016-08-04 Bernd Edlinger <bernd.edlinger@hotmail.de>
[official-gcc.git] / gcc / tree-vect-loop-manip.c
blobec863b4af1ffbacf98c99158fd2c0901e42bcb0d
1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003-2016 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "fold-const.h"
32 #include "cfganal.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "gimplify-me.h"
36 #include "tree-cfg.h"
37 #include "tree-ssa-loop-manip.h"
38 #include "tree-into-ssa.h"
39 #include "tree-ssa.h"
40 #include "cfgloop.h"
41 #include "tree-scalar-evolution.h"
42 #include "tree-vectorizer.h"
43 #include "tree-ssa-loop-ivopts.h"
45 /*************************************************************************
46 Simple Loop Peeling Utilities
48 Utilities to support loop peeling for vectorization purposes.
49 *************************************************************************/
52 /* Renames the use *OP_P. */
54 static void
55 rename_use_op (use_operand_p op_p)
57 tree new_name;
59 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
60 return;
62 new_name = get_current_def (USE_FROM_PTR (op_p));
64 /* Something defined outside of the loop. */
65 if (!new_name)
66 return;
68 /* An ordinary ssa name defined in the loop. */
70 SET_USE (op_p, new_name);
74 /* Renames the variables in basic block BB. Allow renaming of PHI argumnets
75 on edges incoming from outer-block header if RENAME_FROM_OUTER_LOOP is
76 true. */
78 static void
79 rename_variables_in_bb (basic_block bb, bool rename_from_outer_loop)
81 gimple *stmt;
82 use_operand_p use_p;
83 ssa_op_iter iter;
84 edge e;
85 edge_iterator ei;
86 struct loop *loop = bb->loop_father;
87 struct loop *outer_loop = NULL;
89 if (rename_from_outer_loop)
91 gcc_assert (loop);
92 outer_loop = loop_outer (loop);
95 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
96 gsi_next (&gsi))
98 stmt = gsi_stmt (gsi);
99 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
100 rename_use_op (use_p);
103 FOR_EACH_EDGE (e, ei, bb->preds)
105 if (!flow_bb_inside_loop_p (loop, e->src)
106 && (!rename_from_outer_loop || e->src != outer_loop->header))
107 continue;
108 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
109 gsi_next (&gsi))
110 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
115 struct adjust_info
117 tree from, to;
118 basic_block bb;
121 /* A stack of values to be adjusted in debug stmts. We have to
122 process them LIFO, so that the closest substitution applies. If we
123 processed them FIFO, without the stack, we might substitute uses
124 with a PHI DEF that would soon become non-dominant, and when we got
125 to the suitable one, it wouldn't have anything to substitute any
126 more. */
127 static vec<adjust_info, va_heap> adjust_vec;
129 /* Adjust any debug stmts that referenced AI->from values to use the
130 loop-closed AI->to, if the references are dominated by AI->bb and
131 not by the definition of AI->from. */
133 static void
134 adjust_debug_stmts_now (adjust_info *ai)
136 basic_block bbphi = ai->bb;
137 tree orig_def = ai->from;
138 tree new_def = ai->to;
139 imm_use_iterator imm_iter;
140 gimple *stmt;
141 basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
143 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
145 /* Adjust any debug stmts that held onto non-loop-closed
146 references. */
147 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
149 use_operand_p use_p;
150 basic_block bbuse;
152 if (!is_gimple_debug (stmt))
153 continue;
155 gcc_assert (gimple_debug_bind_p (stmt));
157 bbuse = gimple_bb (stmt);
159 if ((bbuse == bbphi
160 || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
161 && !(bbuse == bbdef
162 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
164 if (new_def)
165 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
166 SET_USE (use_p, new_def);
167 else
169 gimple_debug_bind_reset_value (stmt);
170 update_stmt (stmt);
176 /* Adjust debug stmts as scheduled before. */
178 static void
179 adjust_vec_debug_stmts (void)
181 if (!MAY_HAVE_DEBUG_STMTS)
182 return;
184 gcc_assert (adjust_vec.exists ());
186 while (!adjust_vec.is_empty ())
188 adjust_debug_stmts_now (&adjust_vec.last ());
189 adjust_vec.pop ();
192 adjust_vec.release ();
195 /* Adjust any debug stmts that referenced FROM values to use the
196 loop-closed TO, if the references are dominated by BB and not by
197 the definition of FROM. If adjust_vec is non-NULL, adjustments
198 will be postponed until adjust_vec_debug_stmts is called. */
200 static void
201 adjust_debug_stmts (tree from, tree to, basic_block bb)
203 adjust_info ai;
205 if (MAY_HAVE_DEBUG_STMTS
206 && TREE_CODE (from) == SSA_NAME
207 && ! SSA_NAME_IS_DEFAULT_DEF (from)
208 && ! virtual_operand_p (from))
210 ai.from = from;
211 ai.to = to;
212 ai.bb = bb;
214 if (adjust_vec.exists ())
215 adjust_vec.safe_push (ai);
216 else
217 adjust_debug_stmts_now (&ai);
221 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
222 to adjust any debug stmts that referenced the old phi arg,
223 presumably non-loop-closed references left over from other
224 transformations. */
226 static void
227 adjust_phi_and_debug_stmts (gimple *update_phi, edge e, tree new_def)
229 tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
231 SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
233 if (MAY_HAVE_DEBUG_STMTS)
234 adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
235 gimple_bb (update_phi));
239 /* Update PHI nodes for a guard of the LOOP.
241 Input:
242 - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
243 controls whether LOOP is to be executed. GUARD_EDGE is the edge that
244 originates from the guard-bb, skips LOOP and reaches the (unique) exit
245 bb of LOOP. This loop-exit-bb is an empty bb with one successor.
246 We denote this bb NEW_MERGE_BB because before the guard code was added
247 it had a single predecessor (the LOOP header), and now it became a merge
248 point of two paths - the path that ends with the LOOP exit-edge, and
249 the path that ends with GUARD_EDGE.
250 - NEW_EXIT_BB: New basic block that is added by this function between LOOP
251 and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
253 ===> The CFG before the guard-code was added:
254 LOOP_header_bb:
255 loop_body
256 if (exit_loop) goto update_bb
257 else goto LOOP_header_bb
258 update_bb:
260 ==> The CFG after the guard-code was added:
261 guard_bb:
262 if (LOOP_guard_condition) goto new_merge_bb
263 else goto LOOP_header_bb
264 LOOP_header_bb:
265 loop_body
266 if (exit_loop_condition) goto new_merge_bb
267 else goto LOOP_header_bb
268 new_merge_bb:
269 goto update_bb
270 update_bb:
272 ==> The CFG after this function:
273 guard_bb:
274 if (LOOP_guard_condition) goto new_merge_bb
275 else goto LOOP_header_bb
276 LOOP_header_bb:
277 loop_body
278 if (exit_loop_condition) goto new_exit_bb
279 else goto LOOP_header_bb
280 new_exit_bb:
281 new_merge_bb:
282 goto update_bb
283 update_bb:
285 This function:
286 1. creates and updates the relevant phi nodes to account for the new
287 incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
288 1.1. Create phi nodes at NEW_MERGE_BB.
289 1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
290 UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
291 2. preserves loop-closed-ssa-form by creating the required phi nodes
292 at the exit of LOOP (i.e, in NEW_EXIT_BB).
294 There are two flavors to this function:
296 slpeel_update_phi_nodes_for_guard1:
297 Here the guard controls whether we enter or skip LOOP, where LOOP is a
298 prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
299 for variables that have phis in the loop header.
301 slpeel_update_phi_nodes_for_guard2:
302 Here the guard controls whether we enter or skip LOOP, where LOOP is an
303 epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
304 for variables that have phis in the loop exit.
306 I.E., the overall structure is:
308 loop1_preheader_bb:
309 guard1 (goto loop1/merge1_bb)
310 loop1
311 loop1_exit_bb:
312 guard2 (goto merge1_bb/merge2_bb)
313 merge1_bb
314 loop2
315 loop2_exit_bb
316 merge2_bb
317 next_bb
319 slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
320 loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
321 that have phis in loop1->header).
323 slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
324 loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
325 that have phis in next_bb). It also adds some of these phis to
326 loop1_exit_bb.
328 slpeel_update_phi_nodes_for_guard1 is always called before
329 slpeel_update_phi_nodes_for_guard2. They are both needed in order
330 to create correct data-flow and loop-closed-ssa-form.
332 Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
333 that change between iterations of a loop (and therefore have a phi-node
334 at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
335 phis for variables that are used out of the loop (and therefore have
336 loop-closed exit phis). Some variables may be both updated between
337 iterations and used after the loop. This is why in loop1_exit_bb we
338 may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
339 and exit phis (created by slpeel_update_phi_nodes_for_guard2).
341 - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
342 an original loop. i.e., we have:
344 orig_loop
345 guard_bb (goto LOOP/new_merge)
346 new_loop <-- LOOP
347 new_exit
348 new_merge
349 next_bb
351 If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
352 have:
354 new_loop
355 guard_bb (goto LOOP/new_merge)
356 orig_loop <-- LOOP
357 new_exit
358 new_merge
359 next_bb
361 The SSA names defined in the original loop have a current
362 reaching definition that records the corresponding new ssa-name
363 used in the new duplicated loop copy.
366 /* Function slpeel_update_phi_nodes_for_guard1
368 Input:
369 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
370 - DEFS - a bitmap of ssa names to mark new names for which we recorded
371 information.
373 In the context of the overall structure, we have:
375 loop1_preheader_bb:
376 guard1 (goto loop1/merge1_bb)
377 LOOP-> loop1
378 loop1_exit_bb:
379 guard2 (goto merge1_bb/merge2_bb)
380 merge1_bb
381 loop2
382 loop2_exit_bb
383 merge2_bb
384 next_bb
386 For each name updated between loop iterations (i.e - for each name that has
387 an entry (loop-header) phi in LOOP) we create a new phi in:
388 1. merge1_bb (to account for the edge from guard1)
389 2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
392 static void
393 slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop,
394 bool is_new_loop, basic_block *new_exit_bb)
396 gphi *orig_phi, *new_phi;
397 gphi *update_phi, *update_phi2;
398 tree guard_arg, loop_arg;
399 basic_block new_merge_bb = guard_edge->dest;
400 edge e = EDGE_SUCC (new_merge_bb, 0);
401 basic_block update_bb = e->dest;
402 basic_block orig_bb = loop->header;
403 edge new_exit_e;
404 tree current_new_name;
405 gphi_iterator gsi_orig, gsi_update;
407 /* Create new bb between loop and new_merge_bb. */
408 *new_exit_bb = split_edge (single_exit (loop));
410 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
412 for (gsi_orig = gsi_start_phis (orig_bb),
413 gsi_update = gsi_start_phis (update_bb);
414 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
415 gsi_next (&gsi_orig), gsi_next (&gsi_update))
417 source_location loop_locus, guard_locus;
418 tree new_res;
419 orig_phi = gsi_orig.phi ();
420 update_phi = gsi_update.phi ();
422 /** 1. Handle new-merge-point phis **/
424 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
425 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
426 new_phi = create_phi_node (new_res, new_merge_bb);
428 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
429 of LOOP. Set the two phi args in NEW_PHI for these edges: */
430 loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0));
431 loop_locus = gimple_phi_arg_location_from_edge (orig_phi,
432 EDGE_SUCC (loop->latch,
433 0));
434 guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop));
435 guard_locus
436 = gimple_phi_arg_location_from_edge (orig_phi,
437 loop_preheader_edge (loop));
439 add_phi_arg (new_phi, loop_arg, new_exit_e, loop_locus);
440 add_phi_arg (new_phi, guard_arg, guard_edge, guard_locus);
442 /* 1.3. Update phi in successor block. */
443 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
444 || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
445 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
446 update_phi2 = new_phi;
449 /** 2. Handle loop-closed-ssa-form phis **/
451 if (virtual_operand_p (PHI_RESULT (orig_phi)))
452 continue;
454 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
455 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
456 new_phi = create_phi_node (new_res, *new_exit_bb);
458 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
459 add_phi_arg (new_phi, loop_arg, single_exit (loop), loop_locus);
461 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
462 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
463 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
464 PHI_RESULT (new_phi));
466 /* 2.4. Record the newly created name with set_current_def.
467 We want to find a name such that
468 name = get_current_def (orig_loop_name)
469 and to set its current definition as follows:
470 set_current_def (name, new_phi_name)
472 If LOOP is a new loop then loop_arg is already the name we're
473 looking for. If LOOP is the original loop, then loop_arg is
474 the orig_loop_name and the relevant name is recorded in its
475 current reaching definition. */
476 if (is_new_loop)
477 current_new_name = loop_arg;
478 else
480 current_new_name = get_current_def (loop_arg);
481 /* current_def is not available only if the variable does not
482 change inside the loop, in which case we also don't care
483 about recording a current_def for it because we won't be
484 trying to create loop-exit-phis for it. */
485 if (!current_new_name)
486 continue;
488 tree new_name = get_current_def (current_new_name);
489 /* Because of peeled_chrec optimization it is possible that we have
490 set this earlier. Verify the PHI has the same value. */
491 if (new_name)
493 gimple *phi = SSA_NAME_DEF_STMT (new_name);
494 gcc_assert (gimple_code (phi) == GIMPLE_PHI
495 && gimple_bb (phi) == *new_exit_bb
496 && (PHI_ARG_DEF_FROM_EDGE (phi, single_exit (loop))
497 == loop_arg));
498 continue;
501 set_current_def (current_new_name, PHI_RESULT (new_phi));
506 /* Function slpeel_update_phi_nodes_for_guard2
508 Input:
509 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
511 In the context of the overall structure, we have:
513 loop1_preheader_bb:
514 guard1 (goto loop1/merge1_bb)
515 loop1
516 loop1_exit_bb:
517 guard2 (goto merge1_bb/merge2_bb)
518 merge1_bb
519 LOOP-> loop2
520 loop2_exit_bb
521 merge2_bb
522 next_bb
524 For each name used out side the loop (i.e - for each name that has an exit
525 phi in next_bb) we create a new phi in:
526 1. merge2_bb (to account for the edge from guard_bb)
527 2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
528 3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
529 if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
532 static void
533 slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop,
534 bool is_new_loop, basic_block *new_exit_bb)
536 gphi *orig_phi, *new_phi;
537 gphi *update_phi, *update_phi2;
538 tree guard_arg, loop_arg;
539 basic_block new_merge_bb = guard_edge->dest;
540 edge e = EDGE_SUCC (new_merge_bb, 0);
541 basic_block update_bb = e->dest;
542 edge new_exit_e;
543 tree orig_def, orig_def_new_name;
544 tree new_name, new_name2;
545 tree arg;
546 gphi_iterator gsi;
548 /* Create new bb between loop and new_merge_bb. */
549 *new_exit_bb = split_edge (single_exit (loop));
551 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
553 for (gsi = gsi_start_phis (update_bb); !gsi_end_p (gsi); gsi_next (&gsi))
555 tree new_res;
556 update_phi = gsi.phi ();
557 orig_phi = update_phi;
558 orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
559 /* This loop-closed-phi actually doesn't represent a use
560 out of the loop - the phi arg is a constant. */
561 if (TREE_CODE (orig_def) != SSA_NAME)
562 continue;
563 orig_def_new_name = get_current_def (orig_def);
564 arg = NULL_TREE;
566 /** 1. Handle new-merge-point phis **/
568 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
569 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
570 new_phi = create_phi_node (new_res, new_merge_bb);
572 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
573 of LOOP. Set the two PHI args in NEW_PHI for these edges: */
574 new_name = orig_def;
575 new_name2 = NULL_TREE;
576 if (orig_def_new_name)
578 new_name = orig_def_new_name;
579 /* Some variables have both loop-entry-phis and loop-exit-phis.
580 Such variables were given yet newer names by phis placed in
581 guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
582 new_name2 = get_current_def (get_current_def (orig_name)). */
583 new_name2 = get_current_def (new_name);
586 if (is_new_loop)
588 guard_arg = orig_def;
589 loop_arg = new_name;
591 else
593 guard_arg = new_name;
594 loop_arg = orig_def;
596 if (new_name2)
597 guard_arg = new_name2;
599 add_phi_arg (new_phi, loop_arg, new_exit_e, UNKNOWN_LOCATION);
600 add_phi_arg (new_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);
602 /* 1.3. Update phi in successor block. */
603 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def);
604 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
605 update_phi2 = new_phi;
608 /** 2. Handle loop-closed-ssa-form phis **/
610 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
611 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
612 new_phi = create_phi_node (new_res, *new_exit_bb);
614 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
615 add_phi_arg (new_phi, loop_arg, single_exit (loop), UNKNOWN_LOCATION);
617 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
618 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
619 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
620 PHI_RESULT (new_phi));
623 /** 3. Handle loop-closed-ssa-form phis for first loop **/
625 /* 3.1. Find the relevant names that need an exit-phi in
626 GUARD_BB, i.e. names for which
627 slpeel_update_phi_nodes_for_guard1 had not already created a
628 phi node. This is the case for names that are used outside
629 the loop (and therefore need an exit phi) but are not updated
630 across loop iterations (and therefore don't have a
631 loop-header-phi).
633 slpeel_update_phi_nodes_for_guard1 is responsible for
634 creating loop-exit phis in GUARD_BB for names that have a
635 loop-header-phi. When such a phi is created we also record
636 the new name in its current definition. If this new name
637 exists, then guard_arg was set to this new name (see 1.2
638 above). Therefore, if guard_arg is not this new name, this
639 is an indication that an exit-phi in GUARD_BB was not yet
640 created, so we take care of it here. */
641 if (guard_arg == new_name2)
642 continue;
643 arg = guard_arg;
645 /* 3.2. Generate new phi node in GUARD_BB: */
646 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
647 new_phi = create_phi_node (new_res, guard_edge->src);
649 /* 3.3. GUARD_BB has one incoming edge: */
650 gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1);
651 add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0),
652 UNKNOWN_LOCATION);
654 /* 3.4. Update phi in successor of GUARD_BB: */
655 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge)
656 == guard_arg);
657 adjust_phi_and_debug_stmts (update_phi2, guard_edge,
658 PHI_RESULT (new_phi));
663 /* Make the LOOP iterate NITERS times. This is done by adding a new IV
664 that starts at zero, increases by one and its limit is NITERS.
666 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
668 void
669 slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
671 tree indx_before_incr, indx_after_incr;
672 gcond *cond_stmt;
673 gcond *orig_cond;
674 edge exit_edge = single_exit (loop);
675 gimple_stmt_iterator loop_cond_gsi;
676 gimple_stmt_iterator incr_gsi;
677 bool insert_after;
678 tree init = build_int_cst (TREE_TYPE (niters), 0);
679 tree step = build_int_cst (TREE_TYPE (niters), 1);
680 source_location loop_loc;
681 enum tree_code code;
683 orig_cond = get_loop_exit_condition (loop);
684 gcc_assert (orig_cond);
685 loop_cond_gsi = gsi_for_stmt (orig_cond);
687 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
688 create_iv (init, step, NULL_TREE, loop,
689 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
691 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
692 true, NULL_TREE, true,
693 GSI_SAME_STMT);
694 niters = force_gimple_operand_gsi (&loop_cond_gsi, niters, true, NULL_TREE,
695 true, GSI_SAME_STMT);
697 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
698 cond_stmt = gimple_build_cond (code, indx_after_incr, niters, NULL_TREE,
699 NULL_TREE);
701 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
703 /* Remove old loop exit test: */
704 gsi_remove (&loop_cond_gsi, true);
705 free_stmt_vec_info (orig_cond);
707 loop_loc = find_loop_location (loop);
708 if (dump_enabled_p ())
710 if (LOCATION_LOCUS (loop_loc) != UNKNOWN_LOCATION)
711 dump_printf (MSG_NOTE, "\nloop at %s:%d: ", LOCATION_FILE (loop_loc),
712 LOCATION_LINE (loop_loc));
713 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, cond_stmt, 0);
715 loop->nb_iterations = niters;
718 /* Helper routine of slpeel_tree_duplicate_loop_to_edge_cfg.
719 For all PHI arguments in FROM->dest and TO->dest from those
720 edges ensure that TO->dest PHI arguments have current_def
721 to that in from. */
723 static void
724 slpeel_duplicate_current_defs_from_edges (edge from, edge to)
726 gimple_stmt_iterator gsi_from, gsi_to;
728 for (gsi_from = gsi_start_phis (from->dest),
729 gsi_to = gsi_start_phis (to->dest);
730 !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);)
732 gimple *from_phi = gsi_stmt (gsi_from);
733 gimple *to_phi = gsi_stmt (gsi_to);
734 tree from_arg = PHI_ARG_DEF_FROM_EDGE (from_phi, from);
735 if (TREE_CODE (from_arg) != SSA_NAME)
737 gsi_next (&gsi_from);
738 continue;
740 tree to_arg = PHI_ARG_DEF_FROM_EDGE (to_phi, to);
741 if (TREE_CODE (to_arg) != SSA_NAME)
743 gsi_next (&gsi_to);
744 continue;
746 if (get_current_def (to_arg) == NULL_TREE)
747 set_current_def (to_arg, get_current_def (from_arg));
748 gsi_next (&gsi_from);
749 gsi_next (&gsi_to);
754 /* Given LOOP this function generates a new copy of it and puts it
755 on E which is either the entry or exit of LOOP. If SCALAR_LOOP is
756 non-NULL, assume LOOP and SCALAR_LOOP are equivalent and copy the
757 basic blocks from SCALAR_LOOP instead of LOOP, but to either the
758 entry or exit of LOOP. */
760 struct loop *
761 slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop,
762 struct loop *scalar_loop, edge e)
764 struct loop *new_loop;
765 basic_block *new_bbs, *bbs;
766 bool at_exit;
767 bool was_imm_dom;
768 basic_block exit_dest;
769 edge exit, new_exit;
770 bool duplicate_outer_loop = false;
772 exit = single_exit (loop);
773 at_exit = (e == exit);
774 if (!at_exit && e != loop_preheader_edge (loop))
775 return NULL;
777 if (scalar_loop == NULL)
778 scalar_loop = loop;
780 bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
781 get_loop_body_with_size (scalar_loop, bbs, scalar_loop->num_nodes);
782 /* Allow duplication of outer loops. */
783 if (scalar_loop->inner)
784 duplicate_outer_loop = true;
785 /* Check whether duplication is possible. */
786 if (!can_copy_bbs_p (bbs, scalar_loop->num_nodes))
788 free (bbs);
789 return NULL;
792 /* Generate new loop structure. */
793 new_loop = duplicate_loop (scalar_loop, loop_outer (scalar_loop));
794 duplicate_subloops (scalar_loop, new_loop);
796 exit_dest = exit->dest;
797 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
798 exit_dest) == loop->header ?
799 true : false);
801 /* Also copy the pre-header, this avoids jumping through hoops to
802 duplicate the loop entry PHI arguments. Create an empty
803 pre-header unconditionally for this. */
804 basic_block preheader = split_edge (loop_preheader_edge (scalar_loop));
805 edge entry_e = single_pred_edge (preheader);
806 bbs[scalar_loop->num_nodes] = preheader;
807 new_bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
809 exit = single_exit (scalar_loop);
810 copy_bbs (bbs, scalar_loop->num_nodes + 1, new_bbs,
811 &exit, 1, &new_exit, NULL,
812 e->src, true);
813 exit = single_exit (loop);
814 basic_block new_preheader = new_bbs[scalar_loop->num_nodes];
816 add_phi_args_after_copy (new_bbs, scalar_loop->num_nodes + 1, NULL);
818 if (scalar_loop != loop)
820 /* If we copied from SCALAR_LOOP rather than LOOP, SSA_NAMEs from
821 SCALAR_LOOP will have current_def set to SSA_NAMEs in the new_loop,
822 but LOOP will not. slpeel_update_phi_nodes_for_guard{1,2} expects
823 the LOOP SSA_NAMEs (on the exit edge and edge from latch to
824 header) to have current_def set, so copy them over. */
825 slpeel_duplicate_current_defs_from_edges (single_exit (scalar_loop),
826 exit);
827 slpeel_duplicate_current_defs_from_edges (EDGE_SUCC (scalar_loop->latch,
829 EDGE_SUCC (loop->latch, 0));
832 if (at_exit) /* Add the loop copy at exit. */
834 if (scalar_loop != loop)
836 gphi_iterator gsi;
837 new_exit = redirect_edge_and_branch (new_exit, exit_dest);
839 for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi);
840 gsi_next (&gsi))
842 gphi *phi = gsi.phi ();
843 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
844 location_t orig_locus
845 = gimple_phi_arg_location_from_edge (phi, e);
847 add_phi_arg (phi, orig_arg, new_exit, orig_locus);
850 redirect_edge_and_branch_force (e, new_preheader);
851 flush_pending_stmts (e);
852 set_immediate_dominator (CDI_DOMINATORS, new_preheader, e->src);
853 if (was_imm_dom || duplicate_outer_loop)
854 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_exit->src);
856 /* And remove the non-necessary forwarder again. Keep the other
857 one so we have a proper pre-header for the loop at the exit edge. */
858 redirect_edge_pred (single_succ_edge (preheader),
859 single_pred (preheader));
860 delete_basic_block (preheader);
861 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
862 loop_preheader_edge (scalar_loop)->src);
864 else /* Add the copy at entry. */
866 if (scalar_loop != loop)
868 /* Remove the non-necessary forwarder of scalar_loop again. */
869 redirect_edge_pred (single_succ_edge (preheader),
870 single_pred (preheader));
871 delete_basic_block (preheader);
872 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
873 loop_preheader_edge (scalar_loop)->src);
874 preheader = split_edge (loop_preheader_edge (loop));
875 entry_e = single_pred_edge (preheader);
878 redirect_edge_and_branch_force (entry_e, new_preheader);
879 flush_pending_stmts (entry_e);
880 set_immediate_dominator (CDI_DOMINATORS, new_preheader, entry_e->src);
882 redirect_edge_and_branch_force (new_exit, preheader);
883 flush_pending_stmts (new_exit);
884 set_immediate_dominator (CDI_DOMINATORS, preheader, new_exit->src);
886 /* And remove the non-necessary forwarder again. Keep the other
887 one so we have a proper pre-header for the loop at the exit edge. */
888 redirect_edge_pred (single_succ_edge (new_preheader),
889 single_pred (new_preheader));
890 delete_basic_block (new_preheader);
891 set_immediate_dominator (CDI_DOMINATORS, new_loop->header,
892 loop_preheader_edge (new_loop)->src);
895 for (unsigned i = 0; i < scalar_loop->num_nodes + 1; i++)
896 rename_variables_in_bb (new_bbs[i], duplicate_outer_loop);
898 if (scalar_loop != loop)
900 /* Update new_loop->header PHIs, so that on the preheader
901 edge they are the ones from loop rather than scalar_loop. */
902 gphi_iterator gsi_orig, gsi_new;
903 edge orig_e = loop_preheader_edge (loop);
904 edge new_e = loop_preheader_edge (new_loop);
906 for (gsi_orig = gsi_start_phis (loop->header),
907 gsi_new = gsi_start_phis (new_loop->header);
908 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_new);
909 gsi_next (&gsi_orig), gsi_next (&gsi_new))
911 gphi *orig_phi = gsi_orig.phi ();
912 gphi *new_phi = gsi_new.phi ();
913 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
914 location_t orig_locus
915 = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
917 add_phi_arg (new_phi, orig_arg, new_e, orig_locus);
921 free (new_bbs);
922 free (bbs);
924 checking_verify_dominators (CDI_DOMINATORS);
926 return new_loop;
930 /* Given the condition statement COND, put it as the last statement
931 of GUARD_BB; EXIT_BB is the basic block to skip the loop;
932 Assumes that this is the single exit of the guarded loop.
933 Returns the skip edge, inserts new stmts on the COND_EXPR_STMT_LIST. */
935 static edge
936 slpeel_add_loop_guard (basic_block guard_bb, tree cond,
937 gimple_seq cond_expr_stmt_list,
938 basic_block exit_bb, basic_block dom_bb,
939 int probability)
941 gimple_stmt_iterator gsi;
942 edge new_e, enter_e;
943 gcond *cond_stmt;
944 gimple_seq gimplify_stmt_list = NULL;
946 enter_e = EDGE_SUCC (guard_bb, 0);
947 enter_e->flags &= ~EDGE_FALLTHRU;
948 enter_e->flags |= EDGE_FALSE_VALUE;
949 gsi = gsi_last_bb (guard_bb);
951 cond = force_gimple_operand_1 (cond, &gimplify_stmt_list, is_gimple_condexpr,
952 NULL_TREE);
953 if (gimplify_stmt_list)
954 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
955 cond_stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
956 if (cond_expr_stmt_list)
957 gsi_insert_seq_after (&gsi, cond_expr_stmt_list, GSI_NEW_STMT);
959 gsi = gsi_last_bb (guard_bb);
960 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
962 /* Add new edge to connect guard block to the merge/loop-exit block. */
963 new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
965 new_e->count = guard_bb->count;
966 new_e->probability = probability;
967 new_e->count = apply_probability (enter_e->count, probability);
968 enter_e->count -= new_e->count;
969 enter_e->probability = inverse_probability (probability);
970 set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
971 return new_e;
975 /* This function verifies that the following restrictions apply to LOOP:
976 (1) it consists of exactly 2 basic blocks - header, and an empty latch
977 for innermost loop and 5 basic blocks for outer-loop.
978 (2) it is single entry, single exit
979 (3) its exit condition is the last stmt in the header
980 (4) E is the entry/exit edge of LOOP.
983 bool
984 slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
986 edge exit_e = single_exit (loop);
987 edge entry_e = loop_preheader_edge (loop);
988 gcond *orig_cond = get_loop_exit_condition (loop);
989 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
990 unsigned int num_bb = loop->inner? 5 : 2;
992 /* All loops have an outer scope; the only case loop->outer is NULL is for
993 the function itself. */
994 if (!loop_outer (loop)
995 || loop->num_nodes != num_bb
996 || !empty_block_p (loop->latch)
997 || !single_exit (loop)
998 /* Verify that new loop exit condition can be trivially modified. */
999 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
1000 || (e != exit_e && e != entry_e))
1001 return false;
1003 return true;
1006 static void
1007 slpeel_checking_verify_cfg_after_peeling (struct loop *first_loop,
1008 struct loop *second_loop)
1010 if (!flag_checking)
1011 return;
1013 basic_block loop1_exit_bb = single_exit (first_loop)->dest;
1014 basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
1015 basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;
1017 /* A guard that controls whether the second_loop is to be executed or skipped
1018 is placed in first_loop->exit. first_loop->exit therefore has two
1019 successors - one is the preheader of second_loop, and the other is a bb
1020 after second_loop.
1022 gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
1024 /* 1. Verify that one of the successors of first_loop->exit is the preheader
1025 of second_loop. */
1027 /* The preheader of new_loop is expected to have two predecessors:
1028 first_loop->exit and the block that precedes first_loop. */
1030 gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2
1031 && ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
1032 && EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
1033 || (EDGE_PRED (loop2_entry_bb, 1)->src == loop1_exit_bb
1034 && EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
1036 /* Verify that the other successor of first_loop->exit is after the
1037 second_loop. */
1038 /* TODO */
1041 /* If the run time cost model check determines that vectorization is
1042 not profitable and hence scalar loop should be generated then set
1043 FIRST_NITERS to prologue peeled iterations. This will allow all the
1044 iterations to be executed in the prologue peeled scalar loop. */
1046 static void
1047 set_prologue_iterations (basic_block bb_before_first_loop,
1048 tree *first_niters,
1049 struct loop *loop,
1050 unsigned int th,
1051 int probability)
1053 edge e;
1054 basic_block cond_bb, then_bb;
1055 tree var, prologue_after_cost_adjust_name;
1056 gimple_stmt_iterator gsi;
1057 gphi *newphi;
1058 edge e_true, e_false, e_fallthru;
1059 gcond *cond_stmt;
1060 gimple_seq stmts = NULL;
1061 tree cost_pre_condition = NULL_TREE;
1062 tree scalar_loop_iters =
1063 unshare_expr (LOOP_VINFO_NITERS_UNCHANGED (loop_vec_info_for_loop (loop)));
1065 e = single_pred_edge (bb_before_first_loop);
1066 cond_bb = split_edge (e);
1068 e = single_pred_edge (bb_before_first_loop);
1069 then_bb = split_edge (e);
1070 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1072 e_false = make_single_succ_edge (cond_bb, bb_before_first_loop,
1073 EDGE_FALSE_VALUE);
1074 set_immediate_dominator (CDI_DOMINATORS, bb_before_first_loop, cond_bb);
1076 e_true = EDGE_PRED (then_bb, 0);
1077 e_true->flags &= ~EDGE_FALLTHRU;
1078 e_true->flags |= EDGE_TRUE_VALUE;
1080 e_true->probability = probability;
1081 e_false->probability = inverse_probability (probability);
1082 e_true->count = apply_probability (cond_bb->count, probability);
1083 e_false->count = cond_bb->count - e_true->count;
1084 then_bb->frequency = EDGE_FREQUENCY (e_true);
1085 then_bb->count = e_true->count;
1087 e_fallthru = EDGE_SUCC (then_bb, 0);
1088 e_fallthru->count = then_bb->count;
1090 gsi = gsi_last_bb (cond_bb);
1091 cost_pre_condition =
1092 fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
1093 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
1094 cost_pre_condition =
1095 force_gimple_operand_gsi_1 (&gsi, cost_pre_condition, is_gimple_condexpr,
1096 NULL_TREE, false, GSI_CONTINUE_LINKING);
1097 cond_stmt = gimple_build_cond_from_tree (cost_pre_condition,
1098 NULL_TREE, NULL_TREE);
1099 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
1101 var = create_tmp_var (TREE_TYPE (scalar_loop_iters),
1102 "prologue_after_cost_adjust");
1103 prologue_after_cost_adjust_name =
1104 force_gimple_operand (scalar_loop_iters, &stmts, false, var);
1106 gsi = gsi_last_bb (then_bb);
1107 if (stmts)
1108 gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
1110 newphi = create_phi_node (var, bb_before_first_loop);
1111 add_phi_arg (newphi, prologue_after_cost_adjust_name, e_fallthru,
1112 UNKNOWN_LOCATION);
1113 add_phi_arg (newphi, *first_niters, e_false, UNKNOWN_LOCATION);
1115 *first_niters = PHI_RESULT (newphi);
1118 /* Function slpeel_tree_peel_loop_to_edge.
1120 Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
1121 that is placed on the entry (exit) edge E of LOOP. After this transformation
1122 we have two loops one after the other - first-loop iterates FIRST_NITERS
1123 times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
1124 If the cost model indicates that it is profitable to emit a scalar
1125 loop instead of the vector one, then the prolog (epilog) loop will iterate
1126 for the entire unchanged scalar iterations of the loop.
1128 Input:
1129 - LOOP: the loop to be peeled.
1130 - SCALAR_LOOP: if non-NULL, the alternate loop from which basic blocks
1131 should be copied.
1132 - E: the exit or entry edge of LOOP.
1133 If it is the entry edge, we peel the first iterations of LOOP. In this
1134 case first-loop is LOOP, and second-loop is the newly created loop.
1135 If it is the exit edge, we peel the last iterations of LOOP. In this
1136 case, first-loop is the newly created loop, and second-loop is LOOP.
1137 - NITERS: the number of iterations that LOOP iterates.
1138 - FIRST_NITERS: the number of iterations that the first-loop should iterate.
1139 - UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
1140 for updating the loop bound of the first-loop to FIRST_NITERS. If it
1141 is false, the caller of this function may want to take care of this
1142 (this can be useful if we don't want new stmts added to first-loop).
1143 - TH: cost model profitability threshold of iterations for vectorization.
1144 - CHECK_PROFITABILITY: specify whether cost model check has not occurred
1145 during versioning and hence needs to occur during
1146 prologue generation or whether cost model check
1147 has not occurred during prologue generation and hence
1148 needs to occur during epilogue generation.
1149 - BOUND1 is the upper bound on number of iterations of the first loop (if known)
1150 - BOUND2 is the upper bound on number of iterations of the second loop (if known)
1153 Output:
1154 The function returns a pointer to the new loop-copy, or NULL if it failed
1155 to perform the transformation.
1157 The function generates two if-then-else guards: one before the first loop,
1158 and the other before the second loop:
1159 The first guard is:
1160 if (FIRST_NITERS == 0) then skip the first loop,
1161 and go directly to the second loop.
1162 The second guard is:
1163 if (FIRST_NITERS == NITERS) then skip the second loop.
1165 If the optional COND_EXPR and COND_EXPR_STMT_LIST arguments are given
1166 then the generated condition is combined with COND_EXPR and the
1167 statements in COND_EXPR_STMT_LIST are emitted together with it.
1169 FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
1170 FORNOW the resulting code will not be in loop-closed-ssa form.
1173 static struct loop *
1174 slpeel_tree_peel_loop_to_edge (struct loop *loop, struct loop *scalar_loop,
1175 edge e, tree *first_niters,
1176 tree niters, bool update_first_loop_count,
1177 unsigned int th, bool check_profitability,
1178 tree cond_expr, gimple_seq cond_expr_stmt_list,
1179 int bound1, int bound2)
1181 struct loop *new_loop = NULL, *first_loop, *second_loop;
1182 edge skip_e;
1183 tree pre_condition = NULL_TREE;
1184 basic_block bb_before_second_loop, bb_after_second_loop;
1185 basic_block bb_before_first_loop;
1186 basic_block bb_between_loops;
1187 basic_block new_exit_bb;
1188 gphi_iterator gsi;
1189 edge exit_e = single_exit (loop);
1190 source_location loop_loc;
1191 /* There are many aspects to how likely the first loop is going to be executed.
1192 Without histogram we can't really do good job. Simply set it to
1193 2/3, so the first loop is not reordered to the end of function and
1194 the hot path through stays short. */
1195 int first_guard_probability = 2 * REG_BR_PROB_BASE / 3;
1196 int second_guard_probability = 2 * REG_BR_PROB_BASE / 3;
1197 int probability_of_second_loop;
1199 if (!slpeel_can_duplicate_loop_p (loop, e))
1200 return NULL;
1202 /* We might have a queued need to update virtual SSA form. As we
1203 delete the update SSA machinery below after doing a regular
1204 incremental SSA update during loop copying make sure we don't
1205 lose that fact.
1206 ??? Needing to update virtual SSA form by renaming is unfortunate
1207 but not all of the vectorizer code inserting new loads / stores
1208 properly assigns virtual operands to those statements. */
1209 update_ssa (TODO_update_ssa_only_virtuals);
1211 /* If the loop has a virtual PHI, but exit bb doesn't, create a virtual PHI
1212 in the exit bb and rename all the uses after the loop. This simplifies
1213 the *guard[12] routines, which assume loop closed SSA form for all PHIs
1214 (but normally loop closed SSA form doesn't require virtual PHIs to be
1215 in the same form). Doing this early simplifies the checking what
1216 uses should be renamed. */
1217 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
1218 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
1220 gphi *phi = gsi.phi ();
1221 for (gsi = gsi_start_phis (exit_e->dest);
1222 !gsi_end_p (gsi); gsi_next (&gsi))
1223 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
1224 break;
1225 if (gsi_end_p (gsi))
1227 tree new_vop = copy_ssa_name (PHI_RESULT (phi));
1228 gphi *new_phi = create_phi_node (new_vop, exit_e->dest);
1229 tree vop = PHI_ARG_DEF_FROM_EDGE (phi, EDGE_SUCC (loop->latch, 0));
1230 imm_use_iterator imm_iter;
1231 gimple *stmt;
1232 use_operand_p use_p;
1234 add_phi_arg (new_phi, vop, exit_e, UNKNOWN_LOCATION);
1235 gimple_phi_set_result (new_phi, new_vop);
1236 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, vop)
1237 if (stmt != new_phi
1238 && !flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
1239 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1240 SET_USE (use_p, new_vop);
1242 break;
1245 /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
1246 Resulting CFG would be:
1248 first_loop:
1249 do {
1250 } while ...
1252 second_loop:
1253 do {
1254 } while ...
1256 orig_exit_bb:
1259 if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, scalar_loop,
1260 e)))
1262 loop_loc = find_loop_location (loop);
1263 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
1264 "tree_duplicate_loop_to_edge_cfg failed.\n");
1265 return NULL;
1268 if (MAY_HAVE_DEBUG_STMTS)
1270 gcc_assert (!adjust_vec.exists ());
1271 adjust_vec.create (32);
1274 if (e == exit_e)
1276 /* NEW_LOOP was placed after LOOP. */
1277 first_loop = loop;
1278 second_loop = new_loop;
1280 else
1282 /* NEW_LOOP was placed before LOOP. */
1283 first_loop = new_loop;
1284 second_loop = loop;
1287 /* 2. Add the guard code in one of the following ways:
1289 2.a Add the guard that controls whether the first loop is executed.
1290 This occurs when this function is invoked for prologue or epilogue
1291 generation and when the cost model check can be done at compile time.
1293 Resulting CFG would be:
1295 bb_before_first_loop:
1296 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1297 GOTO first-loop
1299 first_loop:
1300 do {
1301 } while ...
1303 bb_before_second_loop:
1305 second_loop:
1306 do {
1307 } while ...
1309 orig_exit_bb:
1311 2.b Add the cost model check that allows the prologue
1312 to iterate for the entire unchanged scalar
1313 iterations of the loop in the event that the cost
1314 model indicates that the scalar loop is more
1315 profitable than the vector one. This occurs when
1316 this function is invoked for prologue generation
1317 and the cost model check needs to be done at run
1318 time.
1320 Resulting CFG after prologue peeling would be:
1322 if (scalar_loop_iterations <= th)
1323 FIRST_NITERS = scalar_loop_iterations
1325 bb_before_first_loop:
1326 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1327 GOTO first-loop
1329 first_loop:
1330 do {
1331 } while ...
1333 bb_before_second_loop:
1335 second_loop:
1336 do {
1337 } while ...
1339 orig_exit_bb:
1341 2.c Add the cost model check that allows the epilogue
1342 to iterate for the entire unchanged scalar
1343 iterations of the loop in the event that the cost
1344 model indicates that the scalar loop is more
1345 profitable than the vector one. This occurs when
1346 this function is invoked for epilogue generation
1347 and the cost model check needs to be done at run
1348 time. This check is combined with any pre-existing
1349 check in COND_EXPR to avoid versioning.
1351 Resulting CFG after prologue peeling would be:
1353 bb_before_first_loop:
1354 if ((scalar_loop_iterations <= th)
1356 FIRST_NITERS == 0) GOTO bb_before_second_loop
1357 GOTO first-loop
1359 first_loop:
1360 do {
1361 } while ...
1363 bb_before_second_loop:
1365 second_loop:
1366 do {
1367 } while ...
1369 orig_exit_bb:
1372 bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
1373 /* Loop copying insterted a forwarder block for us here. */
1374 bb_before_second_loop = single_exit (first_loop)->dest;
1376 probability_of_second_loop = (inverse_probability (first_guard_probability)
1377 + combine_probabilities (second_guard_probability,
1378 first_guard_probability));
1379 /* Theoretically preheader edge of first loop and exit edge should have
1380 same frequencies. Loop exit probablities are however easy to get wrong.
1381 It is safer to copy value from original loop entry. */
1382 bb_before_second_loop->frequency
1383 = combine_probabilities (bb_before_first_loop->frequency,
1384 probability_of_second_loop);
1385 bb_before_second_loop->count
1386 = apply_probability (bb_before_first_loop->count,
1387 probability_of_second_loop);
1388 single_succ_edge (bb_before_second_loop)->count
1389 = bb_before_second_loop->count;
1391 /* Epilogue peeling. */
1392 if (!update_first_loop_count)
1394 loop_vec_info loop_vinfo = loop_vec_info_for_loop (loop);
1395 tree scalar_loop_iters = LOOP_VINFO_NITERSM1 (loop_vinfo);
1396 unsigned limit = LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1;
1397 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
1398 limit = limit + 1;
1399 if (check_profitability
1400 && th > limit)
1401 limit = th;
1402 pre_condition =
1403 fold_build2 (LT_EXPR, boolean_type_node, scalar_loop_iters,
1404 build_int_cst (TREE_TYPE (scalar_loop_iters), limit));
1405 if (cond_expr)
1407 pre_condition =
1408 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1409 pre_condition,
1410 fold_build1 (TRUTH_NOT_EXPR, boolean_type_node,
1411 cond_expr));
1415 /* Prologue peeling. */
1416 else
1418 if (check_profitability)
1419 set_prologue_iterations (bb_before_first_loop, first_niters,
1420 loop, th, first_guard_probability);
1422 pre_condition =
1423 fold_build2 (LE_EXPR, boolean_type_node, *first_niters,
1424 build_int_cst (TREE_TYPE (*first_niters), 0));
1427 skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
1428 cond_expr_stmt_list,
1429 bb_before_second_loop, bb_before_first_loop,
1430 inverse_probability (first_guard_probability));
1431 scale_loop_profile (first_loop, first_guard_probability,
1432 check_profitability && (int)th > bound1 ? th : bound1);
1433 slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop,
1434 first_loop == new_loop,
1435 &new_exit_bb);
1438 /* 3. Add the guard that controls whether the second loop is executed.
1439 Resulting CFG would be:
1441 bb_before_first_loop:
1442 if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
1443 GOTO first-loop
1445 first_loop:
1446 do {
1447 } while ...
1449 bb_between_loops:
1450 if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
1451 GOTO bb_before_second_loop
1453 bb_before_second_loop:
1455 second_loop:
1456 do {
1457 } while ...
1459 bb_after_second_loop:
1461 orig_exit_bb:
1464 bb_between_loops = new_exit_bb;
1465 bb_after_second_loop = split_edge (single_exit (second_loop));
1467 pre_condition =
1468 fold_build2 (EQ_EXPR, boolean_type_node, *first_niters, niters);
1469 skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition, NULL,
1470 bb_after_second_loop, bb_before_first_loop,
1471 inverse_probability (second_guard_probability));
1472 scale_loop_profile (second_loop, probability_of_second_loop, bound2);
1473 slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop,
1474 second_loop == new_loop, &new_exit_bb);
1476 /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
1478 if (update_first_loop_count)
1479 slpeel_make_loop_iterate_ntimes (first_loop, *first_niters);
1481 delete_update_ssa ();
1483 adjust_vec_debug_stmts ();
1485 return new_loop;
1488 /* Function vect_get_loop_location.
1490 Extract the location of the loop in the source code.
1491 If the loop is not well formed for vectorization, an estimated
1492 location is calculated.
1493 Return the loop location if succeed and NULL if not. */
1495 source_location
1496 find_loop_location (struct loop *loop)
1498 gimple *stmt = NULL;
1499 basic_block bb;
1500 gimple_stmt_iterator si;
1502 if (!loop)
1503 return UNKNOWN_LOCATION;
1505 stmt = get_loop_exit_condition (loop);
1507 if (stmt
1508 && LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1509 return gimple_location (stmt);
1511 /* If we got here the loop is probably not "well formed",
1512 try to estimate the loop location */
1514 if (!loop->header)
1515 return UNKNOWN_LOCATION;
1517 bb = loop->header;
1519 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1521 stmt = gsi_stmt (si);
1522 if (LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1523 return gimple_location (stmt);
1526 return UNKNOWN_LOCATION;
1530 /* Function vect_can_advance_ivs_p
1532 In case the number of iterations that LOOP iterates is unknown at compile
1533 time, an epilog loop will be generated, and the loop induction variables
1534 (IVs) will be "advanced" to the value they are supposed to take just before
1535 the epilog loop. Here we check that the access function of the loop IVs
1536 and the expression that represents the loop bound are simple enough.
1537 These restrictions will be relaxed in the future. */
1539 bool
1540 vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
1542 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1543 basic_block bb = loop->header;
1544 gimple *phi;
1545 gphi_iterator gsi;
1547 /* Analyze phi functions of the loop header. */
1549 if (dump_enabled_p ())
1550 dump_printf_loc (MSG_NOTE, vect_location, "vect_can_advance_ivs_p:\n");
1551 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1553 tree evolution_part;
1555 phi = gsi.phi ();
1556 if (dump_enabled_p ())
1558 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
1559 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1562 /* Skip virtual phi's. The data dependences that are associated with
1563 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
1565 if (virtual_operand_p (PHI_RESULT (phi)))
1567 if (dump_enabled_p ())
1568 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1569 "virtual phi. skip.\n");
1570 continue;
1573 /* Skip reduction phis. */
1575 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
1577 if (dump_enabled_p ())
1578 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1579 "reduc phi. skip.\n");
1580 continue;
1583 /* Analyze the evolution function. */
1585 evolution_part
1586 = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (vinfo_for_stmt (phi));
1587 if (evolution_part == NULL_TREE)
1589 if (dump_enabled_p ())
1590 dump_printf (MSG_MISSED_OPTIMIZATION,
1591 "No access function or evolution.\n");
1592 return false;
1595 /* FORNOW: We do not transform initial conditions of IVs
1596 which evolution functions are not invariants in the loop. */
1598 if (!expr_invariant_in_loop_p (loop, evolution_part))
1600 if (dump_enabled_p ())
1601 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1602 "evolution not invariant in loop.\n");
1603 return false;
1606 /* FORNOW: We do not transform initial conditions of IVs
1607 which evolution functions are a polynomial of degree >= 2. */
1609 if (tree_is_chrec (evolution_part))
1611 if (dump_enabled_p ())
1612 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1613 "evolution is chrec.\n");
1614 return false;
1618 return true;
1622 /* Function vect_update_ivs_after_vectorizer.
1624 "Advance" the induction variables of LOOP to the value they should take
1625 after the execution of LOOP. This is currently necessary because the
1626 vectorizer does not handle induction variables that are used after the
1627 loop. Such a situation occurs when the last iterations of LOOP are
1628 peeled, because:
1629 1. We introduced new uses after LOOP for IVs that were not originally used
1630 after LOOP: the IVs of LOOP are now used by an epilog loop.
1631 2. LOOP is going to be vectorized; this means that it will iterate N/VF
1632 times, whereas the loop IVs should be bumped N times.
1634 Input:
1635 - LOOP - a loop that is going to be vectorized. The last few iterations
1636 of LOOP were peeled.
1637 - NITERS - the number of iterations that LOOP executes (before it is
1638 vectorized). i.e, the number of times the ivs should be bumped.
1639 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
1640 coming out from LOOP on which there are uses of the LOOP ivs
1641 (this is the path from LOOP->exit to epilog_loop->preheader).
1643 The new definitions of the ivs are placed in LOOP->exit.
1644 The phi args associated with the edge UPDATE_E in the bb
1645 UPDATE_E->dest are updated accordingly.
1647 Assumption 1: Like the rest of the vectorizer, this function assumes
1648 a single loop exit that has a single predecessor.
1650 Assumption 2: The phi nodes in the LOOP header and in update_bb are
1651 organized in the same order.
1653 Assumption 3: The access function of the ivs is simple enough (see
1654 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
1656 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
1657 coming out of LOOP on which the ivs of LOOP are used (this is the path
1658 that leads to the epilog loop; other paths skip the epilog loop). This
1659 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
1660 needs to have its phis updated.
1663 static void
1664 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
1665 edge update_e)
1667 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1668 basic_block exit_bb = single_exit (loop)->dest;
1669 gphi *phi, *phi1;
1670 gphi_iterator gsi, gsi1;
1671 basic_block update_bb = update_e->dest;
1673 gcc_checking_assert (vect_can_advance_ivs_p (loop_vinfo));
1675 /* Make sure there exists a single-predecessor exit bb: */
1676 gcc_assert (single_pred_p (exit_bb));
1678 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
1679 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
1680 gsi_next (&gsi), gsi_next (&gsi1))
1682 tree init_expr;
1683 tree step_expr, off;
1684 tree type;
1685 tree var, ni, ni_name;
1686 gimple_stmt_iterator last_gsi;
1687 stmt_vec_info stmt_info;
1689 phi = gsi.phi ();
1690 phi1 = gsi1.phi ();
1691 if (dump_enabled_p ())
1693 dump_printf_loc (MSG_NOTE, vect_location,
1694 "vect_update_ivs_after_vectorizer: phi: ");
1695 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1698 /* Skip virtual phi's. */
1699 if (virtual_operand_p (PHI_RESULT (phi)))
1701 if (dump_enabled_p ())
1702 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1703 "virtual phi. skip.\n");
1704 continue;
1707 /* Skip reduction phis. */
1708 stmt_info = vinfo_for_stmt (phi);
1709 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
1710 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def)
1712 if (dump_enabled_p ())
1713 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1714 "reduc phi. skip.\n");
1715 continue;
1718 type = TREE_TYPE (gimple_phi_result (phi));
1719 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
1720 step_expr = unshare_expr (step_expr);
1722 /* FORNOW: We do not support IVs whose evolution function is a polynomial
1723 of degree >= 2 or exponential. */
1724 gcc_assert (!tree_is_chrec (step_expr));
1726 init_expr = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1728 off = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
1729 fold_convert (TREE_TYPE (step_expr), niters),
1730 step_expr);
1731 if (POINTER_TYPE_P (type))
1732 ni = fold_build_pointer_plus (init_expr, off);
1733 else
1734 ni = fold_build2 (PLUS_EXPR, type,
1735 init_expr, fold_convert (type, off));
1737 var = create_tmp_var (type, "tmp");
1739 last_gsi = gsi_last_bb (exit_bb);
1740 ni_name = force_gimple_operand_gsi (&last_gsi, ni, false, var,
1741 true, GSI_SAME_STMT);
1743 /* Fix phi expressions in the successor bb. */
1744 adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
1748 /* Function vect_do_peeling_for_loop_bound
1750 Peel the last iterations of the loop represented by LOOP_VINFO.
1751 The peeled iterations form a new epilog loop. Given that the loop now
1752 iterates NITERS times, the new epilog loop iterates
1753 NITERS % VECTORIZATION_FACTOR times.
1755 If CHECK_PROFITABILITY is 1 then profitability check is generated
1756 using TH as a cost model profitability threshold of iterations for
1757 vectorization.
1759 The original loop will later be made to iterate
1760 NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO).
1762 COND_EXPR and COND_EXPR_STMT_LIST are combined with a new generated
1763 test. */
1765 void
1766 vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo,
1767 tree ni_name, tree ratio_mult_vf_name,
1768 unsigned int th, bool check_profitability)
1770 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1771 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
1772 struct loop *new_loop;
1773 edge update_e;
1774 basic_block preheader;
1775 int loop_num;
1776 int max_iter;
1777 tree cond_expr = NULL_TREE;
1778 gimple_seq cond_expr_stmt_list = NULL;
1780 if (dump_enabled_p ())
1781 dump_printf_loc (MSG_NOTE, vect_location,
1782 "=== vect_do_peeling_for_loop_bound ===\n");
1784 initialize_original_copy_tables ();
1786 loop_num = loop->num;
1788 new_loop
1789 = slpeel_tree_peel_loop_to_edge (loop, scalar_loop, single_exit (loop),
1790 &ratio_mult_vf_name, ni_name, false,
1791 th, check_profitability,
1792 cond_expr, cond_expr_stmt_list,
1793 0, LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1794 gcc_assert (new_loop);
1795 gcc_assert (loop_num == loop->num);
1796 slpeel_checking_verify_cfg_after_peeling (loop, new_loop);
1798 /* A guard that controls whether the new_loop is to be executed or skipped
1799 is placed in LOOP->exit. LOOP->exit therefore has two successors - one
1800 is the preheader of NEW_LOOP, where the IVs from LOOP are used. The other
1801 is a bb after NEW_LOOP, where these IVs are not used. Find the edge that
1802 is on the path where the LOOP IVs are used and need to be updated. */
1804 preheader = loop_preheader_edge (new_loop)->src;
1805 if (EDGE_PRED (preheader, 0)->src == single_exit (loop)->dest)
1806 update_e = EDGE_PRED (preheader, 0);
1807 else
1808 update_e = EDGE_PRED (preheader, 1);
1810 /* Update IVs of original loop as if they were advanced
1811 by ratio_mult_vf_name steps. */
1812 vect_update_ivs_after_vectorizer (loop_vinfo, ratio_mult_vf_name, update_e);
1814 /* For vectorization factor N, we need to copy last N-1 values in epilogue
1815 and this means N-2 loopback edge executions.
1817 PEELING_FOR_GAPS works by subtracting last iteration and thus the epilogue
1818 will execute at least LOOP_VINFO_VECT_FACTOR times. */
1819 max_iter = (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
1820 ? LOOP_VINFO_VECT_FACTOR (loop_vinfo) * 2
1821 : LOOP_VINFO_VECT_FACTOR (loop_vinfo)) - 2;
1822 if (check_profitability)
1823 max_iter = MAX (max_iter, (int) th - 1);
1824 record_niter_bound (new_loop, max_iter, false, true);
1825 dump_printf (MSG_NOTE,
1826 "Setting upper bound of nb iterations for epilogue "
1827 "loop to %d\n", max_iter);
1829 /* After peeling we have to reset scalar evolution analyzer. */
1830 scev_reset ();
1832 free_original_copy_tables ();
1836 /* Function vect_gen_niters_for_prolog_loop
1838 Set the number of iterations for the loop represented by LOOP_VINFO
1839 to the minimum between LOOP_NITERS (the original iteration count of the loop)
1840 and the misalignment of DR - the data reference recorded in
1841 LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO). As a result, after the execution of
1842 this loop, the data reference DR will refer to an aligned location.
1844 The following computation is generated:
1846 If the misalignment of DR is known at compile time:
1847 addr_mis = int mis = DR_MISALIGNMENT (dr);
1848 Else, compute address misalignment in bytes:
1849 addr_mis = addr & (vectype_align - 1)
1851 prolog_niters = min (LOOP_NITERS, ((VF - addr_mis/elem_size)&(VF-1))/step)
1853 (elem_size = element type size; an element is the scalar element whose type
1854 is the inner type of the vectype)
1856 When the step of the data-ref in the loop is not 1 (as in interleaved data
1857 and SLP), the number of iterations of the prolog must be divided by the step
1858 (which is equal to the size of interleaved group).
1860 The above formulas assume that VF == number of elements in the vector. This
1861 may not hold when there are multiple-types in the loop.
1862 In this case, for some data-references in the loop the VF does not represent
1863 the number of elements that fit in the vector. Therefore, instead of VF we
1864 use TYPE_VECTOR_SUBPARTS. */
1866 static tree
1867 vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters, int *bound)
1869 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
1870 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1871 tree var;
1872 gimple_seq stmts;
1873 tree iters, iters_name;
1874 edge pe;
1875 basic_block new_bb;
1876 gimple *dr_stmt = DR_STMT (dr);
1877 stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
1878 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1879 int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
1880 tree niters_type = TREE_TYPE (loop_niters);
1881 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
1883 pe = loop_preheader_edge (loop);
1885 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
1887 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
1889 if (dump_enabled_p ())
1890 dump_printf_loc (MSG_NOTE, vect_location,
1891 "known peeling = %d.\n", npeel);
1893 iters = build_int_cst (niters_type, npeel);
1894 *bound = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
1896 else
1898 gimple_seq new_stmts = NULL;
1899 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
1900 tree offset = negative
1901 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : size_zero_node;
1902 tree start_addr = vect_create_addr_base_for_vector_ref (dr_stmt,
1903 &new_stmts, offset, loop);
1904 tree type = unsigned_type_for (TREE_TYPE (start_addr));
1905 tree vectype_align_minus_1 = build_int_cst (type, vectype_align - 1);
1906 HOST_WIDE_INT elem_size =
1907 int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1908 tree elem_size_log = build_int_cst (type, exact_log2 (elem_size));
1909 tree nelements_minus_1 = build_int_cst (type, nelements - 1);
1910 tree nelements_tree = build_int_cst (type, nelements);
1911 tree byte_misalign;
1912 tree elem_misalign;
1914 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmts);
1915 gcc_assert (!new_bb);
1917 /* Create: byte_misalign = addr & (vectype_align - 1) */
1918 byte_misalign =
1919 fold_build2 (BIT_AND_EXPR, type, fold_convert (type, start_addr),
1920 vectype_align_minus_1);
1922 /* Create: elem_misalign = byte_misalign / element_size */
1923 elem_misalign =
1924 fold_build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);
1926 /* Create: (niters_type) (nelements - elem_misalign)&(nelements - 1) */
1927 if (negative)
1928 iters = fold_build2 (MINUS_EXPR, type, elem_misalign, nelements_tree);
1929 else
1930 iters = fold_build2 (MINUS_EXPR, type, nelements_tree, elem_misalign);
1931 iters = fold_build2 (BIT_AND_EXPR, type, iters, nelements_minus_1);
1932 iters = fold_convert (niters_type, iters);
1933 *bound = nelements;
1936 /* Create: prolog_loop_niters = min (iters, loop_niters) */
1937 /* If the loop bound is known at compile time we already verified that it is
1938 greater than vf; since the misalignment ('iters') is at most vf, there's
1939 no need to generate the MIN_EXPR in this case. */
1940 if (TREE_CODE (loop_niters) != INTEGER_CST)
1941 iters = fold_build2 (MIN_EXPR, niters_type, iters, loop_niters);
1943 if (dump_enabled_p ())
1945 dump_printf_loc (MSG_NOTE, vect_location,
1946 "niters for prolog loop: ");
1947 dump_generic_expr (MSG_NOTE, TDF_SLIM, iters);
1948 dump_printf (MSG_NOTE, "\n");
1951 var = create_tmp_var (niters_type, "prolog_loop_niters");
1952 stmts = NULL;
1953 iters_name = force_gimple_operand (iters, &stmts, false, var);
1955 /* Insert stmt on loop preheader edge. */
1956 if (stmts)
1958 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1959 gcc_assert (!new_bb);
1962 return iters_name;
1966 /* Function vect_update_init_of_dr
1968 NITERS iterations were peeled from LOOP. DR represents a data reference
1969 in LOOP. This function updates the information recorded in DR to
1970 account for the fact that the first NITERS iterations had already been
1971 executed. Specifically, it updates the OFFSET field of DR. */
1973 static void
1974 vect_update_init_of_dr (struct data_reference *dr, tree niters)
1976 tree offset = DR_OFFSET (dr);
1978 niters = fold_build2 (MULT_EXPR, sizetype,
1979 fold_convert (sizetype, niters),
1980 fold_convert (sizetype, DR_STEP (dr)));
1981 offset = fold_build2 (PLUS_EXPR, sizetype,
1982 fold_convert (sizetype, offset), niters);
1983 DR_OFFSET (dr) = offset;
1987 /* Function vect_update_inits_of_drs
1989 NITERS iterations were peeled from the loop represented by LOOP_VINFO.
1990 This function updates the information recorded for the data references in
1991 the loop to account for the fact that the first NITERS iterations had
1992 already been executed. Specifically, it updates the initial_condition of
1993 the access_function of all the data_references in the loop. */
1995 static void
1996 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
1998 unsigned int i;
1999 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
2000 struct data_reference *dr;
2002 if (dump_enabled_p ())
2003 dump_printf_loc (MSG_NOTE, vect_location,
2004 "=== vect_update_inits_of_dr ===\n");
2006 FOR_EACH_VEC_ELT (datarefs, i, dr)
2007 vect_update_init_of_dr (dr, niters);
2011 /* Function vect_do_peeling_for_alignment
2013 Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
2014 'niters' is set to the misalignment of one of the data references in the
2015 loop, thereby forcing it to refer to an aligned location at the beginning
2016 of the execution of this loop. The data reference for which we are
2017 peeling is recorded in LOOP_VINFO_UNALIGNED_DR.
2019 If CHECK_PROFITABILITY is 1 then profitability check is generated
2020 using TH as a cost model profitability threshold of iterations for
2021 vectorization. */
2023 void
2024 vect_do_peeling_for_alignment (loop_vec_info loop_vinfo, tree ni_name,
2025 unsigned int th, bool check_profitability)
2027 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2028 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
2029 tree niters_of_prolog_loop;
2030 tree wide_prolog_niters;
2031 struct loop *new_loop;
2032 int max_iter;
2033 int bound = 0;
2035 if (dump_enabled_p ())
2036 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2037 "loop peeled for vectorization to enhance"
2038 " alignment\n");
2040 initialize_original_copy_tables ();
2042 gimple_seq stmts = NULL;
2043 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2044 niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo,
2045 ni_name,
2046 &bound);
2048 /* Peel the prolog loop and iterate it niters_of_prolog_loop. */
2049 new_loop =
2050 slpeel_tree_peel_loop_to_edge (loop, scalar_loop,
2051 loop_preheader_edge (loop),
2052 &niters_of_prolog_loop, ni_name, true,
2053 th, check_profitability, NULL_TREE, NULL,
2054 bound, 0);
2056 gcc_assert (new_loop);
2057 slpeel_checking_verify_cfg_after_peeling (new_loop, loop);
2058 /* For vectorization factor N, we need to copy at most N-1 values
2059 for alignment and this means N-2 loopback edge executions. */
2060 max_iter = LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 2;
2061 if (check_profitability)
2062 max_iter = MAX (max_iter, (int) th - 1);
2063 record_niter_bound (new_loop, max_iter, false, true);
2064 dump_printf (MSG_NOTE,
2065 "Setting upper bound of nb iterations for prologue "
2066 "loop to %d\n", max_iter);
2068 /* Update number of times loop executes. */
2069 LOOP_VINFO_NITERS (loop_vinfo) = fold_build2 (MINUS_EXPR,
2070 TREE_TYPE (ni_name), ni_name, niters_of_prolog_loop);
2071 LOOP_VINFO_NITERSM1 (loop_vinfo) = fold_build2 (MINUS_EXPR,
2072 TREE_TYPE (ni_name),
2073 LOOP_VINFO_NITERSM1 (loop_vinfo), niters_of_prolog_loop);
2075 if (types_compatible_p (sizetype, TREE_TYPE (niters_of_prolog_loop)))
2076 wide_prolog_niters = niters_of_prolog_loop;
2077 else
2079 gimple_seq seq = NULL;
2080 edge pe = loop_preheader_edge (loop);
2081 tree wide_iters = fold_convert (sizetype, niters_of_prolog_loop);
2082 tree var = create_tmp_var (sizetype, "prolog_loop_adjusted_niters");
2083 wide_prolog_niters = force_gimple_operand (wide_iters, &seq, false,
2084 var);
2085 if (seq)
2087 /* Insert stmt on loop preheader edge. */
2088 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
2089 gcc_assert (!new_bb);
2093 /* Update the init conditions of the access functions of all data refs. */
2094 vect_update_inits_of_drs (loop_vinfo, wide_prolog_niters);
2096 /* After peeling we have to reset scalar evolution analyzer. */
2097 scev_reset ();
2099 free_original_copy_tables ();
2102 /* Function vect_create_cond_for_niters_checks.
2104 Create a conditional expression that represents the run-time checks for
2105 loop's niter. The loop is guaranteed to to terminate if the run-time
2106 checks hold.
2108 Input:
2109 COND_EXPR - input conditional expression. New conditions will be chained
2110 with logical AND operation. If it is NULL, then the function
2111 is used to return the number of alias checks.
2112 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2113 to be checked.
2115 Output:
2116 COND_EXPR - conditional expression.
2118 The returned COND_EXPR is the conditional expression to be used in the
2119 if statement that controls which version of the loop gets executed at
2120 runtime. */
2122 static void
2123 vect_create_cond_for_niters_checks (loop_vec_info loop_vinfo, tree *cond_expr)
2125 tree part_cond_expr = LOOP_VINFO_NITERS_ASSUMPTIONS (loop_vinfo);
2127 if (*cond_expr)
2128 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2129 *cond_expr, part_cond_expr);
2130 else
2131 *cond_expr = part_cond_expr;
2134 /* Function vect_create_cond_for_align_checks.
2136 Create a conditional expression that represents the alignment checks for
2137 all of data references (array element references) whose alignment must be
2138 checked at runtime.
2140 Input:
2141 COND_EXPR - input conditional expression. New conditions will be chained
2142 with logical AND operation.
2143 LOOP_VINFO - two fields of the loop information are used.
2144 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
2145 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
2147 Output:
2148 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2149 expression.
2150 The returned value is the conditional expression to be used in the if
2151 statement that controls which version of the loop gets executed at runtime.
2153 The algorithm makes two assumptions:
2154 1) The number of bytes "n" in a vector is a power of 2.
2155 2) An address "a" is aligned if a%n is zero and that this
2156 test can be done as a&(n-1) == 0. For example, for 16
2157 byte vectors the test is a&0xf == 0. */
2159 static void
2160 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
2161 tree *cond_expr,
2162 gimple_seq *cond_expr_stmt_list)
2164 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2165 vec<gimple *> may_misalign_stmts
2166 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
2167 gimple *ref_stmt;
2168 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
2169 tree mask_cst;
2170 unsigned int i;
2171 tree int_ptrsize_type;
2172 char tmp_name[20];
2173 tree or_tmp_name = NULL_TREE;
2174 tree and_tmp_name;
2175 gimple *and_stmt;
2176 tree ptrsize_zero;
2177 tree part_cond_expr;
2179 /* Check that mask is one less than a power of 2, i.e., mask is
2180 all zeros followed by all ones. */
2181 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
2183 int_ptrsize_type = signed_type_for (ptr_type_node);
2185 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
2186 of the first vector of the i'th data reference. */
2188 FOR_EACH_VEC_ELT (may_misalign_stmts, i, ref_stmt)
2190 gimple_seq new_stmt_list = NULL;
2191 tree addr_base;
2192 tree addr_tmp_name;
2193 tree new_or_tmp_name;
2194 gimple *addr_stmt, *or_stmt;
2195 stmt_vec_info stmt_vinfo = vinfo_for_stmt (ref_stmt);
2196 tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
2197 bool negative = tree_int_cst_compare
2198 (DR_STEP (STMT_VINFO_DATA_REF (stmt_vinfo)), size_zero_node) < 0;
2199 tree offset = negative
2200 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : size_zero_node;
2202 /* create: addr_tmp = (int)(address_of_first_vector) */
2203 addr_base =
2204 vect_create_addr_base_for_vector_ref (ref_stmt, &new_stmt_list,
2205 offset, loop);
2206 if (new_stmt_list != NULL)
2207 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
2209 sprintf (tmp_name, "addr2int%d", i);
2210 addr_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2211 addr_stmt = gimple_build_assign (addr_tmp_name, NOP_EXPR, addr_base);
2212 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
2214 /* The addresses are OR together. */
2216 if (or_tmp_name != NULL_TREE)
2218 /* create: or_tmp = or_tmp | addr_tmp */
2219 sprintf (tmp_name, "orptrs%d", i);
2220 new_or_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2221 or_stmt = gimple_build_assign (new_or_tmp_name, BIT_IOR_EXPR,
2222 or_tmp_name, addr_tmp_name);
2223 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
2224 or_tmp_name = new_or_tmp_name;
2226 else
2227 or_tmp_name = addr_tmp_name;
2229 } /* end for i */
2231 mask_cst = build_int_cst (int_ptrsize_type, mask);
2233 /* create: and_tmp = or_tmp & mask */
2234 and_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, "andmask");
2236 and_stmt = gimple_build_assign (and_tmp_name, BIT_AND_EXPR,
2237 or_tmp_name, mask_cst);
2238 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
2240 /* Make and_tmp the left operand of the conditional test against zero.
2241 if and_tmp has a nonzero bit then some address is unaligned. */
2242 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
2243 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
2244 and_tmp_name, ptrsize_zero);
2245 if (*cond_expr)
2246 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2247 *cond_expr, part_cond_expr);
2248 else
2249 *cond_expr = part_cond_expr;
2252 /* Function vect_create_cond_for_alias_checks.
2254 Create a conditional expression that represents the run-time checks for
2255 overlapping of address ranges represented by a list of data references
2256 relations passed as input.
2258 Input:
2259 COND_EXPR - input conditional expression. New conditions will be chained
2260 with logical AND operation. If it is NULL, then the function
2261 is used to return the number of alias checks.
2262 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2263 to be checked.
2265 Output:
2266 COND_EXPR - conditional expression.
2268 The returned COND_EXPR is the conditional expression to be used in the if
2269 statement that controls which version of the loop gets executed at runtime.
2272 void
2273 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo, tree * cond_expr)
2275 vec<dr_with_seg_len_pair_t> comp_alias_ddrs =
2276 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
2277 tree part_cond_expr;
2279 /* Create expression
2280 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2281 || (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
2285 ((store_ptr_n + store_segment_length_n) <= load_ptr_n)
2286 || (load_ptr_n + load_segment_length_n) <= store_ptr_n)) */
2288 if (comp_alias_ddrs.is_empty ())
2289 return;
2291 for (size_t i = 0, s = comp_alias_ddrs.length (); i < s; ++i)
2293 const dr_with_seg_len& dr_a = comp_alias_ddrs[i].first;
2294 const dr_with_seg_len& dr_b = comp_alias_ddrs[i].second;
2295 tree segment_length_a = dr_a.seg_len;
2296 tree segment_length_b = dr_b.seg_len;
2297 tree addr_base_a = DR_BASE_ADDRESS (dr_a.dr);
2298 tree addr_base_b = DR_BASE_ADDRESS (dr_b.dr);
2299 tree offset_a = DR_OFFSET (dr_a.dr), offset_b = DR_OFFSET (dr_b.dr);
2301 offset_a = fold_build2 (PLUS_EXPR, TREE_TYPE (offset_a),
2302 offset_a, DR_INIT (dr_a.dr));
2303 offset_b = fold_build2 (PLUS_EXPR, TREE_TYPE (offset_b),
2304 offset_b, DR_INIT (dr_b.dr));
2305 addr_base_a = fold_build_pointer_plus (addr_base_a, offset_a);
2306 addr_base_b = fold_build_pointer_plus (addr_base_b, offset_b);
2308 if (dump_enabled_p ())
2310 dump_printf_loc (MSG_NOTE, vect_location,
2311 "create runtime check for data references ");
2312 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_a.dr));
2313 dump_printf (MSG_NOTE, " and ");
2314 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_b.dr));
2315 dump_printf (MSG_NOTE, "\n");
2318 tree seg_a_min = addr_base_a;
2319 tree seg_a_max = fold_build_pointer_plus (addr_base_a, segment_length_a);
2320 /* For negative step, we need to adjust address range by TYPE_SIZE_UNIT
2321 bytes, e.g., int a[3] -> a[1] range is [a+4, a+16) instead of
2322 [a, a+12) */
2323 if (tree_int_cst_compare (DR_STEP (dr_a.dr), size_zero_node) < 0)
2325 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_a.dr)));
2326 seg_a_min = fold_build_pointer_plus (seg_a_max, unit_size);
2327 seg_a_max = fold_build_pointer_plus (addr_base_a, unit_size);
2330 tree seg_b_min = addr_base_b;
2331 tree seg_b_max = fold_build_pointer_plus (addr_base_b, segment_length_b);
2332 if (tree_int_cst_compare (DR_STEP (dr_b.dr), size_zero_node) < 0)
2334 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_b.dr)));
2335 seg_b_min = fold_build_pointer_plus (seg_b_max, unit_size);
2336 seg_b_max = fold_build_pointer_plus (addr_base_b, unit_size);
2339 part_cond_expr =
2340 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
2341 fold_build2 (LE_EXPR, boolean_type_node, seg_a_max, seg_b_min),
2342 fold_build2 (LE_EXPR, boolean_type_node, seg_b_max, seg_a_min));
2344 if (*cond_expr)
2345 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2346 *cond_expr, part_cond_expr);
2347 else
2348 *cond_expr = part_cond_expr;
2351 if (dump_enabled_p ())
2352 dump_printf_loc (MSG_NOTE, vect_location,
2353 "created %u versioning for alias checks.\n",
2354 comp_alias_ddrs.length ());
2358 /* Function vect_loop_versioning.
2360 If the loop has data references that may or may not be aligned or/and
2361 has data reference relations whose independence was not proven then
2362 two versions of the loop need to be generated, one which is vectorized
2363 and one which isn't. A test is then generated to control which of the
2364 loops is executed. The test checks for the alignment of all of the
2365 data references that may or may not be aligned. An additional
2366 sequence of runtime tests is generated for each pairs of DDRs whose
2367 independence was not proven. The vectorized version of loop is
2368 executed only if both alias and alignment tests are passed.
2370 The test generated to check which version of loop is executed
2371 is modified to also check for profitability as indicated by the
2372 cost model threshold TH.
2374 The versioning precondition(s) are placed in *COND_EXPR and
2375 *COND_EXPR_STMT_LIST. */
2377 void
2378 vect_loop_versioning (loop_vec_info loop_vinfo,
2379 unsigned int th, bool check_profitability)
2381 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *nloop;
2382 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
2383 basic_block condition_bb;
2384 gphi_iterator gsi;
2385 gimple_stmt_iterator cond_exp_gsi;
2386 basic_block merge_bb;
2387 basic_block new_exit_bb;
2388 edge new_exit_e, e;
2389 gphi *orig_phi, *new_phi;
2390 tree cond_expr = NULL_TREE;
2391 gimple_seq cond_expr_stmt_list = NULL;
2392 tree arg;
2393 unsigned prob = 4 * REG_BR_PROB_BASE / 5;
2394 gimple_seq gimplify_stmt_list = NULL;
2395 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2396 bool version_align = LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo);
2397 bool version_alias = LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
2398 bool version_niter = LOOP_REQUIRES_VERSIONING_FOR_NITERS (loop_vinfo);
2400 if (check_profitability)
2401 cond_expr = fold_build2 (GT_EXPR, boolean_type_node, scalar_loop_iters,
2402 build_int_cst (TREE_TYPE (scalar_loop_iters),
2403 th));
2405 if (version_niter)
2406 vect_create_cond_for_niters_checks (loop_vinfo, &cond_expr);
2408 if (cond_expr)
2409 cond_expr = force_gimple_operand_1 (cond_expr, &cond_expr_stmt_list,
2410 is_gimple_condexpr, NULL_TREE);
2412 if (version_align)
2413 vect_create_cond_for_align_checks (loop_vinfo, &cond_expr,
2414 &cond_expr_stmt_list);
2416 if (version_alias)
2417 vect_create_cond_for_alias_checks (loop_vinfo, &cond_expr);
2419 cond_expr = force_gimple_operand_1 (cond_expr, &gimplify_stmt_list,
2420 is_gimple_condexpr, NULL_TREE);
2421 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
2423 initialize_original_copy_tables ();
2424 if (scalar_loop)
2426 edge scalar_e;
2427 basic_block preheader, scalar_preheader;
2429 /* We don't want to scale SCALAR_LOOP's frequencies, we need to
2430 scale LOOP's frequencies instead. */
2431 nloop = loop_version (scalar_loop, cond_expr, &condition_bb, prob,
2432 REG_BR_PROB_BASE, REG_BR_PROB_BASE - prob, true);
2433 scale_loop_frequencies (loop, prob, REG_BR_PROB_BASE);
2434 /* CONDITION_BB was created above SCALAR_LOOP's preheader,
2435 while we need to move it above LOOP's preheader. */
2436 e = loop_preheader_edge (loop);
2437 scalar_e = loop_preheader_edge (scalar_loop);
2438 gcc_assert (empty_block_p (e->src)
2439 && single_pred_p (e->src));
2440 gcc_assert (empty_block_p (scalar_e->src)
2441 && single_pred_p (scalar_e->src));
2442 gcc_assert (single_pred_p (condition_bb));
2443 preheader = e->src;
2444 scalar_preheader = scalar_e->src;
2445 scalar_e = find_edge (condition_bb, scalar_preheader);
2446 e = single_pred_edge (preheader);
2447 redirect_edge_and_branch_force (single_pred_edge (condition_bb),
2448 scalar_preheader);
2449 redirect_edge_and_branch_force (scalar_e, preheader);
2450 redirect_edge_and_branch_force (e, condition_bb);
2451 set_immediate_dominator (CDI_DOMINATORS, condition_bb,
2452 single_pred (condition_bb));
2453 set_immediate_dominator (CDI_DOMINATORS, scalar_preheader,
2454 single_pred (scalar_preheader));
2455 set_immediate_dominator (CDI_DOMINATORS, preheader,
2456 condition_bb);
2458 else
2459 nloop = loop_version (loop, cond_expr, &condition_bb,
2460 prob, prob, REG_BR_PROB_BASE - prob, true);
2462 if (version_niter)
2464 /* The versioned loop could be infinite, we need to clear existing
2465 niter information which is copied from the original loop. */
2466 gcc_assert (loop_constraint_set_p (loop, LOOP_C_FINITE));
2467 vect_free_loop_info_assumptions (nloop);
2468 /* And set constraint LOOP_C_INFINITE for niter analyzer. */
2469 loop_constraint_set (loop, LOOP_C_INFINITE);
2472 if (LOCATION_LOCUS (vect_location) != UNKNOWN_LOCATION
2473 && dump_enabled_p ())
2475 if (version_alias)
2476 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2477 "loop versioned for vectorization because of "
2478 "possible aliasing\n");
2479 if (version_align)
2480 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2481 "loop versioned for vectorization to enhance "
2482 "alignment\n");
2485 free_original_copy_tables ();
2487 /* Loop versioning violates an assumption we try to maintain during
2488 vectorization - that the loop exit block has a single predecessor.
2489 After versioning, the exit block of both loop versions is the same
2490 basic block (i.e. it has two predecessors). Just in order to simplify
2491 following transformations in the vectorizer, we fix this situation
2492 here by adding a new (empty) block on the exit-edge of the loop,
2493 with the proper loop-exit phis to maintain loop-closed-form.
2494 If loop versioning wasn't done from loop, but scalar_loop instead,
2495 merge_bb will have already just a single successor. */
2497 merge_bb = single_exit (loop)->dest;
2498 if (scalar_loop == NULL || EDGE_COUNT (merge_bb->preds) >= 2)
2500 gcc_assert (EDGE_COUNT (merge_bb->preds) >= 2);
2501 new_exit_bb = split_edge (single_exit (loop));
2502 new_exit_e = single_exit (loop);
2503 e = EDGE_SUCC (new_exit_bb, 0);
2505 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2507 tree new_res;
2508 orig_phi = gsi.phi ();
2509 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
2510 new_phi = create_phi_node (new_res, new_exit_bb);
2511 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
2512 add_phi_arg (new_phi, arg, new_exit_e,
2513 gimple_phi_arg_location_from_edge (orig_phi, e));
2514 adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
2518 /* End loop-exit-fixes after versioning. */
2520 if (cond_expr_stmt_list)
2522 cond_exp_gsi = gsi_last_bb (condition_bb);
2523 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
2524 GSI_SAME_STMT);
2526 update_ssa (TODO_update_ssa);