;
4502 locate_and_pad_parm (promoted_mode, passed_type,
4503 #ifdef STACK_PARMS_IN_REG_PARM_AREA
4505 #else
4506 #ifdef FUNCTION_INCOMING_ARG
4507 FUNCTION_INCOMING_ARG (args_so_far, promoted_mode,
4508 passed_type,
4509 pretend_named) != 0,
4510 #else
4511 FUNCTION_ARG (args_so_far, promoted_mode,
4512 passed_type,
4513 pretend_named) != 0,
4514 #endif
4515 #endif
4516 fndecl, &stack_args_size, &stack_offset, &arg_size,
4517 &alignment_pad);
4520 rtx offset_rtx = ARGS_SIZE_RTX (stack_offset);
4522 if (offset_rtx == const0_rtx)
4523 stack_parm = gen_rtx_MEM (promoted_mode, internal_arg_pointer);
4524 else
4525 stack_parm = gen_rtx_MEM (promoted_mode,
4526 gen_rtx_PLUS (Pmode,
4527 internal_arg_pointer,
4528 offset_rtx));
4530 set_mem_attributes (stack_parm, parm, 1);
4533 /* If this parameter was passed both in registers and in the stack,
4534 use the copy on the stack. */
4535 if (MUST_PASS_IN_STACK (promoted_mode, passed_type))
4536 entry_parm = 0;
4538 #ifdef FUNCTION_ARG_PARTIAL_NREGS
4539 /* If this parm was passed part in regs and part in memory,
4540 pretend it arrived entirely in memory
4541 by pushing the register-part onto the stack.
4543 In the special case of a DImode or DFmode that is split,
4544 we could put it together in a pseudoreg directly,
4545 but for now that's not worth bothering with. */
4547 if (entry_parm)
4549 int nregs = FUNCTION_ARG_PARTIAL_NREGS (args_so_far, promoted_mode,
4550 passed_type, named_arg);
4552 if (nregs > 0)
4554 current_function_pretend_args_size
4555 = (((nregs * UNITS_PER_WORD) + (PARM_BOUNDARY / BITS_PER_UNIT) - 1)
4556 / (PARM_BOUNDARY / BITS_PER_UNIT)
4557 * (PARM_BOUNDARY / BITS_PER_UNIT));
4559 /* Handle calls that pass values in multiple non-contiguous
4560 locations. The Irix 6 ABI has examples of this. */
4561 if (GET_CODE (entry_parm) == PARALLEL)
4562 emit_group_store (validize_mem (stack_parm), entry_parm,
4563 int_size_in_bytes (TREE_TYPE (parm)));
4565 else
4566 move_block_from_reg (REGNO (entry_parm),
4567 validize_mem (stack_parm), nregs,
4568 int_size_in_bytes (TREE_TYPE (parm)));
4570 entry_parm = stack_parm;
4573 #endif
4575 /* If we didn't decide this parm came in a register,
4576 by default it came on the stack. */
4577 if (entry_parm == 0)
4578 entry_parm = stack_parm;
4580 /* Record permanently how this parm was passed. */
4581 DECL_INCOMING_RTL (parm) = entry_parm;
4583 /* If there is actually space on the stack for this parm,
4584 count it in stack_args_size; otherwise set stack_parm to 0
4585 to indicate there is no preallocated stack slot for the parm. */
4587 if (entry_parm == stack_parm
4588 || (GET_CODE (entry_parm) == PARALLEL
4589 && XEXP (XVECEXP (entry_parm, 0, 0), 0) == NULL_RTX)
4590 #if defined (REG_PARM_STACK_SPACE) && ! defined (MAYBE_REG_PARM_STACK_SPACE)
4591 /* On some machines, even if a parm value arrives in a register
4592 there is still an (uninitialized) stack slot allocated for it.
4594 ??? When MAYBE_REG_PARM_STACK_SPACE is defined, we can't tell
4595 whether this parameter already has a stack slot allocated,
4596 because an arg block exists only if current_function_args_size
4597 is larger than some threshold, and we haven't calculated that
4598 yet. So, for now, we just assume that stack slots never exist
4599 in this case. */
4600 || REG_PARM_STACK_SPACE (fndecl) > 0
4601 #endif
4604 stack_args_size.constant += arg_size.constant;
4605 if (arg_size.var)
4606 ADD_PARM_SIZE (stack_args_size, arg_size.var);
4608 else
4609 /* No stack slot was pushed for this parm. */
4610 stack_parm = 0;
4612 /* Update info on where next arg arrives in registers. */
4614 FUNCTION_ARG_ADVANCE (args_so_far, promoted_mode,
4615 passed_type, named_arg);
4617 /* If we can't trust the parm stack slot to be aligned enough
4618 for its ultimate type, don't use that slot after entry.
4619 We'll make another stack slot, if we need one. */
4621 unsigned int thisparm_boundary
4622 = FUNCTION_ARG_BOUNDARY (promoted_mode, passed_type);
4624 if (GET_MODE_ALIGNMENT (nominal_mode) > thisparm_boundary)
4625 stack_parm = 0;
4628 /* If parm was passed in memory, and we need to convert it on entry,
4629 don't store it back in that same slot. */
4630 if (entry_parm != 0
4631 && nominal_mode != BLKmode && nominal_mode != passed_mode)
4632 stack_parm = 0;
4634 /* When an argument is passed in multiple locations, we can't
4635 make use of this information, but we can save some copying if
4636 the whole argument is passed in a single register. */
4637 if (GET_CODE (entry_parm) == PARALLEL
4638 && nominal_mode != BLKmode && passed_mode != BLKmode)
4640 int i, len = XVECLEN (entry_parm, 0);
4642 for (i = 0; i < len; i++)
4643 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
4644 && GET_CODE (XEXP (XVECEXP (entry_parm, 0, i), 0)) == REG
4645 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
4646 == passed_mode)
4647 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
4649 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
4650 DECL_INCOMING_RTL (parm) = entry_parm;
4651 break;
4655 /* ENTRY_PARM is an RTX for the parameter as it arrives,
4656 in the mode in which it arrives.
4657 STACK_PARM is an RTX for a stack slot where the parameter can live
4658 during the function (in case we want to put it there).
4659 STACK_PARM is 0 if no stack slot was pushed for it.
4661 Now output code if necessary to convert ENTRY_PARM to
4662 the type in which this function declares it,
4663 and store that result in an appropriate place,
4664 which may be a pseudo reg, may be STACK_PARM,
4665 or may be a local stack slot if STACK_PARM is 0.
4667 Set DECL_RTL to that place. */
4669 if (nominal_mode == BLKmode || GET_CODE (entry_parm) == PARALLEL)
4671 /* If a BLKmode arrives in registers, copy it to a stack slot.
4672 Handle calls that pass values in multiple non-contiguous
4673 locations. The Irix 6 ABI has examples of this. */
4674 if (GET_CODE (entry_parm) == REG
4675 || GET_CODE (entry_parm) == PARALLEL)
4677 int size_stored
4678 = CEIL_ROUND (int_size_in_bytes (TREE_TYPE (parm)),
4679 UNITS_PER_WORD);
4681 /* Note that we will be storing an integral number of words.
4682 So we have to be careful to ensure that we allocate an
4683 integral number of words. We do this below in the
4684 assign_stack_local if space was not allocated in the argument
4685 list. If it was, this will not work if PARM_BOUNDARY is not
4686 a multiple of BITS_PER_WORD. It isn't clear how to fix this
4687 if it becomes a problem. */
4689 if (stack_parm == 0)
4691 stack_parm
4692 = assign_stack_local (GET_MODE (entry_parm),
4693 size_stored, 0);
4694 set_mem_attributes (stack_parm, parm, 1);
4697 else if (PARM_BOUNDARY % BITS_PER_WORD != 0)
4698 abort ();
4700 /* Handle calls that pass values in multiple non-contiguous
4701 locations. The Irix 6 ABI has examples of this. */
4702 if (GET_CODE (entry_parm) == PARALLEL)
4703 emit_group_store (validize_mem (stack_parm), entry_parm,
4704 int_size_in_bytes (TREE_TYPE (parm)));
4705 else
4706 move_block_from_reg (REGNO (entry_parm),
4707 validize_mem (stack_parm),
4708 size_stored / UNITS_PER_WORD,
4709 int_size_in_bytes (TREE_TYPE (parm)));
4711 SET_DECL_RTL (parm, stack_parm);
4713 else if (! ((! optimize
4714 && ! DECL_REGISTER (parm))
4715 || TREE_SIDE_EFFECTS (parm)
4716 /* If -ffloat-store specified, don't put explicit
4717 float variables into registers. */
4718 || (flag_float_store
4719 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))
4720 /* Always assign pseudo to structure return or item passed
4721 by invisible reference. */
4722 || passed_pointer || parm == function_result_decl)
4724 /* Store the parm in a pseudoregister during the function, but we
4725 may need to do it in a wider mode. */
4727 rtx parmreg;
4728 unsigned int regno, regnoi = 0, regnor = 0;
4730 unsignedp = TREE_UNSIGNED (TREE_TYPE (parm));
4732 promoted_nominal_mode
4733 = promote_mode (TREE_TYPE (parm), nominal_mode, &unsignedp, 0);
4735 parmreg = gen_reg_rtx (promoted_nominal_mode);
4736 mark_user_reg (parmreg);
4738 /* If this was an item that we received a pointer to, set DECL_RTL
4739 appropriately. */
4740 if (passed_pointer)
4742 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (passed_type)),
4743 parmreg);
4744 set_mem_attributes (x, parm, 1);
4745 SET_DECL_RTL (parm, x);
4747 else
4749 SET_DECL_RTL (parm, parmreg);
4750 maybe_set_unchanging (DECL_RTL (parm), parm);
4753 /* Copy the value into the register. */
4754 if (nominal_mode != passed_mode
4755 || promoted_nominal_mode != promoted_mode)
4757 int save_tree_used;
4758 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
4759 mode, by the caller. We now have to convert it to
4760 NOMINAL_MODE, if different. However, PARMREG may be in
4761 a different mode than NOMINAL_MODE if it is being stored
4762 promoted.
4764 If ENTRY_PARM is a hard register, it might be in a register
4765 not valid for operating in its mode (e.g., an odd-numbered
4766 register for a DFmode). In that case, moves are the only
4767 thing valid, so we can't do a convert from there. This
4768 occurs when the calling sequence allow such misaligned
4769 usages.
4771 In addition, the conversion may involve a call, which could
4772 clobber parameters which haven't been copied to pseudo
4773 registers yet. Therefore, we must first copy the parm to
4774 a pseudo reg here, and save the conversion until after all
4775 parameters have been moved. */
4777 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
4779 emit_move_insn (tempreg, validize_mem (entry_parm));
4781 push_to_sequence (conversion_insns);
4782 tempreg = convert_to_mode (nominal_mode, tempreg, unsignedp);
4784 if (GET_CODE (tempreg) == SUBREG
4785 && GET_MODE (tempreg) == nominal_mode
4786 && GET_CODE (SUBREG_REG (tempreg)) == REG
4787 && nominal_mode == passed_mode
4788 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (entry_parm)
4789 && GET_MODE_SIZE (GET_MODE (tempreg))
4790 < GET_MODE_SIZE (GET_MODE (entry_parm)))
4792 /* The argument is already sign/zero extended, so note it
4793 into the subreg. */
4794 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
4795 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
4798 /* TREE_USED gets set erroneously during expand_assignment. */
4799 save_tree_used = TREE_USED (parm);
4800 expand_assignment (parm,
4801 make_tree (nominal_type, tempreg), 0, 0);
4802 TREE_USED (parm) = save_tree_used;
4803 conversion_insns = get_insns ();
4804 did_conversion = 1;
4805 end_sequence ();
4807 else
4808 emit_move_insn (parmreg, validize_mem (entry_parm));
4810 /* If we were passed a pointer but the actual value
4811 can safely live in a register, put it in one. */
4812 if (passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
4813 /* If by-reference argument was promoted, demote it. */
4814 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
4815 || ! ((! optimize
4816 && ! DECL_REGISTER (parm))
4817 || TREE_SIDE_EFFECTS (parm)
4818 /* If -ffloat-store specified, don't put explicit
4819 float variables into registers. */
4820 || (flag_float_store
4821 && TREE_CODE (TREE_TYPE (parm)) == REAL_TYPE))))
4823 /* We can't use nominal_mode, because it will have been set to
4824 Pmode above. We must use the actual mode of the parm. */
4825 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
4826 mark_user_reg (parmreg);
4827 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
4829 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
4830 int unsigned_p = TREE_UNSIGNED (TREE_TYPE (parm));
4831 push_to_sequence (conversion_insns);
4832 emit_move_insn (tempreg, DECL_RTL (parm));
4833 SET_DECL_RTL (parm,
4834 convert_to_mode (GET_MODE (parmreg),
4835 tempreg,
4836 unsigned_p));
4837 emit_move_insn (parmreg, DECL_RTL (parm));
4838 conversion_insns = get_insns();
4839 did_conversion = 1;
4840 end_sequence ();
4842 else
4843 emit_move_insn (parmreg, DECL_RTL (parm));
4844 SET_DECL_RTL (parm, parmreg);
4845 /* STACK_PARM is the pointer, not the parm, and PARMREG is
4846 now the parm. */
4847 stack_parm = 0;
4849 #ifdef FUNCTION_ARG_CALLEE_COPIES
4850 /* If we are passed an arg by reference and it is our responsibility
4851 to make a copy, do it now.
4852 PASSED_TYPE and PASSED mode now refer to the pointer, not the
4853 original argument, so we must recreate them in the call to
4854 FUNCTION_ARG_CALLEE_COPIES. */
4855 /* ??? Later add code to handle the case that if the argument isn't
4856 modified, don't do the copy. */
4858 else if (passed_pointer
4859 && FUNCTION_ARG_CALLEE_COPIES (args_so_far,
4860 TYPE_MODE (DECL_ARG_TYPE (parm)),
4861 DECL_ARG_TYPE (parm),
4862 named_arg)
4863 && ! TREE_ADDRESSABLE (DECL_ARG_TYPE (parm)))
4865 rtx copy;
4866 tree type = DECL_ARG_TYPE (parm);
4868 /* This sequence may involve a library call perhaps clobbering
4869 registers that haven't been copied to pseudos yet. */
4871 push_to_sequence (conversion_insns);
4873 if (!COMPLETE_TYPE_P (type)
4874 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4875 /* This is a variable sized object. */
4876 copy = gen_rtx_MEM (BLKmode,
4877 allocate_dynamic_stack_space
4878 (expr_size (parm), NULL_RTX,
4879 TYPE_ALIGN (type)));
4880 else
4881 copy = assign_stack_temp (TYPE_MODE (type),
4882 int_size_in_bytes (type), 1);
4883 set_mem_attributes (copy, parm, 1);
4885 store_expr (parm, copy, 0);
4886 emit_move_insn (parmreg, XEXP (copy, 0));
4887 conversion_insns = get_insns ();
4888 did_conversion = 1;
4889 end_sequence ();
4891 #endif /* FUNCTION_ARG_CALLEE_COPIES */
4893 /* In any case, record the parm's desired stack location
4894 in case we later discover it must live in the stack.
4896 If it is a COMPLEX value, store the stack location for both
4897 halves. */
4899 if (GET_CODE (parmreg) == CONCAT)
4900 regno = MAX (REGNO (XEXP (parmreg, 0)), REGNO (XEXP (parmreg, 1)));
4901 else
4902 regno = REGNO (parmreg);
4904 if (regno >= max_parm_reg)
4906 rtx *new;
4907 int old_max_parm_reg = max_parm_reg;
4909 /* It's slow to expand this one register at a time,
4910 but it's also rare and we need max_parm_reg to be
4911 precisely correct. */
4912 max_parm_reg = regno + 1;
4913 new = (rtx *) ggc_realloc (parm_reg_stack_loc,
4914 max_parm_reg * sizeof (rtx));
4915 memset ((char *) (new + old_max_parm_reg), 0,
4916 (max_parm_reg - old_max_parm_reg) * sizeof (rtx));
4917 parm_reg_stack_loc = new;
4920 if (GET_CODE (parmreg) == CONCAT)
4922 enum machine_mode submode = GET_MODE (XEXP (parmreg, 0));
4924 regnor = REGNO (gen_realpart (submode, parmreg));
4925 regnoi = REGNO (gen_imagpart (submode, parmreg));
4927 if (stack_parm != 0)
4929 parm_reg_stack_loc[regnor]
4930 = gen_realpart (submode, stack_parm);
4931 parm_reg_stack_loc[regnoi]
4932 = gen_imagpart (submode, stack_parm);
4934 else
4936 parm_reg_stack_loc[regnor] = 0;
4937 parm_reg_stack_loc[regnoi] = 0;
4940 else
4941 parm_reg_stack_loc[REGNO (parmreg)] = stack_parm;
4943 /* Mark the register as eliminable if we did no conversion
4944 and it was copied from memory at a fixed offset,
4945 and the arg pointer was not copied to a pseudo-reg.
4946 If the arg pointer is a pseudo reg or the offset formed
4947 an invalid address, such memory-equivalences
4948 as we make here would screw up life analysis for it. */
4949 if (nominal_mode == passed_mode
4950 && ! did_conversion
4951 && stack_parm != 0
4952 && GET_CODE (stack_parm) == MEM
4953 && stack_offset.var == 0
4954 && reg_mentioned_p (virtual_incoming_args_rtx,
4955 XEXP (stack_parm, 0)))
4957 rtx linsn = get_last_insn ();
4958 rtx sinsn, set;
4960 /* Mark complex types separately. */
4961 if (GET_CODE (parmreg) == CONCAT)
4962 /* Scan backwards for the set of the real and
4963 imaginary parts. */
4964 for (sinsn = linsn; sinsn != 0;
4965 sinsn = prev_nonnote_insn (sinsn))
4967 set = single_set (sinsn);
4968 if (set != 0
4969 && SET_DEST (set) == regno_reg_rtx [regnoi])
4970 REG_NOTES (sinsn)
4971 = gen_rtx_EXPR_LIST (REG_EQUIV,
4972 parm_reg_stack_loc[regnoi],
4973 REG_NOTES (sinsn));
4974 else if (set != 0
4975 && SET_DEST (set) == regno_reg_rtx [regnor])
4976 REG_NOTES (sinsn)
4977 = gen_rtx_EXPR_LIST (REG_EQUIV,
4978 parm_reg_stack_loc[regnor],
4979 REG_NOTES (sinsn));
4981 else if ((set = single_set (linsn)) != 0
4982 && SET_DEST (set) == parmreg)
4983 REG_NOTES (linsn)
4984 = gen_rtx_EXPR_LIST (REG_EQUIV,
4985 stack_parm, REG_NOTES (linsn));
4988 /* For pointer data type, suggest pointer register. */
4989 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4990 mark_reg_pointer (parmreg,
4991 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4993 /* If something wants our address, try to use ADDRESSOF. */
4994 if (TREE_ADDRESSABLE (parm))
4996 /* If we end up putting something into the stack,
4997 fixup_var_refs_insns will need to make a pass over
4998 all the instructions. It looks through the pending
4999 sequences -- but it can't see the ones in the
5000 CONVERSION_INSNS, if they're not on the sequence
5001 stack. So, we go back to that sequence, just so that
5002 the fixups will happen. */
5003 push_to_sequence (conversion_insns);
5004 put_var_into_stack (parm);
5005 conversion_insns = get_insns ();
5006 end_sequence ();
5009 else
5011 /* Value must be stored in the stack slot STACK_PARM
5012 during function execution. */
5014 if (promoted_mode != nominal_mode)
5016 /* Conversion is required. */
5017 rtx tempreg = gen_reg_rtx (GET_MODE (entry_parm));
5019 emit_move_insn (tempreg, validize_mem (entry_parm));
5021 push_to_sequence (conversion_insns);
5022 entry_parm = convert_to_mode (nominal_mode, tempreg,
5023 TREE_UNSIGNED (TREE_TYPE (parm)));
5024 if (stack_parm)
5025 /* ??? This may need a big-endian conversion on sparc64. */
5026 stack_parm = adjust_address (stack_parm, nominal_mode, 0);
5028 conversion_insns = get_insns ();
5029 did_conversion = 1;
5030 end_sequence ();
5033 if (entry_parm != stack_parm)
5035 if (stack_parm == 0)
5037 stack_parm
5038 = assign_stack_local (GET_MODE (entry_parm),
5039 GET_MODE_SIZE (GET_MODE (entry_parm)), 0);
5040 set_mem_attributes (stack_parm, parm, 1);
5043 if (promoted_mode != nominal_mode)
5045 push_to_sequence (conversion_insns);
5046 emit_move_insn (validize_mem (stack_parm),
5047 validize_mem (entry_parm));
5048 conversion_insns = get_insns ();
5049 end_sequence ();
5051 else
5052 emit_move_insn (validize_mem (stack_parm),
5053 validize_mem (entry_parm));
5056 SET_DECL_RTL (parm, stack_parm);
5059 /* If this "parameter" was the place where we are receiving the
5060 function's incoming structure pointer, set up the result. */
5061 if (parm == function_result_decl)
5063 tree result = DECL_RESULT (fndecl);
5064 rtx addr = DECL_RTL (parm);
5065 rtx x;
5067 #ifdef POINTERS_EXTEND_UNSIGNED
5068 if (GET_MODE (addr) != Pmode)
5069 addr = convert_memory_address (Pmode, addr);
5070 #endif
5072 x = gen_rtx_MEM (DECL_MODE (result), addr);
5073 set_mem_attributes (x, result, 1);
5074 SET_DECL_RTL (result, x);
5077 if (GET_CODE (DECL_RTL (parm)) == REG)
5078 REGNO_DECL (REGNO (DECL_RTL (parm))) = parm;
5079 else if (GET_CODE (DECL_RTL (parm)) == CONCAT)
5081 REGNO_DECL (REGNO (XEXP (DECL_RTL (parm), 0))) = parm;
5082 REGNO_DECL (REGNO (XEXP (DECL_RTL (parm), 1))) = parm;
5087 /* Output all parameter conversion instructions (possibly including calls)
5088 now that all parameters have been copied out of hard registers. */
5089 emit_insn (conversion_insns);
5091 last_parm_insn = get_last_insn ();
5093 current_function_args_size = stack_args_size.constant;
5095 /* Adjust function incoming argument size for alignment and
5096 minimum length. */
5098 #ifdef REG_PARM_STACK_SPACE
5099 #ifndef MAYBE_REG_PARM_STACK_SPACE
5100 current_function_args_size = MAX (current_function_args_size,
5101 REG_PARM_STACK_SPACE (fndecl));
5102 #endif
5103 #endif
5105 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
5107 current_function_args_size
5108 = ((current_function_args_size + STACK_BYTES - 1)
5109 / STACK_BYTES) * STACK_BYTES;
5111 #ifdef ARGS_GROW_DOWNWARD
5112 current_function_arg_offset_rtx
5113 = (stack_args_size.var == 0 ? GEN_INT (-stack_args_size.constant)
5114 : expand_expr (size_diffop (stack_args_size.var,
5115 size_int (-stack_args_size.constant)),
5116 NULL_RTX, VOIDmode, 0));
5117 #else
5118 current_function_arg_offset_rtx = ARGS_SIZE_RTX (stack_args_size);
5119 #endif
5121 /* See how many bytes, if any, of its args a function should try to pop
5122 on return. */
5124 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
5125 current_function_args_size);
5127 /* For stdarg.h function, save info about
5128 regs and stack space used by the named args. */
5130 if (!hide_last_arg)
5131 current_function_args_info = args_so_far;
5133 /* Set the rtx used for the function return value. Put this in its
5134 own variable so any optimizers that need this information don't have
5135 to include tree.h. Do this here so it gets done when an inlined
5136 function gets output. */
5138 current_function_return_rtx
5139 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
5140 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
5142 /* If scalar return value was computed in a pseudo-reg, or was a named
5143 return value that got dumped to the stack, copy that to the hard
5144 return register. */
5145 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
5147 tree decl_result = DECL_RESULT (fndecl);
5148 rtx decl_rtl = DECL_RTL (decl_result);
5150 if (REG_P (decl_rtl)
5151 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5152 : DECL_REGISTER (decl_result))
5154 rtx real_decl_rtl;
5156 #ifdef FUNCTION_OUTGOING_VALUE
5157 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
5158 fndecl);
5159 #else
5160 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
5161 fndecl);
5162 #endif
5163 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
5164 /* The delay slot scheduler assumes that current_function_return_rtx
5165 holds the hard register containing the return value, not a
5166 temporary pseudo. */
5167 current_function_return_rtx = real_decl_rtl;
5172 /* Indicate whether REGNO is an incoming argument to the current function
5173 that was promoted to a wider mode. If so, return the RTX for the
5174 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
5175 that REGNO is promoted from and whether the promotion was signed or
5176 unsigned. */
5178 #ifdef PROMOTE_FUNCTION_ARGS
5181 promoted_input_arg (regno, pmode, punsignedp)
5182 unsigned int regno;
5183 enum machine_mode *pmode;
5184 int *punsignedp;
5186 tree arg;
5188 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
5189 arg = TREE_CHAIN (arg))
5190 if (GET_CODE (DECL_INCOMING_RTL (arg)) == REG
5191 && REGNO (DECL_INCOMING_RTL (arg)) == regno
5192 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
5194 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
5195 int unsignedp = TREE_UNSIGNED (TREE_TYPE (arg));
5197 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
5198 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
5199 && mode != DECL_MODE (arg))
5201 *pmode = DECL_MODE (arg);
5202 *punsignedp = unsignedp;
5203 return DECL_INCOMING_RTL (arg);
5207 return 0;
5210 #endif
5212 /* Compute the size and offset from the start of the stacked arguments for a
5213 parm passed in mode PASSED_MODE and with type TYPE.
5215 INITIAL_OFFSET_PTR points to the current offset into the stacked
5216 arguments.
5218 The starting offset and size for this parm are returned in *OFFSET_PTR
5219 and *ARG_SIZE_PTR, respectively.
5221 IN_REGS is non-zero if the argument will be passed in registers. It will
5222 never be set if REG_PARM_STACK_SPACE is not defined.
5224 FNDECL is the function in which the argument was defined.
5226 There are two types of rounding that are done. The first, controlled by
5227 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
5228 list to be aligned to the specific boundary (in bits). This rounding
5229 affects the initial and starting offsets, but not the argument size.
5231 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
5232 optionally rounds the size of the parm to PARM_BOUNDARY. The
5233 initial offset is not affected by this rounding, while the size always
5234 is and the starting offset may be. */
5236 /* offset_ptr will be negative for ARGS_GROW_DOWNWARD case;
5237 initial_offset_ptr is positive because locate_and_pad_parm's
5238 callers pass in the total size of args so far as
5239 initial_offset_ptr. arg_size_ptr is always positive. */
5241 void
5242 locate_and_pad_parm (passed_mode, type, in_regs, fndecl,
5243 initial_offset_ptr, offset_ptr, arg_size_ptr,
5244 alignment_pad)
5245 enum machine_mode passed_mode;
5246 tree type;
5247 int in_regs ATTRIBUTE_UNUSED;
5248 tree fndecl ATTRIBUTE_UNUSED;
5249 struct args_size *initial_offset_ptr;
5250 struct args_size *offset_ptr;
5251 struct args_size *arg_size_ptr;
5252 struct args_size *alignment_pad;
5255 tree sizetree
5256 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
5257 enum direction where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
5258 int boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
5260 #ifdef REG_PARM_STACK_SPACE
5261 /* If we have found a stack parm before we reach the end of the
5262 area reserved for registers, skip that area. */
5263 if (! in_regs)
5265 int reg_parm_stack_space = 0;
5267 #ifdef MAYBE_REG_PARM_STACK_SPACE
5268 reg_parm_stack_space = MAYBE_REG_PARM_STACK_SPACE;
5269 #else
5270 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
5271 #endif
5272 if (reg_parm_stack_space > 0)
5274 if (initial_offset_ptr->var)
5276 initial_offset_ptr->var
5277 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
5278 ssize_int (reg_parm_stack_space));
5279 initial_offset_ptr->constant = 0;
5281 else if (initial_offset_ptr->constant < reg_parm_stack_space)
5282 initial_offset_ptr->constant = reg_parm_stack_space;
5285 #endif /* REG_PARM_STACK_SPACE */
5287 arg_size_ptr->var = 0;
5288 arg_size_ptr->constant = 0;
5289 alignment_pad->var = 0;
5290 alignment_pad->constant = 0;
5292 #ifdef ARGS_GROW_DOWNWARD
5293 if (initial_offset_ptr->var)
5295 offset_ptr->constant = 0;
5296 offset_ptr->var = size_binop (MINUS_EXPR, ssize_int (0),
5297 initial_offset_ptr->var);
5299 else
5301 offset_ptr->constant = -initial_offset_ptr->constant;
5302 offset_ptr->var = 0;
5304 if (where_pad != none
5305 && (!host_integerp (sizetree, 1)
5306 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5307 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5308 SUB_PARM_SIZE (*offset_ptr, sizetree);
5309 if (where_pad != downward)
5310 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad);
5311 if (initial_offset_ptr->var)
5312 arg_size_ptr->var = size_binop (MINUS_EXPR,
5313 size_binop (MINUS_EXPR,
5314 ssize_int (0),
5315 initial_offset_ptr->var),
5316 offset_ptr->var);
5318 else
5319 arg_size_ptr->constant = (-initial_offset_ptr->constant
5320 - offset_ptr->constant);
5322 #else /* !ARGS_GROW_DOWNWARD */
5323 if (!in_regs
5324 #ifdef REG_PARM_STACK_SPACE
5325 || REG_PARM_STACK_SPACE (fndecl) > 0
5326 #endif
5328 pad_to_arg_alignment (initial_offset_ptr, boundary, alignment_pad);
5329 *offset_ptr = *initial_offset_ptr;
5331 #ifdef PUSH_ROUNDING
5332 if (passed_mode != BLKmode)
5333 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
5334 #endif
5336 /* Pad_below needs the pre-rounded size to know how much to pad below
5337 so this must be done before rounding up. */
5338 if (where_pad == downward
5339 /* However, BLKmode args passed in regs have their padding done elsewhere.
5340 The stack slot must be able to hold the entire register. */
5341 && !(in_regs && passed_mode == BLKmode))
5342 pad_below (offset_ptr, passed_mode, sizetree);
5344 if (where_pad != none
5345 && (!host_integerp (sizetree, 1)
5346 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
5347 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5349 ADD_PARM_SIZE (*arg_size_ptr, sizetree);
5350 #endif /* ARGS_GROW_DOWNWARD */
5353 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
5354 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
5356 static void
5357 pad_to_arg_alignment (offset_ptr, boundary, alignment_pad)
5358 struct args_size *offset_ptr;
5359 int boundary;
5360 struct args_size *alignment_pad;
5362 tree save_var = NULL_TREE;
5363 HOST_WIDE_INT save_constant = 0;
5365 int boundary_in_bytes = boundary / BITS_PER_UNIT;
5367 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5369 save_var = offset_ptr->var;
5370 save_constant = offset_ptr->constant;
5373 alignment_pad->var = NULL_TREE;
5374 alignment_pad->constant = 0;
5376 if (boundary > BITS_PER_UNIT)
5378 if (offset_ptr->var)
5380 offset_ptr->var =
5381 #ifdef ARGS_GROW_DOWNWARD
5382 round_down
5383 #else
5384 round_up
5385 #endif
5386 (ARGS_SIZE_TREE (*offset_ptr),
5387 boundary / BITS_PER_UNIT);
5388 offset_ptr->constant = 0; /*?*/
5389 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5390 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
5391 save_var);
5393 else
5395 offset_ptr->constant =
5396 #ifdef ARGS_GROW_DOWNWARD
5397 FLOOR_ROUND (offset_ptr->constant, boundary_in_bytes);
5398 #else
5399 CEIL_ROUND (offset_ptr->constant, boundary_in_bytes);
5400 #endif
5401 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
5402 alignment_pad->constant = offset_ptr->constant - save_constant;
5407 #ifndef ARGS_GROW_DOWNWARD
5408 static void
5409 pad_below (offset_ptr, passed_mode, sizetree)
5410 struct args_size *offset_ptr;
5411 enum machine_mode passed_mode;
5412 tree sizetree;
5414 if (passed_mode != BLKmode)
5416 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
5417 offset_ptr->constant
5418 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
5419 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
5420 - GET_MODE_SIZE (passed_mode));
5422 else
5424 if (TREE_CODE (sizetree) != INTEGER_CST
5425 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
5427 /* Round the size up to multiple of PARM_BOUNDARY bits. */
5428 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
5429 /* Add it in. */
5430 ADD_PARM_SIZE (*offset_ptr, s2);
5431 SUB_PARM_SIZE (*offset_ptr, sizetree);
5435 #endif
5437 /* Walk the tree of blocks describing the binding levels within a function
5438 and warn about uninitialized variables.
5439 This is done after calling flow_analysis and before global_alloc
5440 clobbers the pseudo-regs to hard regs. */
5442 void
5443 uninitialized_vars_warning (block)
5444 tree block;
5446 tree decl, sub;
5447 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5449 if (warn_uninitialized
5450 && TREE_CODE (decl) == VAR_DECL
5451 /* These warnings are unreliable for and aggregates
5452 because assigning the fields one by one can fail to convince
5453 flow.c that the entire aggregate was initialized.
5454 Unions are troublesome because members may be shorter. */
5455 && ! AGGREGATE_TYPE_P (TREE_TYPE (decl))
5456 && DECL_RTL (decl) != 0
5457 && GET_CODE (DECL_RTL (decl)) == REG
5458 /* Global optimizations can make it difficult to determine if a
5459 particular variable has been initialized. However, a VAR_DECL
5460 with a nonzero DECL_INITIAL had an initializer, so do not
5461 claim it is potentially uninitialized.
5463 We do not care about the actual value in DECL_INITIAL, so we do
5464 not worry that it may be a dangling pointer. */
5465 && DECL_INITIAL (decl) == NULL_TREE
5466 && regno_uninitialized (REGNO (DECL_RTL (decl))))
5467 warning_with_decl (decl,
5468 "`%s' might be used uninitialized in this function");
5469 if (extra_warnings
5470 && TREE_CODE (decl) == VAR_DECL
5471 && DECL_RTL (decl) != 0
5472 && GET_CODE (DECL_RTL (decl)) == REG
5473 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5474 warning_with_decl (decl,
5475 "variable `%s' might be clobbered by `longjmp' or `vfork'");
5477 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5478 uninitialized_vars_warning (sub);
5481 /* Do the appropriate part of uninitialized_vars_warning
5482 but for arguments instead of local variables. */
5484 void
5485 setjmp_args_warning ()
5487 tree decl;
5488 for (decl = DECL_ARGUMENTS (current_function_decl);
5489 decl; decl = TREE_CHAIN (decl))
5490 if (DECL_RTL (decl) != 0
5491 && GET_CODE (DECL_RTL (decl)) == REG
5492 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
5493 warning_with_decl (decl,
5494 "argument `%s' might be clobbered by `longjmp' or `vfork'");
5497 /* If this function call setjmp, put all vars into the stack
5498 unless they were declared `register'. */
5500 void
5501 setjmp_protect (block)
5502 tree block;
5504 tree decl, sub;
5505 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
5506 if ((TREE_CODE (decl) == VAR_DECL
5507 || TREE_CODE (decl) == PARM_DECL)
5508 && DECL_RTL (decl) != 0
5509 && (GET_CODE (DECL_RTL (decl)) == REG
5510 || (GET_CODE (DECL_RTL (decl)) == MEM
5511 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5512 /* If this variable came from an inline function, it must be
5513 that its life doesn't overlap the setjmp. If there was a
5514 setjmp in the function, it would already be in memory. We
5515 must exclude such variable because their DECL_RTL might be
5516 set to strange things such as virtual_stack_vars_rtx. */
5517 && ! DECL_FROM_INLINE (decl)
5518 && (
5519 #ifdef NON_SAVING_SETJMP
5520 /* If longjmp doesn't restore the registers,
5521 don't put anything in them. */
5522 NON_SAVING_SETJMP
5524 #endif
5525 ! DECL_REGISTER (decl)))
5526 put_var_into_stack (decl);
5527 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
5528 setjmp_protect (sub);
5531 /* Like the previous function, but for args instead of local variables. */
5533 void
5534 setjmp_protect_args ()
5536 tree decl;
5537 for (decl = DECL_ARGUMENTS (current_function_decl);
5538 decl; decl = TREE_CHAIN (decl))
5539 if ((TREE_CODE (decl) == VAR_DECL
5540 || TREE_CODE (decl) == PARM_DECL)
5541 && DECL_RTL (decl) != 0
5542 && (GET_CODE (DECL_RTL (decl)) == REG
5543 || (GET_CODE (DECL_RTL (decl)) == MEM
5544 && GET_CODE (XEXP (DECL_RTL (decl), 0)) == ADDRESSOF))
5545 && (
5546 /* If longjmp doesn't restore the registers,
5547 don't put anything in them. */
5548 #ifdef NON_SAVING_SETJMP
5549 NON_SAVING_SETJMP
5551 #endif
5552 ! DECL_REGISTER (decl)))
5553 put_var_into_stack (decl);
5556 /* Return the context-pointer register corresponding to DECL,
5557 or 0 if it does not need one. */
5560 lookup_static_chain (decl)
5561 tree decl;
5563 tree context = decl_function_context (decl);
5564 tree link;
5566 if (context == 0
5567 || (TREE_CODE (decl) == FUNCTION_DECL && DECL_NO_STATIC_CHAIN (decl)))
5568 return 0;
5570 /* We treat inline_function_decl as an alias for the current function
5571 because that is the inline function whose vars, types, etc.
5572 are being merged into the current function.
5573 See expand_inline_function. */
5574 if (context == current_function_decl || context == inline_function_decl)
5575 return virtual_stack_vars_rtx;
5577 for (link = context_display; link; link = TREE_CHAIN (link))
5578 if (TREE_PURPOSE (link) == context)
5579 return RTL_EXPR_RTL (TREE_VALUE (link));
5581 abort ();
5584 /* Convert a stack slot address ADDR for variable VAR
5585 (from a containing function)
5586 into an address valid in this function (using a static chain). */
5589 fix_lexical_addr (addr, var)
5590 rtx addr;
5591 tree var;
5593 rtx basereg;
5594 HOST_WIDE_INT displacement;
5595 tree context = decl_function_context (var);
5596 struct function *fp;
5597 rtx base = 0;
5599 /* If this is the present function, we need not do anything. */
5600 if (context == current_function_decl || context == inline_function_decl)
5601 return addr;
5603 fp = find_function_data (context);
5605 if (GET_CODE (addr) == ADDRESSOF && GET_CODE (XEXP (addr, 0)) == MEM)
5606 addr = XEXP (XEXP (addr, 0), 0);
5608 /* Decode given address as base reg plus displacement. */
5609 if (GET_CODE (addr) == REG)
5610 basereg = addr, displacement = 0;
5611 else if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
5612 basereg = XEXP (addr, 0), displacement = INTVAL (XEXP (addr, 1));
5613 else
5614 abort ();
5616 /* We accept vars reached via the containing function's
5617 incoming arg pointer and via its stack variables pointer. */
5618 if (basereg == fp->internal_arg_pointer)
5620 /* If reached via arg pointer, get the arg pointer value
5621 out of that function's stack frame.
5623 There are two cases: If a separate ap is needed, allocate a
5624 slot in the outer function for it and dereference it that way.
5625 This is correct even if the real ap is actually a pseudo.
5626 Otherwise, just adjust the offset from the frame pointer to
5627 compensate. */
5629 #ifdef NEED_SEPARATE_AP
5630 rtx addr;
5632 addr = get_arg_pointer_save_area (fp);
5633 addr = fix_lexical_addr (XEXP (addr, 0), var);
5634 addr = memory_address (Pmode, addr);
5636 base = gen_rtx_MEM (Pmode, addr);
5637 set_mem_alias_set (base, get_frame_alias_set ());
5638 base = copy_to_reg (base);
5639 #else
5640 displacement += (FIRST_PARM_OFFSET (context) - STARTING_FRAME_OFFSET);
5641 base = lookup_static_chain (var);
5642 #endif
5645 else if (basereg == virtual_stack_vars_rtx)
5647 /* This is the same code as lookup_static_chain, duplicated here to
5648 avoid an extra call to decl_function_context. */
5649 tree link;
5651 for (link = context_display; link; link = TREE_CHAIN (link))
5652 if (TREE_PURPOSE (link) == context)
5654 base = RTL_EXPR_RTL (TREE_VALUE (link));
5655 break;
5659 if (base == 0)
5660 abort ();
5662 /* Use same offset, relative to appropriate static chain or argument
5663 pointer. */
5664 return plus_constant (base, displacement);
5667 /* Return the address of the trampoline for entering nested fn FUNCTION.
5668 If necessary, allocate a trampoline (in the stack frame)
5669 and emit rtl to initialize its contents (at entry to this function). */
5672 trampoline_address (function)
5673 tree function;
5675 tree link;
5676 tree rtlexp;
5677 rtx tramp;
5678 struct function *fp;
5679 tree fn_context;
5681 /* Find an existing trampoline and return it. */
5682 for (link = trampoline_list; link; link = TREE_CHAIN (link))
5683 if (TREE_PURPOSE (link) == function)
5684 return
5685 adjust_trampoline_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0));
5687 for (fp = outer_function_chain; fp; fp = fp->outer)
5688 for (link = fp->x_trampoline_list; link; link = TREE_CHAIN (link))
5689 if (TREE_PURPOSE (link) == function)
5691 tramp = fix_lexical_addr (XEXP (RTL_EXPR_RTL (TREE_VALUE (link)), 0),
5692 function);
5693 return adjust_trampoline_addr (tramp);
5696 /* None exists; we must make one. */
5698 /* Find the `struct function' for the function containing FUNCTION. */
5699 fp = 0;
5700 fn_context = decl_function_context (function);
5701 if (fn_context != current_function_decl
5702 && fn_context != inline_function_decl)
5703 fp = find_function_data (fn_context);
5705 /* Allocate run-time space for this trampoline
5706 (usually in the defining function's stack frame). */
5707 #ifdef ALLOCATE_TRAMPOLINE
5708 tramp = ALLOCATE_TRAMPOLINE (fp);
5709 #else
5710 /* If rounding needed, allocate extra space
5711 to ensure we have TRAMPOLINE_SIZE bytes left after rounding up. */
5712 #ifdef TRAMPOLINE_ALIGNMENT
5713 #define TRAMPOLINE_REAL_SIZE \
5714 (TRAMPOLINE_SIZE + (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT) - 1)
5715 #else
5716 #define TRAMPOLINE_REAL_SIZE (TRAMPOLINE_SIZE)
5717 #endif
5718 tramp = assign_stack_local_1 (BLKmode, TRAMPOLINE_REAL_SIZE, 0,
5719 fp ? fp : cfun);
5720 #endif
5722 /* Record the trampoline for reuse and note it for later initialization
5723 by expand_function_end. */
5724 if (fp != 0)
5726 rtlexp = make_node (RTL_EXPR);
5727 RTL_EXPR_RTL (rtlexp) = tramp;
5728 fp->x_trampoline_list = tree_cons (function, rtlexp,
5729 fp->x_trampoline_list);
5731 else
5733 /* Make the RTL_EXPR node temporary, not momentary, so that the
5734 trampoline_list doesn't become garbage. */
5735 rtlexp = make_node (RTL_EXPR);
5737 RTL_EXPR_RTL (rtlexp) = tramp;
5738 trampoline_list = tree_cons (function, rtlexp, trampoline_list);
5741 tramp = fix_lexical_addr (XEXP (tramp, 0), function);
5742 return adjust_trampoline_addr (tramp);
5745 /* Given a trampoline address,
5746 round it to multiple of TRAMPOLINE_ALIGNMENT. */
5748 static rtx
5749 round_trampoline_addr (tramp)
5750 rtx tramp;
5752 #ifdef TRAMPOLINE_ALIGNMENT
5753 /* Round address up to desired boundary. */
5754 rtx temp = gen_reg_rtx (Pmode);
5755 rtx addend = GEN_INT (TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT - 1);
5756 rtx mask = GEN_INT (-TRAMPOLINE_ALIGNMENT / BITS_PER_UNIT);
5758 temp = expand_simple_binop (Pmode, PLUS, tramp, addend,
5759 temp, 0, OPTAB_LIB_WIDEN);
5760 tramp = expand_simple_binop (Pmode, AND, temp, mask,
5761 temp, 0, OPTAB_LIB_WIDEN);
5762 #endif
5763 return tramp;
5766 /* Given a trampoline address, round it then apply any
5767 platform-specific adjustments so that the result can be used for a
5768 function call . */
5770 static rtx
5771 adjust_trampoline_addr (tramp)
5772 rtx tramp;
5774 tramp = round_trampoline_addr (tramp);
5775 #ifdef TRAMPOLINE_ADJUST_ADDRESS
5776 TRAMPOLINE_ADJUST_ADDRESS (tramp);
5777 #endif
5778 return tramp;
5781 /* Put all this function's BLOCK nodes including those that are chained
5782 onto the first block into a vector, and return it.
5783 Also store in each NOTE for the beginning or end of a block
5784 the index of that block in the vector.
5785 The arguments are BLOCK, the chain of top-level blocks of the function,
5786 and INSNS, the insn chain of the function. */
5788 void
5789 identify_blocks ()
5791 int n_blocks;
5792 tree *block_vector, *last_block_vector;
5793 tree *block_stack;
5794 tree block = DECL_INITIAL (current_function_decl);
5796 if (block == 0)
5797 return;
5799 /* Fill the BLOCK_VECTOR with all of the BLOCKs in this function, in
5800 depth-first order. */
5801 block_vector = get_block_vector (block, &n_blocks);
5802 block_stack = (tree *) xmalloc (n_blocks * sizeof (tree));
5804 last_block_vector = identify_blocks_1 (get_insns (),
5805 block_vector + 1,
5806 block_vector + n_blocks,
5807 block_stack);
5809 /* If we didn't use all of the subblocks, we've misplaced block notes. */
5810 /* ??? This appears to happen all the time. Latent bugs elsewhere? */
5811 if (0 && last_block_vector != block_vector + n_blocks)
5812 abort ();
5814 free (block_vector);
5815 free (block_stack);
5818 /* Subroutine of identify_blocks. Do the block substitution on the
5819 insn chain beginning with INSNS. Recurse for CALL_PLACEHOLDER chains.
5821 BLOCK_STACK is pushed and popped for each BLOCK_BEGIN/BLOCK_END pair.
5822 BLOCK_VECTOR is incremented for each block seen. */
5824 static tree *
5825 identify_blocks_1 (insns, block_vector, end_block_vector, orig_block_stack)
5826 rtx insns;
5827 tree *block_vector;
5828 tree *end_block_vector;
5829 tree *orig_block_stack;
5831 rtx insn;
5832 tree *block_stack = orig_block_stack;
5834 for (insn = insns; insn; insn = NEXT_INSN (insn))
5836 if (GET_CODE (insn) == NOTE)
5838 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5840 tree b;
5842 /* If there are more block notes than BLOCKs, something
5843 is badly wrong. */
5844 if (block_vector == end_block_vector)
5845 abort ();
5847 b = *block_vector++;
5848 NOTE_BLOCK (insn) = b;
5849 *block_stack++ = b;
5851 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5853 /* If there are more NOTE_INSN_BLOCK_ENDs than
5854 NOTE_INSN_BLOCK_BEGs, something is badly wrong. */
5855 if (block_stack == orig_block_stack)
5856 abort ();
5858 NOTE_BLOCK (insn) = *--block_stack;
5861 else if (GET_CODE (insn) == CALL_INSN
5862 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5864 rtx cp = PATTERN (insn);
5866 block_vector = identify_blocks_1 (XEXP (cp, 0), block_vector,
5867 end_block_vector, block_stack);
5868 if (XEXP (cp, 1))
5869 block_vector = identify_blocks_1 (XEXP (cp, 1), block_vector,
5870 end_block_vector, block_stack);
5871 if (XEXP (cp, 2))
5872 block_vector = identify_blocks_1 (XEXP (cp, 2), block_vector,
5873 end_block_vector, block_stack);
5877 /* If there are more NOTE_INSN_BLOCK_BEGINs than NOTE_INSN_BLOCK_ENDs,
5878 something is badly wrong. */
5879 if (block_stack != orig_block_stack)
5880 abort ();
5882 return block_vector;
5885 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
5886 and create duplicate blocks. */
5887 /* ??? Need an option to either create block fragments or to create
5888 abstract origin duplicates of a source block. It really depends
5889 on what optimization has been performed. */
5891 void
5892 reorder_blocks ()
5894 tree block = DECL_INITIAL (current_function_decl);
5895 varray_type block_stack;
5897 if (block == NULL_TREE)
5898 return;
5900 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
5902 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
5903 reorder_blocks_0 (block);
5905 /* Prune the old trees away, so that they don't get in the way. */
5906 BLOCK_SUBBLOCKS (block) = NULL_TREE;
5907 BLOCK_CHAIN (block) = NULL_TREE;
5909 /* Recreate the block tree from the note nesting. */
5910 reorder_blocks_1 (get_insns (), block, &block_stack);
5911 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
5913 /* Remove deleted blocks from the block fragment chains. */
5914 reorder_fix_fragments (block);
5917 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
5919 static void
5920 reorder_blocks_0 (block)
5921 tree block;
5923 while (block)
5925 TREE_ASM_WRITTEN (block) = 0;
5926 reorder_blocks_0 (BLOCK_SUBBLOCKS (block));
5927 block = BLOCK_CHAIN (block);
5931 static void
5932 reorder_blocks_1 (insns, current_block, p_block_stack)
5933 rtx insns;
5934 tree current_block;
5935 varray_type *p_block_stack;
5937 rtx insn;
5939 for (insn = insns; insn; insn = NEXT_INSN (insn))
5941 if (GET_CODE (insn) == NOTE)
5943 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
5945 tree block = NOTE_BLOCK (insn);
5947 /* If we have seen this block before, that means it now
5948 spans multiple address regions. Create a new fragment. */
5949 if (TREE_ASM_WRITTEN (block))
5951 tree new_block = copy_node (block);
5952 tree origin;
5954 origin = (BLOCK_FRAGMENT_ORIGIN (block)
5955 ? BLOCK_FRAGMENT_ORIGIN (block)
5956 : block);
5957 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
5958 BLOCK_FRAGMENT_CHAIN (new_block)
5959 = BLOCK_FRAGMENT_CHAIN (origin);
5960 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
5962 NOTE_BLOCK (insn) = new_block;
5963 block = new_block;
5966 BLOCK_SUBBLOCKS (block) = 0;
5967 TREE_ASM_WRITTEN (block) = 1;
5968 BLOCK_SUPERCONTEXT (block) = current_block;
5969 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
5970 BLOCK_SUBBLOCKS (current_block) = block;
5971 current_block = block;
5972 VARRAY_PUSH_TREE (*p_block_stack, block);
5974 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
5976 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
5977 VARRAY_POP (*p_block_stack);
5978 BLOCK_SUBBLOCKS (current_block)
5979 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
5980 current_block = BLOCK_SUPERCONTEXT (current_block);
5983 else if (GET_CODE (insn) == CALL_INSN
5984 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
5986 rtx cp = PATTERN (insn);
5987 reorder_blocks_1 (XEXP (cp, 0), current_block, p_block_stack);
5988 if (XEXP (cp, 1))
5989 reorder_blocks_1 (XEXP (cp, 1), current_block, p_block_stack);
5990 if (XEXP (cp, 2))
5991 reorder_blocks_1 (XEXP (cp, 2), current_block, p_block_stack);
5996 /* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
5997 appears in the block tree, select one of the fragments to become
5998 the new origin block. */
6000 static void
6001 reorder_fix_fragments (block)
6002 tree block;
6004 while (block)
6006 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
6007 tree new_origin = NULL_TREE;
6009 if (dup_origin)
6011 if (! TREE_ASM_WRITTEN (dup_origin))
6013 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
6015 /* Find the first of the remaining fragments. There must
6016 be at least one -- the current block. */
6017 while (! TREE_ASM_WRITTEN (new_origin))
6018 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
6019 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
6022 else if (! dup_origin)
6023 new_origin = block;
6025 /* Re-root the rest of the fragments to the new origin. In the
6026 case that DUP_ORIGIN was null, that means BLOCK was the origin
6027 of a chain of fragments and we want to remove those fragments
6028 that didn't make it to the output. */
6029 if (new_origin)
6031 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
6032 tree chain = *pp;
6034 while (chain)
6036 if (TREE_ASM_WRITTEN (chain))
6038 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
6039 *pp = chain;
6040 pp = &BLOCK_FRAGMENT_CHAIN (chain);
6042 chain = BLOCK_FRAGMENT_CHAIN (chain);
6044 *pp = NULL_TREE;
6047 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
6048 block = BLOCK_CHAIN (block);
6052 /* Reverse the order of elements in the chain T of blocks,
6053 and return the new head of the chain (old last element). */
6055 static tree
6056 blocks_nreverse (t)
6057 tree t;
6059 tree prev = 0, decl, next;
6060 for (decl = t; decl; decl = next)
6062 next = BLOCK_CHAIN (decl);
6063 BLOCK_CHAIN (decl) = prev;
6064 prev = decl;
6066 return prev;
6069 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
6070 non-NULL, list them all into VECTOR, in a depth-first preorder
6071 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
6072 blocks. */
6074 static int
6075 all_blocks (block, vector)
6076 tree block;
6077 tree *vector;
6079 int n_blocks = 0;
6081 while (block)
6083 TREE_ASM_WRITTEN (block) = 0;
6085 /* Record this block. */
6086 if (vector)
6087 vector[n_blocks] = block;
6089 ++n_blocks;
6091 /* Record the subblocks, and their subblocks... */
6092 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
6093 vector ? vector + n_blocks : 0);
6094 block = BLOCK_CHAIN (block);
6097 return n_blocks;
6100 /* Return a vector containing all the blocks rooted at BLOCK. The
6101 number of elements in the vector is stored in N_BLOCKS_P. The
6102 vector is dynamically allocated; it is the caller's responsibility
6103 to call `free' on the pointer returned. */
6105 static tree *
6106 get_block_vector (block, n_blocks_p)
6107 tree block;
6108 int *n_blocks_p;
6110 tree *block_vector;
6112 *n_blocks_p = all_blocks (block, NULL);
6113 block_vector = (tree *) xmalloc (*n_blocks_p * sizeof (tree));
6114 all_blocks (block, block_vector);
6116 return block_vector;
6119 static int next_block_index = 2;
6121 /* Set BLOCK_NUMBER for all the blocks in FN. */
6123 void
6124 number_blocks (fn)
6125 tree fn;
6127 int i;
6128 int n_blocks;
6129 tree *block_vector;
6131 /* For SDB and XCOFF debugging output, we start numbering the blocks
6132 from 1 within each function, rather than keeping a running
6133 count. */
6134 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
6135 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
6136 next_block_index = 1;
6137 #endif
6139 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
6141 /* The top-level BLOCK isn't numbered at all. */
6142 for (i = 1; i < n_blocks; ++i)
6143 /* We number the blocks from two. */
6144 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
6146 free (block_vector);
6148 return;
6151 /* If VAR is present in a subblock of BLOCK, return the subblock. */
6153 tree
6154 debug_find_var_in_block_tree (var, block)
6155 tree var;
6156 tree block;
6158 tree t;
6160 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
6161 if (t == var)
6162 return block;
6164 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
6166 tree ret = debug_find_var_in_block_tree (var, t);
6167 if (ret)
6168 return ret;
6171 return NULL_TREE;
6174 /* Allocate a function structure and reset its contents to the defaults. */
6176 static void
6177 prepare_function_start ()
6179 cfun = (struct function *) ggc_alloc_cleared (sizeof (struct function));
6181 init_stmt_for_function ();
6182 init_eh_for_function ();
6184 cse_not_expected = ! optimize;
6186 /* Caller save not needed yet. */
6187 caller_save_needed = 0;
6189 /* No stack slots have been made yet. */
6190 stack_slot_list = 0;
6192 current_function_has_nonlocal_label = 0;
6193 current_function_has_nonlocal_goto = 0;
6195 /* There is no stack slot for handling nonlocal gotos. */
6196 nonlocal_goto_handler_slots = 0;
6197 nonlocal_goto_stack_level = 0;
6199 /* No labels have been declared for nonlocal use. */
6200 nonlocal_labels = 0;
6201 nonlocal_goto_handler_labels = 0;
6203 /* No function calls so far in this function. */
6204 function_call_count = 0;
6206 /* No parm regs have been allocated.
6207 (This is important for output_inline_function.) */
6208 max_parm_reg = LAST_VIRTUAL_REGISTER + 1;
6210 /* Initialize the RTL mechanism. */
6211 init_emit ();
6213 /* Initialize the queue of pending postincrement and postdecrements,
6214 and some other info in expr.c. */
6215 init_expr ();
6217 /* We haven't done register allocation yet. */
6218 reg_renumber = 0;
6220 init_varasm_status (cfun);
6222 /* Clear out data used for inlining. */
6223 cfun->inlinable = 0;
6224 cfun->original_decl_initial = 0;
6225 cfun->original_arg_vector = 0;
6227 cfun->stack_alignment_needed = STACK_BOUNDARY;
6228 cfun->preferred_stack_boundary = STACK_BOUNDARY;
6230 /* Set if a call to setjmp is seen. */
6231 current_function_calls_setjmp = 0;
6233 /* Set if a call to longjmp is seen. */
6234 current_function_calls_longjmp = 0;
6236 current_function_calls_alloca = 0;
6237 current_function_contains_functions = 0;
6238 current_function_is_leaf = 0;
6239 current_function_nothrow = 0;
6240 current_function_sp_is_unchanging = 0;
6241 current_function_uses_only_leaf_regs = 0;
6242 current_function_has_computed_jump = 0;
6243 current_function_is_thunk = 0;
6245 current_function_returns_pcc_struct = 0;
6246 current_function_returns_struct = 0;
6247 current_function_epilogue_delay_list = 0;
6248 current_function_uses_const_pool = 0;
6249 current_function_uses_pic_offset_table = 0;
6250 current_function_cannot_inline = 0;
6252 /* We have not yet needed to make a label to jump to for tail-recursion. */
6253 tail_recursion_label = 0;
6255 /* We haven't had a need to make a save area for ap yet. */
6256 arg_pointer_save_area = 0;
6258 /* No stack slots allocated yet. */
6259 frame_offset = 0;
6261 /* No SAVE_EXPRs in this function yet. */
6262 save_expr_regs = 0;
6264 /* No RTL_EXPRs in this function yet. */
6265 rtl_expr_chain = 0;
6267 /* Set up to allocate temporaries. */
6268 init_temp_slots ();
6270 /* Indicate that we need to distinguish between the return value of the
6271 present function and the return value of a function being called. */
6272 rtx_equal_function_value_matters = 1;
6274 /* Indicate that we have not instantiated virtual registers yet. */
6275 virtuals_instantiated = 0;
6277 /* Indicate that we want CONCATs now. */
6278 generating_concat_p = 1;
6280 /* Indicate we have no need of a frame pointer yet. */
6281 frame_pointer_needed = 0;
6283 /* By default assume not varargs or stdarg. */
6284 current_function_varargs = 0;
6285 current_function_stdarg = 0;
6287 /* We haven't made any trampolines for this function yet. */
6288 trampoline_list = 0;
6290 init_pending_stack_adjust ();
6291 inhibit_defer_pop = 0;
6293 current_function_outgoing_args_size = 0;
6295 cfun->arc_profile = profile_arc_flag || flag_test_coverage;
6297 cfun->arc_profile = profile_arc_flag || flag_test_coverage;
6299 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
6301 (*lang_hooks.function.init) (cfun);
6302 if (init_machine_status)
6303 cfun->machine = (*init_machine_status) ();
6306 /* Initialize the rtl expansion mechanism so that we can do simple things
6307 like generate sequences. This is used to provide a context during global
6308 initialization of some passes. */
6309 void
6310 init_dummy_function_start ()
6312 prepare_function_start ();
6315 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
6316 and initialize static variables for generating RTL for the statements
6317 of the function. */
6319 void
6320 init_function_start (subr, filename, line)
6321 tree subr;
6322 const char *filename;
6323 int line;
6325 prepare_function_start ();
6327 current_function_name = (*lang_hooks.decl_printable_name) (subr, 2);
6328 cfun->decl = subr;
6330 /* Nonzero if this is a nested function that uses a static chain. */
6332 current_function_needs_context
6333 = (decl_function_context (current_function_decl) != 0
6334 && ! DECL_NO_STATIC_CHAIN (current_function_decl));
6336 /* Within function body, compute a type's size as soon it is laid out. */
6337 immediate_size_expand++;
6339 /* Prevent ever trying to delete the first instruction of a function.
6340 Also tell final how to output a linenum before the function prologue.
6341 Note linenums could be missing, e.g. when compiling a Java .class file. */
6342 if (line > 0)
6343 emit_line_note (filename, line);
6345 /* Make sure first insn is a note even if we don't want linenums.
6346 This makes sure the first insn will never be deleted.
6347 Also, final expects a note to appear there. */
6348 emit_note (NULL, NOTE_INSN_DELETED);
6350 /* Set flags used by final.c. */
6351 if (aggregate_value_p (DECL_RESULT (subr)))
6353 #ifdef PCC_STATIC_STRUCT_RETURN
6354 current_function_returns_pcc_struct = 1;
6355 #endif
6356 current_function_returns_struct = 1;
6359 /* Warn if this value is an aggregate type,
6360 regardless of which calling convention we are using for it. */
6361 if (warn_aggregate_return
6362 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
6363 warning ("function returns an aggregate");
6365 current_function_returns_pointer
6366 = POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (subr)));
6369 /* Make sure all values used by the optimization passes have sane
6370 defaults. */
6371 void
6372 init_function_for_compilation ()
6374 reg_renumber = 0;
6376 /* No prologue/epilogue insns yet. */
6377 VARRAY_GROW (prologue, 0);
6378 VARRAY_GROW (epilogue, 0);
6379 VARRAY_GROW (sibcall_epilogue, 0);
6382 /* Indicate that the current function uses extra args
6383 not explicitly mentioned in the argument list in any fashion. */
6385 void
6386 mark_varargs ()
6388 current_function_varargs = 1;
6391 /* Expand a call to __main at the beginning of a possible main function. */
6393 #if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
6394 #undef HAS_INIT_SECTION
6395 #define HAS_INIT_SECTION
6396 #endif
6398 void
6399 expand_main_function ()
6401 #ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
6402 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
6404 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
6405 rtx tmp, seq;
6407 start_sequence ();
6408 /* Forcibly align the stack. */
6409 #ifdef STACK_GROWS_DOWNWARD
6410 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
6411 stack_pointer_rtx, 1, OPTAB_WIDEN);
6412 #else
6413 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
6414 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
6415 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
6416 stack_pointer_rtx, 1, OPTAB_WIDEN);
6417 #endif
6418 if (tmp != stack_pointer_rtx)
6419 emit_move_insn (stack_pointer_rtx, tmp);
6421 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
6422 tmp = force_reg (Pmode, const0_rtx);
6423 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
6424 seq = get_insns ();
6425 end_sequence ();
6427 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
6428 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
6429 break;
6430 if (tmp)
6431 emit_insn_before (seq, tmp);
6432 else
6433 emit_insn (seq);
6435 #endif
6437 #ifndef HAS_INIT_SECTION
6438 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, NAME__MAIN), LCT_NORMAL,
6439 VOIDmode, 0);
6440 #endif
6443 extern struct obstack permanent_obstack;
6445 /* The PENDING_SIZES represent the sizes of variable-sized types.
6446 Create RTL for the various sizes now (using temporary variables),
6447 so that we can refer to the sizes from the RTL we are generating
6448 for the current function. The PENDING_SIZES are a TREE_LIST. The
6449 TREE_VALUE of each node is a SAVE_EXPR. */
6451 void
6452 expand_pending_sizes (pending_sizes)
6453 tree pending_sizes;
6455 tree tem;
6457 /* Evaluate now the sizes of any types declared among the arguments. */
6458 for (tem = pending_sizes; tem; tem = TREE_CHAIN (tem))
6460 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0);
6461 /* Flush the queue in case this parameter declaration has
6462 side-effects. */
6463 emit_queue ();
6467 /* Start the RTL for a new function, and set variables used for
6468 emitting RTL.
6469 SUBR is the FUNCTION_DECL node.
6470 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
6471 the function's parameters, which must be run at any return statement. */
6473 void
6474 expand_function_start (subr, parms_have_cleanups)
6475 tree subr;
6476 int parms_have_cleanups;
6478 tree tem;
6479 rtx last_ptr = NULL_RTX;
6481 /* Make sure volatile mem refs aren't considered
6482 valid operands of arithmetic insns. */
6483 init_recog_no_volatile ();
6485 current_function_instrument_entry_exit
6486 = (flag_instrument_function_entry_exit
6487 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6489 current_function_profile
6490 = (profile_flag
6491 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
6493 current_function_limit_stack
6494 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
6496 /* If function gets a static chain arg, store it in the stack frame.
6497 Do this first, so it gets the first stack slot offset. */
6498 if (current_function_needs_context)
6500 last_ptr = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
6502 /* Delay copying static chain if it is not a register to avoid
6503 conflicts with regs used for parameters. */
6504 if (! SMALL_REGISTER_CLASSES
6505 || GET_CODE (static_chain_incoming_rtx) == REG)
6506 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6509 /* If the parameters of this function need cleaning up, get a label
6510 for the beginning of the code which executes those cleanups. This must
6511 be done before doing anything with return_label. */
6512 if (parms_have_cleanups)
6513 cleanup_label = gen_label_rtx ();
6514 else
6515 cleanup_label = 0;
6517 /* Make the label for return statements to jump to. Do not special
6518 case machines with special return instructions -- they will be
6519 handled later during jump, ifcvt, or epilogue creation. */
6520 return_label = gen_label_rtx ();
6522 /* Initialize rtx used to return the value. */
6523 /* Do this before assign_parms so that we copy the struct value address
6524 before any library calls that assign parms might generate. */
6526 /* Decide whether to return the value in memory or in a register. */
6527 if (aggregate_value_p (DECL_RESULT (subr)))
6529 /* Returning something that won't go in a register. */
6530 rtx value_address = 0;
6532 #ifdef PCC_STATIC_STRUCT_RETURN
6533 if (current_function_returns_pcc_struct)
6535 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
6536 value_address = assemble_static_space (size);
6538 else
6539 #endif
6541 /* Expect to be passed the address of a place to store the value.
6542 If it is passed as an argument, assign_parms will take care of
6543 it. */
6544 if (struct_value_incoming_rtx)
6546 value_address = gen_reg_rtx (Pmode);
6547 emit_move_insn (value_address, struct_value_incoming_rtx);
6550 if (value_address)
6552 rtx x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), value_address);
6553 set_mem_attributes (x, DECL_RESULT (subr), 1);
6554 SET_DECL_RTL (DECL_RESULT (subr), x);
6557 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
6558 /* If return mode is void, this decl rtl should not be used. */
6559 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
6560 else
6562 /* Compute the return values into a pseudo reg, which we will copy
6563 into the true return register after the cleanups are done. */
6565 /* In order to figure out what mode to use for the pseudo, we
6566 figure out what the mode of the eventual return register will
6567 actually be, and use that. */
6568 rtx hard_reg
6569 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
6570 subr, 1);
6572 /* Structures that are returned in registers are not aggregate_value_p,
6573 so we may see a PARALLEL. Don't play pseudo games with this. */
6574 if (! REG_P (hard_reg))
6575 SET_DECL_RTL (DECL_RESULT (subr), hard_reg);
6576 else
6578 /* Create the pseudo. */
6579 SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg)));
6581 /* Needed because we may need to move this to memory
6582 in case it's a named return value whose address is taken. */
6583 DECL_REGISTER (DECL_RESULT (subr)) = 1;
6587 /* Initialize rtx for parameters and local variables.
6588 In some cases this requires emitting insns. */
6590 assign_parms (subr);
6592 /* Copy the static chain now if it wasn't a register. The delay is to
6593 avoid conflicts with the parameter passing registers. */
6595 if (SMALL_REGISTER_CLASSES && current_function_needs_context)
6596 if (GET_CODE (static_chain_incoming_rtx) != REG)
6597 emit_move_insn (last_ptr, static_chain_incoming_rtx);
6599 /* The following was moved from init_function_start.
6600 The move is supposed to make sdb output more accurate. */
6601 /* Indicate the beginning of the function body,
6602 as opposed to parm setup. */
6603 emit_note (NULL, NOTE_INSN_FUNCTION_BEG);
6605 if (GET_CODE (get_last_insn ()) != NOTE)
6606 emit_note (NULL, NOTE_INSN_DELETED);
6607 parm_birth_insn = get_last_insn ();
6609 context_display = 0;
6610 if (current_function_needs_context)
6612 /* Fetch static chain values for containing functions. */
6613 tem = decl_function_context (current_function_decl);
6614 /* Copy the static chain pointer into a pseudo. If we have
6615 small register classes, copy the value from memory if
6616 static_chain_incoming_rtx is a REG. */
6617 if (tem)
6619 /* If the static chain originally came in a register, put it back
6620 there, then move it out in the next insn. The reason for
6621 this peculiar code is to satisfy function integration. */
6622 if (SMALL_REGISTER_CLASSES
6623 && GET_CODE (static_chain_incoming_rtx) == REG)
6624 emit_move_insn (static_chain_incoming_rtx, last_ptr);
6625 last_ptr = copy_to_reg (static_chain_incoming_rtx);
6628 while (tem)
6630 tree rtlexp = make_node (RTL_EXPR);
6632 RTL_EXPR_RTL (rtlexp) = last_ptr;
6633 context_display = tree_cons (tem, rtlexp, context_display);
6634 tem = decl_function_context (tem);
6635 if (tem == 0)
6636 break;
6637 /* Chain thru stack frames, assuming pointer to next lexical frame
6638 is found at the place we always store it. */
6639 #ifdef FRAME_GROWS_DOWNWARD
6640 last_ptr = plus_constant (last_ptr,
6641 -(HOST_WIDE_INT) GET_MODE_SIZE (Pmode));
6642 #endif
6643 last_ptr = gen_rtx_MEM (Pmode, memory_address (Pmode, last_ptr));
6644 set_mem_alias_set (last_ptr, get_frame_alias_set ());
6645 last_ptr = copy_to_reg (last_ptr);
6647 /* If we are not optimizing, ensure that we know that this
6648 piece of context is live over the entire function. */
6649 if (! optimize)
6650 save_expr_regs = gen_rtx_EXPR_LIST (VOIDmode, last_ptr,
6651 save_expr_regs);
6655 if (current_function_instrument_entry_exit)
6657 rtx fun = DECL_RTL (current_function_decl);
6658 if (GET_CODE (fun) == MEM)
6659 fun = XEXP (fun, 0);
6660 else
6661 abort ();
6662 emit_library_call (profile_function_entry_libfunc, LCT_NORMAL, VOIDmode,
6663 2, fun, Pmode,
6664 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6666 hard_frame_pointer_rtx),
6667 Pmode);
6670 if (current_function_profile)
6672 current_function_profile_label_no = profile_label_no++;
6673 #ifdef PROFILE_HOOK
6674 PROFILE_HOOK (current_function_profile_label_no);
6675 #endif
6678 /* After the display initializations is where the tail-recursion label
6679 should go, if we end up needing one. Ensure we have a NOTE here
6680 since some things (like trampolines) get placed before this. */
6681 tail_recursion_reentry = emit_note (NULL, NOTE_INSN_DELETED);
6683 /* Evaluate now the sizes of any types declared among the arguments. */
6684 expand_pending_sizes (nreverse (get_pending_sizes ()));
6686 /* Make sure there is a line number after the function entry setup code. */
6687 force_next_line_note ();
6690 /* Undo the effects of init_dummy_function_start. */
6691 void
6692 expand_dummy_function_end ()
6694 /* End any sequences that failed to be closed due to syntax errors. */
6695 while (in_sequence_p ())
6696 end_sequence ();
6698 /* Outside function body, can't compute type's actual size
6699 until next function's body starts. */
6701 free_after_parsing (cfun);
6702 free_after_compilation (cfun);
6703 cfun = 0;
6706 /* Call DOIT for each hard register used as a return value from
6707 the current function. */
6709 void
6710 diddle_return_value (doit, arg)
6711 void (*doit) PARAMS ((rtx, void *));
6712 void *arg;
6714 rtx outgoing = current_function_return_rtx;
6716 if (! outgoing)
6717 return;
6719 if (GET_CODE (outgoing) == REG)
6720 (*doit) (outgoing, arg);
6721 else if (GET_CODE (outgoing) == PARALLEL)
6723 int i;
6725 for (i = 0; i < XVECLEN (outgoing, 0); i++)
6727 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
6729 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
6730 (*doit) (x, arg);
6735 static void
6736 do_clobber_return_reg (reg, arg)
6737 rtx reg;
6738 void *arg ATTRIBUTE_UNUSED;
6740 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
6743 void
6744 clobber_return_register ()
6746 diddle_return_value (do_clobber_return_reg, NULL);
6748 /* In case we do use pseudo to return value, clobber it too. */
6749 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
6751 tree decl_result = DECL_RESULT (current_function_decl);
6752 rtx decl_rtl = DECL_RTL (decl_result);
6753 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
6755 do_clobber_return_reg (decl_rtl, NULL);
6760 static void
6761 do_use_return_reg (reg, arg)
6762 rtx reg;
6763 void *arg ATTRIBUTE_UNUSED;
6765 emit_insn (gen_rtx_USE (VOIDmode, reg));
6768 void
6769 use_return_register ()
6771 diddle_return_value (do_use_return_reg, NULL);
6774 static GTY(()) rtx initial_trampoline;
6776 /* Generate RTL for the end of the current function.
6777 FILENAME and LINE are the current position in the source file.
6779 It is up to language-specific callers to do cleanups for parameters--
6780 or else, supply 1 for END_BINDINGS and we will call expand_end_bindings. */
6782 void
6783 expand_function_end (filename, line, end_bindings)
6784 const char *filename;
6785 int line;
6786 int end_bindings;
6788 tree link;
6789 rtx clobber_after;
6791 finish_expr_for_function ();
6793 /* If arg_pointer_save_area was referenced only from a nested
6794 function, we will not have initialized it yet. Do that now. */
6795 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
6796 get_arg_pointer_save_area (cfun);
6798 #ifdef NON_SAVING_SETJMP
6799 /* Don't put any variables in registers if we call setjmp
6800 on a machine that fails to restore the registers. */
6801 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
6803 if (DECL_INITIAL (current_function_decl) != error_mark_node)
6804 setjmp_protect (DECL_INITIAL (current_function_decl));
6806 setjmp_protect_args ();
6808 #endif
6810 /* Initialize any trampolines required by this function. */
6811 for (link = trampoline_list; link; link = TREE_CHAIN (link))
6813 tree function = TREE_PURPOSE (link);
6814 rtx context ATTRIBUTE_UNUSED = lookup_static_chain (function);
6815 rtx tramp = RTL_EXPR_RTL (TREE_VALUE (link));
6816 #ifdef TRAMPOLINE_TEMPLATE
6817 rtx blktramp;
6818 #endif
6819 rtx seq;
6821 #ifdef TRAMPOLINE_TEMPLATE
6822 /* First make sure this compilation has a template for
6823 initializing trampolines. */
6824 if (initial_trampoline == 0)
6826 initial_trampoline
6827 = gen_rtx_MEM (BLKmode, assemble_trampoline_template ());
6828 set_mem_align (initial_trampoline, TRAMPOLINE_ALIGNMENT);
6830 #endif
6832 /* Generate insns to initialize the trampoline. */
6833 start_sequence ();
6834 tramp = round_trampoline_addr (XEXP (tramp, 0));
6835 #ifdef TRAMPOLINE_TEMPLATE
6836 blktramp = replace_equiv_address (initial_trampoline, tramp);
6837 emit_block_move (blktramp, initial_trampoline,
6838 GEN_INT (TRAMPOLINE_SIZE));
6839 #endif
6840 INITIALIZE_TRAMPOLINE (tramp, XEXP (DECL_RTL (function), 0), context);
6841 seq = get_insns ();
6842 end_sequence ();
6844 /* Put those insns at entry to the containing function (this one). */
6845 emit_insn_before (seq, tail_recursion_reentry);
6848 /* If we are doing stack checking and this function makes calls,
6849 do a stack probe at the start of the function to ensure we have enough
6850 space for another stack frame. */
6851 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
6853 rtx insn, seq;
6855 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6856 if (GET_CODE (insn) == CALL_INSN)
6858 start_sequence ();
6859 probe_stack_range (STACK_CHECK_PROTECT,
6860 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
6861 seq = get_insns ();
6862 end_sequence ();
6863 emit_insn_before (seq, tail_recursion_reentry);
6864 break;
6868 /* Warn about unused parms if extra warnings were specified. */
6869 /* Either ``-W -Wunused'' or ``-Wunused-parameter'' enables this
6870 warning. WARN_UNUSED_PARAMETER is negative when set by
6871 -Wunused. */
6872 if (warn_unused_parameter > 0
6873 || (warn_unused_parameter < 0 && extra_warnings))
6875 tree decl;
6877 for (decl = DECL_ARGUMENTS (current_function_decl);
6878 decl; decl = TREE_CHAIN (decl))
6879 if (! TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
6880 && DECL_NAME (decl) && ! DECL_ARTIFICIAL (decl))
6881 warning_with_decl (decl, "unused parameter `%s'");
6884 /* Delete handlers for nonlocal gotos if nothing uses them. */
6885 if (nonlocal_goto_handler_slots != 0
6886 && ! current_function_has_nonlocal_label)
6887 delete_handlers ();
6889 /* End any sequences that failed to be closed due to syntax errors. */
6890 while (in_sequence_p ())
6891 end_sequence ();
6893 /* Outside function body, can't compute type's actual size
6894 until next function's body starts. */
6895 immediate_size_expand--;
6897 clear_pending_stack_adjust ();
6898 do_pending_stack_adjust ();
6900 /* Mark the end of the function body.
6901 If control reaches this insn, the function can drop through
6902 without returning a value. */
6903 emit_note (NULL, NOTE_INSN_FUNCTION_END);
6905 /* Must mark the last line number note in the function, so that the test
6906 coverage code can avoid counting the last line twice. This just tells
6907 the code to ignore the immediately following line note, since there
6908 already exists a copy of this note somewhere above. This line number
6909 note is still needed for debugging though, so we can't delete it. */
6910 if (flag_test_coverage)
6911 emit_note (NULL, NOTE_INSN_REPEATED_LINE_NUMBER);
6913 /* Output a linenumber for the end of the function.
6914 SDB depends on this. */
6915 emit_line_note_force (filename, line);
6917 /* Before the return label (if any), clobber the return
6918 registers so that they are not propagated live to the rest of
6919 the function. This can only happen with functions that drop
6920 through; if there had been a return statement, there would
6921 have either been a return rtx, or a jump to the return label.
6923 We delay actual code generation after the current_function_value_rtx
6924 is computed. */
6925 clobber_after = get_last_insn ();
6927 /* Output the label for the actual return from the function,
6928 if one is expected. This happens either because a function epilogue
6929 is used instead of a return instruction, or because a return was done
6930 with a goto in order to run local cleanups, or because of pcc-style
6931 structure returning. */
6932 if (return_label)
6933 emit_label (return_label);
6935 /* C++ uses this. */
6936 if (end_bindings)
6937 expand_end_bindings (0, 0, 0);
6939 if (current_function_instrument_entry_exit)
6941 rtx fun = DECL_RTL (current_function_decl);
6942 if (GET_CODE (fun) == MEM)
6943 fun = XEXP (fun, 0);
6944 else
6945 abort ();
6946 emit_library_call (profile_function_exit_libfunc, LCT_NORMAL, VOIDmode,
6947 2, fun, Pmode,
6948 expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
6950 hard_frame_pointer_rtx),
6951 Pmode);
6954 /* Let except.c know where it should emit the call to unregister
6955 the function context for sjlj exceptions. */
6956 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
6957 sjlj_emit_function_exit_after (get_last_insn ());
6959 /* If we had calls to alloca, and this machine needs
6960 an accurate stack pointer to exit the function,
6961 insert some code to save and restore the stack pointer. */
6962 #ifdef EXIT_IGNORE_STACK
6963 if (! EXIT_IGNORE_STACK)
6964 #endif
6965 if (current_function_calls_alloca)
6967 rtx tem = 0;
6969 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
6970 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
6973 /* If scalar return value was computed in a pseudo-reg, or was a named
6974 return value that got dumped to the stack, copy that to the hard
6975 return register. */
6976 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
6978 tree decl_result = DECL_RESULT (current_function_decl);
6979 rtx decl_rtl = DECL_RTL (decl_result);
6981 if (REG_P (decl_rtl)
6982 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
6983 : DECL_REGISTER (decl_result))
6985 rtx real_decl_rtl = current_function_return_rtx;
6987 /* This should be set in assign_parms. */
6988 if (! REG_FUNCTION_VALUE_P (real_decl_rtl))
6989 abort ();
6991 /* If this is a BLKmode structure being returned in registers,
6992 then use the mode computed in expand_return. Note that if
6993 decl_rtl is memory, then its mode may have been changed,
6994 but that current_function_return_rtx has not. */
6995 if (GET_MODE (real_decl_rtl) == BLKmode)
6996 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
6998 /* If a named return value dumped decl_return to memory, then
6999 we may need to re-do the PROMOTE_MODE signed/unsigned
7000 extension. */
7001 if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
7003 int unsignedp = TREE_UNSIGNED (TREE_TYPE (decl_result));
7005 #ifdef PROMOTE_FUNCTION_RETURN
7006 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
7007 &unsignedp, 1);
7008 #endif
7010 convert_move (real_decl_rtl, decl_rtl, unsignedp);
7012 else if (GET_CODE (real_decl_rtl) == PARALLEL)
7013 emit_group_load (real_decl_rtl, decl_rtl,
7014 int_size_in_bytes (TREE_TYPE (decl_result)));
7015 else
7016 emit_move_insn (real_decl_rtl, decl_rtl);
7020 /* If returning a structure, arrange to return the address of the value
7021 in a place where debuggers expect to find it.
7023 If returning a structure PCC style,
7024 the caller also depends on this value.
7025 And current_function_returns_pcc_struct is not necessarily set. */
7026 if (current_function_returns_struct
7027 || current_function_returns_pcc_struct)
7029 rtx value_address
7030 = XEXP (DECL_RTL (DECL_RESULT (current_function_decl)), 0);
7031 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
7032 #ifdef FUNCTION_OUTGOING_VALUE
7033 rtx outgoing
7034 = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
7035 current_function_decl);
7036 #else
7037 rtx outgoing
7038 = FUNCTION_VALUE (build_pointer_type (type), current_function_decl);
7039 #endif
7041 /* Mark this as a function return value so integrate will delete the
7042 assignment and USE below when inlining this function. */
7043 REG_FUNCTION_VALUE_P (outgoing) = 1;
7045 #ifdef POINTERS_EXTEND_UNSIGNED
7046 /* The address may be ptr_mode and OUTGOING may be Pmode. */
7047 if (GET_MODE (outgoing) != GET_MODE (value_address))
7048 value_address = convert_memory_address (GET_MODE (outgoing),
7049 value_address);
7050 #endif
7052 emit_move_insn (outgoing, value_address);
7054 /* Show return register used to hold result (in this case the address
7055 of the result. */
7056 current_function_return_rtx = outgoing;
7059 /* If this is an implementation of throw, do what's necessary to
7060 communicate between __builtin_eh_return and the epilogue. */
7061 expand_eh_return ();
7063 /* Emit the actual code to clobber return register. */
7065 rtx seq, after;
7067 start_sequence ();
7068 clobber_return_register ();
7069 seq = get_insns ();
7070 end_sequence ();
7072 after = emit_insn_after (seq, clobber_after);
7074 if (clobber_after != after)
7075 cfun->x_clobber_return_insn = after;
7078 /* ??? This should no longer be necessary since stupid is no longer with
7079 us, but there are some parts of the compiler (eg reload_combine, and
7080 sh mach_dep_reorg) that still try and compute their own lifetime info
7081 instead of using the general framework. */
7082 use_return_register ();
7084 /* Fix up any gotos that jumped out to the outermost
7085 binding level of the function.
7086 Must follow emitting RETURN_LABEL. */
7088 /* If you have any cleanups to do at this point,
7089 and they need to create temporary variables,
7090 then you will lose. */
7091 expand_fixups (get_insns ());
7095 get_arg_pointer_save_area (f)
7096 struct function *f;
7098 rtx ret = f->x_arg_pointer_save_area;
7100 if (! ret)
7102 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
7103 f->x_arg_pointer_save_area = ret;
7106 if (f == cfun && ! f->arg_pointer_save_area_init)
7108 rtx seq;
7110 /* Save the arg pointer at the beginning of the function. The
7111 generated stack slot may not be a valid memory address, so we
7112 have to check it and fix it if necessary. */
7113 start_sequence ();
7114 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
7115 seq = get_insns ();
7116 end_sequence ();
7118 push_topmost_sequence ();
7119 emit_insn_after (seq, get_insns ());
7120 pop_topmost_sequence ();
7123 return ret;
7126 /* Extend a vector that records the INSN_UIDs of INSNS
7127 (a list of one or more insns). */
7129 static void
7130 record_insns (insns, vecp)
7131 rtx insns;
7132 varray_type *vecp;
7134 int i, len;
7135 rtx tmp;
7137 tmp = insns;
7138 len = 0;
7139 while (tmp != NULL_RTX)
7141 len++;
7142 tmp = NEXT_INSN (tmp);
7145 i = VARRAY_SIZE (*vecp);
7146 VARRAY_GROW (*vecp, i + len);
7147 tmp = insns;
7148 while (tmp != NULL_RTX)
7150 VARRAY_INT (*vecp, i) = INSN_UID (tmp);
7151 i++;
7152 tmp = NEXT_INSN (tmp);
7156 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
7157 be running after reorg, SEQUENCE rtl is possible. */
7159 static int
7160 contains (insn, vec)
7161 rtx insn;
7162 varray_type vec;
7164 int i, j;
7166 if (GET_CODE (insn) == INSN
7167 && GET_CODE (PATTERN (insn)) == SEQUENCE)
7169 int count = 0;
7170 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7171 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7172 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
7173 count++;
7174 return count;
7176 else
7178 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
7179 if (INSN_UID (insn) == VARRAY_INT (vec, j))
7180 return 1;
7182 return 0;
7186 prologue_epilogue_contains (insn)
7187 rtx insn;
7189 if (contains (insn, prologue))
7190 return 1;
7191 if (contains (insn, epilogue))
7192 return 1;
7193 return 0;
7197 sibcall_epilogue_contains (insn)
7198 rtx insn;
7200 if (sibcall_epilogue)
7201 return contains (insn, sibcall_epilogue);
7202 return 0;
7205 #ifdef HAVE_return
7206 /* Insert gen_return at the end of block BB. This also means updating
7207 block_for_insn appropriately. */
7209 static void
7210 emit_return_into_block (bb, line_note)
7211 basic_block bb;
7212 rtx line_note;
7214 rtx p, end;
7216 p = NEXT_INSN (bb->end);
7217 end = emit_jump_insn_after (gen_return (), bb->end);
7218 if (line_note)
7219 emit_line_note_after (NOTE_SOURCE_FILE (line_note),
7220 NOTE_LINE_NUMBER (line_note), PREV_INSN (bb->end));
7222 #endif /* HAVE_return */
7224 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
7226 /* These functions convert the epilogue into a variant that does not modify the
7227 stack pointer. This is used in cases where a function returns an object
7228 whose size is not known until it is computed. The called function leaves the
7229 object on the stack, leaves the stack depressed, and returns a pointer to
7230 the object.
7232 What we need to do is track all modifications and references to the stack
7233 pointer, deleting the modifications and changing the references to point to
7234 the location the stack pointer would have pointed to had the modifications
7235 taken place.
7237 These functions need to be portable so we need to make as few assumptions
7238 about the epilogue as we can. However, the epilogue basically contains
7239 three things: instructions to reset the stack pointer, instructions to
7240 reload registers, possibly including the frame pointer, and an
7241 instruction to return to the caller.
7243 If we can't be sure of what a relevant epilogue insn is doing, we abort.
7244 We also make no attempt to validate the insns we make since if they are
7245 invalid, we probably can't do anything valid. The intent is that these
7246 routines get "smarter" as more and more machines start to use them and
7247 they try operating on different epilogues.
7249 We use the following structure to track what the part of the epilogue that
7250 we've already processed has done. We keep two copies of the SP equivalence,
7251 one for use during the insn we are processing and one for use in the next
7252 insn. The difference is because one part of a PARALLEL may adjust SP
7253 and the other may use it. */
7255 struct epi_info
7257 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
7258 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
7259 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
7260 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
7261 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
7262 should be set to once we no longer need
7263 its value. */
7266 static void handle_epilogue_set PARAMS ((rtx, struct epi_info *));
7267 static void emit_equiv_load PARAMS ((struct epi_info *));
7269 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
7270 no modifications to the stack pointer. Return the new list of insns. */
7272 static rtx
7273 keep_stack_depressed (insns)
7274 rtx insns;
7276 int j;
7277 struct epi_info info;
7278 rtx insn, next;
7280 /* If the epilogue is just a single instruction, it ust be OK as is. */
7282 if (NEXT_INSN (insns) == NULL_RTX)
7283 return insns;
7285 /* Otherwise, start a sequence, initialize the information we have, and
7286 process all the insns we were given. */
7287 start_sequence ();
7289 info.sp_equiv_reg = stack_pointer_rtx;
7290 info.sp_offset = 0;
7291 info.equiv_reg_src = 0;
7293 insn = insns;
7294 next = NULL_RTX;
7295 while (insn != NULL_RTX)
7297 next = NEXT_INSN (insn);
7299 if (!INSN_P (insn))
7301 add_insn (insn);
7302 insn = next;
7303 continue;
7306 /* If this insn references the register that SP is equivalent to and
7307 we have a pending load to that register, we must force out the load
7308 first and then indicate we no longer know what SP's equivalent is. */
7309 if (info.equiv_reg_src != 0
7310 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
7312 emit_equiv_load (&info);
7313 info.sp_equiv_reg = 0;
7316 info.new_sp_equiv_reg = info.sp_equiv_reg;
7317 info.new_sp_offset = info.sp_offset;
7319 /* If this is a (RETURN) and the return address is on the stack,
7320 update the address and change to an indirect jump. */
7321 if (GET_CODE (PATTERN (insn)) == RETURN
7322 || (GET_CODE (PATTERN (insn)) == PARALLEL
7323 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
7325 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
7326 rtx base = 0;
7327 HOST_WIDE_INT offset = 0;
7328 rtx jump_insn, jump_set;
7330 /* If the return address is in a register, we can emit the insn
7331 unchanged. Otherwise, it must be a MEM and we see what the
7332 base register and offset are. In any case, we have to emit any
7333 pending load to the equivalent reg of SP, if any. */
7334 if (GET_CODE (retaddr) == REG)
7336 emit_equiv_load (&info);
7337 add_insn (insn);
7338 insn = next;
7339 continue;
7341 else if (GET_CODE (retaddr) == MEM
7342 && GET_CODE (XEXP (retaddr, 0)) == REG)
7343 base = gen_rtx_REG (Pmode, REGNO (XEXP (retaddr, 0))), offset = 0;
7344 else if (GET_CODE (retaddr) == MEM
7345 && GET_CODE (XEXP (retaddr, 0)) == PLUS
7346 && GET_CODE (XEXP (XEXP (retaddr, 0), 0)) == REG
7347 && GET_CODE (XEXP (XEXP (retaddr, 0), 1)) == CONST_INT)
7349 base = gen_rtx_REG (Pmode, REGNO (XEXP (XEXP (retaddr, 0), 0)));
7350 offset = INTVAL (XEXP (XEXP (retaddr, 0), 1));
7352 else
7353 abort ();
7355 /* If the base of the location containing the return pointer
7356 is SP, we must update it with the replacement address. Otherwise,
7357 just build the necessary MEM. */
7358 retaddr = plus_constant (base, offset);
7359 if (base == stack_pointer_rtx)
7360 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
7361 plus_constant (info.sp_equiv_reg,
7362 info.sp_offset));
7364 retaddr = gen_rtx_MEM (Pmode, retaddr);
7366 /* If there is a pending load to the equivalent register for SP
7367 and we reference that register, we must load our address into
7368 a scratch register and then do that load. */
7369 if (info.equiv_reg_src
7370 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
7372 unsigned int regno;
7373 rtx reg;
7375 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
7376 if (HARD_REGNO_MODE_OK (regno, Pmode)
7377 && !fixed_regs[regno]
7378 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
7379 && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
7380 regno)
7381 && !refers_to_regno_p (regno,
7382 regno + HARD_REGNO_NREGS (regno,
7383 Pmode),
7384 info.equiv_reg_src, NULL))
7385 break;
7387 if (regno == FIRST_PSEUDO_REGISTER)
7388 abort ();
7390 reg = gen_rtx_REG (Pmode, regno);
7391 emit_move_insn (reg, retaddr);
7392 retaddr = reg;
7395 emit_equiv_load (&info);
7396 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
7398 /* Show the SET in the above insn is a RETURN. */
7399 jump_set = single_set (jump_insn);
7400 if (jump_set == 0)
7401 abort ();
7402 else
7403 SET_IS_RETURN_P (jump_set) = 1;
7406 /* If SP is not mentioned in the pattern and its equivalent register, if
7407 any, is not modified, just emit it. Otherwise, if neither is set,
7408 replace the reference to SP and emit the insn. If none of those are
7409 true, handle each SET individually. */
7410 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
7411 && (info.sp_equiv_reg == stack_pointer_rtx
7412 || !reg_set_p (info.sp_equiv_reg, insn)))
7413 add_insn (insn);
7414 else if (! reg_set_p (stack_pointer_rtx, insn)
7415 && (info.sp_equiv_reg == stack_pointer_rtx
7416 || !reg_set_p (info.sp_equiv_reg, insn)))
7418 if (! validate_replace_rtx (stack_pointer_rtx,
7419 plus_constant (info.sp_equiv_reg,
7420 info.sp_offset),
7421 insn))
7422 abort ();
7424 add_insn (insn);
7426 else if (GET_CODE (PATTERN (insn)) == SET)
7427 handle_epilogue_set (PATTERN (insn), &info);
7428 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
7430 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
7431 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
7432 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
7434 else
7435 add_insn (insn);
7437 info.sp_equiv_reg = info.new_sp_equiv_reg;
7438 info.sp_offset = info.new_sp_offset;
7440 insn = next;
7443 insns = get_insns ();
7444 end_sequence ();
7445 return insns;
7448 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
7449 structure that contains information about what we've seen so far. We
7450 process this SET by either updating that data or by emitting one or
7451 more insns. */
7453 static void
7454 handle_epilogue_set (set, p)
7455 rtx set;
7456 struct epi_info *p;
7458 /* First handle the case where we are setting SP. Record what it is being
7459 set from. If unknown, abort. */
7460 if (reg_set_p (stack_pointer_rtx, set))
7462 if (SET_DEST (set) != stack_pointer_rtx)
7463 abort ();
7465 if (GET_CODE (SET_SRC (set)) == PLUS
7466 && GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
7468 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
7469 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
7471 else
7472 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
7474 /* If we are adjusting SP, we adjust from the old data. */
7475 if (p->new_sp_equiv_reg == stack_pointer_rtx)
7477 p->new_sp_equiv_reg = p->sp_equiv_reg;
7478 p->new_sp_offset += p->sp_offset;
7481 if (p->new_sp_equiv_reg == 0 || GET_CODE (p->new_sp_equiv_reg) != REG)
7482 abort ();
7484 return;
7487 /* Next handle the case where we are setting SP's equivalent register.
7488 If we already have a value to set it to, abort. We could update, but
7489 there seems little point in handling that case. Note that we have
7490 to allow for the case where we are setting the register set in
7491 the previous part of a PARALLEL inside a single insn. But use the
7492 old offset for any updates within this insn. */
7493 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
7495 if (!rtx_equal_p (p->new_sp_equiv_reg, SET_DEST (set))
7496 || p->equiv_reg_src != 0)
7497 abort ();
7498 else
7499 p->equiv_reg_src
7500 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
7501 plus_constant (p->sp_equiv_reg,
7502 p->sp_offset));
7505 /* Otherwise, replace any references to SP in the insn to its new value
7506 and emit the insn. */
7507 else
7509 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
7510 plus_constant (p->sp_equiv_reg,
7511 p->sp_offset));
7512 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
7513 plus_constant (p->sp_equiv_reg,
7514 p->sp_offset));
7515 emit_insn (set);
7519 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
7521 static void
7522 emit_equiv_load (p)
7523 struct epi_info *p;
7525 if (p->equiv_reg_src != 0)
7526 emit_move_insn (p->sp_equiv_reg, p->equiv_reg_src);
7528 p->equiv_reg_src = 0;
7530 #endif
7532 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
7533 this into place with notes indicating where the prologue ends and where
7534 the epilogue begins. Update the basic block information when possible. */
7536 void
7537 thread_prologue_and_epilogue_insns (f)
7538 rtx f ATTRIBUTE_UNUSED;
7540 int inserted = 0;
7541 edge e;
7542 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
7543 rtx seq;
7544 #endif
7545 #ifdef HAVE_prologue
7546 rtx prologue_end = NULL_RTX;
7547 #endif
7548 #if defined (HAVE_epilogue) || defined(HAVE_return)
7549 rtx epilogue_end = NULL_RTX;
7550 #endif
7552 #ifdef HAVE_prologue
7553 if (HAVE_prologue)
7555 start_sequence ();
7556 seq = gen_prologue ();
7557 emit_insn (seq);
7559 /* Retain a map of the prologue insns. */
7560 record_insns (seq, &prologue);
7561 prologue_end = emit_note (NULL, NOTE_INSN_PROLOGUE_END);
7563 seq = get_insns ();
7564 end_sequence ();
7566 /* Can't deal with multiple successors of the entry block
7567 at the moment. Function should always have at least one
7568 entry point. */
7569 if (!ENTRY_BLOCK_PTR->succ || ENTRY_BLOCK_PTR->succ->succ_next)
7570 abort ();
7572 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
7573 inserted = 1;
7575 #endif
7577 /* If the exit block has no non-fake predecessors, we don't need
7578 an epilogue. */
7579 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7580 if ((e->flags & EDGE_FAKE) == 0)
7581 break;
7582 if (e == NULL)
7583 goto epilogue_done;
7585 #ifdef HAVE_return
7586 if (optimize && HAVE_return)
7588 /* If we're allowed to generate a simple return instruction,
7589 then by definition we don't need a full epilogue. Examine
7590 the block that falls through to EXIT. If it does not
7591 contain any code, examine its predecessors and try to
7592 emit (conditional) return instructions. */
7594 basic_block last;
7595 edge e_next;
7596 rtx label;
7598 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7599 if (e->flags & EDGE_FALLTHRU)
7600 break;
7601 if (e == NULL)
7602 goto epilogue_done;
7603 last = e->src;
7605 /* Verify that there are no active instructions in the last block. */
7606 label = last->end;
7607 while (label && GET_CODE (label) != CODE_LABEL)
7609 if (active_insn_p (label))
7610 break;
7611 label = PREV_INSN (label);
7614 if (last->head == label && GET_CODE (label) == CODE_LABEL)
7616 rtx epilogue_line_note = NULL_RTX;
7618 /* Locate the line number associated with the closing brace,
7619 if we can find one. */
7620 for (seq = get_last_insn ();
7621 seq && ! active_insn_p (seq);
7622 seq = PREV_INSN (seq))
7623 if (GET_CODE (seq) == NOTE && NOTE_LINE_NUMBER (seq) > 0)
7625 epilogue_line_note = seq;
7626 break;
7629 for (e = last->pred; e; e = e_next)
7631 basic_block bb = e->src;
7632 rtx jump;
7634 e_next = e->pred_next;
7635 if (bb == ENTRY_BLOCK_PTR)
7636 continue;
7638 jump = bb->end;
7639 if ((GET_CODE (jump) != JUMP_INSN) || JUMP_LABEL (jump) != label)
7640 continue;
7642 /* If we have an unconditional jump, we can replace that
7643 with a simple return instruction. */
7644 if (simplejump_p (jump))
7646 emit_return_into_block (bb, epilogue_line_note);
7647 delete_insn (jump);
7650 /* If we have a conditional jump, we can try to replace
7651 that with a conditional return instruction. */
7652 else if (condjump_p (jump))
7654 rtx ret, *loc;
7656 ret = SET_SRC (PATTERN (jump));
7657 if (GET_CODE (XEXP (ret, 1)) == LABEL_REF)
7658 loc = &XEXP (ret, 1);
7659 else
7660 loc = &XEXP (ret, 2);
7661 ret = gen_rtx_RETURN (VOIDmode);
7663 if (! validate_change (jump, loc, ret, 0))
7664 continue;
7665 if (JUMP_LABEL (jump))
7666 LABEL_NUSES (JUMP_LABEL (jump))--;
7668 /* If this block has only one successor, it both jumps
7669 and falls through to the fallthru block, so we can't
7670 delete the edge. */
7671 if (bb->succ->succ_next == NULL)
7672 continue;
7674 else
7675 continue;
7677 /* Fix up the CFG for the successful change we just made. */
7678 redirect_edge_succ (e, EXIT_BLOCK_PTR);
7681 /* Emit a return insn for the exit fallthru block. Whether
7682 this is still reachable will be determined later. */
7684 emit_barrier_after (last->end);
7685 emit_return_into_block (last, epilogue_line_note);
7686 epilogue_end = last->end;
7687 last->succ->flags &= ~EDGE_FALLTHRU;
7688 goto epilogue_done;
7691 #endif
7692 #ifdef HAVE_epilogue
7693 if (HAVE_epilogue)
7695 /* Find the edge that falls through to EXIT. Other edges may exist
7696 due to RETURN instructions, but those don't need epilogues.
7697 There really shouldn't be a mixture -- either all should have
7698 been converted or none, however... */
7700 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7701 if (e->flags & EDGE_FALLTHRU)
7702 break;
7703 if (e == NULL)
7704 goto epilogue_done;
7706 start_sequence ();
7707 epilogue_end = emit_note (NULL, NOTE_INSN_EPILOGUE_BEG);
7709 seq = gen_epilogue ();
7711 #ifdef INCOMING_RETURN_ADDR_RTX
7712 /* If this function returns with the stack depressed and we can support
7713 it, massage the epilogue to actually do that. */
7714 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
7715 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
7716 seq = keep_stack_depressed (seq);
7717 #endif
7719 emit_jump_insn (seq);
7721 /* Retain a map of the epilogue insns. */
7722 record_insns (seq, &epilogue);
7724 seq = get_insns ();
7725 end_sequence ();
7727 insert_insn_on_edge (seq, e);
7728 inserted = 1;
7730 #endif
7731 epilogue_done:
7733 if (inserted)
7734 commit_edge_insertions ();
7736 #ifdef HAVE_sibcall_epilogue
7737 /* Emit sibling epilogues before any sibling call sites. */
7738 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
7740 basic_block bb = e->src;
7741 rtx insn = bb->end;
7742 rtx i;
7743 rtx newinsn;
7745 if (GET_CODE (insn) != CALL_INSN
7746 || ! SIBLING_CALL_P (insn))
7747 continue;
7749 start_sequence ();
7750 seq = gen_sibcall_epilogue ();
7751 end_sequence ();
7753 /* Retain a map of the epilogue insns. Used in life analysis to
7754 avoid getting rid of sibcall epilogue insns. Do this before we
7755 actually emit the sequence. */
7756 record_insns (seq, &sibcall_epilogue);
7758 i = PREV_INSN (insn);
7759 newinsn = emit_insn_before (seq, insn);
7761 #endif
7763 #ifdef HAVE_prologue
7764 if (prologue_end)
7766 rtx insn, prev;
7768 /* GDB handles `break f' by setting a breakpoint on the first
7769 line note after the prologue. Which means (1) that if
7770 there are line number notes before where we inserted the
7771 prologue we should move them, and (2) we should generate a
7772 note before the end of the first basic block, if there isn't
7773 one already there.
7775 ??? This behaviour is completely broken when dealing with
7776 multiple entry functions. We simply place the note always
7777 into first basic block and let alternate entry points
7778 to be missed.
7781 for (insn = prologue_end; insn; insn = prev)
7783 prev = PREV_INSN (insn);
7784 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7786 /* Note that we cannot reorder the first insn in the
7787 chain, since rest_of_compilation relies on that
7788 remaining constant. */
7789 if (prev == NULL)
7790 break;
7791 reorder_insns (insn, insn, prologue_end);
7795 /* Find the last line number note in the first block. */
7796 for (insn = ENTRY_BLOCK_PTR->next_bb->end;
7797 insn != prologue_end && insn;
7798 insn = PREV_INSN (insn))
7799 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7800 break;
7802 /* If we didn't find one, make a copy of the first line number
7803 we run across. */
7804 if (! insn)
7806 for (insn = next_active_insn (prologue_end);
7807 insn;
7808 insn = PREV_INSN (insn))
7809 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7811 emit_line_note_after (NOTE_SOURCE_FILE (insn),
7812 NOTE_LINE_NUMBER (insn),
7813 prologue_end);
7814 break;
7818 #endif
7819 #ifdef HAVE_epilogue
7820 if (epilogue_end)
7822 rtx insn, next;
7824 /* Similarly, move any line notes that appear after the epilogue.
7825 There is no need, however, to be quite so anal about the existence
7826 of such a note. */
7827 for (insn = epilogue_end; insn; insn = next)
7829 next = NEXT_INSN (insn);
7830 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
7831 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
7834 #endif
7837 /* Reposition the prologue-end and epilogue-begin notes after instruction
7838 scheduling and delayed branch scheduling. */
7840 void
7841 reposition_prologue_and_epilogue_notes (f)
7842 rtx f ATTRIBUTE_UNUSED;
7844 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
7845 rtx insn, last, note;
7846 int len;
7848 if ((len = VARRAY_SIZE (prologue)) > 0)
7850 last = 0, note = 0;
7852 /* Scan from the beginning until we reach the last prologue insn.
7853 We apparently can't depend on basic_block_{head,end} after
7854 reorg has run. */
7855 for (insn = f; insn; insn = NEXT_INSN (insn))
7857 if (GET_CODE (insn) == NOTE)
7859 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
7860 note = insn;
7862 else if (contains (insn, prologue))
7864 last = insn;
7865 if (--len == 0)
7866 break;
7870 if (last)
7872 rtx next;
7874 /* Find the prologue-end note if we haven't already, and
7875 move it to just after the last prologue insn. */
7876 if (note == 0)
7878 for (note = last; (note = NEXT_INSN (note));)
7879 if (GET_CODE (note) == NOTE
7880 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
7881 break;
7884 next = NEXT_INSN (note);
7886 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
7887 if (GET_CODE (last) == CODE_LABEL)
7888 last = NEXT_INSN (last);
7889 reorder_insns (note, note, last);
7893 if ((len = VARRAY_SIZE (epilogue)) > 0)
7895 last = 0, note = 0;
7897 /* Scan from the end until we reach the first epilogue insn.
7898 We apparently can't depend on basic_block_{head,end} after
7899 reorg has run. */
7900 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
7902 if (GET_CODE (insn) == NOTE)
7904 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
7905 note = insn;
7907 else if (contains (insn, epilogue))
7909 last = insn;
7910 if (--len == 0)
7911 break;
7915 if (last)
7917 /* Find the epilogue-begin note if we haven't already, and
7918 move it to just before the first epilogue insn. */
7919 if (note == 0)
7921 for (note = insn; (note = PREV_INSN (note));)
7922 if (GET_CODE (note) == NOTE
7923 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
7924 break;
7927 if (PREV_INSN (last) != note)
7928 reorder_insns (note, note, PREV_INSN (last));
7931 #endif /* HAVE_prologue or HAVE_epilogue */
7934 /* Called once, at initialization, to initialize function.c. */
7936 void
7937 init_function_once ()
7939 VARRAY_INT_INIT (prologue, 0, "prologue");
7940 VARRAY_INT_INIT (epilogue, 0, "epilogue");
7941 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
7944 #include "gt-function.h"