Add configuration for semi-hosted ARM.
[official-gcc.git] / gcc / flow.c
blobd7467e5bb1e6348e226e52356bac45851e3a69bd
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 88, 92, 93, 94, 1995 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
21 /* This file contains the data flow analysis pass of the compiler.
22 It computes data flow information
23 which tells combine_instructions which insns to consider combining
24 and controls register allocation.
26 Additional data flow information that is too bulky to record
27 is generated during the analysis, and is used at that time to
28 create autoincrement and autodecrement addressing.
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
34 ** find_basic_blocks **
36 find_basic_blocks divides the current function's rtl
37 into basic blocks. It records the beginnings and ends of the
38 basic blocks in the vectors basic_block_head and basic_block_end,
39 and the number of blocks in n_basic_blocks.
41 find_basic_blocks also finds any unreachable loops
42 and deletes them.
44 ** life_analysis **
46 life_analysis is called immediately after find_basic_blocks.
47 It uses the basic block information to determine where each
48 hard or pseudo register is live.
50 ** live-register info **
52 The information about where each register is live is in two parts:
53 the REG_NOTES of insns, and the vector basic_block_live_at_start.
55 basic_block_live_at_start has an element for each basic block,
56 and the element is a bit-vector with a bit for each hard or pseudo
57 register. The bit is 1 if the register is live at the beginning
58 of the basic block.
60 Two types of elements can be added to an insn's REG_NOTES.
61 A REG_DEAD note is added to an insn's REG_NOTES for any register
62 that meets both of two conditions: The value in the register is not
63 needed in subsequent insns and the insn does not replace the value in
64 the register (in the case of multi-word hard registers, the value in
65 each register must be replaced by the insn to avoid a REG_DEAD note).
67 In the vast majority of cases, an object in a REG_DEAD note will be
68 used somewhere in the insn. The (rare) exception to this is if an
69 insn uses a multi-word hard register and only some of the registers are
70 needed in subsequent insns. In that case, REG_DEAD notes will be
71 provided for those hard registers that are not subsequently needed.
72 Partial REG_DEAD notes of this type do not occur when an insn sets
73 only some of the hard registers used in such a multi-word operand;
74 omitting REG_DEAD notes for objects stored in an insn is optional and
75 the desire to do so does not justify the complexity of the partial
76 REG_DEAD notes.
78 REG_UNUSED notes are added for each register that is set by the insn
79 but is unused subsequently (if every register set by the insn is unused
80 and the insn does not reference memory or have some other side-effect,
81 the insn is deleted instead). If only part of a multi-word hard
82 register is used in a subsequent insn, REG_UNUSED notes are made for
83 the parts that will not be used.
85 To determine which registers are live after any insn, one can
86 start from the beginning of the basic block and scan insns, noting
87 which registers are set by each insn and which die there.
89 ** Other actions of life_analysis **
91 life_analysis sets up the LOG_LINKS fields of insns because the
92 information needed to do so is readily available.
94 life_analysis deletes insns whose only effect is to store a value
95 that is never used.
97 life_analysis notices cases where a reference to a register as
98 a memory address can be combined with a preceding or following
99 incrementation or decrementation of the register. The separate
100 instruction to increment or decrement is deleted and the address
101 is changed to a POST_INC or similar rtx.
103 Each time an incrementing or decrementing address is created,
104 a REG_INC element is added to the insn's REG_NOTES list.
106 life_analysis fills in certain vectors containing information about
107 register usage: reg_n_refs, reg_n_deaths, reg_n_sets, reg_live_length,
108 reg_n_calls_crosses and reg_basic_block. */
110 #include <stdio.h>
111 #include "config.h"
112 #include "rtl.h"
113 #include "basic-block.h"
114 #include "insn-config.h"
115 #include "regs.h"
116 #include "hard-reg-set.h"
117 #include "flags.h"
118 #include "output.h"
120 #include "obstack.h"
121 #define obstack_chunk_alloc xmalloc
122 #define obstack_chunk_free free
124 /* List of labels that must never be deleted. */
125 extern rtx forced_labels;
127 /* Get the basic block number of an insn.
128 This info should not be expected to remain available
129 after the end of life_analysis. */
131 /* This is the limit of the allocated space in the following two arrays. */
133 static int max_uid_for_flow;
135 #define BLOCK_NUM(INSN) uid_block_number[INSN_UID (INSN)]
137 /* This is where the BLOCK_NUM values are really stored.
138 This is set up by find_basic_blocks and used there and in life_analysis,
139 and then freed. */
141 static int *uid_block_number;
143 /* INSN_VOLATILE (insn) is 1 if the insn refers to anything volatile. */
145 #define INSN_VOLATILE(INSN) uid_volatile[INSN_UID (INSN)]
146 static char *uid_volatile;
148 /* Number of basic blocks in the current function. */
150 int n_basic_blocks;
152 /* Maximum register number used in this function, plus one. */
154 int max_regno;
156 /* Maximum number of SCRATCH rtx's used in any basic block of this function. */
158 int max_scratch;
160 /* Number of SCRATCH rtx's in the current block. */
162 static int num_scratch;
164 /* Indexed by n, gives number of basic block that (REG n) is used in.
165 If the value is REG_BLOCK_GLOBAL (-2),
166 it means (REG n) is used in more than one basic block.
167 REG_BLOCK_UNKNOWN (-1) means it hasn't been seen yet so we don't know.
168 This information remains valid for the rest of the compilation
169 of the current function; it is used to control register allocation. */
171 int *reg_basic_block;
173 /* Indexed by n, gives number of times (REG n) is used or set, each
174 weighted by its loop-depth.
175 This information remains valid for the rest of the compilation
176 of the current function; it is used to control register allocation. */
178 int *reg_n_refs;
180 /* Indexed by N; says whether a psuedo register N was ever used
181 within a SUBREG that changes the size of the reg. Some machines prohibit
182 such objects to be in certain (usually floating-point) registers. */
184 char *reg_changes_size;
186 /* Indexed by N, gives number of places register N dies.
187 This information remains valid for the rest of the compilation
188 of the current function; it is used to control register allocation. */
190 short *reg_n_deaths;
192 /* Indexed by N, gives 1 if that reg is live across any CALL_INSNs.
193 This information remains valid for the rest of the compilation
194 of the current function; it is used to control register allocation. */
196 int *reg_n_calls_crossed;
198 /* Total number of instructions at which (REG n) is live.
199 The larger this is, the less priority (REG n) gets for
200 allocation in a real register.
201 This information remains valid for the rest of the compilation
202 of the current function; it is used to control register allocation.
204 local-alloc.c may alter this number to change the priority.
206 Negative values are special.
207 -1 is used to mark a pseudo reg which has a constant or memory equivalent
208 and is used infrequently enough that it should not get a hard register.
209 -2 is used to mark a pseudo reg for a parameter, when a frame pointer
210 is not required. global.c makes an allocno for this but does
211 not try to assign a hard register to it. */
213 int *reg_live_length;
215 /* Element N is the next insn that uses (hard or pseudo) register number N
216 within the current basic block; or zero, if there is no such insn.
217 This is valid only during the final backward scan in propagate_block. */
219 static rtx *reg_next_use;
221 /* Size of a regset for the current function,
222 in (1) bytes and (2) elements. */
224 int regset_bytes;
225 int regset_size;
227 /* Element N is first insn in basic block N.
228 This info lasts until we finish compiling the function. */
230 rtx *basic_block_head;
232 /* Element N is last insn in basic block N.
233 This info lasts until we finish compiling the function. */
235 rtx *basic_block_end;
237 /* Element N is a regset describing the registers live
238 at the start of basic block N.
239 This info lasts until we finish compiling the function. */
241 regset *basic_block_live_at_start;
243 /* Regset of regs live when calls to `setjmp'-like functions happen. */
245 regset regs_live_at_setjmp;
247 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
248 that have to go in the same hard reg.
249 The first two regs in the list are a pair, and the next two
250 are another pair, etc. */
251 rtx regs_may_share;
253 /* Element N is nonzero if control can drop into basic block N
254 from the preceding basic block. Freed after life_analysis. */
256 static char *basic_block_drops_in;
258 /* Element N is depth within loops of the last insn in basic block number N.
259 Freed after life_analysis. */
261 static short *basic_block_loop_depth;
263 /* Element N nonzero if basic block N can actually be reached.
264 Vector exists only during find_basic_blocks. */
266 static char *block_live_static;
268 /* Depth within loops of basic block being scanned for lifetime analysis,
269 plus one. This is the weight attached to references to registers. */
271 static int loop_depth;
273 /* During propagate_block, this is non-zero if the value of CC0 is live. */
275 static int cc0_live;
277 /* During propagate_block, this contains the last MEM stored into. It
278 is used to eliminate consecutive stores to the same location. */
280 static rtx last_mem_set;
282 /* Set of registers that may be eliminable. These are handled specially
283 in updating regs_ever_live. */
285 static HARD_REG_SET elim_reg_set;
287 /* Forward declarations */
288 static void find_basic_blocks PROTO((rtx, rtx));
289 static int uses_reg_or_mem PROTO((rtx));
290 static void mark_label_ref PROTO((rtx, rtx, int));
291 static void life_analysis PROTO((rtx, int));
292 void allocate_for_life_analysis PROTO((void));
293 static void init_regset_vector PROTO((regset *, regset, int, int));
294 static void propagate_block PROTO((regset, rtx, rtx, int,
295 regset, int));
296 static rtx flow_delete_insn PROTO((rtx));
297 static int insn_dead_p PROTO((rtx, regset, int));
298 static int libcall_dead_p PROTO((rtx, regset, rtx, rtx));
299 static void mark_set_regs PROTO((regset, regset, rtx,
300 rtx, regset));
301 static void mark_set_1 PROTO((regset, regset, rtx,
302 rtx, regset));
303 static void find_auto_inc PROTO((regset, rtx, rtx));
304 static void mark_used_regs PROTO((regset, regset, rtx, int, rtx));
305 static int try_pre_increment_1 PROTO((rtx));
306 static int try_pre_increment PROTO((rtx, rtx, HOST_WIDE_INT));
307 static rtx find_use_as_address PROTO((rtx, rtx, HOST_WIDE_INT));
308 void dump_flow_info PROTO((FILE *));
310 /* Find basic blocks of the current function and perform data flow analysis.
311 F is the first insn of the function and NREGS the number of register numbers
312 in use. */
314 void
315 flow_analysis (f, nregs, file)
316 rtx f;
317 int nregs;
318 FILE *file;
320 register rtx insn;
321 register int i;
322 rtx nonlocal_label_list = nonlocal_label_rtx_list ();
324 #ifdef ELIMINABLE_REGS
325 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
326 #endif
328 /* Record which registers will be eliminated. We use this in
329 mark_used_regs. */
331 CLEAR_HARD_REG_SET (elim_reg_set);
333 #ifdef ELIMINABLE_REGS
334 for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
335 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
336 #else
337 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
338 #endif
340 /* Count the basic blocks. Also find maximum insn uid value used. */
343 register RTX_CODE prev_code = JUMP_INSN;
344 register RTX_CODE code;
346 max_uid_for_flow = 0;
348 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
350 code = GET_CODE (insn);
351 if (INSN_UID (insn) > max_uid_for_flow)
352 max_uid_for_flow = INSN_UID (insn);
353 if (code == CODE_LABEL
354 || (GET_RTX_CLASS (code) == 'i'
355 && (prev_code == JUMP_INSN
356 || (prev_code == CALL_INSN
357 && nonlocal_label_list != 0)
358 || prev_code == BARRIER)))
359 i++;
360 if (code != NOTE)
361 prev_code = code;
365 #ifdef AUTO_INC_DEC
366 /* Leave space for insns we make in some cases for auto-inc. These cases
367 are rare, so we don't need too much space. */
368 max_uid_for_flow += max_uid_for_flow / 10;
369 #endif
371 /* Allocate some tables that last till end of compiling this function
372 and some needed only in find_basic_blocks and life_analysis. */
374 n_basic_blocks = i;
375 basic_block_head = (rtx *) oballoc (n_basic_blocks * sizeof (rtx));
376 basic_block_end = (rtx *) oballoc (n_basic_blocks * sizeof (rtx));
377 basic_block_drops_in = (char *) alloca (n_basic_blocks);
378 basic_block_loop_depth = (short *) alloca (n_basic_blocks * sizeof (short));
379 uid_block_number
380 = (int *) alloca ((max_uid_for_flow + 1) * sizeof (int));
381 uid_volatile = (char *) alloca (max_uid_for_flow + 1);
382 bzero (uid_volatile, max_uid_for_flow + 1);
384 find_basic_blocks (f, nonlocal_label_list);
385 life_analysis (f, nregs);
386 if (file)
387 dump_flow_info (file);
389 basic_block_drops_in = 0;
390 uid_block_number = 0;
391 basic_block_loop_depth = 0;
394 /* Find all basic blocks of the function whose first insn is F.
395 Store the correct data in the tables that describe the basic blocks,
396 set up the chains of references for each CODE_LABEL, and
397 delete any entire basic blocks that cannot be reached.
399 NONLOCAL_LABEL_LIST is the same local variable from flow_analysis. */
401 static void
402 find_basic_blocks (f, nonlocal_label_list)
403 rtx f, nonlocal_label_list;
405 register rtx insn;
406 register int i;
407 register char *block_live = (char *) alloca (n_basic_blocks);
408 register char *block_marked = (char *) alloca (n_basic_blocks);
409 /* List of label_refs to all labels whose addresses are taken
410 and used as data. */
411 rtx label_value_list;
412 rtx x, note;
413 enum rtx_code prev_code, code;
414 int depth, pass;
416 pass = 1;
417 restart:
419 label_value_list = 0;
420 block_live_static = block_live;
421 bzero (block_live, n_basic_blocks);
422 bzero (block_marked, n_basic_blocks);
424 /* Initialize with just block 0 reachable and no blocks marked. */
425 if (n_basic_blocks > 0)
426 block_live[0] = 1;
428 /* Initialize the ref chain of each label to 0. Record where all the
429 blocks start and end and their depth in loops. For each insn, record
430 the block it is in. Also mark as reachable any blocks headed by labels
431 that must not be deleted. */
433 for (insn = f, i = -1, prev_code = JUMP_INSN, depth = 1;
434 insn; insn = NEXT_INSN (insn))
436 code = GET_CODE (insn);
437 if (code == NOTE)
439 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
440 depth++;
441 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
442 depth--;
445 /* A basic block starts at label, or after something that can jump. */
446 else if (code == CODE_LABEL
447 || (GET_RTX_CLASS (code) == 'i'
448 && (prev_code == JUMP_INSN
449 || (prev_code == CALL_INSN
450 && nonlocal_label_list != 0)
451 || prev_code == BARRIER)))
453 basic_block_head[++i] = insn;
454 basic_block_end[i] = insn;
455 basic_block_loop_depth[i] = depth;
457 if (code == CODE_LABEL)
459 LABEL_REFS (insn) = insn;
460 /* Any label that cannot be deleted
461 is considered to start a reachable block. */
462 if (LABEL_PRESERVE_P (insn))
463 block_live[i] = 1;
467 else if (GET_RTX_CLASS (code) == 'i')
469 basic_block_end[i] = insn;
470 basic_block_loop_depth[i] = depth;
473 if (GET_RTX_CLASS (code) == 'i')
475 /* Make a list of all labels referred to other than by jumps. */
476 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
477 if (REG_NOTE_KIND (note) == REG_LABEL)
478 label_value_list = gen_rtx (EXPR_LIST, VOIDmode, XEXP (note, 0),
479 label_value_list);
482 BLOCK_NUM (insn) = i;
484 if (code != NOTE)
485 prev_code = code;
488 /* During the second pass, `n_basic_blocks' is only an upper bound.
489 Only perform the sanity check for the first pass, and on the second
490 pass ensure `n_basic_blocks' is set to the correct value. */
491 if (pass == 1 && i + 1 != n_basic_blocks)
492 abort ();
493 n_basic_blocks = i + 1;
495 /* Don't delete the labels (in this function)
496 that are referenced by non-jump instructions. */
498 for (x = label_value_list; x; x = XEXP (x, 1))
499 if (! LABEL_REF_NONLOCAL_P (x))
500 block_live[BLOCK_NUM (XEXP (x, 0))] = 1;
502 for (x = forced_labels; x; x = XEXP (x, 1))
503 if (! LABEL_REF_NONLOCAL_P (x))
504 block_live[BLOCK_NUM (XEXP (x, 0))] = 1;
506 /* Record which basic blocks control can drop in to. */
508 for (i = 0; i < n_basic_blocks; i++)
510 for (insn = PREV_INSN (basic_block_head[i]);
511 insn && GET_CODE (insn) == NOTE; insn = PREV_INSN (insn))
514 basic_block_drops_in[i] = insn && GET_CODE (insn) != BARRIER;
517 /* Now find which basic blocks can actually be reached
518 and put all jump insns' LABEL_REFS onto the ref-chains
519 of their target labels. */
521 if (n_basic_blocks > 0)
523 int something_marked = 1;
524 int deleted;
526 /* Find all indirect jump insns and mark them as possibly jumping to all
527 the labels whose addresses are explicitly used. This is because,
528 when there are computed gotos, we can't tell which labels they jump
529 to, of all the possibilities.
531 Tablejumps and casesi insns are OK and we can recognize them by
532 a (use (label_ref)). */
534 for (insn = f; insn; insn = NEXT_INSN (insn))
535 if (GET_CODE (insn) == JUMP_INSN)
537 rtx pat = PATTERN (insn);
538 int computed_jump = 0;
540 if (GET_CODE (pat) == PARALLEL)
542 int len = XVECLEN (pat, 0);
543 int has_use_labelref = 0;
545 for (i = len - 1; i >= 0; i--)
546 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
547 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
548 == LABEL_REF))
549 has_use_labelref = 1;
551 if (! has_use_labelref)
552 for (i = len - 1; i >= 0; i--)
553 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
554 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
555 && uses_reg_or_mem (SET_SRC (XVECEXP (pat, 0, i))))
556 computed_jump = 1;
558 else if (GET_CODE (pat) == SET
559 && SET_DEST (pat) == pc_rtx
560 && uses_reg_or_mem (SET_SRC (pat)))
561 computed_jump = 1;
563 if (computed_jump)
565 for (x = label_value_list; x; x = XEXP (x, 1))
566 mark_label_ref (gen_rtx (LABEL_REF, VOIDmode, XEXP (x, 0)),
567 insn, 0);
569 for (x = forced_labels; x; x = XEXP (x, 1))
570 mark_label_ref (gen_rtx (LABEL_REF, VOIDmode, XEXP (x, 0)),
571 insn, 0);
575 /* Find all call insns and mark them as possibly jumping
576 to all the nonlocal goto handler labels. */
578 for (insn = f; insn; insn = NEXT_INSN (insn))
579 if (GET_CODE (insn) == CALL_INSN)
581 for (x = nonlocal_label_list; x; x = XEXP (x, 1))
582 mark_label_ref (gen_rtx (LABEL_REF, VOIDmode, XEXP (x, 0)),
583 insn, 0);
585 /* ??? This could be made smarter:
586 in some cases it's possible to tell that certain
587 calls will not do a nonlocal goto.
589 For example, if the nested functions that do the
590 nonlocal gotos do not have their addresses taken, then
591 only calls to those functions or to other nested
592 functions that use them could possibly do nonlocal
593 gotos. */
596 /* Pass over all blocks, marking each block that is reachable
597 and has not yet been marked.
598 Keep doing this until, in one pass, no blocks have been marked.
599 Then blocks_live and blocks_marked are identical and correct.
600 In addition, all jumps actually reachable have been marked. */
602 while (something_marked)
604 something_marked = 0;
605 for (i = 0; i < n_basic_blocks; i++)
606 if (block_live[i] && !block_marked[i])
608 block_marked[i] = 1;
609 something_marked = 1;
610 if (i + 1 < n_basic_blocks && basic_block_drops_in[i + 1])
611 block_live[i + 1] = 1;
612 insn = basic_block_end[i];
613 if (GET_CODE (insn) == JUMP_INSN)
614 mark_label_ref (PATTERN (insn), insn, 0);
618 /* ??? See if we have a "live" basic block that is not reachable.
619 This can happen if it is headed by a label that is preserved or
620 in one of the label lists, but no call or computed jump is in
621 the loop. It's not clear if we can delete the block or not,
622 but don't for now. However, we will mess up register status if
623 it remains unreachable, so add a fake reachability from the
624 previous block. */
626 for (i = 1; i < n_basic_blocks; i++)
627 if (block_live[i] && ! basic_block_drops_in[i]
628 && GET_CODE (basic_block_head[i]) == CODE_LABEL
629 && LABEL_REFS (basic_block_head[i]) == basic_block_head[i])
630 basic_block_drops_in[i] = 1;
632 /* Now delete the code for any basic blocks that can't be reached.
633 They can occur because jump_optimize does not recognize
634 unreachable loops as unreachable. */
636 deleted = 0;
637 for (i = 0; i < n_basic_blocks; i++)
638 if (!block_live[i])
640 deleted++;
642 /* Delete the insns in a (non-live) block. We physically delete
643 every non-note insn except the start and end (so
644 basic_block_head/end needn't be updated), we turn the latter
645 into NOTE_INSN_DELETED notes.
646 We use to "delete" the insns by turning them into notes, but
647 we may be deleting lots of insns that subsequent passes would
648 otherwise have to process. Secondly, lots of deleted blocks in
649 a row can really slow down propagate_block since it will
650 otherwise process insn-turned-notes multiple times when it
651 looks for loop begin/end notes. */
652 if (basic_block_head[i] != basic_block_end[i])
654 /* It would be quicker to delete all of these with a single
655 unchaining, rather than one at a time, but we need to keep
656 the NOTE's. */
657 insn = NEXT_INSN (basic_block_head[i]);
658 while (insn != basic_block_end[i])
660 if (GET_CODE (insn) == BARRIER)
661 abort ();
662 else if (GET_CODE (insn) != NOTE)
663 insn = flow_delete_insn (insn);
664 else
665 insn = NEXT_INSN (insn);
668 insn = basic_block_head[i];
669 if (GET_CODE (insn) != NOTE)
671 /* Turn the head into a deleted insn note. */
672 if (GET_CODE (insn) == BARRIER)
673 abort ();
674 PUT_CODE (insn, NOTE);
675 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
676 NOTE_SOURCE_FILE (insn) = 0;
678 insn = basic_block_end[i];
679 if (GET_CODE (insn) != NOTE)
681 /* Turn the tail into a deleted insn note. */
682 if (GET_CODE (insn) == BARRIER)
683 abort ();
684 PUT_CODE (insn, NOTE);
685 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
686 NOTE_SOURCE_FILE (insn) = 0;
688 /* BARRIERs are between basic blocks, not part of one.
689 Delete a BARRIER if the preceding jump is deleted.
690 We cannot alter a BARRIER into a NOTE
691 because it is too short; but we can really delete
692 it because it is not part of a basic block. */
693 if (NEXT_INSN (insn) != 0
694 && GET_CODE (NEXT_INSN (insn)) == BARRIER)
695 delete_insn (NEXT_INSN (insn));
697 /* Each time we delete some basic blocks,
698 see if there is a jump around them that is
699 being turned into a no-op. If so, delete it. */
701 if (block_live[i - 1])
703 register int j;
704 for (j = i + 1; j < n_basic_blocks; j++)
705 if (block_live[j])
707 rtx label;
708 insn = basic_block_end[i - 1];
709 if (GET_CODE (insn) == JUMP_INSN
710 /* An unconditional jump is the only possibility
711 we must check for, since a conditional one
712 would make these blocks live. */
713 && simplejump_p (insn)
714 && (label = XEXP (SET_SRC (PATTERN (insn)), 0), 1)
715 && INSN_UID (label) != 0
716 && BLOCK_NUM (label) == j)
718 PUT_CODE (insn, NOTE);
719 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
720 NOTE_SOURCE_FILE (insn) = 0;
721 if (GET_CODE (NEXT_INSN (insn)) != BARRIER)
722 abort ();
723 delete_insn (NEXT_INSN (insn));
725 break;
730 /* There are pathalogical cases where one function calling hundreds of
731 nested inline functions can generate lots and lots of unreachable
732 blocks that jump can't delete. Since we don't use sparse matrices
733 a lot of memory will be needed to compile such functions.
734 Implementing sparse matrices is a fair bit of work and it is not
735 clear that they win more than they lose (we don't want to
736 unnecessarily slow down compilation of normal code). By making
737 another pass for the pathalogical case, we can greatly speed up
738 their compilation without hurting normal code. This works because
739 all the insns in the unreachable blocks have either been deleted or
740 turned into notes.
741 Note that we're talking about reducing memory usage by 10's of
742 megabytes and reducing compilation time by several minutes. */
743 /* ??? The choice of when to make another pass is a bit arbitrary,
744 and was derived from empirical data. */
745 if (pass == 1
746 && deleted > 200)
748 pass++;
749 n_basic_blocks -= deleted;
750 /* `n_basic_blocks' may not be correct at this point: two previously
751 separate blocks may now be merged. That's ok though as we
752 recalculate it during the second pass. It certainly can't be
753 any larger than the current value. */
754 goto restart;
759 /* Subroutines of find_basic_blocks. */
761 /* Return 1 if X contain a REG or MEM that is not in the constant pool. */
763 static int
764 uses_reg_or_mem (x)
765 rtx x;
767 enum rtx_code code = GET_CODE (x);
768 int i, j;
769 char *fmt;
771 if (code == REG
772 || (code == MEM
773 && ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
774 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))))
775 return 1;
777 fmt = GET_RTX_FORMAT (code);
778 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
780 if (fmt[i] == 'e'
781 && uses_reg_or_mem (XEXP (x, i)))
782 return 1;
784 if (fmt[i] == 'E')
785 for (j = 0; j < XVECLEN (x, i); j++)
786 if (uses_reg_or_mem (XVECEXP (x, i, j)))
787 return 1;
790 return 0;
793 /* Check expression X for label references;
794 if one is found, add INSN to the label's chain of references.
796 CHECKDUP means check for and avoid creating duplicate references
797 from the same insn. Such duplicates do no serious harm but
798 can slow life analysis. CHECKDUP is set only when duplicates
799 are likely. */
801 static void
802 mark_label_ref (x, insn, checkdup)
803 rtx x, insn;
804 int checkdup;
806 register RTX_CODE code;
807 register int i;
808 register char *fmt;
810 /* We can be called with NULL when scanning label_value_list. */
811 if (x == 0)
812 return;
814 code = GET_CODE (x);
815 if (code == LABEL_REF)
817 register rtx label = XEXP (x, 0);
818 register rtx y;
819 if (GET_CODE (label) != CODE_LABEL)
820 abort ();
821 /* If the label was never emitted, this insn is junk,
822 but avoid a crash trying to refer to BLOCK_NUM (label).
823 This can happen as a result of a syntax error
824 and a diagnostic has already been printed. */
825 if (INSN_UID (label) == 0)
826 return;
827 CONTAINING_INSN (x) = insn;
828 /* if CHECKDUP is set, check for duplicate ref from same insn
829 and don't insert. */
830 if (checkdup)
831 for (y = LABEL_REFS (label); y != label; y = LABEL_NEXTREF (y))
832 if (CONTAINING_INSN (y) == insn)
833 return;
834 LABEL_NEXTREF (x) = LABEL_REFS (label);
835 LABEL_REFS (label) = x;
836 block_live_static[BLOCK_NUM (label)] = 1;
837 return;
840 fmt = GET_RTX_FORMAT (code);
841 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
843 if (fmt[i] == 'e')
844 mark_label_ref (XEXP (x, i), insn, 0);
845 if (fmt[i] == 'E')
847 register int j;
848 for (j = 0; j < XVECLEN (x, i); j++)
849 mark_label_ref (XVECEXP (x, i, j), insn, 1);
854 /* Delete INSN by patching it out.
855 Return the next insn. */
857 static rtx
858 flow_delete_insn (insn)
859 rtx insn;
861 /* ??? For the moment we assume we don't have to watch for NULLs here
862 since the start/end of basic blocks aren't deleted like this. */
863 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
864 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
865 return NEXT_INSN (insn);
868 /* Determine which registers are live at the start of each
869 basic block of the function whose first insn is F.
870 NREGS is the number of registers used in F.
871 We allocate the vector basic_block_live_at_start
872 and the regsets that it points to, and fill them with the data.
873 regset_size and regset_bytes are also set here. */
875 static void
876 life_analysis (f, nregs)
877 rtx f;
878 int nregs;
880 register regset tem;
881 int first_pass;
882 int changed;
883 /* For each basic block, a bitmask of regs
884 live on exit from the block. */
885 regset *basic_block_live_at_end;
886 /* For each basic block, a bitmask of regs
887 live on entry to a successor-block of this block.
888 If this does not match basic_block_live_at_end,
889 that must be updated, and the block must be rescanned. */
890 regset *basic_block_new_live_at_end;
891 /* For each basic block, a bitmask of regs
892 whose liveness at the end of the basic block
893 can make a difference in which regs are live on entry to the block.
894 These are the regs that are set within the basic block,
895 possibly excluding those that are used after they are set. */
896 regset *basic_block_significant;
897 register int i;
898 rtx insn;
900 struct obstack flow_obstack;
902 gcc_obstack_init (&flow_obstack);
904 max_regno = nregs;
906 bzero (regs_ever_live, sizeof regs_ever_live);
908 /* Allocate and zero out many data structures
909 that will record the data from lifetime analysis. */
911 allocate_for_life_analysis ();
913 reg_next_use = (rtx *) alloca (nregs * sizeof (rtx));
914 bzero ((char *) reg_next_use, nregs * sizeof (rtx));
916 /* Set up several regset-vectors used internally within this function.
917 Their meanings are documented above, with their declarations. */
919 basic_block_live_at_end
920 = (regset *) alloca (n_basic_blocks * sizeof (regset));
922 /* Don't use alloca since that leads to a crash rather than an error message
923 if there isn't enough space.
924 Don't use oballoc since we may need to allocate other things during
925 this function on the temporary obstack. */
926 tem = (regset) obstack_alloc (&flow_obstack, n_basic_blocks * regset_bytes);
927 bzero ((char *) tem, n_basic_blocks * regset_bytes);
928 init_regset_vector (basic_block_live_at_end, tem,
929 n_basic_blocks, regset_bytes);
931 basic_block_new_live_at_end
932 = (regset *) alloca (n_basic_blocks * sizeof (regset));
933 tem = (regset) obstack_alloc (&flow_obstack, n_basic_blocks * regset_bytes);
934 bzero ((char *) tem, n_basic_blocks * regset_bytes);
935 init_regset_vector (basic_block_new_live_at_end, tem,
936 n_basic_blocks, regset_bytes);
938 basic_block_significant
939 = (regset *) alloca (n_basic_blocks * sizeof (regset));
940 tem = (regset) obstack_alloc (&flow_obstack, n_basic_blocks * regset_bytes);
941 bzero ((char *) tem, n_basic_blocks * regset_bytes);
942 init_regset_vector (basic_block_significant, tem,
943 n_basic_blocks, regset_bytes);
945 /* Record which insns refer to any volatile memory
946 or for any reason can't be deleted just because they are dead stores.
947 Also, delete any insns that copy a register to itself. */
949 for (insn = f; insn; insn = NEXT_INSN (insn))
951 enum rtx_code code1 = GET_CODE (insn);
952 if (code1 == CALL_INSN)
953 INSN_VOLATILE (insn) = 1;
954 else if (code1 == INSN || code1 == JUMP_INSN)
956 /* Delete (in effect) any obvious no-op moves. */
957 if (GET_CODE (PATTERN (insn)) == SET
958 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
959 && GET_CODE (SET_SRC (PATTERN (insn))) == REG
960 && REGNO (SET_DEST (PATTERN (insn))) ==
961 REGNO (SET_SRC (PATTERN (insn)))
962 /* Insns carrying these notes are useful later on. */
963 && ! find_reg_note (insn, REG_EQUAL, NULL_RTX))
965 PUT_CODE (insn, NOTE);
966 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
967 NOTE_SOURCE_FILE (insn) = 0;
969 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
971 /* If nothing but SETs of registers to themselves,
972 this insn can also be deleted. */
973 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
975 rtx tem = XVECEXP (PATTERN (insn), 0, i);
977 if (GET_CODE (tem) == USE
978 || GET_CODE (tem) == CLOBBER)
979 continue;
981 if (GET_CODE (tem) != SET
982 || GET_CODE (SET_DEST (tem)) != REG
983 || GET_CODE (SET_SRC (tem)) != REG
984 || REGNO (SET_DEST (tem)) != REGNO (SET_SRC (tem)))
985 break;
988 if (i == XVECLEN (PATTERN (insn), 0)
989 /* Insns carrying these notes are useful later on. */
990 && ! find_reg_note (insn, REG_EQUAL, NULL_RTX))
992 PUT_CODE (insn, NOTE);
993 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
994 NOTE_SOURCE_FILE (insn) = 0;
996 else
997 INSN_VOLATILE (insn) = volatile_refs_p (PATTERN (insn));
999 else if (GET_CODE (PATTERN (insn)) != USE)
1000 INSN_VOLATILE (insn) = volatile_refs_p (PATTERN (insn));
1001 /* A SET that makes space on the stack cannot be dead.
1002 (Such SETs occur only for allocating variable-size data,
1003 so they will always have a PLUS or MINUS according to the
1004 direction of stack growth.)
1005 Even if this function never uses this stack pointer value,
1006 signal handlers do! */
1007 else if (code1 == INSN && GET_CODE (PATTERN (insn)) == SET
1008 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1009 #ifdef STACK_GROWS_DOWNWARD
1010 && GET_CODE (SET_SRC (PATTERN (insn))) == MINUS
1011 #else
1012 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1013 #endif
1014 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx)
1015 INSN_VOLATILE (insn) = 1;
1019 if (n_basic_blocks > 0)
1020 #ifdef EXIT_IGNORE_STACK
1021 if (! EXIT_IGNORE_STACK
1022 || (! FRAME_POINTER_REQUIRED && flag_omit_frame_pointer))
1023 #endif
1025 /* If exiting needs the right stack value,
1026 consider the stack pointer live at the end of the function. */
1027 basic_block_live_at_end[n_basic_blocks - 1]
1028 [STACK_POINTER_REGNUM / REGSET_ELT_BITS]
1029 |= (REGSET_ELT_TYPE) 1 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS);
1030 basic_block_new_live_at_end[n_basic_blocks - 1]
1031 [STACK_POINTER_REGNUM / REGSET_ELT_BITS]
1032 |= (REGSET_ELT_TYPE) 1 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS);
1035 /* Mark the frame pointer is needed at the end of the function. If
1036 we end up eliminating it, it will be removed from the live list
1037 of each basic block by reload. */
1039 if (n_basic_blocks > 0)
1041 basic_block_live_at_end[n_basic_blocks - 1]
1042 [FRAME_POINTER_REGNUM / REGSET_ELT_BITS]
1043 |= (REGSET_ELT_TYPE) 1 << (FRAME_POINTER_REGNUM % REGSET_ELT_BITS);
1044 basic_block_new_live_at_end[n_basic_blocks - 1]
1045 [FRAME_POINTER_REGNUM / REGSET_ELT_BITS]
1046 |= (REGSET_ELT_TYPE) 1 << (FRAME_POINTER_REGNUM % REGSET_ELT_BITS);
1047 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1048 /* If they are different, also mark the hard frame pointer as live */
1049 basic_block_live_at_end[n_basic_blocks - 1]
1050 [HARD_FRAME_POINTER_REGNUM / REGSET_ELT_BITS]
1051 |= (REGSET_ELT_TYPE) 1 << (HARD_FRAME_POINTER_REGNUM
1052 % REGSET_ELT_BITS);
1053 basic_block_new_live_at_end[n_basic_blocks - 1]
1054 [HARD_FRAME_POINTER_REGNUM / REGSET_ELT_BITS]
1055 |= (REGSET_ELT_TYPE) 1 << (HARD_FRAME_POINTER_REGNUM
1056 % REGSET_ELT_BITS);
1057 #endif
1060 /* Mark all global registers as being live at the end of the function
1061 since they may be referenced by our caller. */
1063 if (n_basic_blocks > 0)
1064 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1065 if (global_regs[i])
1067 basic_block_live_at_end[n_basic_blocks - 1]
1068 [i / REGSET_ELT_BITS]
1069 |= (REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS);
1070 basic_block_new_live_at_end[n_basic_blocks - 1]
1071 [i / REGSET_ELT_BITS]
1072 |= (REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS);
1075 /* Propagate life info through the basic blocks
1076 around the graph of basic blocks.
1078 This is a relaxation process: each time a new register
1079 is live at the end of the basic block, we must scan the block
1080 to determine which registers are, as a consequence, live at the beginning
1081 of that block. These registers must then be marked live at the ends
1082 of all the blocks that can transfer control to that block.
1083 The process continues until it reaches a fixed point. */
1085 first_pass = 1;
1086 changed = 1;
1087 while (changed)
1089 changed = 0;
1090 for (i = n_basic_blocks - 1; i >= 0; i--)
1092 int consider = first_pass;
1093 int must_rescan = first_pass;
1094 register int j;
1096 if (!first_pass)
1098 /* Set CONSIDER if this block needs thinking about at all
1099 (that is, if the regs live now at the end of it
1100 are not the same as were live at the end of it when
1101 we last thought about it).
1102 Set must_rescan if it needs to be thought about
1103 instruction by instruction (that is, if any additional
1104 reg that is live at the end now but was not live there before
1105 is one of the significant regs of this basic block). */
1107 for (j = 0; j < regset_size; j++)
1109 register REGSET_ELT_TYPE x
1110 = (basic_block_new_live_at_end[i][j]
1111 & ~basic_block_live_at_end[i][j]);
1112 if (x)
1113 consider = 1;
1114 if (x & basic_block_significant[i][j])
1116 must_rescan = 1;
1117 consider = 1;
1118 break;
1122 if (! consider)
1123 continue;
1126 /* The live_at_start of this block may be changing,
1127 so another pass will be required after this one. */
1128 changed = 1;
1130 if (! must_rescan)
1132 /* No complete rescan needed;
1133 just record those variables newly known live at end
1134 as live at start as well. */
1135 for (j = 0; j < regset_size; j++)
1137 register REGSET_ELT_TYPE x
1138 = (basic_block_new_live_at_end[i][j]
1139 & ~basic_block_live_at_end[i][j]);
1140 basic_block_live_at_start[i][j] |= x;
1141 basic_block_live_at_end[i][j] |= x;
1144 else
1146 /* Update the basic_block_live_at_start
1147 by propagation backwards through the block. */
1148 bcopy ((char *) basic_block_new_live_at_end[i],
1149 (char *) basic_block_live_at_end[i], regset_bytes);
1150 bcopy ((char *) basic_block_live_at_end[i],
1151 (char *) basic_block_live_at_start[i], regset_bytes);
1152 propagate_block (basic_block_live_at_start[i],
1153 basic_block_head[i], basic_block_end[i], 0,
1154 first_pass ? basic_block_significant[i]
1155 : (regset) 0,
1160 register rtx jump, head;
1162 /* Update the basic_block_new_live_at_end's of the block
1163 that falls through into this one (if any). */
1164 head = basic_block_head[i];
1165 if (basic_block_drops_in[i])
1167 register int j;
1168 for (j = 0; j < regset_size; j++)
1169 basic_block_new_live_at_end[i-1][j]
1170 |= basic_block_live_at_start[i][j];
1173 /* Update the basic_block_new_live_at_end's of
1174 all the blocks that jump to this one. */
1175 if (GET_CODE (head) == CODE_LABEL)
1176 for (jump = LABEL_REFS (head);
1177 jump != head;
1178 jump = LABEL_NEXTREF (jump))
1180 register int from_block = BLOCK_NUM (CONTAINING_INSN (jump));
1181 register int j;
1182 for (j = 0; j < regset_size; j++)
1183 basic_block_new_live_at_end[from_block][j]
1184 |= basic_block_live_at_start[i][j];
1187 #ifdef USE_C_ALLOCA
1188 alloca (0);
1189 #endif
1191 first_pass = 0;
1194 /* The only pseudos that are live at the beginning of the function are
1195 those that were not set anywhere in the function. local-alloc doesn't
1196 know how to handle these correctly, so mark them as not local to any
1197 one basic block. */
1199 if (n_basic_blocks > 0)
1200 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1201 if (basic_block_live_at_start[0][i / REGSET_ELT_BITS]
1202 & ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS)))
1203 reg_basic_block[i] = REG_BLOCK_GLOBAL;
1205 /* Now the life information is accurate.
1206 Make one more pass over each basic block
1207 to delete dead stores, create autoincrement addressing
1208 and record how many times each register is used, is set, or dies.
1210 To save time, we operate directly in basic_block_live_at_end[i],
1211 thus destroying it (in fact, converting it into a copy of
1212 basic_block_live_at_start[i]). This is ok now because
1213 basic_block_live_at_end[i] is no longer used past this point. */
1215 max_scratch = 0;
1217 for (i = 0; i < n_basic_blocks; i++)
1219 propagate_block (basic_block_live_at_end[i],
1220 basic_block_head[i], basic_block_end[i], 1,
1221 (regset) 0, i);
1222 #ifdef USE_C_ALLOCA
1223 alloca (0);
1224 #endif
1227 #if 0
1228 /* Something live during a setjmp should not be put in a register
1229 on certain machines which restore regs from stack frames
1230 rather than from the jmpbuf.
1231 But we don't need to do this for the user's variables, since
1232 ANSI says only volatile variables need this. */
1233 #ifdef LONGJMP_RESTORE_FROM_STACK
1234 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1235 if (regs_live_at_setjmp[i / REGSET_ELT_BITS]
1236 & ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS))
1237 && regno_reg_rtx[i] != 0 && ! REG_USERVAR_P (regno_reg_rtx[i]))
1239 reg_live_length[i] = -1;
1240 reg_basic_block[i] = -1;
1242 #endif
1243 #endif
1245 /* We have a problem with any pseudoreg that
1246 lives across the setjmp. ANSI says that if a
1247 user variable does not change in value
1248 between the setjmp and the longjmp, then the longjmp preserves it.
1249 This includes longjmp from a place where the pseudo appears dead.
1250 (In principle, the value still exists if it is in scope.)
1251 If the pseudo goes in a hard reg, some other value may occupy
1252 that hard reg where this pseudo is dead, thus clobbering the pseudo.
1253 Conclusion: such a pseudo must not go in a hard reg. */
1254 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1255 if ((regs_live_at_setjmp[i / REGSET_ELT_BITS]
1256 & ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS)))
1257 && regno_reg_rtx[i] != 0)
1259 reg_live_length[i] = -1;
1260 reg_basic_block[i] = -1;
1263 obstack_free (&flow_obstack, NULL_PTR);
1266 /* Subroutines of life analysis. */
1268 /* Allocate the permanent data structures that represent the results
1269 of life analysis. Not static since used also for stupid life analysis. */
1271 void
1272 allocate_for_life_analysis ()
1274 register int i;
1275 register regset tem;
1277 regset_size = ((max_regno + REGSET_ELT_BITS - 1) / REGSET_ELT_BITS);
1278 regset_bytes = regset_size * sizeof (*(regset)0);
1280 reg_n_refs = (int *) oballoc (max_regno * sizeof (int));
1281 bzero ((char *) reg_n_refs, max_regno * sizeof (int));
1283 reg_n_sets = (short *) oballoc (max_regno * sizeof (short));
1284 bzero ((char *) reg_n_sets, max_regno * sizeof (short));
1286 reg_n_deaths = (short *) oballoc (max_regno * sizeof (short));
1287 bzero ((char *) reg_n_deaths, max_regno * sizeof (short));
1289 reg_changes_size = (char *) oballoc (max_regno * sizeof (char));
1290 bzero (reg_changes_size, max_regno * sizeof (char));;
1292 reg_live_length = (int *) oballoc (max_regno * sizeof (int));
1293 bzero ((char *) reg_live_length, max_regno * sizeof (int));
1295 reg_n_calls_crossed = (int *) oballoc (max_regno * sizeof (int));
1296 bzero ((char *) reg_n_calls_crossed, max_regno * sizeof (int));
1298 reg_basic_block = (int *) oballoc (max_regno * sizeof (int));
1299 for (i = 0; i < max_regno; i++)
1300 reg_basic_block[i] = REG_BLOCK_UNKNOWN;
1302 basic_block_live_at_start
1303 = (regset *) oballoc (n_basic_blocks * sizeof (regset));
1304 tem = (regset) oballoc (n_basic_blocks * regset_bytes);
1305 bzero ((char *) tem, n_basic_blocks * regset_bytes);
1306 init_regset_vector (basic_block_live_at_start, tem,
1307 n_basic_blocks, regset_bytes);
1309 regs_live_at_setjmp = (regset) oballoc (regset_bytes);
1310 bzero ((char *) regs_live_at_setjmp, regset_bytes);
1313 /* Make each element of VECTOR point at a regset,
1314 taking the space for all those regsets from SPACE.
1315 SPACE is of type regset, but it is really as long as NELTS regsets.
1316 BYTES_PER_ELT is the number of bytes in one regset. */
1318 static void
1319 init_regset_vector (vector, space, nelts, bytes_per_elt)
1320 regset *vector;
1321 regset space;
1322 int nelts;
1323 int bytes_per_elt;
1325 register int i;
1326 register regset p = space;
1328 for (i = 0; i < nelts; i++)
1330 vector[i] = p;
1331 p += bytes_per_elt / sizeof (*p);
1335 /* Compute the registers live at the beginning of a basic block
1336 from those live at the end.
1338 When called, OLD contains those live at the end.
1339 On return, it contains those live at the beginning.
1340 FIRST and LAST are the first and last insns of the basic block.
1342 FINAL is nonzero if we are doing the final pass which is not
1343 for computing the life info (since that has already been done)
1344 but for acting on it. On this pass, we delete dead stores,
1345 set up the logical links and dead-variables lists of instructions,
1346 and merge instructions for autoincrement and autodecrement addresses.
1348 SIGNIFICANT is nonzero only the first time for each basic block.
1349 If it is nonzero, it points to a regset in which we store
1350 a 1 for each register that is set within the block.
1352 BNUM is the number of the basic block. */
1354 static void
1355 propagate_block (old, first, last, final, significant, bnum)
1356 register regset old;
1357 rtx first;
1358 rtx last;
1359 int final;
1360 regset significant;
1361 int bnum;
1363 register rtx insn;
1364 rtx prev;
1365 regset live;
1366 regset dead;
1368 /* The following variables are used only if FINAL is nonzero. */
1369 /* This vector gets one element for each reg that has been live
1370 at any point in the basic block that has been scanned so far.
1371 SOMETIMES_MAX says how many elements are in use so far.
1372 In each element, OFFSET is the byte-number within a regset
1373 for the register described by the element, and BIT is a mask
1374 for that register's bit within the byte. */
1375 register struct sometimes { short offset; short bit; } *regs_sometimes_live;
1376 int sometimes_max = 0;
1377 /* This regset has 1 for each reg that we have seen live so far.
1378 It and REGS_SOMETIMES_LIVE are updated together. */
1379 regset maxlive;
1381 /* The loop depth may change in the middle of a basic block. Since we
1382 scan from end to beginning, we start with the depth at the end of the
1383 current basic block, and adjust as we pass ends and starts of loops. */
1384 loop_depth = basic_block_loop_depth[bnum];
1386 dead = (regset) alloca (regset_bytes);
1387 live = (regset) alloca (regset_bytes);
1389 cc0_live = 0;
1390 last_mem_set = 0;
1392 /* Include any notes at the end of the block in the scan.
1393 This is in case the block ends with a call to setjmp. */
1395 while (NEXT_INSN (last) != 0 && GET_CODE (NEXT_INSN (last)) == NOTE)
1397 /* Look for loop boundaries, we are going forward here. */
1398 last = NEXT_INSN (last);
1399 if (NOTE_LINE_NUMBER (last) == NOTE_INSN_LOOP_BEG)
1400 loop_depth++;
1401 else if (NOTE_LINE_NUMBER (last) == NOTE_INSN_LOOP_END)
1402 loop_depth--;
1405 if (final)
1407 register int i, offset;
1408 REGSET_ELT_TYPE bit;
1410 num_scratch = 0;
1411 maxlive = (regset) alloca (regset_bytes);
1412 bcopy ((char *) old, (char *) maxlive, regset_bytes);
1413 regs_sometimes_live
1414 = (struct sometimes *) alloca (max_regno * sizeof (struct sometimes));
1416 /* Process the regs live at the end of the block.
1417 Enter them in MAXLIVE and REGS_SOMETIMES_LIVE.
1418 Also mark them as not local to any one basic block. */
1420 for (offset = 0, i = 0; offset < regset_size; offset++)
1421 for (bit = 1; bit; bit <<= 1, i++)
1423 if (i == max_regno)
1424 break;
1425 if (old[offset] & bit)
1427 reg_basic_block[i] = REG_BLOCK_GLOBAL;
1428 regs_sometimes_live[sometimes_max].offset = offset;
1429 regs_sometimes_live[sometimes_max].bit = i % REGSET_ELT_BITS;
1430 sometimes_max++;
1435 /* Scan the block an insn at a time from end to beginning. */
1437 for (insn = last; ; insn = prev)
1439 prev = PREV_INSN (insn);
1441 if (GET_CODE (insn) == NOTE)
1443 /* Look for loop boundaries, remembering that we are going
1444 backwards. */
1445 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
1446 loop_depth++;
1447 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1448 loop_depth--;
1450 /* If we have LOOP_DEPTH == 0, there has been a bookkeeping error.
1451 Abort now rather than setting register status incorrectly. */
1452 if (loop_depth == 0)
1453 abort ();
1455 /* If this is a call to `setjmp' et al,
1456 warn if any non-volatile datum is live. */
1458 if (final && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
1460 int i;
1461 for (i = 0; i < regset_size; i++)
1462 regs_live_at_setjmp[i] |= old[i];
1466 /* Update the life-status of regs for this insn.
1467 First DEAD gets which regs are set in this insn
1468 then LIVE gets which regs are used in this insn.
1469 Then the regs live before the insn
1470 are those live after, with DEAD regs turned off,
1471 and then LIVE regs turned on. */
1473 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1475 register int i;
1476 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1477 int insn_is_dead
1478 = (insn_dead_p (PATTERN (insn), old, 0)
1479 /* Don't delete something that refers to volatile storage! */
1480 && ! INSN_VOLATILE (insn));
1481 int libcall_is_dead
1482 = (insn_is_dead && note != 0
1483 && libcall_dead_p (PATTERN (insn), old, note, insn));
1485 /* If an instruction consists of just dead store(s) on final pass,
1486 "delete" it by turning it into a NOTE of type NOTE_INSN_DELETED.
1487 We could really delete it with delete_insn, but that
1488 can cause trouble for first or last insn in a basic block. */
1489 if (final && insn_is_dead)
1491 PUT_CODE (insn, NOTE);
1492 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1493 NOTE_SOURCE_FILE (insn) = 0;
1495 /* CC0 is now known to be dead. Either this insn used it,
1496 in which case it doesn't anymore, or clobbered it,
1497 so the next insn can't use it. */
1498 cc0_live = 0;
1500 /* If this insn is copying the return value from a library call,
1501 delete the entire library call. */
1502 if (libcall_is_dead)
1504 rtx first = XEXP (note, 0);
1505 rtx p = insn;
1506 while (INSN_DELETED_P (first))
1507 first = NEXT_INSN (first);
1508 while (p != first)
1510 p = PREV_INSN (p);
1511 PUT_CODE (p, NOTE);
1512 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
1513 NOTE_SOURCE_FILE (p) = 0;
1516 goto flushed;
1519 for (i = 0; i < regset_size; i++)
1521 dead[i] = 0; /* Faster than bzero here */
1522 live[i] = 0; /* since regset_size is usually small */
1525 /* See if this is an increment or decrement that can be
1526 merged into a following memory address. */
1527 #ifdef AUTO_INC_DEC
1529 register rtx x = PATTERN (insn);
1530 /* Does this instruction increment or decrement a register? */
1531 if (final && GET_CODE (x) == SET
1532 && GET_CODE (SET_DEST (x)) == REG
1533 && (GET_CODE (SET_SRC (x)) == PLUS
1534 || GET_CODE (SET_SRC (x)) == MINUS)
1535 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1536 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1537 /* Ok, look for a following memory ref we can combine with.
1538 If one is found, change the memory ref to a PRE_INC
1539 or PRE_DEC, cancel this insn, and return 1.
1540 Return 0 if nothing has been done. */
1541 && try_pre_increment_1 (insn))
1542 goto flushed;
1544 #endif /* AUTO_INC_DEC */
1546 /* If this is not the final pass, and this insn is copying the
1547 value of a library call and it's dead, don't scan the
1548 insns that perform the library call, so that the call's
1549 arguments are not marked live. */
1550 if (libcall_is_dead)
1552 /* Mark the dest reg as `significant'. */
1553 mark_set_regs (old, dead, PATTERN (insn), NULL_RTX, significant);
1555 insn = XEXP (note, 0);
1556 prev = PREV_INSN (insn);
1558 else if (GET_CODE (PATTERN (insn)) == SET
1559 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1560 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1561 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1562 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1563 /* We have an insn to pop a constant amount off the stack.
1564 (Such insns use PLUS regardless of the direction of the stack,
1565 and any insn to adjust the stack by a constant is always a pop.)
1566 These insns, if not dead stores, have no effect on life. */
1568 else
1570 /* LIVE gets the regs used in INSN;
1571 DEAD gets those set by it. Dead insns don't make anything
1572 live. */
1574 mark_set_regs (old, dead, PATTERN (insn),
1575 final ? insn : NULL_RTX, significant);
1577 /* If an insn doesn't use CC0, it becomes dead since we
1578 assume that every insn clobbers it. So show it dead here;
1579 mark_used_regs will set it live if it is referenced. */
1580 cc0_live = 0;
1582 if (! insn_is_dead)
1583 mark_used_regs (old, live, PATTERN (insn), final, insn);
1585 /* Sometimes we may have inserted something before INSN (such as
1586 a move) when we make an auto-inc. So ensure we will scan
1587 those insns. */
1588 #ifdef AUTO_INC_DEC
1589 prev = PREV_INSN (insn);
1590 #endif
1592 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1594 register int i;
1596 rtx note;
1598 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1599 note;
1600 note = XEXP (note, 1))
1601 if (GET_CODE (XEXP (note, 0)) == USE)
1602 mark_used_regs (old, live, SET_DEST (XEXP (note, 0)),
1603 final, insn);
1605 /* Each call clobbers all call-clobbered regs that are not
1606 global. Note that the function-value reg is a
1607 call-clobbered reg, and mark_set_regs has already had
1608 a chance to handle it. */
1610 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1611 if (call_used_regs[i] && ! global_regs[i])
1612 dead[i / REGSET_ELT_BITS]
1613 |= ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS));
1615 /* The stack ptr is used (honorarily) by a CALL insn. */
1616 live[STACK_POINTER_REGNUM / REGSET_ELT_BITS]
1617 |= ((REGSET_ELT_TYPE) 1
1618 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS));
1620 /* Calls may also reference any of the global registers,
1621 so they are made live. */
1622 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1623 if (global_regs[i])
1624 mark_used_regs (old, live,
1625 gen_rtx (REG, reg_raw_mode[i], i),
1626 final, insn);
1628 /* Calls also clobber memory. */
1629 last_mem_set = 0;
1632 /* Update OLD for the registers used or set. */
1633 for (i = 0; i < regset_size; i++)
1635 old[i] &= ~dead[i];
1636 old[i] |= live[i];
1639 if (GET_CODE (insn) == CALL_INSN && final)
1641 /* Any regs live at the time of a call instruction
1642 must not go in a register clobbered by calls.
1643 Find all regs now live and record this for them. */
1645 register struct sometimes *p = regs_sometimes_live;
1647 for (i = 0; i < sometimes_max; i++, p++)
1648 if (old[p->offset] & ((REGSET_ELT_TYPE) 1 << p->bit))
1649 reg_n_calls_crossed[p->offset * REGSET_ELT_BITS + p->bit]+= 1;
1653 /* On final pass, add any additional sometimes-live regs
1654 into MAXLIVE and REGS_SOMETIMES_LIVE.
1655 Also update counts of how many insns each reg is live at. */
1657 if (final)
1659 for (i = 0; i < regset_size; i++)
1661 register REGSET_ELT_TYPE diff = live[i] & ~maxlive[i];
1663 if (diff)
1665 register int regno;
1666 maxlive[i] |= diff;
1667 for (regno = 0; diff && regno < REGSET_ELT_BITS; regno++)
1668 if (diff & ((REGSET_ELT_TYPE) 1 << regno))
1670 regs_sometimes_live[sometimes_max].offset = i;
1671 regs_sometimes_live[sometimes_max].bit = regno;
1672 diff &= ~ ((REGSET_ELT_TYPE) 1 << regno);
1673 sometimes_max++;
1679 register struct sometimes *p = regs_sometimes_live;
1680 for (i = 0; i < sometimes_max; i++, p++)
1682 if (old[p->offset] & ((REGSET_ELT_TYPE) 1 << p->bit))
1683 reg_live_length[p->offset * REGSET_ELT_BITS + p->bit]++;
1688 flushed: ;
1689 if (insn == first)
1690 break;
1693 if (num_scratch > max_scratch)
1694 max_scratch = num_scratch;
1697 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
1698 (SET expressions whose destinations are registers dead after the insn).
1699 NEEDED is the regset that says which regs are alive after the insn.
1701 Unless CALL_OK is non-zero, an insn is needed if it contains a CALL. */
1703 static int
1704 insn_dead_p (x, needed, call_ok)
1705 rtx x;
1706 regset needed;
1707 int call_ok;
1709 register RTX_CODE code = GET_CODE (x);
1710 /* If setting something that's a reg or part of one,
1711 see if that register's altered value will be live. */
1713 if (code == SET)
1715 register rtx r = SET_DEST (x);
1716 /* A SET that is a subroutine call cannot be dead. */
1717 if (! call_ok && GET_CODE (SET_SRC (x)) == CALL)
1718 return 0;
1720 #ifdef HAVE_cc0
1721 if (GET_CODE (r) == CC0)
1722 return ! cc0_live;
1723 #endif
1725 if (GET_CODE (r) == MEM && last_mem_set && ! MEM_VOLATILE_P (r)
1726 && rtx_equal_p (r, last_mem_set))
1727 return 1;
1729 while (GET_CODE (r) == SUBREG
1730 || GET_CODE (r) == STRICT_LOW_PART
1731 || GET_CODE (r) == ZERO_EXTRACT
1732 || GET_CODE (r) == SIGN_EXTRACT)
1733 r = SUBREG_REG (r);
1735 if (GET_CODE (r) == REG)
1737 register int regno = REGNO (r);
1738 register int offset = regno / REGSET_ELT_BITS;
1739 register REGSET_ELT_TYPE bit
1740 = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
1742 /* Don't delete insns to set global regs. */
1743 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1744 /* Make sure insns to set frame pointer aren't deleted. */
1745 || regno == FRAME_POINTER_REGNUM
1746 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1747 || regno == HARD_FRAME_POINTER_REGNUM
1748 #endif
1749 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1750 /* Make sure insns to set arg pointer are never deleted
1751 (if the arg pointer isn't fixed, there will be a USE for
1752 it, so we can treat it normally). */
1753 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
1754 #endif
1755 || (needed[offset] & bit) != 0)
1756 return 0;
1758 /* If this is a hard register, verify that subsequent words are
1759 not needed. */
1760 if (regno < FIRST_PSEUDO_REGISTER)
1762 int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
1764 while (--n > 0)
1765 if ((needed[(regno + n) / REGSET_ELT_BITS]
1766 & ((REGSET_ELT_TYPE) 1
1767 << ((regno + n) % REGSET_ELT_BITS))) != 0)
1768 return 0;
1771 return 1;
1774 /* If performing several activities,
1775 insn is dead if each activity is individually dead.
1776 Also, CLOBBERs and USEs can be ignored; a CLOBBER or USE
1777 that's inside a PARALLEL doesn't make the insn worth keeping. */
1778 else if (code == PARALLEL)
1780 register int i = XVECLEN (x, 0);
1781 for (i--; i >= 0; i--)
1783 rtx elt = XVECEXP (x, 0, i);
1784 if (!insn_dead_p (elt, needed, call_ok)
1785 && GET_CODE (elt) != CLOBBER
1786 && GET_CODE (elt) != USE)
1787 return 0;
1789 return 1;
1791 /* We do not check CLOBBER or USE here.
1792 An insn consisting of just a CLOBBER or just a USE
1793 should not be deleted. */
1794 return 0;
1797 /* If X is the pattern of the last insn in a libcall, and assuming X is dead,
1798 return 1 if the entire library call is dead.
1799 This is true if X copies a register (hard or pseudo)
1800 and if the hard return reg of the call insn is dead.
1801 (The caller should have tested the destination of X already for death.)
1803 If this insn doesn't just copy a register, then we don't
1804 have an ordinary libcall. In that case, cse could not have
1805 managed to substitute the source for the dest later on,
1806 so we can assume the libcall is dead.
1808 NEEDED is the bit vector of pseudoregs live before this insn.
1809 NOTE is the REG_RETVAL note of the insn. INSN is the insn itself. */
1811 static int
1812 libcall_dead_p (x, needed, note, insn)
1813 rtx x;
1814 regset needed;
1815 rtx note;
1816 rtx insn;
1818 register RTX_CODE code = GET_CODE (x);
1820 if (code == SET)
1822 register rtx r = SET_SRC (x);
1823 if (GET_CODE (r) == REG)
1825 rtx call = XEXP (note, 0);
1826 register int i;
1828 /* Find the call insn. */
1829 while (call != insn && GET_CODE (call) != CALL_INSN)
1830 call = NEXT_INSN (call);
1832 /* If there is none, do nothing special,
1833 since ordinary death handling can understand these insns. */
1834 if (call == insn)
1835 return 0;
1837 /* See if the hard reg holding the value is dead.
1838 If this is a PARALLEL, find the call within it. */
1839 call = PATTERN (call);
1840 if (GET_CODE (call) == PARALLEL)
1842 for (i = XVECLEN (call, 0) - 1; i >= 0; i--)
1843 if (GET_CODE (XVECEXP (call, 0, i)) == SET
1844 && GET_CODE (SET_SRC (XVECEXP (call, 0, i))) == CALL)
1845 break;
1847 /* This may be a library call that is returning a value
1848 via invisible pointer. Do nothing special, since
1849 ordinary death handling can understand these insns. */
1850 if (i < 0)
1851 return 0;
1853 call = XVECEXP (call, 0, i);
1856 return insn_dead_p (call, needed, 1);
1859 return 1;
1862 /* Return 1 if register REGNO was used before it was set.
1863 In other words, if it is live at function entry.
1864 Don't count global regster variables, though. */
1867 regno_uninitialized (regno)
1868 int regno;
1870 if (n_basic_blocks == 0
1871 || (regno < FIRST_PSEUDO_REGISTER && global_regs[regno]))
1872 return 0;
1874 return (basic_block_live_at_start[0][regno / REGSET_ELT_BITS]
1875 & ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS)));
1878 /* 1 if register REGNO was alive at a place where `setjmp' was called
1879 and was set more than once or is an argument.
1880 Such regs may be clobbered by `longjmp'. */
1883 regno_clobbered_at_setjmp (regno)
1884 int regno;
1886 if (n_basic_blocks == 0)
1887 return 0;
1889 return ((reg_n_sets[regno] > 1
1890 || (basic_block_live_at_start[0][regno / REGSET_ELT_BITS]
1891 & ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS))))
1892 && (regs_live_at_setjmp[regno / REGSET_ELT_BITS]
1893 & ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS))));
1896 /* Process the registers that are set within X.
1897 Their bits are set to 1 in the regset DEAD,
1898 because they are dead prior to this insn.
1900 If INSN is nonzero, it is the insn being processed
1901 and the fact that it is nonzero implies this is the FINAL pass
1902 in propagate_block. In this case, various info about register
1903 usage is stored, LOG_LINKS fields of insns are set up. */
1905 static void
1906 mark_set_regs (needed, dead, x, insn, significant)
1907 regset needed;
1908 regset dead;
1909 rtx x;
1910 rtx insn;
1911 regset significant;
1913 register RTX_CODE code = GET_CODE (x);
1915 if (code == SET || code == CLOBBER)
1916 mark_set_1 (needed, dead, x, insn, significant);
1917 else if (code == PARALLEL)
1919 register int i;
1920 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1922 code = GET_CODE (XVECEXP (x, 0, i));
1923 if (code == SET || code == CLOBBER)
1924 mark_set_1 (needed, dead, XVECEXP (x, 0, i), insn, significant);
1929 /* Process a single SET rtx, X. */
1931 static void
1932 mark_set_1 (needed, dead, x, insn, significant)
1933 regset needed;
1934 regset dead;
1935 rtx x;
1936 rtx insn;
1937 regset significant;
1939 register int regno;
1940 register rtx reg = SET_DEST (x);
1942 /* Modifying just one hardware register of a multi-reg value
1943 or just a byte field of a register
1944 does not mean the value from before this insn is now dead.
1945 But it does mean liveness of that register at the end of the block
1946 is significant.
1948 Within mark_set_1, however, we treat it as if the register is
1949 indeed modified. mark_used_regs will, however, also treat this
1950 register as being used. Thus, we treat these insns as setting a
1951 new value for the register as a function of its old value. This
1952 cases LOG_LINKS to be made appropriately and this will help combine. */
1954 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
1955 || GET_CODE (reg) == SIGN_EXTRACT
1956 || GET_CODE (reg) == STRICT_LOW_PART)
1957 reg = XEXP (reg, 0);
1959 /* If we are writing into memory or into a register mentioned in the
1960 address of the last thing stored into memory, show we don't know
1961 what the last store was. If we are writing memory, save the address
1962 unless it is volatile. */
1963 if (GET_CODE (reg) == MEM
1964 || (GET_CODE (reg) == REG
1965 && last_mem_set != 0 && reg_overlap_mentioned_p (reg, last_mem_set)))
1966 last_mem_set = 0;
1968 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
1969 /* There are no REG_INC notes for SP, so we can't assume we'll see
1970 everything that invalidates it. To be safe, don't eliminate any
1971 stores though SP; none of them should be redundant anyway. */
1972 && ! reg_mentioned_p (stack_pointer_rtx, reg))
1973 last_mem_set = reg;
1975 if (GET_CODE (reg) == REG
1976 && (regno = REGNO (reg), regno != FRAME_POINTER_REGNUM)
1977 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1978 && regno != HARD_FRAME_POINTER_REGNUM
1979 #endif
1980 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1981 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
1982 #endif
1983 && ! (regno < FIRST_PSEUDO_REGISTER && global_regs[regno]))
1984 /* && regno != STACK_POINTER_REGNUM) -- let's try without this. */
1986 register int offset = regno / REGSET_ELT_BITS;
1987 register REGSET_ELT_TYPE bit
1988 = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
1989 REGSET_ELT_TYPE all_needed = (needed[offset] & bit);
1990 REGSET_ELT_TYPE some_needed = (needed[offset] & bit);
1992 /* Mark it as a significant register for this basic block. */
1993 if (significant)
1994 significant[offset] |= bit;
1996 /* Mark it as as dead before this insn. */
1997 dead[offset] |= bit;
1999 /* A hard reg in a wide mode may really be multiple registers.
2000 If so, mark all of them just like the first. */
2001 if (regno < FIRST_PSEUDO_REGISTER)
2003 int n;
2005 /* Nothing below is needed for the stack pointer; get out asap.
2006 Eg, log links aren't needed, since combine won't use them. */
2007 if (regno == STACK_POINTER_REGNUM)
2008 return;
2010 n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
2011 while (--n > 0)
2013 if (significant)
2014 significant[(regno + n) / REGSET_ELT_BITS]
2015 |= (REGSET_ELT_TYPE) 1 << ((regno + n) % REGSET_ELT_BITS);
2016 dead[(regno + n) / REGSET_ELT_BITS]
2017 |= (REGSET_ELT_TYPE) 1 << ((regno + n) % REGSET_ELT_BITS);
2018 some_needed
2019 |= (needed[(regno + n) / REGSET_ELT_BITS]
2020 & (REGSET_ELT_TYPE) 1 << ((regno + n) % REGSET_ELT_BITS));
2021 all_needed
2022 &= (needed[(regno + n) / REGSET_ELT_BITS]
2023 & (REGSET_ELT_TYPE) 1 << ((regno + n) % REGSET_ELT_BITS));
2026 /* Additional data to record if this is the final pass. */
2027 if (insn)
2029 register rtx y = reg_next_use[regno];
2030 register int blocknum = BLOCK_NUM (insn);
2032 /* If this is a hard reg, record this function uses the reg. */
2034 if (regno < FIRST_PSEUDO_REGISTER)
2036 register int i;
2037 int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
2039 for (i = regno; i < endregno; i++)
2041 /* The next use is no longer "next", since a store
2042 intervenes. */
2043 reg_next_use[i] = 0;
2045 regs_ever_live[i] = 1;
2046 reg_n_sets[i]++;
2049 else
2051 /* The next use is no longer "next", since a store
2052 intervenes. */
2053 reg_next_use[regno] = 0;
2055 /* Keep track of which basic blocks each reg appears in. */
2057 if (reg_basic_block[regno] == REG_BLOCK_UNKNOWN)
2058 reg_basic_block[regno] = blocknum;
2059 else if (reg_basic_block[regno] != blocknum)
2060 reg_basic_block[regno] = REG_BLOCK_GLOBAL;
2062 /* Count (weighted) references, stores, etc. This counts a
2063 register twice if it is modified, but that is correct. */
2064 reg_n_sets[regno]++;
2066 reg_n_refs[regno] += loop_depth;
2068 /* The insns where a reg is live are normally counted
2069 elsewhere, but we want the count to include the insn
2070 where the reg is set, and the normal counting mechanism
2071 would not count it. */
2072 reg_live_length[regno]++;
2075 if (all_needed)
2077 /* Make a logical link from the next following insn
2078 that uses this register, back to this insn.
2079 The following insns have already been processed.
2081 We don't build a LOG_LINK for hard registers containing
2082 in ASM_OPERANDs. If these registers get replaced,
2083 we might wind up changing the semantics of the insn,
2084 even if reload can make what appear to be valid assignments
2085 later. */
2086 if (y && (BLOCK_NUM (y) == blocknum)
2087 && (regno >= FIRST_PSEUDO_REGISTER
2088 || asm_noperands (PATTERN (y)) < 0))
2089 LOG_LINKS (y)
2090 = gen_rtx (INSN_LIST, VOIDmode, insn, LOG_LINKS (y));
2092 else if (! some_needed)
2094 /* Note that dead stores have already been deleted when possible
2095 If we get here, we have found a dead store that cannot
2096 be eliminated (because the same insn does something useful).
2097 Indicate this by marking the reg being set as dying here. */
2098 REG_NOTES (insn)
2099 = gen_rtx (EXPR_LIST, REG_UNUSED, reg, REG_NOTES (insn));
2100 reg_n_deaths[REGNO (reg)]++;
2102 else
2104 /* This is a case where we have a multi-word hard register
2105 and some, but not all, of the words of the register are
2106 needed in subsequent insns. Write REG_UNUSED notes
2107 for those parts that were not needed. This case should
2108 be rare. */
2110 int i;
2112 for (i = HARD_REGNO_NREGS (regno, GET_MODE (reg)) - 1;
2113 i >= 0; i--)
2114 if ((needed[(regno + i) / REGSET_ELT_BITS]
2115 & ((REGSET_ELT_TYPE) 1
2116 << ((regno + i) % REGSET_ELT_BITS))) == 0)
2117 REG_NOTES (insn)
2118 = gen_rtx (EXPR_LIST, REG_UNUSED,
2119 gen_rtx (REG, reg_raw_mode[regno + i],
2120 regno + i),
2121 REG_NOTES (insn));
2125 else if (GET_CODE (reg) == REG)
2126 reg_next_use[regno] = 0;
2128 /* If this is the last pass and this is a SCRATCH, show it will be dying
2129 here and count it. */
2130 else if (GET_CODE (reg) == SCRATCH && insn != 0)
2132 REG_NOTES (insn)
2133 = gen_rtx (EXPR_LIST, REG_UNUSED, reg, REG_NOTES (insn));
2134 num_scratch++;
2138 #ifdef AUTO_INC_DEC
2140 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
2141 reference. */
2143 static void
2144 find_auto_inc (needed, x, insn)
2145 regset needed;
2146 rtx x;
2147 rtx insn;
2149 rtx addr = XEXP (x, 0);
2150 HOST_WIDE_INT offset = 0;
2151 rtx set;
2153 /* Here we detect use of an index register which might be good for
2154 postincrement, postdecrement, preincrement, or predecrement. */
2156 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
2157 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
2159 if (GET_CODE (addr) == REG)
2161 register rtx y;
2162 register int size = GET_MODE_SIZE (GET_MODE (x));
2163 rtx use;
2164 rtx incr;
2165 int regno = REGNO (addr);
2167 /* Is the next use an increment that might make auto-increment? */
2168 if ((incr = reg_next_use[regno]) != 0
2169 && (set = single_set (incr)) != 0
2170 && GET_CODE (set) == SET
2171 && BLOCK_NUM (incr) == BLOCK_NUM (insn)
2172 /* Can't add side effects to jumps; if reg is spilled and
2173 reloaded, there's no way to store back the altered value. */
2174 && GET_CODE (insn) != JUMP_INSN
2175 && (y = SET_SRC (set), GET_CODE (y) == PLUS)
2176 && XEXP (y, 0) == addr
2177 && GET_CODE (XEXP (y, 1)) == CONST_INT
2178 && (0
2179 #ifdef HAVE_POST_INCREMENT
2180 || (INTVAL (XEXP (y, 1)) == size && offset == 0)
2181 #endif
2182 #ifdef HAVE_POST_DECREMENT
2183 || (INTVAL (XEXP (y, 1)) == - size && offset == 0)
2184 #endif
2185 #ifdef HAVE_PRE_INCREMENT
2186 || (INTVAL (XEXP (y, 1)) == size && offset == size)
2187 #endif
2188 #ifdef HAVE_PRE_DECREMENT
2189 || (INTVAL (XEXP (y, 1)) == - size && offset == - size)
2190 #endif
2192 /* Make sure this reg appears only once in this insn. */
2193 && (use = find_use_as_address (PATTERN (insn), addr, offset),
2194 use != 0 && use != (rtx) 1))
2196 rtx q = SET_DEST (set);
2197 enum rtx_code inc_code = (INTVAL (XEXP (y, 1)) == size
2198 ? (offset ? PRE_INC : POST_INC)
2199 : (offset ? PRE_DEC : POST_DEC));
2201 if (dead_or_set_p (incr, addr))
2203 /* This is the simple case. Try to make the auto-inc. If
2204 we can't, we are done. Otherwise, we will do any
2205 needed updates below. */
2206 if (! validate_change (insn, &XEXP (x, 0),
2207 gen_rtx (inc_code, Pmode, addr),
2209 return;
2211 else if (GET_CODE (q) == REG
2212 /* PREV_INSN used here to check the semi-open interval
2213 [insn,incr). */
2214 && ! reg_used_between_p (q, PREV_INSN (insn), incr))
2216 /* We have *p followed sometime later by q = p+size.
2217 Both p and q must be live afterward,
2218 and q is not used between INSN and it's assignment.
2219 Change it to q = p, ...*q..., q = q+size.
2220 Then fall into the usual case. */
2221 rtx insns, temp;
2223 start_sequence ();
2224 emit_move_insn (q, addr);
2225 insns = get_insns ();
2226 end_sequence ();
2228 /* If anything in INSNS have UID's that don't fit within the
2229 extra space we allocate earlier, we can't make this auto-inc.
2230 This should never happen. */
2231 for (temp = insns; temp; temp = NEXT_INSN (temp))
2233 if (INSN_UID (temp) > max_uid_for_flow)
2234 return;
2235 BLOCK_NUM (temp) = BLOCK_NUM (insn);
2238 /* If we can't make the auto-inc, or can't make the
2239 replacement into Y, exit. There's no point in making
2240 the change below if we can't do the auto-inc and doing
2241 so is not correct in the pre-inc case. */
2243 validate_change (insn, &XEXP (x, 0),
2244 gen_rtx (inc_code, Pmode, q),
2246 validate_change (incr, &XEXP (y, 0), q, 1);
2247 if (! apply_change_group ())
2248 return;
2250 /* We now know we'll be doing this change, so emit the
2251 new insn(s) and do the updates. */
2252 emit_insns_before (insns, insn);
2254 if (basic_block_head[BLOCK_NUM (insn)] == insn)
2255 basic_block_head[BLOCK_NUM (insn)] = insns;
2257 /* INCR will become a NOTE and INSN won't contain a
2258 use of ADDR. If a use of ADDR was just placed in
2259 the insn before INSN, make that the next use.
2260 Otherwise, invalidate it. */
2261 if (GET_CODE (PREV_INSN (insn)) == INSN
2262 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
2263 && SET_SRC (PATTERN (PREV_INSN (insn))) == addr)
2264 reg_next_use[regno] = PREV_INSN (insn);
2265 else
2266 reg_next_use[regno] = 0;
2268 addr = q;
2269 regno = REGNO (q);
2271 /* REGNO is now used in INCR which is below INSN, but
2272 it previously wasn't live here. If we don't mark
2273 it as needed, we'll put a REG_DEAD note for it
2274 on this insn, which is incorrect. */
2275 needed[regno / REGSET_ELT_BITS]
2276 |= (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
2278 /* If there are any calls between INSN and INCR, show
2279 that REGNO now crosses them. */
2280 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
2281 if (GET_CODE (temp) == CALL_INSN)
2282 reg_n_calls_crossed[regno]++;
2284 else
2285 return;
2287 /* If we haven't returned, it means we were able to make the
2288 auto-inc, so update the status. First, record that this insn
2289 has an implicit side effect. */
2291 REG_NOTES (insn)
2292 = gen_rtx (EXPR_LIST, REG_INC, addr, REG_NOTES (insn));
2294 /* Modify the old increment-insn to simply copy
2295 the already-incremented value of our register. */
2296 if (! validate_change (incr, &SET_SRC (set), addr, 0))
2297 abort ();
2299 /* If that makes it a no-op (copying the register into itself) delete
2300 it so it won't appear to be a "use" and a "set" of this
2301 register. */
2302 if (SET_DEST (set) == addr)
2304 PUT_CODE (incr, NOTE);
2305 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
2306 NOTE_SOURCE_FILE (incr) = 0;
2309 if (regno >= FIRST_PSEUDO_REGISTER)
2311 /* Count an extra reference to the reg. When a reg is
2312 incremented, spilling it is worse, so we want to make
2313 that less likely. */
2314 reg_n_refs[regno] += loop_depth;
2316 /* Count the increment as a setting of the register,
2317 even though it isn't a SET in rtl. */
2318 reg_n_sets[regno]++;
2323 #endif /* AUTO_INC_DEC */
2325 /* Scan expression X and store a 1-bit in LIVE for each reg it uses.
2326 This is done assuming the registers needed from X
2327 are those that have 1-bits in NEEDED.
2329 On the final pass, FINAL is 1. This means try for autoincrement
2330 and count the uses and deaths of each pseudo-reg.
2332 INSN is the containing instruction. If INSN is dead, this function is not
2333 called. */
2335 static void
2336 mark_used_regs (needed, live, x, final, insn)
2337 regset needed;
2338 regset live;
2339 rtx x;
2340 int final;
2341 rtx insn;
2343 register RTX_CODE code;
2344 register int regno;
2345 int i;
2347 retry:
2348 code = GET_CODE (x);
2349 switch (code)
2351 case LABEL_REF:
2352 case SYMBOL_REF:
2353 case CONST_INT:
2354 case CONST:
2355 case CONST_DOUBLE:
2356 case PC:
2357 case ADDR_VEC:
2358 case ADDR_DIFF_VEC:
2359 case ASM_INPUT:
2360 return;
2362 #ifdef HAVE_cc0
2363 case CC0:
2364 cc0_live = 1;
2365 return;
2366 #endif
2368 case CLOBBER:
2369 /* If we are clobbering a MEM, mark any registers inside the address
2370 as being used. */
2371 if (GET_CODE (XEXP (x, 0)) == MEM)
2372 mark_used_regs (needed, live, XEXP (XEXP (x, 0), 0), final, insn);
2373 return;
2375 case MEM:
2376 /* Invalidate the data for the last MEM stored. We could do this only
2377 if the addresses conflict, but this doesn't seem worthwhile. */
2378 last_mem_set = 0;
2380 #ifdef AUTO_INC_DEC
2381 if (final)
2382 find_auto_inc (needed, x, insn);
2383 #endif
2384 break;
2386 case SUBREG:
2387 if (GET_CODE (SUBREG_REG (x)) == REG
2388 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
2389 && (GET_MODE_SIZE (GET_MODE (x))
2390 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
2391 reg_changes_size[REGNO (SUBREG_REG (x))] = 1;
2393 /* While we're here, optimize this case. */
2394 x = SUBREG_REG (x);
2396 /* In case the SUBREG is not of a register, don't optimize */
2397 if (GET_CODE (x) != REG)
2399 mark_used_regs (needed, live, x, final, insn);
2400 return;
2403 /* ... fall through ... */
2405 case REG:
2406 /* See a register other than being set
2407 => mark it as needed. */
2409 regno = REGNO (x);
2411 register int offset = regno / REGSET_ELT_BITS;
2412 register REGSET_ELT_TYPE bit
2413 = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
2414 REGSET_ELT_TYPE all_needed = needed[offset] & bit;
2415 REGSET_ELT_TYPE some_needed = needed[offset] & bit;
2417 live[offset] |= bit;
2418 /* A hard reg in a wide mode may really be multiple registers.
2419 If so, mark all of them just like the first. */
2420 if (regno < FIRST_PSEUDO_REGISTER)
2422 int n;
2424 /* For stack ptr or fixed arg pointer,
2425 nothing below can be necessary, so waste no more time. */
2426 if (regno == STACK_POINTER_REGNUM
2427 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2428 || regno == HARD_FRAME_POINTER_REGNUM
2429 #endif
2430 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2431 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2432 #endif
2433 || regno == FRAME_POINTER_REGNUM)
2435 /* If this is a register we are going to try to eliminate,
2436 don't mark it live here. If we are successful in
2437 eliminating it, it need not be live unless it is used for
2438 pseudos, in which case it will have been set live when
2439 it was allocated to the pseudos. If the register will not
2440 be eliminated, reload will set it live at that point. */
2442 if (! TEST_HARD_REG_BIT (elim_reg_set, regno))
2443 regs_ever_live[regno] = 1;
2444 return;
2446 /* No death notes for global register variables;
2447 their values are live after this function exits. */
2448 if (global_regs[regno])
2450 if (final)
2451 reg_next_use[regno] = insn;
2452 return;
2455 n = HARD_REGNO_NREGS (regno, GET_MODE (x));
2456 while (--n > 0)
2458 live[(regno + n) / REGSET_ELT_BITS]
2459 |= (REGSET_ELT_TYPE) 1 << ((regno + n) % REGSET_ELT_BITS);
2460 some_needed
2461 |= (needed[(regno + n) / REGSET_ELT_BITS]
2462 & (REGSET_ELT_TYPE) 1 << ((regno + n) % REGSET_ELT_BITS));
2463 all_needed
2464 &= (needed[(regno + n) / REGSET_ELT_BITS]
2465 & (REGSET_ELT_TYPE) 1 << ((regno + n) % REGSET_ELT_BITS));
2468 if (final)
2470 /* Record where each reg is used, so when the reg
2471 is set we know the next insn that uses it. */
2473 reg_next_use[regno] = insn;
2475 if (regno < FIRST_PSEUDO_REGISTER)
2477 /* If a hard reg is being used,
2478 record that this function does use it. */
2480 i = HARD_REGNO_NREGS (regno, GET_MODE (x));
2481 if (i == 0)
2482 i = 1;
2484 regs_ever_live[regno + --i] = 1;
2485 while (i > 0);
2487 else
2489 /* Keep track of which basic block each reg appears in. */
2491 register int blocknum = BLOCK_NUM (insn);
2493 if (reg_basic_block[regno] == REG_BLOCK_UNKNOWN)
2494 reg_basic_block[regno] = blocknum;
2495 else if (reg_basic_block[regno] != blocknum)
2496 reg_basic_block[regno] = REG_BLOCK_GLOBAL;
2498 /* Count (weighted) number of uses of each reg. */
2500 reg_n_refs[regno] += loop_depth;
2503 /* Record and count the insns in which a reg dies.
2504 If it is used in this insn and was dead below the insn
2505 then it dies in this insn. If it was set in this insn,
2506 we do not make a REG_DEAD note; likewise if we already
2507 made such a note. */
2509 if (! all_needed
2510 && ! dead_or_set_p (insn, x)
2511 #if 0
2512 && (regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
2513 #endif
2516 /* Check for the case where the register dying partially
2517 overlaps the register set by this insn. */
2518 if (regno < FIRST_PSEUDO_REGISTER
2519 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
2521 int n = HARD_REGNO_NREGS (regno, GET_MODE (x));
2522 while (--n >= 0)
2523 some_needed |= dead_or_set_regno_p (insn, regno + n);
2526 /* If none of the words in X is needed, make a REG_DEAD
2527 note. Otherwise, we must make partial REG_DEAD notes. */
2528 if (! some_needed)
2530 REG_NOTES (insn)
2531 = gen_rtx (EXPR_LIST, REG_DEAD, x, REG_NOTES (insn));
2532 reg_n_deaths[regno]++;
2534 else
2536 int i;
2538 /* Don't make a REG_DEAD note for a part of a register
2539 that is set in the insn. */
2541 for (i = HARD_REGNO_NREGS (regno, GET_MODE (x)) - 1;
2542 i >= 0; i--)
2543 if ((needed[(regno + i) / REGSET_ELT_BITS]
2544 & ((REGSET_ELT_TYPE) 1
2545 << ((regno + i) % REGSET_ELT_BITS))) == 0
2546 && ! dead_or_set_regno_p (insn, regno + i))
2547 REG_NOTES (insn)
2548 = gen_rtx (EXPR_LIST, REG_DEAD,
2549 gen_rtx (REG, reg_raw_mode[regno + i],
2550 regno + i),
2551 REG_NOTES (insn));
2556 return;
2558 case SET:
2560 register rtx testreg = SET_DEST (x);
2561 int mark_dest = 0;
2563 /* If storing into MEM, don't show it as being used. But do
2564 show the address as being used. */
2565 if (GET_CODE (testreg) == MEM)
2567 #ifdef AUTO_INC_DEC
2568 if (final)
2569 find_auto_inc (needed, testreg, insn);
2570 #endif
2571 mark_used_regs (needed, live, XEXP (testreg, 0), final, insn);
2572 mark_used_regs (needed, live, SET_SRC (x), final, insn);
2573 return;
2576 /* Storing in STRICT_LOW_PART is like storing in a reg
2577 in that this SET might be dead, so ignore it in TESTREG.
2578 but in some other ways it is like using the reg.
2580 Storing in a SUBREG or a bit field is like storing the entire
2581 register in that if the register's value is not used
2582 then this SET is not needed. */
2583 while (GET_CODE (testreg) == STRICT_LOW_PART
2584 || GET_CODE (testreg) == ZERO_EXTRACT
2585 || GET_CODE (testreg) == SIGN_EXTRACT
2586 || GET_CODE (testreg) == SUBREG)
2588 if (GET_CODE (testreg) == SUBREG
2589 && GET_CODE (SUBREG_REG (testreg)) == REG
2590 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER
2591 && (GET_MODE_SIZE (GET_MODE (testreg))
2592 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (testreg)))))
2593 reg_changes_size[REGNO (SUBREG_REG (testreg))] = 1;
2595 /* Modifying a single register in an alternate mode
2596 does not use any of the old value. But these other
2597 ways of storing in a register do use the old value. */
2598 if (GET_CODE (testreg) == SUBREG
2599 && !(REG_SIZE (SUBREG_REG (testreg)) > REG_SIZE (testreg)))
2601 else
2602 mark_dest = 1;
2604 testreg = XEXP (testreg, 0);
2607 /* If this is a store into a register,
2608 recursively scan the value being stored. */
2610 if (GET_CODE (testreg) == REG
2611 && (regno = REGNO (testreg), regno != FRAME_POINTER_REGNUM)
2612 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2613 && regno != HARD_FRAME_POINTER_REGNUM
2614 #endif
2615 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2616 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2617 #endif
2619 /* We used to exclude global_regs here, but that seems wrong.
2620 Storing in them is like storing in mem. */
2622 mark_used_regs (needed, live, SET_SRC (x), final, insn);
2623 if (mark_dest)
2624 mark_used_regs (needed, live, SET_DEST (x), final, insn);
2625 return;
2628 break;
2630 case RETURN:
2631 /* If exiting needs the right stack value, consider this insn as
2632 using the stack pointer. In any event, consider it as using
2633 all global registers. */
2635 #ifdef EXIT_IGNORE_STACK
2636 if (! EXIT_IGNORE_STACK
2637 || (! FRAME_POINTER_REQUIRED && flag_omit_frame_pointer))
2638 #endif
2639 live[STACK_POINTER_REGNUM / REGSET_ELT_BITS]
2640 |= (REGSET_ELT_TYPE) 1 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS);
2642 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2643 if (global_regs[i])
2644 live[i / REGSET_ELT_BITS]
2645 |= (REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS);
2646 break;
2649 /* Recursively scan the operands of this expression. */
2652 register char *fmt = GET_RTX_FORMAT (code);
2653 register int i;
2655 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2657 if (fmt[i] == 'e')
2659 /* Tail recursive case: save a function call level. */
2660 if (i == 0)
2662 x = XEXP (x, 0);
2663 goto retry;
2665 mark_used_regs (needed, live, XEXP (x, i), final, insn);
2667 else if (fmt[i] == 'E')
2669 register int j;
2670 for (j = 0; j < XVECLEN (x, i); j++)
2671 mark_used_regs (needed, live, XVECEXP (x, i, j), final, insn);
2677 #ifdef AUTO_INC_DEC
2679 static int
2680 try_pre_increment_1 (insn)
2681 rtx insn;
2683 /* Find the next use of this reg. If in same basic block,
2684 make it do pre-increment or pre-decrement if appropriate. */
2685 rtx x = PATTERN (insn);
2686 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
2687 * INTVAL (XEXP (SET_SRC (x), 1)));
2688 int regno = REGNO (SET_DEST (x));
2689 rtx y = reg_next_use[regno];
2690 if (y != 0
2691 && BLOCK_NUM (y) == BLOCK_NUM (insn)
2692 /* Don't do this if the reg dies, or gets set in y; a standard addressing
2693 mode would be better. */
2694 && ! dead_or_set_p (y, SET_DEST (x))
2695 && try_pre_increment (y, SET_DEST (PATTERN (insn)),
2696 amount))
2698 /* We have found a suitable auto-increment
2699 and already changed insn Y to do it.
2700 So flush this increment-instruction. */
2701 PUT_CODE (insn, NOTE);
2702 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2703 NOTE_SOURCE_FILE (insn) = 0;
2704 /* Count a reference to this reg for the increment
2705 insn we are deleting. When a reg is incremented.
2706 spilling it is worse, so we want to make that
2707 less likely. */
2708 if (regno >= FIRST_PSEUDO_REGISTER)
2710 reg_n_refs[regno] += loop_depth;
2711 reg_n_sets[regno]++;
2713 return 1;
2715 return 0;
2718 /* Try to change INSN so that it does pre-increment or pre-decrement
2719 addressing on register REG in order to add AMOUNT to REG.
2720 AMOUNT is negative for pre-decrement.
2721 Returns 1 if the change could be made.
2722 This checks all about the validity of the result of modifying INSN. */
2724 static int
2725 try_pre_increment (insn, reg, amount)
2726 rtx insn, reg;
2727 HOST_WIDE_INT amount;
2729 register rtx use;
2731 /* Nonzero if we can try to make a pre-increment or pre-decrement.
2732 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
2733 int pre_ok = 0;
2734 /* Nonzero if we can try to make a post-increment or post-decrement.
2735 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
2736 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
2737 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
2738 int post_ok = 0;
2740 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
2741 int do_post = 0;
2743 /* From the sign of increment, see which possibilities are conceivable
2744 on this target machine. */
2745 #ifdef HAVE_PRE_INCREMENT
2746 if (amount > 0)
2747 pre_ok = 1;
2748 #endif
2749 #ifdef HAVE_POST_INCREMENT
2750 if (amount > 0)
2751 post_ok = 1;
2752 #endif
2754 #ifdef HAVE_PRE_DECREMENT
2755 if (amount < 0)
2756 pre_ok = 1;
2757 #endif
2758 #ifdef HAVE_POST_DECREMENT
2759 if (amount < 0)
2760 post_ok = 1;
2761 #endif
2763 if (! (pre_ok || post_ok))
2764 return 0;
2766 /* It is not safe to add a side effect to a jump insn
2767 because if the incremented register is spilled and must be reloaded
2768 there would be no way to store the incremented value back in memory. */
2770 if (GET_CODE (insn) == JUMP_INSN)
2771 return 0;
2773 use = 0;
2774 if (pre_ok)
2775 use = find_use_as_address (PATTERN (insn), reg, 0);
2776 if (post_ok && (use == 0 || use == (rtx) 1))
2778 use = find_use_as_address (PATTERN (insn), reg, -amount);
2779 do_post = 1;
2782 if (use == 0 || use == (rtx) 1)
2783 return 0;
2785 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
2786 return 0;
2788 /* See if this combination of instruction and addressing mode exists. */
2789 if (! validate_change (insn, &XEXP (use, 0),
2790 gen_rtx (amount > 0
2791 ? (do_post ? POST_INC : PRE_INC)
2792 : (do_post ? POST_DEC : PRE_DEC),
2793 Pmode, reg), 0))
2794 return 0;
2796 /* Record that this insn now has an implicit side effect on X. */
2797 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_INC, reg, REG_NOTES (insn));
2798 return 1;
2801 #endif /* AUTO_INC_DEC */
2803 /* Find the place in the rtx X where REG is used as a memory address.
2804 Return the MEM rtx that so uses it.
2805 If PLUSCONST is nonzero, search instead for a memory address equivalent to
2806 (plus REG (const_int PLUSCONST)).
2808 If such an address does not appear, return 0.
2809 If REG appears more than once, or is used other than in such an address,
2810 return (rtx)1. */
2812 static rtx
2813 find_use_as_address (x, reg, plusconst)
2814 register rtx x;
2815 rtx reg;
2816 HOST_WIDE_INT plusconst;
2818 enum rtx_code code = GET_CODE (x);
2819 char *fmt = GET_RTX_FORMAT (code);
2820 register int i;
2821 register rtx value = 0;
2822 register rtx tem;
2824 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
2825 return x;
2827 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
2828 && XEXP (XEXP (x, 0), 0) == reg
2829 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2830 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
2831 return x;
2833 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
2835 /* If REG occurs inside a MEM used in a bit-field reference,
2836 that is unacceptable. */
2837 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
2838 return (rtx) (HOST_WIDE_INT) 1;
2841 if (x == reg)
2842 return (rtx) (HOST_WIDE_INT) 1;
2844 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2846 if (fmt[i] == 'e')
2848 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
2849 if (value == 0)
2850 value = tem;
2851 else if (tem != 0)
2852 return (rtx) (HOST_WIDE_INT) 1;
2854 if (fmt[i] == 'E')
2856 register int j;
2857 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2859 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
2860 if (value == 0)
2861 value = tem;
2862 else if (tem != 0)
2863 return (rtx) (HOST_WIDE_INT) 1;
2868 return value;
2871 /* Write information about registers and basic blocks into FILE.
2872 This is part of making a debugging dump. */
2874 void
2875 dump_flow_info (file)
2876 FILE *file;
2878 register int i;
2879 static char *reg_class_names[] = REG_CLASS_NAMES;
2881 fprintf (file, "%d registers.\n", max_regno);
2883 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2884 if (reg_n_refs[i])
2886 enum reg_class class, altclass;
2887 fprintf (file, "\nRegister %d used %d times across %d insns",
2888 i, reg_n_refs[i], reg_live_length[i]);
2889 if (reg_basic_block[i] >= 0)
2890 fprintf (file, " in block %d", reg_basic_block[i]);
2891 if (reg_n_deaths[i] != 1)
2892 fprintf (file, "; dies in %d places", reg_n_deaths[i]);
2893 if (reg_n_calls_crossed[i] == 1)
2894 fprintf (file, "; crosses 1 call");
2895 else if (reg_n_calls_crossed[i])
2896 fprintf (file, "; crosses %d calls", reg_n_calls_crossed[i]);
2897 if (PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
2898 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
2899 class = reg_preferred_class (i);
2900 altclass = reg_alternate_class (i);
2901 if (class != GENERAL_REGS || altclass != ALL_REGS)
2903 if (altclass == ALL_REGS || class == ALL_REGS)
2904 fprintf (file, "; pref %s", reg_class_names[(int) class]);
2905 else if (altclass == NO_REGS)
2906 fprintf (file, "; %s or none", reg_class_names[(int) class]);
2907 else
2908 fprintf (file, "; pref %s, else %s",
2909 reg_class_names[(int) class],
2910 reg_class_names[(int) altclass]);
2912 if (REGNO_POINTER_FLAG (i))
2913 fprintf (file, "; pointer");
2914 fprintf (file, ".\n");
2916 fprintf (file, "\n%d basic blocks.\n", n_basic_blocks);
2917 for (i = 0; i < n_basic_blocks; i++)
2919 register rtx head, jump;
2920 register int regno;
2921 fprintf (file, "\nBasic block %d: first insn %d, last %d.\n",
2923 INSN_UID (basic_block_head[i]),
2924 INSN_UID (basic_block_end[i]));
2925 /* The control flow graph's storage is freed
2926 now when flow_analysis returns.
2927 Don't try to print it if it is gone. */
2928 if (basic_block_drops_in)
2930 fprintf (file, "Reached from blocks: ");
2931 head = basic_block_head[i];
2932 if (GET_CODE (head) == CODE_LABEL)
2933 for (jump = LABEL_REFS (head);
2934 jump != head;
2935 jump = LABEL_NEXTREF (jump))
2937 register int from_block = BLOCK_NUM (CONTAINING_INSN (jump));
2938 fprintf (file, " %d", from_block);
2940 if (basic_block_drops_in[i])
2941 fprintf (file, " previous");
2943 fprintf (file, "\nRegisters live at start:");
2944 for (regno = 0; regno < max_regno; regno++)
2946 register int offset = regno / REGSET_ELT_BITS;
2947 register REGSET_ELT_TYPE bit
2948 = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
2949 if (basic_block_live_at_start[i][offset] & bit)
2950 fprintf (file, " %d", regno);
2952 fprintf (file, "\n");
2954 fprintf (file, "\n");